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Abstract

A new implementation of a recently developed formalism to describe chemical systems in ionic solutions is presented. It
allows ab initio calculations at the Hartree–Fock and density functional levels on closed and open shell systems, taking into
account the ionic atmosphere effects at not too large concentrations. Test calculations on simple systems are compared to
experimental data and to values obtained by numerical integration of the Poisson–Boltzmann equation. A more complex
system, namely the glycine radical in aqueous solution, is also analyzed. q 1998 Elsevier Science B.V.

1. Introduction

An effective strategy for the description of chemi-
cal systems in solution with accuracy comparable to
that for isolated molecules is based on the continuum

w xdielectric approach 1–3 . In this kind of model a
Žtarget subsystem, the ‘‘solute’’ possibly supple-

mented by a few strongly interacting solvent
.molecules , is described by advanced ab initio tech-

niques, whereas the ‘‘solvent’’ is modeled as an
infinite polarizable continuum. In the quantum me-
chanical version of the continuum model, use is
made of an effective Hamiltonian where the solute–
solvent interactions are described by a reaction po-

ˆtential operator VV coupled to the solute Hamilto-R
ˆ 0nian HH :

ˆ 0 0 0 0HH C sE C in vacuo
1Ž .0ˆ ˆHH qVV CsEC in solutionR

Among the several approaches exploiting such
ˆstrategy, we are interested in those expressing VV R

Ž .in terms of an apparent surface charge ASC distri-
bution: in fact, ASC methods permit the reaching of
a greater accuracy than other approaches. One of the
most powerful ASC solvation methods is the so-

Ž .called polarizable continuum model PCM , which
has been applied to a great number of systems in
aqueous and non aqueous solutions. An effective

w xPCM version 4,5 allowing fast and reliable calcula-
tions of the energy and energy gradients for closed

Ž .and open shell molecules at the Hartree–Fock HF
Ž .and density functional DF levels, has been coded in

w xthe Gaussian94 package 6 : this version exploits the
numerous procedures existing in Gaussian94 for the
study of electronic properties and for the optimiza-
tion of molecular geometries. Another interesting
approach, based on the description of the solvent as a

w xpolarizable conductor medium 7,8 has been re-
w xcently implemented in a form similar to PCM 9 : in

the following we shall refer to these methods as
ŽD-PCM and C-PCM i.e. dielectric and conductor

.PCM, respectively . The C-PCM method can be
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applied to polar solvents and provides energies and
energy gradients with limited computational times,
exploiting the same features cited above for D-PCM.

The present Letter reports on the implementation
of a new formulation of PCM, based on an integral

Ž . w xequation formalism IEF 10,11 . The IEF-PCM
procedure allows the ab initio study of different

Žsystems: ordinary isotropic solvents which are al-
.ready treatable by D-PCM and C-PCM , anisotropic

solvents like nematic liquid crystals and ionic solu-
tions. Some years ago a PCM treatment of anisotropic
solutions, based on a different approach, was imple-
mented for HF calculations on closed shell systems
w x12 : the present formulation is more effective and it
is extended to DF calculations and to open shell
molecules. However, ionic solutions are studied in

w x Žmost cases 13–17 for less recent examples, one
can refer to the exhaustive review by Davis and

. w xMcCammon 18 by numerical integration of the
Poisson–Boltzmann equation on 3D grids, with a
considerable computational burden, whereas in the
present formulation the treatment is nearly as effec-
tive as for isotropic solvents. Other boundary ele-
ment methods solving the linearized Poisson–Boltz-
mann equation by means of apparent charges spread
on the solute–solvent interface have been proposed

w x w xby Yoon and Lenhoff 19 , Juffer et al. 20 and
w xWilson et al. 21

In the following we present some applications of
IEF-PCM to ionic solutions at different ionic
strengths, deferring the analysis of anisotropic solu-
tions to further work. A reliable ab initio description
of ionic strength effects on energies and electronic
properties is particularly important for bio-chemical
molecules: let us recall that the recent advances in ab
initio techniques are making quantum calculations
feasible also on systems with hundreds of atoms.
Moreover, D-PCM, C-PCM and IEF-PCM models
can make use of a specific procedure to build the
solute cavity allowing the calculation of solvation

Ž . Žfree energies D GG with chemical accuracy meansolv

errors with respect to experimental D GG s lowersolv

that 0.2 kcalrmol for neutral and about 1 kcalrmol
.for charged solutes for a large number of chemical

w xsystems both at the HF and at the DF levels 22 .
Such a good agreement between calculated and ex-
perimental D GG s makes a reliable computation ofsolv

ionic strength effects even more desirable.

As explained below, the IEF formalism for ionic
solutions is based on the linearized Poisson–Boltz-
mann equation, thus being more suited for low charge
electrolytes at low concentrations: even in these con-
ditions the effect of the ionic atmosphere on the
thermodynamics and kinetics of chemical processes
is often not negligible.

The IEF-PCM procedure has been recently imple-
w xmented in the GAMESS 23 package: the present

implementation in Gaussian94 extends the applica-
bility of this procedure to open shell molecules and
to density functional methods and in particular to
large biochemical system for which ab initio calcula-
tions are becoming feasible, thanks to the recent
advances in quantum chemistry techniques. Lastly
the present implementation, like the D-PCM and the
C-PCM cited above, is particularly easy to use also
for those researchers not directly involved in the
elaboration of computer codes: this aspect is becom-
ing more and more important, as the increased relia-
bility of the computational methods and the reduc-
tion of computational costs nowadays make this kind
of procedures accessible to a large portion of the
chemical community.

2. Computational method

Like in other continuum solvation models, the
solute molecule is embedded in a cavity surrounded
by a polarizable medium, with the dielectric constant
of the considered solvent. The cavity has molecular
shape: it is formed by fused spheres, centered on
solute atoms or atomic groups, according to the

w xGEPOL algorithm 24 .
The IEF-PCM procedure is based on operators

largely exploited in the theory of integral equations,
not familiar in computational and theoretical chem-
istry. The mathematical foundations are given in

w x w xRefs. 10 and 11 and some examples of chemical
w xapplications can be found in Ref. 10 . A detailed

derivation of the method is out of the scope of the
present Letter: here we limit ourselves to stressing a
few points.

Inside the cavity the electrostatic potential V obeys
the Poisson equation:

y=
2Vs4pr 2Ž .
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where r is the solute electronic and nuclear charge
density, whereas in the bulk of the solvent V obeys

Ž .the linearized Poisson–Boltzmann equation:

ye=
2Vqek 2Vs0 3Ž .

where e is the dielectric constant and k the inverse
of the so-called Debye length:

8p IF
ks 4Ž .

eRT

where I is the ionic strength of the solution and F
the Faraday constant. The usual boundary conditions
on the cavity surface hold:

V sV 5Ž .e i

1
= V Pns = V Pn 6Ž .ˆ ˆe i

e

where the suffixes e, i refer to the regions outside
and inside the cavity, respectively and n is the unitˆ
vector normal to the surface.

The solvent reaction field is described by an
apparent, or polarization charge distribution appear-
ing on the cavity surface: the surface is partitioned
into small domains, called tesserae and the apparent
surface charge density is represented by suitable
point charges, one per tessera. The polarization point
charges are determined by the matrix equation

Cqsyg 7Ž .

q is a vector containing the polarization charges on
tesserae, C is a ‘‘geometrical’’ matrix

Cs Ir2yD S Ay1 qS Ir2qD† Ay1 8Ž . Ž .Ž .e i e i

where I is the unit matrix, A is a diagonal matrix
collecting tesserae areas and D , D , S and Se i e i

depend on tesserae positions, on the solvent dielec-
tric constant and, in the case of ionic solutions, on

Žthe ionic strength their explicit expressions are given
w x.in Ref. 10 . Lastly g is a vector whose elements are

combinations of the electrostatic potential and of the
electric field exerted by the solute nuclei and elec-

Ž w x .trons on the tesserae see Ref. 10 for more details .
Ž . Ž .Notice that Eqs. 7 and 8 are put in a form slightly

w xdifferent from those used in Ref. 10 , to highlight
the formal equivalence with our previous implemen-

Ž w x. Žtations of the D-PCM Ref. 4 and C-PCM Ref.
w x.9 approaches.

The molecular free energy in solution can be
written as a sum of four contributions:

GGsGG qGG qGG qGG 9Ž .el cav dis rep

The electrostatic contribution, GG , isel

0ˆ ˆGG s C HH q1r2VV C¦ ;el R

tesserae
10ˆs C HH C q q V 10² : Ž .Ý k k2

k

where V is the electrostatic potential due to thek

solute nuclei and electrons and q is the polarizationk

charge on tessera k.
GG corresponds to the work needed to build thecav

solute cavity and is calculated by a classical hard
sphere approach:

spheres AIHSGG s GG 11Ž .Ýcav I 24p RII

where the sum runs over the spheres forming the
cavity: GG HS is the cavitation energy for an isolatedI

hard sphere of radius R according to Pierotti’sI
w xapproach 25 , and A is the area of the sphere II

actually exposed to the solvent, i.e. not buried by
other spheres.

GG and GG describe the solute–solvent disper-dis rep

sion and repulsion interactions, respectively. These
latter terms are calculated classically using the
atom-atom interaction potentials proposed by Caillet

w x w xet al. 26 , with the procedure illustrated in Ref. 27 .
Notice that the cavitation, dispersion and repulsion
terms do not modify the solute Hamiltonian: there-
fore they affect the solute free energy but not its
wavefunction.

Clearly, IEF differs from the other PCM-like ap-
proaches only for GG : in particular, in ionic solutionsel

the ionic atmosphere affects the electrostatic solute–
solvent interactions only.

Some attention must be paid to the definition of
the solute cavity, in particular to the radii of the
spheres put around the atoms and the atomic groups.
The strict agreement between PCM and experimental
solvation energies, mentioned in the Introduction,
can be achieved by a specific procedure, called
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Ž . w xUATM united atoms topological model 22 , that
has been applied in all the IEF calculations reported
below. In the UATM procedure the H atoms are
always included in the same spheres of the heavy
atoms they are bonded to, and the atomic and group
radii depend on the molecular topology: the reader is

w xaddressed to Ref. 22 for the details of the method.
We recall that in the IEF version implemented in
Gaussian94 a specific routine automatically assigns
the proper UATM radii: as in all PCM-like models
w x1,4 the atomic radii have to be multiplied by 1.2
when electrostatic solvation energies are calculated.

3. Results and discussion

The reliability of the IEF-PCM description of
ionic solutions has been tested by calculating the free
energy of simple systems in aqueous solution at

Table 1
Logarithm of the activity coefficient for dilute solutions of Naq,

Ž .calculated by IEF at the HFr6-31G d level and by numerical
integration of the Poisson–Boltzmann equation

Ž .I M ln g

IPBECP IEF
Ž .numerical PB

y7 y3 y310 y0.37=10 y0.38=10
y7 y3 y35=10 y0.53=10 y0.54=10
y6 y3 y310 y1.17=10 y1.19=10
y6 y3 y35=10 y2.62=10 y2.65=10
y5 y3 y310 y3.70=10 y3.75=10
y5 y3 y35=10 y8.24=10 y8.37=10
y3 y3 y310 y11.62=10 y11.82=10
y3 y3 y35=10 y25.65=10 y26.22=10
y3 y3 y310 y35.90=10 y36.87=10

different ionic strengths. First we considered dilute
solutions of a monovalent ion Naq, studied at the HF

Ž .level with the 6-31G d basis set: the results are most

2q 2y Ž .Fig. 1. Logarithm of the activity coefficient for Mg and SO calculated by IEF at the HFr6-31G d level, compared to average values4
Ž .obtained by IPBECP numerical integration of PB equation and to experimental average values.
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clearly expressed by comparing the molecular free
energy at finite ionic strength I to the ‘‘ideal’’ free
energy at Is0, defining the activity coefficient g :

GG I yGG 0Ž . Ž .el el
lngs 12Ž .

RT

Ž y3 y1where R is the gas constant 1.98=10 kcal mol
y1 .K and T the absolute temperature. In Table 1 we

compare IEF results to lng s calculated by numerical
Ž .integration of the full non-linearized Poisson–

Ž .Boltzmann PB equation, performed by the IPBECP
w xprogram 28 : the agreement is good up to Is0.001

M.
The results for a divalent system, namely MgSO ,4

over a more extended range of concentrations are
shown in Fig. 1. In this case IEF calculations at the

Ž .HFr6-31G d level are compared to experimental

w x29 and numerical full PB data: in the numerical
integration, performed by the IBPECP program, the
two divalent ions are described as charged spheres,

˚ Žwhose radius is optimized at the value of 4.1 A in
w xRef. 29 the dependence of these results on the

sphere radius was estimated, for example, by repeat-
˚ing the calculations at 3.6 A: the calculated lng s

.changed by about 5% .
Though some discrepancies appear for concen-

trated solutions, IEF results show a remarkably good
behaviour even for I)0.01 M: notice, moreover,
that in experimental data one cannot distinguish be-
tween cation and anion contributions, and that the
numerical PB integration gives the same value of lng

for Mg2q and SO2y, since the ions are described as4

charged spheres with the same radius.
Also the pK of weak acids depends on the ionic

Ž . Ž .Fig. 2. DpK with respect to zero ionic strength for cyanacetic acid calculated by IEF at the HFr6-31G d , HFr6-311qG d,p anda
Ž .B3LYPr6-31G d levels, compared to experimental values.
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strength: we can calculate the free energy variations
related to the ionization process

AHqH O|AyqH Oq 13Ž .2 3

D GG I sGG Ay, I qGG H Oq, I yGG AH, IŽ . Ž . Ž .Ž .ion 3

yGG H O, I 14Ž . Ž .2

and the corresponding pK :a

D GG IŽ .ion
pK I sy 15Ž . Ž .a RT

The accurate evaluation of pK s is a delicate task,a

since the calculated values dramatically depend on
the basis set quality and on the calculation level:
then, to highlight the ionic strength effects we con-
sidered the quantity

DpK spK I ypK 0 16Ž . Ž . Ž .a a a

w xIn Fig. 2 we report the experimental 30 DpKa

values for cyanacetic acid, CN–CH –COOH, com-2
Ž .pared to IEF results obtained at the HFr6-31G d ,

Ž . Ž . ŽDFr6-31G d and HFr6-311qG d,p levels using
in DF calculations the so-called B3LYP hybrid func-

w xtional 31 , which combines Hartree–Fock and Becke
w x w x32 exchange with the Lee–Yang–Parr 33 correla-

.tion functional .
Though the calculated pK variations are system-a

atically lower than their experimental counterparts,
the IEF procedure is able to reproduce a large part of
the ionic atmosphere effect on this quantity. The
disagreement with experimental data is greater with
the extended basis set: a tentative explanation is
related to the fraction of the solute electronic cloud
lying outside the cavity. In fact, the electrostatic
solute–solvent interactions can be described by a
simple surface charge distribution only if the whole
solute charge is inside the cavity: however, with the

Ž .Fig. 3. Ionic strength effects on the energy difference kcalrmol between the neutral and the zwitterionic forms of glycine radical
Ž . Ž .calculated at the B3LYPr6-31G d and B3LYPr6-311qG d,p levels.
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cavities used in actual calculations, a non negligible
fraction of the solute electrons can often be found
outside the cavity. D-PCM, C-PCM as well as IEF-
PCM for solutions at zero ionic strength are provided
with procedures to compensate the effect of such

w xescaped charge 34 : these techniques are not directly
applicable to IEF calculations for ionic solutions and
this is a possible source of errors, especially for
anions and with extended basis sets. However, IEF-

Ž .PCM for usual isotropic solutions and C-PCM are
significantly less dependent on escaped charged ef-

w xfects than D-PCM 34,35
Then we applied the IEF procedure to a more

complex system, that could not be treated by classi-
cal approaches, namely the equilibrium between the
neutral and the zwitterionic forms of the glycine
radical:

NH –CH –COOH|NHq–CH –COO- 17Ž .2 2 3 2

This system is involved in a long time study
performed by our group, concerning the relative
stability, the spectroscopic constants and the reactiv-
ity of this kind of radical in aqueous and non aque-

w xous solutions 36 : it is of interest to investigate the
effect of finite ionic strength on the calculated ener-
gies and properties. At infinitely low concentration,
i.e. Is0, the neutral form of glycine radical is more
stable than the zwitterionic form by 24.78 kcalrmol

Ž .at the B3LYPr6-31G d level and by 23.66 kcalrmol
Ž .at the B3LYPr6-311qG d,p level. In Fig. 3 we

report the correction due to the ionic atmosphere at
different salt concentrations.

Notice that the calculation at Is5 M, though
correct from a mathematical point of view, is out of
the range of validity of the Poisson–Boltzmann de-
scription: we report it to test the behaviour of the
algorithm for high values of I, but clearly some
physical sense must drive the applications of such
methods. Nevertheless it is not unusual to find in the
literature calculations exploiting Poisson–Boltzmann
equations up to Is10 M or even higher.

It is noteworthy that this radical, unlike the parent
molecule, is more stable in the neutral form even in
aqueous solution, though the energy gap is slightly
reduced by increasing the ionic strength: this is
consistent with the lowering of GG induced by theel

ionic atmosphere in the systems mentioned above:
clearly such an effect is more pronounced for the

zwitterionic form of the radical. Moreover, expand-
ing the basis set has little effect for what concerns
the ionic strength dependence of the calculated quan-
tities. This agrees with the general finding that reli-
able solvation effects can be computed at a level less
advanced than that required for accurate calculations
on isolated molecules. Then one can devise a sort of
G2 protocol for the study of systems in solution,
resorting to high level calculations on isolated

Žmolecules and adding solvation and ionic atmo-
.sphere effects obtained at a lower ab initio level,

with considerable CPU time savings. In this context,
we are confident that also the escaped charge effects
mentioned above are markedly reduced, since one
only considers the differences with respect to zero
ionic strength values, which are computed with re-
fined compensation techniques.

4. Conclusions

We have presented a new implementation of the
integral equation formalism version of the PCM
solvation method. This implementation exploits a
number of techniques for the analysis of the energies
and electronic properties of closed and open shell
molecules at the Hartree–Fock and density func-
tional levels, like the similar implementations of
standard D-PCM and of C-PCM, previously elabo-
rated by our group.

Test calculations have shown that the ionic atmo-
sphere effects are correctly reproduced on simple
spherical ions in aqueous solution: an application to
the neutral and zwitterionic forms of the glycine
radical reveals a small but not negligible ionic
strength influence on the energy difference between
the two isomers.
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