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Abstract—A technique for calculating moment intensity factors (MIF) and stress intensity factors (SIF)
for through-thickness cracks in thin plates subjected to out-of-plane bending by means of fractal two-level
finite element method is proposed. It is based on the nodal displacements transformation near the crack
tip in terms of some analytical functions. The similarity characteristic properties of the plate element
stiffness are employed. Fractal transformation technique is developed to transform infinitely many nodal
displacements around the crack tip to a small set of generalized displacements including the MIF and
SIF as direct unknowns. Examples are given on the centre cracked plates in bending. The results are in
good agreement with analytical results and with other researchers. Comparison of the results from
Kirchhoff’s theory and from Reissner’s plate theory shows large differences up to ca 50%. Copyright ©
1996 Elsevier Science Ltd

INTRODUCTION

IN ENGINEERING applications of the principles of linear elastic fracture mechanics to through cracked
plates subject to out-of-plane bending, expressions for the moment intensity factors and shear
intensity factors [1] must be determined. Knowles and Wang [2] discovered the differences in the
predictions of stress intensity factors between Kirchhoff’s and Reissner’s theories. He considered
an infinite plate with crack of length 2a, subjected to remote all round bending moment M,,
Reissner’s shear deformation theory leads to K, = (1 + v)/(3 + v)MO\/Z instead of K, = Mo\/z
from Kirchhoff’s theory [1]. The thickness effects of infinite Reissner’s plate were studied by
Hartranft and Sih [3], and Wang [4]. Hartranft reported that the moment intensity factor increases
62% when the plate thickness increases from zero to approximately one-tenth of the crack length
for v = 0.3. However, bending of finite cracked plates is probably of more practical significance
than that of infinite plate. The moment intensity factor of finite cracked plate was deliberated by
Wilson and Thompson [5] using Kirchhoff’s theory and finite element method. About one decade
later, Murthy et al. [6] applied shear deformation theory to solve cracked finite plate analytically,
later Boduroglu and Erdogan [7] used singular integral equations, and most recently Leung and
Su [8] employed numerical method to solve the similar problems.

It is our intention to extend the fractal two-level finite element method (F2LFEM) [9, 10] to
solve the solution of “thin” crack plate subjected to bending. While the interpolating shape
functions within a finite element reduce a continuum of an infinite number of degrees of freedom
to a finite number of degrees of freedom in terms of the nodal displacements, global interpolating
functions for the nodal displacements can also be used to drastically reduce the number of
unknowns. The global interpolating functions can be obtained by eigenfunction expansion
technique based on Kirchhoff's plate theory. Fractal transformation method is introduced so that
an infinite number of finite elements with infinitely many degrees of freedom can be transformed
in an expeditious way.

To fix ideas, suppose that a plate with a crack is discretized into conventional finite elements.
The nearer to the crack tip, the finer will be the mesh. Analytical solutions are available in the
region very near to the singular point. Therefore, the nodal displacements of the fine mesh near
the crack tip follow certain known analytical patterns. It is reasonable to interpolate the nodal
displacements by the known solutions. The unknowns at the singular region are no longer the nodal
displacement, but the coefficient of the global interpolating functions of the nodal displacement.
Since the analytical solutions are valid only in the vicinity of the crack tip, outside the singular
region, the solutions are obtained by the conventional finite elements methods. The advantage of
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being capable to model complex boundary conditions is preserved. The stiffness matrix associated
with the coefficients is obtained by matrix transformation. In fact, the transformation is performed
at element level so that the order involved is very small. The crack parameters, stress intensity
factors or moment intensity factors can be obtained directly from the coefficients.

GLOBAL INTERPOLATING FUNCTION

By using Kirchhoff’s theory for plates in bending, the appropriate differential equation
controlling the deflection w(r,0) is

Véw(r,0) = q(r,0)/D , )]

in which D (the flexible rigidity) is given by D = EA*/12(1 — v*); E is Young’s modulus and v is
Poisson’s ratio. The moments M,, M, and M,, and shears Q, and Q, can be related with the

deflection w as follows
o*w 1 ow 1 o*w
M,(r,9) = —D[ _arz + V( ; ar + r2 662 )}

1 ow 1w O w
My(r.6) = —9[7 o traw T 6r2:|

My(r0) = (1 - v)Dl:lr 5%(% _ %)}W

0..9) = —D[(%(Ww) g (M,e)]

0u(r-0) = —D[} 2 w0) + %(M,a)] !
Assuming the traction-free boundary conditions at the crack faces, one has the boundary
conditions
My=M,=0,=0for0= +x. 3)
It has been shown by Williams [11] that the desired characteristic solutions are of the form
(1 — v)Dw,(r,0) = r"*bcos(n/2 + 1)8 + b,sin(n/2 + 1)8 + bscos(n/2 — 1)8 + bsin(r/2 — 1)0]
(forn=1.2,...)
and for the rigid body motion,
wo(r,8) = brcos(8) + b,rsin(6) + a,, @)

where g, and b, (i = 1-4) are the arbitrary constants. The relations between the constants are found
by replacing eq. (4) into eq. (3) to yield

(n+2)1—v)
(—n+(=D6)+n+(— 12w

(n+2)1 —v)

by=b, (= (—1y6) + (1 — (= Ty ©

and b, = b,

By neglecting the shear deformation, the rotational displacements are

ow 1 ow
'ﬂr—gandlﬂo=;%- (6)
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Letting b, = B,” and b, = B, substituting eq. (5) into eq. (4a) and then into eq. (6), the
displacement distribution in the vicinity of the end of a crack is expressed in the form:

(1 —v)Dy,, = ”;’ Bg)[(n + 2)cos(n/2 + 1)8 + T (_nl-+)-n62))_(‘_1(; :_)( “ Ty cos(n/2 — I)B:I
+ ’; Bf,”l:(n + Dsin(n/2 + 16 + (n ;;2)) S a V) Ty Sne/2 — 1)6]

n— 41 —v)
(=n+(=D6)+®m+ (- D2y

rn/2

(1 =)Dy, = — BL"[(n + 2)sin(n/2 + 1)0 +

sin(n/2 — I)HJ

T =41 —v)
+ 5B >[(n + 20e08(/2 4+ 10 + T e e cos(n/2 — 1)9}

(n+2)(1—-v)
(=n+(=16)+(n+(—1)y2)v

(1—-v)Dw, = r("+2>"zB,‘,‘)|:cos(n/2 + )0 + cos(n/2 — 1)9:'

+ r‘"””’zB,‘,”[sin(n/Z + )6 + = _(f),,-g)zj_(l(n__vz Ty sin(n/2 — 1)9] )

Furthermore, the displacement distribution (,, ¥,, w) in the rectangular coordinates system as
shown in Fig. 1 is given by the transformation,

v, cos(@) —sin(B) 0 v,
V2 p= |sin@) cos®) 0| <. ®)
w 0 0 1 w

With the aids of eqgs (7) and (8), the general displacement distribution in the vicinity of a crack
tip can be derived. It will be used as the global interpolation function.
The moment intensity factors K, and K, are defined as follows,

K = lin01 2r M (r,0)

K, = lim [2rM(r,0). (9)

They can be obtained by substituting eq. (7) into eq. (2) and putting 6§ = 0,

EENCCI EENCET
K,—WBﬁ)andKz—WBP. (10)

Fig. 1. Notations for Kirchhoff’s plate.
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Explicit dependence of the stress intensity factors k, (x;) and k, (x;) with the transverse coordinate
X; is obtained by means of the relations,

12x;
h3
The evaluation of moment intensity factors or stress intensity factors are reduced to the
determination of the coefficients B{"” and B{®.

12x,

ki(x3) = AN K, and k,(x;) = K, . (an

STIFFNESS MATRICES OF PLATE BENDING ELEMENTS WITH SIMILAR SHAPE

In this section the property of the selected plate bending elements with similar shape will be
explored. A triangular nine degree-of-freedom element, namely a discrete Kirchhoff theory (DKT)
element [12], is chosen for the subsequent finite element analysis because of the efficiency and
reliability of the element [13].

Consider a triangular DKT element with thickness # and with the area of the middle surface
of the plate A, the stiffness matrix of the DKT element can be expressed as

K= J' k'Drdxdy , (12)
A

where the material matrix D and the strain—displacement matrix x are given as

1 v 0
EW’ v 1 0
D=5ma=% 00 1-v (13)
2
and
B
ox
_ op
K= 5 ‘ (14)
du 0P
oy t ax

Here, « and f are the rotations of the normal to the undeformed middle surface in the x,—x; and
XX, planes, respectively, and they are related to the element degrees of freedom as

o= (G){6} and B = (H){5}, (15)

where {0} = {¥,, ¥y W, Y15 ¥y Wy i3 U3 Wy} is the nodal rotations and deflections vector.
The shape function row vectors (G) and (H) are presented explicitly in terms of area
coordinates ¢ and u, by

(GY={1&n & nn*}[Gland (A) = {1 &n & & n’}(H) (16)
—1 3+4c 3+4+4cs —2—4ce —4—des—4deg —2— 4
0 4b; 4bs —4bs —4bs — 4b —4b;s
0 6as —bas —6ag 6as — 6a, 6as
0 14 4c 0 —2 —4c¢ dey — 4 0
[G] = 0 4b 0 —4bs 4b, — 4b, 0 (17)
0 —6as 0 6as 6a; — 6a, 0
0 0 1 + 4¢s 0 4¢q — 4es —2—4c¢s
0 0 4bs 0 4b, — 4b; —dbs
| 0 0 6as 0 —b6as — 6as —6a;
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[0 4b 4b; —4bs —4bs — 4b. —4bs |
—1 344e;, 3+ des —2—4es —4—4des—4des —2 —des
0 6ds —6d; — 6d; 6ds — 6ds 6d;
0 4bs 0 —4b, 4b, — 4bs 0
[H]) = 0 14 4e 0 —2—4es de, — 4des 0 (18)

0 — 6d; 0 6d; 6d; — 6ds 0
0 0 4p; 0 4b, — 4bs —4b;
0 0 1 + 4es 0 4e, — 4es —2—4es

L0 0 6ds 0 —6d, — 6ds —6ds |

in which a,, b, ¢, d, and ¢, (k = 4-6) are defined in ref. [I3].It is noted that the coefficients g, and
d, are in dimension L ~' and the rest of the coefficients are dimensionless.

Two elements, denoted 1 and 2, have a shape which is similar with the length ratio 4. The
relationships of the coordinates for the corresponding nodes can be represented by

xlzi = A.'-xl]r and szi = j"xél s (19)

where x} are the coordinates of element & at node i.
Without loss of generality, the element stiffness matrix for element 1 is partition according

to {Y'} = (Y1 Wiy} and {w'}' = {wiwiwi}, such that,

ey =g L 0)

By putting eq. (19) into eqs (17) and (18), and making use of eqs (12)—(16), the stiffness matrix
for element 2 is expressed as

[K7] = [S] + %[S]: + %[SH, @21

where

- Sfusi=[g, S ]mems-[5 g | 22

Equation (21) can be used to calculate any DKT element with geometric similarity. A list of Fortran
coding for the DKT element can be found in ref. [14].

FRACTAL TRANSFORMATION TECHNIQUE

The F2LFEM is based on the separation of the sub-domain D which contains the singularity
from the complete cracked plate by an artificial surface boundary I" (Fig. 2). Within D the solution
is obtained by the F2LFEM on one hand, and outside D the solution is obtained by conventional
FEM on the other hand. The generalized stiffness matrix in domain D is evaluated by transforming

Crack Sub-domain D
solve by F2LFEM

Residual domain
solve by FE

Fig. 2. Sub-domain D and residual domain.
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the stiffness matrix of the first layer of mesh (Fig. 3) and modifying each element of the mentioned
generalized stiffness matrix.

For the first layer of mesh, let the displacements on the boundary I' be the masters {J,,} and
the displacements within the boundary I' be the slaves {J,}. To carry out the transformation, the
stiffness matrix [K] in eq. (23) is first partitioned with respect to s and m,

f
CON P K @3

where the superscript “f” indicates the first layer of mesh. The displacements at the slaves are
transformed. The second level (global) interpolation of displacements can be written as follows,

6| | T Ofja
-0 et o
where the transformation matrix TV = T{ + T§ can be evaluated by using eqs (7a), (7b) and (8) for
T} and eqs (7c) and (8) for TY; and a is the generalized coordinates vector. After transformation

we have,
T'K,T T'K, |[a) _ {0
W B )

For the inner layer, each element stiffness matrix within the first layer of D would be transformed
and assembled. Based on fractal concepts, an infinite number of elements and numerous number
of degrees of freedom would be generated near the crack tip. Applying the fast transformation
technique, infinitely many layers of mesh can be transformed and assembled.

Consider the matrix transformation of the k-th inner layer of the element stiffness matrix and
the assembly of the inner layer of meshes form the 2-nd layer to the infinite layer, the generalized
stiffness matrix is given as

2 2 o«

2 2 2 2 =
YYYTKT =YY Y Y TUST and i =

i=1lj=1lk=2 i=lj=1 k =2

(26)

N | ==

In addition, because the matrices T¥, Tf and S} are not full, matrices multiplication of TS T} is
non-zero only when

i=j=1and /=0
i=j=2and/=2o0r

i#jand/=1. 27
o x 0
o |~ 1st layer
_—- 2nd layer
— 3rd layer
Crack ¢ ) etc.

O Master node

. s N

Fig. 3. Fractal mesh configuration. (Only the first layer of mesh is prepared, the rest will be generated
automatically.)
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With the fact of geometric similarity, (7%,) the n-th term of the transformation matrix 7} can be
related to that of the first layer as,

Ti, = j- o=y (28)
Similarly,
Té,, = I{(k — n+ ”’QT{ . (29)

Therefore, the sub-matrices (K¥,) of generalized stiffness matrix (T¥Sf T¥) can be related to the first
layer, such that
fori=j=1and /=0

K, = TSETt, = [A7 27 KT,
fori#jand /=1
K, = ThSIT), + ToSiT, = [A7+" 7 'KD,
fori=j=2and /=2

K = T5SiT;, = [A7 "~ KL, (30)
Hence, infinite series in eq. (26) can be replaced by the geometrical progression series and
2 o € 2 _
LYK=y LK., 31
1=0k=2 =0

where ¢ = A" +"-22 The result of eq. (31) suggests further simplification, as
2
Y K, = TIK'T; (32)
1=0

where T/ is the n-th term of the transformation matrix 7¥. Consequently, eq. (32) indicates that
the generalized stiffness matrix for all the inner layers of the elements can be evaluated by simply
transforming the first layer of the element stiffness matrix [eq. (20) instead of eq. (21)] and
modifying each element in the first layer generalized stiffness matrix in turn by a factor shown in
eq. (31). The complete generalized stiffness matrix can be calculated by making use of egs (25),
(31) and (32).

NUMERICAL EXAMPLE

The following examples are used to illustrate the effectiveness of the method. Discussion will
be given on the results obtained by Kirchhoff’s theory and from Reissner’s plate theory. Consider
a centre cracked square plate of edge length 2b and with crack length 2a. The plate is subjected
to edge moments as shown in Fig. 4. Because of symmetry, a quarter of the plate is used in the
analysis, and it is divided into 220 triangular elements and 150 nodes. A typical mesh configuration

Y —
M,

2a

2b

2b

M,
—_—

Fig. 4. Centre cracked plate subjected to edge moment.
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Number of elements=220
Number of nodes=150

N\ Crack 4 Enlarged 1

Fig. 5. A typical mesh configuration.

Normalized moment intensity factor

25
2+
151
— F2LFEM
] . ¥ Wilson
o 02 0.4 0.6 0.8 1

a/b
Fig. 6. Moment intensity factor for a square platae with central cracks subjected to edge moment.

for the ratio crack length per edge length (a/b = 0.5) is depicted in Fig. 5. Analytical results for
an infinite plate with a centre crack are available [1].

Ki=Myn/a. (33)

By slightly modifying the sizes of mesh in Fig. 5, a mesh with ratio a/b = 0.05 is obtained. The
convergency of the dimensionless moment intensity factor (K./MO\/c—z) against the number of
transformation term is studied, the results are tabulated in Table 1. It is found that 14
transformation terms have attained a good convergence.

Figure 6 is a plot of the moment intensity factor for a square plate with central cracks subjected
to edge moment. It is observed that in the range 0.1 < a/b < 0.5 the results provided by F2LFEM
follow almost exactly the data reported by Wilson and Thompson [5]. The present method seems

Table 1. Number of transformation terms against moment intensity factor, a/b = 0.05 (analytical solution for infinite
plate with centre crack = 1.000)

Number of terms 2 4 6 8 10 12 14 16
K /'MO\/Z 0.973 0.985 0.998 1.001 1.006 1.006 1.007 1.007

Table 2. Comparison between the moment intensity factors determined by Kirchhoff's theory (present) and Reissner’s
theory [8] for cracked square plate. (b/h = 10, v = 0.3)

alb 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Kirchhoff’s theory 0.320 0.465 0.584 0.698 0.819 0.961 1.147 1.438 2.065
Reissner’s theory 0.238 0.322 0.394 0.465 0.544 0.641 0.774 0.996 1.534

Difference % 34.2 44.7 48.5 50.0 50.5 50.0 48.2 44 .4 346
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to be more efficient in terms of computation time, storage and more convenience in the sense of
mesh preparation than the displacement extrapolation method as suggested by Wilson.

Finally, the results of moment intensity factors determined by Kirchhoff’s theory are compared
with those by Reissner’s plate theory [8], as shown in Table 2. It is observed that for the same plate
thickness of ratio 2b/h = 20, Kirchoff’s theory always gives an over-estimate of the moment
intensity factor by up to 50%. The differences in the predictions of stress intensity factors between
Kirchhoff’s and Reissner’s theory for cracked infinite plate had been discussed by Hartranft and
Sih [3], and Wang [4] who obtained similar results as ours. Hartranft’s results show that the
difference can increase to 62% when the plate thickness increases from zero to approximately
one-tenth of the crack length for v = 0.3.

CONCLUSIONS

The extension of the fractal two-level finite element method to a cracked plate by Kirchhoff’s
theory has been discussed. In the paper, the property of shape similarity of DKT element is
discussed, fractal transformation technique is also introduced to transform the infinite number of
nodal displacements vector around the crack tip to a new set of generalized displacements. The
number of unknowns is reduced significantly and hence the computational effort is substantially
decreased. The results are in good agreement with those obtained by the analytical method and
displacement extrapolation method. Results of finite cracked plate are also compared with those
obtained by Reissner’s (shear deformation) theory; it is found that the predicted moment intensity
factors by the two theories differ greatly up to about 50%. Finally, the present method can also
be extended to apply for mixed mode crack problems or dynamic crack problems.
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