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Abstract A finite element method for linear elastic frac-
ture mechanics using enriched quadratic interpolations is
presented. The quadratic finite elements are enriched
with the asymptotic near tip displacement solutions and
the Heaviside function so that the finite element
approximation is capable of resolving the singular stress
field at the crack tip as well as the jump in the
displacement field across the crack face without any
significant mesh refinement. The geometry of the crack is
represented by a level set function which is interpolated
on the same quadratic finite element discretization. Due
to the higher-order approximation for the crack
description we are able to represent a crack with
curvature. The method is verified on several examples
and comparisons are made to similar formulations using
linear interpolants.

Keywords Fracture, Finite elements, Crack propagation,
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1
Introduction
We describe the development of higher order elements
within the setting of the eXtended Finite Element Method
(X-FEM). The X-FEM is a numerical method to model
arbitrary discontinuities in continuous bodies that does
not require the mesh to conform to the discontinuities
nor significant mesh refinement near singuliarities [2, 6,
19, 26]. In X-FEM the standard finite element approxi-
mation is enriched and the approximation space is ex-
tended by an additional family of functions. By choosing
an appropriate enrichment, the extended finite element
approximation space can more closely approximate the
solution space for the problem considered. This type of
enrichment is an application of the concept of the
partition of unity [17].

For linear elastic fracture mechanics, the near tip sin-
gular stress field and the displacement discontinuity across
the crack face are problematic for standard piecewise
polynomial approximations. However, by adding a neartip
asymptotic field and a step to the polynomial approxi-
mations we can enrich the standard FEM approximation
so that good accuracy is achieved without conforming to
the mesh.

This method was introduced in several papers by
Belytschko and coworkers. In Belytschko and Black [2],
Moës et al. [19] and Dolbow et al. [12] the crack topology
was represented by an explicit discretization. Updating
this explicit representation can be inconvenient when
crack growth is considered. In Sukumar et al. [27] a level
set representation of the topology was adopted for ma-
terial interfaces. Non-planar quasi-static crack growth in
three dimensions was considered in Moës et al. [20] and
Gravouil et al. [16] with an orthogonal pair of level set
functions to represent the crack. A PDE based method
was employed to update the level sets similar to the
method described in Peng et al. [22]. In all of the
aforementioned papers only linear finite element ap-
proximations were used in the X-FEM approximations
and in the level set interpolations. Wells et al. [34] have
used the X-FEM concept in 6-node triangles in visco-
plastic materials but only considered cracks that ended at
an element edge.

Here we consider a technique for enriching high-order
elements, and in particular quadratic finite elements. It is
well known that higher-order elements provide improved
accuracy for sufficiently smooth problems. Away from the
crack tip this smoothness condition is satisfied in elastic
problems, so improved accuracy is expected. In fact
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quadratic elements are the elements of choice for most
static and quasi-static elastic problems. This is due to their
higher rate of convergence, their decreased susceptibility
to locking, and their ability to model curved boundaries.
Furthermore, a level set interpolated by quadratic shape
functions is capable of describing curved cracks; level set
descriptions by piecewise linear finite elements are limited
to piecewise linear cracks.

An outline of this paper is as follows. In Sect. 2, the for-
mulation of the method is presented: the governing equa-
tions and the weak forms are given. Next, in Sect. 3 the level
set representation of the crack is described. In Sect. 4, the
X-FEM approximation is presented and its implementation
is described. The accuracy and convergence of the method
in demonstrated through several example problems in
Sect. 6. Conclusions are presented in Sect. 7.

2
Formulation

2.1
Governing equations
Although many of the techniques presented here are ap-
plicable to nonlinear, large deformation problems, we
present them in the context of linear elasticity. Let X be a
regular region bounded by a smooth curve C. The
boundary of the body C is the union of Ct and Cu. Es-
sential boundary conditions are imposed on Cu while
traction boundary conditions are imposed on Ct. Let u be
the displacement and e the strain, given by:

e ¼ rsu ð1Þ
where rs indicates the symmetric part of the gradient.

If we assume that the faces of the crack Ccr are traction
free, the strong form of the initial boundary value problem
has the following form

r � r þ b ¼ 0 in X ð2Þ
u ¼ �uu on Cu ð3Þ
r � n ¼ �tt on Cu ð4Þ
r � n ¼ 0 on Ccr ð5Þ
where r is the Cauchy stress tensor, b the body force per
unit volume, n the outward unit normal to C, �uu the pre-
scribed displacement and �tt the prescribed traction. The
mechanical behavior of the bodies is governed by a linear
elastic constitutive law:

r ¼ C : e ð6Þ
where C is the elasticity tensor.

2.2
Weak form
We require that the trial functions u satisfy all displace-
ment boundary conditions and have the usual smoothness
properties so that u is continuous ðCoÞ in X.

u 2 U; U ¼ fuju 2 Co except on Ccr; u ¼ �uu on Cug
ð7Þ

The test functions dv are defined by:

dv 2 U0;

U0 ¼ fdvjdv 2 Co except on Ccr; dv ¼ 0 on Cug ð8Þ
The weak form of the equilibrium equation and traction
boundary conditions is: find u 2 U such thatZ
X

rðuÞ : eðdvÞdX

¼
Z
X

b � dv dX þ
Z
Ct

�tt � dv dC 8dv 2 U0 ð9Þ

Recalling the linear elastic constitutive law (6) and the
strain definition (1), the following weak form of the
problem can be obtained: find u 2 U such thatZ
X

eðuÞ : C : eðvÞdX

¼
Z
X

b � v dX þ
Z
Ct

�tt � v dC 8v 2 U0 ð10Þ

In Belytschko and Black [2] it is shown that the above
weak form is equivalent to the strong form (2–5).

3
Geometric description of crack
It is convenient, but not essential, to represent the crack by
a signed distance function f ðxÞ, often called a level set. In
this format the crack is given by the zero isobar of the
function f ðxÞ, i.e. by:

f ðxÞ ¼ 0 ð11Þ
The signed distance function f ðxÞ is defined by:

f ðxÞ ¼ sign½n � ðx � �xxÞ� min
�xx2Ccr

kx � �xxk ð12Þ

We only define f ðxÞ in a subdomain around the crack as
shown in Fig. 1.

In addition we define the functions gIðxÞ, which locate
the crack tips (I runs over the number of crack tips). The
function gIðxÞ is given by:

gIðxÞ ¼ kx � x
tip
I k ð13Þ

Fig. 1. Definition of signed distance function f ðxÞ and its rep-
resentation of the crack; n is the normal to the crack over Ccr
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Each of the gIðxÞ functions defines a set of circles around
the crack tip as shown in Fig. 2. From any point ~xx, the
location of the tip can be found by determining the
intersection of f ¼ 0 and the circle defined by
kx � ~xxk ¼ gIð~xxÞ.

The above differs somewhat from Stolarska et al. [23]
and Gravouil et al. [16, 20], who used a pair of orthogonal
level sets to define the crack geometry. The approach is
similar to that of Ventura et al. [33, 32]. The advantage of
this approach is that the crack geometry can be updated by
geometric equations, thus avoiding the need to solve the
hyperbolic conservation equations to update the level sets.

4
Extended finite element approximation

4.1
Description of crack geometry
In the present Section we describe briefly the finite element
enrichment scheme and its implementation. The dis-
placements are approximated by six-node triangular
elements with quadratic displacements and linear strain
fields. The signed distance function f ðxÞ is approximated
by the same shape functions as the displacement:

f ðnÞ ¼
X6

I¼1

fINIðnÞ ð14Þ

where fI are the nodal values of f ðxÞ and NIðnÞ are the
quadratic shape functions in terms of the element parent
coordinates. The approximate crack position is then given
by:

Ccr ¼ fxj f ðxÞ ¼ 0; x 2 Xfg ð15Þ
which is quadratic within each element and a piecewise
continuously differentiable function. We do not define
f ðxÞ outside Xf . Note that in general, slight kinks will

occur at the intersection of the crack with the element
edges as shown in Fig. 4. The gIðxÞ functions are not ap-
proximated. Instead in two dimensional implementations,
we store the locations of the crack tips and compute the
funtion by Eq. (13) as needed.

4.2
Enriched approximation
Previously, piecewise linear finite element approximations
were used in X-FEM approximation. We deviate from this
trend and consider piecewise quadratic finite elements as
the basis for our FEM approximation of the displacements
because the quadratic elements should yield a higher ac-
curacy than linear elements and are also capable of rep-
resenting curved cracks.

In developing the enriched finite element approxima-
tion to the motion (16), it is necessary to distinguish ele-
ments in the vicinity of the crack tip, XTIP, from elements
that enclose the remainder of the crack, Xcr. The possible
subdivisions are illustrated in Fig. 5a and b. The assign-
ment of XTIP is not unique, one can either choose only the
elements in which the crack tip occurs, as shown in
Fig. 5a, or a cluster of elements around the tip as shown in

Fig. 2. Definition of tip distance function gIðxÞ of crack tip I

Fig. 3. Determination of crack tip location from a point x

Fig. 4. Crack path as approximated by 6-node shape functions

Fig. 5. The classification of elements that are modified by the
crack: two possible subdivisions into Xcr and XTIP are shown
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Fig. 5b. Based on this classification, we now define three
node sets which govern the enrichment:

N ¼ the set of all nodes in the discretization;

N TIP ¼ the set of nodes that are connected to

elements in XTIP;

N cr ¼ the set of nodes that are connected to

elements in Xcr but not XTIP :

We enrich the standard finite element approximation with
the Westergaard crack tip solution at the nodes in N TIP

and enrich nodes in N cr with the modified Heaviside
function, Belytschko and Black [2] and Moës et al. [19].
The extended finite element approximation can then be
written as follows:

uhðxÞ ¼
X
I2N

NIðxÞuI þ
X

I2N cr

~NNIðxÞðHð f hðxÞÞ � Hð fIÞÞaI

þ
X

I2N TIP

~NNIðxÞ
X4

k¼1

ðFkðr; hÞ � FkðxIÞÞbk
I ð16Þ

where Hðf ðxÞÞ is a modified Heaviside step function given
by:

Hð yÞ ¼ �1 if y < 0
þ1 if y > 0

�
ð17Þ

The Heaviside function has been modified to be symmetric
about the crack. The shape functions NIðxÞ are quadratic
whereas ~NNIðxÞ are linear finite element shape functions
that construct the partition of unity and the blending; see
Chessa et al. [9] for an investigation of the important role
of the blending. The column matrices uI are the standard
nodal displacements and aI and bl

I are additional param-
eters. Flðr; hÞ is the basis for the Westergaard field for the
crack tip, which are defined in Fleming et al. [13]:

F1ðr; hÞ ¼
ffiffi
r

p
sin h

2 ð18Þ
F2ðr; hÞ ¼

ffiffi
r

p
cos h

2 ð19Þ
F3ðr; hÞ ¼

ffiffi
r

p
sin h

2 sin h ð20Þ
F4ðr; hÞ ¼

ffiffi
r

p
cos h

2 sin h ð21Þ
where r ¼ kx � xTIPk ¼ gðxÞ.

To take into account any curvature of the crack, we use
two definitions of h. Let t be a vector tangent to the crack
pointing to the interior of the crack. Note that f is not
defined beyond the crack tips, i.e. for any point for which
rg � t < 0. So in the vicinity of the crack tip, h must be
carefully defined. We define h as follows: at a point x, if
t � rg � 0 we use the regular polar angle from �t. If
t � rg > 0, h is computed by:

arctanðhÞ ¼ �fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � f 2

p ð22Þ

The minus sign in the above in the arctan argument is
needed to reconcile this definition with the regular polar
coordinates. One must be careful with the sign of f , which
has to be reversed at the second tip of the crack to be
consistent with the local polar orientation.

The function in (18) is discontinuous across the crack
face, while the other three functions are continuous. So F1

represents the discontinuity near the tip, while the other
three functions span the Westergaard solution near the
crack tip.

By substituting the displacement approximation (16)
into the strain definition (23) we arrive at the following
expression for the strain:

eh ¼ �BB�uu ¼ ½Bu
I Ba

J Bb1
K Bb2

K Bb3
K Bb4

K �

�

uI

aJ

b1
K

b2
K

b3
K

b4
K

2
6666666664

3
7777777775
; with

I ¼ 1 . . .N
J ¼ 1 . . .N cr

K ¼ 1 . . .N TIP

ð23Þ

where �BB is a strain displacement matrix. The matrix �BB has
the following forms:

Bu
I ¼

NI;x 0
0 NI;y

NI;y NI;x

2
4

3
5 ð24Þ

Ba
J ¼

ð ~NNJðH � HðxJÞÞÞ;x 0
0 ð ~NNJðH � HðxJÞÞÞ;y

ð ~NNJðH � HðxJÞÞÞ;y ð ~NNJðH � HðxJÞÞÞ;x

2
4

3
5

ð25Þ
Bbl

K

��
l¼1;2;3;4

¼
ð ~NNKðFl

K � Fl
KðxKÞÞÞ;x 0

0 ð ~NNKðFl
K � Fl

KðxKÞÞÞ;y
ð ~NNKðFl

K � Fl
KðxKÞÞÞ;y ð ~NNKðKl

K � Fl
KðxKÞÞÞ;x

2
64

3
75

ð26Þ
Substituting the displacement (16) and the strain ap-
proximation (23) into the weak form (9), the standard
discrete system of equations is obtained:

Kd ¼ fext ð27Þ
where fext is the vector of external nodal forces and K the
stiffness matrix:

K ¼
Z
Xh

�BB
T

C�BB dX ð28Þ

The expression of the external forces vector fext is:

fext
I ¼ ffu

I ; fa
J ; fb1

K ; fb2
K ; fb3

K ; fb4
K g ð29Þ

fu
I ¼

Z
Ct

NI�tt dC þ
Z
X

NIb dX ð30Þ

fa
J ¼

Z
Ct

~NNJðH � HðxJÞÞ�tt dC þ
Z
X

~NNJðH � HðxJÞÞb dX

ð31Þ
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fbl
K

��
l¼1;2;3;4

¼
Z
Ct

~NNKðFl � FlðxKÞÞ�tt dC

þ
Z
X

~NNKðFl � FlðxKÞÞb dX ð32Þ

As with standard finite element methods, the essential
boundary conditions are enforced directly on d which
include the additional enriched degrees of freedom.

4.3
Element integration
The integration of the stiffness matrix (28) and nodal
forces (29–32) in the elements with enrichments requires
subelements obtained by triangular partitioning. For ele-
ments cut by a crack, the partitioning of the element is
shown in Fig. 7. Three triangles are created. In each of
these elements, 13 point Gauss quadrature is used.

The elements containing the crack tips are partitioned
as described in Fig. 8. Four triangles are created with 13
point Gauss quadrature. The increase in computational
cost is not significant.

5
Computation of the J-integral and Interaction-integral
The stress intensity factors were obtained by the J-integral
and the I-integral. We choose a domain integral over a set
of elements within a circular neighborhood about the
crack tip with a radius twice the size of an average element.

The domain integral expression for the J-integral is:

Jk ¼
Z
X

rijui;k qk;j dX � 1

2

Z
X

rijui;jdkjqk;j dX ð33Þ

In our calculation J1 with the x1-axis parallel to the crack
face, was computed. In the above q equals 1 inside the

domain and decreases linearly to zero on the external edge
of the integral domain, see Fig. 9. This function q is ex-
plained by Combescure et al. [28], [29] . This method was
originally developed in Moran and Shi [21].

To obtain the stress intensity factors KI and KII we
employed the auxiliary field method [35] [25]. Two states
of the cracked body are considered: the actual state, re-
ferred to as state 1, ðrð1Þ

ij ; �
ð1Þ
ij ; u

ð1Þ
i Þ and an auxiliary state,

state 2, ðrð2Þ
ij ; �

ð2Þ
ij ; u

ð2Þ
i Þ which are the asymptotic fields for

Mode I or Mode II respectively. Wð1;2Þ is the strain energy
in terms of the inner products rð1Þ

ij �
ð2Þ
ij or rð2Þ

ij �
ð1Þ
ij .

The expression for the interaction integral is:

Mð1;2Þ ¼
Z
C

Wð1;2Þd1j � rð1Þ
ij

ou
ð2Þ
i

ox1
� rð2Þ

ij

ou
ð1Þ
i

ox1

" #
qmj dC

ð34Þ
where C ¼ C þ Cþ þ C� þ C0 and ~mm is the outward unit
normal to the contour C.

The interaction integral Mð1;2Þ is converted into a do-
main integral. Using the divergence theorem and taking
the limit as C goes to the crack tip (justified by the
dominated convergence theorem, where the weighting
function q would be equal to 1 at the crack tip) the in-
teraction domain integral is:

Mð1;2Þ ¼
Z
A

rð1Þ
ij

ou
ð2Þ
i

@x1
þ rð2Þ

ij

ou
ð1Þ
i

ox1
� Wð1;2Þd1j

" #
oq

oxj
dA

ð35Þ
Equation (35) assumes that the crack faces are stressfree
and straight in the interior of the region AC which is
bounded by C0 as shown in Fig. 10.

Fig. 6. Orientation at the crack tip to define the interior of the
crack and the domain beyond the crack

Fig. 7. Delaunay partitioning of elements cut by a crack

Fig. 8. Delaunay partitioning of elements containing the crack tip

Fig. 9. Domain to compute the J-integral. In the dotted elements
q decreases linearly to zero

42



Note that since Eq. (35) assumes that the crack faces are
straight, the results obtained for the stress intensity factors
for curved cracks are accurate only if the curvature is small
(when using very fine mesh for instance). Since we assume
the crack faces are straight. The results for K2 are usually
less accurate than for K1. To improve accuracy some terms
integrated along the crack faces must be added to the
expression of the interaction integral.

6
Numerical examples
Several fracture mechanics problems are described to il-
lustrate the proposed method, which we refer to as X-FEM.
Recall that we use quadratic interpolants for the dis-
placement approximation and linear interpolants for the
partition of unity and the blending. Crack opening dis-
placements, the energy error and stress intensity factors
are calculated and compared with closed form and
benchmark solutions. These results are also compared to
an X-FEM formulation with only linear interpolants, which
we will refer to as the linear X-FEM formulation.

6.1
Infinite plate
Consider an infinite plate containing a straight crack of
length a and loaded by a remote uniform stress field r.
Along ABCD the closed form solution in terms of polar
coordinates in a reference frame r; hð Þ centered at the
crack tip is:

rx ¼ KIffiffi
r

p cos
h
2

1 � sin
h
2

sin
3h
2

� �
ð36Þ

ry ¼
KIffiffi

r
p cos

h
2

1 þ sin
h
2

sin
3h
2

� �
ð37Þ

rxy ¼
KIffiffi

r
p sin

h
2

cos
h
2

cos
3h
2

ð38Þ

The closed form near-tip displacement field is:

ux ¼ 2ð1 þ mÞffiffiffiffiffi
2p

p KI

E

ffiffi
r

p
cos

h
2

2 � 2m � cos2 h
2

� �

uy ¼
2ð1 þ mÞffiffiffiffiffi

2p
p KI

E

ffiffi
r

p
sin

h
2

2 � 2m � cos2 h
2

� � ð39Þ

In the two previous expressions KI ¼ r
ffiffiffiffiffiffi
pa

p
denotes the

stress intensity factor, m is Poisson’s ratio and E is Young’s
modulus. All simulations are performed with a ¼ 100 mm

and r ¼ 104 N/mm2 on a square mesh with sides of length
10 mm, as shown in Fig. 11.

On the entire boundary, displacements were prescribed
by Eq. (39). The normalized energy error norm is com-
puted by:

energy error ¼ Wðe � ehÞ
WðeÞ ð40Þ

where

WðeÞ ¼ 1

2

Z
X

e : C : e dX

0
@

1
A

1
2

ð41Þ

where e is the exact strain field and eh the approximate
strain field obtained by the numerical solution. In Fig. 12
the error in energy is shown for the linear and the qua-
dratic X-FEM. In Fig. 13 the convergence of the J-integral
is shown. It is interesting that while the accuracy of the
quadratic element is better, the rate of convergence is
actually less. This behavior is probably a result of the
singularity [30].

The crack opening displacement (COD) can be calcu-
lated directly from the enriched finite element approxi-
mation as follows:

Fig. 10. Contour and domain to compute the interaction integral

Fig. 11. Discretization around the crack tip of an infinite plate
loaded by a remote stress. Nodes labeled with a circle are en-
riched with a step function and nodes indicated with a square are
enriched with the Westergaard functions

Fig. 12. Energy norm convergence for linear and quadratic
formulations. N is the number of nodes
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½½uh�� ¼ 2
X
I2W

aI
~NNI þ 2

ffiffi
r

p X
I2W

bI
~NNI ð42Þ

The closed form expression for the COD is:

½½u�� ¼ 8

ffiffiffiffiffi
r

2p

r
KI

E
ð1 � m2Þ ð43Þ

Figure 14 compares the COD and the horizontal com-
ponent of displacement for the linear and the quadratic
elements respectively. The quadratic elements provide a
better match to the crack opening displacement than the
linear elements. For the tangential component of the dis-
placement jump, both the linear and quadratic element
exhibit a slight anomaly at the crack tip.

6.2
Edge crack under tension
A plate is loaded by a tension r ¼ 1:0 psi over the top and
bottom edges as shown in Fig. 15. The displacement along
the y-axis is fixed at the bottom right corner, and clamped
at the bottom left corner. The material parameters are
103 psi for Young’s modulus and 0.3 for Poisson’s ratio.
The reference mixed mode stress intensity factors as given
in [31] are:

KI ¼ r
ffiffiffiffiffiffi
pa

p
F

a

b

� �
ð44Þ

where a is the crack length, b the plate width, and F a
b

� �
is

an empirical function. For a=b � 0:6, the function F is:

F
a

b

� �
¼ 1:12 � 0:231

a

b

� �
þ 10:55

a

b

� �2

� 21:72
a

b

� �3
þ30:39

a

b

� �4
ð45Þ

The same type of structured mesh as shown in Fig. 16 was
used except that the plate is 1 � 2 and the mesh is 12 � 12.
We compared in Table 1 our results with EFG method as
in [7].

For EFG, the number of cells was 10 � 10 and 5 � 5
Gauss quadrature was used in all cells except the two

Fig. 13. J integral error as a function of number of nodes N for
linear and quadratic formulations

Fig. 14. Crack opening dis-
placement (top) and tangential
component of displacement
along the crack (bottom) for
linear (left) and quadratic
(right) elements on refined
mesh

Fig. 15. Plate with edge crack under tension

Fig. 16. Discretization of the edge crack problem under shear
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around the crack tip, where 9 � 9 Gauss quadrature was
used. Quadratic XFEM seems to perform as well as the EFG
method. While the EFG method tends to overestimate the
stress intensity factors, quadratic XFEM tends to under-
estimate the result.

6.3
Edge crack under shear stress
A plate is clamped on the bottom and loaded by a shear
traction s ¼ 1:0 psi over the top edge. The material pa-
rameters are 3 � 107 psi for Young’s modulus and 0.25 for
Poisson’s ratio. The reference mixed mode stress intensity
factors as given in [35] and [31] are:

KI ¼ 34:0 psi
ffiffiffiffiffi
in

p

KII ¼ 4:55 psi
ffiffiffiffiffi
in

p

The equivalent stress intensity factor Keq obtained from
the J-integral for plain strain problem is:

J ¼ 1 � m2

E
K2

eq ð46Þ

The equivalent stress intensity factor is compared toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK2

I þ K2
IIÞ

p
using an elliptic criterion described in Bazant

[1]. In Fig. 17, we can see that the quadratic element
converges slightly faster that the linear element and is
more accurate. In Fig. 18, KI and KII is seen to exhibit the
same behavior.

6.4
Mixed mode crack in infinite body
The problem of an angled center crack in a body was
considered as shown in Fig. 19. The plate is subjected to a
far-field state of stress r equal to unity. The crack is of
length 2a and is oriented with an angle b with respect to
the x-axis. The material parameters are 3 � 107 psi for
Young’s modulus and 0.25 for Poisson’s ratio. The stress
intensity factors KI and KII are given in terms of the angle
b by Yau et al. [35] and Dolbow et al. [11].

KI ¼ r
ffiffiffiffiffiffiffiffiffi
ðpaÞ

p
cos2ðbÞ ð47Þ

KII ¼ r
ffiffiffiffiffiffiffiffiffi
ðpaÞ

p
sinðbÞ cosðbÞ ð48Þ

where a is the half crack length. For the computations b
was chosen to be 41:9872�.

Figure 20 shows the convergence for KI and KII .
Good accuracy is obtained for a reasonable number of
nodes. The stress intensity factors are computed by an

Table 1. Stress intensity factors computed by quadratic XFEM
compared to EFG

Crack
length

KI XFEM
(linear)

KI XFEM
(quadratic)

KI EFG by
Belytschko
et al. [7]

KI exact

0.21 1.0616 1.1243 1.1401 1.1341
0.22 1.1000 1.1691 1.1779 1.1816
0.23 1.1321 1.2187 1.2487 1.2303
0.24 1.1558 1.2707 1.2807 1.2788
0.28 1.3783 1.4760 1.5036 1.4935
0.50 3.1299 3.5064 3.5512 3.5423

Fig. 17. Convergence for edge crack under shear. K is computed
from the J-integral

Fig. 18. Convergence for edge
crack under shear. KI and KII

computed by the interaction
integral

Fig. 19. Discretization used for angled crack in a plate under
uniaxial tension

45



interaction integral as described in Sect. 5. For coarse
discretization, the values for KI are more accurate than
the values for KII . This is probably due to the fact that
the computations were made in a finite body. If a larger
model relative to the crack length were used this differ-
ence would have been less noticeable. The results given
in Table 2 also show very good symmetry in the behavior
at the two tips.

6.5
Center crack in a finite plate
The problem of a finite plate with a center crack was
studied [10]. The geometry of the plate is described in
Fig. 21. The analytical solution to this problem is given in
Suo and Combescure [10]. The stress intensity factor is
given by:

KI ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa sec

pa

2w

� �� �r
ð49Þ

where a is the half crack-length and w ¼ W=2 is the half
width of the plate, and r is the tensile load applied at the
top of the plate.

Figure 22 shows the improved accuracy and conver-
gence of the quadratic element over the linear element.
Again, we can observe symmetric behavior at the two
crack tips.

Fig. 20. Stess intensity factors
error for the angled crack in
infinite plate. KI (left) and KII

(right) computed by the inter-
action integral; ‘‘tip 1’’ and ‘‘tip
2’’ refer to the two crack tips

Table 2. Stress intensity factors for angled center crack by
quadratic elements

Num
Nodes

KI

Kana
I

tip 1 KI

Kana
I

tip 2 KII

Kana
II

tip 1 KII

Kana
II

tip 2 Mesh

1661 0.6619 0.6647 0.2207 0.2205 11 · 21
2377 0.6916 0.6940 0.7279 0.7278 13 · 25
3449 1.0464 1.0491 1.1171 1.1172 15 · 31
4193 1.0260 1.0288 1.0670 1.0673 17 · 33
5293 1.0224 1.0251 1.0512 1.0515 19 · 37

Fig. 21. Finite plate containing a centered crack

Fig. 22. Stress intensity factor error for a centered crack in a
finite plate

Fig. 23. Curved crack in an infinite plate
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6.6
Curved crack
A curved center crack in an infinite plate is considered. A
finite plate model with a large edge length to crack length
ratio ð> 10Þ was used, as shown in Fig. 23. The analytical
stress intensity factors as given in Gdoutos [14] are:

KI ¼
r
2
ðpR sinðbÞÞ

�
ð1 � sin2ðb=2Þ cos2ðb=2ÞÞ cosðb=2Þ

1 þ sin2ðb=2Þ

þ cosð3b=2Þ
�

ð50Þ

KII ¼
r
2
ðpR sinðbÞÞ ð1 � sin2ðb=2Þ cos2ðb=2ÞÞ sinðb=2Þ

1 þ sin2ðb=2Þ

�
þ sinð3b=2Þ� ð51Þ

where R is the radius of the circular arc and 2b is the
subtended angle of the arc. The computations were run
with R ¼ 4:25 and b ¼ 28:0725�. The stress intensity fac-
tors are KI ¼ 2:0146 and KII ¼ 1:1116 for the exact solu-
tion. Structured meshes were used with the following
refinements: 14 � 14, 16 � 16, 18 � 18, 20 � 20, 22 � 22
and 24 � 24. The stress convergence in the intensity factor
is shown in Fig. 24.

7
Conclusions
Methods for incorporating the step function and the near-
field cracktip enrichment by discontinuous partitions of
unity in higher order elements have been described. The
implementation has been limited to a six node triangle, but
it is also applicable to biquadratic quadrilaterals and
higher order triangles and quadrilaterals.

The crack geometry is described by a signed distance
function, and the signed distance function is also ap-
proximated by the higher order shape functions. This
enables the method to treat curved cracks with more fi-
delity than piecewise linear approximations. We have been
able to treat circular cracks and obtain more accurate re-
sults that with linear elements.

The method provides more accuracy than linear shape
function elements. However, in crack problems, because of
the presence of the singularity, the rate of convergence is
not improved. Instead, only the absolute value of the error
is improved. Furthermore, we found that it is best to use

linear shape functions for the partition of unity, even when
higher order functions are used for the continuous ap-
proximation.

The method is quite promising for problems where the
greater accuracy of the quadratic fields is often beneficial.
The method is also extensible to cohesive crack models
without major modification, as in Moës and Belytschko
[18].
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