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Preface 
 
This book is concerned with remote sensing based on the technology of imaging 
radar. It assumes no prior knowledge of radar on the part of the reader, commencing 
with a treatment of the essential concepts of microwave imaging and progressing 
through to the development of multipolarisation and interferometric radar, modes 
which underpin contemporary applications of the technology. 

The use of radar for imaging the earth’s surface and its resources is not recent. 
Aircraft-based microwave systems were operating in the 1960s, ahead of optical 
systems that image in the visible and infrared regions of the spectrum. Optical remote 
sensing was given a strong impetus with the launch of the first of the Landsat series of 
satellites in the mid 1970s. Although the Seasat satellite launched in the same era 
(1978) carried an imaging radar, it operated only for about 12 months and there were 
not nearly so many microwave systems as optical platforms in service during the 
1980s. As a result, the remote sensing community globally tended to develop strongly 
around optical imaging until Shuttle missions in the early to mid 1980s and free-flying 
imaging radar satellites in the early to mid 1990s became available, along with several 
sophisticated aircraft platforms. Since then, and particularly with the unique 
capabilities and flexibility of imaging radar, there has been an enormous surge of 
interest in microwave imaging technology. 

Unlike optical imaging, understanding the theoretical underpinnings of imaging 
radar can be challenging, particularly when new to the field. The technology is 
relatively complicated, and understanding the interaction of the incident microwave 
energy with the landscape to form an image has a degree of complexity well beyond 
that normally encountered in optical imaging. A comprehensive understanding of both 
aspects requires a background in electromagnetic wave propagation and vector 
calculus. Yet many remote sensing practitioners come from an earth sciences 
background within which it is unlikely they will have acquired that material. So that 
they can benefit from radar technology it is important that a treatment be available 
that is rigorous but avoids a heavy dependence on theoretical electromagnetism. That 
is the purpose of this book. It develops the technology of radar imaging, and an 
understanding of scattering concepts, in a manner suited to the background of most 
earth scientists, supported by appendices that summarise important mathematical 
concepts. That enables the treatment to move quickly to the practical aspects of 
imaging, since it does not require early chapters that focus on electromagnetic theory 
rather than radar itself. 

In addition to being a resource book for the user this treatment is also intended to be 
used as a teaching text, at senior undergraduate or graduate level. 

After providing a framework for the book in Chapter 1 including a commentary on 
the knowledge that is assumed on the part of the reader, Chapters 2 and 3 cover the 
fundamentals of radar and how images are formed. The material is set in the context 
of multipolarisation radar which is the hallmark of modern microwave imaging 
technology. Chapter 4 covers errors in radar data and how they can be corrected, 
while Chapter 5 is devoted to the landscape and how it responds to incident 
microwave energy; that chapter is central to using radar in remote sensing. 

An important application of radar is interferometry, which allows the derivation of 
detailed topographic information about the landscape from a collection of radar 
images, and means by which landscape changes with time can be detected. This 
covered in Chapter 6. 
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An emerging technology in the remote sensing context is bistatic radar in which the 
source of radiant energy and the receiver are not necessarily collocated, as has been 
the case for most remote sensing imaging radars to date. An introduction to the 
technology of bistatic radar is the topic of Chapter 7. 

Interpretation of imagery is a logical end point in most remote sensing studies. 
Chapter 8 covers the range of approaches to radar image interpretation in common 
use, including statistical and target decomposition methods for thematic mapping. 

The book concludes with a brief coverage of passive microwave imaging in 
Chapter 9. There is sufficient natural microwave energy emanating from the 
landscape that it can be used to produce coarse resolution images that find particular 
value in soil moisture studies and sea surface assessment. 

Appendices are included that introduce the reader to the concept of complex 
numbers, summarise essential results in matrices and vectors, demonstrate how images 
are formed from the recorded radar signal data, and provide other supplementary 
material. 

The idea for this book arose during a graduate course on radar remote sensing 
taught at the University of California, Santa Barbara in 1985 during a sabbatical 
period spent with the late Professor David Simonett, one of the pioneers in remote 
sensing with radar. Following a lengthy intervening period in university administration, 
a further sabbatical year in 2008 gave time for the book to be written. I wish to record 
my appreciation to the Australian National University for this opportunity. I am also 
grateful to the Department of Engineering at the University of Cambridge, and 
Wolfson College Cambridge, for hosting me for a two month period in 2008 during 
which substantial progress was made possible. 

Several colleagues provided imagery and other examples used in this text that are 
acknowledged at the appropriate locations. I am particularly grateful to Annie 
Richardson and Ben Holt at JPL for their help in locating good quality copy of early 
remote sensing images that have good didactic content, and to Ian Tapley for assisting 
with the provision of Australian AirSAR data. I wish also to record my appreciation to 
ITT Visual Information Solutions. They made available a copy of the excellent 
ENVI™ image processing package to assist in preparing some of the figures in this 
book. 

As always the support of my wife Glenda is gratefully acknowledged, not only for 

encouragement, particularly when the task took on a magnitude that at times seemed a 
little insurmountable. 

  
 

John Richards 
The Australian National University 

Canberra Australia 
May 2009 

 

the time together she had to forego during 2008, but for her constant and gentle 
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CHAPTER 1 
 
THE IMAGING RADAR SYSTEM 
 
 
  
 
1.1  Why Microwaves? 
 
Understanding remote sensing with imaging radar can be more difficult than with optical 
imaging because the technology itself is more complicated and the image data recorded is 
more varied. Since there are so many concepts and techniques to be assimilated, this 
chapter provides an overview of the topic as a framework for the later chapters. It also 
draws attention to the knowledge assumed on the part of the reader. 

First, we should establish why we are interested in radar imaging as a remote sensing 
modality. A simple answer can be found by examining the wavelength of the radiation 
used compared with that of the visible and infrared radiation employed in optical remote 
sensing. Optical imaging technologies operate at wavelengths of the order of 1μm or so – 
that is a millionth of a metre. Radar imaging, on the other hand, is based on microwaves 
that have wavelengths of the order of 10cm – approximately 100,000 times as long. With 
such a disparity in wavelength one would expect that features on the earth’s surface 
would appear differently at microwave than they would optically. That is certainly the 
case. In many situations the data types are complementary in that what is difficult to 

optical and radar data sets feature in geographic information systems. 
There is another major difference. While there can be some penetration through media 

such as water and thin leaves at optical wavelengths, the longer wavelengths of radar can 
often penetrate vegetation canopies, and even very dry soils. Thus, whereas the imagery 
recorded optically usually represents the surface elements of the landscape, radar image 
data is more complex because it often contains volumetric and sub-surface information as 
well. 

At the relatively long wavelengths used for radar imaging surfaces also appear much 
smoother than at visible and infrared wavelengths so that there is a greater occurrence of 
mirror like reflections that, at once, can be both helpful and problematic. 

Finally, with radar we have control over the properties of the incident energy. That 
allows a wide variety of data types to be recorded and enables innovative applications 
such as topographic mapping, landscape change detection and, to a limited extent, three 
dimensional modelling of the volume detail of a resolution element. 

 
 

1.2 Imaging with Microwaves 
 
In seeking to form an image with any technology the first consideration is where the 
energy comes from with which to view the landscape. In the case of optical data it is 
visible and infrared sunlight, or thermal energy from the earth itself. Although there is a 
limited amount of microwave energy available from the earth and sun, it is so small that 
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we generally need to provide our own source of incident radiation for most purposes1. A 
microwave transmitter is carried on the remote sensing platform and used to illuminate 
the earth. Energy scattered back to the platform is received and used to create an image of 
the landscape. There could be two platforms – one carrying the energy source and the 
other (or even several) receiving scattered energy. To date most radar remote sensing 
systems have used the same platform and are called monostatic. When two platforms are 
used the radar system is called bistatic, which is now emerging as a significant remote 
sensing modality. 

Microwave energy is just one form of electromagnetic radiation; it is part of a 
continuous spectrum as shown in Fig. 1.1. The spectrum also includes the visible and 
infrared energy that is the basis of optical remote sensing. The most significant difference 
in properties is wavelength. In principle, we could contemplate using any wavelength for 
imaging the earth’s surface, the only real limit being the levels of energy available at the 
surface. 

 

 
 

Fig. 1.1. The electromagnetic spectrum and the indicative transmittance of the atmosphere on a 
path between space and the earth 

 
 
In Chapt. 2 we will examine specifically the energy levels from the sun over a number 

of wavelengths of interest. But, as above, we need also to consider a platform carrying its 
own energy source. We then need to ask whether there are any fundamental limitations to 
using any particular wavelength range for remote sensing purposes. There is one: the 
earth’s atmosphere is not transparent at all wavelengths. That is very fortunate since the 
absorption of a significant proportion of the sun’s ultraviolet radiation is important for our 
well being. There is also substantial atmospheric absorption in the far infrared. The 
                                                 
1 We can use naturally emitted microwave energy for remote sensing but it needs to be collected over very 
large pixels to give acceptable and practical signal levels. 
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absorptive characteristics of the atmosphere are quite complex because of its molecular 
composition. Fig. 1.1 shows atmospheric transmittance as a function of wavelength, 
covering the range from the ultraviolet up (in wavelength) to the radio wave spectrum. 
Several aspects are noteworthy. For most of the spectrum the atmospheric constituents of 
water vapour, oxygen and carbon dioxide selectively block the transmission of 
electromagnetic energy through the atmosphere. Regions in which there is little 
absorption are often referred to as atmospheric windows, the most important being in the 
visible and near infrared region (~0.3-1.3μm), the middle infrared (~1.5-1.8μm, ~2.0-
2.6μm, ~3.0-3.6μm, ~4.2-5μm) and the thermal infrared (~7.0-15μm). Below the visible 
range the ozone content of the upper atmosphere blocks solar radiation. The atmosphere 
is also essentially closed to radiation for wavelengths beyond the thermal infrared until 
we encounter the radio wave part of the spectrum2. For wavelengths beyond about 3cm 
the atmosphere is regarded as transparent. For terrestrial applications that applies 
indefinitely. However, on paths from space to the earth’s surface, or vice versa, the region 
of the atmosphere called the ionosphere, consisting of a weakly but significantly ionised 
set of layers, reflects electromagnetic energy with wavelengths longer than about 10m or 
so, both radiated upwards from the earth, or downwards from a space vehicle. For remote 
sensing purposes we therefore regard the atmosphere potentially to be a problem at those 
longer wavelengths3. 

 
 

1.3  Components of an Imaging Radar System 
 

Fig. 2.1. summarises the technology of radar imaging, depicting the essential system 
components that need to be understood in developing an overall appreciation of the field. 
The first consideration is to be able to resolve the field of interest into resolution cells, or 
pixels. Different principles are used to create resolution in the direction parallel to the 
motion of the platform (along track or azimuth), and that orthogonal to it (across track or 
range). We will see that the principle of radar is important for resolving detail across 
range. Irradiation of the landscape uses pulses of energy; the time they take from 
transmission to the landscape and back to the radar determines how far away that part of 
the landscape is. Innovative signal processing techniques will be shown to make high 
spatial resolutions possible in this dimension. We will also see that it is because of the 
radar principle that the system has to be side looking. 

In the along track direction the motion of the platform relative to the landscape will be 
seen to give a Doppler change in the frequency of the radiation that is used for 

of a passing ambulance). By keeping track of the Doppler shift as the platform passes 
regions of interest we will see, again, that signal processing methods can be used to 
achieve very high spatial resolutions in azimuth even from a space borne vantage point – 
this is where the concept of “synthetic aperture” comes in. 

The next important aspect to understand is how a swath of image data can be 
established, from which images are selected. Although it is, in principle, just a property of 
the antenna carried on the platform that sets the swath width, we will find that the swath 

                                                 
2  Even though it is accompanied by high atmospheric attenuation there is a growing interest in the use of 
terrahertz radiation for short distance defence and security applications since it can penetrate dry, non-
metallic media (see the Special Issue on T-Ray Imaging, Sensing and Retection, Proceedings of the IEEE, 
vol. 95, no. 8, August 2007.) 
3 For the same reason, transmission to and from a telecommunications satellite has to take place at 
frequencies in excess of about 50MHz. 

illuminating the landscape (just as there is a Doppler change in the frequency of the siren 
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is limited by the emergence of ambiguous signals if it is too wide. As a consequence we 
will consider the application of a principle now referred to as ScanSAR to achieve very 
wide coverage to the side of the platform. 

To use the data meaningfully we need to understand distortions that may have been 
introduced into the recorded imagery. They can be quite severe and guidance is needed on 
how radar imaging should be configured to minimise the types of distortion that impact 
on particular applications. 
 
 

 
 
Fig. 1.2. Summary of the essential elements of an imaging radar remote sensing system 

 
 
Once we get to this stage we will have an understanding of how synthetic aperture 

radar operates. We next need to understand how the incident radiation scatters from the 
landscape since the backscattered energy contains information about the properties of the 
part of the earth’s surface being imaged. That is a major consideration since it forms the 
basis of remote sensing with microwaves. It is a significant study in is own right and will 
occupy a large part of the treatment of this book. Not only is it important to understand 
the scattering properties of earth surface materials but it is desirable to be able to model 
them, since that can be an important step in radar image interpretation. 

It is helpful to introduce a little terminology at this point. In remote sensing we 
generally resolve the scene of interest into pixels. The same is true in radar; however we 
often use “resolution cell” as a synonym for pixel. Additionally, we will often call the 
pixel a “target”. That comes about because of the heritage of radar technology as a means 
for detecting discrete objects. Sometimes our pixels will look like discrete targets, such as 
when they are dominated by a single scattering object like a large tree or a building, or 
possibly a ship on the surface of the ocean. Most often though they will be composed of a 
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distributed collection of incremental scatterers. Nevertheless we will still loosely use the 
term “target” when referring to a pixel. We will be a little more precise about the term 
when we discuss scattering properties. 

Complexity is added by the fact that the earth will respond differently for different 
polarisations and wavelengths of the incident energy, as it will for different angles with 
which the landscape is viewed. Knowledge of how cover types scatter as a function of 
these radiation characteristics is essential; an underlying important generalisation will 
emerge – the radar properties of a region on the earth’s surface are dependent on its 
geometry and its moisture content. 

Just as we map the landscape in optical remote sensing using quantitative thematic 
mapping techniques, so in radar imaging we would like to be able to turn the recorded 
radar image data into maps of land cover and land use. While, in principle, it is possible 
to use similar procedures to those employed with optical image data, the nature of radar 
imagery suggests that it is better to develop methods matched to the properties of radar; 
this is so important that a separate chapter is devoted to radar image analysis. 

A special, and annoying, feature of images that are recorded using the relatively pure 
electromagnetic radiation in radar, is that they have an overlying speckled appearance. 
We will see that that is the result of interference of the energy reflected from the many 
elemental scatterers that occur within a resolution cell (pixel). Speckle needs to be 
understood, as do means for reducing its impact. 

Also, because of the rather pure (or coherent) nature of the energy used in microwave 
imaging, it is possible to develop intereferometric techniques from which topographic 
features of the landscape can be derived with very high spatial resolution and with which 
spatial changes, either short or long term, can be detected and mapped with very high 
precision. 

An associated imaging technique uses the very small naturally emitted microwave 
energy from the earth as a means for forming images. Although not a radar technique, we 
provide an overview of that technology because it has particular relevance to 
oceanographic and soil moisture applications. 

So in summary, a comprehensive understanding of imaging radar involves: 

1. knowing where the energy comes from, and its properties; 
2. knowing how to resolve the scene into pixels; 
3. appreciating the scattering properties of earth surface features; 
4. understanding the dependence of scattering on system parameters such as the 

wavelength of the radiation, its polarisation and the angle with which the radiation 
intersects the earth’s surface; 

5. knowing how an image is formed; 
6. knowing how to interpret the recorded imagery; 
7. understanding how thematic mapping can be carried out from radar data; and 
8. appreciating special applications of microwave imaging such as interferometry. 

 
 
1.4  Assumed Knowledge 
 
In the following the background knowledge, particularly mathematical, needed to 
understand radar imaging is outlined, noting what will be assumed on the part of the 
reader and where assistance can be found. 
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1.4.1  Complex Numbers 
 
Understanding the technology of optical remote sensing rarely requires an in-depth 
knowledge of the properties of the visible and infrared radiation used, apart from its 
wavelength. With radar, however, understanding the properties of the incident radiation is 
inescapable, as is its mathematical description. 

Although the waveforms used in radar can be characterised using trigonometric 
functions, it is much more convenient to use a description based on exponential functions. 
That requires a knowledge of complex numbers. Complex numbers are also convenient 
descriptors for the earth surface properties encountered at radio wavelengths. 

Despite their name, complex numbers are not difficult to understand. For readers 
without that background, Appendix A provides a summary of the necessary concepts and 
could be read in conjunction with those sections of the book in which complex arithmetic 
occurs. 

 
1.4.2  Vectors and Matrices 
 
Understanding radar imaging is considerably simplified by the use of vector and matrix 
algebra to describe lengthy equations and expressions. Appendix B gives an overview of 
relevant concepts, and the properties of matrices and vectors that are important in 
describing imaging radar. 
 
1.4.3 Differential Calculus 
 
A familiarity with differential, and introductory integral, calculus is important for 
appreciating the development of imaging radar as a remote sensing modality They are 
less important for understanding the interpretation of radar imagery, provided some 
developments can be taken for granted. It is nevertheless assumed here that the reader 
does have an introductory calculus background. 

widely used in the theory of electromagnetic wave propagation, our development does not 
need to use it, except in a very rudimentary way. 
 
 
1.5 Referencing and Footnotes 
 
Considerable use is made of footnotes to refer to supplementary material and to add 
comments that are important but perhaps not mainstream. We have also used footnotes to 
provide citations to published work, rather than the method of numbered end notes more 
commonly used with scientific and technical books. That decision was made to improve 
flow by avoiding the distraction of having to go to another part of the text to identify 
relevant sources. The disadvantage of the footnoting approach for referencing is some 
repetition: that is minimised by using the now less encountered ibid (in the same place 
immediately before) and loc cit (in the place cited), when citations are closely located. 
 
 
1.6  A Critical Bibliography 
 
Many books on radar remote sensing have appeared in the recent past, especially with 
multi-polarisation and interferometric developments. It is, however, important to 

It is not necessary here, however, to understand vector calculus. Even though it is 
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recognise the benchmark books by Ulaby, Moore and Fung that provided the first 
comprehensive treatment of microwave remote sensing in monograph form and remain 
valuable to this day. There are three volumes: 

F.T. Ulaby, R.K. Moore and A.K. Fung, Microwave Remote Sensing: Active and 
Passive, Volume 1 Microwave Remote Sensing and Fundamentals, Addison-
Wesley, Reading Mass., 1981. 

F.T. Ulaby, R.K. Moore and A.K. Fung, Microwave Remote Sensing: Active and 
Passive, Volume 2 Radar Remote Sensing and Surface Scattering and Emission 
Theory, Addison-Wesley, Reading Mass., 1982. 

F.T. Ulaby, R.K. Moore and A.K. Fung, Microwave Remote Sensing: Active and 
Passive, Volume 3 Volume Scattering and Emission Theory, Advanced Systems and 
Applications, Addison-Wesley, Reading Mass., 1986. 

Another comprehensive treatment, with chapters covering fundamentals and many 
application domains, is 

F.M. Henderson and A.J. Lewis (Eds), Principles and Applications of Imaging 
Radar, Manual of Remote Sensing, 3rd ed, Volume 2, John Wiley and Sons, N.Y., 
1998. 

Most of the application chapters in that treatment do not require significant mathematical 
skills; some of the theory chapters though do appeal to deeper mathematical and 
electromagnetic knowledge. 

A comprehensive coverage of the importance of multi-polarisation radar is given in 

F.T. Ulaby and C. Elachi (Eds), Radar Polarimetry for Geoscience Applications, 
Artech House, Norwood Mass., 1990. 

It has very good chapters on the fundamental theory, including coordinate systems and 
polarisation synthesis. 

A very readable account of both radar and passive remote sensing is given in 

I.H. Woodhouse, Introduction to Microwave Remote Sensing, Taylor and Francis, 
Boca Raton, Florida, 2006. 

More recently the following treatment by Massonnet and Souyris gives an excellent 
overview of the status of radar imaging and particularly of the problems of deriving high 
quality multi-polarisation imagery for both planimetric and interferometric applications.  

D. Massonnet and J-C Souyris, Imaging with Synthetic Aperture Radar, EPFL 
Taylor and Francis, Boca Raton, Florida, 2008. 

It also provides good coverage of how radar targets (and pixels) are characterised in a 
multi-polarisation environment. Its mathematical detail is moderate and comparable to 
that in this book. 

A more detailed, mathematically based, treatment of polarimetric radar is 

H. Mott, Remote Sensing with Polarimetric Radar, IEEE Press John Wiley and 
Sons, Hoboken, N.J., 2007. 

Its strong focus is on the characterisation of radiation and the scattering properties of 
targets. Another technical treatment is 

B-C Wang, Digital Signal Processing Techniques and Applications in Radar Image 
Processing, John Wiley and Sons, Hoboken, N.J., 2008. 
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As its title suggests it is very much based on a signal processing treatment of synthetic 
aperture radar and radar imaging and, like Mott’s book, is perhaps a coverage more for 
the systems specialist than the applications scientist. 

The comprehensive, long standing and excellent treatment of optics in  

M. Born and E. Wolf, Principles of Optics, 7th ed., CUP Cambridge, 2006 

is a must for anyone interested in the theory of polarisation in radar. Although an optics 
text, the equivalence of light and radio waves as two different forms of electromagnetic 
radiation means that it is equally applicable to characterising the radiation used in radar. 
Indeed much of the early theoretical development of multi-polarisation radar is based 

For the reader interested in an easily read coverage of radar generally, not just for 
remote sensing, Skolnik is the standard text: 

M.I. Skolnik, Introduction to Radar Systems, 3rd ed., McGraw-Hill, N.Y., 2001. 

While it is written principally for engineers its mathematical detail is not deep and the 
treatment is very readable even for the non-expert. 

For the reader seriously interested in understanding and modelling the scattering of 
electromagnetic radiation by objects an older, but nevertheless still standard treatment, is 
the two volume set: 

G.T. Ruck, D.E. Barrick, W.D. Stuart and C.K. Krichbaum, Radar Cross Section 
Handbook, Plenum, N.Y., 1970 

With the emergence of interest in polarimetric radar in the past decade dedicated books 
are now appearing that give a level of detail beyond the coverage in this treatment. Lee 
and Pottier below comprehensively covers the important aspects of polarimetric radar as 
an imaging tool, and means for data handling and analysis. Cloude focuses on the 
properties of the electromagnetic waves used to carry radar signals; he then looks at the 
polarimetric theory of scattering and how target information is found, culminating in the 
theory and applications of interferometric and polarimetric interferometric synthetic 
aperture radar. 

J-S Lee and E. Pottier, Polarimetric Radar Imaging: From Basics to Applications, 
CRC Press, Taylor and Francis, Boca Raton, Florida, 2009. 

S.R. Cloude, Polarisation: Applications in Remote Sensing, Oxford University 
Press, 2009 

In the past few years there has emerged an interest in applying bistatic radar concepts 
to remote sensing. Although bistatic configurations, in which the transmitter and receiver 
are on separate platforms or in different locations, have been well known for many years 
in surveillance and similar applications, their use for earth surface mapping has been 
limited. The classic treatment of bistatic radar will be found in 

N.J. Willis, Bistatic Radar, 2nd ed, SciTech, Raleigh, NC, 2005 

The two recent books edited by Cherniakov give a contemporary account of the field, 
but also include an excellent background treatment of radar technology in general, 
although with more classic, rather than remote sensing, applications in mind. 

M. Cherniakov (ed), Bistatic Radar Principles and Practice, John Wiley and Sons, 
Chichester, 2007. 

directly on the coverage in that book. 
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M. Cherniakov (ed), Bistatic Radar Emerging Technology, John Wiley and Sons, 
Chichester, 2008. 

From time to time it is important to know a little about the propagation of radio waves 
when dealing with radar. There are many excellent treatments available for those with an 
engineering or physical sciences background including 

J.D. Kraus and D.A. Fleisch, Electromagnetics with Applications, 5th ed., McGraw-
Hill, N.Y., 2000. 

 A more introductory level coverage is given in 

J.A. Richards, Radio Wave Propagation: An Introduction for the Non-Specialist, 
Springer, Berlin, 2008. 

 
 
1.7  How this Book is Organised 
 
The remaining chapters are organised around the components of Fig. 1.2. 

Chapter 2 treats the radiation framework for radar, discussing naturally occurring levels 
of microwave energy and establishing the need for the system to provide its own source 
of primary energy. The underlying electric and magnetic fields are introduced along with 
properties such as polarisation, interference and the Doppler effect that are so central to 
later developments. 

Chapter 3 develops the technological basis for radar imaging, showing why a radar 
technique is needed for resolving the landscape with reasonable spatial resolution in the 
direction at right angles to the motion of the platform. Means by which resolution is 
achieved in the along track direction are also covered. While the process by which an 
image is formed from received radar signals is alluded to in that chapter, details are saved 
for Appendix D to avoid disrupting the flow of the development of the technology of 
imaging radar from a user perspective. 

The concepts of radar cross section and scattering coefficient are also introduced in 
Chapt. 3 as the essential descriptors of the properties of a target, or of the earth’s surface. 
The polarisation dependence of target and earth surface scattering is also examined 
leading to the concept of polarisation synthesis, with which we can see how the landscape 
would respond to any specified polarisation configuration. 

Chapter 4 considers sources of geometric and radiometric error in recorded radar 
imagery and how they can be “corrected”. Calibration devices are also introduced with 
that material. 

Chapter 5 is central to the book. It looks at the scattering characteristics of a range of 
earth surface materials and features, so that the reader will develop an idea of what can be 
mapped with radar. Both simple and composite situations are examined, based on an 
understanding of how surfaces and volumes behave, and how artificial and other strong 
reflecting structures respond to microwave illumination. 

Chapter 6 is devoted to the topic of radar interferometry, building on the concept of 
interference introduced in Chapt. 2. The emerging area of radar tomography as a means 
for understanding the structure of a pixel’s volume is also included in this treatment. 

Chapter 7 re-examines the radar concept. After looking at the possibilities for radar 

recent moves to bi-static radar imaging and its use as a remote sensing tool. 

Both qualitative methods, involving the human interpreter, and quantitative methods 

systems involving more than one transmitter and more than one receiver it focuses on 

Chapter 8 builds on Chapt. 5 by examining methods for interpreting radar image data. 
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based on automated recognition methods, are covered. They include procedures specially 
devised for producing thematic maps from radar data. 

9, in which the fundamental concepts are developed and its major benefits are 
highlighted. 

Apart from the appendices already mentioned, others provide data on metric prefixes 
and coordinate systems.  

 

An overview of the associated topic of passive microwave imaging is given in Chapt. 



CHAPTER 2 
 
THE RADIATION FRAMEWORK 
 
  
 
 
2.1  Energy Sources in Remote Sensing 
 
The acquisition of information about features on the earth’s surface using remote sensing 
platforms depends on measuring energy emanating from the region of interest so that an 
image can be formed. The energy can originate from the earth itself, as a result of its 
finite temperature, or it can be the reflection of energy incident on the earth's surface from 
an external source such as the sun. It could also come from an artificial source such as a 
laser or a generator of some other form of radiant energy carried on an aircraft or space 
craft platform. Irrespective of the energy source used, the principle is to measure 
upwelling radiation, usually on a pixel by pixel basis, to help understand and map the 
earth’s surface (and possibly the near sub-surface as seen in Chapt. 5). 

It is important to look at expressions that describe the actual energy levels generated by 
the sun and the earth so we know how much is available from common, natural sources. It 
is of benefit first, though, to look at the means by which energy propagates outwards in 
free space from a point source generator. This will help in understanding some of the 
terminology and units used in microwave remote sensing and will be of value when the 
technology of imaging radar is examined in Chapt. 3. 

The sun radiates its energy approximately uniformly in all directions in space. To this 
extent it can be called an isotropic radiator, even though that term is more usually applied 
to an idealised point source of energy that radiates equally in all directions. Such a point 
source is shown in Fig. 2.1. Because we observe the sun from such a large distance we 
will assume it can be modelled in that manner. Rather than describe its properties in terms 
of energy, it is more usual to talk about the rate at which the radiator can generate energy 
– i.e. energy per unit time, or power. While energy is measured in joules, power is 
expressed in watts (joules per second). The energy is carried forward by an 
electromagnetic wave that we will have more to say about later; for the present we will 

Suppose we observe the radiator at a distance R, as indicated. If we want to intercept, 
or collect, all the power being radiated outwards it would be necessary to enclose the 
radiator by a sphere. At any given radius R we can imagine that the power radiated is 
spread out uniformly over the surface area of the sphere. In practice we generally don’t 
try to observe the total power output from the point source, but only that portion being 
radiated in a given direction (for example in the direction of the earth from the sun). We 
therefore need to describe how much power is spread over just the part of the sphere in 
the direction of interest. To be able to do that we introduce the concept of power density. 
If the power being radiated by the point source is Pt as shown in Fig. 2.1 then the power 
density at distance R from the source is given by dividing the transmitted power by the 
area of a sphere at that distance: 

 2
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simply say the energy is carried outwards by an expanding wavefront. 
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Fig. 2.1. The isotropic radiator and power density produced at a distance R 
 
 
Note that power density has units of watts per square metre and diminishes as the square 
of distance from the source, consistent with other inverse square laws found in nature 
(gravity, sound, electrostatics etc). Knowing the power density at a given distance allows 
us to determine how much power can be extracted from the spherical wavefront 
propagating towards us if we intercept the wavefront over a specified cross-sectional area. 

A simple analogy to these concepts can be created by considering a light bulb, which is 
a rough approximation to an isotropic radiator if there is no reflector behind it. A light 
bulb capable of generating 100W of optical power will radiate that power uniformly in all 
directions. On the floor, 2.3m below the light, there will be a power density of  
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A mirror, with cross sectional area of 0.01m2 on the floor will intercept and reflect 15mW 
of optical power. 

We can now determine the levels of power or energy available from the sun or earth for 

emitted by a so-called black body – an ideal emitter and absorber of energy over all 
wavelengths. For our present purposes the sun and the earth can be regarded 
approximately as black body radiators.  

If a black body is at a temperature T then the so-called spectral radiant exitance, or the 
spectral power density (the power per unit of surface area of the body per unit of 
wavelength) emitted, is  

 12
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where 

 
c1 = 2πhc2

c2 = hc  

in which 
 Js10x62607.6 34−=h   (Planck’s constant) 
 -1msM792.299=c   (velocity of light) 
 -123JK10x38065.1 −=k
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isotropic radiator 
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imaging purposes. This is based on Planck’s radiation law, which describes the power 

 (Boltzmann’s constant) 
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so that 
 4= μmWm10x74176.3 -28

1c  

 μmΚ10x43877.1 4
2 =c  

 
Fig. 2.2 shows the spectral power density emitted by a black body according to (2.2), at 
different temperatures, plotted as a function of wavelength. The wavelength range chosen 
covers the ultraviolet through to the so-called thermal infrared range. The dependence of 
spectral power density on temperature is strong, a feature of importance in thermal remote 
sensing. Three curves are shown, corresponding first to an ideal black body at the 
approximate temperature of the sun’s surface, secondly to a burning fire on the earth’s 
surface and thirdly to the earth itself at an average temperature of 300K. It is interesting 
to note that if we wanted to sense fires burning on the earth’s surface then we would use 
an instrument maximally sensitive in the 3-5μm region whereas if we wanted to measure 
so-called thermal emissions from the earth itself then we would use about 8-12μm. 

 
Fig. 2.2. Spectral power density available for ideal black bodies at three different temperatures, 
computed from (2.2) 
 
 

Real emitters of radiant energy do not behave as ideal black bodies according to (2.2). 
Instead, the spectral power density is smaller by a factor ε, referred to as the emissivity of 
the body (or its surface). Emissivity is generally wavelength dependent and is in the range 
0<ε <1. We will return to emissivity later in the book, but for now we can retain the 
assumption of ideal black body behaviour. 

It is important to recognise that the curves in Fig. 2.2 are those at the surface of the 
respective black bodies – i.e. they are the power available, per unit of surface area of the 
body, per unit of wavelength. The ideal solar curve, therefore, does not represent the solar 
spectral power density at the earth’s surface. To find the level of solar energy available at 
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the earth we need to reduce the magnitude of the solar curve as a result of the inverse 
square law dispersion of solar power density during its passage to the earth. In principle, 
we do that by computing the total power available from the sun as though it were truly a 
point source, and by then applying (2.1) using the earth-sun distance for R. That is the 
same as diminishing the solar power density from (2.2) by the ratio of the squares of the 
sun’s radius and the earth-sun distance, i.e. by the factor 
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Fig. 2.3 shows how Fig. 2.2 changes when that correction is made to the solar curve. That 
explains why sensing the earth at 10-12μm reveals thermal properties of the earth itself, 
and not those dependent on reflected sunlight, as might have been implied from Fig. 2.2. 
The corrected solar curve, however, does not take account of the effect of the earth’s 
atmosphere. 

Fig. 2.3. Idealised spectral power densities with the solar curve as it would appear at the top of the 
earth’s atmosphere 
 
 
2.2  Wavelength Ranges used in Remote Sensing 
 
We have already commented above on the use of sensors operating in the vicinity of 
10μm for looking at the surface features that are dependent on the earth’s thermal 
properties. Fig. 2.3 shows that thermal emission from the earth dominates over reflected 
solar energy for wavelengths in excess of about 5μm with terrestrial thermal emission 
maximal at about 10μm. The whole field of thermal remote sensing has developed around 
those observations. Similarly, as noted earlier, if we are interested in imaging very hot 
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objects on the surface, such as active forest fires, sensors operating in the vicinity of 3 or 
4μm would be preferred. Line scanners, typically working over the 3-5μm range, have 
been developed specifically for that purpose. 

Fig. 2.3 also shows why typical optical (visible and near infrared) sensors operate in the 
range of approximately 0.4 to 2.5μm. The sun’s output is largest over that regime and the 
atmosphere allows adequate transmission of energy from the sun to the surface and from 
the surface to the sensor, apart from a few isolated absorption bands, as illustrated in Fig. 
1.1. Moreover, earth surface properties demonstrate good differentiation over those 
wavelengths1. Multispectral and hyperspectral sensors are designed typically to operate 
within that range. 

There are of course many other ranges of wavelength that could be used. In principle, 
any wavelength could be chosen with which to view the earth and sense its properties. 
Practical limitations are imposed by the opacity of the atmosphere at many wavelengths, 
and the availability of suitable technologies. There are, however, few such limitations in 
the radio wave portion of the electromagnetic spectrum. Energy sources are available and 
the atmosphere is rarely a problem. Further, one would expect that because of the vast 
contrast in wavelengths, the properties of the earth would look different from their 
appearance at optical wavelengths. That is partly the motivation for adopting radar as a 
remote sensing modality. 

While lower radio frequencies (longer wavelengths) could in principle be used, it turns 
out that the most interesting wavelengths to employ in terms of sensing surface features 
are those in the microwave portion of the electromagnetic spectrum. This will become 
clearer when scattering properties are considered in Chapt. 5. 

The microwave energy of interest in remote sensing is largely in the range of about 
300MHz to about 20GHz. Because of control of the radio spectrum by international 
treaties, the frequencies used tend to be quite specific within that range. Fig. 2.4 shows 
the operating frequencies and equivalent wavelengths for a number of past and current 
radar remote sensing programs. The frequency and wavelength of radiation are related by 
the very useful formula 

 
)m(

300)MHz(
λ

=f  (2.3) 

 
The particular bands of frequency and wavelength indicated for different radar remote 
sensing programs in Fig. 2.4 are usually described by the letter designations as shown. 
 
 
2.3  Total Available Energy 
 
The energy output from a black body described by (2.2) is expressed per unit of 
wavelength. Often it is important to know the total available energy over a given range of 
wavelengths. This can be obtained by integrating (i.e. summing) the spectral power 
density over the wavelength range (λ1,λ2) of interest: 
 

 2Wm
2

1

−∫=
λ

λ
λ λdMM . (2.4) 

 
If the power density over all wavelengths is of interest it can be shown that 
                                                 
1 See P.H. Swain and S.M. Davis, Remote Sensing  The Quantitative Approach, McGraw-Hill, N.Y., 1978 
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which is known as the Stefan-Boltzmann radiation law, where 
 
 428 KWm10x67040.5 −−−=σ   

 
is the Stefan-Boltzmann constant. As an interesting application of this law consider the 
total power density available at the top of the earth's atmosphere from solar radiation.  
 
 

 
 
Fig. 2.4. Wavebands used in radar remote sensing; there is some uncertainty about the 
specification of the bottom of V band 
 
 

The power density at the surface of the sun (at an assumed temperature of 5950K) is, 
from (2.5) 

248 MWm71)5950(x10x67040.5 −− ==M  
 

Multiplying this figure by the surface area of the sun allows its power output to be 
determined. Assuming this emanates from an equivalent point source which radiates 
isotropically then the power density produced at the earth is found by dividing the sun's 
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power output by the surface area of the sphere which has the sun-earth distance as its 
radius or, as above, by multiplying the figure for M by the square of the ratio of the sun’s 
radius to the sun-earth distance. This gives the solar power density at the top of the earth's 
atmosphere as 

-256 kWm53.11016147.21071 == −xxxMe  
 
This would be the earth surface solar power density in the absence of any absorption by 
the atmosphere, and assuming that the Sun acts as an ideal black body radiator in the 
sense required by Planck's law. The solar curve of Fig. 2.3 departs from ideal black body 
behaviour as observed at the earth’s surface because of selective absorption by 
atmospheric constituents2 and the sun’s composition. 

The actual solar power density at the earth is known as the solar constant and has the 
value of 1.37kWm-2. It differs from the value computed above for a number of reasons 
including, first, that the correct temperature to use in the computation of Planck’s law 
depends on wavelength and, secondly, because solar emission at different wavelengths 
comes from differing portions of the sun’s outer layers. By using an average sun 
temperature of 5800K, Schott3 obtains a value of 1.39kWm-2 for the solar constant. 
 
 
2.4  Energy Available for Microwave Imaging 
 
Consider now the level of microwave energy available from the earth to see if it can be 

implies there is also microwave energy available from the sun, we will concentrate on 
energy emanating from the earth itself because we see in Fig. 2.3 that beyond about 10μm 
the energy available at the earth’s surface from sunlight will be significantly below that 
from the earth itself. 

Fig. 2.5 shows the black body radiation curve for the earth at 300K extended out to 
microwave wavelengths. Given that the curve has its maximum at about 10μm, we are 
interested now in that portion well out into the tail of the distribution. 

The shortest wavelength of interest in remote sensing using imaging radar will be seen 
later to be typically 0.03m (i.e. 3x104μm). For a radiator at 300K, the exponent in the 
denominator of (2.2) then has the value 
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so that we can approximate the exponential by the first two terms of its Taylor series 
 
 Tλλ /1 2

/2 cec +≈T  
 

This allows (2.2) to be approximated as 
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2 See Fig. 3.6 of P.N. Slater, Remote Sensing  Optical and Optical Systems, Addison-Wesley, Reading 
Mass., 1980. 
3 See J. R. Schott, Remote Sensing  The Image Chain Approach, OUP, N.Y., 1997. 

used for imaging purposes. Even though the infinite wavelength range in Planck’s law 
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where  1324 KmWm10x6.2 −−≈ μa  
 
Equation (2.6) is called the Rayleigh-Jeans law (or the Rayleigh Jeans approximation to 

levels from the earth. 

Fig. 2.5. The portion of the earth’s Planck radiation curve relevant to microwave frequencies 
 
 
Consider the microwave power density emanating from the earth's surface at 300K over 

the wavelength range 0.03m to 0.3m, which is a much larger range than would be used 
for a single band in microwave imaging. The power density is given by integrating (2.6) 
over that range of wavelengths: 
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in which we have used a=2.6x10-14Wm-2m3K-1, which expresses wavelength in metres.  

This is a very small power density indeed, particularly considering that it was 
computed over such a broad range of wavelengths; in a 100MHz bandwidth around 
10GHz the figure is about 3nWm-2, while the available power density is 29pWm-2 at 

Planck’s law) which can be now be used to assess the microwave spectral power density 

log of spectral
power density microwave range

earth at 300K

-10

-8

-6

-4

-2

0

2

4

1001 110

wavelength in m

-18

-16

-14

-12

0 1 2 3 4 5 6

1000 0.01 0.1

wavelength in µm

log of wavelength in µm



2 The Radiation Framework  19 

1GHz in a 100MHz bandwidth. These figures are so small that the earth's surface can be 
considered "dark" at microwave frequencies, in much the same way that the earth is dark 
at night visually, in the absence of sunlight. To see at night a torch (or flashlight) is used – 
in other words an artificial source of energy is employed to irradiate the landscape. The 
same principle can be used at microwave frequencies, day or night. A generator of 
microwave radiation is carried on board an aircraft or spacecraft and used to irradiate the 
earth’s surface so that image data can be gathered at those wavelengths. The image is 
constructed by observing the microwave energy scattered back to the platform, as 
depicted in Fig. 2.6. This is the basis of radar remote sensing developed further in Chapt. 
3 and is referred to as an active remote sensing technique. Although we came to this 
approach by assessing the very low levels of natural terrestrial microwave emissions, 
being able to irradiate the surface using an artificial energy source gives more control 
over imaging parameters and methodologies, the importance of which will be seen later 
when looking at the microwave response of the earth’s surface. 
 

 
 
Fig. 2.6. The fundamental arrangement for active microwave remote sensing 
 
 
2.5  Passive Microwave Remote Sensing 
 
Although the Earth is essentially “dark” at microwave wavelengths there is nevertheless 
some energy emitted, as demonstrated above. In order to obtain enough power to 
measure, it is necessary to observe over a large enough area of the earth’s surface. 
Consequently, passive microwave imaging is possible provided large pixel sizes are used. 
The study of passive microwave remote sensing is the topic of Chapt. 9. 
 
 
2.6  The Atmosphere at Microwave Frequencies 
 
Just as with optical remote sensing that employs visible and infrared wavelengths, care 
must be taken with the choice of wavelength in radar remote sensing to ensure that 
atmospheric properties do not interfere with the imaging process. Atmospheric scattering 
and attenuation is much less a problem at microwave as was noted in Chapt. 1 and as can 
be seen in more detail in Fig. 2.7, which shows attenuation by common atmospheric 
constituents in the range of wavelengths commonly used for radar remote sensing. Note 
that there is no appreciable effect until wavelengths become smaller than about 1cm. 
Since most radar imaging is carried out with wavelengths no shorter than 3cm (X band) 
atmospheric effects can generally be ignored. As noted in Fig. 1.1 though, at very low 
radar frequencies the ionosphere can be a problem. While remote sensing radars would 
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not be operated at those frequencies for which the ionosphere appears opaque (about 
10MHz and lower) an effect known as Faraday rotation can be problem at about L band 
(1GHz) and lower. The free electrons in the ionosphere coupled with the earth’s magnetic 
field can cause the plane of polarisation of a wave4 passing through the ionosphere to be 
rotated. That effect is treated in Sect. 3.24. 

 

 
 
Fig. 2.7. Attenuation of microwave radiation by atmospheric constituents (from J.A. Richards, 
Radio Wave Propagation: An Introduction for the Non-Specialist, Springer, Berlin, 2008) 
 
 

The fine droplet size in most clouds means they do not significantly scatter microwave 
energy at the wavelengths used for remote sensing. While optical energy cannot penetrate 
clouds to any appreciable extent, rendering imaging through clouds at visible and infrared 
wavelengths largely impossible, one of the great benefits of radar imaging is that clouds 
are, for all intents and purposes, transparent. 

Rainfall can be a problem, but only for very short imaging wavelengths and when the 
rainfall is particularly heavy as can be assessed from Fig. 2.8. 
 

                                                 
4 See Sect. 2.8 
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Fig. 2.8. Effect of rainfall on microwave propagation (from J.A. Richards, Radio Wave 
Propagation, An Introduction for the Non-Specialist, Springer, Berlin, 2008) 
 
 
2.7  The Benefits of Radar Remote Sensing 
 
Since clouds and other atmospheric constituents do not interfere with detection, and thus 
imaging, at the wavelengths used for radar remote sensing, and since the platform carries 
its own primary energy source, radar imaging can be carried out at any time of day and 
under any weather conditions, unless there is particularly severe rainfall and very short 
wavelengths are used. In general, though, radar imaging is thought of as an all-weather, 
all-hours technology. 

Furthermore, since the wavelengths used with radar are about four or five orders of 
magnitude longer than those employed in optical remote sensing, quite different 
properties of earth cover types can be detected at microwave. It will be seen in Chapt. 5 
that radar scattering is determined largely by geometric properties, such as shape and 
surface roughness, and by moisture content. Also, depending on the wavelength 
employed and the moisture content of the near earth surface being imaged, it is 
sometimes possible to image beneath the surface. It is certainly possible to image below 
vegetation canopies at longer wavelengths. As a result of all of these effects, radar image 
data can capture a different set of properties of the region being imaged than is the case 
for optical data. It thus finds its own applications, but is particularly valuable when used 
in association with optical imagery. 
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2.8  Looking at the Underlying Electromagnetic Fields 
 
Our development of radar as an imaging modality so far has been based on understanding 
levels of power and power density. That will remain the case for much of our treatment. 
Nevertheless, it is important to understand some of the properties of the electric and 
magnetic fields that carry the power to and from the earth’s surface. 

In Fig. 2.6 the power radiated towards the earth travels as an expanding wavefront 
similar to that depicted in Fig. 2.1. If the transmitting antenna were isotropic then the 
wavefront would be spherical; a real antenna will shape that somewhat although the 
power density still diminishes with the inverse square of distance. Irrespective of the 
antenna used, when we are well away from the platform the wavefront appears planar as 
shown in Fig. 2.9, with the electric field propagating forward as a plane wave as depicted. 
Often we show the wave either by the ray that points in the direction of propagation or as 
a sinusoid in the plane of the wave, as illustrated. It is important to note in the figure that 
the vertical dimension is the strength of the electric field and not a vertical movement in 
space. It is a field that oscillates in amplitude vertically in the case that has been drawn – 
we describe that as a wave that has vertical polarisation. If we stood at a point in space 
and observed the wave passing us we would see the electric field strength alternating in a 
sinusoidal fashion vertically. We could also draw the wave oscillating in the horizontal 
direction – it is then said to have horizontal polarisation. 

 

 
 
Fig. 2.9. A propagating plane wave; the vertical dimension is field strength and not a vertical 
distribution or displacement 
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magnetic field that oscillate at right angles to each other and to the direction of 
propagation as illustrated by the field vectors (indicating polarisation – i.e. the plane of 
polarisation) in Fig. 2.10. It is therefore called a transverse electromagnetic (TEM) wave. 
There is an important relationship between the two field vectors and the direction of 
propagation – they follow the right hand screw rule. If a screwdriver is aligned as though 
it were to drive a screw in the direction of propagation then it would have to move from 
the direction of the electric to the direction of the magnetic field vector in doing so – i.e. 
in a clockwise sense when viewed from behind. 

The electric and magnetic fields have four properties that we will need to consider from 
time to time. They are the frequency at which they oscillate (corresponding to the 
wavelength of the radiation being used), their amplitudes, their relative phase angles and 
directions in which they point in space. We can write them (with their units) as 

 
 electric field E=Ee   Vm-1 (volts/metre) 
 magnetic field H=Hh Am-1 (amperes/metre) 
 

in which e and h are vectors of unit magnitude that point in the direction of the respective 
field vector – i.e. in the direction of oscillation. Seldom in this treatment will we need to 
consider those unit vectors explicitly since we will normally know quite well the spatial 
orientations of the fields. From what we said above about the fields themselves, e and h 
are at right angles to each other and to the direction of propagation. We use a bold faced 
entry (E) if we infer the complete description of a field, whereas the un-bolded version 
(E) lacks reference to the direction in which it points spatially, but encompasses the other 
three properties – these are called the vector magnitudes. 

 

 
 

Fig. 2.10. The power radiated to the landscape is carried by electric and magnetic field vectors at 
right angles to each other and to the direction of propagation 
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or in their sometimes more convenient complex exponential form5 
 
 )(exp eo tjEE φω +=  
  )(exp ho tjHH φω +=  
 
in which Eo and Ho are the amplitudes of the fields and φe and φh are their phase angles. In 
free space the electric and magnetic fields will be in phase with each other so the phase 
angles are the same. The complete bracketed arguments are generically called the phases 
of the respective sinusoids. 

The radian frequency ω is related to the commonly used measure of frequency f by 
 

 ω=2π f rads-1, with f expressed in hertz (Hz) 
 
The period of the sinusoid (the duration of one period of its oscillation) measured in 
seconds is 

 
f

T 1
=  

and the relationship between frequency and wavelength is 

 
λ
cf =  

in which c is the velocity of light. This leads to (2.3) when the appropriate units are used. 
From the last two expressions we have λ=cT; thus if we observed a wave travelling past 
us the frequency of oscillation will be determined by the wavelength and speed of 
propagation. 

If we take the product of the amplitudes of the two fields we see that the units are 
VAm-2 or watts per square metre, which are precisely the units of power density. We may 
thus equate 

 pp=EH Wm-2 (2.7a) 
  

where pp is called the peak power density, which we will simplify shortly. In free space E 
and H are not independent. The are related via the impedance of free space η: 
 
 E=ηH 
 
η has the value of Ω≈ 377120π . Because of this dependence it is normal in remote 
sensing, when needing to appeal to a field as against a power description, just to talk 
about the electric field, knowing that the magnetic field can be described if needed. Thus, 
the peak power density at a given point where the electric field strength is E will be given 
by 
 2Epp η=  (2.7b) 
 
We don’t often use peak power density in practice. Because E is a function of time pp will 
also fluctuate with time. We are more interested in average power quantities including 
average power density, which is given by the average value of pp found from 
 

                                                 
5 See Appendix A for a brief review of how complex numbers can be used in this manner. 
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in which 2/orms EE = is called the root mean square value (rms) of the field amplitude. 
Whenever we describe electric (and magnetic) field strength in applications it is normally 
understood that we are talking about rms values. When we write expressions for fields, 
especially in the exponential form, the amplitudes will be in rms form. 

The field expressions above show their time variations at a given point in space (since 
they are written without a distance term). If we wish to show complete expressions for the 
magnitudes, including how the waves propagate, we need to incorporate a dependence on 
position R in their phases in the following manner 

 
 )cos( eo RtEE φβω +−=  
 )cos( ho RtHH φβω +−=  

 
or )(exp eo RtjEE φβω +−=  
  )(exp ho RtjHH φβω +−=  
 
in which β is called the phase constant (measured in radians per metre); it is often also 
written as the wave number k, which is in all respects equivalent. In free space6 
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To see that the wave is actually travelling in the positive R direction we lock ourselves 
onto a point of constant phase and get carried along with the wave, much as a surf board 
rider gets carried by a water wave by sitting at an equivalent point of constant phase. This 
is illustrated in Fig. 2.11. We have, at any given point on, say, the electric field wave 

 constant==+− φφβω eRt  
 

therefore  )(1
etR φφω

β
+−=  

 
from which the velocity of the wave is 
 

 c
dt
dRv ===

β
ω  

 
which is positive in the positive R direction and equal to the velocity of light. Thus, when 
there is a negative sign in front of βR in the field expression the wave travels in the 
positive R direction. 
 

                                                 
6 See J.A. Richards, Radio Wave Propagation  An Introduction for the Non-Specialist, Springer, Berlin, 
2008. 
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Fig. 2.11. Demonstrating the velocity and direction of travel of a sinusoidal field component 
 
 

Figure 2.12 summarises the conventions of nomenclature used in describing travelling 
electromagnetic fields that we adopt in this book.  

 

 
 
Fig. 2.12. Summary of the nomenclature conventions used with electromagnetic fields; although 
expressed as an electric field, magnetic field vectors are described in the same way 
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In radar remote sensing we assume the transmitted and scattered radiation propagates as 
transverse electromagnetic (TEM) waves. However near the antenna, and similarly in the 
near vicinity of a radar target, that is not the case. We have to be a certain distance away 
from each before we can assume the fields are TEM and thus a simple view of 
propagation can be used. When we can assume TEM behaviour we say we are in the far 
field; otherwise we are in the near field of the antenna or target. To develop an 
understanding of where the transition to far field behaviour occurs it is instructive to 
consider the simplest of all antennas, the so-called short dipole. Fig. 2.13 shows the 
geometry of a short dipole in which distance and direction out from the antenna is 
described by the radial vector r. Any point in space is described by the spherical 
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coordinates (r,φ,θ). The complete set of field components generated about the short 
dipole is 

 ⎟
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where A is a constant and the exponential terms describe propagation outwards from the 
dipole. We will say more about that term later, but it is not important in this discussion. 
Equations (2.9) show that there are transverse components (θ,φ) of the magnetic and 
electric fields. There is also a radial electric field component (r) – i.e. in the direction of 
propagation. Note however that it has a stronger inverse dependence on distance than the 
transverse components so that if the distance is sufficiently large it disappears. This is 
demonstrated by letting r go large in (2.9a-c) to give 
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Fig. 2.13. The short dipole 
 
 
Thus for large distances the wave is TEM – transverse electromagnetic. These equations 
describe the far field of the antenna. The far fields are inverse distance dependent and the 
treatment in this book, based on simple power and power density relationships, is valid. 
In contrast, closer to the antenna (2.9a-c) are needed to describe the near field for this 
simple structure. The transition from near to far field for the short monopole is said to 
occur when the inverse distance terms in (2.9b,c) are equal to the inverse distance 
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squared terms, assuming that any inverse cubic terms are then negligible. Therefore the 
near field/far field transition for this particular case is when  
 

 2
1
rcr

=
ω  

 
which gives 6/λ≈r  for the short monopole. Usually we can assume we are in the far 
field when we are a few wavelengths from the antenna or scatterer. 

 
 

2.10  Polarisation 
 
The orientations of the electric and magnetic field vectors shown in Fig. 2.10, which 
define the polarisation of the propagating wave, are not strictly important in terms of the 
propagation of radiation in free space. However, when the radiation strikes the ground the 
response of surface materials can be different for different orientations of the vectors. 
Therefore, we need a convention to describe the directions in which the field vectors 
point. Because the magnetic field is always at right angles to the electric field it sufficient 
to concentrate on the polarisation of electric field alone. Fig. 2.14 shows an incoming ray 
interacting with a surface. 
 

 
 
Fig. 2.14. Definitions of polarisation with respect to the plane of incidence and the surface 
 
 
We define the plane of incidence as that which is at right angles to the surface and which 
contains the ray. By reference to the plane of incidence we define two types of 
polarisation of the electric field; both are illustrated in Fig. 2.14. If the electric field vector 
lies in the plane of incidence then the field is said to have parallel polarisation, whereas 
if it is at right angles to the plane of incidence it is said to have perpendicular 
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polarisation. Note that a perpendicularly polarised wave is horizontal to the earth’s 
surface. In remote sensing it is therefore more often called horizontal polarisation. Even 
though not strictly correct, parallel polarisation is similarly referred to as vertical 
polarisation. Remember that the plane of polarisation is that in which the electric field 
vector oscillates sinusoidally as described in the expressions above and in (2.10, 2.11) 
below. 

Imagine now that the ray travelling towards the earth’s surface has a polarisation that is 
neither horizontal nor vertical but can be resolved into vertical and horizontal 
components, as shown in Fig.2.15. We can write the field vector as 

 
 vh VH EE +=E  (2.10) 
 

where h and v are unit length vectors that point in the respective directions as reminders 
of the horizontal and vertical directional components of the field. 
 
 

 
 
Fig. 2.15. Resolution of an electric field into its horizontal and vertical components 

 
 

Most generally, the components’ magnitudes can be written 
 
 )cos( RtaE HH βω −=  (2.11a) 
 )cos( δβω +−= RtaE VV  (2.11b) 
 
in which aH and aV are the amplitudes of the two components, R is the direction of 
propagation and, for generality, δ is a phase difference between them. From here on we 
assume that aH and aV are explicitly the rms values of the field amplitudes.  

Fig. 2.16 shows the two components plotted as functions of time at a given position in 
space to illustrate the significance of the phase difference. Note that the time origin is on 
the left of the figure. If the waves were travelling towards a target or spot on the ground 
the left hand sides of the plots would arrive first. 

Imagine those two sinusoids were the horizontal and vertical components shown in Fig. 
2.15. Let us now look at what might be happening to the actual electric field vector with 
time if we viewed it as it approaches us – in other words we are looking back at the 
approaching wave from the position of the arrowhead in Fig. 2.15. In Fig. 2.17 we have 
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shown the situation we would observe at three different times if curve A in Fig. 2.16 
represents the vertical component and curve B the horizontal, and the phase angle δ is 
positive and equal to 90o. As seen, the effect of the time dependence of the two 
components, and the phase difference between them, is that the actual electric field vector 
traces out a clockwise circular path around the direction of propagation. While that is 
happening the wave is also travelling forward because of the ωt-βR arguments in (2.11). 
The field vector propagates forward in a corkscrew fashion, which we don’t see when we 
view the field along the direction of propagation. 

 
 

 
 

Fig. 2.16. Illustrating phase difference; in this case curve A has a positive phase difference (leads) 
with respect to curve B 

 
 
If the phase angle in (2.11b) were negative then the vertical component would lag 

behind the horizontal, and the total field vector would rotate in the anti-clockwise 
direction when viewed from the surface upon which the field is incident. Viewed from 
behind that would be how a screwdriver would rotate when driving a screw in the 
direction of propagation; consequently that is referred to as right circular polarisation. In 
the former case of the total vector rotating clockwise when viewed in approach, the effect 
from behind would emulate a left handed screwdriver. It is then called left circular 
polarisation. 

Pure circular polarisation only occurs when the two components have the same 
amplitude and the phase difference between them is 90o (or a quarter of a period). In the 
most general case the approaching figure shown in Fig. 2.17 would be an ellipse. Again 
there will be left elliptical polarisation and right elliptical polarisation depending on the 
sign of the phase angle between the components. Circular polarisation is a special case. 
Another special case is simple linear polarisation; that occurs when there is no phase 
angle between the components. Their relative amplitudes will determine the orientation of 
the actual field vector, which then oscillates in amplitude along that spatial direction. 

We can actually derive the equation of the ellipse around which the field vector moves 
in the most general case. Expand (2.11b) as 

 
 [ ]δβωδβω sin)sin(cos)cos( RtRtaE VV −−−=  

From (2.11a) 
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Fig. 2.17. Demonstrating how the actual field vector rotates in transmission as a result of the time 
phase difference between its two components; in this case the vertical component has a positive 
(leading) phase angle with respect to the horizontal giving a clockwise rotation of the field vector 
viewed from the front as indicated by the small dot and circle at the origin (representing the 
arrowhead in Fig. 2.15); when viewed from behind this is left circular polarisation 
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which is the equation of an ellipse in the variables EV and EH, centred on the origin, as 
shown in Fig. 2.18. Note that the ellipse is inscribed in a rectangle, parallel to the field 
axes, of dimensions 2aH, 2aV. It can also be shown that7 2222 feaa VH +=+ , where e and f 
are respectively the semi-minor and semi-major axes of the ellipse. 

This ellipse is the general version of the circles shown in Fig. 2.17. The field vector 
indicated rotates around the ellipse as determined by the phase angle δ between the 
components. If δ=±90o, (2.12) reduces to the equation of an ellipse with axes parallel to 
the field components (see Fig. 2.19 following). If, in addition aV = aH then the ellipse 
degenerates into a circle. If δ=0, (2.12) reduces to the equation of a straight line through 
the origin with slope aV/aH, since 
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Likewise if δ = π, (2.12) reduces to 
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which is the equation of a straight line through the origin with slope –aV/aH. 
 

 
 
Fig. 2.18. The polarisation ellipse as the locus of the approaching electric field vector; again the 
small circle and point in the centre is meant to represent the tip of the directional arrow head 
pointing out of the page 
 

 
There are two properties of the ellipse that relate directly to the polarisation state of the 
radiation. The first is its ellipticity or eccentricity which describes how different it is from 
a circle or, at the other extreme, a straight line. The other is its tilt or inclination with 
respect to the horizontal. Tilt is described by the angle τ and eccentricity can be described 
by the so-called axial ratio f/e, or more often by the angle ε  when the term ellipticity is 

                                                 
7 M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge University Press, Cambridge, 2006. 
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used. As is to be expected they are related to the phase difference δ and the relative 
amplitudes aH and aV. If we define 

 
H

V

a
a1tan−=α  (2.13) 

then it can be shown that8  
 δατ cos2tan2tan =   (2.14) 
 
and δαε sin2sin2sin =  (2.15) 
 
which are explicit relationships between properties of the wave (aH, aV, δ) and those of 
the polarisation ellipse (τ, ε). 

Since aV and aH are positive (because they are simply amplitudes) then α is positive so 
that the sign of ε follows the sign of δ. As a result, ε is positive for left elliptical 
polarisation and negative for right elliptical polarisation. Note that the range of ε is –45o 
to +45o, which goes between the extremes of right to left circular polarisations; linear 
polarisation occurs when ε=0. From Fig. 2.18 we can see that the range of τ will be –90o 
to +90o. 

In radar remote sensing we most frequently encounter linearly polarised systems, but a 
knowledge of elliptical polarisation is important to gain most insight from polarisation 
synthesis radar treated in Sect. 3.22. Some circularly polarised radars are also 
encountered in practice. 
 
 
2.11  The Jones Vector 
 
The electric field described by (2.10) and (2.11) can be re-written using the parameters of 
the polarisation ellipse in the following manner. We commence by expressing the field in 
the convenient exponential form 
 
 )(}exp{)(exp)(exp RtjeaaRtjaRtja j

VHVH βωδβωβω δ −+=+−+−= vhvhE   
  (2.16) 
 
in which recall that the unit vectors h and v are simply convenient reminders of the 
horizontal and vertical directions of the respective field components. From the previous 
section we know that this field rotates around the polarisation ellipse of Fig. 2.18. Taking 
out the common factor 22

VH aa + , which is the total amplitude of the wave, gives 
 
 )(xp}sin{cos22 Rtjeeaa j

VH βωαα δ −++= vhE  (2.17) 
 

in which 
H

V

a
a1tan−=α from (2.13). 

It is now common to replace the representation using unit vectors by one in which the 
two components of the field are the two elements of a column vector; this is just another 
useful way of writing the composite field. The first entry represents the magnitude of the 
horizontal component and the second the magnitude of the vertical component. We also 

                                                 
8 M. Born and E. Wolf, loc cit. 
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drop the exponential factor in time since we know it applies to all fields. We are then left 
with 

 Jj Ae
e

Ae EE ζ
δ

ζ

α
α
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⎡
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sin
cos

 (2.18) 

 

resulting from any propagation path that is important to consider. Sometimes we ignore 
that term along with the time exponential. While in radar the full expression in (2.18) is 
sometimes referred to as the Jones vector, we will call EJ the Jones vector unless there is 
a particular reason to include the amplitude and total phase terms; this is the version most 
commonly adopted in optics. 

Now consider the polarisation ellipse lying parallel to the axes as in Fig. 2.19. From 
that geometry we have α=ε and, by comparison to Fig. 2.18, τ =0. From (2.14) that 
requires δ = ±90o if α is non zero. This makes je j ±=δ  so that (2.18), for the ellipse 
parallel to the axes, becomes 
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It’s awkward having the ± sign in the vector since we must keep in mind the 
corresponding sign of δ. Alternatively, we can “absorb” the sign into the eccentricity ε. 
When the second element of the Jones vector is +jsinε we have left elliptical polarisation. 
We accommodate that by agreeing that positive eccentricity corresponds to left elliptical 
polarisation. Negative eccentricity then corresponds to right elliptical polarisation, giving 
the negative sign in the last expression because sine is an odd function. That is the same 
as making δ negative in (2.11b). Adopting that convention for eccentricity the Jones 
vector for the ellipse lying parallel to the axes is just simply 
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Fig. 2.19. Polarisation ellipse used in the derivation of the Jones vector 
 
 

Consider some examples of special Jones vectors. For a horizontally polarised wave 
aV=0, so that ε=0. The Jones vector is then as shown in the first entry of Table 2.1. For 
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vertical polarisation ε=90o but the situation needs a little care to handle. We return to 
(2.18) and put δ=0 because the relative phase angle of the vertical field compared to the 
horizontal has no meaning in expressions like (2.16) when there is no horizontal 
component. Thus ejδ=1 so that with ε=90o (2.18) yields the entry in Table 2.1. 

Now consider left circular polarisation for which aH = aV and thus o45=ε  giving sinε = 
cosε = 2/1 . The Jones vector then becomes as seen in Table 2.1. To get the Jones vector 
for right circular polarisation we choose o45−=ε . That is equivalent to reversing the sign 
of the horizontal component of the field, which is the same as adding 180o to its phase 
and thus making it lead the vertical component by 90o. 

The Jones vector of (2.19) was derived on the basis of the polarisation ellipse lying 
parallel to the axes in Fig. 2.19. We can transform the vector so that it applies to the more 
general case of the inclined ellipse of Fig. 2.18 by rotating the axes clockwise by the 
inclination angle. 

Fig. 2.20 shows two sets of axes within which the same electric field vector is 
described. The XY set is rotated anti-clockwise from the HV set by an angle τ.  The two 
descriptions of the field are related by the matrix transformation:  
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In order to apply (2.19) to the inclined polarisation ellipse of Fig 2.18, it is necessary to 
rotate the axes of Fig. 2.19 clockwise by the angle τ. That involves the inverse of the 
transformation matrix of (2.20) (or reversal of the sign of τ) which is readily shown to be  
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Fig. 2.20. Transforming the axis description of an electric field vector 
 
 
Thus the electric field vector of (2.19) for the most general case is  
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which is the required (full) description of the field in terms of the parameters of the 
polarisation ellipse. This allows us to generate Jones vectors for polarisation 
configurations not describable by (2.19). For example, a linearly polarised wave with an 
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inclination of ±45o will have Jones vectors given by rotating a horizontally polarised 
wave by ±45o using (2.22), generating the results shown in Table 2.1. 
 
 
Table 2.1 Some common Jones vectors 
 
horizontal polarisation 
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from (2.19) 
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from (2.19) 

+45o linear polarisation 
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from (2.22) 

-45o linear polarisation 
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⎡
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from (2.22) 

 
 
2.12  Circular Polarisation as a Basis Vector System 
 
In the previous sections we have represented a travelling wave as a combination of 
horizontal and vertical components, as in (2.10) and (2.11). It is also possible to choose 
right circularly polarised and left circularly polarised field components as the basis with 
which to express any general electric field: 
 
 vhrl VHRL EEEE +≡+=E  (2.23) 
 
l and r are unit vectors that signify left circular and right circular polarisation respectively 
and EL and ER are the corresponding magnitudes of the field components. The unit 
vectors rotate around the unit circle in their respective directions carrying the relevant 
field magnitudes with them. 

A purely left circularly polarised wave will have ER=0. In that case the resultant field is 
a vector that travels around the circle of Fig. 2.17 as a special case of Fig. 2.18. From 
Sect. 2.10 we know that that will happen if the horizontally and vertically polarised 
components have the same amplitude and the vertical field component leads (has a 
positive phase angle with respect to) the horizontal component by 90o. Using exponential 
notation we can thus write 

 
 vhl )2/(exp)(exp πβωβω +−+−= RtjRtjEL  

from (2.18) and (2.16) 
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in which we have assumed unit amplitudes. Note that EL will have the same dependence 
on time and position as its two components, which we can remove as a common factor, 
leaving 
 vhvhl jeE j

L +=+= 2/π  
 
Since l, h and v are unit vectors this last expression requires 2=LE  giving 
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It is interesting to compare this with the Jones vector for left circular polarisation in Table 
2.1. In a similar manner a right circularly polarised wave will have its unit vector 
expressible as  
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Using (2.24a,b) in (2.23) gives 
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These last two expressions can be written in matrix form: 
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This indicates how the linear field components can be computed from the circular 
components. By inverting the matrix in (2.25) we can find the circular components in 
terms of the linear components: 
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Note from (2.24a,b) that we can write 
 

 )(
2

1
lrh +=  (2.27a) 
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 )(
2

lrv −=
j  (2.27b) 

 
which demonstrate that a horizontally polarised wave is made up of right and left 
circularly polarised waves starting in phase (and contra-rotating). A vertically polarised 
wave is made up of the two contra-rotating circular components starting in anti-phase. 
The j in (2.27b) is a time phase term common to both components, advancing them by 90o 
and thus causing the vertical component to have a value of unity at t=0. 
 
 
2.13  The Stokes Parameters, the Stokes Vector and the Modified Stokes Vector 

 
The Stokes parameters provide a very convenient means by which to describe the power 
density relationships in an electromagnetic wave in radar, whether it be the wave used to 
irradiate the earth’s surface or that which is scattered. For a single frequency signal 
(monochromatic) such as we assume to be the case for radar remote sensing, they are 
defined by9: 
 22

0 VH aas +=  (2.28a) 
 22

1 VH aas −=  (2.28b) 
 δcos22 VH aas =  (2.28c) 
 δsin23 VH aas =  (2.28d) 
 
The first parameter s0 is equal to the amplitude squared – or intensity – of the actual field 
vector shown in Fig. 2.18 and thus from (2.7) is directly proportional to the power density 
being carried by the wave. The second parameter indicates whether the wave is more 
horizontally than vertically polarised, while the third and fourth indicate the ellipticity of 
the wave’s polarisation; in particular, if δ=0 we have linear polarisation and s3=0. If 
δ=90o, s2=0 and the polarisation ellipse will be aligned vertically and horizontally. It will 
be circular if the magnitudes of the vertical and horizontal components are also equal. It is 
straightforward to demonstrate that 
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Often the Stokes parameters are collected together into a column vector called the Stokes 
vector: 
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in which I0=s0, the total power density, or intensity, of the wave. 

Equation (2.30) gives alternative expressions for the Stokes vector. The rightmost 
version shows how the vector can be expressed in terms of the two principal angles of the 
polarisation ellipse; they follow from (2.40a) and (2.40b) below. The next from the right 

                                                 
9 See M. Born and E. Wolf, loc cit. 
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shows how the Stokes vector is derived from the vector components of the electric field. 
The last two parameters in this form need to be written in terms of the complex phasors 
that describe the fields. Note from the exponential form of the two field components that 

  
 )()(exp δβωβω +−=−= RtjaERtjaE VVHH  
 

so that we have )sin(cos* δδδ jaaeaaEE VH
j
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giving δδ sin)(andcos)( **

VHVHVHVH aaEEaaEE == ImRe  
 

Interestingly, the Stokes vector can be generated in the following manner which is useful 
when we come to look at scattering of radiation from the earth’s surface and polarisation 
synthesis in Chapt. 3. Express the Stokes vector as the product of a matrix R, and a vector 
g which contains the four possible complex products of the two components of the field: 

 
 Rgs =  (2.31) 
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Sometimes the vector g is written in the Kronecker product form10 (the last three elements 
are re-ordered) 
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E ; gc is called the coherency vector. Sometimes its elements are written 

in the form of the wave coherency matrix11 
 

                                                 
10 See Sect. B.3 in Appendix B 
11 See M. Born and E. Wolf, loc cit, D. Massonnet and J-C Souyris, Imaging with Synthetic Aperture Radar, 
Taylor and Francis, Roca Baton, Florida, 2008 and H. Mott, Remote Sensing with Polarimetric Radar, 
IEEE Press John Wiley and Sons, Hoboken, N.J., 2007. 
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To use the coherency vector in (2.31) requires the matrix R in (2.32) to be re-expressed 
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The modified Stokes vector sm uses the intensities of the two orthogonal power 
components as its first two elements rather than the total power and the difference of the 
orthogonal power components; the second and third component remain the same: 
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2.14  Unpolarised and Partially Polarised Radiation 
 
Equations (2.30) and (2.34) imply that the wave is of a single frequency and has a well 
defined phase difference between its components. That is often not the case in nature. 
Generally we can assume that the radiation sources used for illuminating the landscape in 
radar remote sensing are sufficiently pure to be regarded as polarised in the manner 
treated in the previous sections. However the radiation about us is often unpolarised, or 
only partially so, such as from an incandescent room light. That can easily be checked 
using a pair of polarising sunglasses. Rotating the sunglasses shows no variation in 
transmitted light intensity; the intensity would vary if the light were polarised. Similarly 
the sunlight that irradiates the landscape is largely unpolarised. The fact that polarising 
sunglasses will show the light reflecting from roadways and other landscape features as 
partially polarised has to do with how those features differentially reflect light of different 
polarisations rather than anything to do with the polarisation of the sunlight. 

Radar energy backscattered from the landscape will often be polarised, but if it comes 
from random scattering media or time-varying scatterers, such as the surface of the ocean, 
that will not be the case. 

If we were to observe, in two orthogonal transverse axes, an approaching wave that is 
totally unpolarised we would see the two amplitudes fluctuating randomly and without 
any relationship between them – in other words the amplitude variations would be 
uncorrelated. In addition, the relative phase between the components would be totally 
random – further reinforcing the lack of correlation. The wave however still carries 
energy (power density) so it is worth exploring the Stokes parameters in such a situation. 
The first parameter, as we have seen, is related to the power density, or intensity, of the 
wave since it is the sum of the two amplitudes squared. Given that the amplitudes are 
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fluctuating in this unpolarised case we need to look at their averages over time. We write 
the averages as 

 22
VH aanda  

 
where the angular brackets are the symbol used for time averaging. The squares of the 
amplitudes are employed because we are interested in power related quantities. If we took 
the averages of the amplitudes of the fields themselves then they most likely would be 
zero if the fields were randomly varying with time. 

are totally random, such that there is no preferred polarisation then their average squared 
amplitudes will be the same. Therefore the first Stokes parameter of (2.28a) is 

 
 2

0 2 Has =  
 

while the second Stokes parameter of (2.28b) will be zero. Similarly, since the relative 
phase is random, one can reason that the third and fourth Stokes parameters (2.28c and d) 
are meaningless (the time average of the trigonometric function of a randomly varying 
angle will be zero). Thus s2=s3=0. Therefore, the Stokes vector for unpolarised radiation 
is 
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Radiation can also be partially polarised resulting from the addition of unpolarised and 
polarised components. In that case the Stokes vectors can be added. No weighting 
coefficients or mixing parameters are needed in the sum since the field amplitudes 
themselves take account of the mix of polarised and unpolarised fields. Thus if we have 
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We can use this last expression to define the degree of polarisation P of a wave as the 
power density carried by the polarised part of the field as a proportion of the total power 
density of the combination: 
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If the two orthogonal components – in say our H and V directions described above – 
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2.15  The Poincaré Sphere 
 
A very interesting geometric summary of the Stokes parameters and the state of 
polarisation of a wave emerges from the realisation that (2.29) is the equation of a sphere 
in the s1, s2, s3 coordinate space. This is shown in Fig. 2.21. Named after Poincaré, who 
first described it in 1892, the sphere has a radius of s0 and its surface is the locus of all 
possible polarisation states. Given that the polarisation of a wave can be described by the 
amplitudes of its two orthogonal components aH and aV, and their relative phase δ, or 
alternatively by the angles of the polarisation ellipse ε and τ and the wave intensity so, it 
is reasonable to expect that the geometry of the sphere, and in particular the coordinates 
of a particular point on its surface, should be expressible in sets of those parameters. Fig. 
2.22 shows the sphere with that information added, as derived in the following. 
 

 
 
Fig. 2.21. The Stokes parameters plotted spherically 

 
 

It can be shown that12 
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Substituting these relationships into (2.29) gives 
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 H. Mott, loc cit.
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so that we have 
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ετε
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2cos.i.e)2tan1()2sin1( 2
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ssss =+=−  

Thus τε 2cos2cos01 ss =  (2.40a) 
 
giving, from (2.39), τε 2sin2cos02 ss =  (2.40b) 
 
which are the forms given in the last column of (2.30). With (2.38), (2.39) and (2.40) we 
now have equations that describe the coordinates of a point on the Poincaré sphere in 
terms of the angles of the polarisation ellipse and the wave intensity s0 as seen in Fig. 
2.22. Also shown are points on the ellipse corresponding to particular wave polarisations. 
 

 
 

angles of the polarisation ellipse and the parameters of the horizontal and vertical components of 
the electric field. 
 
 

Two further angles are marked on the sphere: the first is the angle δ between the 
equator and the arc joining the tip of the intensity vector to the s1 axis, which is in fact the 
phase difference between the wave’s horizontal and vertical components in (2.11). The 
second is the angle 2α, which is between the intensity vector and the s1 axis – shown also 
as the angle subtended by the great circle. As we saw in the discussion on the polarisation 
ellipse in Sect. 2.10, this angle is defined in (2.13). With these two angles we have a 
description of the point on the Poincaré sphere in terms of the amplitudes and relative 
phase angle of the original components of the wave, as well as the earlier description in 
terms of the angles of the polarisation ellipse. 

From (2.36) we can see for partially polarised radiation that 
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Fig. 2.22. The Poincaré sphere, showing the relationship between the Stokes parameters, the 
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which lies within the Poincaré sphere rather than on its surface. Therefore partially 
polarised waves are described by points inside the sphere; the origin represents the case of 
fully unpolarised radiation. 
 
 
2.16  Transmitting and Receiving Polarised Radiation 
 
Electromagnetic waves are launched into free space using an antenna; likewise they are 
received using an antenna. In the case of radar the same antenna is very often used for 
both purposes, as we will see in Chapt. 3. The polarisation state of the wave launched is 
determined by the properties of the transmitting antenna, particularly its orientation 
around the line of sight of the ray. By appropriately orienting the antenna we can launch 
vertically polarised or horizontally polarised radiation, or any linear polarisation in 
between. Some special antennas are designed to launch circularly (or elliptically) 
polarised radiation. 

The polarisation state of the antenna used to receive radiation needs to match that of the 
wave itself if the received signal is to be maximised. As illustrated in Fig. 2.23, a 
vertically oriented, or polarised, antenna will receive maximum signal from a vertically 
polarised wave, but nothing if the wave is polarised horizontally. For any other 
polarisation of the wave some signal will be received – proportional to the vertical 
projection of the wave onto the antenna. A convenient means by which to describe such a 
projection, and which is used extensively in radar, is to employ the scalar or dot product 
of two vectors, one of which describes the polarisation state of the receiving antenna, with 
the other describing the polarisation of the radiation incident on that antenna. This is 
developed in the following for an arbitrarily oriented antenna and wave polarisation. 
 

 
 
Fig. 2.23. Illustrating how the relative alignment of the field polarisation and the antenna affects 
reception; the antenna shown here is called a vertical dipole 
 
 

The electric field vector incident on a receiving antenna can be represented as shown in 
Fig. 2.15. In that particular case we have chosen two components of the electric field 
vector that are horizontal and vertical. We could just as easily have described the electric 
field in terms of a unit vector that actually points in the direction of the field itself so that 
we could write 
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 pE E=  (2.41) 
 

in which E is the magnitude of the field and p is that unit vector. 
Now define a new unit vector pra that aligns with the polarisation of the receiving 

antenna. If φ is the angle between the polarisations of the field and antenna then the 
projection of the field onto the antenna – i.e. the component of field aligned with the 
antenna – is Ecosφ. This is classically derived from the dot or scalar product of the 
vectors which, for two vectors A and B at an angle of φ to each other, is defined as 
 
 φcos. AB=BA  (2.42) 
 
This is shown in Fig. 2.24, in which the projection of one vector on the other is evident. 
Note in passing that A.B=B.A. The component of the incoming electric field that will be 
detected (received) by the antenna is given by 
 

 rara
r EE pppE .. ==  (2.43a) 

 φφ coscos EE ra == pp  (2.43b) 
 

since the two polarisation vectors have unit magnitudes. 
 
 

 
Fig. 2.24. The scalar and cross products, and the Poynting vector shown diagrammatically 
 
 

We can write the dot product of (2.42) in a different way that will be helpful when we 
look at polarisation synthesis in Chapt. 3. Write A and B in terms of their horizontal and 
vertical components13: 

 
 vh VH aa +=A  
 vh VH bb +=B  

 
Since h and v are at right angles to each other and have unit magnitudes (2.42) shows 
                                                 
13 Any pair of orthogonal directions could be chosen for this illustration; we have used those commonly 
employed when describing electromagnetic radiation, particularly in radar. 
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 1=h.h , 1=v.v  and 0== v.hh.v  
 
Now look at the dot product of A and B: 
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Thus the dot product can also be expressed as the sum of the products term by term of the 
components of the relevant vectors. If we write the vectors in column form: 
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then we see that either of ATB or BTA yields the same result14. We therefore have an 
alternative expression for the dot product that we will use in matrix-vector calculations: 
 
 ABBABA TT. ==   
 
Note the particular case of the magnitude of a vector: 

 
 AAAAA T2 . ==  
 

There is another product of two vectors that is important in electromagnetic wave 
propagation but which we will use infrequently here. It is called the cross or vector 
product and is defined by 
 cBAC θsinx AB==  (2.44) 
 
The result is a vector; c is a unit vector that describes its orientation in space. It points at 
right angles to both A and B as illustrated in Fig. 2.24. The specific direction of C is that 
given by a right handed screwdriver when being turned in the direction from A to B. In 
this case the order of the vectors in the formula is important. 

A celebrated application of the cross product in electromagnetism is in the definition of 
the Poynting vector: 

 2Wmx −= HES  (2.45) 
 

The Poynting vector is at right angles to both the electric and magnetic field vectors and 
has units equivalent to power density. It also points in the direction of propagation! Since 
the electric and magnetic fields are at right angles to each other, the magnitude of the 
Poynting vector using (2.44) is the product of the magnitudes of the electric and magnetic 
field strengths. Thus the magnitude of the Poynting vector is exactly that of power density 
in (2.7a). The benefit of (2.45) is that the propagation direction is defined explicitly by the 
cross product definition. 

                                                 
14 See Appendix B for a summary of vectors and matrices. 
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Return now to looking at the field received by an antenna. In Fig. 2.23 we considered 
the case of linear polarisation. Forming the scalar product of the antenna polarisation 
vector and the polarisation vector of the incoming wave, as in (2.43a), is an operation that 
applies in general, including for the case of elliptical polarisation. For example an antenna 
designed to radiate right circularly polarised radiation can, from (2.24b), be described by 
the polarisation vector 
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A right circularly polarised wave launched by the antenna will be written 
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There is an important subtlety though with describing a right circularly polarised wave 
propagating towards the antenna: to make the wave appear as right polarised when 
propagating in the negative r direction it has to rotate in the opposite sense than when 
travelling forward15. That means the vertical component needs to lead the horizontal so 
that the field incident on the antenna must be written 
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giving as the received field  
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In contrast, if the returning field were left circularly polarised then the field received on 
the right circularly polarised antenna is  
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With elliptical polarisation it is often convenient to describe the wave by its Stokes 
vector, since that fully specifies the polarisation. We can also define a Stokes vector for 
the antenna which is the polarisation configuration it is optimised to receive (or, 
alternatively, the polarisation state of a wave it would generate if it were used as a 
transmitting antenna). We will use this property explicitly in Chapt. 3 in the topic on 
polarisation synthesis. 

If the same antenna were used for transmission and reception, as in radar, how can the 
polarisation state of the received field be different from that of the antenna that launched 
it?  That can occur when the transmitted field scatters from earth surface features; the 
field scattered back to the antenna will have a polarisation state that is related to the 
properties of the scattering medium.  

                                                 
15 This is a good example of how careful we need to be with coordinate conventions when dealing with 
multi-polarisation radar. In general, if we reverse the propagation direction we need to conjugate the 
vertically polarised component in elliptical polarisation: See D. Massonnet and J-C Souyris, Imaging with 
Synthetic Aperture Radar, Taylor and Francis, Roca Baton, Florida, 2008. 
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2.17  Interference 
 
We now come to a further property of electromagnetic radiation of major importance in 
radar studies. If two sinusoidal signals of the same frequency are received simultaneously 
they can interfere with each other; the result is dependent on the time phase angle 
between the sinusoids. 
 

 
  

 
Fig. 2.25 Demonstration of the interference of two sinusoids with varying phase differences 
 

 
Fig. 2.25 shows examples of two sinusoidal signals adding as the phase difference 

between them is altered. As seen, if they are in phase (i.e. there is no mutual phase 
difference) the resultant is a straight addition of the signals. They reinforce each other in 
what is known as constructive interference. If they are totally out of phase (i.e. there is a 
phase difference of 180o between them) then they cancel in a process called destructive 
interference. For other phase differences there will be neither full reinforcement nor full 
cancellation. 
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The results of Fig. 2.25 are easy to demonstrate mathematically. If the two sinusoidal 
signals are cosωt and cos(ωt+φ), where φ is the phase difference, then their sum is 
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If φ=0 then the result is the simple sum and if φ=180o then the result is total cancellation. 
We will meet interference frequently with radar, sometimes with travelling waves. 

Signals with different frequencies can also interfere leading to a process called beating, 
provided the frequencies are not too different. That is also easily demonstrated if we have 
two signals cosωt and cos(ω+α)t with α small; here we have not added any phase 
difference. Adding the signals gives 

 

 

 
which is shown plotted in Fig. 2.26. As seen, the result of interference between two 
sinusoids of slightly different frequencies is a sinusoid at the major frequency multiplied 
in amplitude by a slower sinusoid of half the frequency difference. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.26. Beating caused by the addition of two sinusoids with a 5% difference in frequency 
 
 
2.18  The Doppler Effect 
 
The Doppler effect, in which the frequency of a sinusoid is affected by the relative 
velocity of the generator and receiver of the signal, is central to synthetic aperture radar. 
We will meet it most often in the signal scattered from the landscape or reflected from a 
discrete object. Here we will develop it in the more classical situation illustrated in Fig. 
2.27 of a moving transmitter approaching and passing a stationary receiver, first with the 
receiver being in line with the transmitter’s velocity vector. Define the (time varying) 
distance between the receiver and transmitter as x(t), measured in the positive direction to 
the right of the receiver as drawn. Time t is defined to be zero when the transmitter is at 
the position of the receiver and positive to the right. At a given distance between the 
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velocity of the transmitter towards the receiver. That could be the distance when the 
signal is just noticed by the receiver. At the general time t, x(t)=vt. 

Suppose the signal being radiated is sinusoidal of the form tωcos . The signal arrives at 
the transmitter after a time delay of tD

 
 ]/)(2cos[)(cos λπω txtD +=  since λππω /2/2/ == cfc  

 
Substituting for x(t) we see that the received signal is 
 

/2πω vtt + )/2cos( λπω tv+=  (2.46) 
 

 
 
Fig. 2.27. Transmitter moving towards and past a receiver, and the Doppler change in received 
frequency 
 
 
The frequency of the received signal is the coefficient of t in this last expression, 
consisting of the transmitted frequency adjusted by the so-called Doppler component: 
 
 dr ωωω += with λπω /2 vd =  (2.47a) 
 
We would generally write this in the normal form with frequency expressed in Hz 
 
 dr fff += with fd=v/λ. (2.47b) 
 
Thus the frequency of the received sinusoid is up-shifted because of the velocity of the 
transmitter towards the receiver. Once the transmitter passes the receiver the sign of the 
Doppler shift reverses because the sign of x(t) reverses for t negative. 

For this example the change in Doppler frequency as the transmitter passes the receiver 
is instantaneous as indicated in Fig. 2.27. In practice the transmitter is more likely to pass 
by the receiver at a distance Yo as illustrated in Fig. 2.28. The change in frequency is then 
more gradual as the following analysis demonstrates. This is more complicated but gives 
a result that is closer to the situation we will encounter with radar in the next chapter. 
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Fig. 2.28. Transmitter moving past a receiver separated by a small distance at broadside 

 
 
The distance between the transmitter and receiver at any given time t is 
 
 22 )()( vtYtx o +=  (2.48) 

 
In this case we cannot easily handle the situation as we did the simpler case of Fig. 2.27. 
Instead we note that the received sinusoid arrives with a phase delay φ(t) given by 2π 
times the distance expressed as a fraction of a wavelength: 
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In the simpler case of (2.46), the phase delay was 
λ

π vt2 . Comparing this with (2.46) and 

(2.47a) we can induce that the Doppler frequency component is the time derivative of the 
phase delay. Applying that principle to (2.49) shows that the Doppler frequency shift for 
the more general case is 
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This is plotted in Fig. 2.29 for a transmitter platform flying at 1000kms-1 radiating at 
300MHz, with receiver offsets of 0m, 100m, 200m and 300m.  

Some interesting special cases can now be considered. First, if Yo=0 (2.50) reduces to 
(2.47b). Secondly, suppose vt<<Yo – i.e. the transmitter is close to passing the receiver. In 
this case it is better to return to the expression for x(t) in (2.48) and note that it can be 
approximated 
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so that the Doppler frequency shift is 
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This tells us that the received frequency varies linearly about the transmitted frequency 
when the transmitter is passing close by the receiver (i.e. near broadside). That can be 
seen in the plots of Fig. 2.29. 
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Fig. 2.29. Doppler frequencies for a range of receiver offsets, as the transmitter passes from right 
to left; time is measured to the right 
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CHAPTER 3 
 
THE TECHNOLOGY OF RADAR IMAGING 
 
 
  
 
This chapter provides the technical basis for imaging radar. It is broken into two parts, the 
first of which develops the system itself, showing how spatial resolution can be obtained 
and how an image is formed. The second section focuses on the target – which can be a 
discrete entity such as a house or a calibration device, or a distributed medium such as a 
vegetated pixel. Means by which the target can be described mathematically are derived 
by building on the radiation framework given in Chapt. 2. 
 
 
PART A: THE SYSTEM 
 
As shown in Chapt. 2, the levels of naturally occurring microwave energy are almost 
negligible. Although they can be measured, they are small enough to permit an artificial 
source of irradiation to be used. The essential radar remote sensing instrument consists 
therefore of both a transmitter and a receiver of energy at the wavelength of interest. Such 
an arrangement is called active, in contrast to passive remote sensing instruments which 
use the sun or the earth itself as a primary source of energy. 
 
 
3.1  Radar as a Remote Sensing Technology 
 
The transmitter and receiver in a remote sensing microwave imaging system can be 
located separately; that configuration is called bistatic and is depicted in Fig. 3.1a.  
Alternatively, the transmitter and receiver can be co-located, often sharing the same 
antenna to radiate and receive the energy scattered back to the platform1. That is referred 
to as monostatic (Fig 3.1b) and to date has been the most commonly encountered 
arrangement in remote sensing. As might be expected the characteristics of the earth's 

concentrate on the monostatic configuration in this chapter. Bistatic radar is treated in 
Chapt. 7. 

Consider now how a monostatic active microwave system might be used to form an 
image of a region on the ground. Conceptually, the easiest approach would be to use a 
very narrow beam of microwave energy and scan it across the earth's surface normal to 
the motion of the aircraft or spacecraft, just as optical multispectral scanners acquire data 
in strips orthogonal to the motion of the platform. Unless the wavelength is very small, 
and the required resolution coarse, this turns out to be an impractical approach. Instead, 
active microwave remote sensing is based on the principles of radar in order to achieve 
practical spatial resolutions. 
 
                                                 
1 Antennas are reciprocal devices in that the same antenna can be used to transmit or to receive radiation. 
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Fig. 3.1. (a) Bistatic and (b) monostatic microwave imaging systems 

 
 
Consider a transmitter of energy mounted on an aircraft or spacecraft. Using a suitable 

antenna the energy is radiated to the side of the platform during flight, as shown in Fig. 
3.2; the reason for sidewards radiation will become clear shortly. The properties of the 
antenna are chosen so that the energy radiates over quite a broad beam to the side as 
shown. This will be seen later to define the swath width of the image data recorded. In 
contrast, the antenna beam in the direction parallel to the platform motion is usually 
narrow, as indicated. This is related to the resolution of the system in the direction along 
the flight path. When the radiated energy reaches the ground some of it will be scattered 
back towards the platform where it is received and measured. This measured level of 
scattered energy is related to the properties of the region of earth being irradiated and is 
the focus of Part B following and of Chapt. 5. 

 

 
 
Fig. 3.2. Radar imaging geometry 

 
 
Since the antenna is fixed and its pattern broad there is no spatial discrimination across 

the swath. To provide resolution in this dimension, referred to as the range direction, the 
classic principle of radar is employed. That involves transmitting the energy in the form 
of short bursts or pulses of radiation at the operating frequency of the radar, rather than 
transmitting continuously. The pulses, of the form shown simplistically in Fig. 3.3a, 
travel to the ground at the velocity of light c of 300Mms-1; they then scatter and return to 
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the platform at the same speed. Thus, portions of ground closer to the platform (in the 
near swath) give rise to echoes – returned pulses – that arrive at the receiver earlier than 
those that scatter from further out in the swath (the far swath). That is illustrated in Fig. 
3.4 which shows just the envelopes (outline shapes) of the pulses rather than their internal 
details. By using a pulse, the received signals are separable in time in such a way as to 
allow the strip of terrain to be resolved spatially across the swath. 

 
Fig. 3.3. (a) simple and (b) chirped pulses for use in radar systems 
 
 

The transmitted pulses, commonly called ranging pulses, are repeated at a rate called 
the pulse repetition frequency (prf). This is synchronised with the forward velocity of the 
platform so that contiguous strips of terrain across the swath are irradiated pulse by pulse 
as shown in Fig. 3.5. 

There is an important constraint on prf. If all the echoes from a particular transmitted 

We would not know whether some echoes are from targets close in, or are reflections 
from targets much further away as a result of the previous pulse (such as might happen if 
the next transmitted pulse in Fig. 3.4 occurred in time between reflections B and C). 

system; slant range is measured along the direct line from the radar to a point on the 
ground, rather than along the ground. The maximum usable prf is considered in Sect. 3.7. 

 
 

3.2  Range Resolution 
 
Consider two closely-spaced spots on the ground that give rise to radar echoes as shown 
in Fig. 3.6. The ability to separate those targets in the signal received by the radar is 
determined by whether the returning pulses are distinguishable. If the targets are too close 
their echoes will overlap and they cannot be separated in the received signal. 

(a) (b) 

pulse are not received before the next pulse is transmitted then a range ambiguity occurs. 

Effectively, therefore, the highest usable prf is bound by the largest slant range of the 
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Fig. 3.4. Resolution of targets spatially by time resolution of the received echoes; the pulses 
shown correspond to the envelopes of the type of pulse shown in Fig. 3.3a 
 
 

If the targets are Δr apart in slant range as depicted in Fig. 3.6 then the difference in 
time between their echoes on reception will be 12 −Δ=Δ rct since the pulses travel to and 
from the ground. We are unable to resolve in time better than the width τ of the pulses so 
that the lower limit on Δt is τ ; the corresponding limit of spatial resolution Δr in the slant 
range direction is  

 m
2
τcrr =  (3.1) 

 
which is called slant range resolution. 

As users of radar we are more interested in how well we can resolve targets along the 
ground, rather than in the slant direction. If we assume that the angle at the ground with 
which the beam of radiation is incident locally is θ, called the incidence angle, then the 
spatial resolution in what is commonly called the (ground) range direction is 
 

 m
sin2 θ

τcrg =  (3.2) 
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This is termed ground range resolution.  

The angle at the platform measured with respect to the vertical (nadir) is called the look 
angle and is a system design parameter. The incidence angle at the ground will be the 
same as the look angle if the surface is horizontal and earth curvature can be ignored, 
normally the case for aircraft altitudes. For spacecraft platforms earth curvature normally 
makes the look and incidence angles different from each other by a few degrees. 
 

 
 

Fig. 3.5. Transmitting successive ranging pulses synchronously with the platform velocity so that 
contiguous strips of terrain are irradiated 

 
 
Several important implications can be drawn from (3.1) and (3.2). 

1. There is no spatial resolution if θ =0 – directly under the platform. That explains 
why the system has to be side looking. Aircraft imaging radars of this type have 
often been called side looking airborne radars (SLAR). 

2. The slant and ground range resolutions are independent of the altitude of the 
platform. 

3. Ground range resolution is a function of incidence angle, so that it will vary across 
the swath shown in Fig. 3.2. It is best in the far swath where θ is largest and 
poorest in the near swath where θ is smallest. That is opposite to the effect 
experienced with optical sensors which have their best resolution closest to the 
platform, just as we can see more detail in the near range when we look out the 
window of an aircraft. 

4. If the antenna radiated to both sides of the aircraft and a single receiver were used 
there would be a right-left ambiguity in the received signal. That can be 
circumvented using two antennas and receivers, but most often that is not the case. 
In practice imaging radars usually radiate only to one side of the platform. 
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Fig. 3.6. Geometry for computing range resolutions 
 
 
3.3  Pulse Compression Radar 
 
Consider a simple calculation involving (3.2). Suppose τ =10μs and θ=30o. Then the 
ground range resolution will be 3000m, which would be considered far too coarse for 
most remote sensing purposes2. Given that the incidence angle is fixed by the location of 
the platform and the position on the ground being imaged, we can often do little about θ. 
The only way to improve resolution therefore is to narrow the transmitted pulse. For 
example, if the pulse were 100ns in duration (i.e. “width”) then the resolution becomes 
30m, which is much better. 

The problem with narrowing the pulse is that the energy it carries is reduced; that limits 
the sensitivity of the radar, making it harder to detect weaker targets. The energy carried 
by a pulse is proportional to the product of its duration and the square of its amplitude. If 
we were to narrow it in pursuit of higher spatial resolution we could, in principle, restore 
its energy by increasing its amplitude. There is a limit, however, set by the ability of the 
transmitting circuits to handle pulses of large amplitude without damaging their electronic 
components. Thus, continuing to narrow the pulse to obtain better spatial resolution is not 
the answer and a better solution has to be found. 

The answer to this problem is amazingly simple; it also provides the groundwork for 
how we will achieve good resolution in the direction of platform motion, which we have 
not really mentioned yet. That involves transmitting a long pulse, as shown in Fig. 3.3b, 
but within which the frequency is swept in a linear fashion with time as indicated. Such a 
pulse is referred to as a chirp, which would be the sort of sound one could imagine if 
listening to an audio signal swept from a low to a higher frequency. Mathematically, we 
write the chirp waveform as 

                                                 
2 Since the velocity of light is 300Mms-1 the pulses travel 300m in one direction in 1μs, which is a 
convenient figure to remember in radar applications.  Sometimes radar engineers define the two-way radar 
range as 150m/μs.  In imperial units it is sometimes helpful to know that the velocity of light is 
approximately 1 foot per nanosecond. 
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in which a and α are referred to as the chirp rate, in rad.s-1s-1 and Hzs-1 respectively, and 
p(t) is a unit amplitude pulse centred on t=0 that is zero outside the range -τr/2<t<τr/2. 
Note that at t=0, the instantaneous frequency of the chirp is ωo, or fo as appropriate. 

The advantage of transmitting the chirp waveform is that, on reception, it can be 
compared against a replica of itself using the operation of correlation, the result of which 
is a compressed pulse with its centre located very precisely in time. That is depicted in 
Fig. 3.7, showing that the correlation outcome is a very narrow function, albeit with side 
lobes (bunches), centred on the origin of the chirp replica. That narrow pulse is 
effectively the ranging pulse used to achieve range resolution. 

Fig. 3.7. Using the process of correlation to compressed the received chirp. 
 
 
Assume the received chirp is identical to the replica. That does not happen in practice 

because of the scattering properties of the earth’s surface and the addition of noise, but 
the assumption is helpful here to allow us to understand some important concepts. The 
result of the correlation process is, to a very good approximation, given by 

 
 )sinc()2cos()( ttftz o cBππ=  (3.4)  
 

The sinc function is the sine of its argument divided by the argument itself, i.e. 

 
x

xx sinsinc =  

 
Its half power width is equal to the reciprocal of the chirp bandwidth which is the range 
of frequencies over which the chirp sweeps and is thus given by Bc=ατr. Substituting this 
compressed value for the pulse width into (3.1) and (3.2) shows that the slant and ground 
range resolutions in a pulse compression radar system are: 
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 slant range resolution m
2 cB
crr =  (3.5a) 

 

 ground range resolution m
sin2 θcB
crg =  (3.5b) 

 
The side lobes of the sinc function seen in Fig. 3.7 can be a problem since they are 

large enough, in principle, to be mistaken for smaller targets. In practice, measures are 
taken to reduce the side lobes, as discussed in Appendix D. Fig. 3.8 shows how the 
correlation-based compression process allows closely spaced targets to be resolved. 

 

 
Fig. 3.8. (a) Overlapping echoes from three targets closely spaced in range, (b) the composite 
signal received by the radar and (c) the outcome of pulse compression (correlation) showing how 
the targets can be resolved (in practice a greater degree of compression than that illustrated here 
would be achieved) 
 

 
The first free-flying satellite radar remote sensing mission was Seasat, launched in 

1978. Its ranging chirps were 33.9μs in duration with a bandwidth of 19MHz. On 
compression following reception their equivalent widths were reduced to 53ns, the 
reciprocal of 19MHz. Thus the 33.9μs pulse was compressed by a factor of 640! With an 
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incidence angle of 20o, that gives a ground range resolution of 23m (the actual value in 
practice was about 25m). 

 
 
3.4  Resolution in the Along Track Direction 
 
We now need to see how the radar provides spatial resolution in the direction parallel to 
the platform motion. That is referred to as the along-track or azimuth direction. The term 
azimuth is unusual here but commonly used. It is so chosen since it is the direction 
orthogonal to the range direction; in air traffic control radars azimuth motion is rotational 
about the radar axis, which makes the term more meaningful. 

In Fig. 3.2 the available resolution in the along-track direction is set by the along-track 
beamwidth of the antenna. For an antenna of length la in the along-track direction, large 
compared with a wavelength, the angular beamwidth subtended by the antenna is given 
from antenna theory by 

 rad
a

a l
λ

=Θ  (3.6) 

 
Therefore the along-track dimension of the antenna footprint, which defines the azimuth 
resolution for this simple system, will be 

 mR
l

r o
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λ
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where Ro is the slant distance from the platform to the ground at the point at which the 
azimuth resolution is being considered. Since this expression depends on Ro, the 
resolution depends on platform altitude (and any variations during flight), and on position 
across the swath. 

Suppose we have an aircraft system operating at 10GHz (0.03m wavelength) with a 3m 
long antenna. Then for a slant range to the ground of 2000m the along track resolution 
will be 20m, which is acceptable although not exceptional for aircraft altitudes. If the 
same system were to be placed on a spacecraft at 1000km altitude then the azimuth 
resolution will be no better than 10km (assuming the slant range is not too different from 
the platform altitude in this case), which is not acceptable. For longer wavelength radar, 
often needed in practice, the situation will be even worse. Clearly a better method is 
needed for achieving acceptable azimuth resolutions. The solution adopted is called 
synthetic aperture radar (SAR) since it gives the appearance of synthesising a very long 
antenna (also called an aperture) as developed in the following section. 
 

 
3.5  Synthetic Aperture Radar (SAR) 

 
The method adopted to achieve acceptable azimuth resolution at spacecraft altitudes is to 
synthesise an apparently long antenna by making use of the forward linear motion of the 
space platform. This is depicted in Fig. 3.9; the length of the synthetic aperture is defined 
by the time that a particular spot on the ground is irradiated by the radar. To increase the 
duration of irradiation a very broad beam in azimuth is needed which, from (3.7), 
suggests that a very short antenna in the along track direction should be used. 
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While this is an attractive concept it does lead to complexities when forming images 
from the radar echoes as discussed in the next section. Undertaking that analysis however 
leads to a quite remarkable result, viz. that the azimuth resolution obtainable with SAR is 
 

 
2
a

a
lr =  m (3.8) 

 
where recall la is the length of the antenna carried on the spacecraft, measured in the 
along track direction. This indicates that the azimuth resolution is independent of slant 
range, and thus platform altitude, and independent of operating wavelength. Since ground 
range resolution is also height independent a SAR can, in principle, operate at any altitude 
with no variations in resolution. Consequently, spaceborne operation is acceptable. 
Because of the benefits of altitude independence and high resolution, SAR technology is 
also often used with aircraft based imaging radars. 

 

footprint of the real antenna on the ground is shown as rectangular for simplicity 
 
 
In contrast to real aperture (SLAR) systems described by (3.7), for SAR (3.8) shows 

the azimuth resolution depends directly (and not inversely) on the physical antenna 
length. This is an amazing result since it says that improvement in azimuth resolution can 
be made by reducing the antenna length. The penalty in doing so will be an increase in 
signal processing demand as seen in Appendix D. 
 
3.6  The Mathematical Basis for SAR 
 
Consider a slant range projection of the geometry of Fig. 3.9, shown in Fig. 3.10. We 
define the vehicle’s position along its track by the coordinate x; it has its origin broadside 
of a point target and is positive when the platform is prior to broadside. Likewise we 
define the time origin at broadside so that t is also positive before broadside is 
encountered. The platform’s along track velocity is v ms-1. 
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Fig. 3.10. Slant plane view (containing the velocity vector and Ro) of the platform passing a point 
target 

 
 
Let the slant range to the target be described by R(t). From Fig. 3.10 this is seen to be 
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To make the following development less complicated imagine the signal transmitted from 
the platform is a simple sinusoid of the form cosωot. That ignores the chirp modulation 
but is a helpful approximation that does not significantly affect the result to be generated.   
With this simplification the signal received back at the (moving) platform after reflection 
from the target will be of the form )(cos Do tt +ω in which tD is the time taken for the two 
way trip and is given by 
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Noting that λππω /2/2/ == cfco  the received signal is 
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in which the phase delay φR(t) is the result of the two way travel between the platform and 
target and φT(t) is the total phase angle of the received signal. We can also derive the 
phase delay directly as 
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which is twice the distance from the platform to the target, expressed in wavelengths, and 
multiplied by 2π to convert the result to an angle, in radians. 

The instantaneous frequency of a sinusoid is the first time derivative of the total phase 
angle3, so that 
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which from (3.9a) or (3.9b) gives 
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Thus the received signal has a frequency variation induced on it as a result of the motion 
of the platform. This is the classical Doppler shift experienced with moving platforms, 
treated more generally in Sect. 2.18. It shows that the carrier frequency of the received 
signal is higher than transmitted when the platform is ahead of broadside (the frequency 
is up-shifted just as the siren of an approaching ambulance appears) and is downshifted 
after broadside (as will be the siren of the ambulance when receding). The parameter b is 
called the Doppler rate and is given by 
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or, if expressing frequency in hertz, by 
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Consider a typical value for β. For the JERS-1 mission the slant range is approximately 
720km and the satellite orbital velocity is 6.883kms-1. The operating wavelength is 
0.235m, corresponding to a frequency of 1.275GHz. This gives β = 5760Hzs-1. 

This signal commences when the platform first acquires the target and stops when the 
target is lost, having travelled a distance equal to the real azimuth beamwidth on the 
ground; during this period the Doppler modified signal appears as a chirp. In this case it 
is of decreasing frequency, as against the rising chirp illustrated in Fig. 3.3b. It can, 
however, still be compressed using the same approach as for range compression – by 
correlating it against a replica of itself. That is generally done off-line after all the echoes 
have been received for a given region of terrain, as outlined in Appendix D. 

We saw from the development leading to (3.5) that the half power width of the 
compressed chirp after correlation is the inverse of the chirp bandwidth. In the current 
analysis the chirp bandwidth is Bc=βTa where Ta is the time over which the azimuth chirp 

                                                 
3 The frequency of a sinusoid is defined by the rate of angular rotation of the vector Rejφ(t) on the complex 
plane that is used to generate the sinusoid (see Appendix A).  The angular velocity of the vector is dφ(t)/dt.  
For the simple case of cosωt, which we can write as cosφ=Re(ejφ) with φ=ωt, then dφ/dt=ω. 
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exists – in other words, while the point target is visible to the radar. This is equal to La/v 
where La is the azimuth footprint of the antenna on the ground. Therefore the width of the 
compressed azimuth chirp in seconds is 
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The time duration of the compressed chirp can be turned into spatial resolution in the 
azimuth direction by multiplying it by the platform velocity: 
 

 
a

o
a L

R
r

2
λ

=  (3.13) 

 
The azimuth antenna footprint is given as the beamwidth of the antenna from (3.6) 
multiplied by the slant range Ro: 
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where la is the length of the real, physical antenna. Combining (3.13) and (3.14) leads to 
the remarkable result of (3.8)! La in (3.14) is explicitly the length of the synthetic 
aperture. It is the large, apparent antenna length that gives rise to the fine azimuth 
resolution. 
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a form that is important when considering the ScanSAR mode of operation in Sect. 3.9. 

This derivation of SAR azimuth resolution was based on transmitting a continuous 
sinusoid that gets transformed into a chirp as a result of the finite acquisition time of the 
target. It ignores the fact that the transmitted signal is not continuous but a series of 
ranging chirps repeated at the pulse repetition frequency needed to acquire adjacent strips 
across the swath as the platform moves forward. How does that affect our derivation? 
When each of those ranging chirps is received by the radar it is compressed according to 
the material of Sect. 3.3 to become a sinc pulse as illustrated in Fig. 3.7. Those sinc 
pulses are extremely narrow and have a centre frequency fo. The motion induced azimuth 
chirping just discussed represents a Doppler shift imposed on the centre frequency of the 
compressed ranging chirps. For a typical prf of, say, 1500 chirps per second and a time 
over which the target is visible of about 5s, 4500 chirps are reflected from the target and 
received at the radar as the platform passes by, during which time the azimuth induced 
Doppler effect is imposed. 

We could regard those 4500 echoes, after compression, simply as very narrow finite 
time samples of a continuous sinusoid on which is induced the azimuth chirping above; 
thus the complete echo history for the target is just a set of samples of a waveform of 
frequency fo, modulated linearly at the rate β Hzs-1. Provided those samples represent a 
fair (un-aliased) model of the continuous sinusoid then this description is acceptable. 

It is instructive now to do a simple calculation. The antenna on the Seasat satellite was 
10.74 m long, which means that the azimuth resolution should have been 5.37m. In fact 

Note that we can express the azimuth resolution as 
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the actual resolution was 25m, about 4 times coarser, which matches the ground range 
resolution of about 25m as seen in Sect. 3.3. Why are the theoretical and actual pixel 
sizes different in azimuth? Sets of four pixels in the azimuth dimension were averaged to 
give the 25mx25m pixels in the final image product. That averaging helps to reduce 
significantly the influence of what is known as speckle, discussed in Sects. 4.3.1-4.3.3. 

Although the averaging is done slightly differently, as outlined in Appendix D, the 
result is the same. The number of pixels averaged is called the number of “looks” in the 
language of SAR. Thus Seasat image data used “four look averaging”. 
 
 
3.7  Swath Width and Bounds on Pulse Repetition Frequency 
 
The width of the image swath recorded in a radar remote sensing system is determined 
principally by the “vertical” beamwidth of the antenna. The antenna is made small in its 
vertical (or across track) dimension so that a large beamwidth, and thus swath, is 
obtained. Even though (3.6) was employed for calculating azimuth beamwidth it can also 
be used to compute the vertical beamwidth Θv of the antenna if la is replaced by the 
vertical antenna dimension lv 
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The swath width will therefore be approximately 
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in which Ro is the slant range at mid swath and θ is the incidence angle at mid swath.  
This can be seen from the geometry of Fig. 3.12. If Ro=800km, λ=0.235m, θ=23o and the 
antenna is lv=2.16m in the across track direction, then the (ideal) swath width will be 95 
km, close to the actual value of 100km for the Seasat satellite. It is significant to 
recognise that these calculations have all been based on a flat earth model. For a curved 
earth a larger swath would result. The actual swath width in practice is usually smaller 
than the value determined from the antenna beamwidth, being governed instead by the 
number of range samples (pixels) actually recorded by the particular radar system within 
the available antenna beam. 

We are now in the position to understand the limits on the pulse repetition frequency 
used for the ranging pulses. As noted at the end of Sect. 3.1 the prf needs to be 
synchronised with the velocity of the platform so that adjacent range lines are contiguous, 
or at least do not have spaces between them. The width of a range line is the azimuth 
resolution of the system ra. If the platform velocity is v then we need to transmit one 
ranging pulse every ra/v seconds for there to be no gaps in the coverage4. That, with (3.8), 
gives a minimum prf of 
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4 From a signal analysis point of view that means we are sampling the scene in azimuth on the assumption 
that there are no spatial frequency components with periods shorter than two azimuth resolution cells.  That 
is called Nyquist rate sampling; if sampling is carried out slower than the Nyquist rate we incur a form of 
distortion known as aliasing. 



3 The Technology of Radar Imaging 67 

 
in which la is the (azimuth) length of the antenna. 

the swath from one ranging pulse do not overlap with those from the near edge of the 
swath from the next ranging pulse. If S is the swath width, and the incidence angle does 
not vary significantly across the swath, then from Fig. 3.11 the additional two way 
distance to the far swath edge relative to the near swath edge is approximately 2Ssinθ, 
where θ is the mid swath incidence angle. To avoid the range ambiguity just mentioned 
resulting from transmitting too quickly, the upper bound on prf is5 
 

 
θsin2max S

cprf =  (3.18a) 

 

 
 
Fig. 3.11. Computing the maximum pulse repetition frequency to avoid range ambiguity 
 
 
We can alternately express this in terms of the dimension S⊥ shown in the figure, which in 
turn is a function of the vertical beamwidth of the antenna Θv, itself being dependent on 
the vertical dimension of the antenna lv: 
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Bringing the two constraints on prf together we have 
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The limiting condition is when all three terms in this last expression are equal, which 
gives 

 θsin2
c
v

S
ra =  (3.20) 

 
This is a critically important equation since, for a given mid swath incidence angle, it says 
that there is a direct relationship between azimuth resolution and achievable swath width.  

                                                 
5 Multi-polarisation radars operate with only half the swath for a given prf; see Sect. 3.23. 
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The upper bound on prf is set by the need to ensure that the returns from the far edge of 
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This forms the basis of our consideration of ScanSAR in the next section. Note from 
(3.17) and (3.18b) we can also write 
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which, along with c/λ=f, can be re-arranged to give 
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lvla is the area or aperture of the antenna, so that the last expression can be written 
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which is another fundamental radar equation; it acts as a constraint on the minimum 
antenna size (but not its individual dimensions). 

Finally, recall from the end of Sect. 3.6 that several looks in azimuth are usually 
averaged to reduce speckle in the image. The achievable azimuth resolution la/2 in (3.8) is 
therefore degraded by the number of looks used. If NL is the number of looks then (3.17) 
can be expressed 
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Using this in (3.20) gives 

 θsin2 L
a N

c
v

S
r

=  (3.23) 

 
 
3.8  The Radar Resolution Cell 
 
We can now envisage the landscape resolved into discrete cells, or pixels, defined by the 
ground range and azimuth resolutions of the system as shown in Fig. 3.12. The number of 
cells across the swath, and the number of ranging lines recorded for a given region 
determine the size of a radar image in pixels. 
 
 
3.9  ScanSAR 
 
Most imaging radars have swath widths of about 50km-100km, which are often too 
narrow for many mapping and monitoring applications, especially over wide, relatively 
homogeneous fields such as the ocean. Suppose we want to design a system with a swath 
of, say, 300km. Noting (3.23) what then is the best achievable azimuth resolution? To 
determine that we need to know typical values of the other parameters. Suppose we use 
v=7.5kms-1 and θ=23o, typical of Seasat and ERS. Then choosing a swath of 300km limits 
ra to about 6m for a one look system or to about 24m for a four look system (the usual 
image product), which does not look too bad. Equation (3.23) though is derived on the 
basis of an ideal set of conditions. In particular it assumes that the azimuth beam pattern 
of the synthetic aperture cuts off sharply at the edges of the resolution cell and that the 
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returning ranging pulses are well enough defined that we can apply the ambiguity 
criterion of (3.20) exactly. 
 

 
 
Fig. 3.12. Resolution of the image field into resolution cells, defined by the ground range and 
azimuth resolutions for a single look image 
 

 
To give a margin of safety in design so that any system non-idealities don’t lead to 

azimuth or range ambiguities, the minimum prf is generally chosen a bit higher (say by 
50%) than the value given by (3.17) and the maximum prf is generally chosen to be a bit 
lower (say by 50%) than the value given by (3.18). The net effect of those safety margins 
can be accommodated by including a factor k in (3.23): 
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k clearly has a minimum value of 1; a value of 3 would give a reasonable design margin 
in most cases. Using 3 adjusts the above azimuth resolutions for a 300km swath to 18m 
for one look and 72m for four looks. Again, these are not necessarily bad figures, 
especially for oceanographic applications. However, consider how long physically the 
antenna has to be. For an 18m one look azimuth resolution the along track dimension of 
the antenna from (3.8) needs to be 36m! That is too big for orbiting on a spacecraft and 
for ensuring good manufacturing tolerances. Radarsat 2 is able to image with a 500km 
swath, which would mean a 60m antenna; yet the imaging is done with a 15m antenna 
azimuth dimension. Clearly there must be another approach. 

The ScanSAR principle6 is used to provide wide swath imaging, with reasonable spatial 
resolution and practical antenna sizes. ScanSAR relies upon breaking the imaging process 
up into blocks, both in the along track and across track directions as shown in Fig. 3.13.  
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 See R.K. Moore, J.P. Claassen and Y.H. Lin, Scanning spaceborne synthetic aperture radar with 
integrated radiometer, IEEE Transactions on Aerospace and Electronic Systems, vol. AES-17, no. 3, May 
1981, pp. 410-421, and K. Tomiyasu, Conceptual performance of a satellite borne, wide swath synthetic 
aperture radar, IEEE Transactions on Geoscience and Remote Sensing, vol. GE-19, no. 2, April 1981, pp. 
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We have shown Ns blocks in azimuth over the distance of the equivalent synthetic 
aperture and, for simplicity, the same number of blocks across the desired swath width.  

  

 
 

Fig. 3.13. The use of scanning cells to construct a wide swath with a practical antenna using the 
ScanSAR principle 

 
 
The antenna carried on the platform is capable of being steered electronically (and 

therefore extremely quickly) from one block to the next in a sequence such as that 
indicated in the figure. While it is dwelling in one block – often called a scanning cell – 
the normal SAR process applies: ranging chirps are transmitted to resolve the scene 
across the scanning cell (whose edges are defined by the real vertical beamwidth of the 
antenna) and the Doppler history of the signal in azimuth is used to provide azimuth 
resolution. However, since the full azimuth chirp bandwidth is not now used for 
compression the achievable azimuth resolution is poorer by the factor of the number of 
scanning cells in azimuth; thus from (3.15) 
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For wide swath operation this poorer azimuth resolution is generally not a problem for the 
types of application envisaged. If, in addition, we average NL resolution cells in azimuth 
for speckle reduction then for a given antenna length, the actual achievable azimuth 
resolution is 
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Note that the ambiguity constraint of (3.24) applies within each of the sub-swaths of 

Fig. 3.13. Also note that (3.24) already incorporates the number of looks in azimuth so 
when using that expression, (3.25a) is the corresponding formula for the azimuth 
resolution. For a given azimuth resolution specified by (3.25a) the maximum total 
achievable swath is 
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Consider some typical values. Suppose v=7.5kms-1, NL=2 and θ=20o. Suppose, further, we 
wish to achieve a 90m azimuth resolution with a 15m antenna, then what overall swath is 
available? Equation (3.25b) tells us that we need to have Ns=6 scanning blocks. Using 
(3.26), and choosing a safely factor of 4 to be conservative, we then find that the overall 
ScanSAR swath available to us is approximately 400km. In contrast, if we tried to 
achieve the same swath width with a conventional SAR system (3.24) shows that the 
azimuth resolution would be 48m. Being a 2 look system that requires a 48m antenna, 
which is impractical. 

This example has been very simple and has ignored a number of system related factors 
concerned with transmitter power, receiver noise, antenna efficiency and earth curvature. 
Nevertheless it serves to demonstrate that segmenting the swath into a number of 
individual scanning cells allows wide swaths to be achieved while maintaining practical 
antenna sizes. 

As might be expected the processing of ScanSAR data is more complex than with 
conventional SAR because of the need to join the scanned cells, but this penalty is 
manageable given the wide swath benefit that results. 

 
 

3.10  Squint and the Spotlight Operating Mode 
 

If the antenna beam does not point exactly to broadside the radar is said to have squint.  
Squint can occur inadvertently as a result of platform yaw or because of the rotation of 
the earth during imaging, or intentionally in (military) applications where the platform 
needs to maintain a safe distance from the area being imaged. Squint is also often an 
operating feature of bistatic radar, as seen in Chapt. 7. As expected, not only will squint 
lead to geometric distortion, particularly since the range lines are not orthogonal to the 
flight line, but the Doppler history in azimuth will be changed. The centre of the azimuth 
chirp will be displaced from the broadside position and the Doppler bandwidth will be 
reduced, leading to drop in azimuth resolution as demonstrated below. It also leads to a 

Range resolution is not significantly affected by squint. 
Figure 3.14 shows a slant plane view with the radar antenna squinting forward by an 

angle ξ. In order to see its effect on azimuth resolution it is sufficient to determine the 
azimuth bandwidth under squint conditions because that determines resolution as seen in 
(3.15). We will find the bandwidth by identifying the motion induced Doppler component 
on the carrier frequency at the start and the end of the period that the point target is in 
view. 

As with radar without squint the distance from the radar to a point target is given by 
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We should not now make the assumption 2
oR

vt <<1 which led to (3.15) since it masks the 

asymmetry of the geometry caused by the squint angle. The Doppler frequency 

coupling between the azimuth and range coordinates which can increase the problem of 
range walk, outlined in Appendix D, and which has to be corrected in image formation.  
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component associated with the changing distance R(t), is given by the first time derivative 
of the associated two way change in phase: 
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Fig. 3.14. Squint geometry in the slant plane; note that angles are measured in the positive sense 
anticlockwise from broadside 
 
 
From Fig. 3.14 we can see that 
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so that (3.28) becomes 
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The Doppler frequency when the target is just encountered is given when ξμ +Θ= a5.0 , 
i.e. 
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The Doppler frequency when the target just disappears is given when )5.0( ξμ −Θ−= a , 
i.e. 
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Thus the Doppler bandwidth is 
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The azimuth beamwidth of the antenna Θa is generally less than about 0.02, so that the 
last expression can be approximated  
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=Θ where la is the azimuth length of the antenna, so that the chirp bandwidth 

becomes 
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Azimuth resolution is given in (3.15) in terms of the chirp bandwidth and the platform 
velocity which from (3.30) gives 
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which, by comparison with (3.8) shows that the effect of the squint is to lower the 
azimuth resolution. For 15o of squint the achievable resolution is 3% poorer than the 
theoretical value given when the radar points directly to broadside. 

To achieve these results it is assumed that the azimuth chirp replica matches that 
induced in the squinted situation. That is not unreasonable since the chirp parameters can 
be assessed from the signal itself. Note also that while Doppler zero will still occur at 
broadside, that will no longer be the centre (the centroid) of the chirp. The Doppler 
centroid will be given as the arithmetic mean of the upper and lower Doppler frequencies, 
viz. 

 ξ
λ

ξ
λ

sinsin5.0cos2 vvf atroidDopplerCen ≈Θ=  

 
If the antenna is squinted forward and then steered during platform motion such that it 

continues to illuminate the target as depicted in Fig. 3.15 then high resolution of that 
target region is possible at the expense of resolution and focussing in the remainder of the 
imaged domain. That is referred to as spotlight mode imaging, and is used when very high 
resolution of specific targets is desired. 
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 (a) (b) 
 
Fig. 3.15. (a) Spotlight mode imaging, in the slant plane and (b) the creation of a larger equivalent 
synthetic aperture Ls with steering than the synthetic aperture La without steering 
 
 
Because the target is in view for a longer period of time with the steered antenna beam 
than it would have been if the antenna beam were fixed, the effect is equivalent to the 
creation of a larger synthetic aperture as depicted in Fig. 3.15b, thereby giving enhanced 
azimuth resolution. 
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PART B: THE TARGET 
 
 
3.11  The Radar Equation 
 
The first part of this chapter has been devoted to understanding the operation of imaging 
radar, including how the landscape can be differentiated into resolution elements. We 
now turn our attention to the interaction of the incident radiation with the earth’s surface. 
It is that interaction that determines the variations in brightness in a radar image and 
reveals properties of the earth’s surface of interest. Here we set up the framework for 
describing the interaction; Chapt. 5 treats explicit earth surface cover types.  

Before we look at scattering from the landscape consider the more traditional radar 
situation of the detection of a discrete target; the lessons we learn from this case readily 
transfer to understanding radar scattering in remote sensing. For the moment imagine the 
radar is an isotropic radiator as seen in Fig. 3.16. According to (2.1) it will produce a 
power density at the target, R metres away, of 
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The subscript i on the power density signifies that it is incident on the target. 

If instead of an isotropic radiator the radar uses an antenna that concentrates the power 
in a preferred direction as shown in Fig. 3.16, the power density at the target will be 
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where Gt is the gain of the transmitting antenna, defined as the ratio of power density it 
produces in the preferred direction compared with the power density produced by an 
isotropic radiator. 
 

 
Fig. 3.16. Irradiation of a target with radar cross section σ m2, and subsequent scattering 
 
 
Suppose there is a target at position R. It could be an aircraft, a discrete element on the 
ground such as a tree, or a ship on the surface of the sea. The target will present an area or 
cross section to the incoming radiation. It may absorb some of the incident energy, but 
generally it will also reflect or scatter a significant portion of the energy. We now 
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introduce the concept of the target’s radar cross section (RCS). RCS has dimensions of 
area (orthogonal to the incident radiation); it describes how much power the target 
extracts from the power density of the incoming wave. Most of this intercepted power 
will be scattered. Irrespective of its shape, the target is assumed to scatter the intercepted 
power isotropically. While a real target will not behave isotropically this is nevertheless a 
very useful assumption that simplifies theoretical developments and leads to a measurable 
value for RCS7. Radar cross section – described by σ m2 – is usually not easily related to 
any physical cross sectional area of the target. If the target rotates with respect to the 
incoming radar beam then it will have a different RCS, defined by the implicit area 
needed at that orientation to account for the energy extracted from the wavefront and re-
radiated back to the radar set isotropically. 

The power “received” by the target and available for re-radiation is 
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so that the power density produced back at the platform after scattering from the target is 
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Note that there is an extra 4πR2 term in the denominator caused by the isotropic 
propagation back to the platform. 

To find the actual power received the returned power density is multiplied by a 
property of the antenna referred to as its aperture Ar , which also has dimensions of area.  
Thus the received power is 
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The aperture of an antenna can be written in terms of its gain according to8 
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so that the power received by the radar system after scattering from the target is 
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7 It is significant to emphasise here that the property accorded to the target of a cross section, and the 
assumption of isotropic scattering (or re-radiation), are as observed in the received signal at the radar and 
not near the target itself.  Not only do we not observe the scattering behaviour right at the target, but if we 
did we would have to account for so-called near field effects.  Near field components complicate the 
situation but decay relatively quickly away from the scatterer as seen in Sect. 2.9.  The equations in this 
section always assume we are in the far field of the transmitting antenna and the target. 
8 All antennas can receive and transmit and can thus be described by a gain or an aperture.  Gain is often 
used to describe antenna behaviour in both transmission and reception whereas aperture is generally used 
only for reception. 
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This equation is called the radar range equation since it can be used to determine the 
maximum range of a radar if all the other terms are known and we know the limit of 
detection of received power. One of its celebrated features is the inverse fourth power 
dependence on the distance to the target. Targets at twice the range require sixteen times 
more power to detect! Because we will be working with existing radar remote sensing 
systems we will not encounter that problem explicitly. We can however easily see from 
(3.33) how the radar cross section of an object can be measured. If we choose a 
transmitter power and range, and measure the received power at the wavelength of 
interest then we can find σ. This assumes we know the antenna gains, which is always the 
case in practice. If we took several measurements of received power with different 
orientations of the target we would then be able to build up a picture of how the radar 
cross section of an object changes with the angle with which it is viewed. 

 
 

3.12  Theoretical Expression for Radar Cross Section 
 

The previous development can be used to derive an expression for radar cross section that 
we will employ when we come to describe target, and pixel, scattering properties. In 
words, the previous section says that the transmitted power creates a power density pi 
incident on the target. The RCS of the target σ intercepts σpi watts of power which it re-
radiates isotropically, producing a power density at the receiver of 
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Using (2.7) average power density is related to electric field by 2Ep η= in which η is 
the impedance of free space – a constant that will soon cancel out of our expressions – 
and E is the rms value of the field. Using this in the above expression for received power 
density we have 
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Re-arranging the last expression yields a definition for radar cross section 
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in which the limit on R reminds us that we need to be far enough away from the target so 
that near field effects can be ignored. 
 
 
3.13  The Radar Cross Section in dB 

 
Because its value can extend over an enormous range (less than 0.01m2 for birds to more 
than 100m2 for aircraft) it is usual to express radar cross section in decibels with respect 
to some reference level using the definition 
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The most common reference is refσ =1m2; the unit of RCS is then dBm2: 
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3.14  Distributed Targets 
 

Only some targets in radar remote sensing are of the nature of discrete scatterers as 
treated in the preceding section. More commonly scattering takes place from regions on 
the earth’s surface that are distributed in nature, such as an area of soil or snow, an 
agricultural field or even the surface of the ocean. To accommodate those cover types the 
radar equation needs to be modified, commencing with a variation to the definition of 
radar cross section. 

Radar cross section as a concept strictly refers only to discrete targets. To help 
formulate an alternative suited to distributed cover types consider a region composed of 
an infinite collection of infinitesimal elements of effective area ds as shown in Fig. 3.17, 
many of which make up an individual pixel. Further, suppose the radar cross section of 
each of those infinitesimal areas is dσ. On the average therefore the region exhibits a 
radar cross section per unit area of dσ/ds. This is denoted σo and is referred to as the 
scattering coefficient of the region. From its definition its units are m2m-2. Colloquially, it 
is often called sigma nought. 

 

 
 

Fig. 3.17. Resolving a distributed region, such as an agricultural field, into a set of discrete 
incremental areas 

 
 
From (3.33) the power received back at the platform after scattering from one of the 

incremental regions shown in Fig. 3.17 will be 
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or, in terms of the radar scattering coefficient for the region 
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We can now find the total power returned to the platform from a particular resolution 
cell, or pixel, by integrating the last expression over the pixel area: 
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If all the quantities inside the integral can be considered constant over pixel then the 
received power is 
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in which ra and rg are the azimuth and ground range resolutions. This is the form of the 
radar equation most used in radar remote sensing since our interest centres mainly on the 
scattering properties of regions (forests, fields, ocean, etc) rather than discrete scatterers.  
If all other parameters are known through the design of the radar system σo can be 
determined by measuring Pr. σo describes the “tone” of the radar image and is analogous 
to the reflectance of earth surface materials at visible and infrared wavelengths used in 
optical remote sensing.  

What is important now is to relate σo to the physical properties of the region being 
imaged – its composition, water content, physical properties and so on. This is an 
essential step in the interpretation of radar data and is the subject of Chapt. 5. 

 
 
3.15  The Scattering Coefficient in dB 
 
As with the radar cross section of discrete targets σo is commonly expressed in decibels. 
A reference of 1m2m-2 is used so strictly absolute units (dBm2) should be identified. In 
practice they are understood rather than written explicitly. Instead dB is just used: 
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Thus 0dB is a scattering coefficient of 1m2m-2, 3dB means 2m2m-2 and -20dB means 
0.01m2m-2. Table 3.1 shows a range of scattering coefficients expressed in both natural 
and dB form. Because the decibel is based on logarithms, and logarithms have the 
property that the log of a product is the sum of the individual logs, the table illustrates 
how easily dBs can be computed. For example a scattering coefficient of 20m2m-2 is 
2x10, which in dBs is 3+10=13dB. A scattering coefficient of -7dB is -10+3dB which in 
natural form will be 0.1x2=0.2m2m-2. 
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Table 3.1 Converting Scattering Coefficients to dB Form 
 
Scattering coefficient (m2m-2) dB Scattering coefficient (m2m-2) dB 
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3.16  Polarisation Dependence of the Scattering Coefficient 
 

power density are composed of electric and magnetic field vectors at right angles to the 
direction of propagation and to each other. That is the case both for the incident wave and 
for the wave after scattering from a discrete target or a distributed region. Sect. 2.10 
describes the polarisation of the wave in terms of the orientation of the electric field 
vector. Although not strictly correct theoretically we describe polarisation as horizontal, 
if the field is horizontal to the earth’s surface and vertical if it is in a plane that is vertical 
to the earth’s surface. 

Polarisation turns out to be a particularly important parameter in radar remote sensing 
because the scattering properties of earth surface materials can be different for different 
incident polarisations. The scattered wave can also have a different polarisation from that 
of the incident wave, a mechanism referred to as polarisation rotation or sometimes 
depolarisation. In the most general case the scattered wave can have both horizontal and 
vertical components even though the incident wave was simply horizontally or vertically 
polarised. This actually means that the polarisation of the scattered wave is in a plane 
different from vertical or horizontal which nonetheless can be resolved into horizontal 
and vertical components. 

To account for the fact that the scattering coefficient is polarisation dependent we write 
it with subscripts o

PQσ
wave scattered and received by the radar. The first subscript P indicates the received 
polarisation and the second Q the transmitted or incident polarisation. The subscripts are 
sometimes interpreted in the other order, so care is needed about which convention is 
being used when fully polarised data is employed. The convention used here is the most 
appropriate theoretically in the context of the matrix algebra we will use to describe 
multi-polarisation data. 

Although many imaging radars in the past were single polarisation, in that the transmit 
and received polarisations were the same and fixed, more recent remote sensing radars 
can radiate both vertically and horizontally, and receive both the vertical and horizontal 
components of the scattered wave. In such a case there are, in principle, four relevant 
scattering coefficients, brought together in what is called the sigma nought matrix: 

 

Section 2.8 tells us that the wavefronts we have described above in terms of power and 

 which signify the polarisation of the incident wave and that of the 
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 (3.36) 

 
Although not immediately obvious here it is assumed for monostatic radar systems that 
the two cross-polarised components σHV and σVH are the same, whereas the co-polarised 
components σHH and σVV can be quite different from each other. We will have more to say 
about that later. 

We can define two measures at this point that find value in polarimetric radar remote 
sensing studies: 

co-polarisation ratio o
VV

o
HHp

σ
σ

=  (3.37) 

cross-polarisation ratio o
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o
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σ
σ

σ
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As might be expected, the cross-polarisation ratio implicitly carries information about 
complex scattering events that may lead to a rotation of the polarisation state of the 
incident radiation. 
 
 
3.17  The Scattering Matrix 
 
For many applications it is sufficient to use the scattering coefficient defined above to 
describe the earth surface properties of interest. The full analytical power of imaging 
radar emerges, however, when we can perform polarisation synthesis. Although a radar 
would generally irradiate with vertically and horizontally polarised radiation, and detect 
both horizontally and vertically, some landscape features may be more evident, and more 
readily discriminated from other features, with different orientations of the field vectors. 
We need therefore to be able to synthesise the effect of other polarisation orientations 
from the ones available to us. To do so requires development via an electric field 
description of the scattering process as against the power density development we used to 
derive the concept of radar cross section and scattering coefficient. That leads to the 
concept of the scattering matrix which captures a description of a scatterer in terms of the 
relationship between incident and scattered electric fields. Just like the scattering 
coefficient, it is a property of the scatterer itself and embodies the landscape information 
of interest to us.  

Fig. 3.18 shows coordinate systems9 for the horizontal and vertical field components 
involved in backscattering from a discrete target, or from a pixel on the ground if the 
scattering coefficient is sufficiently uniform over the pixel that we can express the pixel’s 
radar cross section as in (3.35) – i.e. ga

o rrσσ = . R defines the direction of propagation of 
the transmitted (and thus incident) wave. Backscattering occurs in the -R direction. This 
convention is referred to as back scatter alignment (BSA). It is possible to reverse the R 
coordinate for scattering; the convention is then called forward scattering alignment 
(FSA) which finds application in bistatic radar remote sensing. Appendix E discusses the 

                                                 
9 We have chosen the horizontal and vertical orthogonal field components to use here since they are the 
ones encountered in imaging radar missions.  We could have chosen any two components at right angles to 
each other and to the direction of propagation. 
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differences between the two systems. We adopt the BSA axes for most of the treatment in 
this book.  

The only difference between the incident and transmitted fields is a result of 
propagation from the radar to the target. There will be a phase delay because of the travel 
of the wave over the distance R, and a drop in signal strength. Equation (2.1) shows that 
the power density falls in an inverse square fashion with distance. Equating (2.1) and 
(2.7c) shows that the rms field strength is 
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 (3.39) 

 

 
 

Fig. 3.18. Field components relevant to the scattering matrix, assuming that all components are 
transverse to the direction of propagation; this implies near field effects are ignored 

 
 

Thus the field amplitudes fall in an inverse distance fashion with distance. Just as with 
the transmitted and incident waves, the only difference between the backscattered and 
received waves is a phase difference and an inverse distance drop in amplitude. It is the 
comparison of the incident and backscattered waves that is of most interest to us, because 
that is what contains information directly about the scattering properties of the target and, 
ultimately, the biophysical properties of the target itself. 

We express the most general relationship between the incident and backscattered fields 
in the form of a matrix equation 
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is referred to as the scattering matrix or Sinclair matrix of the target. As with the sigma 
nought matrix of (3.36) note that the first subscript on each of the elements refers to the 
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where the field components are summarised in vector form and the matrix 
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polarisation of the scattered wave while the second subscript refers to the polarisation of 
the incident wave. Equation (3.40) says that the horizontally polarised backscattered field 
can be viewed as the result of the target scattering a horizontally polarised component of 
the incident field and a depolarised vertically incident component: 
 
 i

VHV
i
HHH

b
H ESESE +=  

 
If the incident field were just horizontally polarised – i.e. 0=i

VE  – then i
HHH

b
H ESE = , so 

that the only target property of significance is SHH. Likewise a vertically polarised 
backscattered field can be viewed as the result of the target scattering a vertically 
polarised component of the incident field and a depolarised horizontally incident 
component: 
 i

VVV
i
HVH

b
V ESESE +=  

 
SVV is the only property of importance for a vertically polarised radar. 

The elements of the scattering matrix contain all the information we need about the 
target. Each is a complex quantity (having both an amplitude and phase angle) that is 
dependent on the frequency, or wavelength, of operation and the incidence angle at the 
earth’s surface. In principle it is also dependent on the azimuth angle with which the 
target is viewed, although that is generally fixed by the broadside direction to the motion 
vector of the platform. Given that each element has an amplitude and phase, the 
scattering matrix contains eight pieces of information about the target, or region on the 
ground. 

In practice we don’t measure the backscattered components right at the target, nor are 
they theoretically available at the target itself. As noted earlier, that has to do with the 
difference between the near field of the target (which requires a detailed field theory 
description to understand fully) and the far field of the target (some distance away, 
beyond which the power density description and isotropic scattering representation we 
adopted in Sect. 3.10 can be used). Therefore (3.40) is usually written as though the 
scattering properties are observed back at the radar 
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=  (3.42) 

 
The exponential term accounts for the phase difference induced in transmission which 
can be ignored since it will affect all components equally; the distance term in the 
denominator comes from (3.39). Some authors include the π4 in the denominator that is 

components. 
Recall that it is often convenient to express the field components in complex 

exponential form, the real part of which is the sinusoidal form 
 
 { } { }RjtjRtj eeEeERtE βωβωβω −− ==− ReRe 0

)(
00 )cos(  

 

part of (3.39); that is not a problem, it is just taken up in the scaling of the field 
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Since all components have the same frequency the first exponential term is often omitted 
as is the real part operator, accepting that both are there implicitly should it be necessary 
to revert to the sinusoidal description. Therefore it is commonplace to write the field in 
the summary form RjeE β−

0 or even in phasor form RE β−∠0  which essentially just 
replaces the complex exponential by the angle sign. The exponential form is used in 
(3.42) but with the sign reversed (i.e. positive) since the backscattered wave travels in the 
negative R direction. 

We now return to a consideration of the meaning of the scattering matrix elements and 
their use. The first question that comes to mind is their relationship to the radar cross 
section of the target. We will consider the simple case of HH polarisation to demonstrate 
this. From (3.34), for R large enough to be in the far field, we have 
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in which r
HE is the field observed at the receiver. From the same understanding of field 

propagation that led to (3.42) we can see this to be 
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Ignoring the phase propagation term, which is irrelevant in power related quantities, gives 
the HH radar cross section as 
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giving from (3.40) 24 HHHH Sπσ =  
 
In general we find 

2
4 PQPQ Sπσ =  (3.43) 

 
This shows the relationship between the scattering matrix element and the radar cross 
section of a discrete target rather than the backscattering coefficient of a distributed 
region of landscape. Under the assumption that the backscattering coefficient is constant 
across a pixel we can equate the scattering matrix element to the backscattering 
coefficient multiplied by the area of the pixel (raxrg), i.e. 
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S
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It is important to note that some authors10 define the sigma nought matrix as the 
relationship between the incident and received power densities rather than the incident 
and backscattered densities as done here in (3.36) thus avoiding problem with near field 
behaviour. If that approach is taken then there will be an additional R2 multiplier in 

                                                 
10 See G.T. Ruck, D.E. Barrick, W.D. Stuart and C.K. Krichbaum, Radar Cross Section Handbook, Plenum, 
N.Y., 1970. 
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(3.43). It is important when moving between scattering coefficients and the scattering 
matrix to be clear of the definition of scattering matrix being used. 

As with the sigma nought matrix of (3.36) we can assume SVH=SHV in the case of 
backscattering; this is called the reciprocity condition. There are some unusual 
circumstances when it doesn’t apply, most notably as a result of Faraday rotation if the 
wave passes through the ionosphere, which it will do for spacecraft platforms. At the 
higher frequencies used in remote sensing radar imaging Faraday rotation is generally 
considered negligible. At longer wavelengths it can be significant and may need to be 
taken into account when studies based on the scattering matrix are of interest11. 
 
 
 3.18  Target Vectors 
 
The elements of the scattering matrix can be used to derive other pixel descriptors 
perhaps more suited to analysis by the classification techniques discussed in Chapt. 8. A 
target vector (a vector rather than a matrix that summarises the properties of the target) 
can be created by arranging the four elements of the scattering matrix in column form 
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in which we have also used the vector transpose operation so the column vector can be 
written more compactly in row form12. Since for backscattering SHV=SVH one of the 
elements of the vector is redundant and carries no additional information, so the vector is 
reduced to three dimensions 
 
 T

VV ][ SSS HVHH=k  (3.46) 
 
Often this is written as T

VV ]2[ SSS HVHH=k  (3.47) 
 
so that the Euclidean norms (i.e. magnitudes) of the forms in (3.45) and (3.47) are the 
same. The norm is also called the span of the target vector. 

Other target vectors can be formed using combinations of the scattering matrix 
elements. The most common alternative to (3.45), derived from the Pauli basis12, is 

 

 T)]([
2

1
VHHVVHHVVVHHVVHHP SSjSSSSSS −+−+=k  (3.48) 

 
For backscattering, in which the two cross-polar terms are equal, this reduces to 
                                                 
11 See Sect. 3.24 for a discussion of this effect. 
12 When the elements are arranged as shown in (3.45) they are sometimes said to have lexicographical 
ordering.  This is in contrast to the combinations of the elements of the scattering matrix in the form of the 
Pauli basis target vector of (3.48) which can be derived from the Pauli spin matrices used in quantum 
mechanics.   See S.R. Cloude and E. Pottier, A review of target decomposition theorems in radar 
polarimetry, IEEE Transaction on Geoscience and Remote Sensing, vol. 34, no. 2, March 1996, pp. 498-
518. 



86 Remote Sensing with Imaging Radar 

 

 T]2[
2

1
HVVVHHVVHHP SSSSS −+=k  (3.49) 

 
 
3.19  The Covariance and Coherency Matrices 
 
Another way of expressing target properties is through the covariance matrix defined as 
the expected value (i.e. an average over a number of measurements) of the product of the 
target vector and the transpose of its complex conjugate 
  
 ( )T*kkC E=  (3.50) 
 
Although involving complex elements, thus requiring the conjugation operation, this is 
not unlike the definition of the covariance matrix used in maximum likelihood 
classification of optical remote sensing data13. From (3.45) we can expand the covariance 
matrix as 
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in which we have used the angular brackets to indicate that the expected value can be 
obtained by averaging over the available samples (pixels). Remember that each of the 
scattering matrix elements is complex and can be written in the simple phasor form 
 
 HHHHHH SSS ∠=  so that 0. 2* ∠=−∠∠= HHHHHHHHHHHHHH SSSSSSS  
 
Thus the diagonal elements of the covariance matrix simplify to give 
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Comparing this last expression with (3.43) shows that the diagonal elements of the 
covariance matrix are, to within a multiplicative constant, the four scattering coefficients 
of the pixel: o

HHc σ∝11 , o
HVc σ∝22 , o

VHc σ∝33  and o
VVc σ∝44 . The off-diagonal terms 

describe the interactions or correlations among the set of scattering mechanisms. From an 

                                                 
13 }*T . It can  E{[k − E(k)][k − E(k)] Generally the computation of covariance in (3.50) entails the operation 
be shown, though, that the expected value of the target vector itself is zero; see Sect. 8.4.4.1. 
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image perspective they tell us the degree of correlation of the two co-polarised (HH and 
VV) images and the degree of correlation of the like and cross-polarised (HH or VV and 
HV or VH) images. 

We now look at three special cases of the covariance matrix. 
 

Reciprocity 
If the reciprocity relation holds (backscattering when Faraday rotation is not a problem) 
the covariance matrix simplifies to 
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which can be derived directly from (3.47), or from (3.51) by noting that the centre two 
rows are then identical, as are the centre two columns; span has been preserved by 
inserting √2. Note that the off diagonal elements, in pairs about the diagonal, are 
conjugates of each other. 

 
Media with Reflection Symmetry 
Suppose a scatterer exhibits symmetry in its scattering properties either side of the plane 
of incidence. That will be the case for a number of natural scatterers including many 
rough surfaces and foliage canopies. Essentially, if the medium looks geometrically to be 
symmetric either side of the plane of incidence then it will scatter that way. Such a 
medium is said to exhibit reflection symmetry. It is a feature of media with reflection 
symmetry that the like and cross polarised backscattering responses are not correlated; as 
a consequence the corresponding off diagonal terms in (3.52) are zero. Thus, the 
covariance matrix for backscattering is14 
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Media with Azimuthal Symmetry 
If a medium exhibits reflection symmetry not just in the plane of incidence but in any 
rotated plane that contains the indent ray, in the sense that the backscatter is insensitive to 

                                                 
14 See S.V. Ngheim, S.H. Yueh, R Kwok and F.K. Lee, Symmetry properties in polarimetric remote 
sensing, Radio Science, vol. 27, no. 5, September-October 1992, pp. 693-711. 
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the orientation of the electric field vector, then the medium is said to have azimuthal 
symmetry and its covariance matrix is also15 
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An alternative to the covariance matrix is the coherency matrix, developed from the Pauli 
basis target vector of (3.48) 
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which expands to 
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in which VVHHa SSk +=  
 VVHHb SSk −=  
 VHHVc SSk +=  
 )( VHHVd SSjk −=  
 
Note that the off diagonal terms, in pairs about the diagonal, are conjugates of each other. 

We now look at three special cases of the coherency matrix. 
 
Reciprocity 
If the reciprocity relation holds (again, backscattering when Faraday rotation is not a 
problem) the coherency matrix loses its last row and column, leaving 
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15 See J J. van Zyl, Application of Cloude's target decomposition theorem to polarimetric imaging radar 
data, SPIE Vol. 1748, Radar Polarimetry, 1992, pp. 184-191. 
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Media with Reflection Symmetry 
If a scatterer exhibits symmetry in its scattering properties either side of the plane of 
incidence the co-polar and cross-polar terms are uncorrelated, as before, so that the 
coherency matrix reduces to 
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Media with Azimuthal Symmetry 
If a medium exhibits azimuthal symmetry its coherency matrix takes on a diagonal form16 
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3.20  Measuring the Scattering Matrix 
 
The principal objective in radar remote sensing is to understand properties of the 
landscape by measuring either the scattering coefficient(s) of (3.36) or the scattering 
matrix of (3.41). Usually the scattering coefficient, sigma nought, is measured in a 
relative sense and external calibration devices are used to give it an absolute value. We 
have more to say about calibration in Chapt. 4. In this section we concentrate on 
measuring the scattering matrix, rather than the scattering coefficients. Not only does that 
give us a very concise and convenient summary of the properties of the region being 
imaged (or at least how those properties influence incident radiation) but it also allows 
the very powerful methodology of polarisation synthesis to be used, as seen in Sect. 3.22. 

Measuring the scattering matrix requires an application of (3.42) along with knowing 
how the incident field is related to that transmitted. Applying (3.39) to find that 
relationship we have 
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in which the phase delay accounts for the two way path and the pre-matrix denominator 
accounts for inverse distance propagation towards the target followed by inverse distance 
propagation of the scattered field back to the radar. This is the field equivalent to the 
inverse fourth power dependence on range in the power expression of (3.33). 

An experiment described by this expression will, in principle, yield the four complex 
elements of the scattering matrix. There is a practical problem with obtaining accurate 
values of their phase angles because the transmission path between the radar and target, 
                                                 
16 See S.R. Cloude and E. Pottier, A review of target decomposition theorems in radar polarimetry, IEEE 
Transaction on Geoscience and Remote Sensing, vol. 34, no. 2, March 1996, pp. 498-518, and S.R. Cloude, 
D.G. Corr and M.L. Williams. Target detection beneath foliage using polarimetric synthetic aperture radar 
interferometry, Waves in Random and Complex Media, vol.14, no. 2,  April 2004, pp. S393–S414. 
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and return, induces the phase change indicated by the exponential term. To give that a 
sense of scale, note that if the radiation we are using is at say 1GHz the wavelength will 
be 30cm, which accounts for a full cycle (360o) of phase. Varying atmospheric conditions 
can change the wavelength of the radiation and thus induce changes in phase in 
transmission. Moreover, it is difficult to identify where the actual point of scattering lies 
for a discrete target or distributed region of ground, making precise specification of R 
(within better than 30 cm, for example) in these equations difficult. As a result we don’t 
try to determine the actual (absolute) phase angles of the elements of the scattering 
matrix. Instead, we simply measure them with respect to the phase of the HH component, 
implicitly taking the phase of SHH to be zero. 

 
 

3.21  Relating the Scattering Matrix to the Stokes Vector 
 
Recall from Sect. 2.13 that the Stokes vector, or its modified form, is a description of an 
electromagnetic wave in terms of power density quantities rather than field vectors, that 
nevertheless preserves information on the polarisation state of the radiation. The Stokes 
parameters are also able to account for any unpolarised component of a travelling wave 
so there is value in being able to describe the signal scattered from a target in terms of its 
Stokes vector. 

Analogous to the development in Sect 3.17, which dealt with the field description of 
scattering, let sr and si instead be the received and incident waves described in terms of 
their Stokes vectors. They will be related by some matrix equation of the form 
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The 4x4 matrix H is called the Kennaugh matrix17, or sometimes the Stokes matrix. The 
R2 in the denominator accounts for the inverse square law of power density drop with 
distance between the target and the receiver. When dealing with power density an 
exponential phase term has no meaning. To find H we adopt (2.31) to give 
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Pre-multiplying both sides by R-1 gives 
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in which HRRW 1−=  (3.61b) 
 
If we know W we can re-arrange the last expression to find the Kennaugh matrix H. If 
we imagined (3.61) at the scatterer itself we could ignore the 1/R2 term provided we 
assume that we can work with far field quantities. We then have a relationship between 
the backscattered and incident vectors. 
 
                                                 
17 Sometimes this is called the Mueller matrix, with the name Kennaugh matrix reserved for forward rather 
than backscattering situations.  We will use Kennaugh matrix here, which is more common in radar. 
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 ib Wgg =  (3.62) 
in which from (2.33) 
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We can derive expressions for each of the elements of the vectors gb and gi by returning 
to (3.40) from which 
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The last expression can be re-written as the product of two vectors, using a different order 
for the second and fourth terms to allow comparison with (3.63): 
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This demonstrates that the first element in the backscattered vector gb can be expressed in 
terms of the incident vector gi and elements of the scattering matrix. We can do the same 
for the remaining three elements of the backscattered vector to show that the matrix W in 
(3.62) is given by 
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We can then get the Kennaugh matrix by inverting (3.61b) 
 
 1−= RWRH  (3.65) 
 
Note from (2.32) that 
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We now have all the material needed to use (3.60) to see how the Stokes vector is 
changed by scattering; the Kennaugh matrix that governs that transformation is specified 
entirely in terms of the scattering matrix through (3.64). 
 
 
3.22  Polarisation Synthesis 
 
A significant advantage of multi-polarisation radar becomes apparent when it is realised 
that having available the full scattering matrix for a target makes it possible to synthesise 
how the target would appear in other polarisation combinations, even though they were 
not recorded by the radar. It allows us to develop a very full description of the target’s 
scattering properties both to assist in identifying it and to help discriminate it from other 
targets. 

Essentially the signal received by a radar is the power density available at the receiving 
antenna after the transmitted signal has been scattered from the target. In Sects. 3.11-3.16 
that has been described in terms of the target radar cross section or the scattering 
coefficient of the earth’s surface being imaged. It is of value to revisit the radar cross 
section since it leads us to think about the measurements undertaken by radar 
polarimeters – devices that record the radar response in the four available polarisation 
combinations: HH, VV, HV and VH. In (3.34) the radar cross section is expressed 
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2

24lim
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r

R E

E
Rπσ

∞→
=   

 
in which there is a subtle assumption. It assumes that the field illuminating the receiving 
antenna is efficiently converted to power in the radar receiver. That can only happen if 
the orientation of the receiving antenna matches the polarisation of the incoming electric 
field as illustrated in Fig. 2.23. Suppose that is not necessarily the case and that the 
orientation of the incoming electric field and the optimum antenna orientation is as shown 
in Fig. 3.19. Even though the electric field is not perfectly aligned to the antenna it will 
still induce a component of electric field on the antenna equal to its projection, as 
depicted in the figure. If we describe the orientation of the antenna in the plane at right 
angles to the incoming ray from the target by the spatial unit magnitude vector pra (which 
will, in general, be resolvable into horizontal and vertical components if the antenna is 
tilted) then the magnitude of the projected value of the received field that is detected by 
the antenna is given by the scalar (or dot) product as seen in (2.43a): 

 
 rrarrarE EpEp T' . ==  (3.67) 
 

Even though the operations in (3.67) give rise to scalar quantities, the field component 
'rE  is oriented along the antenna vector and, in principle, should be written 

 
 rarE p'  (3.68) 

 
The field Er incident on the receiving antenna can be expressed, ignoring changes in 
phase, as 
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 ibr

RR
SEEE 11

==  

 
in which Eb is the (far field) backscattered field at the target and Ei is the field incident on 
the target; S is the scattering matrix of (3.41). Thus, from (3.67) 
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which, when substituted into (3.34), and noting iiE E=  gives the radar cross-section as 
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Ε
E is a vector of unit amplitude in the direction of polarisation of the 

electric field incident on the target18. That will be the same as the polarisation of the 
electric field actually transmitted from the radar, unless there are any unusual 
atmospheric properties in the path from the radar to the target. If we call this unit vector 
pi≡pt then the last expression can be written 
 
 

2
4 tra Sppπσ =  (3.69) 

 

 
Fig. 3.19. Illustrating the effective component (projection) of the received electric field vector 
that is picked up by a linear receiving antenna, polarised differently from the field; note that the 
antenna vector has unit magnitude and the diagram is viewed towards the receiver as implied by 
the arrow tail (cross in circle) at the origin 
 
 
This is our first equation for polarisation synthesis. It says that if we know the scattering 
matrix for the target then we can see how the target would appear if we used transmitted 
radiation with a polarisation described by the polarisation vector pt, and chose to receive 
the resulting scattered field in the direction of polarisation described by the polarisation 
vector pra. Fig. 3.20 shows this diagrammatically, illustrating how the transmitted 

                                                 
18 In vector algebra it is common to find a unit vector a that aligns with a given vector A, by normalising A 
by its magnitude, i.e. a=A/|A|.  That concept is used frequently in electromagnetism and radar. 
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polarisation is modified after scattering by the target and how the received signal 
magnitude is affected by the respective polarisations of the received signal and the 
antenna. This assumes that the polarisation state of the antenna on reception is the same 
as on transmission. 

 
Fig. 3.20.  The polarisation change sequence in radar scattering: the linearly polarised case 

 
 
We now introduce an important generalisation. The derivation that led to (3.69) was 

based on the linearly polarised situation shown in Figs. 3.19 and 3.20. However (3.67) 
applies more generally, irrespective of the nature of the polarisation being considered; see 
Sect. 2.16. Rather than restrict ourselves to antennas that transmit and receive linearly 
polarised signals assume now we are dealing with antennas that use elliptical polarisation. 
We define the polarisation vector pra of an antenna as that unit amplitude vector that has 
the same relative components as the electric field that the antenna would transmit and can 
thus can represent elliptical as well as linear configurations. Likewise it represents the 
optimum polarisation of a received wave if the received signal at the antenna terminals 
were to be maximised. If the received electric field had a different polarisation from 
optimal then the component of the received electric field that leads to received power is 
the scalar product of the polarisation vector of the antenna and the electric field vector 
incident on the antenna – viz. (3.67). As a consequence (3.69), although derived by 
starting with a linearly polarised situation, actually applies for any general transmit and 
receive antenna polarisation vectors. 

We now generalise further. For (3.69) to be used we must know the target scattering 
matrix. To handle more general situations it is better to derive a form of that equation in 
terms of Stokes vectors and the Kennaugh matrix. They can account for received signals 
that include unpolarised components. Also, suppliers of radar imagery often provide the 
data in the form of Kennaugh matrix elements or measures derived from them. 

The following derivation is a little long but it results in an expression for radar cross 
section in terms of the properties of the polarisation ellipses that describes the transmitted 
and received fields (strictly the transmitting and receiving antennas), and the elements of 
the target’s Stokes scattering operator, which derives from the Kennaugh matrix. 

Using (3.67) the received power density will be  
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This last expression may need a little explanation. Recall that power density is 
proportional to the square of the magnitude of the electric field and is a scalar quantity. 
The way that is written when the quantities are complex is to take the product of the field 
and its complex conjugate, which we have done here. Also, even though the bracketed 
entries are real as written they are the magnitudes of complex quantities “aligned” with 
the receiving antenna polarisation vector as described in (3.68) and as seen explicitly in 
Fig. 3.19 for the case of linear polarisation. Strictly that polarisation vector should also 
appear inside each bracket. We have left it out for simplicity since the product of the unit 
vector and its transpose will be a unity scalar, thus cancelling as expected. Finally, note 
that we are using the form of (3.67) based on the transpose rather than dot product 
operation (see Sect. 2.16). That also simplifies some of our subsequent notation. 

Noting that we can write the vectors 
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since the complex conjugate of a product is the product of complex conjugates. Therefore 
the available power density on reception is 
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which can be represented as the scalar product 
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By reference to (2.33) we can write the first of these column vectors as gra which 
describes the polarisation state of the receiving antenna in terms of horizontal and vertical 
components. The second is a vector describing all products of the components of the 
electric field received at the antenna. It is related directly to the field backscattered from 
the target and can be described by the vector gr. Ignoring any phase effect we note that 
the magnitude of the electric field at the radar antenna is 1/R of that backscattered. Thus 
gr will be 1/R2 of that backscattered, since it is proportional to the square of the field. We 
can therefore write the last expression which, recall, is the actual power density available 
for generating a signal in the receiver of the radar, as 
 

 brar

R
p gg 2

1.=  (3.70) 

 V
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How can this expression be related to the Stokes vectors of interest to us? Equation (2.31) 
shows that any Stokes-like vector can be written as 

 
 Rgs =  

so that (3.70) becomes 

 brar

R
p sRsR 11

2 .1 −−=  

 
where R is given in (2.32) and sra is a Stokes vector describing the polarisation state of 
the receiving antenna; effectively it is equivalent to the Stokes vector of the field the 
antenna would launch if used in transmission. We can move the left hand R-1 across the 
dot product sign by taking its transpose to give 
 

 ( ) brar

R
p sRRs 1T1

2 .1 −−=  

 
The backscattered Stokes vector in this last expression is related to the incident Stokes 
vector via the Kennaugh matrix of (3.60) 
 
 tib HsHss ≡=  
 
 
Here we have assumed that the incident Stokes vector is equivalent to that transmitted. 
That is a satisfactory assumption because we are seeking to do just two things: first, apply 
(3.67) which does not require knowledge of the transmitted power density, only that 
incident at the target. Secondly, we are only interested in the polarisation state incident at 
the target, which is the same as that transmitted. That is equivalent to normalising the 
transmitted and incident Stokes vectors (Io=1 in (2.30)) and thus effectively the incident 
power density. 

The received power density expression now becomes 
 

 ( ) trar

R
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 ( ) tratrar

RR
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2
1T1

2 == −−  (3.71) 

 
in which M is called the Stokes scattering operator, defined in terms of W: 
 
 ( ) 1T1 −−= WRRM  (3.72) 
 
which, in turn, can be completely specified by the elements of the scattering matrix of the 
target. 

As an aside, note that from (3.65) and (3.72) the Kennaugh matrix and Stokes 
scattering operator are related by 
 MRRH T=  (3.73) 

Applying (3.65) gives 
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Equation (3.34) defines radar cross section as 
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Since we have assumed that the incident power density at the target is unity this gives 
 
 tra Mss .4πσ =  (3.74) 
 
We know R from (2.32) and W from (3.64) and thus can compute the elements of the 
Stokes scattering operator. After lengthy manipulation we find 
 
 { }****

11 25.0 VVVVVHVHHVHVHHHH SSSSSSSSm +++=  
 { }*** 225.0 VVVVHVHVHHHH SSSSSS ++=  for backscattering, with SVH=SHV. 
 
 { }****

12 25.0 VVVVVHVHHVHVHHHH SSSSSSSSm −+−=  
 { }**25.0 VVVVHHHH SSSS −=  for backscattering. 
 
 { }****

13 25.0 VHVVVVVHHHHVHVHH SSSSSSSSm +++=  
 { })()(5.0 **

VVHVHVHH SSSS ReRe +=  for backscattering 
 
 { }****

14 25.0 VHVVVVVHHHHVHVHH SSSSSSSSjm −+−=  
 { })()(5.0 **

HVVVHHHV SSSS ImIm +=  for backscattering 
 
 { }****

21 25.0 VVVVVHVHHVHVHHHH SSSSSSSSm −−+= 12m=  for backscattering 
 
 { }****

22 25.0 VVVVVHVHHVHVHHHH SSSSSSSSm +−−=  
 { }*** 225.0 VVVVHVHVHHHH SSSSSS +−=  for backscattering 
 
 { }****

23 25.0 VHVVVVVHHHHVHVHH SSSSSSSSm −−+=  
 { })()(5.0 **

VVHVHVHH SSSS ReRe −=  for backscattering 
 
 { }****

24 25.0 VHVVVVVHHHHVHVHH SSSSSSSSjm +−−=  
 { })Im()(5.0 **

VVHVHHHV SSSS += Im  for backscattering 
 
 { }****

31 25.0 HVVVHHVHVVHVVHHH SSSSSSSSm +++= 13m=  for backscattering 
 
 { }****

32 25.0 HVVVHHVHVVHVVHHH SSSSSSSSm −+−= 23m=  for backscattering 
 
 { }****

33 25.0 HHVVHVVHVHHVVVHH SSSSSSSSm +++=  
 { }** )(5.0 HVHVVVHH SSSS += Re  for backscattering 
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 { }****

34 25.0 HHVVHVVHVHHVVVHH SSSSSSSSjm −+−=  
 )(5.0 *

HHVV SSIm= for backscattering 
 
 { }****

41 25.0 HVVVHHVHVVHVVHHH SSSSSSSSjm −+= 14m= for backscattering 
 
 { }****

42 25.0 HVVVHHVHVVHVVHHH SSSSSSSSjm +−−= 24m= for backscattering 
 
 { }****

43 25.0 HHVVHVVHVHHVVVHH SSSSSSSSjm −−+= 34m= for backscattering 
 
 { }****

44 25.0 HHVVHVVHVHHVVVHH SSSSSSSSm −++−=  
 { })(5.0 **

VVHHHVHV SSSS Re−=  for backscattering (3.75) 
 
With this expansion of M, (3.74) allows us to generate the radar response that would be 
observed if the transmitted wave was described by the normalised Stokes vector st and the 
scattered wave is received on an antenna with the normalised Stokes vector sra. In 
summary, using the transpose instead of the dot product, and incorporating the symmetry 
of M for backscattering, this is 
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  (3.76) 
 
To assist the readability of this last expression we have used expanded superscripts of rec 
and trans to signify received and transmitted. Fig. 3.21 shows the operation 
diagrammatically to emphasise the relationship between the elliptically transmitted 
polarisation, that scattered from the target and the dependence of the strength of the 
signal received resulting from the relative polarisation alignment of the scattered 
radiation and that of the receiving antenna. Again, this assumes that the polarisation state 
of the antenna on reception is the same as on transmission. 

Clearly, there is a range of choices for the receiver and transmitter Stokes vectors. 
Conventionally, they are chosen to be the same, in which case the response generated is 
referred to as the co-polarised response. Alternatively, if the receiver polarisation is 
orthogonal to the transmitter polarisation the response is referred to as cross-polarised. 
Both are generally computed to give a description of target behaviour. To obtain the 
cross-polarised response the receiver normalised Stokes vector has the sign of its 
ellipticity angle ε reversed compared with its transmitted value to change the 
“handedness” on reception; it also has 90o added to its orientation angle τ to ensure 
received linear polarisation will be orthogonal to that transmitted. 

We are now in the position to demonstrate the generation of polarisation response plots 
for a number of well defined discrete targets. That entails evaluating (3.76) for both co-
polarised and cross-polarised reception over the full range of inclination and ellipticity 
angles, thereby showing how such a target appears for all polarisation combinations. We 
commence by looking at a large metallic plate aligned at right angles to the radar ray. A 

−
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linearly polarised ray incident on such a plate will be totally reflected so we can write its 
scattering matrix as 

 

 ⎥
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This summarises the fact that a horizontally polarised field will be totally reflected (the 
“1” in the top left element) and a vertically polarised field will be totally reflected (the 
“1” in the bottom right element)19. There is no cross polarised reflection of the linearly 
polarised incident wave (signified by the zeros in the off-diagonal positions). From 
(3.64), (3.66) and (3.72), the corresponding Stokes scattering operator is 
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Fig. 3.21. The polarisation change sequence in radar scattering: the elliptically polarised case 

 
 
When used in (3.76) the normalised polarisation responses in Fig. 3.22 are obtained. As 
expected, for any linear polarisation the plate gives a maximum co-polarised response 
(maximum reflection of the incident field). However, for elliptical polarisation the co-
polarised response is less than maximum, reducing to zero for circular polarisation. To 
see why that is the case Fig. 3.23 demonstrates that the handedness of a circularly 
(elliptically) polarised wave is reversed, of necessity, on reflection. That also explains 
why the cross-polarised response is maximum for circular polarisation of either hand. 
Note that both the co- and cross-polarised behaviours are independent of orientation 

                                                 
19 This is how it appears when the back scattering aligned coordinates are used.  If a forward scattering 
alignment is adopted then one matrix element would be negative to preserve propagation conventions, as 
discussed in Appendix E . 
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angle, as would be expected since such a concept has no meaning when referring to a 
plate with no geometric boundaries or other aligned geometric features.  

  
 (a) (b) 
 
Fig. 3.22. (a) Co- and (b) cross-polarised responses of a flat metallic plate (and a trihedral corner 
reflector) 
 

 
As a second example, Fig. 3.24 gives the polarisation response of the dihedral corner 

reflector shown in Fig. 3.25. That device is often used as a control point and a radiometric 
calibration target, as discussed in Sect. 4.2.2. As noted in Table 4.1 if it is constructed 
from square plates of side dimension a its maximum radar cross section, given when it is 
optimally aligned to the radar ray, is 
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Fig. 3.23. Demonstrating the change in handedness of circular polarisation on reflection from a 
flat plate; the reflected wave will not be received by the antenna that launched the incident wave 

 
 

This applies for both horizontal and vertical polarisation. It does not have a cross 
polarised response when aligned with its axis orthogonal to the incident ray as may be 

RCP LCP 
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understood by looking at the reflected rays in Fig. 3.25. There is no opportunity over the 
two reflections for the polarisation to be rotated. Note also that the final polarity of a 
horizontally polarised wave is not affected by the two reflections, whereas that of a 
vertically polarised wave is reversed. Using these observations together with (3.43) we 
can see from the above expression for the radar cross section that the scattering matrix for 
the dihedral corner reflector is 
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From (3.75) the corresponding Stokes scattering operator is 
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Using (3.76) the polarisation responses in Fig. 3.24 are obtained. 

 
(a) (b) 
 

Fig. 3.24. (a) Co- and (b) cross polarisation responses of a dihedral corner reflector 
 
 
The dihedral corner reflector is of limited value in calibration studies since it has to be 

aligned precisely along the flight direction of the radar platform; however, it is an 
important element in modelling the backscattering behaviours of landscape features that 
appear as vertical surfaces standing on horizontal surfaces. Buildings, ships at sea and 
even large tree trunks are examples that lend themselves to being described in that 
manner. A better calibration device is the trihedral corner reflector of Sect. 4.2.2, which 
doesn’t suffer the alignment problem. Its normalised scattering matrix is the same as that 
above for an infinite flat plate, so that its normalised polarisation response is also given 
by Fig. 3.22. 
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Fig. 3.25. Dihedral corner reflector in the back scatter alignment convention, showing how the 
polarity of a horizontal wave is not affected, whereas the polarity of a vertically polarised wave is 
reversed. 
 
 

The responses represented by the radar cross sections in (3.74) and (3.76), and just 
illustrated, are for a single discrete target or for a dominant scatterer in a resolution cell 
(pixel). In most remote sensing applications each resolution element consists of a very 
large number of randomly distributed incremental scatterers, as depicted in Fig. 3.17. In 
that case we compute the response as the average over that ensemble. If the response is 
normalised by the size of the resolution element then the scattering coefficient for the 
pixel is 

 tra
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sMs .4πσ =  (3.77) 

 
where, as before, the angular brackets signify the average. The average could also be 
taken over several pixels in which case the total area may need to be included in (3.77) 
rather than just that of the individual resolution element. 

We can also average the cross section of (3.69) over a pixel or several pixels: 
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However, whereas the average scattering coefficient in (3.77) is directly related to the 
average Stokes scattering operator M, in (3.78) the averaging cannot be taken 
conveniently inside the magnitude squared operation, requiring the scattering matrices of 
individual scatterers to be found and processed by the polarisation vectors before the 
average squared operation is applied. That renders (3.78) less convenient than (3.77). It 
can also be demonstrated that more multiplications are required to evaluate (3.78) 
compared with (3.77). 

As a final illustration consider the scattering matrix for a slightly rough surface; in 
Chapt. 5 this will be seen to be of the form 
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which is based on the Bragg surface scattering model for a dry surface at an incidence 
angle of about 30o. The polarisation responses for this surface are shown in Fig. 3.26, 
which are very different again from the two already considered. 
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(a) (b) 
 

Fig. 3.26. (a) Co- and (b) cross polarisation responses of a slightly rough dry surface 
 
 

Fig. 3.27 shows the co-polar responses or three groups of pixels in an AirSAR scene at 
C, L and P bands. As a result of the specific examples just given we can see how the 
shapes of the responses might be used as analytical features when interpreting the likely 
cover types. 
 
 
3.23  Compact Polarimetry 
 
There are complexities associated with recording the full scattering matrix for a target 
that complicates the design and construction of fully quadrature polarised radar. The 
design solutions adopted impose limitations on parameters such as swath width, as 
demonstrated in Fig. 3.28. That figure shows the timing sequence of the transmitted 
ranging pulses and the received echoes for normal quad polarised radar. The ranging 
pulse is first transmitted on one polarisation. All the returns from that ranging pulse on 
the two orthogonal polarisations are received before the next ranging pulse is transmitted; 
this time the orthogonal polarisation is used in transmission. All the echoes are again 
received before the next ranging pulse is transmitted, but again with the polarisation 
reversed. 

Such a sequence uses a single transmitter which has its output alternated between 
antennas that radiate on the orthogonal polarisations, and uses receiving antennas also 
sensitive to the orthogonal polarisations. While that has a number of hardware design 
advantages it means that all of the returns from a given ranging pulse have to be received 
in half the time interval between transmitted pulses of the same polarisation. As a 
consequence, from (3.18a), only half the swath width is possible compared with that if 
the full inter-pulse interval were available. 

In order to achieve a better swath width, and coincidentally reduce average power 
requirements and simplify transmitting hardware, compact polarimetric systems have 
been proposed. Some are as simple as dual polarised radars in which just one polarisation 
is transmitted and both received. However, systems that are called partially polarimetric 



104 Remote Sensing with Imaging Radar 

offer better prospects for understanding target behaviour by more closely approximating 
full quadrature polarisation. 

 
 
Fig. 3.27. The co-polarisation responses at C, L and P bands for three different regions in a 
AirSAR image (Carinda, NSW, Australia); the image has been displayed using VV polarisations 
with C band as red, L band as green and P band as blue, while the axes have been omitted for 

™ (ITT Visual Information Solutions) 
 
 

The π/4 system20 proposes transmission with a linear polarisation at the 45o orientation, 
mid-way between vertical and horizontal polarisation, as shown in Fig. 3.29. Reception 
uses both horizontal and vertical polarisations. If we refer to the incident (transmitted) 

                                                 
20 See J-C Souyris, P.I.R. Fjortoft, S. Mingot and J-S Lee, Compact polarimetry based on symmetric 
properties of geophysical media: the π/4 mode, IEEE Transactions on Geoscience and Remote Sensing, vol. 
43, no. 3, March 2005, pp. 634-646. 
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signal as i
DE (for diagonal polarisation) then by resolving it into its horizontal and vertical 

components we can see that the backscattered (received) horizontal and vertical signals in 
terms of the symmetric scattering matrix of the target are given by 
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so that the effective scattering matrix elements recorded are 
 
 HVHHHD SSS +=  (3.79a) 
 HVVVVD SSS +=  (3.79b) 
 
 

 
 
Fig. 3.28. The sequence of transmitted ranging pulses and received echoes in a fully quad-
polarised imaging radar 
 
 
The factors 0.707, which come from the trig functions of 45o, are generally ignored since 
they don’t influence target properties, although they will be important for system level 
power considerations. As expected from the limited nature of the system (one transmit 
polarisation) (3.79) shows that we cannot recover the full scattering matrix for the target 
but only combinations of its elements. Provided the targets of interest are restricted to 

target discriminator21. 
An alternative partially polarised system, referred to as having compact hybrid polarity, 

proposes circular transmission with linear horizontal and vertical reception as shown in 
Fig. 3.30; left and right circular reception would also be possible22,23. If right circular 

                                                 
21 Ibid. 
22 See R.K. Raney, Hybrid-polarity SAR architecture, IEEE Transactions on Geoscience and Remote 
Sensing, vol. 45, no. 11, pt 1, November 2007, pp. 3397-3404. 
23 Note also that a fully quad-polarised system has been proposed based on alternate transmission of right 
and left circularly polarised pulses followed by vertical and horizontal linear reception; see R.K. Raney, 
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polarisation were transmitted then from (2.25) its equivalent horizontal and vertical 
components are 2/RH EE = and 2/RV jEE −= so that the backscattered horizontal 
and vertical components are 

 
 RHVHH

b
H EjSSE )(707.0 −=  

 RVVHV
b
V EjSSE )(707.0 −=  

 

 
 HVHHHR jSSS −=  (3.80a) 
 VVHVVR jSSS −=  (3.80b) 
 

 

 
 
Fig. 3.29. The fields in π/4 compact polarimetry 
 

 
3.24  Faraday Rotation 
 
Having covered the concept of polarisation and scattering matrices we can now look at a 
peculiar influence of the atmosphere on radio wave propagation that has implications for 
radar remote sensing. 

In the upper atmosphere there is a region of ionisation stretching from about 80km to 
400km. Known as the ionosphere, it is formed by solar photons disassociating 
atmospheric molecules thereby creating free electrons that can interact with the passage 
of a radio wave. Because it is sunlight dependent the properties of the ionosphere vary 
continuously, and certainly with time of day, season and with the long and short term 
cycles of the sun, most notably the 11 year sunspot cycle. Because of the mix of 
atmospheric constituents and photon energies, the ionosphere breaks up into a number of 
layers of different electron densities24. Those layers are well known to the HF radio 
community since they are used to refract radio waves around the earth’s curvature. In fact 
for frequencies at HF and lower the ionosphere will not permit the transmission of radio 

                                                                                                                                                  
Hybrid-quad-pol SAR, Proceedings of the International Geoscience and Remote Sensing Symposium 2008 
(IGARSS08), vol. 4,  7-11 July 2008 pp. 491- 493 Boston 2008. 
24 See J.A. Richards, Radio Wave Propagation: An Introduction for the Non-Specialist, Springer, Berlin, 
2008. 
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waves; all energy transmitted upwards towards the ionosphere will be returned to the 
earth. As a consequence, any transmission to spacecraft has to happen at frequencies high 
enough that the ionosphere appears transparent. Similarly, any transmission from a space 
vehicle to the earth has to be at VHF and higher in order to pass through the ionosphere.  

 
 
Fig. 3.30. The fields in hybrid compact polarimetry 
 
 

Fortunately, the frequencies used in radar remote sensing are high enough that the 
ionosphere generally is not a problem and we can image from space. At the lower end of 
the frequency ranges of interest however, even though the signal passes though the 
ionospheric layers, there is an effect on the plane of polarisation of the wave. It will suffer 
Faraday rotation. The rotation can be quite severe at P and L bands but is much less of a 
problem at C and X bands. 

Faraday rotation is the result of a wave propagating in a medium – such as the charged 
environment of the ionosphere – in the presence of a magnetic field (such as the earth’s 
magnetic field) which has a component parallel to the direction of propagation. The 
degree of rotation can be expressed in several forms, but if the earth’s magnetic field can 
be assumed not to change over the path travelled by the radar wave in the ionosphere then 
we can express the rotation angle as25 

 2λK=Ω  (3.81a) 
 

where dsNxK
s

e∫−= χcos1062.2 13B  (3.81b) 

 
in which Ne is the electron density of the ionosphere (which varies with height and 
position) and the integration is over the path travelled by the ray through the ionosphere. 
Bcosχ is the component of the earth’s magnetic field parallel to the direction of 
propagation in which B is the local value of the magnetic field and χ is the angle between 
a normal drawn to the propagation direction and the direction of the field. The integral of 
the electron density over the propagation path is referred to as the total electron count 
(TEC). 

The angular sense of the rotation depends upon the direction of the parallel component 
of the magnetic field compared with the direction of propagation. If a ray passes through 
the ionosphere in both directions, such as to the ground on radar transmission and from 

                                                 
25 See W.B. Gail, Effect of Faraday rotation on polarimetric SAR, IEEE Transactions on Aerospace and 
Electronic Systems, vol. 34, No. 1, January 1998, pp. 301-308, and A. Freeman and S. Saatchi, On the 
detection of Faraday rotation in linearly polarized L-band SAR backscatter signatures, IEEE Transactions 
on Geoscience and Remote Sensing, vol. 42, No. 8, August 2004, pp. 1607-1616. 
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the ground after scattering, the rotations will add. The sign of the rotation angle Ω is 

towards the earth, x is the direction of horizontal polarisation and y is the direction of 
vertical polarisation. 

Consider now the impact of Faraday rotation on recorded radar imagery. First, for a 
simple single linearly polarised system the rotation will lead to a loss of signal at the 
receiver since the backscattered polarisation no longer aligns fully with the radar antenna, 
as seen in Sect. 2.16. How severe is the effect? Note from (3.81a) that it is strongly 
dependent on wavelength. Freeman and Saatchi26 estimate that the worst case one-pass 
rotations are about 2.5o at C band, 40o at L band and 320o at P band. In general we can 
assume that the effect is negligible for C band and higher frequencies, important at L 
band and quite severe at P band, requiring correction. For a multi-polarised system 
Faraday rotation will cause significant cross-talk – i.e. coupling – among the polarisations 
as the following demonstrates. 

Using (2.20), and noting that propagation will be out of the page in a right hand 
coordinate system with the axes shown in Fig. 2.20, the effect of Faraday rotation (on 
both transmission and reception) on the observed scattering matrix can be written 
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in which we have assumed symmetry (reciprocity) for the target scattering matrix. On 
expansion this shows that the observed scattering matrix is 
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which demonstrates explicitly the coupling between polarisations and the loss of 
symmetry (since 2112 XX ≠  ). If Ω=0 X reduces to S. 

In (3.82) we have assumed that the radar system is properly calibrated and that any 
noise is negligible; otherwise the observed matrix X will contain additive noise terms and 
other matrices that multiply (distort) the observations resulting from mis-calibration. If 
we assume that calibration is good and noise is not a problem we can, in principle, 
recover the actual scattering matrix by inverting (3.82a) provided we know the rotation 
angle Ω: 
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26 Freeman and Saatchi, loc cit. 

positive in the northern hemisphere and negative in the southern hemisphere based on a 
right handed coordinate system in which, for transmission, z is the propagation direction 



CHAPTER 4 
 
CORRECTING AND CALIBRATING RADAR IMAGERY 
 
 
 
 
 
As with any imagery acquired by airborne and spacecraft sensors the data recorded by 
imaging radar can be distorted in both brightness and geometry as the result of a number 
of environmental and system factors. In this Chapter we explore the most significant 
sources of radiometric and geometric distortions and treat methods for removing, or at 
least minimising, them. We commence with errors in geometry. 

Closely related to distortions in brightness is the need to calibrate data, including the 
need to ensure that polarimetric responses are cross-calibrated. Calibration methods are 
also treated in this Chapter. 
 
 
4.1  Sources of Geometric Distortion 
 
4.1.1  Near Range Compressional Distortion 
 
Equation (3.2) shows that the ground range resolution of an imaging radar depends on the 
reciprocal of the sine of the local angle of incidence. That means that the minimum 
resolvable region on the ground in the across track direction is larger for smaller angles of 
incidence than it is for larger angles, as seen in Fig. 4.1. In the azimuth (along track) 
direction the minimum resolvable distance is the same at near and far range, and we need 
not consider it further. 
 

 
 

Fig. 4.1. Resolution of the image into range cells defined by the ground range resolution of the 
radar system, and the compression of near range cells when displayed or printed 

near range far range 

ground resolution 

display 
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Even though range resolution varies across the swath that is not the way the data is 
generally represented. Imagery is most often displayed using uniformly-sized pixels on a 
uniform grid of pixel centres, either on a computer screen or in hard copy form. 
Consequently, the larger regions of ground covered by a resolution cell at near range are 
displayed with the same dimensions as smaller regions on the ground resolved at far 
range. As a result the ground detail at near range is compressed into a smaller cell in 
comparison to the detail at far range, as illustrated in Fig. 4.1. 

For imaging radars with a large change in local incidence angle across the swath (most 
notably aircraft systems) the compression of detail at near range has a dramatic effect on 
the range appearance of the image. That is perhaps best illustrated by boundaries or roads 
at angles to the flight line. Consider a region on the ground as shown in Fig. 4.2a in which 
there is a square of grid-like feature such as field boundaries.  Within each of the square 
cells there could be many pixels. Imagine also that there are some diagonal lines as shown 
– they could be roads connecting across field corners. Fig. 4.2b shows how that region on 
the ground will appear in recorded and displayed radar imagery. Not only do the near 
range features appear compressed but linear features at angles to the flight line appear 
curved. Indeed the combined effect is as if the image were rolled backwards on the near 
swath side. If the variation of incidence angle is not great across the swath then the effect 
will be small, particularly if the radar operates at higher incidence angles. An actual 
example of near range compressional distortion is seen in the aircraft radar image shown 
in Fig. 4.3a. 

This type of distortion also occurs for wide field of view optical systems; however it 
then happens at far range where the spatial resolution is poorest. Because optical scanners 
work to both sides of the flight line the distortion appears on both edges, leading to what 
is known as “S-bend” distortion in optical scanner imagery1. 

 

 
  

Fig. 4.2. (a) Region on the ground consisting of rectangular fields and diagonal features and (b) 
how it would appear in radar imagery subject to near range compressional distortion 

 
 
Since near range compressional distortion is the result of the sine of the local angle of 

incidence in (3.2) it can easily be corrected as seen in Fig 4.3b, either by compensating 
for the mathematical dependence on θ in (3.2) or by resampling the image in the range 
direction on to a regular grid. Regrettably the low level of detail at near range resulting 
                                                 
1 See J.A. Richards and X. Jia, Remote Sensing Digital Image Analysis, 4th ed., Springer, Berlin, 2006, 
Chapt. 2. 
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from the large resolution cells cannot be improved and, notwithstanding the good 
geometry, the detail at near range is usually still poor in a geometrically correct product. 
 

 
 
Fig. 4.3. (a) Aircraft radar image data showing near range compressional distortion and (b) 
corrected version; the white lines emphasise the degree of distortion and correction (imagery 
courtesy of NASA JPL) 
 
 
4.1.2  Layover, Relief Displacement, Foreshortening and Shadowing 
 
Consider how a tall tower would appear in the range direction in a radar image with 
sufficient resolution, as illustrated in Fig. 4.4. Because the radar echo from the top of the 
tower arrives back at the radar before that from the base (it travels a shorter two way 
path) the tower appears to lie over towards the radar. To see that effect most clearly it is 
of value to draw concentric circles from the radar set as indicated. Any points lying on 
one of those circles will be at the same slant range from the radar and thus will create 
echoes with the same time delay. By projecting the circle which just touches the top of 
the tower onto the ground it is seen that the tower is superimposed on ground features 
closer to the radar set than the base of the tower. For obvious reasons this effect is 
referred to as layover. It is interesting to recall that in optical imagery vertical objects 
appear to lie away from the imaging device since they are superimposed on features 
further from the device than the base (just as we see them in everyday life). 

(a) 

(b) 
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Fig. 4.4. Illustration of why tall objects lay over towards the radar 
 
 

Now consider how a vertical feature with some horizontal dimension, such as the 
model mountain depicted in Fig. 4.5, will appear. Using the same principle of concentric 
circles to project the vertical relief onto the horizontal ground plane, several effects are 
evident. The front slope is foreshortened and the back slope is lengthened. In combination 
these two effects suggest that the top of the mountain is displaced towards the radar set. 
When displayed in ground range format, as shown, they again give the effect that the 
mountain is lying over towards the radar. If we know the local height then the amount of 
relief displacement can be calculated. In principle, therefore, the availability of a digital 
terrain map for the region should allow relief displacement distortion to be corrected 
 

 
 
Fig. 4.5. Illustration of relief displacement: foreshortening of front slopes and lengthening of back 
slopes 
 

As well as causing range displacement effects, topographic relief also manifests itself 
in a modification of the brightness of the image. On front slopes the local angle of 
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incidence will be smaller than expected and thus the slopes will appear bright. On back 
slopes the angle of incidence will be larger than expected making them darker than would 
otherwise be the case. Fig. 4.6 shows why that happens, using typical scattering 
characteristics of a surface. Fig. 4.7 demonstrates the effect using a Seasat radar image for 
which the local incidence angle is 20o. At such small angles relief distortion can be quite 
severe in mountainous terrain. 

 
 
 

 
 
Fig. 4.6. Demonstration of brightness modulation caused by terrain relief and the angular 
dependence of surface backscattering coefficient 
 
 

Now consider the potential for shadowing, as seen in Fig. 4.8. Shadowing is absolute in 
radar imaging and cannot be corrected; by contrast, for nadir viewing optical sensors it is 
possible sometimes to detect measurable signals in shadow zones because of atmospheric 
scattering of incident radiation into the shadow regions at (short) optical wavelengths. 
Radar shadowing is likely to be most severe in the far range and for larger angles of 
incidence, whereas it is often non-existent for smaller incidence angles. 

We can now draw some conclusions from our observations so far that are of value in 
choosing look (incidence) angles suited to particular purposes: 

• For low relief regions larger look angles will emphasise topographic features 
through shadowing, making interpretation easier. 

• For regions of high relief larger look angles will minimise layover and relief 
distortion, but will exaggerate shadowing. 

• Relief distortion is worse for smaller look angles. 
• From spacecraft altitudes reasonable swath widths are obtained with mid range look 

angles (35° − 50°) for which there is generally little layover and little shadowing. 
Look angles in this range are good for surface roughness interpretation. 

 

4.1.3  Slant Range Imagery 
 

Recall from (3.1) that the radar system fundamentally resolves detail in the slant range 
direction. But we, as users, are interested in imagery that lies along the ground plane, 
leading to (3.2) as the range resolution expression most often used. As a result we create 
radar images that are projections onto the ground plane, as we must of course if we want 
them to be as close, planimetrically, to the actual detail on the ground, or if we want to 
join images side-by-side to form mosaics. 
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Fig. 4.7. Example of significant relief distortion of mountainous regions at low incidence angles; 
the image was acquired by the Seasat SAR in 1978 of the Appalachian mountains in 
Pennsylvania; a Landsat optical image is shown for comparison; note that the slopes facing the 
radar illumination direction appear bright, whereas those away from the illumination appear 
darker; note also the rather severe terrain distortion evident within the small circle2 (from J.P. 
Ford et al., Seasat Views North America, the Caribbean, and Western Europe with Imaging 
Radar, JPL Publication 80-67, 1 November, 1980) 
 
 

It is possible, nevertheless, to create an image product that represents detail on the slant 
plane, rather than the ground plane. This is illustrated in Fig. 4.9. In such a view the 
image has range coordinates measured along the slant direction rather than along the 
ground. A simple way to envisage the slant plane is to project it out to the side of the 
platform as shown. An advantage of slant range imagery is that it doesn’t suffer the near 
range compressional distortion encountered when the ground range form is used; this can 
be appreciated by looking at the series of full concentric rings in the figure, the distance 
between pairs of which represent the slant range resolution of the system. The dotted 
curves illustrate that relief distortion occurs in both forms of imagery. 

                                                 
2 The distortions can be assessed qualitatively by viewing the region in Google EarthTM or Google MapsTM. 
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Fig. 4.8. Shadows in radar imagery 
 
 
4.2  Geometric Correction of Radar Imagery 
 
4.2.1  Regions of Low Relief 
 
When the influence of relief is small the severe geometric distortions of layover, 
foreshortening and lengthening of back slopes are not significant. The remaining 
geometric errors are near range compressional distortion and the spatial errors associated 
with platform motion and attitude variations, and earth rotation, much the same as with 
optical remote sensing data. 

Those errors can be corrected, first, by removing compressional distortion via a 
knowledge of the local angle of incidence, and its variation across the swath, followed by 
the use of control points and mapping polynomials3. Control points include natural and 
cultural features that can be identified both on the image data and a map of the region 
covered by the image. 

Because of the presence of speckle in radar imagery (see Sect. 4.3.1) it is often difficult 
to locate naturally occurring control points to the required degree of accuracy. As a result, 
artificial control points are often created, prior to recording the image data, by deploying 
devices that will give recognisable returns in the received imagery. If the positions of 
those devices are accurately known, usually through having been determined using 
GPS/GNSS techniques, then rectification is assisted. 

Two types of device can be used for that purpose, both of which return incident radar 
energy to the platform. One is passive, similar to optical retro-reflectors used to reflect 
laser beams. The other is active, working on the same principle, but incorporating 
electronics to amplify and re-transmit a calibrated level of power back to the platform. 
 
 

                                                 
3 See J.A. Richards and X. Jia, loc cit. 
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Fig. 4.9. Slant plane and ground plane views in the range direction   
 
 
4.2.2  Passive Radar Calibrators 
 
Any passive device that is capable of reflecting the incident microwave energy back to 
the radar could be used as a point of spatial reference in an image. A flat metal plate is a 
simple example. However, it must be aligned very accurately at right angles to the 
incoming beam for it to be of value. Instead a metallic corner reflector is generally 
preferred. There are four types in common use: the dihedral, the triangular trihedral, the 
square trihedral and the circular trihedral reflectors shown in Fig. 4.10. As well as 
providing a spatial reference, the radar cross sections of those devices are well known so 
that, in principle, they could also be used to calibrate the received power level in the radar 
response. Table 4.1 summarises the properties of the four devices. Their radar cross 
sections indicate the strength of the response they will provide to the radar set if properly 
aligned; their beamwidths indicate the range of angles over which their responses remain 
above half that at bore sight (i.e. less than 3dB down on maximum4). 
 

 
 
Fig. 4.10. Passive corner reflectors used for geometric correction and calibration of radar imagery  
 
 

The dihedral corner reflector must be aligned so that the boundary between its 
horizontal and vertical planes is parallel to the flight line of the platform; only then does it 
                                                 
4 “3dB down” means the angle away from bore sight at which the response is -3db compared with the 
maximum. From the definition of the decibel we can see that -3dB is equivalent to a ratio of 0.5. 
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provide good reflection over a range of angles about bore sight (the angle of view for 
which it appears symmetrical). Trihedral corner reflectors are more forgiving in their 
alignment and will give a moderately good return off-bore sight in both directions. 
 
 
Table 4.1.  Properties of corner reflectors 
 

Device Maximum radar cross section 3dB beamwidth 

dihedral 2
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2

4
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λ
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32o cone angle 
about bore sight 

 
 

 
4.2.3  Active Radar Calibrators (ARCs) 
 
Instead of relying on passive reflection of the incident radar beam for localisation and 
calibration, it is possible to build a radio receiver which detects the energy and then 
transmits back to the radar an amplified signal at a known level and thus equivalent radar 
cross section. Such a device is generically called a transponder, and is shown in Fig. 4.11. 
Its main benefits are that the signal transmitted can be much larger than that scattered by 
passive devices and alignment problems are not so severe since simple communications 
antennas, with moderately broad beams, can be used both for reception and transmission. 
In radar remote sensing the device is generally referred to as an active radar calibrator 
(ARC). 

One matter that is sometimes important with radar transponders is that the electronics 
between the receiving and transmitting antennas introduces a small time delay into the 
returning signal, additional to that resulting from the distance between the radar set and 
the target. Measurement of the combined time delay would therefore suggest that the 
transponder is further from the radar set in range, by an unknown amount, than it really is. 
To overcome that uncertainty, a deliberate delay element is sometimes incorporated into 
the transponder, as seen in the figure, so that the overall time delay from reception at the 
transponder to transmission of its response is known exactly and corresponds to a fixed 
distance in slant range. Any range measurements from the radar to the ground can then 
have that known delay subtracted to give the correct slant range. Interestingly, if the 
transponder radiates on a slightly different carrier frequency the ARC will appear in a 
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different position in azimuth. That effect can be employed to shift the ARC response to an 
area of an image where it can more easily be seen5. 

Transponders are designed to have a specified radar cross section, σ. From (3.33) it can 
be seen that radar cross section, normally a passive quantity, is related directly to the ratio 
of the power received at the radar set to that transmitted by: 
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4.2.4  Polarimetric Active Radar Calibrators (PARCs) 
 
The polarisation of the receiving and transmitting antennas in an active radar calibrator 
can be different. For example, the device might receive horizontally and transpond 
vertically. In such a case the transponder, known as a polarimetric active radar calibrator 
(PARC), can be used to calibrate cross-polarised (HV, VH) imagery. 

 

 
 
Fig. 4.11. Schematic of an active radar calibrator 

 
 
4.2.5  Regions of High Relief 
 
Figs. 4.5 and 4.9 show that topographic features are distorted planimetrically in both 
ground and slant range imagery because distance in the range direction is derived from 
the measurement of time delay.  More particularly, we see from the manner in which the 
apex of a feature is shifted that there is a bunching towards the radar in the vicinity of 
regions of localised relief which can be so severe on occasions that fore slopes could 
compress to a single range position. Fortunately the shift towards the radar is easily 
modelled. As seen from Fig. 4.12 the distortion (shift) in range towards the radar is  
 
 θcothr =Δ  (4.1) 

                                                 
5 See M. Shimada, H. Oaku and M. Nakai, SAR calibration using frequency-tunable active radar calibrators, 
IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 1, pt. 2, January 1999, pp. 564-573. 
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in which θ is the angle of incidence measured with respect to the assumed horizontal 
surface; to avoid confusion with the local angle of incidence formed with sloping terrain, 
we sometimes refer to θ as the system angle of incidence. Note that there is no shift 
distortion in the azimuth direction. 
 
 

 
 
Fig. 4.12. Extent of distortion in the range position of relief above a datum 
 
 

If we had available a digital terrain map (DTM) of the region covered by the radar at 
about the same spatial resolution, so that we were able to determine the local height of 
each pixel with reference to an appropriate datum, then we would be able to correct the 
local distortion resulting from relief. The difficulty of course is associating the pixel with 
the respective position on the terrain map to establish its elevation in the first place. 
Fortunately, though, we can actually simulate a radar “image” using the DTM data and 
our knowledge of terrain distortion in the range direction described by (4.1). That entails 
relocating the individual cells (or points) in the DTM according to (4.1). The artificial 
image can be shaded using a model of how the scattering coefficient of a surface varies 
with the local incidence angle at each cell given by the local slope calculated from the 
DTM (see Fig. 4.6). An alternative shading strategy is to assign brightness proportional to 
the cosine of the local angle of incidence. This will give maximum brightness to a facet 
facing the radar, with brightness gradually diminishing as the angle increases. 

With an artificial image generated in this manner it is usually possible to recognise 
mutual features in that image (which is really a distorted DTM) and the recorded ground 
range real radar data. Using those features the two can be registered, after which the 
distortions in range can be removed. 

While the foregoing is the principle of correcting imagery in the range direction in 
regions of high relief, the approach generally employed uses slant range imagery in the 
following manner. An artificial slant range image is created by computing the slant range 
to each cell in the DTM, using its height information and its position referred to the 
platform as shown in Fig. 4.13, according to 

 
 22 )()( ijijij xXhHR ++−=  (4.2) 

 
Again, the artificial image is shaded using the cosine of the local angle of incidence. It is 
then possible to identify common control points in the artificial and real slant range 

θ

θ
h 

Δr
displacement of the 
apex planimetrically 

assume the 
wavefront is plane 

system 
incidence 
angle 

Δr
h tanθ=

local 
incidence 
angle 



120  Remote Sensing with Imaging Radar 

images. Those control points only need to allow a relationship between the range 
positions of features in the two images to be established, since terrain effects do not 
distort the azimuth direction. If the range coordinate for the jth resolution cell in the ith 
scan line in the artificial image is called Rij, and the range coordinate in the actual radar 
image is called ρij then, using the control points, we can estimate the constants a and b 
that relate the two coordinates: 

 baRijij +=ρ  (4.3) 
 

We then proceed in the following manner. For each address in the DTM we compute the 
equivalent slant range as in Fig 4.13. Substituting that value in (4.3) allows the 
corresponding radar pixel to be identified. The brightness of that pixel is then placed at 
the DTM address. By doing that over all cells in the DTM a radar image is built up using 
the recorded radar data but with the DTM coordinates as the map base. 

Fig. 4.13. Geometry for using a DTM to generate an artificial radar image 
 
 
4.3  Radiometric Correction of Radar Imagery 
 
4.3.1  Speckle 
 
One of the most striking differences in the appearance of radar imagery compared to 
optical image data is its poor radiometric quality, caused by the overlaid speckled nature 
of the radar data. Fig. 4.14 shows a portion from an image of a fairly homogeneous region 
in which the speckle clearly affects the ability to interpret the data. 

Speckle is a direct result of the fact that the incident energy is coherent – that is, it can 
be assumed to have a single frequency and the wavefront arrives at a pixel with a single 
phase. If there were a single large dominant scatterer in the pixel, such as a corner 
reflector or building, then the returned signal would be largely determined by the 
response of that dominant element, and any scattering from the background would be 
negligible. More often, though, the pixel will be a sample of a very large number of 
incremental scatterers; their returns combine to give the resultant received signal for that 
pixel. Such a situation is illustrated in Fig. 4.15. 
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Fig. 4.14. Radar image showing the effect of speckle caused by the coherent interaction of the 
incident radiation with many incremental scatterers within a resolution cell. 
 
 

Each of the individual return signals from within the pixel, received back at the radar, 
can be expressed in the convenient exponential form (shown here as the kth signal): 
 
 )(exp 0 kkk tjEe φω +Φ+=  
 
 

 
 
 
Fig. 4.15. Simulating the generation of speckle through the interference of a very large number of 
rays scattered from within a pixel 
 
 
in which the amplitude Ek is directly related to the scattering properties of the pixel 
(strictly to the square root of the scattering coefficient) and the phase angle Φ0+φk is the 
result of the path travelled by that particular ray on its journey from the transmitter to the 
receiver. The common phase angle, Φ0, corresponds to the average path of length R. The 
combined signal at the radar receiver is the sum of all the rays shown in Fig. 4.15: 
 
 k

k
k

k
kkrec jEtjtjEE φωφω ∑∑ Φ+=+Φ+= exp)(exp)(exp 00  (4.4) 

 
The term outside the sum is common to all rays and thus does not affect how they 
combine. Only their individual amplitudes and relative phases are important in that 

individual pixels can range from 
black to white as a result of the 
multiplicative effect of speckle 
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respect. For simplicity suppose all the individual scatterers in Fig. 4.15 are identical so 
that the amplitudes in the last expression can all be considered the same and equal to E. 
After ignoring the common phase term (4.4) becomes 
 
 ∑∑∑∑ +=+==

k
k

k
kk

k
k

k
krec jEEjEjEE φφφφφ sincos)sin(cosexp   (4.5) 

 
which can be written 

 ψj
rec eQIEjQIEE 22)( +=+=  with 

I
Q1tan−=ψ  (4.6)  

 
The resultant phase angle ψ is not important, since again it refers to the pixel as a whole, 
but the magnitude is. We can write the power density received at the radar as 
 
 )( 2222 QIEEp recrec +==  (4.7) 
 
(ignoring the impedance of free space term, as is often done in these sorts of calculation). 
What we need to do now is analyse 22 QI + because that is the source of speckle. 

It is reasonable to assume that the incremental scatterers in Fig. 4.15 are randomly 
distributed over the pixel. As a result the phase angles φk in (4.5) can be assumed to be 
uniformly distributed over the allowable range of 0 to 2π. Under that assumption we can 
simulate the brightnesses (power density) of a group of adjacent image pixels, within each 
of which (4.7) applies. For this exercise we assume that there are 50 scatterers in each of 
20x20 pixels, with the phases uniformly distributed within each pixel. Fig. 4.16 shows 
four different results for the same set of pixels. 

One way of reducing the effect of speckle is to average over several supposedly 
independent images of the same region. We can demonstrate the benefit of doing so by 
using the four images of Fig. 4.16. Their average is shown in Fig. 4.17 in which the 
variation of the speckle is reduced. While this is not easily discerned visually from the 
image itself it is readily apparent in the computed standard deviation of the speckle. 

Table 4.2 shows the mean and standard deviation of the aggregate of the four sets of 
pixels in Fig. 4.l6 and the mean and standard deviation of the averaged image of Fig. 
4.17. Several points are noteworthy. First, the standard deviation of the averaged image is 
half that of the original speckled images. Secondly, the mean and standard deviation of 
the original speckled data are the same. 

 
 

Table 4.2. Means and standard deviations of speckle 
 

 Raw speckle images 
Fig. 4.16 

Averaged speckle image 
Fig. 4.17 

Mean 50.70 50.70 

Standard Deviation 50.05 25.42 
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Fig. 4.16. Speckle images generated from (4.7), the magnitude squared of (4.5) 
 
 

 
Fig. 4.17. Average of the four images shown in Fig. 4.16 
 
 

These observations are readily explained by the statistics of the speckle itself. Fig. 4.18 
shows histograms for the distributions of pixel brightness for the aggregated four sets of 
speckle images and the histogram for the averaged image of Fig. 4.17. As observed, the 
raw speckle data has an exponential-like distribution. The density function for the 
exponential probability distribution is 
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 ∞<≤= − xexf x 01)( /γ

γ
 (4.8) 

 
where γ is called the scale parameter of the distribution; it governs the rate at which the 
function falls off, and is numerically equal to the number of scatterers per pixel used to 
generate a sample of speckle (in this case 50). It is a property of the exponential 
distribution that the standard deviation equals the mean and is given by γ. Note that the 
distribution doesn’t exist, or is zero, for negative x. 

The histogram of the averaged data is the distribution of a random variable that is, 
essentially, one quarter of the sum of four exponentially distributed random variables. 
The distribution function of the sum of N exponential samples taken from the same 
distribution (with scale parameter γ) is a gamma distribution6 with density function 
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Γ(N) is the gamma function which, for N real, is (N-1)!. If N=1, and noting that 0!=1, the 
gamma distribution reduces to the exponential, as required. The mean and standard 
deviations of the gamma distribution are γN  and γN , so that 
 
 onentialgamma N expμμ =  

 onentialgamma STDEVNSTDEV exp=  
 
Since we have averaged rather than summed the N raw images, these values need to be 
divided by the number of terms so that 
 
 onentialgamma expμμ =  for averaging (4.10a) 
 

 
N

STDEV
STDEV onential

gamma
exp=  for averaging. (4.10b) 

 
Thus the means are the same and the standard deviation of the averaged image is that of 
the raw speckled image divided by the square root of the number of terms that have been 
averaged. In the example here the standard deviation has been halved while the mean is 
the same, demonstrating that the averaging process reduces the variability in brightness of 
the image resulting from speckle. 

In imaging radar systems a number of simultaneously recorded raw images of the same 
region are summed in the above manner to reduce speckle.  In the terminology of radar 
image processing these simultaneous (or sub-) images are called “looks”.  From (4.10b) 
the standard deviation of the speckle will be reduced by the square root of the number of 
looks. Clearly, more looks will reduce the speckle further. We can see how the individual 
looks are created when we examine the formation of SAR images in Appendix D in 
which it will also be seen that look averaging leads to loss of spatial resolution. 

                                                 
6 The gamma distribution is identical to the chi squared distribution in radar studies. 
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Fig. 4.18. Exponential histogram of the raw speckle data at top, and the four look average gamma 
histogram at bottom 

 
 

Speckle is sometimes referred to as a multiplicative noise: in other words every pixel in 
the image has its implicit brightness multiplied by the computed speckle for that pixel7.  
To see that simply return to (4.7) and recognise that I2+Q2 is a variate drawn from an 
exponential distribution with mean γ, as just demonstrated, where γ  is the number of 
samples within the pixel used to generate the speckle outcomes in Fig. 4.16. Let this 
variate be called sγ and note that it can be written as 

 
 ss γγ =  
 

in which s is an exponential variate drawn from a distribution with unity mean (and thus 
unity standard deviation). Using this expression for the samples of I2+Q2 we can write 
(4.7) as 
 sEprec

2γ=  (4.11) 
 
Since γ is numerically equal to the number of incremental scatterers within the pixel and 
|E|2 is the power density received from one incremental scatterer then γ|E|2 is the power 

                                                 
7 Speckle is erroneously referred to as noise but it is in reality just the way the reflections appear because of 
irradiation with coherent energy, as outlined in this section.  It is not imposed noise in the sense used in 
signal transmission. 
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density received from the full pixel, which will be a function of the scattering properties 
of the surface being imaged. We could write (4.11) as  
 
 spp pixelrec =  (4.12) 
 
which demonstrates explicitly that the received power density is that from the pixel 
(which is really what we want) multiplied by an exponential variate from a distribution 
with unity mean and standard deviation  and which exists over the range [0,∞). 

Although derived on the basis of a single pixel, within which the scattering properties 
do not vary, (4.12) applies in general to each of the pixels in a homogeneous region of 
image data. If we assume that the pixels within that region are by and large composed of 
the same scattering material then the only substantive differences among them result from 
the different values of s, drawn randomly from the exponential distribution. 

It is the standard deviation of the speckle term that causes the noisy appearance of a 
radar image. As seen in the example above, averaging the four separate images reduces 
the standard deviation.  We can express this also in terms of the signal to “noise” ratio of 
the image. From (4.12) the signal level is the average value (mean) of the received power 
density. Since the speckle has unity mean, the mean signal level is the same as the 
average pixel power density. The “noise” in the received signal is the standard deviation 
of the signal, which is the speckle standard deviation multiplied by the average pixel 
power.  Given that the speckle standard deviation in (4.12) is also unity, then the signal to 
noise ratio of a radar image that has not been processed to reduce speckle is 
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On the other hand, from (4.10) we can see that the signal to noise ratio is improved by 
look averaging: 
 imagelooksingleimageaveragelookN SNRNSNR x=  
 
In the example in Figs 4.16, 4.17 we have examined speckle properties using (4.7); that 
assumes that the image product of interest is expressible in terms of power density (or 
power at the terminals of the receiving antenna) and thus is directly related to scattering 
coefficient. Some image products are in amplitude rather than intensity form, such as the 
type used, in principle, for polarisation synthesis. They are described by (4.6). It is of 
value to know the statistics of the speckle in this field (or received voltage) version. Fig. 
4.19a shows the histogram of 22 QI +  using the data of Fig. 4.16. It has a Rayleigh 
distribution, with density function 

 
22 2/

2)( τ

τ
xexxf −=  (4.13) 

 
where τ is a shape parameter that specifies the mode (the most likely value or maximum 
of the distribution). Since in our case this distribution has arisen as the description of a 
random variable 22 QI + that is the square root of a variable that has an exponential 
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distribution, then it can be shown that 2/2 γτ = . The mean and standard deviation of the 
Rayleigh distribution are given by8 
 

 mean= ττπ 253.1
2

= , standard deviation= ττπ 655.0
2

4
=

−  

 
which, for this example, have the values of 6.30 and 3.21 respectively. 

Amplitude images can also be averaged, or look summed, to reduce speckle; again the 
standard deviation of the speckle diminishes with the square root of the number of looks 
used. Fig. 4.19b shows the speckle histogram that results from averaging the four images 
of Fig. 4.16 in amplitude format. The mean in this case is still 6.30 while the standard 
deviation has been reduced to 1.62. 

 
 (a) (b) 

 
Fig. 4.19. Histograms of the speckle amplitude (a) single look (b) four look 
 
 
4.3.2  Radar Image Products 
 
We can now describe the products likely to be available from radar remote sensing 
missions. We commence by assuming a fully polarimetric radar so that the most general 
product is likely to be the scattering or Sinclair matrix 
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for which SVH=SHV in backscattering. Each of the elements of the scattering matrix is 
complex, and can thus be written 
 
 PQj

PQPQPQPQ esjBAS φ=+=  (4.14) 
 

                                                 
8 Later we will be interested in the standard deviation when the mean is normalised to unity. That value is 
0.655/1.253=0.523. 
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If imagery is provided in the form of a Sinclair matrix or, for a single polarisation radar, 
in terms of the complex scattering coefficient for that polarisation, then it is called single 
look complex, because it is complex and because it has not had speckle reduced through 
look averaging. It is also usually in slant range format and is full resolution, in the sense 
that there has been no trade off of resolution to provide speckle reduction. 

More often than not the recorded multi-polarisation data is used to produce imagery in 
the form of the Stokes scattering operator of (3.72), which is readily suited to polarisation 
synthesis and which can accommodate unpolarised data. 

Single polarisation imagery is often available in the form of the scattering coefficient of 
Sects. 3.14 and 3.15. 

If data has been look averaged in order to reduce speckle then generally it will be 
provided in the form of the scattering coefficient o

PQσ
during SAR image formation, as outlined in Appendix D. If N looks have been used, to 
reduce the speckle by N , and degrade the spatial resolution in azimuth, the available 
data is then said to be N-look imagery. 

Slant to ground range conversion can then be applied to generate products that are able 
to be registered subsequently to a planimetric grid. 

 
 

4.3.3  Speckle Filtering 
 

Even though multi-look radar image products have speckle variance reduced through look 
summing, it is sometime desirable to reduce the speckle further to improve the potential 
interpretability of the data. Data that has been processed as single look (complex) will 
almost certainly require speckle filtering at some stage since the 0dB signal to noise ratio 
is generally too poor in most applications to be usable. 

As seen in the example of Figs. 4.16 and 4.17 averaging is an effective measure to use. 
It is feasible therefore to use simple mean value (box car) smoothing for speckle 
reduction by running a moving template or box over the image, centred on each pixel in 
turn, and then replacing the brightness value of that pixel by the mean value of all the 
image pixels covered by the template9. While effective within homogeneous regions, the 
problem with mean value smoothing is that it blurs edges and generally distorts high 
spatial frequency detail. What is required is a speckle filter that reduces speckle variance 
in the relatively homogeneous regions of an image while preserving edges and 
boundaries. In other words it needs to be adaptive, in that the amount of smoothing it 
applies should vary with position in the image. 

Before proceeding we note that (4.12) is written in terms of the power density received 
at the radar. After calibration that would be expressed in terms either of the elements of 
the scattering matrix (amplitude image) or as a scattering coefficient (intensity or power 
image), noting that the speckle statistics will be either Rayleigh or exponential as 
appropriate . To accommodate both possibilities, we re-write (4.12) as 

 
 xsz =  (4.15) 
 

where x is the pixel property in the absence of speckle, which is what we are trying to 
estimate by speckle filtering; z is the measured property of the pixel and, as before, s is 
the speckle variate. It has a unity mean, but we now describe its standard deviation by the 
                                                 
9 See J.A. Richards and X. Jia, Remote Sensing Digital Image Analysis, 4th ed, Springer, Berlin, 2006, 
Chapt. 5. 

 that results from look summing
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symbol sη , to distinguish it from the special case of an exponential distribution treated 
above. 

Many adaptive smoothing filters seek an estimate of x using the expression 
 
 )(ˆ zzbzx −+=  (4.16) 
 

in which b is an adaptive weighting coefficient and z is the average of the radar 
measurements over a neighbourhood about the pixel whose smoothed value x̂  is sought. 
Equation (4.16) is applied by moving over the image pixel by pixel and examining the 
neighbours in a window centred on the pixel of interest. The window can be any size 
although clearly if it is too large too much averaging will occur whereas if it is too small 
not enough speckle reduction will result. The weight b can be chosen in several ways, 
although the best performance is often obtained when it is calculated as10 
 

 
)var(
)var(

z
xb =  (4.17a) 

 
in which var(z) is the variance of measured radar values within the chosen window about 
the pixel of interest and var(x) is the real underlying variance of the image region in the 
absence of speckle. If the region in which we are interested is very uniform with little 
natural variation then 0→b  and the pixel reflectance gets replaced by the average over 

as in the vicinity of rapidly changing reflectance with position, then var(z)≈var(x) giving 
b=1 and thus the pixel value will be left unmodified – i.e. unfiltered. However, we don’t 
know var(x) in general so it has to be estimated from the available measurements. 

By minimising the mean of the squared error between the estimate and the actual signal 
in the absence of speckle – i.e. })ˆ{( 2xxE −  – it can be shown11 that the reflectance 
variance in the absence of speckle can be estimated by 
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As with z , var(z) is computed over the window about the pixel of interest, while the 
speckle standard deviation sη  is known from the distribution function for s in (4.15). 
Table 4.3 summarises the range of values that are relevant. 

A slightly simpler speckle filter is the Lee Sigma Filter12. It also runs a sliding (usually 
square) window over the image and replaces the central pixel under the window by the 
average of the most likely pixels in the window. The pixels chosen to form the average 
are those lying within two standard deviations (“sigmas” and hence the name of the filter) 
                                                 
10

Transactions on Geoscience and Remote Sensing, vol. 25, no. 5, September 1987, pp. 629-637, and J-S. 

1999, pp. 2363-2372. 
11 See Lee et al, 1999, loc cit. 
12 J. S. Lee, A simple speckle smoothing algorithm for synthetic aperture radar images, IEEE Transactions 
on Systems, Man and Cybernetics, vol. 13, no. 1, January 1983, pp. 85–89. 

the neighbourhood. If, on the other hand, the region possessed significant natural variance, 

 See J.M. Durand, B.J. Gimonet, and J.R. Perbos, SAR Data filtering for classification, IEEE 

Lee, M.R. Grunes and G. de Grandi, Polarimetric SAR speckle filtering and its implication for 
classification, IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, no. 5, pt 2, September 
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of the central pixel’s value. Clearly, for a heterogeneous region fewer window pixels will 
lie within the two sigma range and less averaging will occur, whereas for homogeneous 
regions there will be substantial averaging and thus speckle reduction. Typically window 
sizes of 7x7 to 11x11 are used. 
 
 
Table 4.3 Speckle standard deviation when the speckle mean is unity 
 

 single look N look 

amplitude image 0.523 0.523/√N 

intensity image 1 1/√N 

 
 

While simple in principle, the sigma filter introduces a bias into the estimate used for 
the central pixel13 because the two sigma range about the mean, as a method for capturing 
the 96% most likely pixels, assumes a symmetric, Gaussian distribution from which the 
samples are to be taken. As we have seen earlier, though, speckle statistics can be as 
skewed as exponential, so that an equal two-sided range about the mean will not capture 
the right set of pixels and will lead to a bias in the mean estimate used for the pixel at the 
centre of the window. That is illustrated in Fig. 4.20. 

 

Fig. 4.20. Demonstrating the bias in mean estimate of the exponential distribution (with unity 
mean) when computed over a range centred on the true mean 

 
 
To remove the bias the bounds either side of the mean for including a given percentage 

of the population need to be asymmetric. If the centre pixel (or an estimate of the mean) 
is zx ≈ˆ then let the range of pixel brightnesses to use within the search window to 
compute a new mean for the central pixel be bounded by )ˆ,ˆ( 21 xTxT . The values of the 

                                                 
13

January 2009, pp. 202-213. 
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filtering of SAR imagery, IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 1, pt 2, 
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limit multipliers T1 and T2, which take the place of twice the standard deviation in the 
original sigma filter, are now usually based on 90% of the possible population. They 
depend upon the actual distribution and thus on whether we are dealing with amplitude or 
intensity images and how many looks have been averaged in producing those images. 
Table 4.4 gives values for those limits for a range of image types. Using those values 
leads to better filtering performance overall than when a simple two sigma range is used. 

The Lee Sigma filter can be improved further if, instead of taking the simple mean of 
the pixels selected using the Table 4.4 limits, the estimate of (4.16) is used. However, 
since the distribution function has been truncated using the limits in Table 4.4 the 

optimum minimum squared error measure. Those revised standard deviations are shown 
in the last column of Table 4.4. 

 
 
Table 4.4. Upper and lower limit multipliers on the mean that will enclose 90% of the population 
of the distribution functions relevant to each of the image types listed. Also shown are the revised 
population standard deviation for use with the minimum mean square error estimate of the 
window mean in (4.16) (from J-S. Lee, J-H. Wen, T.L. Ainsworth, K-S. Chen, and A.J. Chen, Improved 

vol. 47, no. 1, pt 2, January 2009, pp. 202-213, ©2009 IEEE) 
 

Image type T1 T2 revised sη  

Intensity 1 look 0.084 3.941 0.8191 

Intensity 2 look 0.221 2.744 0.5699 

Intensity 3 look 0.313 2.320 0.4624 

Intensity 4 look 0.378 2.094 0.3991 

Amplitude 1 look 0.286 2.043 0.4264 

Amplitude 2 look 0.467 1.673 0.2911 

Amplitude 3 look 0.557 1.531 0.2342 

Amplitude 4 look 0.613 1.452 0.2010 

 
A further improvement to the filter results if a better estimate for x̂ could be found to 

use with the limits in Table 4.4. Recall above that the standard estimate used is just the 
value of the recorded brightness of the central pixel in the window – the one for which a 
speckle reduced version is sought. A better estimate is to average the pixels in a smaller 
window around the central pixel, or better still to apply (4.16) in that smaller window but 
with the original standard deviation rather than the adjusted one from Table 4.4. Once that 
estimate is available it can be used with the limits of Table 4.4 and the estimator of (4.16) 
to get an optimal estimate for the central pixel using a larger, say 11x11, window for 
speckle reduction. 

 

standard deviation has to be re-computed so that the estimate in (4.17) remains an 

sigma filter for speckle filtering of SAR imagery, IEEE Transactions on Geoscience and Remote Sensing, 
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(a) (b) 

(c) (d) 

Fig. 4.21. Demonstration of the improved Lee Sigma Filter for speckle reduction using a four 
look amplitude image: (a) original 4 look image, (b) result of applying a simple 5x5 smoothing 
filter, (c) result with the improved Lee filter but with simple 3x3 smoothing filter used to extract 
the estimate of the mean, and with a 6 object threshold used for identifying and isolating bright 
objects and (d) the same as c but with (4.16) used to estimate the mean within the a smaller 
window, and to estimate the new value for the central pixel in the larger window (from J-S. Lee, 
J-H. Wen, T.L. Ainsworth, K-S. Chen, and A.J. Chen, loc cit. ©2009 IEEE) 

 
 
A problem that occurs with all speckle reducing filters is how to avoid averaging out 

bright target responses, such as those from individual trees or buildings. It is not as simple 
as considering individual bright pixels as point targets since they might be the result of a 
mid range background multiplied by a speckle variate from the tail of the speckle 
distribution. A better identifier of likely point targets is to see if there is a set of adjacent 
bright pixels14, since the point spread function of the radar will almost certainly smear the 
energy from a point target over several resolution cells as discussed in Appendix D. Fig. 

                                                 
14 ibid 
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4.21 shows the effect of this modification to the Lee Sigma Filter along with the other 
improvements just outlined. 

Finally, in applying any form of filter for speckle reduction it is important not to disturb 
the brightness relativities in multi-polarisation imagery lest subsequent analysis is 
prejudiced, in the same way that caution is exercised when any form of spatial processing 
is applied to optical imagery – in that case changes in band to band relativities can 
seriously impact on any algorithms to be applied for thematic mapping. 

 
 

4.3.4  Antenna Induced Radiometric Distortion 
 
The ideal pattern projected on the earth’s surface by the real antenna carried on a SAR 
platform would be a rectangle, equal to the swath width in the across track direction and, 
in the along track direction, equal to the length of the synthetic aperture. Of course, real 
antennas cannot generate such precise patterns. Nor can they ensure that the level of 
power density created at the surface is the same over the full extent of the actual projected 
pattern. 

The power density generated by an antenna depends on angular direction. It is 
summarised in a three dimensional polar pattern similar to that depicted in Fig. 4.22. The 
antenna is designed so that the power density generated in the main lobe is optimised 
while any power radiated in the directions of the side lobes is minimised. The relative 
sizes of the side lobes indicate the relative levels of power density created in those 
directions.  Thus if the sides lobes are of any significant magnitude the radar is likely to 
receive measurable echoes from targets different from those intended (in the main beam). 

We will return to that shortly, but it is also important to note that the main lobe profile 
in the so-called elevation plane will lead to non-uniform illumination across the swath. 
Antennas are designed to make that illumination as uniform as possible, often by shaping 
their elevation pattern in a cosecant squared fashion. Any residual variation in the pattern 
across the swath is inverted when the received signal is converted to image form; in other 
words the antenna pattern is used to calibrate the across track radiation to be as uniform 
as possible. That requires an accurate knowledge of the elevation beam pattern, which is 
can be obtained by measurements of the power density at the earth’s surface once the 
platform is in orbit. 

Careful antenna design can minimise side lobes, especially with the array antennas that 
are a feature of SAR systems. However, any residual side lobes can cause distortions in 
brightness of the recorded imagery if scattered power is received on the side lobes in the 
time window within which valid ranging pulses can occur – i.e. in time delays between 
the near and far swaths. Any side lobes forward or aft of the real antenna beam in azimuth 
and any elevation pattern side lobes that might lead to energy reflected from the parts of 
the platform are problematic in this regard. In some radar systems, particularly using 
aircraft, the effect of the side lobes is to create striping in brightness in the near range. 
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Fig. 4.22. Demonstrating how the side lobes of the antenna pattern appear and the effect they may 
have on recorded signal data 
 
 

vertical dimension of the antenna azimuth dimension of the antenna

azimuth

elevation

beam pattern
viewed end on

antenna side
lobes in elevation

low level reflections
received on the along
track side lobes from

adjacent regions of
terrain

elevation pattern of main lobe irradiates the
swath – the actual swath edges are determined
by time gating the received ranging pulses

azimuth pattern of main lobe irradiates the 
synthetic aperture – the actual swath edges 
are determined by the chirp bandwidth used



CHAPTER 5 
 
SCATTERING FROM EARTH SURFACE FEATURES 
 
 
 
 
 
5.1  Introduction 
 
Remote sensing depends upon measuring the reflection or scattering of incident energy 
from earth surface features; emission from a surface is also possible, but that is beyond 
the scope of the discussion in this chapter. 

If the incident energy is in the optical range of wavelengths – i.e. in the visible or near 
infrared – it is scattered largely by the surface of the material being imaged. Sometimes 
there is penetration into a medium, such as short wavelengths into water, but by and large 
the energy received by an optical sensor reflects from surfaces. 

Because the wavelength of the microwave energy used in radar remote sensing is so 
long by comparison to that used in optical sensors1, the energy incident on earth surface 
materials can often penetrate so that scattering can occur from within the medium itself as 
well as from the surface. Indeed, there are several mechanisms by which energy can 
scatter to the sensor, and they can be quite complex. In order to be able to interpret radar 
imagery it is necessary to have an understanding of the principal mechanisms so that 
received energy can be related to the underlying biophysical characteristics of the 
medium. 

It is the purpose of this chapter to provide an introduction to the complex field of 
electromagnetic scattering as an aid to the interpretation of radar image data. A semi-
quantitative treatment is given of a field usually based on electromagnetic theory and 
scattering concepts that are well beyond the level of presentation of this book. 
Nevertheless, our coverage is sufficient to permit the interpretation of radar imagery and 
to allow the development of backscatter models to be understood. 
 
 
5.2 Common Scattering Mechanisms 
 
Figure 5.1 shows the three most common scattering mechanisms that occur in radar 
remote sensing of the land surface. The first is surface scattering (analogous to that in 
optical imaging) in which the energy can be seen to scatter or reflect from a well-defined 
interface. The second is volume scattering, for which there is no identifiable single or 
countable number of scattering sites; instead, the reflections are seen to come from a 

shown in Fig. 5.1: corner reflector behaviour and facet scattering, both of which give 
particularly strong responses in radar imagery. If a surface is very dry the incident energy 
can penetrate, refract and scatter from sub-surface features, as depicted. 

                                                 
1 Radar wavelengths are of the order of 10cm while optical wavelengths are of the order of 1μm – about 
five orders of magnitude different. 

 © Springer-Verlag Berlin Heidelberg 2009 

called strong or hard target scattering and can come in a variety of forms. Two types are 
myriad of scattering elements, such as the components of a tree canopy. The third is 

J.A. Richards, Remote Sensing with Imaging Radar, Signals and Communication Technology,            135
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It is now useful to examine each type of scattering behaviour in a more detail, although 
in a real situation several of the scattering pathways might occur together in a given pixel. 
We will have more to say about that later. We will also comment separately on scattering 
from the sea surface because it can involve a particularly interesting form of coupling of 
the radar energy with the surface. Scattering from sea ice will also be looked at separately 
because it is an interesting composite situation with a long term time variation. 
 

 
 
Fig. 5.1. Common scattering mechanisms 
 
 
5.3 Surface Scattering 
 
5.3.1  Smooth Surfaces 
 
 Consider a smooth surface between the air and a medium with dielectric constant εr. The 
dielectric constant2 of a medium is one of its three electromagnetic properties. The others 
are permeability, which describes its magnetic behaviour but which is less important in 
our studies, and conductivity, which describes its lossiness or tendency to absorb energy 
from the wave as it propagates. We will have more to say about conductivity and losses 
later. For now we will concentrate on dielectric constant. All media have a dielectric 
constant 1≥rε , including a vacuum for which it is unity. Unless air is very moist we 
assume it also has a unity dielectric constant. 

The strength of surface scattering depends on the roughness of the surface and the 
dielectric constant of the material from which scattering occurs. In order to distinguish its 
behaviour better from volume scattering we say that scattering from a surface occurs 
when there is an identifiable discontinuity in dielectric constant (such as from air to 
water, air to soil, etc). In the case of volume scattering such a single abrupt change in 
dielectric constant cannot be distinguished although the individual scattering events 
within the volume occur at many dielectric discontinuities (air-leaves, air-twigs, etc). 

The simplest form of surface scattering is reflection from a smooth surface. 
Understanding how energy interacts with such a surface provides significant insight into 
scattering from natural surfaces. 

Imagine a ray of radar energy normally incident from the air onto the surface, as shown 
in Fig. 5.2a. Not all the incident energy will be reflected. Some will be transmitted into 
                                                 
2 Dielectric constant is also called relative permittivity. A medium’s refractive index is the square root of its 

surface sub-surface volume corner reflector facet 

dielectric constant. 
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the medium. If the transmitted ray does not encounter any subsequent variations in the 
dielectric properties of the medium it will continue to travel forward, gradually being 
absorbed by losses. If the medium contains embedded dielectric discontinuities the wave 
will be scattered, including being backscattered, about which we will have more to say in 
the context of volume scattering.  Alternatively, if it encounters another abrupt dielectric 
constant discontinuity it will be reflected back up through the medium. We will assume 
for the present that the medium below the interface in Fig. 5.2a is homogenous and 
continues to infinity. It is the component reflected from the interface that is of interest 
here since by measuring it we hope to determine the properties of the surface material. 
The reflected power density relative to the incident power density is described by the 
power reflection coefficient 
 2ρ=R  (5.1) 
   
where ρ is called the Fresnel reflection coefficient of the air-surface interface. It relates 
the reflected and incident field phasors (each of which has amplitude and phase): 
 

 i

r

E
E

=ρ   

 
The field that crosses the interface is described by a transmission coefficient. That is 
examined in Sect. 5.3.3. 

For the case of normal incidence where the medium beyond the interface is lossless, the 
Fresnel reflection coefficient is given by3 

(5.2)  

 
Fig. 5.2. Definition of reflection and transmission coefficients (a) vertical incidence and (b) 
oblique incidence 
 
 

The dielectric constant of dry soil is about 4, so that the power reflection coefficient of 
(5.1) is 0.11 – thus only about 11% of the incident power is reflected. On the other hand 
                                                 
3 See J.D. Kraus and D.A. Fleisch, Electromagnetics with Applications, 5th Ed., McGraw-Hill, 2000. 
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the dielectric constant of water is about 81 so that the power reflection coefficient is 0.64 
– 64% of the incident power density is now reflected. Therefore. if we were to view a 
surface vertically, a water body would appear considerably brighter than adjacent regions 
of dry soil. Because the dielectric constant of water is so much larger than that of dry soil, 
the dielectric constant, and thus radar reflectivity, of soil is a strong function of moisture 
content, as shown in Fig. 5.3 for sand. Two components of dielectric constant are shown 
in the figure: the real part corresponds to the dielectric constant discussed here; the 
imaginary component is related to the lossiness of the medium as discussed in Sect. 5.3.3. 
Most dry natural media, not just soils, have low dielectric constants; it is the presence of 
moisture that leads to much greater values. 

 

 
 

Fig. 5.3. Complex dielectric constant rr jεε ′′−′  of sand as a function of moisture content; the real 
part is the same as the dielectric constant used in (5.2) while the imaginary component is related 
to the absorption of energy by the moist sand (from J.A. Richards, Radio Wave Propagation: An 
Introduction for the Non-Specialist, Springer, Berlin, 2008) 

 
 
Note that since 1≥rε  the sign of the reflection coefficient of (5.2) is negative, which 

indicates that the reflected electric field is 180o out of phase with the incident field. 
The case of vertical incidence shown in Fig. 5.2a is of little practical interest since, as 

shown in Chapt. 2, no range resolution is then available. Instead, the surface must be 
viewed at an angle out to the side of the platform. If the incoming ray has an angle of 
incidence of θ with the interface as shown in Fig. 5.2b then the reflection coefficient 
becomes polarisation dependent, and is given by4 
                                                 
4 Kraus and Fleisch, loc cit. 
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Even though range resolution is now available, the reflected ray is away from the radar 
for both polarisations so that there is no energy backscattered. The surface will therefore 
appear black in recorded imagery. Nevertheless, these expression are of value when 
considering strong scattering and composite scattering situations. 

A smooth surface such as that depicted in Fig. 5.2b is called specular since it acts like a 
mirror. Calm water bodies and very smooth soil surfaces are typical specular reflectors at 
radar wavelengths. How do we assess a surface as being specular? A little thought will 
suggest that it will be related to the wavelength of the radiation; less obviously perhaps, it 
is also related to the angle of incidence. If there is a vertical height variation of h on the 
surface then the surface is regarded as specular if 

 

 
θ

λ
cos8

<h  (5.4) 

which is called the Rayleigh criterion. 
 
 
5.3.2 Rough Surfaces 
 
It is to be expected that as the roughness of a surface increases there will be more 
scattering back to the radar, and that the rougher the surface the lighter it will appear in 
radar imagery. Fig. 5.4 depicts qualitatively how the level of roughness affects 
backscatter and the existence or otherwise of a specular component in the scattered signal. 
If the surface is only slightly rough there will be a sizable specular component, with only 
a small component of backscatter, whereas for a very rough surface significant scattering 
will occur in all directions, including back to the sensor. 
 

 
 
Fig. 5.4. Depicting the trend to diffuse surface scattering as roughness increases 
 
It is relatively easy to understand scattering from the two extremes of roughness. In Sect. 
5.3.1 we have already looked at the ideally smooth case. At the other extreme a “totally” 
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rough surface is called Lambertian, well known in the theory of the scattering of light5. If 
the incident ray makes an angle θ with the surface normal then the bistatic scattering 
coefficient in the scattering direction θs is given by 
 
 s

o
os

o θθσθθσ coscos),( =  (5.5a) 
 
which, for backscattering, is θσθσ 2cos)( o

o
o =  (5.5b) 

 
o
oσ is the backscattering coefficient for vertical incidence, which is polarisation 

independent. Expressed in decibels with respect to a reference of 1m2m-2 (5.5b) is 
 
 θσθσ coslog20)( 10+= dBdB o

oi
o  (5.5c) 

 
Fig. 5.5. shows a plot of the Lambertian surface scattering model (with )02.0=o

oσ  as a 
function of incidence angle, along with curves computed from two other models that 
show typical scattering from (i) a very smooth surface and (ii) a surface of moderate 
roughness. As observed, when surface roughness increases the dependence on incidence 
angle is weaker, while for smoother surfaces there is a strong dependence. Allied with 
this observation is that smooth surfaces will appear considerably darker in radar imagery 
than rougher surfaces, particularly at moderate to large angles of incidence. Indeed, if one 
were interested in discriminating surface roughness, imaging with larger angles of 
incidence is preferred. 

Along with the Lambertian model, two other models have been used in the construction 
of Fig. 5.5. They are just two of a number of approaches that are employed to describe 
surface scattering behaviour. Modelling backscattering is not simple and, even those 
models that are available suffer limitations. 

As its name implies, the small perturbation model (SPM) is a reasonable descriptor of 
surface scattering when roughness is slight6. It is also referred to as the Bragg model, and 
is written as the sum of two components, one that describes coherent (specular) behaviour 
and the other that describes non-coherent (non-specular) behaviour: 

 
 )()()( θσθσθσ o

n
o
c

o +=  
 
The coherent component is not polarisation sensitive, whereas the non-coherent 
component is polarisation dependent. Those properties arise from the behaviour of the 
reflection coefficients of (5.2) and (5.3) which feature in the expressions for each 
component. The coherent term is given by 
 
 2

2
2222 /)}(4exp{)0(4)( Θ

Θ
+−= θρθσ sko

c  (5.6) 

 
in which Θ is the beamwidth of the antenna that irradiates the surface, s is the rms 
variation in surface height and k=2π/λ is the wave number, which is also sometimes 
                                                 
5 See P.N. Slater, Remote Sensing  Optics and Optical Systems, Addison-Wesley, Reading Mass , 1980. 
6 For other candidate models see F.T. Ulaby and C. Elachi, Radar Polarimetry for Geoscience Applications, 
Artech House, Massachusetts, 1990, and M.C. Dobson and F.T. Ulaby, Mapping soil moisture distribution 
with radar, Chapt. 8 in F.M. Henderson and A.J. Lewis (eds) Principles and Applications of Imaging Radar, 
Vol. 2, Manual of Remote Sensing, 3rd ed., Wiley, N.Y., 1998. 
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written as the phase constant β. Although we mainly use β throughout this book we have 
kept k here to make comparison with source material easier. ρ(0) is the Fresnel reflection 
coefficient at vertical incidence. 

 
 
Fig. 5.5. Using three different scattering models to illustrate the effect of roughness on HH 
surface backscattering; the Lambertian model illustrates typical scattering from very rough 
surfaces; the small perturbation model depicts relatively smooth surfaces and the semi-empirical 
model indicates moderately rough surface scattering behaviour 
 
 

The non-coherent component depends on what is called the correlation length of the 
surface roughness as well as the rms variation in surface height. The correlation length 
characterises the longitudinal variation in surface height variation. A surface which varies 
rapidly in height with position has a short correlation length whereas a more undulating, 
slowly varying surface has a larger correlation length. It is computed from the 
autocorrelation function of the surface roughness variation7 which measures how 
correlated two points are along the surface with increasing separations between them. 
Adjacent points are highly correlated whereas correlation decreases as the spacing 
increases. How fast the correlation drops is determined by the nature of the surface 
variation. The separation at which it drops to 1/e of its maximum is the correlation length. 

given by 
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in which the reflectivity parameters xxα are 
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7 Dobson and Ulaby, loc cit. 
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Equation (5.7) is based on modelling the autocorrelation function of the surface by an 
exponential expression which is a good representation of the surfaces most often found in 
practice. Other models of the surface autocorrelation will lead to slightly different 
versions of (5.7). Note that there is no cross polarised component in the SPM. The smooth 
surface curve in Fig. 5.5 was computed using this expression based on an rms height 
variation of 0.04cm and a correlation length of 1.5cm at a wavelength of 3.2cm. The 
antenna beamwidth was 0.1rad. 

An empirically based model applicable to a wider range of surface roughness measures 
and which shows good agreement with measured data is the semi-empirical model (SEM) 
derived at the University of Michigan8.  By drawing on the general forms of theoretical 
models, but choosing specific terms to allow fitting to experimental measurements, the 
SEM sets up an expression for co-polarised vertical backscattering and then finds the 
horizontal and cross-polarised components via co-polar p and cross-polar q ratios, as in 
the following: 
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and )]exp(1[)0(23.0 skq −−= ρ  (5.9f) 
 
This model has been shown to work well provided the incidence angle is not too small; it 
will not predict specular behaviour near vertical incidence but is generally seen to be 
acceptable for angles in excess of about 20-30o, which is the range most appropriate to 
radar remote sensing. It also ignores the effect of the horizontal scale of surface 
roughness on scattering. The medium roughness curve of Fig. 5.5 was computed using 
this model, with an rms height variation of 0.1cm. Measurements of the effect of surface 
roughness on backscattering coefficient will be found in Ulaby et al (1978)9. 

                                                 
8 See Dobson and Ulaby, loc cit. 
9 F.T. Ulaby, P.P. Bratlivala and M.C. Dobson, Microwave backscatter dependence on surface roughness, 
soil moisture, and soil texture: Part 1-bare soil, IEEE Transactions on Geoscience Electronics, vol. GE-
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Notwithstanding its empirical derivation a number of useful general observations can 

modelled co-polar and cross-polar backscatter responses for a soil surface with a 
dielectric constant of 15 and an rms height variation of 0.1cm when irradiated at 9.5GHz. 
As seen, the cross-polarised response is always below the co-polar responses and VV is 
slightly higher than HH; all are weak functions of incidence angle until about 50o and 
larger. 

 
 
Fig. 5.6. Demonstration of the differences in horizontal and vertical polarisation responses for a 
rough surface, and an illustration of typical cross-polarised scattering; generated using the semi-
empirical model 
 
 

If the surface is almost smooth, so that s approaches zero, (5.9f) shows q approaches 
zero, indicating that there is little cross polarisation in the scattering from a smooth 
surface. At the other extreme, when s is very large – or more particularly when ks is large 
since wavelength is an important consideration in describing roughness as we saw in (5.4) 
– then q approaches )0(23.0 ρ . With a dielectric constant of 15, 59.0)0( =ρ  giving 
q=0.136. From (5.9d) that would place the cross-polar response always about 8.7dB 
below the VV response for an extremely rough surface. The curves of Fig. 5.6 were 
computed with a smaller ks of 0.2, making the HV response 16dB lower than the VV 
response, which is about the difference observed in the diagram. 

Figure 5.7 shows how the cross-polarisation ratio depends on surface roughness, 
measured as a fraction of a wavelength of the incident radiation, again generated using 
the semi-empirical model. The ratio is also shown as a function of the moisture content of 
the surface, which comes into the expressions of (5.9) through the dependence of the 
surface material’s dielectric constant on moisture content. As expected the greatest cross 
polarised response occurs for very rough, highly reflective (moist) surfaces, whereas very 
smooth surfaces generate little depolarisation. 

                                                                                                                                                  
16, no. 4, October 1978, pp. 286-295. See also F.T. Ulaby, R.K. Moore and A.K. Fung, Microwave Remote 
Sensing  Active and Passive, Vol 2, Addison-Wesley, Reading, Mass., 1982. 
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be made about surface scattering behaviour using the SEM of (5.9). Fig. 5.6 shows the 
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Fig. 5.7. The cross polar ratio as a function of surface roughness and dielectric constant; the 
dependence on surface moisture content can be determined by referring to relationships such as 
that in Fig. 5.3 for sand 
 
 

If we now examine the co-polar ratio in (5.9e) we see that it approaches unity for 
extremely rough surfaces (as assessed against wavelength) meaning that there is then little 
difference between HH and VV behaviour. On the other hand, for smooth to moderately 
rough surfaces, (5.9e) demonstrates that the HH response will be lower than the VV 
response, although they converge at smaller incidence angles. Fig. 5.8 shows the co-polar 
ratio for the same values of dielectric constant and the same range of roughness used in 
constructing Fig. 5.7. Unlike the cross-polar ratio of (5.9f) the co-polar ratio is also a 
function of incidence angle, as seen in (5.9e). For the purpose of illustration two angles 
are used in Fig. 5.8: 20o, corresponding to those angles adopted in radars principally 
designed for oceanographic applications, and 40o, typical of those used for land-based 
applications. Note that the two like-polarised responses are approximately the same for 
very rough surfaces and only diverge significantly for smooth dry surfaces, and for larger 
angles of incidence. 

Finally we can examine the expression in (5.9a) to gain an impression of the 
dependence of the surface scattering coefficient itself on factors, again such as surface 
dielectric constant and roughness. Fig. 5.9 shows the VV backscattering coefficient for 
incidence angles of 20o and 40o. As might be expected the surface is brighter at the 
smaller angles, consistent with Fig. 5.6; it is also brighter with increasing roughness and 
increasing dielectric constant (and thus moisture content). 

Fig. 5.10 shows vertically polarised backscattering at the wavelengths commonly used 
in imaging radar systems, as a function of dielectric constant and roughness. A mid range 
incidence angle of 30o has been used. As seen, all wavelengths show about the same 
sensitivity to soil moisture (as captured in variations of the surface dielectric constant) but 
longer wavelengths provide better discrimination of surface roughness variations even 
though they have a lower absolute value of backscatter. 

As a practical illustration of the enhanced backscatter resulting from increased soil 
moisture, and thus surface dielectric constant, Fig. 5.11 shows an image of an agricultural 
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region in the vicinity of Ames, Iowa acquired by Seasat on 16 August 1978. Late on the 
previous day a large storm moved in from the west, which then separated into a number 
of isolated storm cells that moved to the north east. The lighter tone on the west of the 
image is the result of the storm and the light stripes show the paths of the storm cells. 

 
Fig.5.8. The co-polarised ratio as a function of surface roughness and dielectric constant for two 
values of incidence angle 
 
 

In the development so far we have concentrated on expressions for the scattering 
coefficient itself. It is possible also to derive the scattering matrix of (3.41) for surface 
scattering behaviour, from which polarisation synthesis plots can be constructed. If a 
surface has only small scale height variations we can use the small perturbation/Bragg 
model of (5.7) for this purpose. The only element in (5.7) that is polarisation dependent is 
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the reflectivity factor xxα . Following Cloude and Pottier10, and using (3.44), it is possible 
to induce that the scattering matrix for a slightly rough surface is  

 

 
Fig. 5.9. The vertically polarised surface backscattering coefficient as a function of surface 
roughness and surface dielectric constant for two angles of incidence 
 

                                                 
10

Transactions on Geoscience and Remote Sensing, vol. 34, no. 2, March 1996, pp.498-518. 
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Fig. 5.10. The dependence of VV backscattering on dielectric constant (top, with an rms surface 
roughness of 3cm) and surface roughness (bottom, with a dielectric constant of 8) at the 
commonly used remote sensing radar wavelengths 
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in which αHH and αVV are given by (5.8a,b) and π/4/3222 − . If 
we are interested in constructing normalised polarisation plots to examine the response of 
a pixel as a function of polarisation configuration the amplitude term is not important. 
Instead we can concentrate of the relative values of αHH and αVV, which depend only on 
angle of incidence and dielectric constant. The level of surface roughness does not affect 
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the relative polarisation response when using the Bragg model. We can also normalise 
(5.10a) by the value of αVV and use the normalised scattering matrix 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

10
0/ VVHH αα

S  (5.10b) 

 
A table of the ratio VVHH αα / is shown for range of dielectric constants and incidence 
angles in Fig. 5.12. Also shown are polarisation plots for the two extremes. As observed, 
as the ratio departs further from unity the plots depart from that of Fig. 3.22, which 
applies to a smooth surface (flat plate). The shape corresponding to the smaller ratios is 
typical of rough surface scattering. 

If a surface has a periodic or near periodic structure enhanced returns can often be 
observed resulting from Bragg resonance, a condition treated in Sect. 5.5.4. 

Sometimes it is important to understand bistatic scattering from rough surfaces. Bistatic 
radar is one reason; another is to be able to examine more complex scattering situations 
involving surfaces, such as the strong corner reflector behaviours considered in Sect. 
5.5.2. If a surface has a standard deviation of roughness s, then the reflection coefficients 
of (5.3) can be modified according to 

 
 ])cosexp[( 2θβρρ s−=effective  (5.11) 
 
 

Fig. 5.11. Seasat image of Ames, Iowa 
showing the enhanced backscatter resulting 
from increased soil moisture owing to the 
effect of a storm to the west and subsequent 
storm cells that travelled to the north east late 
on the day prior to image acquisition (from 
J.P. Ford et al., Seasat Views North America, 
the Caribbean, and Western Europe With 
Imaging Radar, JPL Publication 80-67, 
NASA, 1 November 1980) 
 

 
 
5.3.3  Penetration into Surface Materials 
 

In the previous sections we have concentrated only on the component of energy that is 
reflected or backscattered from surfaces. In many instances energy can also cross the 
boundary and travel within the medium; that is the basis for detecting the sub-surface 
features depicted in Fig. 5.1. Most often there is substantial energy loss associated with 
transmission in the medium. We need now to understand the degree of loss that is likely, 
and the conditions under which sub-surface features might be imaged.  
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The transmitted components of the fields shown in Fig. 5.2 are related to the incident 
fields by the transmission coefficient τ as indicated in the diagram. We can obtain values 
for the transmission coefficients from the following equations via expressions for 
reflection coefficients11: 
 HH ρτ += 1  (5.12a) 
 

 )1(
cos
cos

V
t

V ρ
θ
θτ +=  (5.12b) 

Fig. 5.12. Polarisation plots for surface scattering corresponding to different incidence angles and 
dielectric constants. 
 
 

                                                 
11 See Kraus and Fleisch, loc cit. 

0.879    0.853    0.842    0.835
0.762    0.712    0.691    0.679

5 10 15 20

20

εr

0.762    0.712    0.691    0.679
0.634    0.565    0.536    0.519q
0.511    0.429    0.395    0.375

40
30

50

VVHH αα /



150  Remote Sensing with Imaging Radar 

θt is the transmission or refraction angle. Once the wave has crossed the boundary it 
propagates as an electric field according to 
 
 o

 
in which R is the direction of travel, Eo is the value of the field just under the surface and 
γ is the propagation constant, which determines how the field strength is modified with 
transmission. It is a complex number, the imaginary part of which simply describes the 
changing phase of the field as it propagates. That is of no interest here. Instead, it is the 
real part of the propagation constant that is important, since it describes the reduction in 
signal resulting from energy loss in the medium. 

A wave’s propagation constant is determined by its frequency ω and the properties of 
the medium in which it is travelling. We met those material properties briefly in Sect 
5.3.1. We now need to be a bit more precise: in the most general terms they are 
conductivity σ, permittivity ε and permeability μ. In a non-magnetic medium (a good 
assumption for the media of interest to us) the propagation constant is defined by12 

 
 εμωσωμγ ooj 22 −=  (5.14) 

 
in which μo is the permeability of free space, which is a fundamental constant of nature. 
The permittivity of the medium can be written as 
 
 roεεε =   
 
where εo is the permittivity of free space, again a fundamental constant, and εr is the 
dielectric constant or relative permittivity. It may be of interest to note in passing that 
μo 400π nHm-1 and o 8.85pFm-1 so that 300/1 == ooc με Mms-1. 

We saw in Fig. 5.3 that the dielectric constant of a medium can be complex. Its 
imaginary part accounts for losses in the medium, most often as a result of its moisture 
content. The losses come from energy dissipation associated with internal ionic and 
molecular processes in the water molecules themselves. If we write the complex dielectric 
constant in its standard form 

 "' rrr jεεε −=  
then (5.14) becomes 

 ')"( 22
roorooj εεμωεωεσωμγ −+=  (5.15) 

 
Conductivity accounts for energy absorption in the medium because of any conducting 
media present. Often we assume the conductivity is zero so that (5.15) can be written 
 

 )"'(22
rroo jεεεμωγ −−=  (5.16) 

 
which also follows directly from (5.14). Since this is a complex number the propagation 
constant γ is also complex; it can be written in the form 

 

                                                 
12 See J.A. Richards, Radio Wave Propagation  An Introduction for the Non-Specialist, Springer, Berlin, 
2008. 

E(r) = E  exp (–γ R)

==

 (5.13) 

ε
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 βαγ j+=  
 

which, when substituted into (5.13), shows that the field travels in the medium below the 
surface according to 
 
 
It is the constant α that leads to a drop in field strength during propagation. It is referred 
to as the attenuation constant and its value is found from evaluating (5.16). 

We can express the complex dielectric constant in polar, or phasor, form, so that (5.16) 
becomes 

 
'
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∠+−= −  

 
Note from Fig. 5.3 that the imaginary part of the dielectric constant is considerably 
smaller than its real part; that is generally the case for the materials we encounter in 
remote sensing. Therefore the last expression can be simplified to 
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r
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because the tangent of a small angle is approximately the value of the angle itself in 
radians. Accounting for the leading negative sign by adding π to the exponent, and taking 
the square root, gives 
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Converting this last polar expression back to Cartesian form gives 
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which shows that the attenuation constant is given by 
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since ooc εμ/1= . Equation (5.17) describes how the electric field drops (per metre) 
with travel in a medium. In remote sensing we are more interested in the loss of power 
density. Since, from (2.7), power density is proportional to the square of the electric field, 
the loss of power density with transmission is described by an absorption coefficient κa 
which is twice the value of the attenuation constant, viz: 
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The units for this expression are Nepers per metre. To convert them to dB per metre, 
which is the more normal unit in engineering, we multiply by 8.686. 

Using (5.18) the loss of power density can be written 
 
 R

o
aepRp κ−=)(  

 
where po is the power density just below the surface. We now define the depth of 
penetration δ as that value of R for which the power density has dropped to 1/e of its 
immediate sub-surface value. Thus 

 m
"
'

2 r

r

ε
ε

π
λδ =  (5.19) 

 
From (5.19) we see that the penetration depth improves with wavelength (i.e. is better at 
lower radar frequencies) and with reduction in the imaginary part of the dielectric 
constant. We note from Fig. 5.3, and similar graphs for other soil types, that the 
imaginary part of the dielectric constant reduces with reducing moisture content. 
Therefore, significant penetration of radar energy requires longer wavelengths and dry 
soils or sands. Employing the source data that was used to construct Fig. 5.313, Fig. 5.13 
shows the penetration depth at L band (23.5cm) for sand as a function of volumetric 
moisture content14. 

 
Fig. 5.13. Penetration depth for sand as a function of moisture content at L band, with a 
wavelength of 23.5cm 
 
 

                                                 
13 J.R. Wang, The dielectric constant of soil-water mixtures at microwave frequencies, Radio Science, vol. 
15, no. 5, 1980, pp. 997-985. 
14 See also M. Nolan and D.R. Fatland, Penetration depth as a DinSAR observable and proxy for soil 
moisture, IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 3, March 2003, pp. 532-537, 
Fig. 3, for an interesting simulation of how penetration depth at X, C and L bands varies with time 
following a rain event. 
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 As observed there is not much penetration at all unless the sand is very dry; even then 
only a few metres penetration appears possible. To give this greater perspective it could 
be noted that travel by one penetration depth leads to a signal reduction of 8.7 dB! 
Penetration to 4m leads to a loss of just over 17dB (a 50 times reduction in power 
density) and that is achievable only if the sand is totally dry, which happens in hyper-arid 
regions of the world, such as the Sahara Desert. To image below the surface two way 
attenuation needs to be considered. The loss therefore for imaging at 4m depth will be 
about 35dB!  There is also loss of signal resulting from the transmission coefficient at the 
interface – although for a very dry medium that will be minimal (perhaps 10%). While 
sub-surface penetration looks almost impossible, there have been some celebrated cases 
of successful sub-surface imaging, including the 1981 SIR-A image recorded over the 
Sahara Desert in Sudan, where penetration was estimated at about 5m making sub-surface 
relic drainage channels and related features evident15. Another striking radar image of the 
Sahara is shown in Fig. 5.14, recorded with the multi-band, multi-polarisation SIR-C 
mission. It shows a hidden paleo channel of the Nile River. 

In addition to loss by absorption described by (5.18), the forward travelling and 
backscattered energy will also be diminished if there is any appreciable scattering from 
inhomogeneities in the path, such as embedded gravels. We should therefore define an 
overall extinction coefficient κe that is the sum of the absorption coefficient and a 
scattering loss coefficient κs: 

 sae κκκ +=  (5.20) 
 

Unless we are certain that there is significant sub-surface scattering we would normally 
assume that scattering loss is not as significant as absorption in sub-surface imaging. 

What about penetration into water itself – such as lakes and the ocean? Water is a good 
conductor at microwave frequencies. The analysis is therefore different from that above 
in which we computed the penetration depth for materials in which the imaginary part of 
the dielectric constant is small. A calculation for conducting media leads us to see that the 
depth of penetration in sea water at L band (23.5cm) is 7mm! 
 
 
5.4 Volume Scattering 
 
5.4.1  Modelling Volume Scattering 
 
Media such as tree canopies and sea ice contain many individual scattering sites that 
collectively contribute backscattered energy. Discontinuities in dielectric constant give 
rise to the scattering but there are so many and they are so difficult to identify and 
describe, that understanding how they contribute individually to backscatter is not 
straightforward. In the case of canopies it is the interfaces between leaves and air and 
twigs and air, for example, that are involved, whereas for sea ice it is air and brine 
inclusions in the mass of ice itself. With ice there will also be surface scattering. 

Suppose we represent a scattering volume by the random set of individual scatterers 
illustrated in Fig. 5.15. If the density of scatterers is uniform it is evident that the volume 
would look much the same when viewed from any angle, in which case we could 
conclude that the amount of backscatter will be almost independent of, or only weakly 

                                                 
15 J F. McCauley, G.G. Schaber, C.S. Breed, M.J. Grolier, C.V. Haynes, B.Issawi, C. Elachi, and R. Blom, 
Subsurface valleys and geoarchaeology of the Eastern Sahara revealed by Shuttle Radar. Science, vol. 218, 
no. 4516, 1982, pp. 1004-1020. 
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dependent on, incidence angle. There will be no specular component as with surfaces 
(unless a definite surface is present as well) since the volume will look the same from 
above as it would at an angle. 

As incident energy travels into the volume it will encounter loss in the forward 
direction as a result of scattering from whatever dielectric inhomogeneities are present. 
The scatterers themselves may also absorb some of the radiation. The scattering 
behaviour is what gives rise to the signal back at the radar from which we infer properties 
of the volume medium. It is useful to consider the scattering sites to be small compared 
with the wavelength of the radar signal so that they can be assumed to scatter almost 
isotropically (in all directions); this is another reason why the backscatter from a volume 
medium is almost independent of incidence angle. 

Unless the volume is very lossy, in which case all forward travelling energy ultimately 
diminishes to zero, we need to take into account its vertical dimension. In other words, we 
need to recognise when analysing volume scattering behaviour that sea ice, for example, 
has an upper and lower boundary, just as a forest canopy has an upper and lower margin. 

 

 
Fig. 5.14. Colour infrared photograph (top) and SIR-C radar image (bottom) recorded in 1995 
over the Sahara Desert in Sudan. In the top right hand quadrant of the radar image a previous, 
ancient channel of the Nile is evident, now buried under sand; the colour composite radar image 
was created by displaying the C band VH cross-polar channel as red, the L band VH cross-polar 
channel as green and the L band co-polar HH channel as blue; since the paleo channel appears 
white there is good penetration at each of those wavelength/polarisation combinations (image 
courtesy of NASA JPL) 
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A simple but very helpful model of the volume scattering behaviour of a vegetation 
layer such as a tree canopy was devised in 197816. It is based on the assumption that the 
dielectric property that dominates scattering is the moisture content of the vegetative 
matter. By assuming that the volume can be regarded as a suspension of water droplets, a 
credible description of volume scattering can be found in the following manner. It is 
based on Fig. 5.16 which shows radar energy incident on an individual resolution cell at 
the top “surface” of a volume of scatterers. 
 

 
 
Fig. 5.15. Scattering from a “volume” of many, hard to define scatterers 
 
 

Although the individual scatterers are not now delineated on the diagram assume they 
are identical and each has a radar cross section σb m2. Further, assume that the energy an 
individual scatterer takes out of the forward propagating wavefront can be attributed to an 
extinction cross section Qe m2. This is an effective cross-sectional area presented to the 
incoming wave. The energy loss resulting from the wave encountering the single scatterer 
is given by the incident power density multiplied by this cross section. 

Suppose there are N scatterers per unit volume in the medium; we can define 
 
 32mm −= bv Nσσ   (5.21a) 
 

as a “volume” backscattering coefficient (i.e. radar cross section per unit volume), and 
 
 1m−= ee NQκ  (5.21b) 
 

as the extinction coefficient of the volumetric medium per unit of path length. 

                                                 
16 E.P.W. Attema and F.T. Ulaby, Vegetation modelled as a water cloud. Radio Science, vol. 13, 1978, pp. 
357-364. 
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The effective radar cross section of the infinitesimal volumetric slice dr shown in Fig. 
5.16 is given by the product of the volume scattering coefficient of (5.21a) and the 
volume of the slice: 

 drAv θσ cos  
 

If the incoming power density is p, as indicated, then from the definition of radar cross 
section in Sect. 3.11, and ignoring for the moment any loss of power density before the 
slice is reached, the isotropically backscattered power from the incremental volume is 

 
 drAp v θσ cos  

 
Fig. 5.16. Developing the water cloud model for a vegetation canopy 

 
 
To simplify the next steps note in Fig. 5.16 that the volume and properties of the actual 

trapezoidal path through the medium is equivalent to that of the dotted rectangular prism, 
so that the geometry of the latter can be used. We now account for the loss of power 
density by absorption in the medium before the energy reaches the incremental slice at a 
distance r in from the implicit surface of the medium.  Similarly we have to account for 
the comparable loss in the backscattered power as it travels back up through the medium. 
Thus the backscattered level of power at the surface, available for measurement by a 
remote sensing platform, is 

 drApr ve θσκ cos)2exp(−  
 

Integrating this last expression over the full depth of the volume gives the power 
backscattered from the radar resolution cell as 

 

implicit
upper
boundary

θ
A

dr

volume of many individual scatterers

h

r

equivalent volume to that irradiated

incident power density
irradiating a resolution cell

p



5 Scattering from Earth Surface Features  157 

 ∫∫ −=−=
θθ

κθσθσκ
sec

0

sec

0

)2exp(coscos)2exp(
h

ev

h

veb drrApdrAprP  

 

i.e. )]sec2exp(1[
2

cos
θκ

κ
θσ

h
Ap

P e
e

v
b −−=  (5.22) 

 
Equation (5.22) is the backscattered power level at the surface. We now need to turn that 
into the scattering coefficient for the resolution cell. From the derivation of radar cross 
section in Sect. 3.11 we can see that the power density received back at the radar pr as a 
function of radar cross section and the power density incident on the surface p is 
 

 24 R
ppr π

σ
= 24 R

Pb

π
=  

 
where R is the distance from the radar to the surface and Pb is the power backscattered 
from the resolution cell. Substituting from (5.22) in these last expressions gives the radar 
cross section σ of the resolution cell which, when divided by the area of the cell A, gives 
the backscattering coefficient17: 
 

 )]sec2exp(1[
2
cos θκ
κ

θσσ he
e

vo −−=  (5.23) 

 
This assumes that any portion of the forward travelling wave that emerges from the 
bottom of the canopy is not subsequently reflected from some other material (such as a 
soil surface). While it is straightforward to consider such a composite situation it is not 
necessary here in our examination of the properties of volume scattering. 

Fig. 5.17 shows the backscattering coefficient computed from the water cloud model 
for volume scattering compared with the Lambertian model for surface scattering. The 
Lambertian model was chosen in this comparison since it applies for the case of extreme 
roughness and shows the weakest dependence on incidence angle of all surface models. 
Even so, the volume dependence is weaker still, which is characteristic of a 
volume/surface behaviour comparison. Note that there is no specular component for small 
incidence angles in either of the curves. One would expect that for practical surfaces there 
would be a specular surface component as discussed in Sect. 5.3 so that it would turn 
upwards for smaller angles, but not so with the volume scattering curve. 

Note that there has been no sense of polarisation dependence in deriving the water 
cloud model. That is because the scatterers have been assumed to be small and isotropic 
in their behaviour. In practical situations one would also expect that the HH and VV 
responses for true, random volumes would be comparable. If however the volumes 
contained scatterers that were not spatially symmetric (such as twigs, needles and 
branches) there will be a polarisation dependence as discussed in the next section. 

                                                 
17 For a volume assumed to be composed of a very large number of identical, very small scatterers relating 
radar cross section and backscattering coefficient via the area of the resolution cell is acceptable. However, 
if the number of scatterers per resolution cell is not large, and varies from cell to cell, or if some cells 
contain dominant scatterers (such as hard targets), then such a relationship cannot be assumed. 
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Fig. 5.17. Comparison of volume and surface backscattering showing the weaker dependence of 
volume behaviour on incidence angle: the surface curve here was based on the (extreme 
roughness) Lambertian model while the volume curve was computed with the water cloud model 

 
 

5.4.2 Depolarisation in Volume Scattering 
 
A significant feature of volume scattering is that it can lead to appreciable levels of cross 
polarisation, referred to as depolarisation. Depolarisation happens because scattering 
events lead to some degree of rotation of the polarisation vector of the incoming 
radiation. As a simple illustration of this consider a wave incident onto a conducting 
cylinder as shown in Fig. 5.18. Imagine for the moment that the cylinder is very thin even 
though, for purposes of illustrating its internal currents, we have shown it as slightly 
thick. If it were at right angles to the incoming electric field vector as seen in Fig. 5.18a 
then it will have no effect. In principle it looks as though it were not there. If it were 
perfectly aligned with the field vector as shown in Fig. 5.18b then it will scatter the 
incoming wave, including in the backscatter direction, with polarisation the same as that 
which is incident. The cylinder has maximum influence on the wave with this alignment. 
In essence the electric field vector induces current along the cylinder which re-radiates in 
the manner depicted, acting as an antenna. It is this re-radiation that we generically call 
scattering. The two extremes of alignment of the field and cylinder axis show, in effect, 
that it is the component of the electric field vector aligned with the cylinder axis that 
induces the current and leads to re-radiation. 

Now consider the situation in Fig. 5.18c. Here the polarisation of the incoming field is 
at an angle to the cylinder axis. We can resolve it into components along and across the 
axis; only the former generates currents and thus leads to re-radiated (scattered) energy. 
Again, the re-radiated field is parallel to the cylinder axis and is thus “rotated” when 
compared with the incident field. If the incident field were a vertically polarised wave 
then the backscattered field will now have both vertical and horizontal components. It is 
not unreasonable to assume that if we were able to measure the amplitudes and relative 
phases of the backscattered fields then we might be able to infer something about the 
nature of the scatterer. 
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If the cylinder were not thin it will exhibit backscatter even when the incident wave is 
polarised orthogonal to its axis. It will also radiate, albeit with differing strengths, with 
components aligned with and orthogonal to its axes, but the general principle of 
depolarisation still applies, as it will also if the cylinder is dielectric instead of 
conducting. 

 
Fig. 5.18. Scattering of an incident electric field from a thin cylinder, illustrating that if the field 

o o

 
 

exhibit strong cross-polarised behaviour, a situation that is indicative of branches and 
twigs in a canopy, and pine needles at shorter radar wavelengths. 

It is characteristic of volume scattering that cross polarised returns are generally present 
and comparable in strength to co-polarised scattering, unless the wavelengths are so long 

there is only a weak dependence of scattering coefficient on angle of incidence. Fig. 5.19 
shows typical like and cross polarised returns for a forest canopy demonstrating these 
properties. 

 
 

5.4.3 Extinction in Volume Scattering 
 
As would be expected, and consistent with the derivation of the water cloud volume 
scattering model in Sect. 5.4.1, when a wave travels forward in a volumetric medium and 
is scattered each time it encounters a dielectric discontinuity, energy is lost from the 
forward travelling wavefront. The same occurs for backscattered radiation working its 
way back up through the medium to the sensor. Determining the extent of energy loss by 
scattering away from the principal directions is not straightforward, nor is the energy 

vector is at an angle between 0  and 90  to the cylinder axis there will be a cross polarised component 
of the scattered field 

If a volume is composed of a large collection of thin, cylinder-like elements it will 

that the scattering geometries have little influence. Again, except at very large angles, 

E 
i E 

i

E 
i

E 
s

E s

incident field vector resolved
into components parallel and
orthogonal to the cylinder axis

induced 
current

scattered field vector resolved
into components parallel and
orthogonal to the incident field

cross polarised
component

like polarised
component

(a) (b) (c)



160  Remote Sensing with Imaging Radar 

absorbed by the media that constitute the dielectric discontinuities. Nevertheless they can 
be modelled and have been incorporated into simulations of forest stands. 
 

 
 
Fig. 5.19. Simulated like and cross polarised responses as a function of angle of incidence for a 
white spruce forest canopy at L band; based on Fig. 1 of Y. Wang, J.L. Day, F.W. Davis and J.M. 
Melak, Modeling L-band radar backscatter of Alaskan boreal forest, IEEE Transactions on 
Geoscience and Remote Sensing, vol. 31, no. 6, November 1993, pp. 1146-1154, ©1993 IEEE 
 
 

Fig. 5.20 shows the simulated dependence of the volume attenuation (extinction) 
coefficient as a function of frequency for a soybean canopy in which it is assumed that the 
scattering elements are small compared with wavelength18. The most noticeable feature is 
the reduction in attenuation coefficient with increasing wavelength. That is the result of 
the reduced scattering that takes place as the size of the scattering elements reduces in 
comparison with wavelength. Shorter wavelengths will scatter more and thus suffer 
greater loss than longer wavelengths. The same effect is easily noticeable at optical 
frequencies. The blue sky is the result of significant scattering of the shorter optical 
wavelengths meaning we see energy at those wavelengths wherever we look in the sky, 
notwithstanding that it originates from the sun. In contrast, the longer red wavelengths 
don’t scatter much at all. We tend only to see a reddish sky in the direction of the sun near 
sunset, and then only because of the longer atmospheric column than at midday. Although 
the dependence on wavelength is monotonic in Fig. 5.20, other canopy geometric 
configurations may behave differently. If structural elements such as stalks are present 
their scattering behaviours modify the attenuation wavelength relationship19. 
 

 
5.5  Scattering from Hard Targets 
 
Although our interest in remote sensing tends to be largely in cover types that are 
distributed, such as crops, forests and soils, we frequently encounter with imaging radar 
individual, point-like scatterers than give exceptionally strong radar returns. They are 
important to understand because they can be components of composite scattering 

                                                 
18 The leaves have average radii of 43mm and thickness 0.24mm, and have a gravimetric moisture content 
of 60%. See D.M. Le Vine and M.A. Karam, Dependence of attenuation in a vegetation canopy on 
frequency and plant water content, IEEE Transactions on Geoscience and Remote Sensing, vol. 34, no. 5, 
September 1996, pp. 1090-1096. 
19 ibid. 
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situations, they play a central role in scattering from urban features and, in high resolution 
radar, individual hard targets such as a tree can dominate a resolution cell. 

 

 
 

Fig. 5.20. Simulated canopy attenuation coefficient for soybeans as a function of frequency; taken 
from D.M. Le Vine and M.A. Karam, Dependence of attenuation in a vegetation canopy on 
frequency and plant water content, IEEE Transactions on Geoscience and Remote Sensing, vol. 
34, no. 5, September 1996, pp. 1090-1096, ©1996 IEEE 
 
 

Since they are discrete and not distributed we describe hard scatterers in terms of radar 
cross section rather than scattering coefficient. If they are the dominant scattering element 
in a pixel then the “scattering coefficient” of the pixel is given by dividing the radar cross 
section of the discrete scatterer by the size of the pixel. 

One reason we encounter more hard target scattering with radar than with optical 
imaging is that at radar wavelengths many more surfaces appear to be smooth and are 
thus good reflectors.  For optical imagery most surfaces are diffuse so that strong 
reflecting behaviour is usually not observed, except in the case of sun glint from water 
bodies and the occasional retro-reflector placed in a scene. 
 
 
5.5.1  Facet Scattering 
 
Occasionally, we encounter flat reflectors oriented towards the incoming radar beam, 
such as the house roof depicted in Fig. 5.1. If that scatterer were a rectangular conducting 
plate of dimensions axb m, much larger than a wavelength, then its bi-static radar cross 
section at an angle of incidence θ is given by 
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At normal incidence, which is the situation encountered with monostatic radar, this 
reduces to 4π times the square of the area of the plate with dimensions expressed as a 
fraction of a wavelength. 
 
 
5.5.2  Dihedral Corner Reflector Behaviour 

 
Remarkably, dihedral corner reflectors, shown structurally in Fig. 4.10, occur naturally 
quite often and whenever there is a vertical surface adjacent to a horizontal plane. The 
most obvious example is the side of a building as shown in Fig. 5.1. If the building were 
oriented such that the corner directly faces the radar then the response will be very strong. 
If it is angled away then there will be no response. That is the basis of the cardinal effect 
treated in Sect. 5.5.5 following. The maximum radar cross section of a dihedral corner 

such as with the side of a building, we need to know its radar cross section at other 
angles. Provided the dimensions of a reflector are large compared with a wavelength then 
the cross section of a corner reflector not too far from bore sight is approximately 
 

 2

24
λ
πσ eA

≈  (5.25) 

 
in which Ae is the effective area of the structure presented to the incoming beam. At 15o 
off bore sight it is about 3dB in error; thus over an incidence angle range of about 30-60o 
(5.25) can be regarded to be within 3dB of the actual value. As a function of incidence 
angle the radar cross section of the dihedral corner reflector from Table 4.1 can thus be 
shown to be  

 2

222 )4/(sin8
λ

πθσ +
≈

ba  (5.26) 

 
This assumes that both plates that make up the corner reflector have the same dimensions, 
as shown in Fig. 5.21a. The double bounce mechanism encountered in practice is more 
likely to be as shown in Fig. 5.21b, in which the bottom plate is a reflection of the vertical 
surface. It’s “length” is a function of the of the angle of incidence. Using (5.25) the radar 
cross section of such an arrangement is given by 
 

 2

222 sin16
λ

θπσ ba
≈  (5.27) 

 
Note the similarity of this last expression and (5.26); the latter has symmetry about an 
incidence angle of 45o as expected from the defined geometry of Fig. 5.21a, whereas 
(5.27) recognises explicitly that the cross section gets larger with angle because the 
horizontal projection of the vertical face monotonically increases with angle. If the model 
of Fig. 5.21b represented a building under a forest canopy the attenuation of the radiation 
as it passes through the canopy will increase with angle because of the longer path 
lengths; the radar cross section of (5.27) will therefore fall at larger angles. 

Besides buildings, other common features that exhibit corner reflector like responses 
are structures over water, such as ships at sea and even oil rigs. Despite the fact that their 
vertical surfaces are not planar, they still behave as strong reflecting elements in the 
nature of corner reflectors. 

reflector is given in Table 4.1. When it is used as a model for double bounce situations, 
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A vertically standing, or near-vertically standing tree trunk also behaves like a dihedral 
corner reflector. It can be analysed by studying the scattering behaviour of a dielectric 
cylinder standing on a horizontal plane as shown in Fig. 5.22. 

 

 
 (a) (b) 
 
Fig. 5.21. (a) Standard dihedral corner reflector (b) projection of a vertical surface on to the 
horizontal plane to give a dihedral double bounce structure 

 
 

Fig. 5.22. Modelling the double bounce behaviour of a trunk standing on a horizontal surface by 
an equivalent dihedral corner reflector 

 
 
The bistatic radar cross section of a dielectric cylinder is well known20 and can be used 

to simulate a tree trunk standing on a dielectric surface. If the trunk radius y is large 
compared with a wavelength, its width can be approximated by a flat sheet of width21 

                                                 
20 See G.T. Ruck, D.E. Barrick, W.D. Stuart and C.K. Krichbaum, Radar Cross Section Handbook, Plenum, 
N.Y., 1970. 
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 2
λyw =  (5.28) 

 
That allows us to approximate the radar cross section of a single tree trunk of height t by 
the expression 

 
λ

θρρπσ yt gt
2222 sin8=  (5.29) 

 
in which ρt and ρg are the Fresnel reflection coefficients of the trunk and ground 
respectively, calculated from (5.3). Their squares are the Fresnel power reflection 
coefficients of (5.1). Equation (5.29) has been shown to underestimate the radar cross 
section by about 6dB or so at longer radar remote sensing wavelengths22, but that is not 
important if we are interested in the general behaviour of double bounce scattering. 

Since trunks rarely exist in isolation from a foliage canopy it is appropriate to add a 
canopy attenuation term to (5.29) to give a tree radar cross section that emulates what is 
observed in practice. Borrowing from the material of Sect. 5.4.1 we add an exponential 
decay to give as the approximate expression for the RCS of a single tree trunk 

 

 )sec2exp(sin8 2222 θκ
λ

θρρπσ hct egt −=  (5.30) 

 
where h is the depth of the canopy. Fig. 5.23 shows a plot of this expression versus 
incidence angle for HH polarisation using the parameters: 
 
λ=0.06m (C band) 
c=0.4m 
t=12m 

trunk dielectric constant=4  
ground dielectric constant = 7  
canopy depth h=5m 

 
The extinction coefficient is varied from 0.05Npm-1 (low canopy absorption) to 4.5Npm-1 
(high canopy absorption), expressed in dB in the figure. It is clear that the canopy 
extinction coefficient has a significant influence on the trunk response at higher incidence 
angles. If there were no canopy the response would not fall away at the larger angles. It is 
characteristic of double bounce behaviour in the presence of an attenuating canopy to 
peak around mid range incidence angles and to fall off at both extremes. 

Fig. 5.23 was computed for the case of horizontal polarisation. Should vertical 
polarisation be chosen similar results would be obtained, modified only by the different 
behaviours of the Fresnel reflection coefficients. With a large vertical dielectric cylinder 
as shown there will be no or little cross polarised response. That is consistent with the 
behaviour of a dihedral corner reflector as seen by its scattering matrix at the end of Sect. 

                                                                                                                                                  
21 See S.D. Robertson, Targets for microwave radar navigation, Bell System Technical Journal, vol. 26, 
1947, pp. 852-869.  
22 J.A. Richards, G-Q Sun and D.S. Simonett, L-band backscatter modelling of forest stands, IEEE 
Transactions on Geoscience and Remote Sensing, vol. GE-25, no. 4, July 1987, pp. 487-498. 

3.22. 
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Fig. 5.23. Simulated radar cross section of a tree trunk with canopy attenuation, from (5.30) 

 
 
Note the direct dependence on the ground properties in (5.30) via the reflection 

coefficient ρg. If the ground condition changes, such as a dry soil surface being replaced 
by water, then the radar cross section presented by the tree trunk will change accordingly. 
To see the magnitude of this effect assume that a dry soil surface of dielectric constant 
about 4 becomes flooded; water has a dielectric constant of about 81 or so. To make the 
calculations simple assume vertical incidence so that (5.2) can be used. With that change 
of dielectric constant the square of the Fresnel reflection coefficient changes from 0.11 to 
0.64; that would lead to a 7.6dB increase in radar cross section. Thus a flooded forest will 
appear considerably brighter in radar imagery than one with a dry understory. At longer 
wavelengths the canopy is not very attenuating so it is even possible to observe the effect 
of flooding under a closed canopy23. 

An interesting composite situation that involves hard targets and dihedral reflections is 
radar scattering from a bridge over a river or harbour when the structure is substantially 
aligned with the flight path of the platform. Figure 5.24 shows an image of a region in 
which there are three bridges each of which appears as at least three reflections24. The 
image was recorded by a high spatial resolution X band interferometric radar at an 
incidence angle of 43o. Also shown is a portion of an air photo of the region for 
comparison. 

The sketches in the figure show how the three main reflections occur for each bridge. 
First there is direct reflection from the bridge itself; clearly that would not be present if 
the side of the bridge were perfectly smooth, but generally there is enough geometric 
                                                 
23 See J.A. Richards, P.W. Woodgate & A.K. Skidmore, An explanation of enhanced radar backscattering 
from flooded forests. International Journal of Remote Sensing, vol. 8, pp. 1093-1100, 1987. 
24 For a fuller description of the data set and the fusion of optical and radar data in pursuit of 3D 
visualisation of urbanised regions see U. Soergel, A. Thiele, H. Gross and U. Thoennessen, Extraction of 
bridge features from high-resolution InSAR data and optical Images, 2007 Urban Remote Sensing Joint 
Event, Paris. 
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detail, particularly at X band, that direct reflection will occur. We are dealing with a 
ground range image. Therefore the direct signal will be projected onto the ground plane 
displaced towards the radar as shown – a classic case of layover. 

 
Fig. 5.24. Typical scattering from a bridge, showing how multiple reflections are formed; the 
imagery was taken by permission from U. Soergel, A. Thiele, H. Gross and U. Thoennessen, 
Extraction of bridge features from high-resolution InSAR data and optical Image”, 2007 Urban 
Remote Sensing Joint Event, Paris ©2007 IEEE 

  
 
The second reflection is the result of double bounce dihedral behaviour involving the 

bridge and the water surface. Generally that would be the strongest reflection at longer 
wavelengths (L band) but at X band will be a little weaker owing to diffuse-like scattering 
from the water surface. It will not exhibit specular behaviour at those wavelengths. Where 
does this reflection locate on ground range imagery? In this case, with an incidence angle 
close to 45o the answer is straightforward. A little thought will show that the two way 
path travelled along the dashed line in the second sketch in Fig. 5.24, parallel to the radar 
rays, is approximately the same as the actual double bounce path followed, thus locating 
the second reflection almost directly under the bridge itself. 

The third reflection is a little more complex and involves reflection from the bridge to 
the water, scattering back to the bridge and then reflection back to the radar. For this to 
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have any strength the water must be a good diffuse scatterer, which we have already 
noted is likely to be the case at X band. Should the image have been recorded at L band 
this third mechanism would be weaker because of more specular behaviour at the water 
surface. This reflection will appear at the ground range position indicated in the third 
sketch which lies at the same apparent slant range position as the triple bounce reflection. 

Because the spatial resolution is so high in this image (about 0.4m in range and 0.2m in 
azimuth) the bridge reflections show more complex detail including stanchions on the top 
left hand bridge and hand railings on the bottom right hand bridge. Multiple reflections of 
the type considered here for radar are also commonplace in optical imagery.  A reflection 
of a bridge in calm water will often be seen when it is viewed side on. 

Finally, we can derive the scattering matrix for a dihedral structure with dielectric 
faces, as against metallic faces described in Sect. 3.22. The metallic dihedral viewed 
along bore sight has a normalised scattering matrix of the form 

 

 ⎥
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−10
01

 

 
As seen in (5.29) and (5.30) the only factors that are polarisation dependent are the 
Fresnel reflection coefficients.  The radar cross section for a dihedral structure therefore 
can be expressed in the general form 
 
 22

xyA ρρσ =  
 

in which A accounts for any factors that are geometrically significant, or relate to losses, 
and ρy and ρx are the reflection coefficients for the vertical and horizontal faces of the 
dihedral structure.  From (3.43) we can establish xPQyPQPQs ρρ∝  so that the normalised 
scattering matrix for the dielectric dihedral arrangement (such as the side of a building 
and the ground surface) is 
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in which the minus sign on the vertical component accounts for the change in phase 
between the horizontal and vertical components caused by the two reflections, as seen in 
Fig. 3.25 and discussed also in Sect. 8.5.1. In this expression for the scattering matrix the 
reflection coefficients are functions of angle so the polarimetric behaviour of the structure 
can be explored over a range of incidence angles. As an illustration Fig. 5.25 shows the 
co-polarisation plot for the side of a building with dielectric constant 4 adjacent to a soil 
surface with dielectric constant 5 at 30o angle of incidence25. 
 
 
5.5.3  Metallic and Resonant Elements 
 
Metallic structures reflect radar energy and will show up in imagery if there is a 
component of the reflection in the backscattered direction. Although there are too many 

                                                 
25 When doing these calculations it is important to recognise that the “incidence” angle for the vertical 
surface to use in (5.3) is 90o minus the system angle of incidence. 
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metallic wire, which might represent a fence line if it is in the horizontal plane. 

 
 
Fig. 5.25. Co-polarisation plot for a dielectric dihedral structure such as the side of a house 

 
 
The backscattering radar cross section of the wire shown in Fig. 5.26 is given by26 
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in which β=2π/λ. The angle γ describes the orientation of the electric field vector with 
respect to the cylinder axis, while the angle Ψ represents the angle with which the ray 
strikes the wire in the slant plane, measured against its normal, before it is scattered. 
While at first sight it might seem strange that there would be any backscatter except for 
irradiation exactly in the normal direction, a finite length cylinder will have backscatter in 
all directions in principle, albeit rapidly falling as we move away from normal irradiation. 
It is the square bracketed term above that determines that behaviour; note that if h goes to 
infinity that term will approach zero. Fig. 5.27 shows the dependence of the radar cross 
section of the wire on Ψ  and γ. The former shows the sensitivity to alignment of the wire 
with the flight path of the platform while the second shows sensitivity to the polarisation 
of the radiation. 

 
 
Fig. 5.26. Scattering from a long, thin horizontal wire 

                                                 
26 See Ruck et al, loc cit. 
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If a metallic structure is a multiple of half wavelengths of the radiation it will have an 
exceptionally high radar cross section; the expression above cannot be used to show that 
since it relates to a wire that is long compared with a wavelength. We can however 
understand the effect quantitatively in the following manner. When a body such as a wire 
is irradiated currents are set up inside it as indicated in Fig. 5.18 ; those currents cause 
fields to be radiated from the object. It is those fields that represent the backscattered 
power density. The object is in fact behaving as though it were an antenna when it re-
radiates. Antenna theory demonstrates that the most efficient radiators are those that are a 
half wavelength long, and then multiples of half a wavelength. Likewise passive metallic 
elements with those dimensions will show strong radar scattering 
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Fig. 5.27. Backscattering radar cross section of a wire 10m long and 1cm diameter at L band as a 
function of incidence angle (for a polarisation angle of zero) and as a function of polarisation 
angle (when the incidence angle is zero) 
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5.5.4  Bragg Scattering 
 
The wavelengths employed in radar remote sensing are not too different from some 
structural periodicities often found in nature. That gives rise to a particularly interesting 
form of scattering that can be relevant in agriculture and underpins one of the more 
popular models for sea surface scattering. 

Fig. 5.28 shows a sinusoidally varying surface with spatial wavelength Λ. If that 
structure is irradiated there will be reflections from the regularly spaced portions of the 
surface. Those reflections add to give the complete response from a pixel which contains 
the sinusoidal surface variation. If we assume the reflections are all of the same 
magnitude then in adding them we have to account only for the effect that some travel 
further than others in transmission and reception. 

 
 
Fig. 5.28. Interaction of the radar beam with a spatially periodic structure 
 

 
The additional distance x shown in Fig. 5.28 is Λsinθ, giving the additional two way 

phase delay between the two left most rays as 
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If this additional phase is a multiple of 2π, the two waves will add in phase and re-inforce 
each other. If those two add in phase then so will waves reflected from other parts of the 
spatial periodicity. Thus, the condition for all waves to reinforce is that 
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where n is an integer, giving 
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as the condition for so-called Bragg resonance. While this has been developed on the 
basis of scattering from a sinusoidal surface any periodic repetition of scatterers aligned 
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orthogonally to the incoming wavefront will give rise to interference among the scattered 
waves. A sequence of wires for example can behave this way. 

Usually when we consider several scattering mechanisms within a pixel we simply add 
their power density contributions – effectively we add their radar cross sections or 
scattering coefficients. With Bragg scattering, however, the fields add. This is called 
coherent addition, as against non-coherent scattering when the power densities add. 
Coherent addition gives a much higher power density and thus scattering coefficient. To 
illustrate this point suppose the scattered electric field strength from each of two 
individual scatterers is E. If the reflections add non-coherently the total power density is 
proportional to E2+E2=2E2, whereas if they add coherently the power density is 
proportional to (E+E)2=4E2. Fig. 5.29 shows an example of the strength of Bragg 
scattering believed to occur from aligned portions of circular agricultural fields in Libya. 

 
 

 
 
 
Fig. 5.29. Circular pivotal irrigated agricultural fields in Libya, demonstrating the strong returns 
most likely associated with Bragg Resonance; the radar illumination is from the bottom of the 
scene so that ploughed furrows running across the scene give the enhanced returns (from J.P. 
Ford, J.B. Cimino and C. Elachi, Space Shuttle Columbia Views the World With Imaging Radar: 
the SIR-A Experiment, JPL Publication 82-95, NASA, 1 January 1983) 
 
 
5.5.5  The Cardinal Effect 
 
If a region being imaged consists of a row of buildings acting like dihedral reflectors in 
the nature shown in Fig. 5.21 or has in it wire fence lines such as depicted in Fig. 5.26, 
then strong radar scattering will occur if those structural elements are aligned parallel to 
the platform flight line and thus orthogonally to the incoming radar beam. If they are not 
aligned then their radar response will be weak. Fig. 5.27 shows for example that the 
backscattered power from a wire will be reduced tenfold just a few degrees off broadside. 
It is not unusual, therefore, for urban regions of ostensibly the same housing density to 
show very high response when the street pattern is aligned to the flight path and low 
response otherwise. The same can happen if Bragg scattering occurs with, say, 
agricultural fields and fence lines. This is known as the cardinal effect because of its 

Bragg resonant returns 
from aligned furrows 
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loose association with compass directions. Fig. 5.30 shows an image of Montreal in 
which the cardinal effect is evident. 
 

 

Fig. 5.30. Portion of a SIR-B 
image acquired over Montreal, 
Canada demonstrating the 
cardinal effect; the bright central 
portion of the image is where 
cross streets are aligned 
orthogonally to the incoming 
radar energy, whereas the 
portions to the north, of about 
the same urban density, have 
street patterns not orthogonal to 
the radar beam (from J.P. Ford, 
J.B. Cimino, B. Holt and M.R. 
Ruzek, Shuttle Imaging Radar 
Views the Earth From 
Challenger: the SIR-B 
Experiment, JPL Publication 86-
10, NASA, 15 March 1986) 
 

 
5.6  Composite Scatterers 
  
In practice we often come across scattering behaviours resulting from a combination of 
the effects treated in the previous sections. Either there will be multiple scatterings 
involving the same type of element (such as from leaf to leaf in a canopy) or there will be 
mechanisms involving more than one scattering type. Many of these are found in the 
scattering behaviour of trees and forest stands, which we will use here to illustrate the 
effects that emerge.  

When handling composite situations it is necessary to determine whether each of the 
scattering components that can reasonably be identified (such as the small set in Fig. 
5.31) should be added coherently or non-coherently. The former can be a difficult task 
since it requires the scattering pathways to be described by the electric field vectors in 
each case, which are then combined. That might be required if there were a small number 
of dominant scatterers in a scene. In general, if there are many randomly dispersed 
scatterers within the resolution elements of a scene we can assume that the component 
scattering mechanisms can be combined non-coherently. That means we can add their 
power contributions by combining scattering coefficients or radar cross sections 
normalised by pixel area. 

 
 

5.7  Sea Surface Scattering 
 
Because the mechanisms for sea surface scattering are different from those generally 
observed with land-based features it is instructive to consider the sea as a separate 
scatterer type. 

A perfectly flat sea will behave like a specular reflector and consequently will appear 
dark in monostatic radar imagery for all incidence angles except zero. Clearly, in order to 

radar illumination 

street 
alignments 



5 Scattering from Earth Surface Features  173 

receive measurable backscatter the sea surface must be made rough by some physical 
mechanism. The principal means for surface roughening is the formation of waves. 

 
Fig. 5.31. Typical scattering 
pathways for trees and forest 
stands: 1 is trunk-ground corner 
reflector scattering; 2 is canopy-
ground scattering, 3 is scattering 
from the ground after 
transmission through the canopy 
and 4 is canopy volume scattering 
 

 
 

There are two broad types of wave on the surface of the ocean, both excited by the 
action of wind blowing across the surface, but distinguished by the mechanism that tries 
to restore the flat water surface against the driving effect of the wind. Gravity waves 
depend upon gravitation acting on the disturbed mass of water to counteract the effect of 
the wind; their wavelengths tend to be long, typically in excess of a few centimetres. On 
the other hand capillary waves have wavelengths shorter than a few centimetres and rely 
on surface tension to work against the disturbance caused by wind action. For both types 
the amplitude and wavelength is a function of wind speed, fetch (the distance over which 
the wind is in contact with the surface of the water) and the duration of the wind event. 
Capillary waves typically appear to ride on the gravity waves as depicted in Fig. 5.32. 

 

 
 

Fig. 5.32. Sea surface waveform composed of gravity and capillary waves 
 
 
By their nature water waves have periodicity. They can be quite complicated in that at 

any time there may be a whole range of wavelengths present with more energy associated 
with some than others. That is summarised in the wave power spectrum of the sea state, 
an illustration of which is given in Fig. 5.33, which can be interpreted to mean that there 
are a myriad of periodicities present, some stronger than others. Importantly though there 
will almost certainly be available some energy at the spatial wavelength required for the 
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Bragg resonance mechanism discussed in Sect. 5.5.4. Bragg coupling can be used to 
describe the nature of sea surface imagery observed in radar remote sensing provided the 
gravity waves are not too large, in which case scattering from wave facets facing the radar 
is usually considered the most appropriate description27. Here, we will analyse the Bragg 
scattering situation by referring to the condition of (5.31) and the spectrum of Fig. 5.33. 

Within the range of wavelengths relevant to capillary waves the sea surface spectrum is 
approximately linear on a log-log scale as represented in Fig. 5.33; the energy density 
increases with wind speed as indicated28. There is considerably more energy available at 
the longer sea surface wavelengths. Thus in satisfying the Bragg resonance condition of 
(5.31) at a given angle of incidence we would expect greater ocean returns at longer 
wavelengths – roughly corresponding to C band in Fig. 5.33. Extrapolating the curve to 
smaller wave numbers suggests there would be better backscatter still at, say, L band. 
However, that is not the case. The power density of capillary waves falls for wave 
numbers smaller than those shown so that the sea surface can appear dark at L band, 
particularly for incidence angles typical of space borne missions (20-40o). 

 

 
 
Fig. 5.33. Energy spectrum of short sea surface waves 

 
 
Suppose we now decide on using C band. What incidence angles are best? Expressing 

the Bragg resonance condition of (5.31) in terms of sea surface wave number k rather than 
wavelength gives 

 
λ

θ
n

k sin
=  

 
                                                 
27 See J.F. Versecky and R.H. Stewart, The observation of ocean surface phenomena using imagery from 
the SEASAT synthetic aperture radar: an assessment, Journal of Geophysical Research, vol. 87, no. C5, 
3397-3430, 1982. 
28 See R.T. Lawner and R.K. Moore, Short gravity and capillary wave spectra from tower-based radar, 
IEEE Transactions on Oceanic Engineering, vol. OE-9, no. 5, 317-324, 1984, and Fig. 11.27 of F.T. Ulaby, 
R.K. Moore and A.K. Fung, Microwave Remote Sensing  Active and Passive, Vol 2, Addison-Wesley, 
Reading Mass , 1982 
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Noting from Fig. 5.33 that the greatest wave energy is at the smaller wave numbers, we 
see that we will get higher sea surface returns at smaller incidence angles. There will be 
fairly rapid fall off in radar return as the incidence angle increases. 

Oceanographic mapping satellites like Seasat and ERS-1,2 employ incidence angles of 
around 20o to take advantage of those higher available spectral energies. Smaller angles 
are not used in order to avoid a specular component in the return. While angles around 
20o are suitable for sea state imaging they can be problematic for land surface imaging in 
regions of high relief since terrain distortion is worse for smaller incidence angles, as 
outlined in Sect. 4.1.2. 

 

 
 (a) 
 

 
 (b) 
 

Fig. 5.34. Seasat mosaic (a) and SIR-A (b) image of the coastal region around Santa Barbara, 
California (from J.P. Ford, J.B. Cimino and C. Elachi, Space Shuttle Columbia Views the World 
With Imaging Radar: the SIR-A Experiment, JPL Publication 82-95, NASA, 1 January 1983) 

 
 
Fig. 5.34 demonstrates these features and the importance of incidence angle. It shows a 

Seasat image (20o) recorded off the coast of Santa Barbara, California along with a SIR-B 
image (40o) of the same region. Sea surface information is only evident in the C band 20o 
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data, although that image also shows terrain distortion. The bright targets off the coast 
(which are oil drilling platforms) show well in the 40o L band imagery because of the low 
sea returns. They are present also in the Seasat image but masked by the strong sea 
surface return at the smaller incidence angle. 

The dependence of radar return on incidence angle allows us to assess the modulation 
of backscatter that is observed across a gravity wave on which capillary waves sit, as 
shown in Fig. 5.32. The front slopes of the gravity waves face the radar and thus present a 
smaller incidence angle to the radar beam, allowing coupling to capillary waves of 
smaller wave numbers and thus increased energy. The back slopes show a larger 
incidence angle. The radar beam thus couples to larger wave number components of the 
sea surface spectrum; as a result they will appear considerably darker than the front 
slopes. Consequently, we can observe gravity waves on the sea surface as a result of 
Bragg resonance with the capillary waves. 

Note from Fig. 5.33 that the level of backscatter increases with wind speed as is to be 
expected. In general, it is important to recognise that anything that affects the capillary 
waves, and thus their energy spectra, will lead to modulation of the radar returns. That 
includes rain dampening, and dampening by other mechanisms such as oil slicks. Fig. 
5.35 shows a Seasat image from 1978 that includes a major oil slick. The sea surface is 
dark at the slick because the capillary waves have been damped by the oil. 
 

 
 
Fig. 5.35. Seasat image recorded on 3 October 1978 showing an oil slick and two ships with their 
(offset) wakes (from J.P. Ford et al., Seasat Views North America, the Caribbean, and Western 
Europe With Imaging Radar, JPL Publication 80-67, NASA, 1 November 1980) 

 
 
Also observable in the image are two ships, both sailing in the cross track direction, but 

opposite to each other. Several features are noteworthy. First, the ships appear as bright 
spots because of the dihedral reflections caused by the sides of the ships and the ocean 
surface as discussed in Sect. 5.5.2. Secondly, the wakes generated by the ships are clearly 

radar illumination 
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visible because of their modulation of the capillary waves. Finally, the wakes are offset 
from their respective ship! That is because the images are formed from the Doppler 
history of the radar reflections as discussed in Sect. 3.6. Since the ships are moving they 
will have an apparent broadside position with respect to the radar platform defined by 
when the Doppler shift of the carrier frequency is zero. For a stationary target that 
happens at physical broadside. For a moving target broadside and zero Doppler are 

their position shifts are in opposite directions. 

 
Fig. 5.36. Co and cross polarised polarisation signatures for lake water at C and P bands from an 
AirSAR scene of Brisbane, Australia; produced using ENVI™ (ITT Visual Information Solutions) 

 
 
Finally, Fig. 5.36 shows the polarisation signatures typical of relatively calm water. 

They should be compared with those for a relatively smooth surface in Fig. 5.12, 
particularly for the case of the higher dielectric constant. 

different. Because one ship in Fig. 5.35 is travelling towards the radar and the other away, 
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5.8  Internal (Ocean) Waves 
 
The previous section has looked at the coupling of radar energy with waves that form on 

launching on the soft boundaries that occur between water layers of differing 
temperatures, densities and salinities. In contrast to the much shorter surface waves that 
propagate on the water-air interface, so-called internal waves have much longer 
wavelengths, typically several hundreds to thousands of metres. 

There is still much to be understood about internal waves. They usually exist in wave 
packets and appear to be generated by mechanisms that cause underwater disturbances 
such as river inflows, movement of water over varying bottom topography and 
underwater earthquakes. They express themselves in radar imagery because they 
modulate the capillary waves. One theory says that they have vertically circulating 
current patterns that sweep materials such as pollens, slicks and other debris into 
convergence zones that damp the capillary energy thereby causing dark bands in the 
imagery29

 

 
 

Fig. 5.37. Radar image of internal waves in the Andaman Sea; the image is about 100km across 
which gives an idea of the scale of the waves (from J.P. Ford, J.B. Cimino and C. Elachi, Space 
Shuttle Columbia Views the World With Imaging Radar: the SIR-A Experiment, JPL Publication 
82-95, NASA, 1 January 1983) 
 

 
5.9 Sea Ice Scattering 
 
Sea ice is a particularly interesting scattering medium because its properties change with 
time; that leads to a change in its scattering characteristics. Newly formed ice is thin and 
smooth. It will appear dark in radar imagery since it behaves as a specular reflector. This 
will also be the case for lake ice. New sea ice can be difficult to distinguish from open 
water unless the water is wind roughened. If the ice is covered in a layer of moist snow30 

                                                 
29 See W. Alpers, Theory of radar imaging of internal waves, Nature, vol. 314, 245-247, 1985. 
30 Dry snow – i.e. below freezing – has a very low dielectric constant and thus appears almost transparent to 
incident radar energy. 
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the surface of the ocean. Waves can also generate within the bulk of the ocean itself, 

. Fig. 5.37 shows a Seasat image of the Andaman Sea with internal waves. 
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it will appear bright because of volume scattering from the snow and composite scattering 
involving the snow and the ice layer as illustrated in Fig. 5.38.  

 

 
 
Fig. 5.38. Scattering pathways for radar backscatter from sea ice (a) specular reflection from new, 
smooth ice (b) volume and composite scattering involving snow cover and (c) volume scattering 
from within the ice itself; the surface can also be a diffuse scatterer 
 
 

As sea ice ages its morphology changes. Because of temperature fluctuations and 
mechanical stresses caused by movements of ice floes, the surface of the ice becomes 
roughened with time and small pressure ridges form. As a consequence, when aged, it 
exhibits diffuse surface scattering behaviour, particularly at smaller incidence angles. Fig. 
5.39 shows sea ice imaged at each of C, L and P bands, in which several interesting 
observations can be made31. First, C band appears to give the best range of brightness for 
discriminating among the ice features, especially first year (smooth) as against multi-year 
(surface roughened) ice. It appears that the variations in surface roughness is such that 
first year/multi-year differentiation is not discernable at L and P bands, along with the 
fact that there is likely to be penetration at those wavelengths. Pressure ridges within the 
multi-year ice floes however are better picked up in L band, presumably because they are 
rough at that wavelength compared with the smoother floe surface, whereas at C band 
both are rough and thus a little more difficult to differentiate; at P band both appear 
smooth so that the ridges are not seen. 

                                                 
31 B. Scheuchl, I. Hajnsek and I. Cumming, Classification strategies for polarimetric SAR sea ice data, 
Workshop on Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, 14-16 
January 2003 
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The dielectric constant of ice below freezing is not very high because the free water 
molecules that give rise to the high dielectric constant of liquid water are not present in 
ice32. Instead the water molecules are bound into the ice lattice. Typically, the dielectric 
constant of sea ice (3.5 - 4) is low enough that there can be transmission across its upper 
boundary. That component undergoes volume scattering from air bubbles, salt and brine 
inclusions within the bulk of the ice as shown in Fig. 5.38. 
 

 
Fig. 5.39. Multi-wavelength aircraft SAR imagery of sea ice (from B. Scheuchl, I. Hajnsek and I. 
Cumming, Classification strategies for polarimetric SAR sea ice data, Workshop on Applications 
of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, 14-16 January 2003, ©2003 
ESA/ESRIN) 

                                                 
32 See J.A. Richards, Radio Wave Propagation  An Introduction for the Non-Specialist, Springer, Berlin, 
2008. 
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CHAPTER 6 
 
INTERFEROMETRIC AND TOMOGRAPHIC SAR 
 
 
  
 
6.1  Introduction 
 
Undoubtedly, one of the more interesting applications of synthetic aperture radar imagery 
to emerge in the past two decades has been topographic mapping using interferometry. 
Because the phase angle of the backscattered signal for a given pixel is available, and 
phase is easily measured, it is possible to compare the phase differences of two different 
images of the same region and, from that comparison, find the relative locations of pixels 
in three dimensions: latitude, longitude and altitude, or their equivalents. In this chapter 
we show how that can be done, and how interferometry can also be used for change 
detection. The fundamental concept is extended to show how a tomographic process can 
be implemented, in which the vertical detail within a ground resolution cell can be 
resolved. The radar geometry used for interferometric applications is a special case of 
bistatic radar considered in Chapt. 7. 
 
 
6.2 The Importance of Phase 
 
One of the characteristics that sets radar aside from optical imaging is that we know both 
the amplitude and the phase of the signal backscattered from the landscape. For optical 
imagery we know only the intensity (radiance) which, as seen in Chapt. 2, is equivalent to 
amplitude squared without phase. Knowing the phases of two signals means they can be 
interfered as discussed in Sect. 2.17. Interference is the basis of interferometric SAR 
imaging. 

After scattering from a particular pixel the signal received at the radar, and compressed 
in range and azimuth to remove the transmitted and Doppler induced chirps, can be 
written 

 )2exp()( RtjAtEr βωρ −=  (6.1) 
 

frequency. This signal would be one of the polarisations used in a multi-polarisation radar 
system. It will be a function of the pixel of interest; strictly, therefore, we should write it 
as a function of the range and azimuth coordinates of the pixel. We will consider that 
detail later. 

The ρ in (6.1) is the reflectivity of the pixel being imaged – i.e. its scattering 
characteristic that would normally be expressed as the corresponding element of the 
scattering matrix. As seen in Chapt. 3 it is a complex number, which indicates the effect it 
has on both the amplitude and phase of the incident energy when producing the 
backscattered signal. In general we would therefore write it as 
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 φρρρ
φ

∠≡= je  (6.2) 
 

For the moment we won’t have much to say about the properties of ρ, but it will be 
important later when we come to look at limitations in interferometry. 

The factor A is a general amplitude scaling term that we will assume is the same for 
every pixel, and results from the inverse distance drop in signal strength during 
transmission along with any other factors that are not pixel specific. R is the one way 
distance between the radar set and the pixel, while β is the phase constant, given in Sect. 
2.8, sometimes also called the wave number k. Note β=2π/λ in which λ is the operating 
wavelength of the radar, given by fc /=λ with πω 2/=f . 

We can write (6.1) as 
 )exp()( T

r tjAtE φωρ −=  (6.3a) 
 

in which1  
λ
πβφ RRT

42 ==  (6.3b) 

 
is the total change in phase of the signal from when it was transmitted to when it arrived 
back at the radar as a result of the 2R path it travelled. Clearly, if two pixels or targets are 
at different slant ranges then they will have different total phase angles measured at the 
radar. The difference in their phase angles is proportional to the different distances to the 
targets. This is illustrated in Fig. 6.1a. It is, in principle, easy to discriminate between 
points a and b at the top and bottom of a topographic feature because the echoes are 
separated in phase. There is however an ambiguity. Because the radar works on resolving 
in slant range, the target at point c will appear to the radar to be at the same position as 
that at point a. 
 

 
 (a) (b) 
 
Fig. 6.1. (a) Even though the topographic variation between a and b is resolvable, there is 
ambiguity between a and c (b) resolving the a and c ambiguity by changing the radar position, but 
causing a and d ambiguity 
 
 

                                                 
1 See Sect. 6.9. This expression strictly depends on the mode of operation of the interferometric radar, 
although that is not important at this stage 
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One way of resolving the a-c ambiguity is to change the viewing perspective, as in Fig. 
6.1b. However, a new ambiguity has been created between points d and a. If both 
perspectives were used together then perhaps we might be able to resolve all such 
ambiguities, just like stereo vision does. That is the principle behind radar interferometry. 
At least two viewing perspectives are chosen. We will show now that that allows, in 
principle, unambiguous resolution of the landscape in three dimensions, with the 
exception of two further considerations: parameter uncertainties and an ambiguity in 
phase measurement. Phase ambiguity is a major consideration that must be resolved, as 
we will see shortly. 
 
 
6.3  A Radar Interferometer - InSAR 
 
Consider the geometry shown in Fig. 6.2 which is the basis of our analysis of 
interferometric radar, referred to commonly as InSAR.  The two radars in this case are 
shown arranged horizontally at either end of a baseline, which approximates the situation 
most often encountered in practice and which we refer to generically as an interferometer. 
We treat the case of an inclined baseline in Sect. 6.8. The projection of the baseline 
normal to the line of sight from the radar to the target, B⊥  is an important parameter; we 
call that the orthogonal baseline. 

  

 
 
Fig. 6.2. Geometry for single baseline SAR interferometry, in which we have assumed that the 
look and incidence angles are the same; the platform travels out of the page 
 
 
To consider the phase difference between the two radar signals we need to find the 
difference in the path lengths to a target, shown in the figure as sitting at a height h above 
the assumed zero altitude plane. It can be seen that 

 
 θδθ sincos21 BRR +=  (6.4) 

 
Assuming 0≈δθ this is θsin2 BRR +=  
 
so that  θsin21 BRRR =−=Δ  (6.5) 
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The equivalent difference in phase angle between the two signals is, from (6.3b) 
 

 
λ

θπφ sin4 B
=Δ  (6.6) 

We call that the interferometric phase angle. 
The assumption of negligible difference in incidence angle 0≈δθ that led to this 

approximation essentially means that we are considering the target to be infinitely far 
away from the two antennas compared with their baseline separation. While that is 
acceptable in the use of interferometers in radio astronomy it is a slightly poorer 
assumption in SAR interferometry, but is nevertheless adopted. It is sometime called the 
plane wave approximation. 

Note that (6.6) is not dependent on h, which is a consequence of the plane wave 
assumption. However, it is a function of incidence angle which varies with target height 
above the datum as can be appreciated from Fig. 6.2. To find that relationship we redraw 
the imaging geometry simply, as shown in Fig. 6.3, in which B represents the baseline of 
the two-radar interferometer. 

 
 
Fig. 6.3. Determining the relationship between topographic height and incidence angle; strictly 
the incidence and look angles would be slightly different, especially for a space borne system, but 
we ignore that small difference here 
 
 
From Fig. 6.3 we see θcosoRHh −=  
 

so that  θ
θ
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=  (6.7) 

 

From (6.6) 
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so that, using (6.7) and (6.8), 
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angle. From Fig. 6.2 ⊥= BB θcos so that (6.9) is2 
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This demonstrates the dependence of the change in intereferometric phase with terrain on 
the three important system parameters: platform altitude H, angle of incidence (or look 
angle) θ and the orthogonal baseline ⊥B of the interferometer. To gain some idea of the 
sensitivity of the system consider ERS for which H=780km, λ=0.056m and θ=23o; 
assume B⊥ =250m, which is at the upper end of its useful range (see Sect. 6.11 for the 
concept of critical baseline, which limits the upper usable value of B⊥). These give 
 

 =
Δ
dh

d )( φ 0.169rad/m 

 
so that a full 2π cycle of phase difference corresponds to a height variation of about 37m. 

If in (6.10) we call 

 
)( φ

α
Δ

=
d

dh
IF  

 
the interferometric phase factor then the elevation of a given point at (x,y) corresponding 
to the phase difference at that point is given by 
 
 constant),(),( +Δ= yxyxh IF φα  (6.11) 
 
In principle, the constant can be found by associating the height and phase difference at 
one specific point, allowing the elevations at all other points then to be determined. 
 
 
6.4  Creating the Interferometric Image 
 
The difference in the phase angles of the two constituent images has to be established on 
a pixel by pixel basis in order to map elevation using the material in the previous section. 
From (6.3a) the received fields from a given pixel by each radar will be of the forms: 
 
 ),()exp()exp()( 1111 yxejtjtE TT =−⇒−= φρφωρ  (6.12a) 
 ),()exp()exp()( 2222 yxejtjtE TT =−⇒−= φρφωρ  (6.12b) 
 
in which we have set the common amplitude factor A to unity for convenience. The 
signals are distinguished, as expected, by their differing phase angles. We can disregard 
the common time exponential terms, retaining only the phasor forms of the signals as 
indicated. Both are now shown as functions of x and y, signifying that they are different 
for pixels at different locations in the image. If we form the product 
                                                 
2 We don’t use tan in place of the ratio of sin and cos in (6 10) since, when the baseline is inclined, the 
angle of the sin term is changed – see (6 17). 

This shows how changes in terrain height result in changes to the interferometric phase 
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 ),(),(),( *

21 yxeyxeyxi =  (6.13a) 
 
in which one of the images is conjugated as shown, then the result is an image with 
amplitude proportional to the scattering coefficient and phase being the interferometric 
phase difference: 
 )exp()](exp[),( 2

21
2 φρφφρ Δ−=−−= jjyxi TT  (6.13b) 

 
We call this the interferogram. Generally the pixels of the interferogram are averaged 
over a small neighbourhood to reduce phase noise so that the resulting elevation maps are 
locally smooth. 

 

 

Fig. 6.4. Variation of interferometric phase in radians across a 100km swath for two different 
nominal incidence angles 
 
 
6.5  Correcting for Flat Earth Phase Variations 
 
In Sect. 6.3 we looked at the variation of interferometric phase difference with elevation. 
From (6.6) we can see that it will also vary with incidence angle across the range 
direction even if there were no variation in elevation. In other words, across the image 
swath there will be an equivalent flat earth variation in phase resulting from the 
corresponding change of incidence angle from near to far swath edge. That flat earth 
variation needs to be removed from the recorded phase difference between the two radars 
in the interferometer before (6.11) can be applied; otherwise the result will be biased with 
position across the swath. 

Fig. 6.4 shows the extent of the flat earth phase variation across a 100km swath for a 
platform at an elevation of 800km, with a 100m baseline and for nominal incidence 
angles of 20o and 40o. That demonstrates the extent of correction necessary before 
interferometric phase can be used to deduce topography. 
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To illustrate this point further we use the artificial landscape3 shown in Fig. 6.5, 
consisting of 500x500 pixels with a ground resolution of 20x20m, rising to a maximum 
elevation of 2000m. The interferometric phase variation was generated by assuming a 
near swath incidence angle of 20o, a baseline of 150m and a platform elevation of 800km. 
Fig. 6.6a shows the interferometric phase over the region. Notwithstanding the height 
variation in the terrain shown in Fig. 6.5 the corresponding phase change is not readily 
seen in the figure because it is masked by the change associated with the flat earth phase. 
Fig. 6.6b shows the degree of the flat earth phase variation across the swath, while Fig. 
6.6c shows the effect of correcting 6.6a with 6.6b. As seen, we can now discern the 
variation in interferometric phase corresponding to the elevation variation, as required. 

 
Fig. 6.5. Simulated terrain variation to assist in studying interferometric phase 
 
 
6.6 The Problem with Phase Angle 
 
Even though the physical phase angle seen in Fig. 6.6 extends over a very great range, the 
phase angle that results when two signals are interfered according to (6.13) is restricted to 
the range 0 to 2π.  To see that recall that the exponential functions we use to represent 
sinusoids are actually just mathematical conveniences. For the interferogram of (6.13b) 
strictly we should write (ignoring the reflection coefficient) 
 
 )}{exp()cos( φφ Δ−=Δ jRe   
 
Because the cosine function is periodic, even though the interferometric phase changes 
substantially with terrain elevation in the manner observed in Fig. 6.6c, all we see at the 
radar receiver is a phase somewhere between 0 and 2π. For the example of Fig. 6.5 that 
means that the phase difference map between the two images of the interferometer 
actually produced will be as shown in Fig. 6.7. Each cycle of fringes corresponds to a 2π 
variation in interferometric phase, whereas in fact we want to see a smooth, non-cyclic, 
phase variation comparable to Fig. 6.6c. 
 

                                                 
3 This was generated by taking the absolute value of the “peaks” function in MatLab™. 
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Fig. 6.6. (a) Variation of uncorrected interferometric phase, (b) flat earth phase variation, and (c) 
corrected interferometric phase (radians) 
 
 

The question that arises therefore is how can we extract meaningful elevation 
information about the landscape when the phase varies cyclically in the manner of Fig. 
6.7? Essentially, what we have to do is create the phase variation of Fig. 6.6c from that of 
Fig. 6.7. The process, known as phase unwrapping, can be non-trivial. It is called 
unwrapping because of the cyclic variation in phase with period 2π. This can be seen 
directly from (6.13b) by plotting )exp( φΔ− j  on a polar, or Argand, diagram and 
observing how this term changes as the phase difference increases. Fig. 6.8 shows that 
behaviour. As the phase difference increases we move around the polar plot cyclically, 
with each full cycle corresponding to the change between like shaded parts of the 
interference fringes seen in Fig. 6.7. In order to be able to recover the corresponding 
terrain height information it is necessary to roll back, or unwrap, the change in phase of 
Fig. 6.8. 
 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

 
Fig. 6.7. The interferometric phase variation at the radar receiver for the landscape of Fig. 6.5 
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Fig. 6.8. Demonstrating how the cyclic nature of the exponential function in (6.13b) leads to 
ambiguity in phase 
 

 
6.7 Phase Unwrapping 
 
In principle, unwrapping the phase would appear to be straightforward. By starting where 
the interferometric phase difference is expected to be smallest – at the near swath edge – 
the phase angle difference would be tracked as we move across range. Whenever a 2π 
jump in phase is experienced, compensation would be made and the process continued. 
This is demonstrated in Fig. 6.9 using just one row of the interferogram of Fig. 6.7. The 
interferometric phase difference across that row is seen to have six discontinuities 
resulting from the phase wrapping. To unwrap the phase it is beneficial first to take its 
gradient across the line; as seen in Fig. 6.9 that immediately identifies the phase jumps. 
We then integrate along the line of interferometric phase gradient and whenever a 
discontinuity is encountered we add or subtract 2π, based on the sign of the discontinuity, 
to produce the unwrapped phase transect illustrated. 

A complication arises when there is an actual jump in phase greater than 2π within the 
space of a single resolution cell, for example as a result of rapid changes in elevation, 
including layover. In such situations, which unfortunately can be common, special 
measures need to be taken to implement phase unwrapping. The most common are 
reviewed by Gens4. 

Once the phase has been unwrapped it is necessary to relate the resulting 
interferometric phase plot to absolute topography (referred to some datum). The simplest 
way to do that is via ground control points that allow at least some phase measures to be 
associated with elevations; the remaining phases can then be calibrated in terms of 
elevation. 

                                                 
4 R. Gens, Two-dimensional phase unwrapping for radar interferometry: developments and new challenges, 
International Journal of Remote Sensing, vol. 24, no. 4 2003, pp. 703-710. 
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Fig. 6.9. Simple demonstration of phase unwrapping along the white transect shown on the 
interferogram: the top right plot shows the variation of wrapped phase along the transect, while 
the bottom left hand plot shows the gradient of the wrapped phase; the bottom right hand plot 
shows the unwrapped phase along the transect (corresponding to the topography evident in Fig. 
6.5) after integrating the gradient while compensating for the phase jumps 
 

 
6.8  An Inclined Baseline 
 
We now generalise the geometry of Fig. 6.2 to the case where the baseline is inclined at 
an angle to the horizontal. That requires just a simple modification of the significant 
formulas. 

Fig. 6.10 shows the general case, with important angles and distances indicated; the 
baseline is inclined upwards from the horizontal by the angle α. Note that the orthogonal 
baseline is 

 )cos( αθ −=⊥ BB  (6.14)  
 

The path length difference is 
 )sin(21 αθ −=−=Δ BRRR  (6.15) 

 
so that the interferometric phase is 

 
λ

αθπφ )sin(4 −
=Δ

B  (6.16) 

Equation (6.10) then becomes 
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Equation (6.16) reduces to (6.6) when α=0, while (6.17) reduces to (6.10). 

 
 
Fig. 6.10. Geometry for the case of an inclined baseline 

 
 
6.9  Standard and Ping Pong Modes of Operation 
 
In the interferometer operation outlined in Figs. 6.2 and 6.10 it is assumed implicitly that 
each of the two radar antennas radiate and receive, leading to the two way interferometric 
phase expression of (6.6). Some interferometers operate, however, with only one antenna 
transmitting and two antennas receiving; that could be the case if the antennas were both 
on the same platform, such as an aircraft. This configuration was adopted for the Shuttle 
Topography Mapping Mission (SRTM) in which the second receiving antenna was 
located on a 60m boom, with the primary transmitting and receiving antenna in the shuttle 
cargo bay. 

When a single transmitting antenna is used, the time of travel of the ranging pulse from 
that antenna to the target is the same for both interferometer paths; it is only on the return 
paths that one signal travels further than the other. This is illustrated in Fig. 6.11a. In this 

case there is only a one way difference in phase between the paths of )(2
21 RR −

λ
π . 

 
 
 (a) (b) 
 
Fig. 6.11. (a) Standard and (b) ping pong modes of operation, showing the differences in 
interferometric phase between them 
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Sometimes operating with a single transmitting antenna is called the standard mode of 
operation, whereas when both antennas transmit, as in Fig. 6.11b, it is called the ping 
pong mode. To account for both possibilities the interferometric phase difference of (6.6) 
can be written 

 
λ

θπφ sin2 Bp
=Δ  (6.18) 

 
in which p=1 for standard mode operation and p=2 for ping pong mode. Unless otherwise 
stated explicitly we will always assume ping pong operation in this treatment. 

Fig. 6.12 shows a topographic map produced by across track interferometry on the 
Shuttle Radar Topography Mission (standard mode). 
 

 

 
 
Fig 6.12. Digital elevation image of New Zealand produced using cross track interferometry on 
the Shuttle Radar Topography Mission, showing the region near Christchurch; topographic height 
is accentuated using colour with green at the lower elevations and white at the highest; shading is 
used to enhance slope information (image courtesy of NASA) 
 
 
6.10  Types of SAR Interferometry 
 
The arrangement shown in Fig. 6.2 and which has formed the basis of the development in 
this chapter so far has the two radar antennas arranged across the track of the platform – 
literally in what we have called the across track direction of the radar system in other 
chapters. Cross track interferometry, sometimes abbreviated XTI, can be achieved in two 
ways: either by having two antennas on the same platform, as for the SRTM mission, or 
by using two separate passes of a single SAR mission, such as ERS or PALSAR.  
Provided the landscape does not change between passes the latter arrangement constitutes 
a valid interferometer. XTI can therefore be subdivided into single pass and repeat pass 
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interferometry. Clearly, repeat pass cross track interferometry always operates in the ping 
pong mode, whereas the single pass arrangement can operate in either ping pong or 
standard mode depending on the design of the system. 

An interferometer can also be formed in the along track direction, parallel to the 
platform velocity vector. Again, along track interferometry, ATI, can either be single pass 
or repeat pass. Some aircraft systems are single pass by having antennas arranged fore 
and aft on the fuselage. As expected they could be either standard or ping pong as their 
operating mode. Repeat pass along track interferometry, in principle, requires the passes 
to follow the same orbital path. We will see in the following that along track 
interferometry is not sensitive to terrain variations, since the slant ranges are the same. It 
is, however, an important technology for detecting changes that occur between 
observations. Generally, the platforms in repeat pass ATI do not follow identical paths so 
that, as well as along track separation there will be some cross track separation too, 
leading to the detection of topographic detail as well as terrain changes. The effect of 
topography can be removed by using differential InSAR, treated in Sect. 6.13. The 
fundamental types of SAR interferometry are illustrated in Fig. 6.13.  

 
 

Fig 6.13. Fundamental types of SAR interferometers 
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6.11  The Concept of Critical Baseline 
 
It is clear from (6.6) that the size of the baseline controls the degree of phase change with 
incidence angle, which in turn results from a change in topography. A larger baseline 
means a greater phase shift and thus potentially a more sensitive interferometer. However, 
there is a limit. We are interested in the change of phase with elevation from pixel to 
pixel. If that change exceeds 2π then we cannot readily recover the inter-pixel variation in 
elevation.  That is demonstrated in Fig. 6.14 in which we have plotted the interferometric 
phase difference across a flat earth for a range of orthogonal baselines ⊥B using the 
physical parameters of ERS5.  The actual interferometric phase differences recorded in an 
ERS interferometer would be approximately the mid cell phases if the ground were 
perfectly homogeneous in its scattering properties. 
 

 
Fig. 6.14. Demonstrating how the interferometric phase difference for ERS would vary as a 
continuous function across the swath, over a distance equivalent to 5 ground range resolution 
elements 
 
                                                 
5 Altitude 785km, near range incidence angle 23o, ground range resolution 25m, wavelength 0.056m. 
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As noted, for small baselines the phase varies over several resolution elements before 
the 2π ambiguity associated with the cyclic nature of phase becomes evident, indicating 
that we can readily compensate for the 2π jumps when they occur. Once the baseline 
exceeds 1000m however there is a phase jump within each ground range resolution 
element making it impossible understand what the flat earth variation in phase should 
look like. The limiting case is when there is a 2π change in phase within the distance of a 
single resolution cell. Even before that limit is reached it is clear that the reconstruction 
task is not easy. 

The orthogonal baseline for which the variation in interferometric phase difference 
across a single ground range resolution element is 2π is called the critical baseline. It can 
be found using the plane wave approximation that led to (6.6)6 in the following manner 
based on the geometry of Fig. 6.15. 
 

 
 
Fig. 6.15. Geometry used for calculating the critical baseline; strictly the look and incidence 
angles should be different but no significant error is introduced by making them the same 
 
 

Using (6.6) the change in interferometric phase across the ground resolution cell is 
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6 Note that (6.6) is an approximation, albeit a very good one. The results of Fig. 6.14 were generated by 
computing the real vectors from either side of the baseline to the earth’s surface and then finding the actual 
interferometric phase difference. 
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Expressing the baseline in terms of the orthogonal baseline gives 
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The critical baseline is given when this change in interferometric phase across the 
resolution cell is 2π: Thus 
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It may be better to re-cast this expression in terms of the slant range resolution since the 
ground range resolution varies across the swath with incidence angle, while slant range 
resolution is a system parameter, set by the chirp bandwidth, as seen in (3.5a). Putting 

θsin/rg rr =  in (6.19) gives 
 

 
c

R
c
H

r
R

r
HB o

r

o

r
CRITICAL

θλ
θ

θλ
θ

λ
θ
θλ tan

cos
sin

cot2cos2
sin

22
cc BB

=≡==⊥  (6.20) 

 
where we have used (3.5a) to express the orthogonal critical baseline in terms of the 
ranging chirp bandwidth Bc. 

Thus, notwithstanding the better sensitivity of phase with elevation given in (6.10) 
there is an upper limit on baseline set by the critical value. For ERS this is about 1030m. 
When compared with the plots of Fig. 6.14 we can see that that is about the point 
observed when there is a full 2π cycle of phase over the resolution cell. However, as the 
plots indicate, there may be difficulties with understanding variations in the 
interferometric phase with even smaller baselines. In practice, operation is not carried out 
above about 25% of the critical baseline, which is about the second of the plots in Fig. 
6.14. We return to the concept of critical baseline later (Sect. 6.16). 

 
 

6.12  Decorrelation 
 

When the critical baseline is reached it is not possible to create a topographic map 
because the phase information is ambiguous, a situation referred to as decorrelation 
between the constituent images. Significant decorrelation occurs at even shorter baselines, 
so that operation is generally not deemed satisfactory beyond about 25% of the critical 
value, as noted in the previous section. 

Decorrelation can also come about in other ways. Any mechanism that leads to 
statistical differences between the signals received by the two channels can decorrelate 
them. Those mechanisms include differences in the centre, or carrier, frequencies, mis-
registration between the two images in range and azimuth, and noise (uncertainty) in the 
phase measurements on reception. 

With repeat pass interferometry if regions on the ground have changed in any way 
between the two acquisitions that form the interferogram then the interferometric phase 
difference will be affected. Such changes could be fast, such as with the surface of the 
ocean or because of the effect of wind on vegetation canopies. Alternatively, they could 
be slower such as forest growth and glacial movement; generally those would not lead to 
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decorrelation. They might also occur on a very short time scale, episodically, between 
acquisitions, such as ground movement or deformation resulting from earthquakes. We 
will be interested in detecting those types of change using along track interferometry. Any 
time changing phenomena can, in principle, lead to a randomising of interferometric 
phase for the associated pixels between passes such that, if the two images bear no 
correlation, interferometric information cannot be generated. 

The degree of correlation, or coherence, between the two constituent images e1 and e2 
of an interferometer is measured as the magnitude of the complex cross correlation 
between the images 
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It will take the value 1 when the images are fully correlated over the region chosen to 
compute the average, and zero if there is no statistical relationship between the images, in 
which case they are said to be fully decorrelated. 

Coherence can be expressed as the product of a number of components, each 
attributable to a separate decorrelating mechanism. For example we could write  

 
 noisepixelbaseline γγγγ =  (6.22) 
 

in which the subscripts respectively refer to the decorrelation associated with the baseline 
as discussed in Sect. 6.11, decorrelation caused by the pixel itself changing, or looking 
different from the aspects of the radars in the interferometer, and system (phase) noise. It 
is possible to derive explicit expressions for some of those components. Noise coherence 
can be expressed7 
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in which SNR is the signal to noise ratio of the (two) radar receivers. For a very high 
receiver signal to noise ratio, which is to be expected, this term should be close to unity. 

Baseline coherence is given by8 
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As expected this is a function of system parameters such as the horizontal baseline B, the 
ground range resolution, the slant range to the target, the operating wavelength and the 

incidence angle. Writing the baseline in terms of the orthogonal baseline
θcos
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becomes 
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7 See H.A. Zebker and J. Villasenor, Decorrelation in interferometric radar echoes, IEEE Transactions on 
Geoscience and. Remote Sensing, vol. 30, no. 5, September 1992, pp. 950-959. 
8 Ibid. 
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While the others parameters are substantially fixed, we have control over coherence 
through the baseline. A large baseline leads to low coherence, while a small baseline 
helps keep coherence high. The orthogonal baseline at which coherence falls to zero is the 
critical baseline, which from (6.23b) is 
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This is the same as (6.19). 

Decorrelation effects attributable to the pixel itself are treated in the next section in the 
context of detecting topographic change. 

Comparison of (6.21) and (6.13a) shows that coherence is just the expected value of the 
magnitude of the interferogram, formed by multiplying one complex image, pixel by 
pixel, by the complex conjugate of the other. Likewise the interferometric phase is the 
argument of that product as shown in (6.13b). When we come to PolInSAR below we will 
generalise this concept. 
 
 
6.13  Detecting Topographic Change: Along Track Interferometry 

 
Suppose for the moment that we can set up an ideal temporal baseline; in other words the 
platform repeats its path exactly, with no spatial separation orthogonal to its velocity 
vector.  That means there will be no spatial baseline of the type considered in Fig. 6.2. 
Topographic mapping, as treated in Sect. 6.3, is therefore not possible. However, if a 
feature on the landscape shifts during the two SAR acquisitions, such that there is a 
component of the movement in the slant range direction as illustrated in Fig. 6.16, then an 
interferometric phase difference will be measured for the relevant pixels, proportional to 
the two way change in slant range, given by 
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Fig. 6.16. Measuring slant range topographic variations with repeat pass along track 
interferometry 
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Note that this phase difference between the received radar signals is dependent only on 
the ratio of the degree of change in slant range to the operating wavelength. With ERS, 
for which λ=0.056m, one full cycle of phase difference is caused by a slant range shift of 

mmrr 28
2

==Δ
λ ! This should be compared with the sensitivity of 37m per cycle for 

topographic mapping, demonstrated in Sect. 6.3. 
If there is also an across track baseline there will be a phase shift associated with 

topography along with the phase change related to the time variation described by (6.24). 
That is most often the case. We can generate an expression for the combined phase shift 
in the following manner. 

Knowing that the total interferometric phase difference is a function of both topography 
and its change (usually called the displacement phase difference), we can write it as 
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To a first order this can be expanded as 
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In order to isolate the change in interferometric phase with landscape displacement 
between acquisitions it is necessary to remove the interferometric phase variation 
resulting from the underlying topography. That is done using the technique of differential 
interferometric SAR, or D-InSAR. 

D-InSAR depends upon finding a topographic model by some other means that can be 
used to remove the constant topography from the ATI acquired interferogram. There are 
two common methods for doing that. The first entails using a pre-existing digital 
elevation model (DEM) to synthesise the topographic interferometric phase term in 
(6.25b). That can then be subtracted pixel by pixel leaving only the interferometric phase 
resulting from displacement between the SAR acquisitions. A second approach is to use a 
third SAR acquisition. Two of the SAR images are used to form an interferogram 
corresponding to topography alone. Its interferometric phase is then removed from the 
interferometric phase derived from two others of the acquisitions that maximise the effect 
of topographic change. Fig. 6.17 shows the mapping of topographic change by this 
approach. 

Generally water bodies are thought not to have sufficient coherence in InSAR 
applications to be used as sensible targets. However, when the water forms the horizontal 
surface of a double bounce structure involving grasses or trees in marsh-like landscapes 
the associated radar cross section has a high degree of correlation between the relevant 
pixels of the two images in the interferometer. Through this secondary mechanism it is 
possible to use repeat pass interferometry to track changes in water level, as seen in Fig. 
6.18. 
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Fig. 6.17. This topographic model shows subsidence of the city of Bologna, Italy, apparently at 
the rate of about 1 cm per year per colour cycle shown; it was produced by D-InSAR using ERS 
acquisitions (image courtesy ESA/Data Processing by GAMMA) 

 
 
There is an assumption implicit in the three acquisition D-InSAR approach: the two 

acquisitions used to synthesise the topographic interferometric phase are assumed to have 
no phase associated with displacement. In other words they need to have a baseline 
orthogonal to the platform motion and to be imaged within a time frame faster than any 
displacement of interest. A benefit of the DEM-based approach is that that assumption is 
not necessary. All that is required is the availability of a suitable DEM. 

 Unfortunately, interferometric phase is influenced by factors other than just 
topography and displacement as assumed in (6.25a). More generally we should express 
the phase difference in the form 

 
 errornoisepixelatmdisptopo φφφφφφφ Δ+Δ+Δ+Δ+Δ+Δ=Δ  (6.26) 
 

in which topoφΔ is the interferometric phase associated with topography, dispφΔ is that 
caused by displacement and atmφΔ is a phase difference between the acquisitions caused 
by variations in atmospheric dielectric constant9. Compensating atmospheric phase 
difference variations can be based on modelling10 and the use multi-baseline 
interferometers11. noiseφΔ is a term resulting from phase noise in the radar system; that can 
                                                 
9 Dielectric constant changes cause changes in the velocity of propagation of the radar energy and thus 
wavelength; consequently the phase delay is affected. 
10 See Z. Li., J-P Muller, P. Cross and E.J. Fielding, Interferometric synthetic aperture radar (InSAR) 
atmospheric correction: GPS, Moderate Resolution Imaging Spectrometer (MODIS) and InSAR integration, 
J. Geophysical Research, vol, 110, B03410, doi:10.1029/2004JB003446, 2005. 
11 See A. Ferretti, C. Prati, and F. Rocca, Multibaseline InSAR DEM reconstruction: The wavelet approach, 
IEEE Transactions on Geoscience and. Remote Sensing, vol. 37, no. 2, pt. 1, March 1999, pp. 705–715 
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be reduced by averaging over groups of pixels at the expense of spatial resolution. 
errorφΔ accounts for uncertainty in the knowledge of the platform positions and baseline. 

pixelφΔ represents any change in phase between the two radar acquisitions resulting from 
changes in the reflectivity of the pixel being observed. Perhaps surprisingly this is an 
important consideration and can be the factor that limits the usefulness of repeat pass 
interferometry; it is therefore worth considering in a little detail. 

 
Fig. 6.18. Water level changes in swamp land mapped by repeat pass Radarsat InSAR; the inset 
shows how phase is affected by water level change, involving a strong reflection (from Z. Lu and 
O-I Kwoun, Radarsat-1 and ERS InSAR analysis over southeastern coastal Louisiana: 
Implications for mapping water-level changes beneath swamp forests, IEEE Transactions on 
Geoscience and Remote Sensing, vol. 46, no. 8, August 2008, pp. 2167-2184, ©2008 IEEE) 
 
 

As seen in (4.4) the signal received from a given pixel, which is proportional to its 
reflectivity, is the sum of the fields returned from a myriad of individual scatterers within 
that resolution cell. It is called a coherent sum because the amplitudes and phases of those 
reflected fields are important is obtaining the result, as noted in (4.5). If there is a change 
in the amplitude of one of the component fields, because of a change in the reflectivity of 
the corresponding scatterer, the coherent sum will change. That could occur because of 
vegetation change, for instance, between acquisitions. If the angle with which a pixel is 
viewed changes between acquisitions because of the separation between the platform 
positions then the coherent sum can also change. Changes in the observed reflectivity of 
the pixel resulting from variations with time or viewing aspect produce errors in the 
interferometric phase and cause decorrelation12, leading to the pixel coherence term γpixel 
in (6.22) being less than unity. 
                                                 
12 A good general discussion of decorrelation will be found in H.A. Zebker and J. Villasenor, loc cit. 
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To illustrate the nature of temporal decorrelation, and that resulting from changes in 
viewing angle, suppose for simplicity that there are just 20 incremental scatterers in a 
particular resolution cell, distributed along a range line with the positions shown in Fig. 
6.19a (two examples). We make the simplifying assumption that the reflectivities of those 
scatterers are real so we don’t have to worry about the complication of changes in their 
phase terms with viewing angle. That will not detract from the lesson to follow. Fig. 
6.19b shows the change in interferometric phase for the pixel over a very small range of 
incidence angles about 20o, expressed as a fraction of a wavelength of 5.6cm used in the 
calculations. As seen, for this toy example the change in phase with a 0.1o change in 
incidence angle is equivalent to 20mm, comparable to the order of displacements that 
(6.24) suggests are possible with along track interferometry13. By trebling the strength of 
just the first of the 20 incremental scatterers as seen in the second set in Fig. 6.19a there is 
an effect approximately equivalent to 2-5mm. 

Pixel decorrelation can have a significant effect on the precision of any displacement 
measurements if not controlled. One remedy is to keep the baselines short14 so that the 
chance for variations in aspect (incidence angle and any unintentional squint angle) is 
minimised; time variations in pixel composition are also then constrained.  

Another approach to minimising pixel decorrelation is to restrict attention to parts of 
the scene that are assessed as having little likelihood of decorrelation. That is the basis of 
permanent or persistent scatterer methods15. Permanent scatterers are those which 
dominate the response of a pixel so that the pixel’s properties, and especially its phase 
response, are moderately insensitive to angle of view and are less likely to change with 
time. For example, if a pixel contains an object that gives strong corner reflector 
behaviour, such as a building or a large tree, then its response will essentially be the radar 
cross section of that object; it will not be determined by the interference of many 
incremental scatterers. The angular dependence of its response will be that of the radar 
cross section of the object, which is generally weaker than that illustrated in Fig. 6.19. 
Because such permanent scatterers are less prone to decorrelation, accurate estimates of 
their elevations and rates of movement in the range direction are possible. If a large 
number can be identified they can be used as samples of where and how much 
displacement has occurred. One way to find candidate permanent scatterers is to examine 
coherence images. Regions associated with permanent scatterers are more likely to have 
high coherence because of their stability.  
 
 
6.14  Polarimetric Interferometric SAR (PolInSAR) 
 
6.14.1  Fundamental Concepts 
 
Implicit in the expression for the interferogram in (6.13) is that the two images have the 
same polarisation, but that is not necessary. In principle, any polarisations could be used, 
provided it is possible to separate phase difference associated with the polarisations from 

                                                 
13 Note that this is one look data that has not had the benefit of the multi-look averaging, that would act to 
smooth the variations. Note also, the results are very sensitive to the sizes and placements of the scatterers 
in a contrived example such as this. 
14 See P. Berardino, G. Fornano, R. Lanari and E. Sansosti, A new algorithm for surface deformation 
monitoring on small baseline differential SAR interferograms, IEEE Transactions on Geoscience and 
Remote Sensing, vol. 40, no. 11, November 2002, pp. 2375-2383. 
15 A. Ferretti, C. Prati and F. Rocca, Permanent Scatterers in SAR interferometry, IEEE Transactions on 
Geoscience and Remote Sensing, vol. 39, no. 1, January 2001, pp. 8-20. 
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the phase difference resulting from topographic effects. We could therefore generalise 
(6.13a) to read 
 φΔ== j

RSPQ Ieeei *
,2,1  (6.27) 

 
in which we have dropped the pixel coordinates x,y for simplicity but added subscripts 
implying polarisation; PQ is the polarisation state of one image and RS that of the other. 
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Fig 6.19. (a) Two sets of scatterers distributed across a resolution cell; the scatterer at position 
zero has treble the size in the second set (b) corresponding change in interferometric phase with 
incidence angle; the lower line corresponds to the second set in (a) 
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Instead of the received electric fields we could express the interferogram in terms of 
scattering coefficients, since they are available in the data supplied, they capture directly 
the polarisation states of both the incident and received fields and they are indicative of 
the scattering mechanisms of the pixels being imaged. Thus we could write 
 
 *

,2,1 RSPQ
j ssIei == Δφ   

 
to signify the complex interferogram. More generally, for fully polarised radar we could 
derive an interferogram-like quantity in terms of the target vectors k1 and k2 for the 
images that are to be interfered, since those vectors contain all the information needed for 
creating interference images from any polarisation combination. If, in addition, we 
average over a number of samples, or looks16, to reduce random variations or noise then 
we would write a generalised interferogram in the form 
 
 TTi *

21
*
21 )( kkkk == E  (6.28) 

 
which from (3.50) or (3.55) will be recognised as a two image version of the covariance 
or coherency matrix, depending on the basis chosen for the target vectors. If we normalise 
this expression by the magnitudes of the single image coherences then we have a unit 
magnitude complex number we call the complex polarimetric interferometric coherency 
analogous to that in (6.21) for the single polarisation case; viz. 
 

 
TT

T
je

*
22

*
11

*
21

kkkk

kk
== Δφγγ  (6.29) 

 
The interferogram defined in (6.28) incorporates all possible polarisation combinations of 
the two constituent images. In practice, we would choose a particular polarisation 
configuration for each of the two images (often the same) and then develop the scalar 
interferogram. Since (6.28) is expressed in terms of the target vectors composed of all 
polarisations it would be interesting to know how to extract the polarisation options we 
are interested in from those vectors. We can do that by applying a unitary17 filter vector w 
to the target vector to produce a modified form18 

  
 3

*
2

*
1

**
321
kwkwkwκ T ++== kw  (6.30) 

 
If the target vectors are in the Pauli basis form of (3.49) – assuming reciprocity – then the 
following filter vectors generate the individual polarisation states as demonstrated: 
 

                                                 
16 These are not necessarily the looks used for speckle reduction but can be a set of similar pixels in a 
neighbourhood that are assumed tacitly to come from the same cover (or scatterer) type. 
17 That is a vector whose magnitude (determined by the square root of the sum of the squares of its 
elements) is unity. 
18 See S.R. Cloude and K.P. Papathanassiou, Polarimetric SAR interferometry, IEEE Transactions on 
Geoscience and Remote Sensing, vol. 36, no. 5, September 1998, pp. 1551-1565. 
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Thus 
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Note that the elements in the vectors of (6.31) are all real so that the conjugation 
operation in (6.30) is of no significance for this example. It will be important in cases 
when w has complex elements. Sometimes the w vectors are said to describe scattering 
mechanisms; that is because they highlight certain polarisation combinations from the 
target vectors. They are also referred to as polarisation (filter) vectors, which may be a 
better term. As this particular example shows, the result of the operation in (6.31) is to 
produce scattering coefficients. Thus, sometimes the κ created in (6.30) are referred to as 
generalised scattering coefficients. 

We can choose the filter vector to be different for the two images so that the scattering 
coefficients are 

 1
*
11 kw Tκ =  (6.32a) 

 2
*
22 kw Tκ =  (6.32b) 

 
with which we can develop a new version of the complex polarimetric interferometric 
coherency measure 

 
*
22

*
11

*
21

κκκκ

κκ
γγ φ == Δje  (6.33) 

 
We can also form an interferogram from the filtered target vectors, similar to (6.28): 
 
 *

21κκ=i  (6.34) 
 
As in (6.22) the complex coherence is composed of a number of components, each of 
which can reduce the overall coherence. For our purposes here we will decompose it into 

 
 otherpixelonpolarisatibaseline γγγγγ =  (6.35) 
 

These include, as shown, coherence resulting from the interferometric baseline used, 
coherence determined by the correlation between the polarisation options chosen, 
coherence associated with changes in the specific region of the image of interest 
(sometimes called temporal coherence) and coherence associated with other factors such 
as noise identified earlier for single polarisation interferometry. If all the others can be 
maximised, then the coherence associated with the different polarisations chosen for the 
two images can be used as a diagnostic feature, as we will see in Chapt. 8. If the 
polarisations are the same for the two radars in the interferometer then the polarisation 
component of the coherency will be unity; that is the same as choosing w1=w2 in (6.32). 
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The argument, or angle, of the complex coherence, which is a polarimetric 
interferometric phase difference between the image pair, will be composed of the 
arguments of the constituent contributions: 

 
 otherpixelonpolarisatibaseline φφφφφ Δ+Δ+Δ+Δ=Δ  (6.36) 
 

Note from (6.33) that we can write 2
*
21

*
1

*
2

*
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*
21 )( wkkwkwkw TTTTT ==κκ , and 

likewise for the terms in the denominator. Since the weight vectors are constants they 
have been taken outside the averaging (expectation) operators. Thus the complex 
coherency can be written 
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in which T11 and T22 are the coherency matrices19 of each of the individual images in the 
interferometer and 
 TT *

21
*
2112 )( kkkkΩ ≡= E  (6.38) 

 
is a new joint image complex coherency matrix which contains both polarimetric and 
interferometric information. It also implicitly contains information on the scattering 
properties of the pixel viewed from the perspectives of each of the radars in the 
interferometer – i.e. from each end of the baseline. 

The coherency of (6.37) is a complex number, the phase of which contains detail on 
topographic effects and phase variations resulting from the polarisation differences. Its 
amplitude is a measure of the correlation between the two acquisitions as was the case in 
(6.21). As noted earlier the amplitude has an upper value of unity, so it is convenient to 
plot (6.37) on a complex plane that summarises the coherency for a given situation. We 
will develop that concept further below. 

 
 

6.14.2 The T6 Coherency Matrix 
 

If we write the two target vectors of (6.28) in column form ⎥
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the outer product of this vector with itself generates what has become known as the T6 
matrix: 
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19 See (3.55). 
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in which the component matrices on the diagonal will be recognised as the coherency 
matrices of the individual images in the interferometric pair. The upper right hand entry is 
the joint coherency matrix of (6.38). The bottom left hand entry is its conjugate transpose 
– T*

1221 ΩΩ = . Since each of T11, T22 and Ω12 are of dimension 3x3 the T6 matrix is of size 
6x6 – hence its subscript. If the full four element version of the Pauli target vector of 
(3.48) were used in constructing the coherency matrix similar to (6.39) then the result 
would be 8x8 and the matrix referred to as the T8 coherency matrix. 

Interestingly, if there were N radars in a multi-baseline interferometer (or a multi-static 
radar in the sense discussed in Chapt. 7) then (6.39) can be generalised to 
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6.14.3  Maximising Coherence 

 
When coherence is small it is difficult to make use of the interferogram, either for 
interferometry as such, or as a means for understanding the landscape. As a result it is of 
interest to understand under what conditions complex coherence can be maximised. 
Clearly, all of the terms in (6.35) need to be kept high in order to achieve the best 
coherence possible. Good system design will optimise the coherence contributions from 
noise and related system properties, and a small baseline will help control the associated 
coherence term. However, what about coherence in general? Can it be optimised and, if 
so, how? To answer that question we need to know what we can change in search of 
maximising it. 

In (6.37) the matrices T11, T22 and Ω12 are fixed by the properties of the region being 
imaged; however the filter vectors w1 and w2 can be chosen in pursuit of our desired 
outcome. In particular, we can look to maximise the coherence of (6.37) by a careful 
choice of those two vectors. The optimum values of w1 and w2 come from solutions to the 
eigenvalue problems20 (which share common eigenvalues ν): 

 
 111 wwB ν=  (6.41a) 
 222 wwB ν=  (6.41b) 
 

in which T*
12

1
2212

1
111 ΩTΩTB −−=  (6.42a) 

and 12
1

11
*
12

1
222 ΩTΩTB −−= T  (6.42b) 

 
The maximum coherence corresponds to the square root of the dominant eigenvalue, once 
found. The corresponding eigenvectors w1opt and w2opt are the filter vectors that lead to the 
optimised coherence so that from (6.34) the interferogram that has maximum coherence is  

 TT
opt

T
optoptopti *

2
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21

*
1

*
21 ))(( kwkw≡= κκ  

                                                 
20 S.R. Cloude and K.P. Papathanassiou, loc cit. 
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6.14.4  The Plot of Complex Coherence 
 
As with any complex number the coherence of (6.29) or (6.37) can be plotted on an 
Argand diagram such as that shown in Fig. A1. Since the magnitude of the complex 
coherence has a maximum of unity, the diagram is restricted to a circle of unit radius as 
illustrated in Fig. 6.20. The important region of the diagram is towards its circumference 
since there the magnitude of the complex coherence is largest. Towards the origin 
signifies regions of low coherence, a situation generally not suited to interferometric 
applications. 

For a given region of pixels in an interferometric pair of images, it is to be expected 
that the corresponding coherences will cluster in a particular region of the complex plane. 
If different groups of pixels cluster separately then the complex coherence can be used to 
help segment an image. We will have more to say about that in Chapt. 8. 

Sometimes a particular image segment will be composed of two types of scatterer, such 
as a forest canopy over a diffuse soil surface. Simple modelling suggests that the resulting 
complex coherence of the mix of the two types lies on a straight line21 as illustrated in Fig 
6.20. More generally, complex coherence will be bounded within regions, often of 
elliptical shape22 when the polarisations of the two radars are the same. 
 

 
 
Fig. 6.20. Plot of the complex coherence and an illustration of how the coherence of a two 
component scatterer is likely to migrate with a change in composition 

 

                                                 
21 K P. Papathanassiou and S.R. Cloude, Single-baseline polarimetric SAR interferometry, IEEE 
Transactions on Geoscience and Remote Sensing, vol. 39, no. 11, November 2001, pp. 2352-2363. 
22 L. Ferro-Famil, E. Pottier and J.S. Lee, Classification and interpretation of polarimetric interferometric 
SAR data, Proceeding of the International Geoscience and Remote Sensing Symposium, 2002 (IGARSS02), 
24-28 June 2002, pp.635-637 and T. Flynn, M. Tabb and R. Carande, Coherence region shape extraction for 
vegetation parameter estimation in polarimetric SAR interferometry, Proceeding of the International 
Geoscience and Remote Sensing Symposium, 2002 (IGARSS02), 24-28 June 2002, pp.2596-2598. 
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6.15  Tomographic SAR 
 
Standard synthetic aperture radar generates images of the landscape in the two horizontal 
spatial dimensions, with detail in elevation mapped onto that two dimensional projection. 
Interferometric SAR using two radars deployed across track goes one step further, 
enabling the mapping of topography through sensitivity to elevation, but it does not 
permit discrimination of detail vertically, such as the internal structure of a forest. By 
appropriately utilising several radars with vertical separation (as passes of the same radar 
platform on different orbits) it is possible to identify vertical structure with the technique 
known as SAR tomography. 

Tomography resolves vertical detail by employing a synthesised vertical aperture much 
as azimuthal detail is resolved using aperture synthesis in normal SAR. However, 
whereas the synthetic aperture technique used azimuthally depends on the Doppler chirp 
induced by platform motion, aperture synthesis vertically depends on antenna array 
theory as we will now demonstrate. 

 
 
6.15.1  The Aperture Synthesis Approach 
 

Consider the arrangement shown in Fig. 6.21. Several flight lines of the same platform 
(or even different platforms if their imaging characteristics are compatible) are used to 
image the landscape from different altitudes. After the images have been formed (i.e. after 
range and azimuth compression) the set of measurements for each pixel is used to resolve 
vertical detail in the manner developed below. Some pixels will not necessarily exhibit 
vertical structure, such as simple surfaces, but if the region is a volumetric or composite 
scatterer there will be vertical detail that may be of interest. In understanding how that 
can be revealed we concentrate on a single pixel and imagine it is being irradiated 
simultaneously by the set of radars shown in the figure. In particular, we concentrate on a 
position within the pixel volume at a height g above the datum. There is an assumption 
here that the incident radiation can penetrate any intervening volume to allow the 
structure of interest to be seen, albeit partially. 

In the figure we have made the unrealistic assumption that the flight lines are so 
arranged that when they are projected on to a line orthogonal to the line of sight to the 
target they are uniformly spaced. Such an assumption simplifies our analysis and 
generates results that are generally applicable. After we have looked at the fundamental 
properties of tomography we will examine what happens if the flight lines are not 
uniformly spaced – which is of course what happens in practice. Because we are looking 
at the sloped multi-baseline assumption we also project the vertical detail of the pixel 
onto a parallel sloped line as shown. The point g within the pixel volume we also measure 
along that projection rather than along the vertical. To clarify the variables involved the 
vertical plane containing the set of radar beams – which we might call the orthogonal (to 
the) slant plane – is redrawn as shown as shown in the figure. 

What we will be looking for in the first instance is the condition under which we can 
bring all the radar beams into focus vertically on the spot g. When we understand how to 
do that we will know how much vertical resolution is available to us. 

In Fig. 6.21 we have shown N radars (with N odd for convenience) over a total 
separation LT orthogonal to the line of sight. As in interferometry, that is referred to as the 
orthogonal baseline.  Here we will call it the tomographic aperture. Consider first the 
radar which is located at the general position z within the discrete array of radars, for 
which 
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The distance between that radar and the point g in the target pixel – the slant range – is 
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in which Ro is the slant range from the centre of the array to the base of the pixel. Since z 
and g will be very small by comparison to Ro we can approximate the last expression as 
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Fig. 6.21. Idealised SAR tomographic arrangement in which a vertical array of radars is used to 
synthesise high resolution vertically 
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The equivalent two way phase delay associated with that distance is 
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in which λ is the radar operating wavelength and k is the corresponding wave number 
(sometimes written as the phase constant β). As with SAR interferometry we are not 
interested in absolute phases but in the phase difference between the return signal of a 
given radar and a reference beam. If we choose the radar at z=0 (n=0) as the reference, 
then from (6.45) the difference in phase of the radar at location z is 
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Subtracting the phase corresponding to the z=0 radar is called de-ramping, and is one of 
the steps involved in tomographic processing23. Using (6.44) we can re-write (6.46) as 
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in which )1/( −= NLd T is the spacing between the flight lines. 

The combined signal received by the set of radars from the element of the pixel at 
elevation g can be expressed 
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in which ω is the radar operating frequency and the amplitudes sn account for the 
reflectivity of the pixel at the elevation seen by the nth radar along with any factors 
during transmission that change the signal levels. It is reasonable to assume that the sn are 
all the same – i.e. independent of n – so that the amplitudes can be ignored, as can the 
exponential function of the carrier frequency, to leave the received signal as function of g 
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The first term in the exponent of (6.47) is not a function of g and is known explicitly for 
each radar in the array. When processing the images acquired by the platforms or by 
                                                 
23 See A. Reigber and A. Moreira, First demonstration of SAR tomography using multibaseline L band data, 
IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 5, pt. 1, September 2000, pp. 2142-
2152. 
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separate passes of the same platform it is possible to remove it in each case before the 
sum in (6.47) is taken, leaving as the composite signal 
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The magnitude of this expression is plotted as a function of g in Fig.6.22 for several 
different values of N, but keeping LT constant at 300m. The slant range was chosen as 
5km and the wavelength as 0.235 (L band), values used by Reigber et al24. 

Several observations can be made from this figure: 

1. For each value of N the maximum signal occurs for g=0. In other words the radar 
array is focussed at the base of the pixel. From (6.49) the maximum is N, but we 
have normalised the graphs by dividing by N to make the comparisons more 
meaningful. By “focussing” we mean that most of the backscattered signal reaching 
the radar comes from that point. The side lobes evident in the diagram will also 
contribute small amounts of energy from other heights too, but essentially we 
regard the principal contribution to the return for this example as coming from the 
pixel’s properties at zero elevation. 

2. Other maxima also occur – in other words the radar array will focus at other 
elevations as well. From (6.49) it is easily seen that the maxima are given by 

πψ m2=  where m is an integer. Substituting for k and ψ gives a condition on g for 
a maximum: 

                                                 
24 ibid. 
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  dRmLNRmg oTo 2/2/)1(max λλ =−=  (6.51) 
 
 in which )1/( −= NLd T  is the spacing (sample interval) between the flight lines, as 

seen in Fig. 6.21. With m=1 this shows that the radar will also focus at g=3.92m 
elevation for N=3, g= 7.83m for N=5 and g=19.6m for N=11.  The first two are seen 
in Fig. 6.23 in which a greater range of elevations is shown and the results are only 
to one side of the principal maximum. Taking the case of N=11, the radar will also 
receive signal from any elements of the pixel in the vicinity of 20m elevation. If the 
detail reaches that elevation then an ambiguous signal is received. In order to avoid 
elevation ambiguities (6.51) can be re-cast (with m=1) to give a criterion on the 
selection of the flight line spacing for a specified maximum elevation G.  Elevation 
ambiguity will be avoided if 

 
  GRd o 2/λ≤  (6.52) 
 
 which is sometimes referred to as the elevation ambiguity criterion. Thus for a 

maximum pixel height of 20m a sample (flight line) spacing no greater than 28.5m 
is needed, given the other parameters chosen for this example. 

Fig. 6.22. Received radar signal with 3, 5 and 11 vertical flight lines. 
 

 
3. The main lobe, focussed on a specific elevation (so far in this case at g=0), has a 

half power width of 12gg =Δ where g1 is the height for which the lobe has dropped 
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 with 
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Tψ .  The denominator changes more slowly than the numerator 

and for the range of g of interest its argument is small, permitting the approximation 
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 This is the effective vertical resolution of the array. The half width of the received 

signal as against the half power width is the solution to the transcendental equation 
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 Fig. 6.23. Expanded vertical coverage showing the height ambiguities that result from too few 
flight lines 
 

                                                 
25 See R.W.P. King, The Theory of Linear Antennas, Harvard UP., Cambridge, Mass., 1956. 
26 See also Reigber and Moreira, loc cit. for this same result, derived slightly differently. 
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We now need to consider how to focus at other elevations within the pixel volume. 
Again, we need to find conditions such that the sum in (6.49) has its maximum value of 
N, but with .0≠g  To do that we add an incremental phase angle φ to ψ in (6.49) such 
that the received signal is 
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By appropriately choosing φ we can focus the array at a desired value of g. The condition 
for maximum signal is that the exponent is zero for each term, which requires 
 

 
)1(

2
−

−=−=
NR

gkL

o

Tψφ  (6.55) 

 
Effectively, what we are doing here is zeroing out the phase angle associated with the 
non-zero value of g by adding that value of φ.  Thus by stepping through g from 0 to G in 
increments of Δg, we can ascertain the appropriate incremental phases to add to focus the 
radar successively up through the volume of the pixel. While that is technically 
acceptable there is a more elegant approach based on a Fourier transform understanding 
of the vertical focussing process, treated in the next section. 
 
 
6.15.2  The Fourier Transformation Approach to Vertical Resolution 
 
In Fig. 6.21 we analysed the situation where all the radars in the vertical array were 
illuminating a single vertical position within the pixel volume and receiving the 
corresponding echoes. We now consider a different approach. We look at just one of the 
radars irradiating and receiving echoes from a discretised model of the pixel volume as 
shown in Fig. 6.24 – we envisage the vertical detail of the volume being broken into N 
samples ρ(l), l=0…N-1 each of which corresponds to one half width of the focussed array 
defined by (6.54). 
 

  
Fig. 6.24. Basis of the Fourier transform approach to tomographic focussing 
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We can use the development that led (6.48) to help find the signal received by the 
single radar27; however now it is important to recognise that the reflectivity of the pixel 
will vary with height – indeed that is what we are interested in finding – so that the signal 
received by the nth radar in the array is given by 
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Putting )1/( −= NLd T and substituting from (6.54) for Δg, this last expression becomes 
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Equation (6.56) is the expression for the discrete inverse Fourier transform28 of the pixel 
reflectivity as a function of elevation ρ(g) when represented by the set of vertical samples 
ρ(l) 29. The set of received signals s(n) for all n, in (6.56) are the complete set of samples 
of the discrete Fourier transform of the pixel reflectivity with height. To recover the 
vertical detail of the pixel all that needs to be done is to perform an Fourier transform on 
the set of signals s(n) received for that pixel; the transform is 
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In practice the radar signal received on each flight line would be range and azimuth 
compressed to form the set of images, which would then be registered to each other. The 
set of measurements available for each pixel (one from each flight line) then form the 
Fourier spectrum of the pixel vertical profile, which is recovered by applying the Fourier 
transform (based on the Fast Fourier Transform algorithm). 
 
 
6.15.3  Unevenly Spaced Flight Lines 
 
Clearly the situation depicted in Fig. 6.21 will not be achieved in practice because the 
flight lines are time sequenced passes of the same platform or possibly other compatible 
platforms. Instead, the flight lines are likely to be unevenly spaced so that the set of 

                                                 
27 This is after de-ramping and assuming that the quadratic factor in (6.47) has been compensated for. 
Incidentally the de-ramping in this case is based on a reference point in pixel elevation, rather than within 
the radar array. Nevertheless (6.47) is still the end result. 
28 See E.O. Brigham, The Fast Fourier Transform and its Applications, 2nd ed., Prentice Hall, Englewood 
Cliffs, N.J., 1988 or J.A. Richards and X. Jia, Remote Sensing Digital Image Analysis, 4th ed., Springer 
Verlag, Berlin, 2006. 
29 Because of the two sided nature of n the exponent in (6.56) can be positive or negative without affecting 
the result. Some authors call (6.56) the discrete Fourier transform and (6.57) the discrete inverse Fourier 
transform. 
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samples incorporated into the Fourier transform of (6.57) will not be uniformly spaced, 
thus affecting the integrity of the operation. The simplest means for obtaining a uniform 
spacing over the (orthogonal) tomographic aperture of Fig. 6.21, is to use the available 
irregularly spaced set of samples (flight lines) to estimate a set of samples on a uniform 
spacing by using an appropriate resampling technique30. If some gaps are especially large 
then a form of infilling will be required. One such method is based on the assumption that 
there will be a dominant scattering centre somewhere in the vertical profile from which 
synthetic flight paths can be established31.  

Another consideration that can arise when using unevenly spaced flight lines is which 
one to choose as the reference when de-ramping using reference phase subtraction. A 
simple solution is to use the average slant range to the array from the pixel position32. 

 
 

6.15.4  Polarisation in Tomography. 
 
In the development of SAR tomography above there has been no explicit mention of 
polarisation since, in principle, any polarisation is suitable. It is possible to build 
tomographic pixel elevation profiles for a range of polarisation configurations – the 
benefit of doing so is that the scattering properties with elevation may be polarisation 
sensitive. That would certainly be the case for a forested pixel. To demonstrate the 
combination of tomography and polarisation Fig. 6.25 shows the analysis of vertical 
structure with several polarisations along an azimuth line in an L band airborne radar 
image with 13 flight lines. It is also shown in colour composite form using the Pauli 
display basis33. The vertical structure is readily evident and comparable in scale with the 
features on the ground. The association of scattering properties with polarisation is as 
expected and is particularly evident in the elevated HV scattering from the forest foliage 
(green in the colour image). 

There is one point concerning polarisation over which care needs to be taken; that 
relates to the removal of the quadratic phase term between (6.47) and (6.48). It is 
important to keep track of that phase because relative phase is significant among 
polarisations. 
 
 
6.15.5  Polarisation Coherence Tomography 
 
When the term tomography is applied to SAR interferometry it implies a procedure for 
understanding the vertical structure within a pixel. The technique just considered does so 
through using a multiple baseline configuration to create vertical spatial discrimination. 

Another approach is to postulate a model of the vertical structure and see whether the 
parameters of the model can be found from radar measurements. That is the approach 
adopted with polarisation coherence tomography (PCT)34. It uses interferometric 
polarimetric data to understand simple vertical structures via the properties of the 
complex coherence. This only requires a two radar (single baseline) arrangement such as 

                                                 
30 See G. Fornano, F. Serafino and F. Soldovieri, Three-dimensional focussing with multipass SAR data, 
IEEE Transactions on Geoscience and Remote Sensing, vol. 41, 2003, pp. 507-517. 
31 See Reigber and Moreira, loc cit. 
32 ibid. 
33 The Pauli basis displays SHH-SVV as red, SHV as green and SHH+SVV as blue. 
34 See S.R. Cloude, Polarisation Coherence Tomography, Radio Science, vol. 41, RS4017, 2006 
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that shown in Fig. 6.2 but the radars operate with different polarisations as we will 
ultimately see. 

As with Fig. 6.21 we have a problem in that the vertical detail is resolved along a 
sloped line orthogonal to the line of sight. We need to correct that before we can apply the 

consider first. 

Fig. 6.25. Vertical detail versus azimuthal distance for a test site in Oberpfaffenhofen, Germany, 
demonstrating the efficacy of SAR tomography and the additional information available from 
adding a polarimetric dimension; a, b and c in the top image correspond to HH, VV and HV 
polarisation respectively; the transect shown in d has been used to form the colour composite in 
the lower image, which represents elevation versus azimuth position but in the Pauli display basis 
(from A. Reigber and A. Moreira, First demonstration of airborne SAR tomography using 
multibaseline L-Band data, IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no 5, 
pt.1, September 2000, pp. 2142- 2152, ©2000 IEEE) 
 
 

 

 

 
 

PCT approach. That is done through the artifice of range spectral filtering, which we 



6 Interferometric and Tomographic SAR  219 

Fig. 6.26 allows us to compute interferometric phase as a function of position and 
height within a pixel. We concentrate on the point at position (r,h) and see how the 
interferometric phase varies with incidence angle. If one end of the interferometric 
baseline subtends an incidence angle of θ2 and other an incidence angle of θ1 the two way 
differences in phase (not yet the interferometric phase) between the point of interest and 
the origin shown are 
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Fig. 6.26. Geometry for calculating the effect on phase of a vertical offset within a pixel 
 
 
The resulting difference in phase, from pixel edge to elevated detail, between the two 
radars – i.e. the interferometric phase – is  
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We can change the sign of this expression since we do not know which of θ1 and θ2 is the 
larger, leaving the dependence of interferometric phase on incidence angle as 
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Thus the interferometric phase not surprisingly varies (i) with height – which is what we 
are interested in – and (ii) range position in the pixel – which is a nuisance because we are 
interested in the vertical reflectivity profile of the pixel. We need to ask ourselves now if 
there is anyway we can compensate for the range variation. Although not immediately 
obvious at this stage we can achieve this goal by shifting the carrier (centre) frequency in 
(3.3) of the second radar by the small amount35 
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in which θ is the average incidence angle over the two radars in the interferometer and Δθ 
is the difference in their incidence angles at the point of interest, as shown in (6.59). 
Making this change in (6.58a) gives  
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Subtracting (6.58b) to give the interferometric phase, and using (6.60) we have 
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in which we have used the approximation θθ ≈2 . Taking the tangent inside the brackets 
at the right hand side gives 
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which is effectively the same result as (6.10). Here we have the interferometric phase 
insensitive to position in the pixel and dependent only on elevation, as required. Having 
made that correction we can now proceed to consider polarisation coherence tomography. 

The first step in PCT is to assume that the backscattered power can be represented by a 
vertical profile function f(h) the shape of which accounts for the vertical distribution of 
scattering material and the loss of energy by absorption and scattering in that medium 
(similar to the assumptions for the water cloud model of Sect. 5.4.1). Because we are 
dependent on phase in interferometry it is important to account for the phase associated 

                                                 
35 See Sect. 16.6. 
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with each incremental scatterer as the energy penetrates and scatters from inside the 
column of material. We do that by attaching an exponential (interferometric) phase term 
to the vertical scattering profile so that we could write the average interferogram from the 
two radars s1 and s2 as 
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in which it is assumed that the scattering medium extends from 0 to hv in elevation. It 
could be a vegetation canopy, for example. The exponential term outside the integral 
accounts for interferometric phase associated with the surface in the absence of any pixel 
vertical detail and can be obtained from (6.10). 

The spatial phase constant (wave number) is given from (6.62) as 
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where ⊥B is the orthogonal baseline of the interferometer. 

If the two radar signals are identical there will be no surface interferometric phase and 
no baseline so that (6.63) becomes 
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As a result, the interferometric complex coherence for a single channel at each radar can 
be written, similar to (6.29), as 
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The next step in PCT is to assume a profile f(h) that matches what is expected of the 
medium of interest. The simplest is a constant between the lower and upper limits as 
might be expected for a uniform density, lossless forest canopy.  Thus if f(h)=A for 

vhh ≤≤0  and zero otherwise then (6.65) becomes 
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Therefore the amplitude of the complex coherence for a uniform, lossless canopy, 
irrespective of the polarisations chosen, is a sinc function of half the product of the 
canopy depth and the vertical wave number; that function is shown in Fig. 6.27. It is 
taken out to arguments beyond which coherence falls to zero simply to illustrate its sinc-
like behaviour. In practice it is unlikely we would be interested in coherences less than 
about 0.5, so the range of the function would be much less than shown here. 

For a given vertical wave number, which is set by system parameters as shown in 
(6.64), the magnitude of (6.66) allows an estimation of the canopy depth hv. There is also 
an interesting lesson in (6.66) for simple topographic mapping with interferometric radar, 
through an inspection of the phase angle terms. Suppose the region in which we were 
interested for mapping topography is overlain by a vegetation layer that extends from the 
surface to a height hv . The second phase term shows that any interferometric phase 
expected to be associated with the surface will be affected by the canopy, an effect known 
as vegetation bias in SAR interferometric mapping. From (6.64) we can see that to keep it 
small the baseline should be made as small as possible but, from (6.10), we see that the 
sensitivity of the interferometer is then reduced. 

 

Fig. 6.27. Magnitude of the complex coherence for a uniform, lossless canopy of height hv 

 
 

Note that we have not had to use different polarisations so far; the height can be 
inverted, in principle, from the complex coherence with the simple slab model of the 
vegetation canopy. In other words a single measurement of the magnitude of the complex 
coherence is enough to allow a value of canopy height to be estimated. 

Now consider another simple profile, but one that can be used to describe a lossy 
canopy. An exponentially decreasing vertical profile function with elevation downwards, 
as depicted in Fig. 6.28, signifies that more backscattering occurs from the top layers of 
the canopy and less from the lower layers as a result of loss. The energy loss is the result 
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of absorption by the material that composes the canopy and scattering of energy away 
from the forward and backward paths travelled by the rays from and to the radar. 

Even though we used (6.61) to allow us just to consider vertical variations and not 
horizontal displacement when computing interferometric phase with vertically structured 
pixels, it is nevertheless important to recognise that the path travelled by the rays in the 
lossy canopy is slanted by the incidence angle of the radar system. Therefore the effective 
canopy extinction vertically has to account for the real, longer path travelled per unit of 
vertical distance. If κe is the actual one way power extinction coefficient of the canopy 
then the equivalent two way vertical extinction coefficient can be written 

 
 θκξ sec2 e=  (6.67) 

 
in which θ is the local incidence angle. Writing the vertical profile function as 
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where the exponent is positive since canopy penetration is in the negative h direction, 
then the complex coherence of (6.65) becomes 
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Fig. 6.28. Exponentially decreasing vertical profile function representing a lossy canopy 
 
 
This expression has two unknowns – the canopy depth hv and the power extinction 
coefficient κe (via ξ). They need to be estimated from the recorded data. Since the 
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for that to be done. Also, since it is complex, its phase again adds to the topographic 
interferometric phase to give a vegetation bias. Fig. 6.29 shows the magnitude of the 
complex coherence as a function of canopy depth and power extinction coefficient, using 
the same parameters as Cloude36, viz kh=0.1567, θ=45o, 0≤h≤40m, but with κe=0dB/m, 
0.25dB/m, 0.5dB/m and 0.75dB/m.  

Several interesting observations can be made from this graph. First, note that when the 
canopy is lossless the coherence is the sinc function of Fig. 6.27 because then the profile 
is constant with height. At the other extreme of very high canopy attenuation the 
coherence is high and independent of height except for shallow canopies. That is because 
most of the incident radiation is absorbed and backscattered by the uppermost parts of the 
canopy. 

Again with such a simple vertical scattering profile extending to the earth’s surface we 
can, in principle, determine the two parameters without resort to multi-polarisation radar. 
So let’s now go to the next stage of a more complicated vertical structure f(h). It would be 
possible to take an arbitrary f(h) and find the appropriate complex coherence through a 
numerical evaluation of (6.65). However, if we want to develop an inversion algorithm to 
permit the vertical detail to be characterised from recorded coherence data then it is better 
to be able to model the general f(h) with a set of (so-called) basis functions that lend 
themselves to an analytical evaluation of (6.65). With the right set of functions we should 
be able to derive inversion formulas. 
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Fig. 6.29. Magnitude of the complex coherence as a function of canopy depth and power 
extinction coefficient 
 
 

There are many sets of functions that might be used to represent f(h) including simple 
polynomials, Chebyshev polynomials and sets of exponential functions. An appealing set 
of basis functions that have been shown to be of value in PCT are the Legendre 

                                                 
36 S.R. Cloude, Polarisation coherence tomography (PCT): A tutorial introduction, in 
http://earth.esa.int/polsarpro/Manuals/3_PCT_Training_Course.pdf 
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polynomials37. The first few of these polynomials38 in terms of an independent variable x 
are 
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 (6.69) 

 
The Legendre polynomials of (6.69) are shown plotted in Fig. 6.30. 

Fig. 6.30. The first five Legendre polynomials plotted vertically to illustrate that they can be used 
as a set of basis functions with which to model the vertical structure profiles of a pixel 

 
 
An arbitrary function defined over the interval [-1,1] can be represented by a weighted 

set of Legendre polynomials 
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in which the expansion coefficients an are all real. With well behaved functions, such as 
might be expected for the vertical scattering properties of a pixel, it is possible to truncate 
that infinite series with little error, so that the function might be approximated 
                                                 
37 See Cloude, loc cit. 
38 For a larger set of Legendre polynomials see Wikipedia or WolframMathWorld™. 
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The coefficients in the Legendre model are given by 
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In order to apply the Legendre model directly to the vertical profile function f(h) we need 
first to map the independent variable h to the range [-1,1]. We do that by introducing the 
change of variable 
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It is also helpful to define a new vertical profile function 
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With these two substitutions the complex coherence in (6.65) becomes 
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We now express the modified profile f(x) by the truncated Legendre series to give 
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in which we have put 2/vhv hkk = . Cloude39 shows that this can be written 
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and in which the first four constituent functions are 
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39 Cloude, loc cit. 
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If we can estimate the unknowns in (6.72) from the recorded radar data – i.e. the 
expansion coefficients am0, the topographic phase Δφtopo and the baseline-height product 
kv, – then we can reconstruct the vertical profile function f(h) for the pixel of interest. That 
is not a simple task in general40. Here we illustrate the simpler case where we assume that 
the vertical structure can be adequately represented by truncating (6.72) to just the first 
two terms 
 )( 1100 fafee vtopo jkj += Δφγ  (6.75) 
 
There are now only three unknowns to be determined – Δφtopo, hv and a10.  In reality the 
latter is a combination of two unknowns as seen in (6.73) but that turns out not to be 
important. If we make the reasonable assumption that Δφtopo, hv are not polarisation 
dependent then neither are the functions in (6.74). That leaves the expansion coefficient 
a10 in (6.75) as the only term that could depend on polarisation. This is where polarisation 
comes into PCT. Suppose we have two different polarisation configurations with which 
we estimate complex coherence. Denote them by superscripts p1 and p2 respectively so 
that the two measurements yield 
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in which we now have four unknowns Δφtopo, hv, 1

10
pa and 2

10
pa  but also four measurements 

in the amplitudes and phases (or real and imaginary parts) of the two measured 
coherences thereby, in principle, allowing the unknowns to be determined. We can 
estimate those unknowns in the following manner. 

First, form the function 
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Since f1 is imaginary, as seen in (6.74), it is convenient to write this last expression as 
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40 See S.R. Cloude, Polarisation Coherence Tomography, Radio Science, vol. 41, RS4017, 2006 and S.R. 
Cloude, Polarisation coherence tomography (PCT): A tutorial introduction, in 
http://earth.esa.int/polsarpro/Manuals/3_PCT_Training_Course.pdf for available methods. 
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By looking at the argument (phase angle) of pdjγ− we can find the composite phase 
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because the a10 and Im(f1) are real numbers that don’t contribute to the overall phase. 
Using the definition of Φ in (6.77) we can write (6.76a) as 
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Since f1 is imaginary the real part of this expression is 
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Because we know Φ from (6.77) we can now find kv and then we can determine Δφtopo. 
Thus two of the unknown parameters have now been found. From (6.78) we can evaluate 
a10: 
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We actually don’t need to go any further since we now have enough information for 
constructing the vertical profile function f(h) for the pixel. From (6.70), truncating at the 
second term, we have  

 )()()( 1100 xPaxPaxf +=  
 

so that from (6.71), and the definitions of the first two Legendre polynomials in (6.69), 
we have 
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Dividing throughout by 1+a0 gives the final expression for the vertical profile 
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which, as expected with the level of approximation (truncation) used, is linear, the sign 
and slope of which depends on the coefficient a10. 

What has been achieved here is an identification of the vertical structure profile of the 
pixel along with the topographic phase and the height of the vegetation layer. To do that 
required two polarisations with a single interferometer. Although this has generated a 
very simple linear approximation to whatever the actual profile might be, it is clear from 
the increasingly complex shapes of the Legendre polynomials in Fig. 6.30, that 
incorporating more terms in (6.75) will allow more complex vertical profiles to be 
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identified, at least in principle. As noted above that is not as easy as the analysis just 
outlined for a linear variation, but has been demonstrated for quadratic shapes41. 

  
 

6.16  Range Spectral Filtering and a Re-examination of the Critical Baseline 
 

The frequency shift we used in (6.61) to remove the horizontal dependence of pixel 
properties in tomography arises from the fact that the two radars in an interferometer 
subtend slightly different incidence angles at the same spot on the ground; that effectively 
gives rise to a relative incremental wave number shift between the radars42. We will now 
describe that effect and see how it can be used to generate (6.61), leading to the procedure 
called range spectral filtering. We will also use it to verify the expression for critical 
baseline of (6.20) from a different perspective. 

Consider the two radars separated by an orthogonal baseline B⊥ in the interferometer of 
Fig. 6.31. For generality we have shown the ground to be sloped upwards away from the 
radar at an angleϑ . The two-way phase angles for each of the two radars are 
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Fig. 6.31. Geometry for computing range spectral filtering; the orthogonal baseline of the 
interferometer is assumed negligible compared with platform altitude 

 
 

                                                 
41 See Cloude, Radio Science, loc cit. 
42 See C. Prati and F. Rocca, Improving slant range resolution with multiple SAR surveys, IEEE 
Transactions on Aerospace Systems, vol. 29, 1993, pp. 135-144 and F. Gatelli, A.M. Guanieri, F. Parizzi, P. 
Pasquali, C. Prati and F. Rocca, The wave number shift in SAR interferometry, IEEE Transactions on 
Geoscience and Remote Sensing, vol. 32, 1994, pp. 855-865 and S.R. Cloude, Polarisation coherence 
tomography (PCT): A tutorial introduction, in 
http://earth.esa.int/polsarpro/Manuals/3_PCT_Training_Course.pdf 
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pre-empt the answer let’s add a small frequency offset Δf to f in (6.81b) and equate the 
phases43. First note that for δθ small )(cos)sin()sin( ϑθδθϑθϑδθθ −+−≈−+  so that 
we are looking for a value of Δf that gives rise to 
 

 
)sin(

4
)]cos()[sin(

)(4
ϑθ

π
ϑθδθϑθ

π
−

=
−+−

Δ+
c

fY
c

Yff  

 
i.e. )]cos()[sin()sin()( ϑθδθϑθϑθ −+−=−Δ+ fff  
 
 )cos()sin( ϑθδθϑθ −=−Δ ff  
 

so that 
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ff  (6.82) 

 
Equation (6.82) can be interpreted in two ways. First, it indicates the frequency offset that 
would have to be added to the carrier (centre) frequency of one of the radars in the 
interferometer so that the two-way phases are the same. That is the compensation we used 
at (6.61) to remove the horizontal variation of phase across a pixel when interested in 
resolving intra-pixel vertical detail. That process is called range spectral filtering. 

We can also interpret (6.82) as an amount by which the centre frequency of the ranging 
chirps, used to achieve range resolution, will be offset between the two radars on 
reception. As a result, the chirp spectra (see Fig. D.4) received by the two radars will 
overlap, as illustrated in Fig. 6.32. It is only the common region that can be used to 
achieve range resolution. The range resolution is thus degraded because of that smaller 
effective chirp bandwidth and will be given from (3.5b) by 
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in which Bc is the transmitted chirp bandwidth. Note that as the frequency offset 
approaches the bandwidth of the transmitted chirp the resolution deteriorates badly. The 
extreme is when Δf=Bc. Under what conditions will that occur? To answer that examine 
their ratio. There will be range resolution while so ever 
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Thus to avoid the complete loss of range resolution the orthogonal baseline of the 
interferometer must satisfy 
                                                 
43 See also Sect. 4.5.1 of D. Massonnet and J-C Souyris, Imaging With Synthetic Aperture Radar, Taylor 
and Francis, Roca Baton, Florida, 2008. 

Under what circumstance can the phase angles of (6.81a) and (6.81b) be the same? To 
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which, in the limit, is the critical baseline of (6.20): 
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Fig. 6.32. Chirp spectra from either side of the baseline showing the overlap caused by the 

for determining range resolution 
  
 
 

∆f

chirp spectrum 1

chirp spectrum 2

usable spectrum for 
setting range resolution

c

-∆fc

frequency shift associated with the different look angles, and its impact on the usable bandwidth 



CHAPTER 7 
 
BISTATIC SAR 
 
 
  
 
7.1  Introduction 
 
The monostatic radar configuration, in which the transmitter and receiver are collocated, 
seems so logical that we are not led naturally to contemplate other arrangements. As 
noted in Chapt. 2 monostatic radar is tantamount to using a torch or flashlight to see 
objects when it is dark. In this visual example it is not necessary to collocate the source of 
illumination and the receiver (our eyes). The energy source can be located in a roof light 
or lamp. We then see objects through bistatic light scattering. The same situation occurs 
with standard optical remote sensing; the source of energy – generally the sun – is located 
spatially quite separate from the sensor. 

Clearly we could do the same with radar. The source of irradiation can be located in a 
different position from the receiver. However, since radar uses time delay to ascertain 
range information there needs to be some form of communication and synchronisation 
between the transmitter and receiver; nevertheless, a bistatic radar configuration is 
certainly technologically feasible1. There are advantages in such an arrangement. In 
defence applications it is advantageous to have a separate receiver since transmissions 
from a radar make it liable to detection; having the receiver in a different position renders 

operate with a satellite based transmitter and an aircraft based receiver. Also, just as we 
can gain more information about an object by viewing it from different perspectives so 

those of interest in remote sensing. Interestingly, it is also possible to have a forward 
looking radar system in the bistatic mode, provided the transmitter is off-axis2. 

A bistatic radar can use transmitters of opportunity3 (just as the sun is a convenient 
source in optical imaging). Sources of microwave energy designed for other purposes, 
including telecommunications, navigation and positioning (as for example GNSS4) can be 
used to irradiate a target. The scattered energy can then be detected by a radar receiver. In 
the case of GNSS the transmissions are time encoded (which is the very basis of GNSS) 
so that it is possible to synchronise scattered signals with those transmitted. 

                                                 
1 In the radar literature a bistatic radar is sometimes called passive since the receiver is not accompanied by 
a transmitter and hence is undetectable. That should not be confused with passive imaging in microwave 
remote sensing (using the earth’s thermal emission as a source), even though the connotations are similar. 
2 See X. Qiu, D. Hu and C. Ding, Some reflections on bistatic SAR of forward-looking configuration, IEEE 
Geoscience and Remote Sensing Letters, vol. 5, no. 4, October 2008, pp. 735-739. 
3 See H D. Griffiths, From a different perspective: principles, practice and potential of bistatic radar, Proc 
IEEE International Conference on Radar 2003, Adelaide, 3-5 Sep 2003, pp. 1-7. 
4 GNSS (Global Navigational Satellite System) is now widely used to describe satellite based navigation 
and positioning systems such as the US GPS, the Russian Glonass and the forthcoming European Galileo 
program. 
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bistatic radar, in principle, might yield better data for discriminating targets, including 

DOI: 10.1007/978-3-642-02020-9_7,  

its location silent in a radio sense. To improve its security such a system could even 
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We can generalise further. We need not restrict our attention to a single transmitter and 
a single receiver. Monostatic and bistatic configurations are special cases of the multiple 
input, multiple output (MIMO) radar systems summarised in the next section. 

As with the other radar configurations treated in this book we develop our analysis here 
based on rectilinear flight paths and flat earth assumptions so that the expressions derived 
strictly apply only to airborne systems. Nevertheless they are good approximations for 
spacecraft operation as well, unless the transmitter and receiver are widely spaced. 
Deriving expressions for range and azimuth resolutions for bistatic radar can be a little 
complicated, so we develop the essential concepts in this chapter by building up from 
simple, special cases to the most general bistatic situation later on. In doing so we will 
derive general formulas for resolution that can be used for any radar topology. 

 
 

7.2  Generalised Radar Networks 
 
In principle we could have as many transmitters and as many receivers as we like. The 
manner in which they interact defines a number of identified radar configurations. While 
we will focus just on bistatic radar in this chapter it is likely that some of the more general 
configurations will feature in future remote sensing radar sensor networks. 

Although the definitions and nomenclature are still developing, Fig. 7.1 shows the set 
of radar network topologies currently recognised5. This is drawn in terms of the rays that 
connect the transmitters and receivers rather than in terms of physical layouts. Monostatic 
and bistatic radars are included to show where they sit in the hierarchy. The important 
differentiator is the set of pathways between the transmitters and receivers. Even though 
those paths contain the target of interest, it is the number of paths that intersect with the 
target (with which we diagnose its properties), and how their signals are processed, that 
define the different radar configuration types and their subsets. 

The netted radars shown in Fig. 7.1c and d come in several forms. They can be used to 
provide different perspectives of and thus information on the target of interest. 
Information fusion procedures would be employed to integrate the information available 
from each of the radars. Alternatively, they can be used as a set of cooperating radars to 
provide enhanced areal coverage. 

The multistatic radar of Fig. 7.1e normally consists of a single transmitter and a set of 
cooperating receivers although some multistatic radars use more than one transmitter. A 
multistatic radar can also be established using a monostatic configuration with a second 
receiver6. In principle, the interferometers of Chapt. 6 are multistatic radars. Effectively 
the standard mode uses one transmitter and two receivers while the ping pong mode uses 
two transmitters and two receivers. The tomographic SARs of Sect. 6.15 can also be 
regarded as multistatic or netted radars.  

Multiple input, multiple output (MIMO) radars networks are a generalisation of 
multistatic radars. Shown in Fig. 7.1f they consist of a set of transmitters and a set of 
                                                 
5 There is another form of radar not included here called secondary radar. It is widely used in air traffic 
control and depends upon having a cooperative target. The target (aircraft) carries a receiver and re-
transmitter (together called a transponder) which detects an incoming radar pulse. It then transmits a signal 
back to the radar set. This has the advantage that the signal level received at the radar can be larger than that 
through passive scattering from a target. Correspondingly, the radar transmitter power (and antenna) can be 
much smaller since the level of signal received is, again, not the result of passive scattering. The return 
signal can also carry information about the aircraft and its position. The secondary radar principle is similar 
to that of active radar calibrators (ARCs) of Sect. 4.2.3. 
6 See A. Moccia, N. Chiacchio and A. Capone, Spaceborne bistatic synthetic aperture radar for remote 
sensing applications, Int. Journal of Remote Sensing, vol. 21, 2000, pp. 3395-3414. 
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receivers7. Each receiver detects scattered energy from the target originating from every 
transmitter as seen in the path diagram of Fig. 7.1g. The received signal is therefore quite 
complex. Although not shown here explicitly the paths could also include monostatic 
ones – in other words the receivers could be collocated with the transmitters. MIMO 
radars are further subdivided. If the transmitters are well separated, as are the receivers, 
there is no correlation between the signals and the network is referred to as a statistical 
MIMO radar. If the system is designed to have the transmitting antennas closely arranged 
so that they look like an array antenna, and similarly for the receivers, the network is 
referred to as a coherent MIMO radar because the signal set transmitted is designed to 
achieve specified performance objectives through signal processing. 

 
 

 
 
Fig. 7.1. (a) Monostatic radar (b) bistatic radar (c) monostatic netted radar (d) bistatic netted radar 
(e) multistatic radar (f) MIMO radar and (g) signal paths for the MIMO radar 
 
 
 

                                                 
7 See K.W. Forsythe and D.W. Bliss, Chapter 2 MIMO radar: concepts, performance enhancements, and 
applications, in J. Li and P. Stoica, MIMO Radar Signal Processing, Wiley, Hoboken, N J , 2009. 
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7.3  Analysis of Bistatic Radar 
 

Consider the particular bistatic arrangement shown in Fig. 7.2, in which the transmitter 
and receiver are on platforms travelling out of the page parallel to each other. They are 
separated in the cross track direction by a baseline B and the rays from the transmitter to 
the target and the receiver to the target have an angular separation β; this is called the 
bistatic angle. There are two other significant angles; one subtended by the transmission 
path and the other by the scattering or reception path. We call the former the incidence 
angle, in keeping with the monostatic radars of the previous chapters, and the latter the 
observation or scattering angle. This configuration is geometrically similar to that used in 

We will consider the alternative case when the transmitter and receiver are separated in 
the along track direction after we have analysed the cross track situation. We will then 
consider the case of an arbitrary baseline and, finally, examine the most general 
configuration. 

 

 
Fig. 7.2. Definition of physical parameters used in bistatic radar 

 
 

7.3.1  The Bistatic Radar Range Equation and the Bistatic Radar Cross Section 
 

Equivalently to (3.33) for monostatic radar the radar range equation for bistatic radar can 
be derived in the following manner. A transmitter power of Pt radiated on an antenna with 
gain Gt will generate a power density at the target of  
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This is assumed to be scattered isotropically by the target in the direction of the receiver 
which, for this purpose, is described by a bistatic radar cross section σB m2. The power 
produced at the receiver is 
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in which Ar is the aperture of the receiving antenna which, if expressed in terms of its 
gain, gives  

T R
baseline B 

RT RR 
β

target 

cross track interferometry in Chapt. 6 but here the baseline can be large and one platform 
transmits and one receives, although as noted in Fig. 7.1 in some applications both
platforms might transmit and receive. 
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The inverse squares of the distances in the denominator are interesting to explore. For a 
given separation between the transmitter and the receiver, calculation will demonstrate 
that the worst case received power level is when the target is mid way between the two – 
which is exactly as it is for monostatic radar. If the target is closer to either the transmitter 
or receiver the received power will be higher. 

The bistatic radar cross section (or equivalently the bistatic scattering coefficient for a 
resolution cell) will be a function of both the scattering angle and the incidence angle. It 
will also be a function of polarisation and can thus be expressed in the form of a matrix as 
in (3.36). We can also use a scattering matrix for multipolarisation bistatic radar. This is 
taken up in Sect. 7.10. 
 
 
7.3.2  Bistatic Ground Range Resolution 

 
Recall from Sect. 3.2 and Fig. 3.6 that the minimum resolvable detail on the ground is 
determined by the duration of the transmitted ranging pulse which, in a chirp-based pulse 
compression radar, is determined by the chirp bandwidth – see (3.5). The same 
consideration sets the ground range resolution for a bistatic radar. Fig. 7.3 shows 
transmitted rays to two spots on the ground, in adjacent ground resolution cells, and their 
reflections to the receiver. We have assumed that the transmitter and receiver are 
sufficiently far away that the rays can be drawn parallel and that they are both to the same 
side of the target. The receiver, alternatively, could be on the other side of the target; that 
situation just requires the scattering angle to be regarded as negative – in our diagram the 
incidence and scattering angles are defined as positive anticlockwise from the vertical. 
 

 
 
Fig. 7.3. Geometry for calculating the ground range resolution of bistatic radar 
 
 

The right hand incident ray and its reflection each travel further than the left hand 
incident and reflected rays. The additional distances are shown in heavier lines. The 
reflection from the right hand resolution cell, or pixel, arrives at the receiver 

cr RTg /)sin(sin θθ + seconds later than the reflection from the left hand pixel.  
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 (a) 

 
 (b) 
 
Fig. 7.4. Range resolution of cross track bistatic radar for a range of incidence angles, normalised 
to the monostatic case (a) as a function of scattering angle and (b) as a function of normalised 
baseline 
 
 
In order to resolve the bistatic echoes that time difference must be no smaller than the 
duration of the compressed ranging chirp. The limit of resolution is when the time 
difference equals the compressed chirp widthτ, giving the ground range resolution as 
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where Bc is the chirp bandwidth. There are some interesting special cases of this 
expression. If θR=θT then it reverts to (3.5b) for monostatic radar. If θR= –θT 

∞→gr showing there is no range resolution. Both of these can be seen easily by 
appropriate adjustments to Fig. 7.3. If θR<θT the ground range resolution is better than 
achievable with monostatic radar. To demonstrate these points further, Fig. 7.4a shows 
the ground range resolution for a range of incidence and scattering angles, normalised to 
the monostatic case; effectively this plots )sin/(sinsin2 RTT θθθ + . The dependence on 
relative baseline is shown in Fig. 7.4b, computed by noting from Fig. 7.2 that the 
scattering angle is related to platform altitude H, baseline B and incidence angle θT by 

)/(tantan 1 HBTR −= − θθ . 
Now consider the along track bistatic configuration of Fig. 7.5. This could be 

established by having the platform carrying the receiver either preceding or following the 
transmitter platform in orbit. Generally the transmitter radiates to the side, as in the 
monostatic radar technology considered in Chapt. 3, so that the receiver has to squint 
forward or backwards to see the scattered signal. It is possible of course for the 
transmitter or both to squint but we won’t examine those variations here. Note that the 
incidence and scattering angles are now not in the same plane. This configuration goes by 
several names: we will call it an along track baseline here, but it is also known as a 
tandem configuration or sometimes a squint configuration since either or both of the 
transmitter and receiver have to squint to ensure simultaneous coverage of the same spot 
on the ground. 

To find the ground range resolution for this case attention is focussed on the plane that 
contains the broadside distance from the target to the satellite path and the reflected ray. 
The expanded detail in Fig. 7.5 shows that the reflected path difference is rgsinχ. Since 
from Fig. 7.3 the transmitted path difference is rgsinθT then the ground range resolution 
for the along track bistatic configuration is 

 
)sin(sin χθ +

=
T

g
cr

cB
 (7.3) 

 
From the geometry of the shaded triangle in Fig. 7.5 we can see that 

 
 RT θθχ costansin =  (7.4) 
 

which we can use to find ground range resolution in terms of the scattering angle, if that 
were of interest. In the along track case it is more appropriate simply to express resolution 
in terms of the baseline separation. If both platforms are at altitude H and there is a 
baseline B the scattering angle at transmitter broadside can be shown to be 

]))/([(seccos 2/1221 −− += HBTR θθ . From (7.4) we can then get χ which we substitute into 
(7.3) to find how the range resolution varies with baseline; that is shown in Fig. 7.6. Note 
that the range resolution for this configuration is always poorer than the monostatic 
equivalent. 
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Fig. 7.5. Along track bistatic radar with a squinting receiver following the transmitter in orbit; the 
shaded plane containing the reflected ray and the projection of the transmitted ray on the ground 
is used to derive the expression for ground range resolution 

 
 
Having looked at the two special cases of an across track baseline and an along track 

baseline it is straightforward to look at the situation in which the platforms are on parallel 
tracks but at different altitudes with the receiver lagging (or leading) the transmitter. This 
is shown in Fig. 7.7, in which the inclined baseline is shown resolved into its three 
Cartesian components. 

The relative positions of the platforms are described by 

X their along track separation 
Y their cross track separation 
Z their altitude separation 

Other significant parameters are the altitude and incidence angle of the transmitting 
platform, HT and θT respectively. 

The plane in which scattering takes place is shaded; by reference to Fig. 7.5 it can be 
seen that the ground range resolution is given by (7.3), although χ is different from that 
case, so (7.4) doesn’t apply. From the scattering plane geometry in Fig. 7.7 we see that 
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Fig. 7.6. Range resolution of along track bistatic radar as a function of normalised baseline for a 
range of incidence angles, normalised to the monostatic case; the negative baseline corresponds to 
the receiver leading the transmitter for the sketch of Fig. 7.5. 
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where θR is the scattering angle (at the receiver) for the instant when the transmitter is 
broadside of the target. Equation (7.5) replaces (7.4) in (7.3) for this general case. 

 
We can now consider special cases: 

1. For monostatic SAR Y=0, θR=θT=θ and HT=HR, so that (7.5) gives sinχ=sinθ ; (7.3) 
then degenerates to (3.5b). 

2. For cross track bistatic SAR X=0, Z=0, Y=B; also HT=HR=H. Equation (7.5) then 
becomes 
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H
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θ
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sec
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=  

 
 From the view along the velocity vector shown in Fig. 7.7 and Fig. 7.12, with Z=0 

and Y=B, we can see that the numerator in the last expression is simply HtanθR, so 
that we have Rθχ sinsin = . The ground range resolution is then given by (7.2) as 
required. 

3. For along track bistatic SAR Y=0, Z=0, X=B and again HT=HR. Equation (7.5) then 
reduces to (7.4), as required. 
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Fig. 7.7. Geometry for calculating the ground range resolution with an inclined baseline; the 
transmitter is at its broadside position for the calculation of range resolution 
 
 
7.3.3  Bistatic Azimuth Resolution 
 
Consider the cross track bistatic configuration of Fig. 7.2, but viewed from above as the 
platforms are approaching a point target, as shown in Fig. 7.8. Using the same 
development and approximations as for monostatic radar in Sect. 3.6, and assuming both 
platforms are travelling at the same velocity relative to the target, we can see that 
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in which RoT and RoR are the slant ranges at broadside for the transmitter platform and 
receiver platform respectively. 

The phase delay associated with the total path followed by the ranging pulses (from 
transmitter to target to receiver) is 
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so that the motion induced Doppler frequency is given by 
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The chirp rate is therefore 
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Fig. 7.8. Cross track bistatic SAR geometry: the along track dimensions are exaggerated for 
clarity; the beamwidth of the transmitting antenna, which has no squint, is illuminating the target 
 
 
To find the azimuth resolution we need next to find the chirp bandwidth, which is the 
product of the chirp rate and chirp duration. As with monostatic radar the duration of the 
chirp is set by the time the point target is irradiated; that time is given by the azimuth 
beamwidth of the transmitting antenna projected onto the ground divided by the 
transmitter platform velocity, giving the azimuth chirp length as 
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in which la is the azimuth length of the transmitting antenna and La is the azimuth 
beamwidth at the ground. The chirp bandwidth is therefore 
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If the Doppler induced azimuth chirp is compressed in the usual way for synthetic 
aperture radar by correlating it against a replica of itself, then the compressed version has 
a duration equal to the reciprocal of the chirp bandwidth. As in Sect. 3.6, using the 
platform velocity, that is equivalent to a travel in azimuth over that period of: 
 

 
oRoT

oR
a

c
a RR

Rlvr
+

==
B
1  (7.6) 

 
which is the azimuth resolution of the bistatic radar. Note that if RoR=RoT (7.6) reduces, as 
expected, to the azimuth resolution of monostatic SAR given by (3.8). 

Equation (7.6) can be re-written in terms of the platform altitude, baseline separation 
and incidence angle of the transmitter as 
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Using this expression Fig. 7.9 shows how azimuth resolution varies with baseline. 
Unfortunately, in the bistatic case the positions of the platforms affect the resolution, 
whereas for monostatic SAR the theoretical azimuth resolution is independent of platform 

the monostatic equivalent, as seen in the figure. That is when the receiver is on the side of 
the transmitter furthest from the transmitter. However, because of the correspondingly 
longer path from transmitter to target to receiver, such an arrangement results in less 
available power at the receiver, limiting the ability to measure smaller radar cross sections 
or scattering coefficients before noise becomes a problem. 

 
 
Fig. 7.9. Azimuth resolution, normalised to the monostatic case, for cross track bistatic SAR, as a 
function of incidence angle, and baseline to platform altitude ratio 
 
 

We now consider azimuth resolution when the bistatic configuration is in the along 
track mode as in Fig. 7.5 in which the transmitter has no squint angle, and the receiver 
squints forward. Fig. 7.10 shows a slant plane view of the radar just acquiring a target. 
The transmitter and receiver are in the same slant plant; that makes the analysis a little 
easier. 

We can derive an expression for azimuth resolution by following the same procedure as 
for monostatic radar and the across track bistatic configuration, with one exception. 
Because the baseline B can be quite large, as determined by the separation in orbit of the 
platforms, we cannot use the simple two term power series approximation to the square 
root in calculating the slant range from the target to the receiver RR(t). Because of that we 
will not approximate the transmitter-target slant range either, even though that would 
have been acceptable. 
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Fig. 7.10. Slant plane view of along track bistatic SAR: again the along track dimensions are 
exaggerated for clarity; the beamwidth of the transmitting antenna, which has no squint, is 
reaching the target 
 
 

From Fig. 7.10 the total range is 
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with 22 )()( vtRtR oTT +=  and 22 )()( BvtRtR oTR ++= . This gives the total phase 
change from transmitter to target to receiver as 
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The corresponding Doppler induced frequency shift of the radar carrier frequency is 
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As the transmitter passes broadside the change in frequency will be linear (as was the 
case for monostatic SAR) emulating a chirp that can be compressed to provide high 
azimuth resolution. It is likely that the frequency variation will also have higher order 
dependences on time; in its most general form it could be written 
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in which fo is the carrier (or centre) frequency of the radar and β is the linear chirp rate – 

see (3.11b) for the monostatic equivalent. To find β we evaluate 
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Substituting from (7.7) gives 
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in which 22 BRR oToRt +=  (7.12b) 
 
is the receiver slant range at t=0, i.e. at transmitter broadside. Proceeding as for the cross 
track case, the azimuth chirp bandwidth is 
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Finally the azimuth resolution is given by the platform velocity multiplied by the 
compressed chirp duration (the reciprocal of the chirp bandwidth) to give 
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 This can be simplified: 

 
1

3

22

1
−

⎥
⎦

⎤
⎢
⎣

⎡ −
+=

oRt

oToRtoT
aa R

BRRRlr  

 

i.e. 
1

3

3

1
−

⎥
⎦

⎤
⎢
⎣

⎡
+=

oRt

oT
aa R

Rlr  (7.13) 

 
Note that if B=0, RoRt≡RoT
terms of the baseline to altitude ratio and the transmitter incidence angle; note in Fig. 7.10 
that ToT HR θsec=  so that 22 )/(sec HBHR ToRt += θ  giving 
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Equation (7.13) then becomes 
 
 [ ] 12/322 ])/(cos1[1 −−++= HBlr Taa θ  (7.14) 
 
Fig. 7.11 shows how azimuth resolution varies in this tandem situation as a function of 
incidence angle and baseline-to-altitude ratio compared with the monostatic case. As with 
range resolution the azimuth resolution in the along track configuration is never better 
than the monostatic value. 

Finally we can consider the azimuth resolution for the inclined baseline case of Fig. 
7.7, but shown more generally in Fig. 7.12. The transmitter to target and target to receiver 
distances respectively are 

 

 and this reduces to the monostatic formula. We re-write this in 

−1/2
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 22 )()( vtRtR oTT +=  (7.15a) 
  
 22 )()( XvtRtR oRR ++=  (7.15b) 
 
The broadside slant range for the receiver RoR is related to the broadside slant range for 
the transmitter RoT by  
 
 )cossin(22222

oToToR ZYRYZRR θθ +−++=  (7.16) 
 
That expression comes from looking along the flight direction and projecting the 
transmitted and received rays onto the plane orthogonal to the velocity vector at the 
position of the target. 

 
 
Fig. 7.11. Azimuth resolution, normalised to the monostatic case, for along track bistatic SAR, as 
a function of incidence angle, and baseline to platform altitude ratio; the transmitter radiates 
normal to its velocity vector 

 
 
Since (7.15b) is of the same form as RR(t) in (7.8) we can use the results for the along 

track baseline special case by noting now that RoT and RoR are different and putting X in 
place of B. Using (7.11) with the appropriate substitutions the linear chirp rate of the 
motion induced Doppler frequency in this general case is 
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From (7.16) we note 
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As before, this is the square of the receiver to target slant range when the transmitter is at 
broadside; call it 2

oRtR . Again noting that the azimuth chirp bandwidth is 
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Fig. 7.12. Bistatic SAR using parallel orbits but with an arbitrarily inclined baseline: as in 
previous diagrams the along track dimensions are exaggerated for clarity; the beamwidth of the 
transmitting antenna, which has no squint, is illuminating the target 

 

Now consider some special cases. 

1. For monostatic SAR 2222
ooToRoRt RRRR ===  so that 2/aa lr = . 

2. For cross track bistatic SAR X=0, Z=0 so that Y=B and RoRt=RoR. From (7.18) that 
gives  
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 which is the same as (7.6). 
oR=RoT. Thus 

(7.18) becomes 
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 which is the same as (7.13). 

 
7.4  The General Bistatic Configuration 
 
In the analyses of Sect. 7.3 we have assumed the two platforms travel on parallel paths. 
While that will often approximate spacecraft bistatic radar systems, configurations based 
on aircraft or aircraft/spacecraft combinations often have the velocity vectors of the 
platforms inclined to each other8. Analysis sometimes uses a vector-based approach to 
avoid too much mathematical notational complexity. The processing of the SAR echoes 
to produce imagery via range and azimuth compression is also more complex, particularly 
the steps used to compensate for range migration9. 

Notwithstanding these complexities it is still possible to set up some general 

computational solutions. To do so requires us to generalise the way we look at range and 
azimuth resolutions. Consider range resolution first. Recall that what a radar resolves is a 
difference between two targets (or pixels) by being able to separate their echoes in the 
slant direction; if the echoes are separated by more than the width of the (compressed) 
ranging pulse then the targets are resolvable. The limit of slant range resolution is given 
when the echo separation is no smaller than the pulse width. We thus write the slant range 
resolution as 

 
cB

ccrr == τ  

in which τ is the compressed pulse width and Bc is the chirp bandwidth. Note that there is 
no “2” in the denominator here as there is in (3.1) and (3.5a). That is because we have 
said nothing about the slant path folding back on itself, as it does for monostatic radar. 
Instead the situation is now as depicted in Fig. 7.13. As radar users we are interested in 
resolving detail on the ground – shown as the x dimension in Fig. 7.13. Therefore we 
have to establish a general relationship between ground range resolution and slant range 
resolution – which means we have to understand how a change in ground coordinate x 

shows up as a change in slant range R. In other words we need to know 
dx
dR  for the 

general radar configuration. For the simple monostatic case of Fig. 3.6 we can see that 

                                                 
8 See for example P. Dubois-Fernandez, H. Cantalloube, B. Vaizan, G. Krieger and A. Moreira, Chapter 5 
Airborne Bistatic Synthetic Aperture Radar, in M. Cherniakov (ed), Bistatic Radar Emerging Technology, 
John Wiley and Sons, Chichester, 2008, and M. Antoniou, R. Saini and M. Cherniakov, Results of a space-
surface bistatic SAR image formation algorithm, IEEE Transactions on Geoscience and Remote Sensing, 
vol. 45, no. 11, pt. 1, November 2007, pp. 3359-3371. 
9 See F.H. Wong, I.G. Cumming and Y L. Neo, Focussing bistatic SAR data using the nonlinear chirp 
scaling algorithm, IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 9, September 2008, 
pp. 2493-2505. 

3. For along track bistatic SAR Y=0, Z=0 so that X=B and, from (7.16), R

expressions for the resolution cell properties, although actual results may need
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Fig. 7.13. Geometry for demonstrating the application of (7.19) 
 
 
To apply this expression consider the simple case in Fig. 7.13. We have chosen the origin 
for the ground coordinate at the transmitter and assumed the received is at a distance D 
from the transmitter in the same plane as the target. This is just a two sided version of the 
cross track bistatic configuration considered earlier. We will generalise it shortly. The 
total slant range is given by 
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When substituted into (7.19) that gives the required expression for ground range 
resolution. Note that if HT=HR=H and x=D/2 then from (7.20) dR/dx=0, so that there is no 
range resolution as we also noted in association with (7.2). 

We are now in the position to consider the general bistatic case shown in Fig. 7.14 in 
which the transmitter and receiver are on arbitrarily inclined tracks at different altitudes 
and with different velocities. Again we choose a Cartesian rectangular coordinate system 
with the origin at the instantaneous transmitter position. 

The total slant range from transmitter to target to receiver, as a function of target and 
receiver positions relative to the transmitter, is 
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We can apply (7.19) to find ground range resolution. The slant range, however, is now a 
function of both x and y so we need to find its incremental dependence on both – 
essentially we look for its differential with respect to both x and y together. Fortunately, 
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there is a very helpful construct in the field of analytical geometry that we can use here – 
it is called the gradient operator. It allows us to differentiate a function of several 
independent variables to generate a vector for the gradient of the function. The gradient 
operator is represented by the symbol∇ and defined, in three dimensions, as 
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in which i, j and k are unit vectors that point in the x, y and z coordinate directions 
respectively; ∇ is usually pronounced “grad” or “del” although occasionally the older 
term “nabla” is used. 

 
 

Fig. 7.14. General bistatic geometry 
 
 

In our two dimensional case the gradient is simply 
 

 ji
y
R

x
RyxR

∂
∂

+
∂
∂

=∇ ),(  

 
The significance of having a vector expression for gradient is that its direction in space 
tells us the direction in which the change is greatest and the amount of change is the 
magnitude of the vector. In our analysis we are not so much concerned about the direction 
in which the change occurs as we are in its magnitude, which is given in the usual way for 
vectors as 
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10 to 

 

                                                 
10 G. Krieger and A. Moreira, Spaceborne bi- and multistatic SAR: potential and challenges, IEE 
Proceedings on Radar, Sonar and Navigation, vol. 153, no. 3, June 2006 give a more general form of this 
expression which incorporates the directional information from the gradient operator. 
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Therefore, knowing the relative positions of the transmitter, receiver and target the 
ground range resolution can be calculated by substituting (7.25) into (7.23) and then into 
(7.24). Note that if y=YR=0 – i.e. the coplanar situation – this will give the same result as 
(7.21b). It will also reduce to the special cases of across track and tandem SAR with the 
appropriate choices of angles and baseline components. 

We now turn to the azimuth resolution for the general bistatic configuration. As with 
range resolution we first determine a general expression. From (7.9) we see that the 
Doppler frequency component added to the radar centre frequency can be written 
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in which v(t) is the relative platform velocity in the direction of signal travel. It is written 
explicitly as a time-varying function for generality. Recall that we find azimuth resolution 
by noting that the Doppler shift component induces a chirp-like characteristic onto the 
radar signal. By correlating that received chirp against a replica, the resulting compressed 
pulse width determines the azimuth resolution in time. Multiplication of this result by the 
receiver platform velocity turns that into an expression in distance. The compressed pulse 
width is the reciprocal of the chirp bandwidth, which is the Doppler rate about t=0 (the 
rate at which the frequency changes in the middle of the induced chirp as the transmitter 
passes the target) multiplied by the duration of the chirp. Turning this word expression 
into a formula gives for azimuth resolution 
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In radar theory Ta, the chirp duration, is often called the receiver coherent integration 
time. We can develop an expression for Ta by assuming that the received azimuth chirp 
duration is set by the time that a point target is illuminated by the transmitted beam. In a 
sense this assumes that the receiver beamwidth on the ground is larger than that of the 
transmitter. By doing this the expression we derive for azimuth resolution can be reduced 
to special cases that we are familiar with. As in Sect. 3.6 Ta can be expressed in terms of 
the beamwidth of the transmitting antenna, the slant distance from the transmitter to the 
target and the velocity of the transmitter platform. The transmitting antenna’s beamwidth 
is given by its real length in the direction of travel divided by the operating wavelength, 
so that 



7 Bistatic SAR  253 

 
Ta

oT

T

a
a vl

R
v
L

T
λ

==  

 
in which we assume that the transmitter slant range RT does not vary greatly over the time 
Ta and can be represented by its value at t=0. The azimuth resolution expression of (7.27) 
then becomes  
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Substituting from (7.26) this gives 
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We now need to evaluate v(t), the velocity component that gives rise to the Doppler shift 
of the radar carrier frequency. A little thought will show that it is the sum of the 
component of the transmitter platform velocity in the slant range direction and the 
receiver platform velocity component in its slant range direction. That is because the 
signal reaching and scattering from the ground is Doppler shifted by the transmitter 
platform motion. When it is received it then has an additional Doppler component added 
because of the receiver platform motion. 

To find the components of velocity in the slant range directions we will concentrate just 
on the receiver situation since the results apply in general. Fig. 7.15 shows the receiver 
slant ray to the target and the receiver velocity vector; the orientation of the latter is 
shown described by three angles: the platform bearing with respect to the horizontal 
orientation of the slant ray Rψ , the receiver platform orbital elevation angle Rζ and the 
receiver instantaneous incidence angle Rθ . The last two could be replaced by a single 
angle but it suits our purposes here to keep them separate, as we will see. From Fig. 7.15 
we note that the component of the velocity of the receiver platform in its slant range 
direction is 

 RRRR
c
R vv θψζ sincoscos=  

 
Similarly the component of the transmitter platform velocity in its slant range direction 
will be 
 TTTT

c
T vv θψζ sincoscos=  

 
Thus the velocity rate in (7.28) is 
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The platform velocities are constants but each of the angles varies with platform-target 
relative motion and is thus a function of time. It is reasonable to assume that over the time 
of the synthetic aperture Ta, the angles only change slightly about their nominal values at 
a given instant of time, so that the trigonometric functions can be approximated, if 
required, by the linear terms of a Taylor series of the form 
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 ooo ααααα sin)(coscos −−=  (7.30a) 
 ooo ααααα cos)(sinsin −+=  (7.30b) 
  
in which αo is the nominal angle about which the trig functions are approximated. The 
derivatives in (7.29) then reduce to simple derivatives of the angles at t=0. They could be 
approximated from platform ephemeris data. 
 

 
 

Fig. 7.15. Finding the component of platform velocity in the slant range direction 
 

 
Consider now the special case of simple across track bistatic SAR shown in Fig. 7.8. 

For this we have ζT=ζR =0, vT=vR=v=constant. Also ψT and ψR are close to 90o over the 
length of the synthetic aperture (the coherent integration period). In addition, the 
incidence and scattering angles are constant for this arrangement. Fig. 7.16a shows the 
configuration with the relevant angles and distances defined, from which we see 
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The subscripts on the distances refer to the slant ranges at t=0 (nominally transmitter 
broadside) projected onto the ground plane. With these expressions (7.29) for this 
configuration becomes  
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since v is constant and RoRoRg RR θsin= , ToToTg RR θsin= . 
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which, on substituting into (7.28) gives the azimuth resolution as 
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This is the same as (7.6). 
 

 
 (a) (b) 
 
Fig. 7.16. Horizontal plane projections of (a) across track and (b) tandem bistatic SAR 
 
 

Consider now the special case of the tandem (along track) configuration) shown in Fig. 
7.9; however, instead of a slant plane view, Fig. 7.16b again shows the view from above – 
i.e. projected onto the horizontal plane. For this configuration ζT=ζR=0, vT=vR=v=constant 
as for the across track situation. From the figure we see 
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in which 22 BRR oToRt +=  is the slant range to the receiver at t=0 – i.e. transmitter 
broadside, in which RoT is the transmitter slant range at broadside (see Fig. 7.10). Note 
also that the receiver slant range at general time t is given by 222 )( BvtRR oToR ++= . Thus 
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Substituting (7.32a,b) into (7.31) gives from (7.28) 
 

 
1

3

31

3

2

11
−−

⎥
⎦

⎤
⎢
⎣

⎡
+=⎥

⎦

⎤
⎢
⎣

⎡
−+=

oRt

oT
a

oRt

oT

oRt

oT
aa R

Rl
R

BR
R
Rlr  

 
which is the same as (7.13). 
 

 
7.5  Other Bistatic Configurations 

 
Bistatic SAR in remote sensing is still relatively new and no purpose-designed 

configurations are yet in operation. Some innovative arrangements have been proposed 
two of which are outlined here. 

The TanDEM-X mission11, consisting of two almost identical satellites based on the 
TerraSAR-X platform, both of which can transmit and receive, is primarily an 
interferometer designed to provide highly accurate global digital elevation models. The 
configuration is also intended to provide a versatile bistatic radar for general, polarimetric 
remote sensing studies. The satellites are planned for operation in several flight 
arrangements including (i) each working as a single monostatic radar platform, (ii) a 
fundamental bistatic configuration in which one platform transmits and both receive, and 

                                                 
11 See G. Kreiger, A. Moreira, H. Fielder, I. Hajnsek, M. Werner, M. Younis and M. Zink, TanDEM-X: A 
satellite formation for high-resolution SAR interferometry, IEEE Transactions on Geoscience and Remote 
Sensing, vol. 45, no. 11, pt. 1, November 2007, pp. 3317-3341. 
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(iii) a so-called alternating bistatic mode in which the platforms alternate as transmitters 
with both receiving. 

The interferometric cartwheel is another interesting arrangement12, in which an existing 
radar satellite is used as the transmitter with reception taking place on a number of 
smaller receive-only satellites (microsatellites) arranged in a vertical rotating elliptical 
orbital configuration flying ahead of the transmitter in the same principal orbit. This is 
depicted in Fig. 7.17, using three receiving satellites. Interferograms are produced by 
interfering the images received from any two of the microsatellites. The elliptical 
microsatellite orbit has a semi-major axis twice the size of the semi-minor axis. With the 
three satellites equally spaced around the ellipse the vertical baseline formed between the 
two best placed microsatellites at any given time does not vary by more than 7.5% from 
its mean value even though they are orbiting. While the constellation (essentially a 
multistatic radar) is designed principally for topographic mapping (because of the vertical 
baseline) an effective horizontal baseline is created at the same time so that the cartwheel 
could also be applied to mapping change. 

 
 

 
 

Fig. 7.17. The cartwheel concept in which a radar satellite designed for another purpose is used as 
a transmitter and there is a set of microsatellites in an elliptical sub-orbit acting as interferometric 
receivers 
 
 
7.6  The Need for Transmitter-Receiver Synchronisation 
 
With monostatic radar the transmitter and receiver, being on the same platform, can share 
signals, so that the time of transmission of the transmitted ranging chirps is known when 
needing to measure echo delay times. In bistatic radar there is usually a direct path from 
the transmitter to the receiver, as well as the signal scattered from the target, so that the 
receiver is aware of what has been transmitted. That requires the transmitter to be in line 
of sight to the receiver, unless they communicate via some other form of communications 
link. 

                                                 
12 See D. Massonnet, Capabilities and limitations of the interferometric cartwheel, IEEE Transactions on 
Geoscience and Remote Sensing, vol. 39, no.3, March 2001, pp. 506-520. 
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7.7  Using Transmitters of Opportunity 
 
An attractive form of bistatic radar is when the transmitter is some other pre-existing 
generator of electromagnetic energy at the wavelength of interest. Such a source could be 
a broadcast or communications satellite, one or several navigation satellites or even 
mobile phone towers and other forms of terrestrial transmitter13. Whether they are entirely 
suitable or not depends on the application. For remote sensing purposes navigation 
satellites are among the most suitable sources. 

Optical remote sensing using the sun as an energy or illumination source is referred to 
as passive. Similarly, bistatic radar based on a source or illuminator of opportunity is 
called passive bistatic radar. In non-remote sensing applications a radar system using a 
source of opportunity is sometimes called passive coherent location or hitchhiking. 

Using a transmitter of opportunity is a low cost option because the transmitter does not 
have to be provided explicitly. However, the power density produced at the earth’s 
surface (for scattering) can be about 80dB below that produced by a typical remote 
sensing radar. That would suggest that rather larger resolution cells are required in order 
to gather sufficient signal for detection at the receiver; alternatively the system will not 
respond to weaker targets. 

Synchronisation is a particular challenge when using a non-cooperative transmitter, 
especially if it has not been designed with radar-like purposes in mind. That is why GNSS 
navigation satellites are so attractive14. By their very design they transmit ranging signals 
that are used in trilateration to allow a target to locate itself. More than that, the radiated 
signals carry information on the time at which they were transmitted along with the 
satellite location, so that the receiver knows when the signal was sent and from where. 
Knowing when it is received allows the target to position itself on a spherical equidistant 
range line from the satellite. By receiving the signals from several satellites in this 
manner the target is able to locate itself in three dimensions and time, as illustrated in Fig. 
7.18. Because time is such a crucial element in making a GNSS system such as GPS work 
effectively, three levels of clock are involved. The GPS receiver (target) contains a clock. 
There are more precise clocks on each of the satellites, and there is a highly precise clock 
at the GPS master station in Colorado Springs. The clocks on the satellites are regularly 
calibrated from the master clock. Any errors in the receiver clocks are compensated for in 
the algorithms used to process the received signals. At least four satellites are required for 
that operation. 

There are nominally 24 satellites in the GPS constellation in a bird cage of orbits at an 
altitude of 20,200km. They are so arranged that at least six satellites are visible at any 
time from almost all parts of the earth’s surface. They transmit their ranging signals on 
two L band frequencies ~1.575GHz and ~1.228GHz, right in the range of interest in radar 
remote sensing. Those signals are modulated onto a random set of binary digits called a 
pseudorandom sequence, unique to a particular satellite. In the GPS receiver the 
sequences are correlated against versions stored locally. Before correlation the sequences 
are 1ms in duration; after correlation they have been effectively compressed to 1μs. By 
 
 

                                                 
13 See H.D Griffiths, From a different perspective: principles, practice and potential of bistatic radar, Proc. 
International Conference on Radar 2003, Adelaide, 3-5 Sept., 2003 or H.D. Griffiths, Bistatic and 
multistatic radar, IEE Conference on Military Radar, Shrivenham, 7 September 2004 
14 See T. Lindgren and D.M. Akos, A multistatic synthetic aperture radar for surface characterisation, IEEE 
Transactions on Geoscience and Remote Sensing, vol. 46, no. 8, August 2008, pp. 2249-2253. 



7 Bistatic SAR  259 

using different binary sequences at each transmitter the receivers can distinguish among 
the satellites and thus the signals received from each. 

Geosynchronous weather and telecommunications satellites can also be used as 
illuminators15. As with other passive systems the transmitter power is limited; moreover, 
since the transmitter does not move relative to the target, the azimuth resolution depends 
only of the Doppler rate established by the moving receiver. Although not passive, a 
multistatic radar network has been proposed using geostationary radar transmitters and 
orbiting receivers to improve imaging coverage16. 

 

 
 
Fig. 7.18. The trilateration principle used by a receiver to determine its position from four GPS 
satellites 

 
 

7.8  Geometric Distortion and Shadowing with Bistatic Radar 
 
Because monostatic radar resolves in the slant plane, terrain altitude variations lead to 
geometric distortion particularly in the ground range direction as outlined in Sect. 4.1. 
The case is similar with bistatic radar, except the concept of the slant plane is a little more 
complex. To help visualise the situation it is useful to introduce the idea of isorange 
contours – they are the loci of points out from the radar in which the two way range from 
transmitter to target to receiver are constant. For monostatic radar they are circles, or 
strictly spheres in three dimensions. Based on the definition of an ellipse the isorange 
contours for bistatic radar (for which the sum of the transmitter-target and target-receiver 

                                                 
15 See G. Krieger and A. Moreira, Spaceborne bi- and multistatic SAR: potential and challenges, IEE 
Proceedings on Radar, Sonar and Navigation, vol. 153, no. 3, June 2006 
16 See K. Sarabandi, J. Kellndorfer and L. Pierce, GLORIA: Geostationary/Low-Earth Orbiting Radar 
Image Acquisition System: A Multistatic GEO/LEO Synthetic Aperture Radar Satellite Constellation for 
Earth Observation, Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 
(IGARSS03), Toulouse, 21-25 July 2003, vol. 2, pp. 733-775. 
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distances is constant) are ellipsoids in three dimensions, with the transmitter and receiver 
positions defining the foci. 

For convenience we will concentrate on the across track baseline configuration so that 
we can consider the isorange ellipses in just the two dimensions of elevation and range as 
shown in Fig. 7.19. Clearly, if the baseline is small the ellipses are near circular so that 
the usual distortions of layover and relief displacement are similar to those for monostatic 
radar. For larger baselines the distortions will affected by the eccentricity of the isorange 
contours. Nevertheless it can be appreciated that the fundamental nature of layover and 
terrain relief distortions will be the same. Layover will also occur for along track bistatic 
radar, although to examine the likely situation the full isorange ellipsoid requires 
consideration. 

Both the transmitter and receiver in bistatic radar will project shadows, as depicted in 
Fig. 7.20. The transmitter shadow is strictly the only true shadow; the shadow referred to 
for the receiver is actually a region of terrain from which the receiver cannot receive 
scattered radiation because the target occludes that area.  

 
 

 
 
Fig. 7.19. Elliptical lines of constant range measured along the transmit and receive slant 
directions 

 
 

 
Although there is still the prospect of glint with bistatic radar – i.e. forward specular 
reflection of the transmitted signal in the direction of the receiver – there is much less 
opportunity for corner reflector like strong scattering. The dynamic range of an image is 
likely therefore to be smaller than for monostatic SAR. It has also been suggested that 
forward bistatic scattering from soils is less affected by surface roughness making it a 
better technology than monostatic SAR for assessing soil moisture17. 

Figure 7.21 shows X band monostatic and bistatic images of an urban region in which 
the more uniform dynamic range is evident. It was recorded in an experiment carried out 
by the Microwaves and Radar Institute of the German Aerospace Center (DLR) using an 
airborne receiver (F-SAR) with TerraSAR-X as the transmitter. Because of strong 
scattering the buildings in the monostatic image are very bright to the point that detail is 
                                                 
17 See D. Masters, P. Axelrad and S. Katzberg, Initial results of land-reflected GPS bistatic radar 
measurements in SMEX02, Remote Sensing of Environment, vol, 92, 2004, pp. 507-520. 
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7.9  Remote Sensing Benefits of Bistatic Radar 
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obscured. Similarly bright linear features, thought to be perimeter fences along the road 
running from the bottom centre to the right centre of the image and around one of the 
buildings, appear in the monostatic image but not the bistatic image. Likewise an array of 
solar panels on the bottom left hand part of the images is much brighter in the monostatic 
image than the bistatic one. 

Fig. 7.20. Shadowing in bistatic radar 
 
 
7.10  Bistatic Scattering 
 
The definitions of radar cross section and scattering coefficient in Chapt. 3 involved only 
one system angle – the incidence angle. While recognising that scattering properties are 
also azimuthally dependent we usually ignore that in monostatic scattering. In bistatic 
scattering the situation is much more complex. First, the incidence and scattering angles 
are different. Also, if the transmitter and receiver platforms follow trajectories that are not 
parallel the illumination and scattering pathways and thus those angles generally change 
from pixel to pixel. Perhaps the best that can be said it that each situation will need to be 
examined afresh, especially since, almost by definition, there are no configuration or 
topological conventions established. 

When we are interested in multipolarisation radar we need also to be careful about the 
coordinate system we choose to describe ray propagation and to define the scattering 
matrix of a target. We foreshadowed that concern in Sect. 3.17 and Appendix E by noting 
that two coordinate conventions are in use for radar – one better suited to monostatic 
situations and one for bistatic and multistatic arrangements. The former is the so-called 
backscatter alignment or antenna coordinate convention whereas the latter is the forward 
scatter alignment or wave coordinate convention. 

Fig. 7.22 shows bistatic scattering from a target in the forward scattering alignment 
coordinates – in other words the orientations of the components of the field are consistent 
with the propagation direction both before and after scattering. Whereas in backscattering 
the scattered and incident field components are related by a scattering matrix called the 
Sinclair matrix, in the forward scattering convention the matrix is called the Jones matrix 
T: 
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Strictly this expression only applies in the far field of the scatterer as we discussed also in 
the case of backscattering; it is more correct theoretically to write the Jones matrix in 
terms of the field received:  
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 (a) (b) (c) 
 
Fig. 7.21. (a) Monostatic (b) bistatic and air photo images demonstrating the more subdued 
dynamic range possible with bistatic imaging (from M. Rodr´ıguez-Cassol`a, S.V. Baumgartner, 
G. Krieger, A. Nottensteiner, R. Horn, U. Steinbrecher, R. Metzig, M. Limbach, P. Prats, J. 
Fischer, M. Schwerdt, A. Moreira, Bistatic spaceborne airborne experiment TerraSAR-X/F-SAR: 
data processing and results, Proceedings of the International Geoscience and Remote Sensing 
Symposium 2008 ( IGARSS08), vol. 3, Boston, 7-11 July 2008, pp. 451-454, ©2008 IEEE) 

 
 
The Jones matrix for a scatterer is related to its Sinclair matrix by (E.1). Unlike the case 
for backscattering the Jones matrix is not symmetric – i.e. VHHV TT ≠ in general. That 
means that the target vector definitions of (3.45) and (3.48) apply and that the covariance 
and coherency matrices of Sect. 3.19 are four dimensional.  

As with monostatic radar the Jones matrix is only good as a target descriptor when 
there is no unpolarised component of the scattered radiation. Again, it is better to describe 
the radiation in terms of its Stokes vector since then polarised, partially polarised and 
unpolarised situations can be handled. For backscattering the Stokes vectors were related 
by the Kennaugh matrix – see (3.60). In bistatic scattering they are related by the 4x4 
Mueller matrix18 H: 
                                                 
18 Note that there is confusion with the definitions of Mueller and Kennaugh matrices. See, for example, W-
M Boerner, H. Mott, E. Luneberg, C. Livingstone, B. Brisco, R.J. Brown and J.S. Patterson, Polarimetry in 
Radar Remote Sensing: basic and applied concepts, in F.M. Henderson and A.J. Lewis, Principles and 
Applications of Imaging Radar, vol. 2, Manual of Remote Sensing, 3rd Ed., John Wiley and Sons, N.Y., 
1998. In some treatments the Mueller matrix is applied to backscattering while the Kennaugh matrix is 
applied to forward scattering: see F.T. Ulaby and C. Elachi, Radar Polarimetry for Geoscience 
Applications, Artech House, Norwood Mass., 1990. Often the term Mueller matrix is used generically: see 
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Fig. 7.22. Bistatic scattering in a forward scatter alignment coordinate (wave coordinate) system 
 

                                                                                                                                                  
I. Woodhouse, Introduction to Microwave Remote Sensing, CRC Taylor and Francis, Boca Raton, Florida, 
2006. 
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CHAPTER 8 
 
RADAR IMAGE INTERPRETATION 
 
 
 
  
8.1  Introduction 
 
The principal goal of remote sensing is to interpret the data recorded in order to 
understand the region being imaged; interpretation can be based on qualitative or 
quantitative methods of analysis. Analyst expertise allows qualitative information 
extraction through photointerpretive methods in which visual clues around structure and 
contrast are used. With knowledge of the radar scattering behaviours of earth surface 
features, such as treated in Chapt. 5, the analyst can often make very good assessments of 
the types of land cover being imaged. 

Visual interpretation can be complicated because the scattering mechanisms are very 
often composite; within an individual pixel, several distinct mechanisms can contribute 
to backscatter. That does not preclude visual interpretation, but the analyst needs to be 
critically aware of those complexities if successful results are to be obtained. 

In quantitative radar image interpretation we seek to establish and map the most 
appropriate ground cover type for a resolution cell, or group of resolution cells, using 
computer-based labelling algorithms. Cells, or pixels, of a particular type can be counted 
to give quantitative estimates of ground covers, and symbols attached to pixels following 
interpretation allow thematic maps of the landscape to be generated. 

Unlike ground cover type determination with optical image data, in which spectral 
responses largely characterise absorption and emission of materials on the earth’s 
surface, in the case of radar imaging the properties that determine radar response are 
mainly related to the geometric nature of features and their moisture contents. 
Interpretation is therefore often focussed more on structural determination than on 
properties such as species, mineralogy, vegetation condition and stress such as we have 
come to associate with remote sensing imaging at optical wavelengths. That is not to say 

usually requires their association with geometric and moisture properties.  
As a result of the phase of the radar signals being available it is possible to develop 

procedures for understanding something of the vertical structure of the landscape within 
a resolution cell (pixel). While that can assist in pixel labelling, it is not intended as a 
classification process. Rather it is an analytical technique similar to interferometry and 
tomography treated in Chapt. 6. In principle, it is a third line of analysis of radar imagery 
sitting alongside visual interpretation and quantitative thematic mapping. 

This chapter reviews the these three approaches to the interpretation of radar imagery. 

 
8.2  Analytical Complexity 

 
With optical imagery recorded at a given time using a particular sensor there is 

generally only one type of data available for a pixel: that is the set of spectral 
measurements recorded at the wavelengths with which the sensor samples the landscape. 

 © Springer-Verlag Berlin Heidelberg 2009 
DOI: 10.1007/978-3-642-02020-9_8,  

that we cannot differentiate species and condition with radar imaging. To do so, though, 
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In contrast, with radar a complex set of measurements can be made, as depicted in Fig. 
8.1. For each resolution cell backscatter measurements (in both amplitude and phase) can 
be produced for different polarisations, different wavelengths and potentially different 
incidence angles1. The last is not as common as the first two for a given mission, but 
sampling at a limited number of incidence angles is certainly feasible in many cases. In 
bistatic radar we may also have a range of scattering angles. 

 

 
 
Fig. 8.1. Measurements available for a radar resolution cell 

 
 

8.3  Visual Interpretation Through an Understanding of Scattering Behaviours 
 

In forming an understanding of the landscape that has been imaged with a remote sensing 
platform an expert photointerpreter (human analyst) generally makes use of the spatial, 
temporal and brightness elements evident in the image. Spatial elements refer to shapes, 
sizes and textures and the recognition of elongate features that indicate roads and 
drainage systems. Image features that change in time between acquisitions constitute 
temporal clues. Apart from changes associated with topographic displacements 
detectable using interferometry, we will not pursue spatial and temporal keys in this 
chapter. Instead, we will concentrate on pixel brightness. 

The brightness of a pixel can vary with any of the measurements indicated in Fig. 8.1. 
Often the photointerpreter will form an opinion about the region imaged by examining 

                                                 
1 At the current time the dimensionality of the analysis problem with optical imagery is much greater than 
with radar data. Hyperspectral sensors generate several hundreds of bands, or features, whereas radar 
imagers tend to produce no more than about 12 channels of data. There is, however, a greater diversity of 
types among the features in radar imaging than for the bands in optical data. That can add to the complexity 
of analysis. 
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relative brightnesses across polarisations, incidence angles and wavelengths, as well as 
from position to position in an image. We proceed, therefore, by looking at the 
information available in each of the three dimensions in Fig. 8.1. We do so by 
considering the scattering coefficient as a function of incidence angle, wavelength and 
polarisation and, where possible and appropriate, we explore the scattering matrix. 

 
 

8.3.1  The Role of Incidence Angle 
 

In Fig. 8.2 we present a stylised set of co-polarised curves for the three principal 
scattering mechanisms generally encountered in practice – surface scattering (from both 
smooth and rough surfaces), volume scattering and hard target (dihedral corner reflector) 
scattering; the latter is reminiscent of tree trunk and urban scattering behaviours. Also 
shown are the samples of those response curves one would expect from two widely 
spaced incidence angles – one very low and one mid range. Those samples allow, at least 
in principle, discrimination among the cover types in a data space defined by the angles 
chosen. 

A feature evident in Fig. 8.2 is that most contrast among cover types is given at the 
mid range incidence angles. The lower incidence angles are not as good. Fig. 5.5 also 
shows how poor the smaller incidence angles are for discriminating among surfaces with 
different degrees of roughness. Layover is also worse at smaller incidence angles as is 
topographic distortion, as seen in Chapt. 4. 

 
 
Fig. 8.2. Demonstration of the discrimination possible among the fundamental scattering types 
using the dependence of their co-polar behaviour on incidence angle; the dashed lines represent 
decision boundaries that could be used in classification (see Sect. 8.4.3) 
 
 

Although mid-range angles of incidence are generally best for land based applications 
smaller incidence angles are to be preferred for sea surface observation, as noted in Sect. 
5.7 and Fig. 5.34. An exception to this is if the ocean background has to be minimised to 
allow features such as ships to be more evident. Mid range angles are then better. 

A general conclusion that might be drawn at this stage is that while smaller incidence 
angles are important for sea and oceanographic applications, mid range angles are more 
important for the land. Mid range angles also minimise the effect of topographic 
distortion. 
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Large angles of incidence are generally avoided because of the longer attenuating 
paths created through vegetation canopies and because of the greater chance of 
shadowing. 
 
  
8.3.2  The Role of Wavelength 

 
When examining the importance of wavelength, initial guidance is provided by the 
Rayleigh criterion of (5.4). For a surface with a given physical roughness that criterion 
allows us to assess whether a surface appears as smooth (specular) or rough (diffuse) for 
radar purposes. If, for illustration, we choose an incidence angle of 35o then a surface is 
specular for wavelengths in excess of about 7h, where h is the variation in surface height. 
Conversely, the surface is more likely to appear rough for any wavelength less than about 
7h. For X band that means any surface will be rough if its variations exceed, say, 0.5cm. 
Practically, therefore, most natural surfaces will appear rough at X band. By comparison, 
at L band a surface will be rough if its vertical variations exceed about 3cm. It will 
behave as a specular surface otherwise. Considering the range of roughness variations 
encountered naturally it is highly likely that in L band imagery (and perhaps longer) 
considerably more variation in contrast will be evident for surfaces (soils etc) than for X 
band. That is also demonstrated in Fig. 5.10. 

As demonstrated in Fig. 5.9 soil backscatter increases with increasing moisture 
content; the sensitivity of that change is higher at longer radar wavelengths than at 
shorter wavelengths2. 

Volumes will generally appear brighter and be more attenuating at shorter 
wavelengths. To get a feel for that we can consider the scattering characteristics of the 
elements that might compose a volume scatterer. If those elements are smaller than a 
wavelength then we know from the scattering of light in optical remote sensing that they 
will scatter incident energy according to λ-b in which b has the value of 1 or smaller for 
Mie scattering from larger particles and 4 for Rayleigh scattering from very small 
particles3. Irrespective of the mechanism, the shorter the wavelength the greater the 
scattering, including backscattering. If the scattering elements are spherical we can use 
theoretical results from the scattering of radiation by dielectric spheres as a guide. The 
normalised backscattering cross section for a small non-magnetic dielectric sphere of 
radius a is approximately4 
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in which εr is the dielectric constant of the material from which the sphere is composed. 
This shows that the radar cross section of the sphere increases with decreasing 
wavelength; it will be bigger at X band than L band meaning that backscattering from a 
volume composed of spheres will be greater at X band – in other words X band imagery 
will show greater volume scattering return than L band imagery. Even though this was 
done for spheres the lesson is the same for other shapes that might make up a volume, 

                                                 
2 See D. A. Boyarskii, V. V. Tikhonov, and N. Yu. Komarova, Model of dielectric constant of bound water 
in soil for applications of microwave remote sensing, Progress In Electromagnetics Research, PIER vol 
35, 2002, pp. 251–269. 
3 See J.R. Schott, Remote Sensing; the Image Chain Approach, Oxford University Press, New York, 1997. 
4 See G.T. Ruck, D.E. Barrick, W.D. Stuart and C.K. Krichbaum, Radar Cross Section Handbook, Plenum, 
N.Y., 1970, equation (3.3-7). 



8 Radar Image Interpretation  269 

with the exception that spherical scatterers will not give any cross-polarisation. Scatterers 
that are in some way elongate, such as cylinders, ellipsoids or needles (sometimes 
referred to as dipoles) will generate a cross polarised response as discussed in Sect. 5.4.2. 

In the range of wavelengths common to radar remote sensing the dielectric constant of 
vegetation changes from about 20 to 30 for a change in gravimetric moisture content5 of 
0.6 to 0.8 g/cm3. Using these figures in the expression for the radar cross section of a 
dielectric sphere shows an RCS change of about 10%. 

If a volume medium exhibits greater backscatter then clearly less energy propagates 
forward and the medium is seen to be higher in attenuation. Added to this forward 
propagating energy loss will be loss resulting from absorption in the material from which 
the scatterers are composed. That component is also wavelength dependent such that 
absorption is greater at shorter wavelengths. As a consequence volumetric media, such as 
forest canopies, will be quite opaque at short wavelengths, such as X band, but will be 
somewhat transparent at the longer wavelengths of L and P bands. Fig. 5.20 demonstrates 
the greater attenuation resulting from scattering at shorter wavelengths. Similar 
behaviours are to be expected for cross polarised returns. 

The two-bounce dihedral model used to characterise trees, houses and ships at sea 
discussed in Sect. 5.5.2 is also a stronger scatterer at shorter wavelengths as can be 
assessed from the inverse wavelength dependence in (5.25-5.27). With forest canopies, 
however, the highly absorbing foliage at shorter wavelengths, such as X band, means that 
the double bounce trunk response is diminished in the overall backscatter response. 
Instead, longer wavelengths, such as L band, minimise canopy loss through absorption 
yet still provide a strong trunk-ground signal. Of course, if the foliage itself is of interest 
shorter wavelengths have the benefit that the response will be dominated by the canopy. 

If monitoring structures at sea is of interest, including ships and oil platforms, short 
wavelengths would be preferred along with larger incidence angles. Not only is there no 
absorbing canopy but the sea response is minimised at the larger angles, as can be 
assessed from Fig. 5.34. This along with the fact that the radar cross section of the 
objects of interest is maximised, yields best contrast for visual analysis. 

 
 

8.3.3  The Role of Polarisation 
 
A very effective means by which to examine the polarisation domain is to use the 

polarisation synthesis process developed in Sect. 3.22 since through polarisation plots we 
have a complete summary of how various land covers behave as polarisation is altered. 

For surfaces and volumes it is preferable to examine actual data because theoretical 
models are not completely adequate to explain what is observed in practice; examples are 
seen in Figs 3.27 and 5.36. 

Rough surfaces and most volumes will generate an unpolarised component in their 
backscatter responses that adds to polarised returns. Those components often don’t 
feature in models. Unpolarised scattering contributes a constant pedestal to polarisation 
plots as can be seen by returning to (3.74) which we could re-express as 

 
 bra ss .4πσ =  
 

                                                 
5 See T J. Schmugge and T.J. Jackson, A dielectric model of the vegetation effects on the microwave 
emission from soils, IEEE Transactions on Geoscience and Remote Sensing, vol. 30, no. 4, July 1992, pp. 
757-760. 
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in which sra is the polarisation state of the receiving antenna, expressed as a Stokes 
vector, tb Mss = is the Stokes vector of the scattered wave at the receiving antenna and M 
is the Stokes scattering operator. If the scattered radiation is unpolarised then from (2.35) 
sb=[constant,0,0,0]T. The result of the dot product operation in the above expression is 
then just 4πxconstant, which is independent of the polarisation and orientation (tilt) 
angles. It adds to any polarised returns so that they sit on a constant value pedestal, the 
height of which is determined by the relative level of unpolarised signal. As an 
illustration Fig. 8.3 shows a P band co-polarisation plot for a vegetated region in which 
there is a significant component of unpolarised radiation, showing as a pedestal. 

 

Fig. 8.3. Polarisation plot constructed from a P band AirSAR image of the Mt Gambier region in 
Australia; derived using ENVI™ (ITT Visual Information Solutions) 

 
 
The polarisation dependent behaviour of the dihedral mechanism representing trunk 

scattering described in Sect. 5.5.2 can be found from the plots of Fig. 3.24 which apply to 
a dihedral corner reflector. For linear polarisation (ellipticity of zero) they show that for a 
vertically standing structure co-polarised responses are maximised for vertical and 
horizontal polarisation, as might be expected. There are no corresponding cross-polarised 
returns. In contrast, for orientation of the incoming linearly polarised field at 45o to the 
vertical there will be no co-polar response, but maximum cross-polar response. 

Sometimes we are interested backscattering from a dihedral structure that is oriented 
away from the vertical. That can found most easily by rotating the polarisation of the 
incident waveform by the respective angle, scattering it from the normally oriented 
reflector and then rotating the scattered field back to align with the incident wave 
coordinate system. That saves the need to derive directly the scattering matrix for an 
inclined reflector. As an example, if we were interested in a dihedral at an orientation of 
45o the result of those operations is 
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The resulting scattering matrix shows no co-polarised (HH and VV) scattering and 
maximum cross-polarised scattering. Fig. 8.4 shows the polarisation signatures, which 
should be compared to those of Fig. 3.24. 

Fig. 8.4. Ideal co- and cross polarised signatures (left and right respectively) for a dihedral corner 
reflector angled at 45o to the polarisation of the incident wavefront 

 
 
 
8.4  Quantitative Analysis of Radar Image Data for Thematic Mapping 

 
8.4.1  Overview of Methods  

 
The essential question in quantitative thematic mapping is: by analysing the recorded 
radar data how do we identify and label, at the pixel level, the region on the earth’s 
surface being imaged? That, in turn, prompts us to ask what methods are available for 
such an analysis. Photointerpretive approaches are not practical to apply to the individual 
pixel because of the huge number of pixels that needs to be analysed and the difficulty a 
human interpreter has in handling the data at its full level of detail6. Computer assisted 
interpretation – called quantitative analysis in remote sensing – is therefore essential for 
wide scale thematic mapping. 

At the heart of quantitative analysis is the mapping operation illustrated in Fig. 8.5.  
Mathematical or statistical models are developed that characterise the classes of interest 
to the user; those models are used to attach labels to each of the resolution cells. Usually 
the forms of the models are assumed and any necessary parameters are estimated by 
using previously labelled pixels – so-called training data. The most common model is 
that which assumes that the classes can be represented by multidimensional normal 
distributions. The training data is employed to estimate the mean and covariance 
parameters.  That is called a supervised learning method. Unsupervised labelling 
processes, often based on clustering algorithms, are also used7. 
                                                 
6 See J.A. Richards and X. Jia, Remote Sensing Digital Image Analysis, 4th ed., Springer, Berlin, 2006. 
7 ibid. 
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Fig. 8.5. Classification as a mapping from measurements to labels 
 
 
Any of the classification procedures commonly used with optical remote sensing 

image data can be applied to radar imagery on the assumption that the classes of interest 
are able to be resolved well enough with the radar measurements available. As with 
optical data, it is not always the case that the classes or clusters able to be delineated in 
radar imagery will naturally map to the classes of interest to the user. The classes 
identifiable in the data are those which represent similarities of radar measurements – in 
optical remote sensing they are generally called data classes. It is unrealistic to expect 
that the classes of interest to the user – often called information classes, such as wheat, 
shallow water, clay, pine forest etc – will have a one-to-one association with the data 
classes and thus can be delivered directly from an analysis of the recorded image data. 
Part of the process of analysing the data is to form the link between data and information 
classes, a step often overlooked in simplistic classification exercises8. 

We could also devise classification methods more suited to the statistical nature of the 
radar data itself – in other words classifiers that are designed specifically with radar 
imagery in mind, rather than the more general purpose machine learning procedures used 
in a wide variety of scientific and engineering applications. 

Another approach is to devise analytical and mapping procedures using an 
understanding the energy-matter interactions that take place when the landscape is 
irradiated with microwave energy. That can be based on devising backscatter models of 
more or less sophistication. Some models can be inverted to provide information on the 
region being imaged, as depicted in Fig. 8.6. Simple inversion models can be built 
empirically by curve fitting to experimental data but they are limited in scope. Inversion, 

                                                 
8 See P.H. Swain and S.M. Davis, Remote Sensing  The Quantitative Approach, McGraw-Hill, N.Y., 1978 
and J.A. Richards and X. Jia, loc. cit. 
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in general, is a non-trivial task and is usually not employed except in relatively simple 
circumstances. Several methods we explore in the following are tacitly inversion based, 
but they are set up in the first place with inversion in mind and thus seek to represent 
only dominant scattering behaviours rather than the full complexity of the landscape. 

 

 
 
 

Fig. 8.6. Radar image interpretation as an inversion operation 
 
 
So in summary there are three broad quantitative analytical approaches: 

• application of standard remote sensing classification and labelling methods; 
• derivation of mapping procedures that rely on the specific statistical nature of radar 

image data; and 
• derivation of methods that depend on understanding the energy matter interaction 

in radar imaging.  

Our treatment of quantitative radar analysis is subdivided into these three types. Before 
proceeding we need to be clear about the measurements or features available from radar 
data that provide the basis for quantitative analysis. 

 
8.4.2  Features Available for Radar Quantitative Analysis 

 
Before being able to appreciate fully the methods available for interpreting radar data at 
the level of the individual resolution cell it is important to see what types of feature are 
available for describing the scattering properties of a pixel. Those descriptors will be 
used as input data to analytical algorithms. The simplest descriptor is the scattering 
coefficient o
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can derived features such as the target vector k. As shown in Fig. 8.7, tertiary level 
descriptors such as the covariance and coherency matrices, and even polarimetric 
complex coherence, are also valid measures that describe neighbourhoods of pixels as 
inputs to mapping and interpretation procedures. 

Notwithstanding the pixel properties used as the basis for labelling it is important to re-
emphasise that the response observed is dominated largely by dielectric constant and 
geometry. Examination of all of the expression for scattering coefficients and scattering 
matrices presented in Chapt. 5 will show that they are the target properties of importance. 
If we want to label a radar image into classes more identifiable by a user – information 
classes such as vegetation or soil type, forest or grassland, water or snow, for example – a 
bridge has to be established between those class types and their geometric and dielectric 
properties. Incidentally, the dielectric constant of most natural media is dominated by 
moisture content, as suggested in Fig. 5.3, so often we need to think about moisture 
content as a surrogate for dielectric properties. 
 
 

 
 
Fig. 8.7. Measurements and features for quantitative radar analysis 
 

 
8.4.3  Application of Standard Classification Techniques 

 
Traditional point classifiers such as Gaussian maximum likelihood classification, support 
vector machines and neural networks are adopted widely for thematic mapping with 
optical image data. Perhaps the biggest problem with applying them to radar imagery is 
the presence of speckle. Because it is multiplicative, the success of the classification will 
depend upon reducing the level of speckle, often through local averaging or through the 
application of speckle filters as treated in Sect. 4.3.3. 

A very simple minimum distance classifier can be implemented by appropriately 
placing discriminating boundaries between the various scattering types shown in Fig. 8.2. 
It works because it summarises effectively the differing behaviours of surfaces, volumes 
and strong scatterers. The classifier could be unsupervised if we had some idea of where 
to place the boundaries because of prior knowledge of the dependence of scattering on 
incidence angle. More likely it would be supervised if we took labelled samples of each 
of the cover types and then found the class means (from which the boundaries are 
established). 

The best that can be done for labels of course are those that correspond to the various 
scattering types. If we also take wavelength into account we could infer the physical 
cover types in some cases. For example, if the radar were L or P band one could 
speculate that the double bounce behaviour over land would be forest or urban, while if it 
were C band the double bounce might be associated with a crop. 
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8.4.4.1  A Maximum Likelihood Approach 
 

This method uses the terrain properties summarised in the target vector of (3.47) as a 
feature for classification. We thus seek to classify the resolution cells of a radar image on 
the basis of the pixel measurement: 
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which is a column list of the elements of the pixel’s scattering matrix. Before proceeding 
to devise the classifier algorithm we need to understand something of the statistical 
properties of the target vector. We can do that by examining the statistics of the scattered 
signal, just as we did when investigating speckle in Sect. 4.3.1. In that section we 
observed that the signal received from a single pixel is composed of the sum of the 
signals from a large set of individual scatterers of the form 
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in which |Ek| is the amplitude of the field received from the kth scatterer and φk is the 
corresponding phase angle. This assumes that there is no dominant scatterer in the pixel. 
We have removed the factors common to each return in (8.1), such as frequency and the 
overall phase delay between the pixel and the radar receiver, leaving only the amplitudes 
and relative phases among the scattering elements. Although not strictly correct we can 
assume, without loss of generality, that |Ek| is proportional to the square root of the 
scattering coefficient for the pixel and is thus the same for each elemental scatterer so 
that (8.1) can be expressed, using |Ek|=A for all k: 
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We next assume, as we did for the analysis of speckle, that the phase angles φk are 
randomly distributed uniformly over the range [0,2π]. Consider now the expected value 
of the received signal: 
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The expected value of a sum of random variables is the sum of their expected values. 
Also, the expected value of a trigonometric function with uniformly distributed 
arguments over a single cycle is zero. Thus the expected value of the received signal is 
zero. As an aside, this is not to be confused with the non-zero detected amplitude of the 
received signal. Writing (8.2) as 
 
 )( jQIAErec +=  
 

8.4.4  Classification Based on Radar Image Statistics 
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 22 QIAErec +=  
 
which has a Rayleigh distribution. In radar we often square this to turn it into a measure 
of power received since that is directly related to the scattering coefficient of the pixel. 
The distribution function then becomes exponential, as we saw in Sect. 4.3.1. Both have 
non-zero means. 

We return now to the fact that expected value of the received field in (8.3) is zero. This 
will be the case for any of the fields returning from the pixel irrespective of whether they 
result from like or cross polarised behaviour. Since the fields incident on the pixel are 
well-defined single sinusoids (complex exponentials), then the elements of the scattering 
matrix in (3.41), being the ratio of scattered to incident fields, will also have expected 
values of zero. That means that the target vector of (3.47) has an expected value of zero. 
Why is that important? It simplifies the description of class statistics. 

We assume that the target vector of (3.47) comes from a class of such vectors (one for 
each pixel) that represent a given category of land cover or, perhaps more appropriately, 
category of scattering behaviour. We now make an assumption, common in remote 
sensing, that the classes can be described by a Gaussian distribution. In the case of 
optical multispectral data the class distribution models are assumed to be multivariate, 
with dimensionality the same as the number of spectral channels. Also, for optical data 
the measurement vectors are real (the reflectance in each band). For pixels in radar 
imagery described by the target vector of (3.47) the dimensionality is three and the vector 
components are complex. We thus assume we are working with radar classes that are 
described by three dimensional complex Gaussian9 class conditional distribution 
functions. 

A Gaussian distribution has two parameter sets: the multidimensional mean (expected 
value) and the covariance matrix, which describes the second order relationships among 
the components. We have shown above that the expected value of the target vector is 
zero. Therefore we need only work with the covariance matrix. The probability of finding 
a pixel from class ωm in the radar image, with the three dimensional target (measurement) 
vector k, is given by the Gaussian class conditional distribution function10 
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Note the conjugate transpose operation on the target vector in the exponent. For complex 
variables the covariance matrix is defined by (3.52), repeated here for convenience: 
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9 The complex variable z=x+jy is distributed as a complex Gaussian with zero mean if each of x and y are 
Gaussian and are independent of each other. 
10 See N.R. Goodman, Statistical analysis based on a certain multi-variate complex Gaussian distribution 
(an introduction), Annals of Mathematical Statistics, vol. 34, 1963, pp. 152-177. 

we see that its amplitude is 
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in which the angular brackets indicate averages over the samples available. Those 
samples will generally be the sets of class prototype labelled pixels with which to train 
the classification procedure. 

As with the classification of optical multispectral data we assume we have available 
sufficient labelled samples for each of the classes of interest that we can obtain good 
estimates of their class covariance matrices. We then classify an unknown radar pixel, 
described by the target vector k, using the maximum a posteriori (MAP) decision rule: 

 
 mnpp nmm ≠>∈ allfor)|()|(if kkk ωωω  (8.5) 
 
This says that the pixel, or radar resolution cell, described by the measurement vector k 
belongs to class ωm because the probability that the correct class is ωm is greater than the 
probability that the correct class is ωn, for all n. 

The rule in (8.5) cannot be applied directly because we can’t estimate the posterior 
probabilities p(ω|k). Fortunately though we can use Bayes’ theorem to express the 
posterior probabilities in terms of the class conditional density functions according to 
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in which p(ω) is the so-called prior probability11 that any pixel in the image will belong 
to class ω, and p(k) is the probability that there are pixels in the image described by the 
measurement vector k; that turns out not to be important because when (8.6) is 
substituted into (8.5) it cancels out, leaving the decision rule as 

 
 mnpppp nnmmm ≠>∈ allfor)()|()()|(if ωωωωω kkk  (8.7) 
  

Classically, we call )()|()( mmm ppg ωωkk = a discriminant function for class ωm since it 
allows us to discriminate that class from the others. Because the class density function is 
assumed to be Gaussian it simplifies later expressions if we take the natural logarithm of 
the product of probabilities so that we obtain the more commonly used form of the 
discriminant function 

 
 )}(ln{)}|(ln{)}()|(ln{)( mmmmm ppppg ωωωω +== kkk  
 
 )}(ln{||ln 1T*

mmm p ω+−−= − kCkC  (8.8) 
 

In this last expression we have omitted -3lnπ  since it doesn't add any discriminating 
information in a rule such as that in (8.7). When using the discriminant function of (8.8) 
we are looking for the class for which the function is largest. Sometimes we reverse the 
sign and look for the class that minimises the resulting expression. That is tantamount to 
minimising the distance measure: 

 
 )}(ln{||ln)()( 1T*

mmmmm pgd ω−+=−= − kCkCkk  (8.9a) 

                                                 
11 Strictly this is called a non-informative prior to distinguish it from the conjugate prior, a subtlety that is 
often ignored in remote sensing: see C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 
N.Y., 2006. 



278  Remote Sensing with Imaging Radar 

Often we don’t know or cannot reasonably estimate the prior probability of class 
membership12, so we assume all classes are equally likely and don’t contribute any 
discriminating information in which case that term is omitted, leaving the distance as 

 
 }{||ln)()( 1T* kCkCkk −+=−= mmmm gd  (8.9b) 
 

This is an interesting distance measure. If the covariance were the unit matrix it would 
reduce to the expression for Euclidean distance; in general though it is a distance 
measure that is different in the different dimensions of the target vector according to the 
entries in the covariance matrix. It is a special form of the Mahalanobis distance13. With 
(8.9) the classification decision rule of (8.7) becomes 

 
 mndd nmm ≠<∈ allfor)()(if kkk ω  (8.10) 

 
 
8.4.4.2  Handling Multi-look Data 

 
To implement (8.9) requires the original data to be available in (single look complex) 
scattering matrix form so that the target vector of (3.47) can be created. Radar data is 
often provided in the form of the Stokes scattering operator of (3.75) or the single pixel 
covariance matrix given by kk*T. Following Lee et al14 we form the multi-look average 
single pixel covariance, which we assume is the pixel description available in the image 
data provided: 
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Here N is the number of looks and kn is the target vector for the nth look. We now define 
the matrix A=NZ which has the complex Wishart distribution15 
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in which the constant )1()...(2/)1( −−ΓΓ= − qnnK qqπ  
 
is a class independent expression involving gamma functions; q is the dimensionality of 
the measurement space – in this case 3. The class conditional distribution of (8.12) shows 
the probability of finding a pixel from class ωm with multi-look measurement A. As in 
Sect. 8.4.4.1 we are really interested in the posterior probability that the class is ωm given 
we have the measurement A. Again we can use Bayes’ theorem of (8.6) to express the 

                                                 
12 The prior probability is usually taken to mean the probability with which class membership of the pixel 
can be guessed in the absence of the radar measurements, using any other available source of knowledge. 
For example, if there were four classes in a scene and we knew roughly their area proportions beforehand 
we could used those proportions to provide estimates of the priors. 
13 See J.A. Richards and X. Jia, loc cit. 
14 See J.S. Lee, M.R. Grunes and R. Kwok, Classification of multi-look polarimetric SAR imagery based 
on the complex Wishart distribution, International Journal of Remote Sensing, vol. 15, pp. 2299-2311, 
1994. 
15 See Lee, Grunes and Kwok, loc cit., and Goodman, loc cit. 
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posterior probability in terms of the class conditional distribution function of (8.12) so 
that, following a similar development to that in Sect. 8.4.4.1, we define the discriminant 
function for class ωm as 
 
 )(lnln||ln)(||ln)()( 1

mmmm pKNtrqNg ω+−−−−= − CACAA  
 
Only the terms involving Cm provide class discrimination so the others can be deleted. 
Reversing the result leads to a distance measure for use in a minimum distance classifier 
of the type developed in the previous section in terms of the target vector: 
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Noting that tr(A)=N tr(Z) we can express the distance rule in terms of the actual N look 
covariance matrix of (8.11)  
 
 )(ln|}|ln)()( 1

mmmm pN trd ω−+= − CZCZ  (8.13a) 
 
If the priors are ignored, or regarded as equal, then the simpler form of distance results 
 
 ||ln)()( 1

mmm Ntrd CZCZ += −  (8.13b) 
 
As in Sect. 8.4.4.1 this distance measure is used in the decision rule of (8.10) after 
labelled training samples are used to estimate each of the class specific covariance 
matrices. 
 
 
8.4.4.3  Relating the Scattering and Covariance Matrices, and the Stokes Scattering 
Operator 
 
The classifiers of the previous two sections have used the scattering matrix (via the target 
vector), or the pixel-specific covariance matrix to describe the scattering properties of a 
pixel. Some data suppliers provide imagery in the form of the Stokes scattering operator 
for each pixel. Fortunately these matrices are easily related via the scattering matrix 
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The single pixel covariance matrix derived from kk*T, in its general, non-reciprocal form, 
is 
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Equation (3.75) shows the relationship between the elements of the scattering matrix and 
those of the Stokes scattering operator, mij. Since the elements of the covariance matrix 
cij involve the products of pairs of scattering matrix elements, as do the elements of the 
Stokes scattering operator, it is possible to relate them. By inverting (3.72) we can show 
that the elements of the covariance matrix can be found from 

 
 22211211

*
11 mmmmSSc HHHH +++==  

 )( 24142313
*

12 mmjmmSSc HVHH +−+==  

 )( 42413231
*

13 mmjmmSSc VHHH +−+==  

 )( 433433
*

14 mmjmmSSc VVHH +−−==  

 )(*
21 mjmSSc HHHV +==  

 22211211
*

22 mmmmSSc HVHV −+−==  

 )( 433444
*

23 mmjmmSSc VHHV −++==  

 )( 414232
*

24 mmjmmSSc VVHV −+−==  

 )( 42413231
*

31 mmjmmSSc HHVH +++==  

 )( 34434433
*

32 mmjmmSSc HVVH −++==  

 22211211
*

33 mmmmSSc VHVH −−+==  

 )( 14242313
*

34 mmjmmSSc VVVH −+−==  

 )( 43344433
*

41 mmjmmSSc HHVV ++−==  

 )( 42413231
*

42 mmjmmSSc HVVV −+−==  

 )( 24142313
*

43 mmjmmSSc VHVV −+−==  

 22211211
*

44 mmmmSSc VVVV +−−==  (8.14) 
 
 

 
The classifiers considered above are based on the information contained in the 
polarisation dimension. If we can assume that the polarised returns are not strongly 
correlated across the wavelength ranges used in radar Lee16 has suggested that distance 
discriminators of the types shown in (8.9) and (8.13) can be developed for each 
waveband and the results added. In principle, the same could be done for other incidence 
angles too, but in both cases the assumptions of independence need justification. It is also 
important that the dynamic ranges in all dimensions (apart from across polarisations) be 
comparable so that the measurements for one waveband or incidence angle do not bias 
the result. 
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8.4.4.4  Adding Other Dimensionality 
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8.5  Interpretation Based on Structural Models 
 
Several quite different analytical approaches are possible based on a knowledge of 
scattering behaviours. While some are inherently mathematical, others are similar to 
expert system methods since they exploit our understanding of how different structural 
cover types appear in radar image data. 
 
8.5.1  Interpretation Using Polarisation Phase Difference 
 
A very early classifier for radar data based on a knowledge of scattering behaviours used 
the changes in phase induced in the scattered signal at different polarisations by different 
scattering media. This allows segmentation into earth surface features that cause (a) non-
coherent scattering, (b) one bounce coherent scattering or (c) double bounce scattering17. 
To appreciate how such an algorithm can be developed it is necessary to understand how 
scattering events affect polarisation phase difference. To see this consider the situations 
shown in Fig. 8.8 which involve scattering (reflection) from a conducting surface. Even 
though most surfaces we encounter in remote sensing will not be conductors, apart from 
some buildings and bridges, and calibrators such as corner reflectors, the principle of the 
results we derive here applies more generally, as can be appreciated by looking at 
scattering from dielectric interfaces18.  

In order to understand what is happening in Fig. 8.8 only one significant fact needs to 
be kept in mind: there can be no electric field tangential to a conductor. If we tried to 
create an electric field parallel to a conductor then the conductor would “short circuit” it, 
just as a piece of wire placed across the terminals of a battery will short circuit the 
battery. What does that mean for Fig. 8.8a? Since there is an electric field incident 
normally onto the conductor, and since there is a reflected field, they must oppose each 
other at the point of reflection so that their sum is zero. In other words, the polarity of the 
scattered field is opposite to that of the incident field. For the case of normal incidence 
shown in Fig. 8.8a that happens for both the vertically and horizontally polarised 
components; as a result the phase difference between them does not change. 

Now examine the situation in Fig. 8.8b in which the ray is obliquely incident on the 
conducting interface. In the case of horizontal (perpendicular) polarisation there will be a 
change in polarity on reflection just as for the situation in Fig. 8.8a. For the vertically 
(parallel) polarised wave, the result will be as shown by the directional arrow. That can 
be appreciated by resolving the incoming vertical field into components parallel to and 
orthogonal to the interface as illustrated. The polarity of the orthogonal component is not 
affected by the reflection but that of the tangential component on reflection has to be 
reversed so that it cancels the tangential component of the incident wave. 

In monostatic radar the situation in Fig. 8.8b is not encountered in isolation. Instead, it 
is part of a two or more bounce situation that causes the incident ray to be backscattered. 
Such a situation is shown in Fig. 8.9, using dihedral corner reflection for illustration. 
Tracking the changes we have just described for oblique incidence over the two 
reflections shows that the backscattered signal will have a 180o phase shift between its 
horizontal and vertical components compared with the incident ray (remembering that a 
reversal of sign or polarity is the same as adding a phase shift of 180o to a sinusoidally 
time varying signal). 

                                                 
17 See J.J. van Zyl, Unsupervised classification of scattering behaviour using radar polarimetry data, IEEE 
Trans Geoscience and Remote Sensing, vol. 27, no. 1, January 1989, pp. 36-45. 
18 See J.D. Kraus and D.A. Fleisch, Electromagnetics with Applications, 5th ed., McGraw-Hill, N.Y., 2000. 
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Fig. 8.8. (a) Scattering (reflection) from a conductor at vertical incidence with orthogonal 
polarisations (which in principle could be H and V) showing that there is no change in their 
relative phases after scattering (b) the effect on H and V polarised components of oblique 
scattering; the dot in the circle represents an arrowhead while the cross in the circle represents the 
tail of an arrow 

 
 
We can now generalise: if the backscattered wave is the result of an odd number of 

vertically polarised components; if it undergoes an even number of reflections there will 
be a 180o phase shift between the components. 

If the scattering medium were not a perfect conductor there can be tangential 
components of electric field at the interface and the situation will be a little different from 
that just described. Nevertheless, there will in most cases be phase differences in the 
vicinity of 0o and 180o respectively allowing that knowledge to be used to construct a 
classifier in the following manner. 

The product  
 )(* HHVVj

VVHHVVHH eSSSS φφ −=  
 
identifies the phase difference between the two linear polarisations. Usually it is averaged 
over a small group of resolution cells to reduce variability resulting from speckle. Then 
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reflections then there will be no change in the phase difference between its horizontally and 
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if VVHH SS *arg  is in the vicinity of zero 
then we have an odd number of bounces 
or 
if VVHH SS *arg  is in the vicinity of 180o 
then we have an even number of bounces 
 

We can associate an even number of bounces with dihedral corner reflector behaviour. 
That can indicate urban regions, or forests at longer wavelengths. Odd numbers of 
bounces can be associated with relatively smooth surfaces or even direct scattering from 
foliage at shorter wavelengths. For very diffuse scattering media there will be little 
correlation between the like polarised terms so that 0* ≈VVHH SS . By setting up rule sets 
such as these it is possible to form a simple unsupervised classifier of multi-polarisation 
radar image data. 

 

 
 

Fig. 8.9. Demonstrating how 180o relative phase shift happens between the H and V polarised 
components with two reflections 

 
 
8.5.2  Interpretation Through Structural Decomposition 
 
End member analysis, often employed with optical remote sensing imagery, seeks to 
understand the class composition of a pixel in terms of a number of pure classes, or end 
members. It is assumed that the spectral response of the pixel is a weighted sum of the 
responses of the end members and the task is to find the weighting coefficients. Maps of 
those coefficients can then be produced to show the abundances of the end members, by 
pixel. Usually there are far fewer end members than the dimensionality of the 
measurements space so that least squares estimates of the weighting coefficients are 
employed. 

A similar approach is can be followed with multi-polarisation radar although the end 
members as such are structural types. Three different measurement dimensions are 
available for a pixel – each of HH, HV and VV – so it is possible to decompose the 
recorded data for each resolution cell into a weighted sum of three fundamental structural 
types. The responses could be those characteristic of surface scattering, volume scattering 
and dihedral corner reflector double bounce scattering, rather than cover types as such, 

h

h 

v 
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but a limited range of ground cover types can often be induced from the weighted sum. 
Although not a classification procedure, decomposition of the measured scattering data in 
this manner does allow interpretation and thus a description of recorded radar pixels. 

 
8.5.2.1  Decomposing the Scattering Matrix  
 
It is logical to commence by examining the scattering matrix since it contains the target 
response by polarisation. We assume that it is possible to represent the matrix for a given 
pixel in the form 

 ∑
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1i
iip SS  (8.15) 

 
in which the Si are the scattering matrices of the fundamental scatterers that compose the 
composite response, and the pi are weighting or abundance coefficients. Scattering 
matrices can be added because the fields backscattered from the individual scattering 
components can be added provided we know their amplitudes and phases. Those 
properties are incorporated in the complex elements of the scattering matrix. If the pixel 
were composed of a specular background, a dihedral corner reflector and a trihedral 
corner reflector (at the same absolute distance from the radar) then the composite 
scattering matrix would be 
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While theoretically appealing, this approach has one significant limitation – the 
components being summed must be expressible as scattering matrices. That is not readily 
done if the significant scattering mechanisms in the resolution cell are distributed (such 
as a volume scatterer) and have substantial components of unpolarised returns. In such 
cases, which of course occur often in remote sensing, it is better to look at decomposing 
features that can handle unpolarised behaviour. Because the covariance and coherency 
matrices are based on the expected values of the elements of the scattering matrices via 
the respective target vectors (effectively through ensemble averaging) they can 
incorporate unpolarised components of radar returns and thus can form the basis of 
decomposition models. They are also tantamount to the scattering coefficients used often 
in radar imagery to describe backscattered levels of power density. 

 
 

8.5.2.2  Decomposing the Covariance Matrix: the Freeman-Durden Approach19 
 
The Freeman-Durden decomposition was developed principally for interpreting forest 
backscattering by seeking to resolve the covariance matrix into three component 
covariances: one associated with volume scattering, one with double bounce dihedral 
scattering representing the effect of a tree trunk, and one associated with surface (or 
single bounce) scattering. The model assumes that the three components are statistically 

                                                 
19

Transactions on Geoscience and Remote Sensing, vol. 35, no.3, May 1998, pp. 963-973. 
 

where the a and b are the amplitudes derived from Table 4.1. 

 A. Freeman and S.L. Durden, A three-component scattering model for polarimetric SAR Data, IEEE 
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independent allowing the component covariances to be added. The recorded covariance 
matrix is therefore expressed 
 
 surfacesdihedraldvolumev fff CCCC ++=  (8.16) 
 
where fv, fd and fs are weighting coefficients. It is a non-coherent model since by adding 
the covariances we are effectively adding powers as against electric fields 

Before proceeding further it is important to recognise that this model was derived by 
Freeman and Durden with the ordering of the elements of the scattering matrix (used in 
constructing the covariance matrix) in the opposite sense to that used here; they used the 
convention 
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We will stay with the our convention of writing the horizontal transmit polarisation first. 

The surface model used in the Freeman-Durden decomposition is based on the Bragg 
small roughness model which has vertical and horizontal co-polarised responses but no 
cross-polarised behaviour. Its (normalised) scattering matrix is 
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where ρV and ρH are the Fresnel reflection coefficients of the surface given by (5.3). 
Applying (3.52) the corresponding covariance matrix is 
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Dividing throughout by *

VV ρρ  gives 
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in which β=ρH/ρV. 
Although there are other factors that should have been included in these matrices to 

reflect the full detail of the Bragg model, they are essentially incorporated in the relevant 
scaling factor in (8.16). It is the structure of (8.18) that is important. 

The dihedral trunk-ground model used in the Freeman-Durden decomposition is of the 
form (see Sect. 5.5.2) 
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in which the reflection coefficients are for the trunk or ground (t, g) for vertical and 
horizontal polarisation as appropriate. There is no cross-polarised response, implying that 
the trunks are vertical. Since there can be a significant canopy over the trunks an 
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exponential two way propagation term can be incorporated into each of the elements of 
the scattering matrix:  
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in which r is path length (the slant path) through the canopy and γH and γV respectively 
are propagation constants for H and V polarisation. The exponent on the vertically 
polarised term has also been used take up the negative sign so that the vertically polarised 
entry is shown as positive for convenience. The corresponding covariance matrix is 
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with 
tVgV

tHgHrVHe
ρρ
ρρ

α ρρ )(2 −= . Again, other factors such as the sizes of the trunks get picked 

up the scaling factor in (8.16). 
The third component, involving canopy volume scattering, is developed by using a 

random distribution of thin cylinders to represent branches and twigs. This is made 
simple by starting with the scattering matrix of a single cylinder at an angle φ with 
respect to the vertical and then determining its response to an arbitrarily inclined 
incoming ray. We can do that by rotating the coordinate system of the wave to align its 
vertical component to the cylinder axis, applying the scattering matrix to find the 
cylinder response, and then rotating the response back to the original orientation of the 
incident wave vector. If the cylinder is inclined φ anti-clockwise from the vertical then 
using (2.20) 
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is the normalised scattering matrix of a thin cylinder irradiated with vertically polarised 
radiation. This is a very convenient method that does not require any complex 
expressions for aligned cylinders. Expanding (8.21) gives 
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If φ is distributed uniformly then it can be shown that the corresponding covariance 
matrix is 
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The common factor π can be absorbed into the weighting coefficient fv in (8.16). With 
(8.18), (8.20) and (8.23) the Freeman-Durden decomposition of (8.16) is 
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What we do now is to assume that the recorded covariance matrix for a resolution cell 
can be approximated by (8.24). We need to determine the unknown proportions fv, fd and 
fs to find the relative abundances of each scattering type in the resolution cell. However, 
we don’t know α and β, since we generally don’t have knowledge of the respective 
dielectric constants needed for computing the reflection coefficients. Thus there are five 
unknowns needing to be found to make this decomposition work. 

From (8.4b) and (8.24) we can see that the measured and modelled covariance matrix 
elements are related by 

 sdvHH fffSc 222
11 βα ++>==<  (8.25a) 

 vHV fSc
3
22 2

22 >=<=  (8.25b) 

 sdvVV fffSc ++>==< 2
33  (8.25c) 

 sdvVVHH fffSSc *
13 3

1 βα ++>==<  (8.25d) 

 
These are just four equations in the five unknowns and thus the problem is under-
specified. Interestingly, though, (8.25b) shows ><= 23 vhv Sf  not only giving an 
abundance value for the volume term but allowing (8.25a,c,d) to be reduced to 
 
 sdHVHH ffSS 2222 3 βα +>=<−><  (8.26a) 

 sdHVVV ffSS +>=<−>< 22 3  (8.26b) 

 sdHVVVHH ffSSS **2* βα +>=<−><  (8.26c) 
 
We now have three equations in four unknowns. 

The total power carried by the response for a given resolution cell is called the span for 
the pixel and is given by the collection of the squares of the like and cross polarised 
responses: 

 Total power = span= ><+><+>< 222 2 VHVVHH SSS  
 

The cross polarised term is doubled since it is the result of an assumption of reciprocity 
for monostatic backscattering. From (8.25a,b,c) this is 



288  Remote Sensing with Imaging Radar 

 

 Total power= sdv fff )1()1(
3
8 22 βα ++++  (8.27) 

 
The total power must also be equal to that from the assumed three backscattering 
mechanisms, for each of which we sum the diagonal elements of their covariance 
matrices (i.e. the traces of those matrices) multiplied by the relevant weighting 
coefficient. That gives 

 Total power=Pv+Pd+Ps 
 

in which vv fP
3
8

=  

 dd fP )1( 2α+=  

 ss fP )1( 2β+=  
 

leading again to (8.27). Unfortunately, therefore, the calculation of span does not provide 
another independent equation in the required unknowns, so we are still left with needing 
to determine four unknowns from three equations. In their solution Freeman and Durden 
chose α = –1 if they assess, through an examination of the measurement in the left hand 
side of (8.26c), that surface scatter is dominant after the volume scattering effect has 
been removed. Otherwise, if dihedral behaviour is seen to be dominant, they fix β = 1. 
Once they have determined either of those parameters they can then find the remaining 
three from (8.26a,b,c). 

It is important to recognise that the Freeman-Durden decomposition is not unique nor 
theoretically determined. It is however practical in a forest context since it picks up the 
most important scattering mechanisms, apart perhaps from the weaker volume-ground 
component. The same form of model could be devised for other ground cover 
communities by choosing the most appropriate scattering mechanisms; those mechanisms 
then have to be modelled and means for finding their parameters need to be developed. 
 
 
8.5.2.3  Decomposing the Coherency Matrix: the Cloude-Pottier Approach20 

 
We now present an approach based upon diagonalising the coherency matrix. For 
backscattering from reciprocal media the matrix is three dimensional so that, again in 
principle, at most only three fundamental structural components can be determined. 
Nevertheless the method provides a useful basis for unsupervised and supervised 
procedures since many cover types reflect in structural components or their 
combinations. Ideally, we would like to identify the dominant scattering mechanism for 
each resolution cell if one exists. 

Typically, the scattering mechanisms encountered in practice might be one of those 
listed in Table 8.1 along with their idealised (normalised) scattering matrices. It is 
important to re-emphasise before proceeding that simple scattering matrix descriptions 
are available only for pure, simple surfaces or targets such as those shown. Pixels which 
have a significant component of unpolarised return cannot effectively be described by a 
                                                 
20 See S.R. Cloude and E. Pottier, An entropy based classification scheme for land based applications of 
polarimetric SAR, IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 1, January 1997, pp. 
68-78. 
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scattering matrix. Provided we pursue the analysis based not on the scattering matrices, 
but on covariance or coherency matrices derived from ensemble averages, we can still 
identify pixels that are dominated by the responses typical of the elements in Table 8.1. 

We adopt as a starting point the Pauli basis form of the target vector in (3.49). The 
expected value of its outer product – see (3.55) – over an ensemble of measurements 
leads to the coherency matrix T of (3.57) in the case of backscattering. As with the 
covariance matrix, it is easy to see that the coherency matrix is Hermitian. That means 
that its eigenvalues are real and that the matrix of eigenvectors used to find its diagonal 
form is unitary21. That simplifies analysis and leads directly to the decomposition being 
sought. 

 
 1−= GGΛT  (8.28) 
 

in which Λ is the diagonal matrix of eigenvalues of T and G is a unitary matrix of the 
eigenvectors of T, arranged by column. Since G is unitary its inverse is equal to its 
conjugate transpose so that (8.28) can be written 
 
 T*GGΛT =  (8.29) 
Expanding this we have 

 [ ] [ ]T***
1

3

2

1

321 32

00
00
00

ggggggT
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

λ
λ

λ
 (8.30) 

 
i.e. TTT *

333
*
222

*
111 ggggggT λλλ ++=  (8.31) 

 
which shows that the coherency matrix can be resolved into three independent 
components, weighted by the eigenvalues λi

22. This is reminiscent of the principal 
components transformation used with optical multispectral data which generates as many 
orthogonal and uncorrelated components as there are original bands in the data. Here 
there are only three separate polarisation measurements so we can, at most, only generate 
three elements in this particular, alternative description of the properties of the scattering 
medium. 

We would hope that in most remote sensing radar studies there would only be one 
dominant scattering mechanism per pixel. If that pixel is part of a particular cover type 
then the cover type response on the average would be dominated by that mechanism – in 
other words we hope that the chance of mixed pixels is minimised. Candidate 
mechanisms would include surface scattering, volume scattering and dihedral reflections 
as discussed earlier. Of course natural media are not always that simple and some pixels 
will exhibit composite responses – surface, canopy and trunk scattering together in forest 
stands is an example. 

 

 

                                                 
21 See Appendix B. 
22 Unfortunately in mathematics the symbol λ is used for eigenvalues. In radar studies that has the potential 
to be confused with the symbol for wavelength; usually the context identifies which one is meant. 

From (B.14) we can express T in its diagonal form 
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Scatterer Scattering Matrix Comments 

single bounce volume 
scattering from a 
medium composed of 
spherical scatterers 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

S  
both the horizontal and 
vertical responses are the 
same, with no opportunity to 
generate cross polarised 
responses 

single bounce volume 
scattering from 
anisotropic scatterers 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

b
a
0

0
S  

a and b are complex 
elements reflecting the 
shape anisotropy of the 
scatterer 

single bounce volume 
scattering from a 
medium composed of 
thin needle like 
scatterers 

⎥
⎦

⎤
⎢
⎣

⎡
=

00
01

S  
this matrix assumes they are 
horizontally aligned so that 
the is no vertical response; 
scattering matrices for other 
orientations can be derived 
by rotating the coordinate 

dihedral corner 
reflector 

 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
10

01
S  

this can also represent trunk-
ground interaction for a tree, 
in which the reflector is 
oriented for maximum 
response 

trihedral corner 
reflector 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

S  
 

surface scattering 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

b
a
0

0
S  

based on the Bragg model, 
in which the elements a and 
b are related to the reflection 
coefficients of the surface  

  
To determine how the response is composed we can examine the weighting factors – 

i.e. the eigenvalues – in (8.31). If two are zero then there is only one fundamental 
response type, whereas if all three are of comparable magnitudes then the response is a 
mixture. 

Under what conditions will there be only one non-zero eigenvalue of a 3x3 coherency 
matrix? That happens when the coherency matrix has unit rank23 which means, in turn, 
that it has no sub-matrices (more properly called principal minors) larger than 1x1 with 
                                                 
23 See Appendix B 

Table 8.1 Fundamental pure scatterers and their scattering matrices 

system (see Sect. 2.11) 
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non-zero determinants. We cannot determine that uniquely by examining the coherency 
matrix but we can develop some valuable guidance. 

Consider the most general form of the matrix for backscattering, repeated here for 
convenience: 
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  (8.32) 
 

Suppose now the resolution cell contained a single trihedral corner reflector with the 
scattering matrix shown in Table 8.1. Substituting this into (8.32) gives 
 

 
⎥
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
000
002

T  

 
which is of rank 1 since the largest sub matrix with a non-zero determinant is of size 1x1. 
It only has one eigenvalue, λ=2, which is easily shown (see Appendix B), signifying that 
there is a dominant scatterer (the trihedral reflector). 

Suppose now that the resolution cell contains, instead, a dihedral corner reflector with 
the scattering matrix in Table 8.1. For this the coherency matrix is 

 

 
⎥
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⎥

⎦

⎤

⎢
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⎢

⎣

⎡
=

000
020
000

T  

 
which again is of rank 1 and which has only one non-zero eigenvalue. 

Therefore if the measured coherency matrix yielded a single non-zero eigenvalue it is 
possible that the pixel is composed of either a dihedral or trihedral corner reflector. As an 
aside, note that if a target is non-depolarising so that SHV=0 then at most the coherency 
matrix can be of rank 2 since (8.32) then has one column and one row full of zeros and 
cannot have a non-zero determinant of size 3x3. 

If an analysis of the coherency matrix led to rank 1, then we could conclude that the 
measured backscatter from the resolution cell was the result of a single pure scatterer or a 
scattering type that did not lead to significant cross-polarisation. Often that will not be 
the case and the rank is more likely to be 2 or 3, signifying a mixture of fundamental 
scatterers or even a random scatterer in the resolution cell. 

Thus the relative magnitudes of the eigenvalues is an important measure. It is helpful 
to turn them into a set of proportions or probabilities because that opens up some other 
measures we may wish to consider. We therefore normalise them by defining 

 

 
∑
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λ

λ  (8.33) 
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A useful measure of the distribution of probabilities is called entropy. It was devised for 
understanding the information carried by messages in telecommunications systems, but 
finds wider applications in coding theory and image processing. For our three element 
system it is defined as 

 i
i

i
ii

i pp
p

pH ∑∑
==

−==
3

1
3

3

1
3 log1log  (8.34) 

 
The basis (radix) for the logarithm is chosen as 3 so that when all the probabilities are 
equal (1/3) the entropy has 1 as its maximum value. Thus the entropy will be high if the 
measured radar scattering is made up of several comparably important scatterers. At the 
other extreme, if there is a dominant scatterer, then the entropy approaches 0; it will be 
exactly zero if there is only one non-zero probability, which will be 1. That can be shown 
by expanding the logarithm in its power series and noting that 0)log(lim

0
=

→
xx

x
. 

Entropy is a useful feature to use in radar classification because it tells us something 
about the likely mixture of scattering types in a region. Another helpful feature relates to 
the eigenvectors gi of T in (8.31) since they tell us something about the types of the 
individual scattering mechanisms. The first element of an eigenvector can be written as 
cosαi with the angle αi, different for each eigenvector24. We can find an average value for 
α across all three eigenvectors by computing 

 

 1
1

3

1

3

1
cos i

i
ii

i
i gpp −

==
∑∑ == αα  (8.35) 

 
The pair of H and α can now be used as a feature set for classification because they seem, 
prima facie, to provide some form of discrimination among differing scattering 
mechanisms. If they could be related specifically to actual scattering types then they 
could form the basis of unsupervised classification25. 

It is instructive at this stage to take an example from Cloude and Pottier. Consider the 
shaped anisotropic scatterer in the second row of Table 8.1. Rather than just a single 
scatterer at a given orientation with respect to the incoming radar beam imagine we have 
many scatterers with random orientations to the ray. We can derive the scattering matrix 
for an arbitrarily oriented scatter by using the device of (8.21): we rotate the beam to 
align with the scatterer, so that the form of the scattering matrix in the Table is 
applicable, and then rotate the result back again. Thus the scattering matrix for an 
anisotropic scatterer at angle φ with respect to the horizontal plane is 
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24 Cloude and Pottier, 1997, loc. cit.  This is a very convenient construct because, as we will see, the angle 
is a more sensitive discriminator than the eigenvector element it is derived from. 
25 See Cloude and Pottier, ibid. 



8 Radar Image Interpretation  293 

As an aside, note that the reciprocity condition has been preserved on rotation of the 
scatterer – i.e. SHV(φ)=SVH(φ). From the last expression we can determine the target vector 
in the Pauli basis, kp, as defined in (3.49): 
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so that the coherency matrix 
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is the expected value with respect to φ of 
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When the expectation is taken as an average over all orientations we get the coherency 
matrix26 
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We can analyse this coherency matrix for various combinations of a and b to understand 
the dominant behaviours of the ensemble of scatterers. First note that, in principle, it has 
three eigenvalues27. Its rank can therefore be 3 and there may be no dominant scatterer as 
such. Interestingly the second and third eigenvalues are equal; they are therefore called 
degenerate minor eigenvalues. 

For the special case of a=b so that vertically and horizontally polarised radiation 
scatter in the same manner– in other words the scatterers are no longer anisotropic – the 
two minor eigenvalues go to zero, leaving a rank 1 matrix. The entropy is zero, implying 
a dominant scattering mechanism. 

If b= –a, we see from Table 8.1 that we have the situation of a random distribution of 
dihedral corner reflectors in which case the coherency matrix becomes 
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Thus we have two equal eigenvalues, so that the entropy is 2x0.5log32=0.62. The 
dominance of a single mechanism is thus not strongly indicated for this randomly 
                                                 
26 The definite integral of a trig function over a full period is zero, while the integral of the square of a trig 
function over a full period is 0.5. 
27 The eigenvalues of a diagonal matrix are the diagonal entries, by definition. See Appendix B. 
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oriented ensemble of dihedral reflectors, as is to be expected. In contrast if there were a 
single dihedral reflector in a resolution cell then from Table 8.1 
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which has only one non-zero eigenvalue, and is of rank 1, signifying as noted earlier a 
single dominant scatterer – the single corner reflector. 

If b=0 we have, by reference to Table 8.1, a distribution of needle-like scatterers. From 
(8.36) we see 
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Here we have three eigenvalues in the proportions 2,1,1 so that the entropy is 0.91, 
showing a random, non-dominant scattering event. In contrast, for a single needle 
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This is of rank 1 (since the 2x2 determinant is zero) and will have only one non-zero 
eigenvalue equal to 2 and thus will have zero entropy. 

If we take the case of a general anisotropic scatterer (a≠b) and assume a and b to be 
real with a=nb, then we find entropies of 0.35, 0.58 and 0.75 for n=2,3 and 5 
respectively. 

Cloude and Pottier also examined the case of multiple scatterings from a volume of 
identical particles and found that if all but single scatterings are ignored then the entropy 
is low, signifying that the fundamental mechanism can be dominant. As the order of 
scattering increases entropy steadily rises towards 1.0 indicating increased randomness in 
the backscattered signal. 

Consider now a Bragg surface with the scattering matrix shown in Table 8.1; its 
parameters depend on the angle of incidence of the radar system, but if that is within the 
usual range of, say, less than 50o, the above analysis for anisotropic volume scatterers 
applies also to scattering from slightly rough surfaces. 
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Observations such as these can be used to form associations between entropy and 
scattering types as summarised in Table 8.2. Unfortunately, as noted, entropy on its own 
is not enough to allow a good separation of differing scattering types and at least one 
further feature is needed. This is where the actual eigenvectors themselves are important. 
In particular the alpha angle seen in (8.35) is a sufficient measure of the nature of the 
dominant and other eigenvectors for helping to separate the scattering types, as we will 
now demonstrate. 

 
 

Table 8.2 Summary of the entropies of scattering types 
 

Entropy range Scattering types 

low 
(dominant scatterer) 

single dihedral corner reflector 
single needle scatterer (little practical interest unless dipolar) 
volume of isotropic scatterers 
slightly rough surfaces 

medium  random orientation of corner reflectors (little practical interest) 
random orientation of mildly anisotropic volume scatterers 

high 
(no dominant scatterer) 

random orientation of needles 
random orientation of strongly isotropic particles 

 
 
Consider two low entropy scatterers: a slightly rough surface from Table 8.1 with 

b=1.4a (corresponding to an incidence angle of about 35o)28 and the single dihedral 
corner reflector from Table 8.1. From (8.36) the surface has the eigenvalues 2.88, 0.04 
and 0.04. That gives an entropy of 0.133. For the singe dihedral (which we assume 
dominates its pixel’s backscatter) there is only a single eigenvalue as determined above, 
so that the entropy is 0. How can we separate these two low entropy cases? Consider the 
eigenvector average angle from (8.35). 

Take the surface first. With b=1.4a, (8.36) shows that the coherency matrix is 
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Since it is diagonal its entries are its eigenvalues. The eigenvectors are found by using 
the procedure of Sect. B.10 and, specifically, solving (B.8) with the particular value of λ 

inserted, i.e. 
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28

518. 

 See Fig. 9 of S.R. Cloude and E. Pottier, A review of target decomposition theorems in radar 
polarimetry, IEEE Transaction on Geoscience and Remote Sensing, vol. 34, no. 2, March 1996, pp. 498-
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to get the three distinct eigenvectors. For λ1=2.88 this gives 
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Clearly g21=g31=0, but what about g11? It seems indeterminate. Fortunately, there is a 
constraint we haven’t used; that is that the eigenvectors are of unit magnitude29, so that 
g11=1. Therefore the first eigenvector is 
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By the same analysis, the other two are 
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Recall that the first element of each eigenvalue in the Cloude and Pottier decomposition 
is expressed  
 iig αcos1 =  
 
so that for the slightly rough surface we see α1=0o, α2=α3=90o. Using these in (8.35) with 

o

Now consider the dihedral corner reflector. Equation (8.38) shows that there is only 
one eigenvalue of value λ=2; therefore there will also only be one eigenvector, found by 
solving  
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which, again using the unit magnitude of the eigenvector, gives 
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so that α=90o. Note that there is no averaging here since there is only the one 
eigenvector. Using the alpha angle we can separate the surface and the dihedral reflector, 

                                                 
29 A requirement of the matrix of eigenvectors being unitary. 

the probabilities computed from (8.33) gives α=2.4 . 
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even though their entropies are both close to zero. Note that for the case of a random 
collection of dihedral reflectors we find α=45o. 

If we take the case of a random orientation of needle-like scatterers with eigenvalues in 
the proportions 2,1,1 as identified above then the average α is 45o. Also α=45o for a 
single needle scatterer, even though the entropy is zero. 

Table 8.3 summarises these results and other observations in Cloude and Pottier. 
 
 
Table 8.3 Summary of scattering types by alpha angle 
 

Alpha angle range Scattering types 

near 0o slightly rough surfaces 

near 45o 
 

random orientation of strongly anisotropic volume scatterers 
random orientation of needles 
a single needle scatterer 
random collection of dihedral reflectors 

near 90o single corner reflector behaviour 

 
 

Although simple, that analysis suggests that the combination of entropy and alpha 
angle can be used to provide a form of target discrimination. Cloude and Pottier 
summarise the association of those measures with particular target types in an H-α 
diagram, shown in Fig. 8.10. Their descriptions of the various sectors is based upon the 
observations that the above style of analysis reveals. Fig. 8.11 shows the sectors 
described in terms of likely scattering types. 

Two further comments are important. First, Cloude and Pottier attribute mid range 
alpha angles to “dipole” behaviour. That can be appreciated by looking at the analysis we 
carried out earlier for the random orientation of needles for which the eigenvalues are 
2,1,1. The corresponding eigenvectors are 
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Thus α1=0o and α2=α3=90o. Noting that the probabilities are 0.5, 0.25 and 0.25, then the 
average alpha angle is α=45o as noted earlier. Also, the entropy was seen to be high 
(0.91). In contrast for a single needle the entropy is zero while the alpha angle will be 
seen to be 45o. 
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Fig. 8.10. The Cloude-Pottier H-α diagram expressed in terms of scattering types 
 

 
Fig. 8.11. The Cloude-Pottier H-α diagram expressed in terms of likely cover types 
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Secondly, there are regions of entropy and alpha that cannot co-exist, simply because 
there are certain maximum values for entropy for each alpha angle. The entropy 
maximum as a function of α is seen as a limiting curve in Fig. 8.10. We can determine 
that limit in the following manner, at least for the case of a diagonal coherency matrix 
which, as we have seen, covers targets without strongly cross polarising behaviour or 
those for which we average over distributions about the line of sight of the radar. 
Suppose the coherency matrix is 
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Because it is diagonal, its eigenvalues will be a, b and c. The respective eigenvectors are 
 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
0
1

, 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
1
0

 and 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
0
0

 

 
so that the individual alpha angles are 0o, 90o and 90o. Thus the average alpha angle is 
 
 )1(90)(90 132 ppp −=+=α  (8.39) 
 
because the probabilities sum to unity. Entropy is given by 
 
 1

333
1

232
1

131 logloglog −−− ++= ppppppH  (8.40) 
 
Because there is a one to one relationship between α and p1 in (8.39), specifying α sets p1 

in our quest to find an expression for the limiting H-α curve. Once p1 has been specified 
we need to think about what values to give p2 and p3. Recall from the discussion above 
when introducing entropy, that entropy is maximised when the probabilities are equal. 
That will not necessarily be the case here since we have already set a value for p1 and 
have thus accounted for its contribution to the overall entropy. Continuing with the same 
reasoning though, the residual entropy will be maximised if the other two probabilities 
are the same. That is easily demonstrated numerically if necessary. Thus the maximum 
entropy, noting the unity sum of the probabilities, is given by 
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Substituting from (8.39), gives 
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which is plotted in Fig. 8.10. Cloude and Pottier30 show that (8.41) applies even for a 
non-diagonal coherency matrix. 
                                                 
30 See Cloude and Pottier, loc cit. 
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Two other measures that can be used with H and α are anisotropy A and span, defined 
respectively as 
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Anisotropy is particularly interesting since it shows how different the two minor 
eigenvalues are.  Recall that if they are equal, giving zero anisotropy, then the location of 
the relevant scatterer is on the limiting curves of the graphs of Figs. 8.10 and 8.11 when 
the coherence matrix is diagonal, signifying that the situation for the secondary scattering 
mechanisms is least clear. If one is zero the anisotropy will have unit magnitude which 
suggests there is an identifiable secondary scattering mechanism. 

Figure 8.12 shows an AirSAR image of a part of the city of Brisbane, Australia with 
four individual cover types picked out. The H-α diagrams for each cover type in each of 
C, L and P bands are shown, which can be seen broadly to fall into the respective sectors 
identified in Fig. 8.11. The differentiation is perhaps best at L band and poorest at P, 
most likely because at P band most of the cover types look like slightly rough surfaces. 
This is demonstrated further in Fig. 8.13 which shows H-α plots for the full image. 

Because the H-α plots are segmented by possible cover type as shown in Fig. 8.11 it is 
possible to use the boundaries in that diagram as the basis of an unsupervised 
classification based on entropy and alpha angle.   
 
 
8.5.2.4  Coherency Shape Parameters as Features for PolInSAR Classification 
 
The complex coherence for PolInSAR in (6.29) and (6.37) can be used in SAR image 
segmentation as a basis for thematic mapping. As noted in Sect. 6.14.1 it incorporates 
information on the scattering properties of the pixel viewed from the perspectives of each 
of the radars in an interferometer – i.e. from each end of the baseline with the 
polarisations chosen. A different polarisation is chosen for each radar in (6.37) but if the 
filter vectors are chosen to be the same then we have 
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The coherency matrices T11, T22 and Ω12 are properties of the resolution cell, or group of 
similar resolution cells, being imaged by the interferometer; they are derived from the 
Pauli form31 of the target vector kp. The filter vector w allows the effect of any 
polarisation configuration to be incorporated into the computation of complex coherency. 
By varying w over its full range, while keeping its magnitude at unity, γ takes values 
appropriate to each polarisation configuration determined by the particular value of w. 
The range of γ so generated, sometimes called the coherence region32, tends to cluster in 

                                                 
31 See (3.48, 3.49) 
32 See T. Flynn, M. Tabb and R. Carande, Coherence region shape extraction for vegetation parameter 
estimation in polarimetric SAR interferometry, Proceedings of the International Geoscience and Remote 
Sensing Symposium 2002 (IGARSS02), vol. 5, June 2002, pp. 2596-2598. 
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the complex coherence diagram of Fig. 6.20. It is to be hoped that different scattering 
types will yield distinct clusters, both in position in the complex space, and in shape. The 
position, shape and orientation of these clusters can be used as features for segmentation 
and classification purposes33. 

Fig. 8.12. Portion of a quad polarised AirSAR scene of the city of Brisbane, Australia with C 
band total power shown as red, L band total power as green and P band total power as blue, along 
with entropy alpha angle plots at three different wavelengths for the cover types shown: the 
image is in ground range format and was processed using ENVI™ (ITT Visual Information 
Solutions); the entropy alpha angle plots were produced using POLSARPRO V3.0 
 
 
                                                 
33 See M. Neumann, A. Reigber and L. Ferro–Famil, Data classification based on PolInSAR coherence 
shapes, Proceedings of the International Geoscience and Remote Sensing Symposium 2005 (IGARSS05), 
Seoul, vol. 7, 2005, pp. 4582-4585. 
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Fig. 8.14 illustrates a typical coherence cluster in the complex domain. The shape is 
shown as elliptical because that is a good approximation to the clusters seen in practice. 
Its features are the distance to the centroid of the cluster and the associated angle (which 
are the mean absolute coherence and mean phase), the major and minor axes of the 
cluster ellipse determined from the eigenvalues (principal components) of the covariance 
matrix of the cluster itself, and the orientation of the cluster. They could be used, as is, or 
they can form the basis of derived features34. 
 

 
Fig. 8.13. Entropy alpha angle plots for the full Brisbane AirSAR scene of Fig. 8.12, produced 
using POLSARPRO V3.0 
 
 
8.6  Interferometric Coherence as a Discriminator 

 
Interferometric coherence in (6.29) is a measure of the correlation between the two 
different measurements taken of the same resolution cell. They could be measurements 
from different times, different ends of a baseline (InSAR) and/or with different 
polarisations (PolSAR or PolInSAR). It would be expected to be low for cover types that 
have changed with time and high for those that remain fairly constant. Forest canopies 
(and the sea surface as an extreme example) will demonstrate low coherence whereas for 
soil surfaces, urban regions and grasslands the coherence might be expected to be high. 
Coherence is therefore often a convenient feature to include in a classification owing to 
its ability to provide that coarse level of discrimination. 

More generally, if the complex coherence associated with polarimetric radar is 
examined it is clear that it contains cross-correlations among all of the measurements of a 
pixel in all polarisation configurations. We can see that by inspecting the numerator of 
(6.29) which is just the joint image coherency matrix of (6.38) and which can be written 

 
 
 

                                                 
34 ibid. 
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The subscripts 1 or 2 have been added to indicate the two different images used in 
forming the polarimetric interferometric pair. Ω should therefore be a good source of 
information to use for interpretation, especially when based on physical models of the 
scattering medium from which we can estimate likely coherences. The 
electromagnetically important properties of surfaces, for example, can be estimated by 
using simple surface models that incorporate vertical roughness, correlation length and 
soil moisture to estimate their effects on coherence35. 
 
 

 
 
Fig. 8.14. Defining a coherence cluster by its location, shape and orientation; λ1 and λ2 are 
eigenvalues of the cluster covariance matrix indicating the principal axes of the coherence ellipse 
 
 
8.7  Some Comparative Classification Results 
 
With so many candidate approaches to thematic mapping using radar image data it is 
reasonable to ask whether any stand out above the rest in terms of performance. It is 
important to recognise however, as with the classification of optical data, success often 
depends on the methodology that surrounds the use of a particular algorithm and the skill 
of the analyst, particularly during the training phase of classification. 

In Table 8.4 we have summarised a number of investigations to give a comparative 
indication of performance. For the reasons just given it is important not to place too 
much emphasis on this material, but just to use it for guidance. There is an interesting 

                                                 
35

Soil moisture estimation in time with airborne D-InSAR, Proceedings of the International Geoscience and 
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 See I. Hajnsek, K.P. Papathanassiou, A. Moreira and S. R. Cloude, Surface parameter estimation 
using interferometric and polarimetric SAR, Proceedings of the International Geoscience and Remote 
Sensing Symposium 2002 (IGARSS02), vol. 1, 24-28 June 2002, pp. 420-422, and I. Hajnsek and P Prats 

Remote Sensing Symposium 2008 (IGARSS08), vol. 3, 7-11 July 2008, pp. 546-549. 
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precautionary tale from a recent study of classification results with remote sensing 
imagery36: over the fifteen year period 1989-2004, notwithstanding the development of 
new techniques, average classification performance did not improve. 

We have only chosen a representative set of results to use in Table 8.4, and not all the 
results for a given study have necessarily been included. Studies for which no 
quantitative results are given have not been used. Regrettably with many radar studies it 
has become common to cite qualitative segmentation results rather than comparisons 
against ground truth or reference data; that limits the values of those types of study. 

Interestingly, the results summarised in Table 8.4 don’t suggest that one approach is 
naturally superior to another, at least at this high level of comparison. In reality, it is 
important to match the data to the application. SAR classification performs best when the 
classes have good structural or dielectric constant differentiation, such as with the 
examples in the table involving forests and sea ice mapping. For crop thematic mapping 
and when there are a number of classes quite different from forest included in a forest 
mapping study the results are generally not as good. It is important to consider the 
combination of optical and radar imagery in more general thematic mapping since classes 
that present difficulties for one data type may be readily resolved in the other. Moreover, 
it is important to be aware that some of the classes of interest to the user may not be 
reachable with any data type on its own and may need inferences form both optical and 
radar imagery to be revealed in thematic mapping37. 
 
 
Table 8.4 Some radar classification studies 
 
Technique and source Features Class types and results 

Supervised labelling using the 
Wishart classifier 
Lee et al38 

P,L and C four 
look data. 

Ice data set with four classes: open 
water, first year ice, multi-year ice 
and ice ridges. Overall accuracies 
achieved on the training data were 
79% at P band, 86% at L band and 
81% at C band. When all bands were 
used together 94% was achieved. 
Theoretical simulations to improve 
training estimates gave higher values. 

Knowledge based classification 
built on simulated and experiential 
scattering behaviours. Includes post 
classification modal filtering to 
improve homogeneity. This work 
also summarises SAR classification 
to 1996. 
Dobson et al39 

ERS-1 and JERS-
1 backscattering 
coefficients and 
expert rules in the 
form of linear 
discriminants. 

Five classes: surface, short 
vegetation, upland conifers, lowland 
conifers, decurrent broadleaf. Testing 
set classification accuracies of about 
94% were achieved. 

                                                 
36 See G.G. Wilkinson, Results and implications of a study of fifteen years of satellite image classification 
experiments, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, March 2005, pp. 433-
440. 
37 See, for example, J.A. Richards, Analysis of remotely sensed data: the formative decades and the future, 
IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, March 2005, pp. 422-432. 
38 J-S Lee, M.R. Grunes and R. Kwok, Classification of multi-look polarimetric SAR imagery based on 
complex Wishart distribution, Int. J. Remote Sensing, vol. 15, 1994, pp. 2299-2311. 
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Isodata unsupervised classification 
using the Wishart distance 
measure, initialised with H-α 
categories similar to Fig. 8.11. 
Ferro-famil et al40 

P and L 
fully polarimetric 
single look 
complex data. 

Two soil and four forest age classes. 
Results typically in the range 84-98% 
with the exception of poor 
performance on soil.  

Supervised Wishart classification, 
with speckle reduction on both 
fully polarimetric and individual 
combinations of polarisation and 
intensity measurements. 
J-S Lee et al41 

P, L and C fully 
polarimetric 
single look 
complex and 
intensity data.  

Crop exercise: six crop classes, 
water, forest, lucerne, bare soil, 
grass. Overall accuracy 71% for P 
band, 82% for L band and 67% for C 
band, but 91% when all used. 
Forest exercise: six age classes and 
bare soil. Overall accuracy 79% for P 
band, 65% for L band and 43% for C 
band. 

Support vector machine applied to 
intensity data, with speckle 
filtering. 
Fukuda and Hirosawa42 

P, L and C fully 
polarimetric 
intensity data. 

two bare soil classes. Accuracies in 
separating class pairs are in the range 
of 90%. 

Supervised Bayesian hierarchical 
classifier (decision tree), maximum 
likelihood classification and 
Isodata unsupervised clustering. 
Kouskoulas et al43 

L and C band 
backscatter 
coefficients at 
HH, HV and VV 
plus VV/HH 
average complex 
coherence 

Four crop classes: wheat, alfalfa, 
corn and soybeans. Overall results on 
a testing set were 74% with 
clustering, 84% with standard 
maximum likelihood classification 
and 93% with the Bayesian 
hierarchical classification technique.  

Supervised maximum likelihood 
classification. 
Karathanassi and Dabboor44 

Absolute values 
of the Pauli 
components (SHH-
SVV), SVH and 
(SHH+SVV) from 
E-SAR data. 

Four classes: urban, forest, 
vegetation and runways. Overall 
accuracy without speckle filtering 
was 80%, rising to 91% when the 
Lee filter with a 21x21 window used. 

Support vector machines and 
random forests of decision trees, on 
individual and fused SAR and TM 
data sets; pixels were aggregated to 
various sizes of object for 
classification. 
Waske and van der Linden45 

Thematic mapper 
bands, ASAR and 
ERS-2 
backscatter 
(intensity) data. 

Five crop, one soil, one forest and 
one urban class. Individual class 
results in the range 64-96% for SAR 
data alone and 63-98% for TM data 
alone. Fused results in the range of 
76-97%. 

                                                                                                                                                 
39 M.C. Dobson, L.E. Pierce and F.T Ulaby, Knowledge-based land-cover classification using ERS-
1/JERS-1 SAR composites, IEEE Transactions on Geoscience and Remote Sensing, vol. 34, no. 1, January 
1996, pp. 83-99. 
40 L. Ferro-Famil, E. Pottier and J-S Lee, Unsupervised classification of multifrequency and fully 
polarimetric SAR images based on the H/A/Alpha-Wishart classifier, IEEE Transactions on Geoscience 
and Remote Sensing, vol. 39, no. 11, November 2001, pp. 2332-2342. 
41 J-S Lee, M.R. Grunes and E. Pottier, Quantitative comparison of classification capability: fully 
polarimetric versus dual and single-polarization SAR, IEEE Transactions on Geoscience and Remote 
Sensing, vol. 39, no. 11, November 2001, pp. 2343-2351. 
42 S. Fukuda and H. Hirosawa, Polarimetric SAR image classification using support vector machines, 
IEICE Transactions on Electronics, vol. E84-C, 2001, pp. 1939-1945. 
43 Y. Kouskoulas, F.T. Ulaby and L.E. Pierce, The Bayesian hierarchical classifier (BHC) and its 
application to short vegetation using multifrequency polarimetric SAR, IEEE Transactions on Geoscience 
and Remote Sensing, vol. 42, no. 2, February 2004, pp. 469-477. 
44 V. Karathanassi and M. Dabboor, Land cover classification using E-SAR polarimetric data, Proc. 
Commission VII, ISPRS Congress, Istanbul, 2004, pp. 280-285. 

Nine crop classes, forest, water and 
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8.8  Finding Pixel Vertical Detail Using Interferometric Coherence  
 
We now turn to interpretation of the vertical profile of a pixel. This is not a pixel 
labelling process, but is an analytical procedure that reveals information made possible 
because of the coherent nature of radar imagery.  

A simple model for interpreting forest structure information makes use of complex 

tomography treated in Sect. 6.15.5. Called the random volume over ground (RVOG) 
model46, it uses the composite complex coherence 
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in which γv is the complex coherence of the vegetation layer and m is the ratio of the 

effect of vegetation density to be examined. It assumes that range spectral filtering has 
been performed (Sect. 6.16) and that the scattering from the surface under the canopy is 
direct backscattering and not specular surface scattering followed by a subsequent 
vegetation scatter back to the radar (i.e. there is no double bounce mechanism). 

The vegetation coherence is given by 
 

 

∫

∫ +
=

v

v

h

e

h

he

v

dhh

dhhjkh

0

0

)sec2exp(

)sec2exp(

θκ

θκ
γ  (8.45) 

 
in which κe is the power extinction coefficient of the volume layer which extends from 
the surface at h=0 to a height h=hv, θ is the incidence angle and kh is the vertical wave 
number, given by 
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where Δθ is the change in incidence angle associated with the different viewing positions 
of the radars at either end of the interferometric baseline, and k=2π/λ. 

Note that the denominator of (8.45) is 
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45 B. Waske and S. van der Linden, Classifying multilevel imagery from SAR and optical sensors by 
decision fusion, IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 5, May 2008, pp. 
1457-1466. 
46 See R.N. Treuhaft and P.R. Siqueira, Vertical structure of vegetated land surfaces from interferometric 
and polarimetric radar, Radio Science, vol 35, 2000, pp. 141-177, S.R. Cloude and K.P. Papathanassiou, 
Polarimetric SAR Interferometry, IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 5 
part 1, September 1998, pp. 1551-1565, and K.P. Papathanassiou and S.R. Cloude, Single-Baseline 
Polarimetric SAR Interferometry, IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no.11, 
November 2001, pp. 2352-2363 

coherence with multi-polarisation data; this is an alternate to polarisation coherence 

ground to the volume power received. Varying this parameter essentially allows the 

2kΔθ
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and its numerator can be expressed 
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so that the vegetation coherence can be written 
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which is the same as (6.68), derived for polarisation coherence tomography, noting that 
the topographic phase term is incorporated in (8.44). Before proceeding, note that if the 
canopy were lossless, so that in the limit 0→eκ , then (8.47) reduces to 
 
 )2/sinc(2/
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which is the same as (6.66) given again that the topographic phase term has been taken 
care of in (8.44). 

We now return to the task of structural identification of the vegetation canopy from 
(8.44). The topographic phase term is not polarisation sensitive, and from (8.47) neither 
is volume coherence on the assumption that the extinction coefficient is independent of 
polarisation. Given the volume model is based on a totally random volume of scatterers 
that is an acceptable assumption. 

The complex coherence of (8.44) varies along a straight line in the complex plane with 
variations in the ground to volume power ratio m, as shown in Fig. 8.15. Interestingly, 
the line meets the unit circle at the angle that corresponds to the topographic phase. That 
can be seen by letting m=0 (no surface contribution) so that the complex coherence is 

 
 vtopoj

v e γφγγ ∠+Δ=  

 
That point is shown in Fig. 8.15. If the vegetation coherence were unity (i.e. no volume 
decorrelation, such as might happen with a very lossy canopy as seen in Fig. 6.29) then 
the net complex coherence is just topoje φγ Δ= , which is on the unit circle. As the 
vegetation coherence falls from unity then the complex coherence moves away from that 
boundary point. 

The only term in (8.44) that could depend on polarisation is the ground to volume 
power ratio m, which is therefore sometimes written as a function of the filter vector w. 
That is not essential if we know what polarisations we are using or interested in. We 
normally append a subscript to m to signify polarisation. 

In (8.44), with (8.47), there are 3 unknowns: the ratio of ground to volume 
contributions m, the canopy extinction coefficient κe and the canopy height hv. There are 
four if we also have to estimate the topographic phase Δφtopo. But in the measurement of 
complex coherence there are only two pieces of information – its magnitude and phase. 
However, by using three different polarisation configurations – say HH, VV and HV – 
we can set up the following set of equations that have six unknowns and six measured 
quantities. 
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In order to incorporate a ground term it is tacitly assumed that there is sufficient 

penetration that some energy reaches the ground and is backscattered to contribute to the 
coherence seen by the interferometer. That would suggest that for most forest-like 
applications the wavelength used is long – say L band or even P band. This model has 
also been applied at X band47, although reasonably the cross polar contribution from the 
ground is assumed to be negligible, simplifying ((8.48c) to v

j
HV

topoe γγ φΔ= . 
 

 
 
 
Fig. 8.15. Plots (solid lines) the complex coherence of (8.44) for a topographic phase angle of 
0.7rad, and a volume complex coherence of |γ |exp(j0.2) with |γ |=0.3, 0.6, 0.9 and for m varying 
over the full range of 0 to 1; the dotted trend lines converge to the point on the unit circle 
corresponding to the topographic phase  

                                                 
47 See F. Garestier, P.C. Dubois-Fernandez and K.P. Papathanassiou, Pine forest height inversion using 
single-pass X band PolInSAR data, IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 1, 
January 2008, pp. 59-68. 
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CHAPTER 9 
 
PASSIVE MICROWAVE IMAGING 
  
 
 
 
9.1  Introduction 
 
Although the theme of this book is radar remote sensing, imaging with passive 
microwave is a complementary technology that warrants an introduction to identify its 
role alongside radar. This chapter lays the framework for passive microwave imaging, 
drawing in part from the scattering treatment developed for imaging radar in Chapt. 5 

Notwithstanding the very small natural power density levels available from the earth as 
seen in Chapt. 2, passive microwave remote sensing is possible provided sufficiently 
large resolution cells are used so that measurable power levels can be obtained. It is an 
important remote sensing technology, particularly for sea, ice and snow mapping and in 
the assessment of soil moisture. 

wavelengths: upwelling radiation is detected (using a radiometer) and converted to a 
brightness value from which an image is formed. The source of energy may not always be 
just the earth’s surface. The atmosphere can also generate measureable energy at certain 
wavelengths as can sub-surface features. Moreover, there is a finite level of solar 
microwave radiation scattered from the earth’s surface which can contribute to the total 
power level detected. Those components are depicted in Fig. 9.1. 

 

 
 
 
Fig. 9.1. The components of passive microwave energy theoretically available for measurement 

  
Because it is a passive technology the synthetic aperture techniques used with radar are 

not available for generating fine spatial resolutions with microwave radiometry. 
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In principle, passive microwave imaging is similar to image data gathering at optical 

DOI: 10.1007/978-3-642-02020-9_9,  
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Consequently, pixels sizes are generally or the order of 10km or so. The terms “aperture 
synthesis” and “synthetic aperture” are nevertheless still found in connection with passive 
imaging. However they refer to the use of arrays of small antennas to synthesise the large 
aperture needed to gather the weak radiometric signal, rather than as techniques to 
enhance spatial resolution1. 

 
 

9.2  Radiometric Brightness Temperature 
 
As with active radar techniques we use the received power level to build up the 
microwave image of a scene. Received power itself, though, is not a good indicator of the 
intrinsic properties of the material being imaged since it will vary with the bandwidth 
over which the measurements are made and with the pixel size used. Instead, we need a 
quantity that can be derived from the received power but which is invariant with system 
parameters like spatial resolution and measurement bandwidth. Equation (2.6) shows that, 
in the microwave range of wavelengths, the spectral power density emitted by an object is 
directly proportional to the temperature of its surface. Thus the power density detected by 
a radiometer will also be directly proportional to the temperature of the object being 
observed. The actual power in watts received by an antenna when it is irradiated by a 
black body can be expressed2 
 BkT=P  (9.1) 
 
In which T is the surface temperature of the body (degrees K) and B is the bandwidth (Hz) 
over which the microwave emission is observed; k is Boltzmann’s constant, which has the 
value 1.38065x10-23JK-1. As a consequence of (9.1) we could infer the temperature of the 
region being observed from 

 
Bk

T P
=  (9.2) 

 
As discussed in Sect. 2.1 a real scene does not behave as an ideal black body but emits a 
lower level of energy, described by its emissivity ε, with 0≤ ε ≤1. If Pr were the actual 
power received from a real surface then (9.1) is modified to 

 
 BkTε=rP  

which can be re-arranged 
 BB BrP kTTk == )(ε  
 
in which we have introduced the radiometric brightness temperature in degrees Kelvin 
 

 
Bk

TT r
B

P
== ε  (9.3) 

 
that characterises the material being imaged. It is determined by the real (i.e. physical) 
temperature of the material (sometimes written as To) and its emissivity. Whereas we talk 

                                                 
1 See D.M. LeVine, Synthetic aperture radiometer systems, IEEE Transactions on Microwave Theory and 
Techniques, vol. 47, no. 12, December 1999, pp. 2228-2236. 
2 Strictly, this requires the antenna to be completely surrounded by the black body to be true. Fortunately, in 
our treatment of passive imaging we do not need to observe that theoretical requirement. 
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of scattering coefficient for a radar imaging system, we will talk of brightness 
temperature for passive microwave imaging. 

The radiometric brightness temperature can be polarisation dependent. In other words 
the upwelling microwave energy (or power in 9.3) can be a function of the polarisation of 
observation. It is therefore convenient to summarise the polarisation dependence of the 
brightness temperature using a Stokes vector; normally the modified form of (2.34) is 
used in which we write 
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 (9.4) 

 
in which the TU and T  components relate to the ellipticity of the polarisation and thus the 
correlation between the horizontal and vertical components. They are generally small 
compared with the first two elements and, in the past, had been considered negligible. 
They are now known to provide important discriminating information when the region 
being image is anisotropic or asymmetric in its emissive properties. TB is the brightness 
temperature vector. Using this we can generalise (9.3) 
 
 εT T=B  (9.5) 
 
in which ε is an emissivity vector. Since emissivity is unity for an ideal black body, the 
emissivity vector for a black body is [1 1 0 0]T; in other words it radiates horizontally and 
vertically and there is no relation between the horizontal and vertical radiation. 

The constant of proportionality in (9.4) arises from equating the received power 
expressed in (9.3) with that captured by an antenna for which the aperture is proportional 

to λ2; the power density incident on that antenna is given by 
η

2E
HE = in which η is the 

impedance of free space (377Ω) – see (2.7). Sometimes (9.4) is written in the form of 
(2.30) 
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in which o45+

T and o45−
T are temperatures at the two linear polarisations inclined at 45o, and 

TL and TR are temperatures at left and right circular polarisations. 
 
 
9.3  Relating Microwave Emission to Surface Characteristics 
 
Just as it is important to know how scattering coefficients and scattering matrices depend 
upon the nature of the earth’s surface (dielectric constant and roughness in particular) and 
system parameters (wavelength, incidence angle and polarisation), it is also important to 

TV

V
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understand how radiometric brightness temperature depends on those quantities since that 
is the type of information needed for interpreting passive microwave images. Fortunately, 
we don’t have to start anew to discover the relationships of importance. Rather, we can 
make use of the material on surface and volume scattering with radar that was derived in 
Chapt. 5. 

Before proceeding, there is one definition we need to be clear about. In radar we talk 
explicitly about incidence angle as the angle that the transmitted ray makes with the 
earth’s surface. In passive imaging there is no transmitted signal; rather we observe the 
radiation emitted from the earth’s surface in a given angular direction. We should 
therefore talk about observation angle; in practice however the term incidence angle is 
still sometimes used, even though it is inappropriate. 

We now come to an important principle that underpins passive microwave remote 
sensing. When an object is in thermal (or thermodynamic) equilibrium – i.e. its 
temperature is constant – the amount of energy it is able to emit is the same as the amount 
of energy it is capable of absorbing. If the energy it is emitting is different from the 
energy it is absorbing then it will either be warming up or cooling down. It can only be at 
a stable temperature when the two are in balance. From a passive imaging viewpoint we 
are interested in the emitted energy (or power) from which we can infer radiometric 
brightness temperature. To find that we use the principle of thermal equilibrium and 
search instead for the power absorbed, since we have a pathway for finding that quantity. 

In radar the power absorbed is that fraction which is not reflected or scattered. It is 
determined by what we might call the absorptivity of the medium. Fig. 9.2 shows the 
relationship between the incident, reflected and absorbed components of power. If the 
reflectivity is represented by Γ, then the absorptivity is 1-Γ. With the assumption of 
thermal equilibrium that is also equal to the emissivity of the surface, so we have the 
important relationship 

 PP Γ−= 1ε  (9.6) 
 

where the subscript P refers to polarisation. 
 
 

 
 
Fig. 9.2. Relationship between the absorptivity and reflectivity of a surface 
 
 

For a specular surface ΓP will be the power reflection coefficient of (5.1). For a rough 
surface it is related to the surface scattering coefficient, but it must account for the totality 
of scattering from the surface and not just that in the “backscattered” direction since we 

incident power 
backscattered component, 
proportional to the 
reflectivity Γ of the surface 

transmitted (absorbed) 
component, proportional to 
the absorptivity of the 
surface, which in turn is 
proportional to 1 – Γ 
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really want to know how much travels across the boundary and, in principle, is absorbed. 
We can only do that if we take into account all the scattered power as shown in Fig. 9.3. 

Just as with radar imaging, radiated emissions depend on the angle of view. This is 
seen easily in the specular case of Fig. 5.2, for which 
 
 2)(1)(1)( θρθθε PP −=Γ−=  (9.7) 
 
where ρP(θ) is the Fresnel reflection coefficient for the surface discussed in Sect. 5.3.1, 
and which is explicitly dependent on incidence angle. 

As an illustration consider the case of a surface which is a good electrical conductor – 
such as a metallic plate. This is unlikely in remote sensing, but provides some useful 
guidance for what is to come. It can be shown that 1−=ρ  for such a surface, irrespective 
of polarisation or incidence (observation) angle. Thus the emissivity of the surface, from 
(9.6), is zero and its radiometric brightness temperature, from (9.3), is also zero. In a 
passive image, which has been calibrated to make brightness increase with emissivity or 
brightness temperature, a metallic surface will therefore show as black. 
 

 
 
Fig. 9.3. All the power scattered into the upper hemisphere has to be found when determining 
reflectivity for a rough surface 
 

 
Now consider the more realistic case of a still water body viewed directly from above 

(i.e. vertical “incidence”). For convenience we can assume that the dielectric constant of 
water is about 81 so that from (5.2) the Fresnel reflection coefficient is about 0.8. 
Therefore the emissivity will be 1–0.64=0.32. The brightness temperature of the water is 
then 0.32To, where To is the physical temperature. For a water surface temperature of 
293K, this gives a brightness temperature of 105K. 

Now examine the case of a still water body viewed from any angle. Equation (5.3) 
gives the Fresnel reflection coefficients as a function of angle of incidence and 
polarisation. Substituting those expressions into (9.7) with the assumption, again, that the 
dielectric constant of the water is 81 yields the curves of Fig. 9.4. The strong peak in the 
vertically polarised curve is the result of an effect know as the Brewster angle, that does 
not occur for horizontally polarised radiation.3 For lossless dielectric media the Fresnel 
reflection coefficient is zero at the Brewster angle. Note that both curves converge to 
105K when the surface is viewed from directly above and that there is a strong 
polarisation dependence as observation angle increases. At the peak in the curve for 

                                                 
3 See J.A. Richards, Radio Wave Propagation  An Introduction for the Non-Specialist, Springer, Berlin, 
2008. 

incident power 

integration over the full upper hemisphere tells us, 
for a given incident power, the total amount scattered 

away from the surface, thereby determining the 
surface’s reflectivity and thus absorptivity 
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vertical (parallel) polarisation, corresponding to the Brewster angle, the brightness 
temperature is equal to the physical temperature. 

 
 
Fig. 9.4. Radiometric brightness temperature for still water as a function of observation angle and 
polarisation 
 

 
9.4  Emission from Rough Surfaces 
 
The previous section looked at emission from ideally smooth surfaces. Consider now the 
other extreme of an ideally rough surface, characterised by Lambertian scattering 
described by (5.5a) and illustrated in Fig. 9.5. In order to find the emissivity of this 
surface in terms of its absorptivity and thus reflectivity it is necessary to integrate the 
scattered energy over the whole upper hemisphere. We also have to take into account any 
depolarisation as part of the scattering process. When (5.5a) is integrated in this manner4 
the reflectivity of the Lambertian surface is seen to be 
 

 
4

)0()(
oσθ =Γ  

so that   

 
4

)0(1)(
o

P
σθε −=  (9.8) 

 
Thus the emissivity, and therefore the image tone for a very rough surface, is independent 
of observation angle, polarisation and frequency, provided the Rayleigh roughness 
criterion (5.4) holds. 
 

                                                 
4 See F.T. Ulaby, R.K. Moore and A.K. Fung, Microwave Remote Sensing  Active and Passive, Vol 1, 
Addison-Wesley, Reading Mass., 1982, p 251.  
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Fig. 9.5. A Lambertian surface 

 
 

have emission characteristics between the behaviours of those extremes as illustrated in 
the curves of Fig. 9.6. As roughness increases, emissivity and thus radiometric brightness 
temperature increases and is less dependent on observation angle; it also exhibits less 
variation with polarisation. The reason that rougher surfaces absorb and thus emit more 
can be appreciated by noting the greater likelihood of multiple interactions (and thus 
chances for absorption) with local surface variations as illustrated in Fig. 9.7. For 
smoother surfaces the radiometric brightness temperature is lower, more sensitive to 
observation angle (as seen in Fig. 9.4) and shows more variation with polarisation. 

 

 
 
Fig. 9.6. Dependence of radiometric brightness temperature on surface roughness and polarisation 

 
 
9.5  Dependence on Surface Dielectric Constant  
 
Since the reflectivity of a surface, both specular and diffuse, increases with dielectric 
constant and thus water content, absorptivity and thus emissivity will decrease. 
Radiometric brightness temperature will therefore decrease with increasing moisture, as 
illustrated in Fig. 9.8 for the case of a smooth sandy surface at 1.4GHz. Those curves 
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We have now examined the two extreme cases of surface roughness. Other surfaces will 
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have been produced using (5.3) in (9.7) and with the values of dielectric constant in Table 
9.1 for the moisture contents shown. The sensitivity to moisture evident in Fig. 9.8 
demonstrates the value of passive microwave imaging for soil moisture studies. For a real 
situation there will also be a small imaginary part of the dielectric constant associated 
with energy loss; that has been ignored in constructing Fig. 9.8. 

 

 
 
Fig. 9.7. Demonstrating the enhanced possibility of multiple surface interactions, and thus 
opportunities for transmission and absorption, with increased surface roughness 
 
 
Table 9.1 Dielectric constants of sand with varying moisture contents 
(From Fig. 7.4 of J.A. Richards, Radio Wave Propagation  An Introduction 
for the Non-Specialist, Springer, Berlin, 2008.) 
 

Volumetric moisture content Approximate dielectric constant 
(real part only) 

10%  6.3 

20%  11.4 

30%  18.2 

 
 
9.6  Sea Surface Emission 
 
Figure 9.4 shows the emission from a still water body. The sea surface however is most 
often roughened by waves. From the discussion in Sect. 9.4 concerned with soils we can 
induce that the rougher the sea surface the higher its brightness temperature. Since the 
roughness of the sea surface depends on wind speed, brightness temperature can be used 
as an indicator of wind speed. 

Apart from the level of wind speed, knowledge of its direction over the ocean is also 
important. Measuring fully polarimetric brightness temperature data represented by the 
Stokes parameters in (9.4), allows wind speed direction (the vector wind field) to be 
estimated; there is an ambiguity when relying on the first two Stokes parameters alone 
which can be resolved using the third and fourth parameters. Consequently, TU and T  
have become important indicators of asymmetry (and thus ocean anisotropy). The 
dependence on wind speed comes through its effect on the vector emissivity of (9.5) 
provided the contributions of the atmosphere and sky to the recorded brightness 
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temperature have been removed. To a good approximation the components of the 
emissivity vector can be expressed 

 φφε 2coscos 210 VVVV aaa ++=  
 φφε 2coscos 210 HHHH aaa ++=  
 φφε 2sinsin UUU bb +=  
 φφε 2sinsin VV bb +=  

 
  

Fig. 9.8. Computed radiometric brightness temperature of smooth sand at 1.4GHz as a function of 
moisture content using the dielectric constants of Table 9.1, ignoring the effect of the (small) 
imaginary component of the dielectric constant and any surface roughness; the full lines represent 
horizontal polarisation and the dotted (upper) lines vertical polarisation 
 
 
The coefficients in these expansions, often referred to as the harmonic coefficients 
because of they weight the trig functions of φ, all have a roughly linear dependence on 
wind speed and are weakly dependent on other physical parameters5; φ is the angle 
between the direction of the wind and the look direction of the radiometer. Interestingly 
the first two emissivities have an even dependence on relative wind direction and the third 
and fourth an odd dependence. Wind vector algorithms can be derived based on these 
properties6

geophysical noise7. More recently, the third and fourth Stokes parameters have been 

                                                 
5 See S.H. Brown, C.S. Ruf and D.R. Lyzenga and S. Cox, A nonlinear optimisation algorithm for WindSat 
wind vector retrievals, IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 3, March 2006, 
pp. 611-621. 
6 See S.H. Brown, C.S. Ruf and D.R. Lyzenga and S. Cox, loc cit., and M.H. Bettenhausen, C. Smith, R.. 
Bevilacqua, N-Y Wang, P.W. Gaiser and S. Cox, A nonlinear optimisation algorithm for WindSat wind 
vector retrievals, IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 3, March 2006, pp. 
597-610. 
7 J.R. Piepmeier and A.J. Gasiewski, High resolution passive polarimetric mapping of ocean surface wind 
vector fields, IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no.3, March 2001, pp. 606-
622. 
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shown also to be good indicators of asymmetry in the surface structures of polar ice 
sheets8. 
 
 
9.7  Brightness Temperature of Volume Media 
 
Volume scattering media such as vegetation canopies and sea ice have radar scattering 
coefficients that are moderately independent of observation angle and are generally fairly 
large because of multiple scattering. Consequently, unless the medium is particularly 
lossy, the emissivity of inhomogeneous, volumetric materials will be low and not strongly 
dependent on the angle of observation. If the canopy is weakly absorbing it may be 
difficult to measure those characteristics because of interfering emission from an 
underlying surface. Such a composite situation is treated in Sect. 9.8 following. If the 
canopy is strongly absorbing then it will also be a strong emitter with a high brightness 
temperature and the effect of any emission from an understory will be minimised. Fig. 9.9 
shows the indicative dependence of brightness temperature on observation angle for a 
volume medium at the extremes of absorption. 
 

 
 
Fig. 9.9. Likely range of radiometric brightness temperatures for a volume medium 
 
 
9.8  Layered Media: Vegetation over Soil 
 
It is difficult to treat vegetation in isolation unless it is so strongly absorbing that no 
energy passes completely through it. More typically the observed brightness temperature 
will include a significant component from the underlying surface. We now consider that 
situation. Assume the canopy is weakly scattering but is composed of elements that are 
absorbing. We will also restrict ourselves to the case of a specular underlying surface as 
shown in Fig. 9.10, although the results to be derived apply in general. 

                                                 
8 See L. Li, P. Gaiser, M.R. Albert, D. Long and E.M. Twarog, WindSat passive microwave polarimetric 
signatures of the Greenland ice sheet, IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 
9, September 2008, pp. 2622-2631. 
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Fig. 9.10. Vegetation layer over a smooth surface 
 
  
If the power reflection coefficient at the soil surface is Γs(θ), then the power density 
emerging from the canopy after two way transmission though the canopy and reflection 
from the surface is 

 2)(
L
p

L
pp io

s
sr

ro θΓ==  (9.9) 

 
where L is the canopy loss, given by 

 L =  (9.10) 
 

in which eκ is the extinction coefficient of the canopy, attributed entirely to material 
absorption since scattering loss is assumed negligible. From (9.9) the effective reflectivity 
of the canopy/ground combination is 
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so that the effective emissivity of the canopy/ground is 
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If the soil emissivity is )(θε s then 
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−=  (9.11b) 

 
For a lossless canopy 0=eκ so that L=1, giving )()( θεθε sc = , whereas for a high loss 
canopy ∞→eκ  so that ∞→L , giving 1)( =θε c ; in other words a very high loss canopy 
will exhibit total emission and a brightness temperature equal to the physical temperature. 

Equation (9.11b) can be converted to radiometric brightness temperature through 
multiplication by the physical temperature To: 
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in which Ts(θ) is the soil brightness temperature. This tells us that the sensitivity of 
radiometric brightness temperature to soil moisture content is reduced by the square of 
the loss imposed by an overlying vegetation layer. Fig. 9.11 demonstrates that effect with 
a 0.5m deep vegetation layer over sand. The canopy extinction coefficient has been 
chosen as 6dBm-1 and the angle of view is 30o. 

 
 
Fig. 9.11. Effect of an overlying canopy on the measurement of soil brightness temperature; the 
lower curve is just sand brightness temperature and the upper curve is the reduced sensitivity 
resulting from the vegetation layer 
 
 
9.9.  Passive Microwave Remote Sensing of the Atmosphere 
 
Figure 2.7 shows that the earth’s atmosphere absorbs incident electromagnetic radiation at 
very high microwave frequencies and is very strongly absorbing in certain wavebands. As 
a consequence of thermal equilibrium it will also be a strong emitter in those bands.  
Therefore, if we wanted to detect atmospheric constituents we would do so at those 
frequencies for which atmospheric emission is strongest for the constituents of interest.  
We would use 22GHz for water vapour measurement and 60GHz for oxygen detection. 
At 60GHz and 120GHz none of the earth’s own emission succeeds in travelling up 
through the atmosphere; at 22 GHz, however, it is necessary to image over a cold surface 
such as the sea to minimise the earth’s contribution. 
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APPENDIX A 
 
COMPLEX NUMBERS 
 
 
 
 
 
Despite their name complex numbers are not complicated; nor are they difficult to handle. 
It is not even necessary to have a feeling for what they mean theoretically. Rather, they 
are convenient tools with which to manipulate some of the quantities we encounter in 
radar imaging, particularly concerning the electromagnetic energy that is used to irradiate 
the landscape and which is received, after scattering, to form an image. 

The basis for complex number theory rests in describing the square root of a negative 
number; that in itself is not so important as the properties that flow from it. We describe 
the square root of minus one by the symbol j: 

 
 1−=j  
 

In mathematics and physics instead of j the symbol i is used; j however is commonplace 
in electrical engineering to avoid confusion with the symbol for current. Note jxj= –1. 

We can express the square root of any negative number in terms of the symbol j. For 
example 

 391919 jxx =−=−=−  
 

The number that multiplies the j is called an imaginary part or an imaginary number to 
distinguish it from the real numbers with which we are familiar in everyday life (for 
counting and describing real things). If we add a real and an imaginary number we then 
have a complex number: 

 jbaz +=  
 
in which a is called the real part of the complex number z and b is called its imaginary 
part, written respectively as 
 }{za Re=  and }{zb Im=  
 
We can add or subtract two complex numbers by adding or subtracting their components: 
  
 )( 212121 bbjaazz ±+±=±  
 
Complex numbers can also be multiplied and divided using the normal rules of algebra: 
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We will demonstrate shortly a more convenient way to carry out multiplication and 
division. 

It is helpful for later developments to plot the components of a complex number on a 
graph with Cartesian coordinates representing the real part horizontally and the imaginary 
part vertically, as shown in Fig. A.1. That complex plane is called an Argand diagram. 
Note that we can now describe the complex number in polar coordinate form, by the 
length of the vector from the origin R and the angle measured up from the positive real 
axis φ. R is often called the modulus or magnitude of the complex number and φ is its 
argument. Using geometry and trigonometry the polar coordinates are related to the 
Cartesian components by 

 22 baR += and 
a
b1tan−=φ  (A.1) 

 
while the real and imaginary parts can be derived from the polar form by 
 
 φcosRa =  and φsinRb =  (A.2a) 
 
In electrical engineering the polar form is often written 
 
 φ∠R  (A.2b) 
 
and described as “R angle φ”. 

 

 
 
Fig. A.1 The Argand diagram for representing complex numbers 

 
 

From (A.2a) we have )sin(cos φφ jRz +=  (A.3) 
 
Interestingly, if we substitute the power series expansions for the cosine and sine 
functions in (A.3) an extremely important result emerges. From 
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The last expansion should be compared with 
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Thus we have demonstrated that 
 φφφ jej =+ sincos  (A.4) 
 
This is referred to as Euler’s theorem or formula, and is the basis of the most remarkable 
set of results involving complex numbers and sinusoidally time varying radiation. Using 
(A.4) we see that (A.3) gives us another representation of the complex number: 
 
 φjeRz =  or φjRz exp=  (A.5) 
 
This exponential representation is convenient for multiplying and dividing complex 
numbers, using the properties of indices. Note for example that 
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The polar form of the complex number in (A.2b) can be regarded as a short hand version 
of the exponential form, in which the ej is understood1. Multiplication and division can 
thus also be expressed: 
 )( 212121 φφ +∠= RRzz  
 

 )( 21
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1

2

1 φφ −∠=
R
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z
z  

 
The number –1 appears on the Argand diagram of Fig. A.1 at a unit distance on the left 
hand real axis. In terms of the exponential descriptor of (A.5) that means R=1 and φ=π. 
Thus we have an important fundamental identity: 

 
 1−=πje  (A.6a) 

 

                                                 
1 In engineering this is often referred to as the phasor form. 
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Similarly we find that 

 je
j
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±

2
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 (A.6b) 
 
and 12 =πje  (A.6c) 
 
As seen the exponential (polar) form of the complex number is enormously powerful. It 
also allows the roots and powers of any number – real, complex or imaginary – to be 
found. For example 
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This last result is demonstrated in the Argand diagram of Fig. A.2. 
 

 
 
Fig. A.2. Summary of square calculation on the Argand diagram 
 
 

The complex conjugate of a complex number is that with the sign of the imaginary 
component reversed. It is denoted with a superscript asterisk. Thus the conjugate of 
z=a+jb is z*=a–jb. As shown in Fig. A.3 this is the same as reversing the sign of the 
angle, so that if z=Rejφ then its conjugate is z*=Re-jφ. Conjugates play a very important 
role in electromagnetism and signal analysis. One interesting operation is the product of a 
number and its conjugate 
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 20* RRRezz j ==  
 

or 222* ))(( Rbajbajbazz ≡+=−+=  
 
In other words, the product of a number and its conjugate is real and equal to the square 
of its magnitude. 

Most signals in which we are interested with radar are sinusoidal or can be reduced to 
sinusoidal form. While sinusoids are not necessarily difficult to use, exponentials are 
much easier, particularly when calculus is involved. Note from (A.4) that 

 
 }{cos φφ jeRe=  
 

so that a travelling sinusoid can be written 
 

 
 

Provided we remember to take the real part of the result of any operation, either explicitly 
or by implication, we can replace the sinusoidal form in any calculations by the 
exponential version; that makes analysis straightforward. There is one requirement for 
this: the system in which we are interested must behave as a linear system, which is the 
case for those considered in this book. 

 

 
 

Fig. A.3. Definition of the complex conjugate 
 
 
Sometimes a radio wave travels in a lossy medium, such that its amplitude decreases 

exponentially with distance travelled, in which case it is written 
 

 )}}({exp()}({exp()cos( rtjrrtjerte rr βωαβωβω αα −+−=−=− −− ReRe  
 ){exp( rtj γω −= Re  

 
in which βαγ j+= is called the propagation constant, itself a complex number. 
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APPENDIX B 
 
MATRICES 
 
 
 
 
 
B.1  Matrices and Vectors, Matrix Multiplication 
 
A matrix is an array of numbers arranged by rows (along the horizontal) and columns 
(down the vertical). Most frequently matrices arise in relation to sets of equations, or in 
linear transformations. For example, the simultaneous equations 
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can be expressed  
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or, symbolically cMg =  (B.1) 
 
in which M is a 2x2 matrix and g and c are referred to as (2 element) column vectors – 
because they are columnar in nature. As a second example, the following transformation 
will rotate axes by an angle θ in the anti-clockwise direction 
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which is the matrix form of the pair of equations 
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This can be written as 
 1Mgg2 =  
 
These examples also show how a column vector multiplies a matrix. In principle, a 
column vector is an nx1 matrix, where n is the number of rows (vertical elements). The 
result of the multiplication is obtained by multiplying the column entries of the vector, 
one by one, with the row entries of the matrix, one row at a time, and then adding the 
products. The result of each of those operations is a new vector element. This is 
illustrated in Fig. B1, along with a symbolic representation of the multiplication of two 
matrices, which follows the same pattern. 

Note that Fig.B.1 introduces the row vector. The column vectors above have their 
elements arranged down a column, whereas a row vector has its elements arranged across 
a row. The difference is important because row vectors enter into multiplication in a 
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different way, as illustrated.  The product of a row vector and a column vector will also 
be different depending on the order in which they appear. If the row vector is on the left 
hand side the result is a simple scalar; if it is on the right hand side the result is a matrix. 
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The order in which the matrices are multiplied is also important. AB for example will 
give a different result to BA, except in special circumstances. We say that A “pre-
multiplies” B in AB whereas B “post-multiplies” A. Although the above examples were 
computed with 2 dimensional vectors and matrices the patterns the same for any orders so 
long as the order of the vector matches the relevant dimension of the matrix. For example, 
a 3x12 matrix (3 rows and 12 columns) can only be post-multiplied by a 12 element 
column vector and can be pre-multiplied by a 3 element row vector. 
 

 
Fig. B.1. Illustrating the steps involved in matrix multiplication (a) two matrices, (b) a column 
vector post-multiplying a matrix and (c) a row vector pre-multiplying a matrix 
 
 

 
In working with matrices it is important to be able to refer unambiguously to its elements. 
A double subscript notation is used in which the first refers to the row to which the 
element belongs and the second to its column. Thus 
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B.2  Indexing and Describing the Elements of a Matrix 



Matrices  329 

 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

::::
..
..
..

333231

232221

131211

mmm
mmm
mmm

M  

 
The elements, referred to generically as mij, can be real or complex. The dots in this 
expression simply mean the matrix can be of any size, as determined by the problem 
being considered. If the matrix has as many rows as columns then it is called a square 
matrix. 

Elements that lie on the same row and column, mii, are called diagonal elements and 
together define the diagonal, or principal diagonal of the matrix. All the other elements 
are referred to as off-diagonal elements. 

 
 

B.3  The Kronecker Product 
 
There is another matrix product sometimes used in radar imaging. Called the Kronecker 
product, it is best illustrated using algebraic entries. If A and B are the matrices 
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 (B.3) 

 
 

B.4  The Trace of a Matrix 
 
The trace of a matrix is the sum of its diagonal terms, which for an nxn square matrix is 
expressed: 
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1
trtrace  (B.4) 

 
B.5  The Identity Matrix    
 
The identity matrix is a square matrix (i.e. with the same number of rows and columns) 
which is zero everywhere except down its diagonal, on which each element is unity. 
Multiplication of a vector by the identity matrix, which has the symbol I, leaves the 
vector unchanged. Thus 
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or symbolically gIg = and ggI = as appropriate. Similarly, multiplication of any matrix 
by the identity matrix leaves the matrix unchanged. Thus 
 

 MMI =  
 
The identity matrix is the matrix equivalent of the real number “1”. 
 
 
B.6  The Transpose of a Matrix or a Vector 
 
If the elements of a matrix are rotated about the diagonal the transpose of the matrix 
results. The transpose is represent by a superscript T (or sometimes t), so that if 
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Vectors can also be transposed by rotating around their first element thus transforming a 
row vector into a column vector and vice versa. If 
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then [ ]321

T ggg=g  
 
Note that 22
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1

T ggg =++= ggg  
 
In other words that operation gives the square of the magnitude of the vector. How can 
vectors have magnitude? To illustrate: the vector g could be the set of spectral 
measurements for a pixel in three dimensional multi-spectral space. Its magnitude is its 
overall brightness, or the length of the vector drawn from the origin to the point in the 
three dimensional space described by the vector elements as coordinates. Alternatively, g 
could be the target vector of (3.46), in which case the magnitude is the span of the vector. 

If in (B.2) we put 
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Sometimes the first of those expressions is called an inner product; less frequently, the 
second is called an outer product. 

Sect. 2.16 shows that the vector transpose can be used to evaluate the dot product of 
two vectors: ABBABA TT. == . 
 
 
B.7  The Determinant 
 
The determinant of the square matrix M is expressed 
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It is a scalar quantity that, in principle, can be computed in the following manner. 
Unfortunately, in all but the simplest cases, this approach does not lead to an efficient 
method for determinant evaluation, and numerical methods must be used in practice. 

First, we define the cofactor of a matrix element. The cofactor of the element mij is the 
determinant of the matrix formed by removing the ith row and jth column from M and 
multiplying the result by (–)i+j. Thus the cofactor of m21 is 
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The classical method for evaluating the determinant is to express it in terms of the 
cofactors of its first row (or of any row or column). For a square matrix of size nxn this 
expansion is 
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The cofactors in this expression can be expanded in terms of their cofactors, and so on 
until the solution is found. The case of a 2x2 matrix is simple: 
 

 matrixgh
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For matrices of larger dimensions this method for evaluating the determinant is grossly 
computationally inefficient and numerical methods are adopted. 

If the determinant of a matrix is zero the matrix is called singular. 
 
 
B.8  The Matrix Inverse 
 
A matrix multiplied by its inverse gives the identity matrix. The inverse is represented by 
adding the superscript –1 to the matrix symbol. Thus 
 
 IMM =−1  (B.5) 
 
Applying the inverse concept to (B.1) shows that the solution to the pair of simultaneous 
equations can be derived by pre-multiplying both sides by M-1 
 
 cMg 1−=  
 
provided the inverse matrix can be found. As with finding determinants, that is not a 
trivial task and generally approximations and numerical methods are used. However, also 
like determinants, there are theoretical expressions for the matrix inverse. It can be 
defined in terms of the adjoint (more recently called the adjugate) of the matrix, which is 
the transposed matrix of cofactors: 
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with which the inverse of M is 

 
M

MM adj
=−1  (B.6) 

 
From this we see that the matrix must be non-singular to have an inverse – i.e. its 
determinant must not be zero. 
 
 
B.9  Special Matrices 
 
A symmetric (square) matrix is equal to its own transpose: M=MT, and thus mij=mji. 
 
An orthogonal matrix is equal to the inverse of its transpose: M=(MT)-1. In other words, 
its transpose is its inverse. 
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A conjugate matrix, written here as M , has elements that are the complex conjugates of 
the original matrix, so that ijm  =mij

*. 
 
A Hermitian matrix, written here as M*, is equal to its own transposed conjugate matrix: 
i.e. TMM = , sometimes also referred to as the conjugate transpose. 
 
A unitary matrix is one in which the inverse is equal to the conjugate transpose. 
 
 
B.10  The Eigenvalues and Eigenvectors of a Matrix 
 
Equation (B.1) can be interpreted as the transformation of the column vector g by the 
matrix M to form a new column vector c. We now ask ourselves whether there is any 
particular vector, say g1, for which multiplication by a scalar will produce the same 
transformation as multiplication by a matrix. In other words can we find a g1 such that 
 
 11 Mgg =λ  (B.7) 
 
where λ is a constant, which is sometimes complex. We can introduce the identity matrix 
into this equation without changing its meaning: 
 
 11 MgIg =λ  
 
so that we can then re-arrange the equation to read 
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Equation (B.8) is actually a short hand version of the set of homogeneous simultaneous 
equations in the unknown components1 of g1 
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For a set of homogeneous simultaneous equations to have a non-trivial solution the 
determinant of the coefficients of the unknowns must be zero, viz. 
 
 0=− IM λ  (B.9) 
 
This is called the characteristic equation of the matrix M. It consists of a set of equations 
in the unknown λ. By solving (B.9) the values of λ can be found. They can be substituted 
into (B.8) to find the corresponding vectors g1. The λ are referred to as the eigenvalues 
(or sometimes proper values or latent roots) of the matrix M and the corresponding 
vectors g1 are called the eigenvectors (proper vectors or latent vectors) of M. 
                                                 
1 Note that we have indexed the components of the vector using a double subscript notation in which the 
first subscript refers to the component – i.e. the column for that component – and the second refers to the 
vector itself, in this case g1. Later we will have a g2, etc. 
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As a simple example consider the matrix 
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Substituting into (B.9) gives 

 0
94

36
=

−
−

λ
λ

 

 
i.e. (6-λ)(9-λ)-12=0 
 
or λ2–15λ+42=0 (B.10) 
 
which has the roots 11.275 and 3.725. In (B.10) it is interesting to note that the coefficient 
of λ is the trace of M and the constant term is its determinant. Substituting the first 
eigenvalue into (B.8) gives 
 –5.275g11+3g21=0 
 
so that g11=0.569 g21 (B.11a) 
 
Likewise substituting the second eigenvalue into (B.8) shows 
 
 4g12+5.275g22=0 
 
so that g12=–1.319 g22 (B.11b) 
 
Note that the eigenvectors are not completely specified; only the ratio of the terms is 
known. This is consistent with the fact that a non-trivial solution to a set of homogeneous 
equations will not be unique. 

The eigenvalues for this example are both (all) real. A matrix for which all the 
eigenvalues are real is called a positive definite matrix. If they could also be zero the 
matrix is called positive semi-definite. Most generally the eigenvalues are complex, in 
which case they will occur in conjugate pairs. 

Even though we commenced this analysis based on matrices that transform vectors, the 
concept of the eigenvalues and eigenvectors of a matrix is more general and finds 
widespread use in science and engineering. 
  
 
B.11  Diagonalisation of a Matrix 
 
If we have computed all the eigenvalues of a matrix M and constructed the diagonal 
matrix 
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then (B.7) can be generalised to 
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 MGΛG =  (B.12) 
 
in which G is a matrix formed from the set of eigenvectors of M: 
 
 ..][ 321 gggG =  
 
Provided G is non-singular, which it will be if the eigenvalues of M are all distinct, then 
B.12 can be written 
 MGGΛ 1−=  (B.13) 
 
which is called the diagonal form of M. Alternatively 
 

 1−= GGΛM  (B.14) 
 
This last expression is very useful for computing certain functions of matrices. For 
example consider M raised to the power p: 
 
 11111 ..... −−−−− == GGΛGGΛGGΛGGΛGGΛM pp  
 
The advantage of this approach is that the diagonal matrix Λ raised to the power p simply 
requires each of its elements to be raised to that power. 
 
 
B.12  The Rank of a Matrix 
 
The rank of a matrix is a number equal to the number of linearly independent rows or 
linearly independent columns it possesses; for a square matrix they are the same. The 
rows or columns are linearly independent if any one cannot be expressed as a linear 
combination of one more other rows or columns. If there are linearly dependent rows or 
columns then the determinant of the matrix will be zero. A test of the rank of a matrix 
therefore is to evaluate its determinant. If the determinant is non-zero then the rank is 
equal to the dimension of the matrix – i.e. a 3x3 matrix will have rank 3 if it has a non-
zero determinant. If its determinant is zero then its rank will be smaller than 3 and equal 
to the size of the largest non-zero determinant within it. 

The rank of a matrix is also equal to the number of its non-zero eigenvalues. As an 
illustration, the matrix 
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has the eigenvalue set (sometimes referred to as the eigenvalue spectrum) of 45.6, –0.6, 0 
so that its rank is 2. Note that the last row of the matrix is twice the second row; therefore 
they are not linearly independent. 
 



APPENDIX C 
 
SI SYMBOLS AND METRIC PREFIXES 
 
 
Symbols for the fundamental quantities used in this book, in their standard International 

 

 
symbol meaning symbol meaning symbol meaning 
 

m metre Np neper A ampere 

s second rad radian V volt 

Hz hertz deg degree Ω ohm 

H henry W watt S siemens 

F farad J joule T tesla 

K kelvin     
 
 
Prefixes are prescribed in the SI system to represent variations of base units by factors of 

length is modified by the use of these prefixes. The same pattern is applied to any other SI 
unit, as shown for the fundamental unit of frequency. 
 

 
prefix name meaning examples 
 

a atto x10-15  am (attometre)  

f femto x10-12  fm (femtometre)  

n nano x10-9  nm (nanometre)  

μ micro x10-6  μm (micrometre)  

m milli x10-3  mm (millimetre)  

  x1 m (metre) Hz (hertz) 

k kilo x103  km (kilometre) kHz (kilohertz) 

M mega x106  Mm (megametre) MHz (megahertz) 

G giga x109  Gm (gigametre) GHz (gigahertz) 

T tera x1012  Tm (terametre) THz (terahertz) 

P peta x1015 Pm (petametre) PHz (petahertz) 

 

System (SI) forms, are shown in Table C.1. 

Table C.1 SI Symbols 

Table C.2 Metric Prefixes 

1000, as illustrated in Table C.2. Examples are given of how the fundamental unit of 



APPENDIX D 
 
IMAGE FORMATION WITH SYNTHETIC APERTURE RADAR 
 
 
 
 
 
D.1  Summary of the Process 
 
This appendix summarises the key steps in the process of compressing recorded synthetic 
aperture radar data to form an image. It will be seen to involve two major stages, one to 
compress the signal in range and the other to compress it in azimuth. It is during the 
second stage that multi-look filtering is carried out to reduce speckle. Steps taken to 
reduce false target indications generated by spurious signals in the compression process 
are also described. We focus on forming an image of a point target since the processes 
involved apply equally to any other target or cover type. 

Recall from the material in Chapt. 3 that a series of ranging chirps is transmitted and 
scattered from the target as the vehicle passes the target to the side. Scattered returns are 
received by the radar when the target comes into view of the antenna, and persist until the 
target is just lost to view as summarised in Fig. 3.9. The target also has to be within the 
swath of ground illuminated by the vertical beamwidth pattern of the antenna. 

Consider the response to a single ranging chirp from a point target located about 
midway across the swath; the target could be single house or single large tree, or possibly 
a calibration device. Assume also there are no other targets in view, or that the surface on 
which the point target sits is specular so there is no backscatter from it. The received 
signal will be zero from the time equivalent of the near range position up to the point 
when the chirp scattered from the point target appears, after which it will be zero again 
out to the position corresponding the far edge of the swath1. 

The signal is now sampled and placed into one row of an array of memory set aside for 
later processing of the signals to form the image. As the platform travels forward it 
transmits successive ranging chirps and receives echoes from the point target, which are 
also sampled and loaded into the computer memory. There will be as many sampled 
range lines loaded into memory as there are transmitted pulses while the target is in view 
of the radar. Fig. D.1 shows symbolically what the computer memory might look like. It 
will hold zeros everywhere except where there is a sample of the returning chirp. In the 
figure we have extended the azimuth dimension of the memory well beyond the number 
of returns from the single point target. It represents the landscape corresponding to a 
significant portion of spacecraft travel. The number of memory cells in the azimuth 
direction that contain samples of the echoes from the point target is indicative of the 
actual azimuth beam pattern of the transmitting antenna. 

There is an assumption in Fig. D.1: that is that the distance to the point target is the 
same for each range line. We know that not to be the case, as the target will be further 
from the radar when just acquired, and when last seen, than it will be at broadside. We 
will return to that actual situation later. 

                                                 
1 The signal received is actually modulated onto a carrier at the operating frequency (wavelength) of the 
radar. It is shifted down to so-called base band for processing, which is the form assumed in the 
descriptions given in this Appendix. 
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Fig. D.1. Energy (shaded cells) associated with the succession of backscattered chirps from a 
point target over the extent of the synthetic aperture 

 
 
As seen in Fig. D.1 the backscattered energy from the point target is smeared out in 

range and azimuth. Our goal is to compress it in both directions so that it occupies just a 
single memory cell, and thus looks like the image of a point target. That two stage process 
is depicted in Fig. D.2. We now examine details of how the two compressions are carried 
out. 
 

 
 
Fig. D.2. Showing the compression of the chirp energy in Fig. D.1 into a point as a two stage 
process involving the sequence of range compression followed by azimuth compression 
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D.2  Range Compression 
 
Fig. 3.7 shows that range compression is performed by correlating the received chirps 
against a replica of what was transmitted. We now examine how that correlation 
operation is carried out. Although strictly not important for what is to follow, the cross-
correlation of two signals s(t) and c(t) is given by 
 
 ∫ ≡+= )(*)()()()( tctsdtctstr ττ  
 
where we have used the symbol * to represent the correlation process2. Very importantly, 
the correlation theorem says that correlation in the time domain is equivalent to 
multiplication of the Fourier transforms of the two signals, provided one transform is 
complex conjugated3. Thus if 
 )(*)()( tctstr =  
 
then )()()( * ωωω CSR =  
 
in which  )}({)( trR F=ω  
 )}({)( tsS F=ω  
 )}({)( tcC F=ω  
 
where the symbol F{..} means the Fourier transform operation and the smaller * as a 
superscipt indicates complex conjugate. The result of the Fourier transform is complex in 
general. 

The correlation theorem makes the correlation of the scattered signal s(t) and the 
replica of what was transmitted c(t) simple to perform. In fact, when the celebrated fast 
Fourier transform algorithm is used, the number of mathematical operations needed to 
perform the correlation in the so-called frequency domain is considerably smaller than if 
the correlation were done directly. Note that there needs to be an inverse Fourier 
transform operation as well to go from the result of the product R(ω) back to its time 
domain version r(t). The Fourier transform of the chirp replica does not need to be 
performed each time it is used. It is sufficient to compute that operation once, take its 
conjugate, and store the result for use in range compression. Fig. D. 3 summarises those 
operations as they would be performed in the range compression step of a SAR correlator. 

Although the correlation integral above has been shown as operating on continuous 
time functions, in practice we are dealing with sampled signals so that the Fourier 
operations indicated in Fig. D.3 are applied to the samples of the received chirps. 
Likewise the stored chirp conjugate Fourier transform is in the form of samples. In the 
figure we have shown a continuous version of what the sample sequences would look 
like, rather than the samples themselves. Finally, the compressed chirp in Fig. D.3 is 
shown as it emerges from the result of the inverse Fourier transform; it is then envelope 
detected so that only its overall shape remains as the result of the compression. The 
envelope can be seen in Fig. D.5. 

                                                 
2 Note that correlation is commutative: ).(*)()(*)( tstctcts =  
3 When we take the Fourier transform of a time domain signal we say that we have created its frequency 
domain version. 
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Fig. D.3. Range compression in the frequency domain 
 
 
D.3  Compression in Azimuth 
 
In principle, compressing the signal in the azimuth direction involves the same processes 
as in range compression. Recall from Sect. 3.6 that the motion of the platform induces a 
Doppler chirp on the transmitted waveform. If we can estimate what the Doppler induced 
chirp looks like then it can be used as a local replica in the correlation operation, just as 
for range compression. 

There are two parameters of a chirp, apart from the centre frequency. They are its 
duration and rate. From Sect. 3.6 we can see that these are given by 

 
 vLT aa /=  (D.1a) 
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which depend on the platform velocity v, the length of the synthetic aperture La and the 
broadside distance to the target Ro; La in turn is also dependent on the slant range at 
broadside. Therefore, while we can, in principle, use correlation against a replica of the 
Doppler induced chirp to compress in azimuth, care needs to be taken with the two 
primary parameters of the chirp. If any of the factors that define those parameters change 
with time then the quality of the compression will be compromised. Moreover, Ro is 
different for each target position across the swath, so different estimates of β will be 
needed according to where the target, or pixel, is located. Fortunately, the important 
parameters – the Doppler centroid and rate β – can usually be estimated from the signal 
itself; the centroid is important if there is squint in the radar, as discussed in Chapt. 3. 
Usually, depending on the swath width, several values of those parameters are estimated, 
corresponding to sets of azimuth blocks across the swath. 
 
 
D.4  Look Summing for Speckle Reduction 
 
As discussed in Sect. 4.3.1 the coherent nature of the radiation used in radar means that 
the recorded data is heavily speckled. In some applications we work with the speckled 
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imagery (using single look complex products for example) but most often speckle is 
reduced to improve the signal to noise ratio and make images easier to interpret visually. 
Speckle can be reduced by filtering the final image product, as was demonstrated in Fig. 
4.17. However, it can also be reduced in the frequency domain during azimuth 
compression. Although that limits the flexibility of the final product (since the user is 
unable to revert to single look imagery) it is the approach most commonly used in SAR 
processing since it takes separate (and assumed independent) samples of the same 
resolution cell on the ground when forming the average. In contrast when speckle is 
reduced by averaging adjacent cells in the image itself one must assume that there is no 
significant variation in the average backscattering coefficient from cell to adjacent cell. 

The process is very straightforward, but to appreciate the steps involved it is important 
to look at the Fourier transform of a chirp – i.e. its frequency spectrum. That is the output 
of the Fourier transform step in Fig. D.3 just before it is multiplied by the conjugate 
replica of itself to produce the compressed output. 

The Fourier transform is a complex quantity, having both an amplitude and a phase 
term; we need only look at its amplitude here. Fig. D.4 shows what the amplitude of the 
chirp spectrum looks like. Essentially, it is a constant between a lower bound 
approximately equivalent to the lowest frequency in the chirp and an upper bound 
equivalent to the highest frequency in the chirp. The difference between those bounds is 
the bandwidth we saw in Chapt. 3. 
 

 
Fig. D.4. The Fourier transform of the chirp – called its frequency spectrum 
 

 
Fig. D.5 shows the result of correlating the chirp against the replica of itself, except 

here the chirp is represented by its spectrum of Fig. D.4 rather than its time domain plot. 
The three examples given are for differing chirp bandwidths. As seen, the wider the chirp 
bandwidth the narrower the compressed pulse – that leads to better azimuth resolution, as 
discussed in Sect. 3.3. The compressed pulse is shown in two forms: as it comes from the 
correlator with the description in (3.4), and after envelope detection, which means just its 
overall envelope amplitude is displayed. The envelope detected form is used in practice. 
Although not readily discerned from the diagram, the effective width of the compressed 
pulse, and its envelope, is equal to the reciprocal of the chirp spectrum bandwidth. If the 
bandwidth is reduced by four then the compressed pulse width broadens by four. 

Now consider some calculations involving an actual space borne SAR mission. For 
Seasat in 1978 the chirp bandwidth was 19MHz. From (3.5a) that shows the slant range 
resolution to have been 7.89m. At an incidence angle of 20o at the earth’s surface that 
gave a ground range resolution of 23m. The azimuth length of its antenna was 10.7m, 
which would suggest from (3.8) a maximum azimuth resolution of 5.35m; in practice the 
azimuth resolution was a little poorer than that, but this figure suits our purposes. 
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The question is, why is there such a disparity in the ground range and azimuth 
resolutions? We have rectangular pixels with a 4:1 aspect ratio rather than square pixels, 
which would be much more useful. The answer lies in the means by which speckle was 
reduced in Seasat imagery. It was a “four look” system, in the way we will now 
demonstrate, that halves the speckle power if the azimuth resolution is degraded to about 
22m (i.e. four times reduction in azimuth resolution). 

 

 
 (a) (b) (c) 
 

Fig. D.5. Illustrating the trade off between chirp bandwidth and the width of the compressed pulse 
after correlating with a replica of the chirp: (a) chirp spectrum (b) compressed pulse (c) envelope 
of the compressed pulse 
 
 

Learning from Fig. D.5, if we use only one quarter of the available azimuth chirp 
spectrum then the compressed width after correlation will be four times that if the full 
chirp bandwidth were used. We could therefore cut up the chirp spectrum into four equal 
pieces and correlate each to generate a compressed pulse. In the case of Seasat that would 
give a pulse width equivalent to about 22m rather than the 5.35m that results if the full 
azimuth spectrum is used. Four of those individual compressed pulses are produced. 
Since each came from a different part of the original chirp spectrum they can be regarded 
as independent samples that can be averaged to reduce speckle in the radar image. 
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Fig. D.6 shows how four “look filters” are used to select the four independent segments 
of the chirp spectrum, each of which is separately correlated; the set is then summed 
(averaged) to reduce speckle. The subsequent image is then said to be four look averaged. 
In principle any number of looks could be used – specified at the time of the SAR system 
design – but most space craft systems operate with between about 3 and 6 looks. 

As an alternative to look summing by segmenting the chirp spectrum as above, single 
look data could be produced with rectangular pixels. In the case of Seasat they would be 
23m in range and 5.35m in azimuth. Four azimuth pixels could be averaged in the 
azimuth direction, as discussed earlier, to give 23x22m pixels. 

 

 
 
Fig. D.6. Segmenting the azimuth spectrum into four non-overlapping portions for look summing 
to reduce speckle; not shown in this diagram is a square law, envelope detector step at the outputs 
of the four paths just prior to the look summing (averaging) 
 
 
D.5  Range Curvature 

 
We now examine the assumption that the range to the point target doesn’t change 
significantly over the duration of the period that the target is irradiated. From Fig. D.7 the 
slant range to the target is well approximated by 
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so that the largest difference between the actual range to the point target, and the value Ro 
assumed in the above treatment, is 
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Fig. D.7. Geometry for determining the maximum change in slant range 
 
 
Is this significant? That depends on whether, from the first line of the target energy shown 
in Fig. D.1 through to broadside, the change in range is greater than the equivalent of one 
of the memory cells in the range direction. Those memory cells in range are equivalent to 
the width of the compressed range chirp – i.e. they are equivalent in metres to the slant 
range resolution of the radar. Therefore the test of whether the maximum change in range 
to the point target over the synthetic aperture length is significant is to compare it to the 
slant range resolution. We thus define the ratio  
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where rr  is the slant range resolution. We can make this expression more meaningful by 
noting that the synthetic aperture length is the azimuth beamwidth of the antenna (λ/la) 
multiplied by the distance to the target at broadside Ro; thus aoa lRL /λ= . Moreover, 
since 2/aa lr =  we can substitute for la in this last expression so that (D.3) can be written 
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This is a useful measure since it allows us to compute the ratio of the change in range to 
slant range resolution in terms of the system resolutions and the broadside slant range. 
For Seasat, with ra=6.25m (the actual value), rr=7.89m, λ=0.235m and Ro=850km we find 
M=4.8. Thus, for Seasat data the range lines in Fig. D.1 will be 4.8 resolution cells further 
away from the radar when the target is first encountered, and when last seen, compared 
with broadside. The received chirp energy is therefore “curved” in the memory as 
depicted in Fig. D.8a. When compressed in range, which it still can be done because that 
is an operation carried out on range lines separately, the result is as shown in Fig. D.8b. 
Clearly, if we were now to attempt azimuth compression errors would occur, unless the 
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curvature of the signal were corrected. Not surprisingly the effect is referred to as range 
curvature. 

In contrast to Seasat, ERS-1 does not suffer significant range curvature. For ERS-1 
rr=6.6m, ra=6.25m, Ro=853km, λ=0.054m, which gives M=0.3. It can be seen that the 
major difference between the two missions is the wavelength. In general, we can 
conclude that range migration is more likely to be a problem with long wavelength radars. 
 

 
 
 (a) (b) 
 
Fig. D.8. Effect of range curvature (a) before and (b) after range compression 
 
 

In addition to migration of the chirp energy in the range memory locations resulting 
from the variation in range to the point target, there can also be range variations caused 
by yaw of the spacecraft and other ephemeris variations, and by the rotation of the earth. 
Sometimes these additional mechanisms are said to lead to range walk. 

In general the distribution of energy from the point target after range compression will 
not look parabolic as suggested in Fig. D.8a, but will have a more complex migration 
through the memory, much as depicted in Fig. D.9. The general effect is called range 
migration and the correction procedure is called range migration correction. 

 
 

D.6  Side Lobe Suppression 
 
Fig. D.5 shows that the compressed pulse has side lobes adjacent to the main pulse; it is 
possible therefore that the side lobes will be interpreted as false point targets adjacent to 
the one being imaged. For distributed scattering media, which is the more common 
situation in remote sensing, the presence of significant side lobes means that energy from 
a target within the designed resolution cell is distributed over that cell and its neighbours 
in the reconstructed image data. That is the classical point spread function effect 
experienced with any imaging device. The side lobes of the sinc function shown in Fig. 
D.5 are quite large; the first are just 13dB (twenty times) lower than the main lobe. That 
energy contributes to the neighbouring pixel response. 
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Fig. D.9. Range migration in general 
 
 
Although not easily demonstrated here, it is well known in signal processing that the side 
lobes are related to the sharp turn on and turn off of the ranging chirp in Figs. D.3 and 
D.4. If the turn on and off can be smoothed the side lobes can be reduced. A common 
way to do that is to multiply the chirp by a weighting or window function, of which many 
candidates are available. A simple and often used weighting function is the Hann window 
or “raised cosine” defined by 

 
 2/2/)/2cos(5.05.0)( τττπ ≤≤−−= tttw  (D.5) 

 
where τ is the duration of the chirp that is to be smoothed. Multiplying the chirp of (3.3) 
by (D.5) leads to the smoother version shown in Fig. D.10. 

 
Fig. D.10. Original and weighted chirp signals 
 
 

If smoothed chirps are used for the ranging pulses instead of abrupt ones the result of 
the compression step (for both the range and azimuth operations) will be as shown in Fig. 
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D.11. The side lobes are significantly reduced (to about 32dB below or just over 1000 
times smaller than the main lobe), minimising the leakage of energy into adjacent 
resolution cells. This is at the expense of broadening the main lobe and thus degrading 
slightly the spatial resolution of the system. 

To gauge the effect on the appearance of the final image product, Fig. D.12 shows a 
sequence of 9 pixels along a range line centred on a point target, both with and without 
chirp smoothing. They were created by averaging the compressed chirps of Fig. D.11 
over windows equal in size approximately to the range resolution cell. As observed, 
without smoothing significant leakage of the point target energy into adjacent resolution 
cells occurs, whereas with smoothing it is only in the immediate vicinity of the point 

version of (D.5). Others are available that lead to greater side lobe suppression. 

 
 
Fig. D.11. Compressed chirp detail (one side) without (top) and with (bottom) Hann weighting 

 

 
 
Fig. D.12. Adjacent pixel brightnesses in a point target response along a range line using 
unweighted chirps (top) and Hann weighted chirps (bottom) 
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target that leakage occurs. Because of the ability to constrain the point spread function in 
this manner, SAR correlators employ weighted chirps, although not all will use the simple 



APPENDIX E 
 
BACKSCATTER AND FORWARD SCATTER ALIGNMENT 
COORDINATE SYSTEMS 
 
When dealing with single polarisation radar the coordinate system used to describe the 
propagation of the forward and scattered waves is not especially significant. However, 
when multi-polarisation radar is of interest it is important to be clear about coordinate 
conventions for describing wave propagation, otherwise confusion can arise in respect of 
target descriptions. Unfortunately, there are two coordinate systems in common usage. 
They are related but have one significant difference, as will be seen in the following. In 
any given problem it is important to know and identify which system is being used. 

The starting point is the convention adopted for describing the orientations of the two 
polarisation components of the electric field with respect to the direction of propagation. 
We will use the names horizontal and vertical polarisation for the two orthogonal 
components, but any pair at right angles to each other can be used. More precisely we 
should call our components the perpendicular and parallel polarised components, as 
discussed in Sect. 2.10, but we will stay with the horizontal and vertical descriptors 
because of common usage. 

Fig. E.1 shows the respective orientations of the horizontal and vertical components of 
a field and the direction of propagation. As implied, the convention is that rotation from 
the orientation of the horizontal component to that of the vertical component should be in 
a clockwise sense when looking in the direction of propagation. This is known as the right 
hand rule since it emulates the forward motion of a screw driver when rotating it 
clockwise. 

 
Fig. E.1 The coordinate convention for a polarised ray propagating in the r direction 
 

 
Fig. E.2 shows such a ray incident on a target. Although it is not highly significant for this 
discussion, both components undergo a phase reversal, leading to a reversal of their 
polarisation directions. That is because of the negative reflection coefficients that describe 
scattering, as seen in (5.3). We ignore those changes here. The wave propagates beyond 
the target, obeying the same conventions of the right hand rule in Fig. E.1. This is a 
natural coordinate system description for the propagation of the wave under these 
circumstances and is referred to as forward scatter alignment (FSA) because of the 
forward scattering nature of the wave propagation, as drawn. It is also said to be a 
description of the propagation in wave coordinates, since the coordinate system is fully 
consistent with the wave propagation conventions of Fig. E.1. 
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Fig. E.2 Forward scattering from a target, maintaining the same coordinate convention; this is 
called forward scatter alignment 

 
 
In Fig. E.3 we show the reflected wave as backscattering – i.e. the scattered path is 

back to the radar antenna, which is the situation we have with monostatic radar. Since we 
just fold the outgoing path of Fig. E.2 over to align with the backscattered direction, as 
shown in Fig. E.3a the formal FSA convention is still acceptable as a descriptor of the 
back propagating wave. It is, however, more usual in (monostatic) radar theory to 
describe all propagation – both outwards and backscattered – in terms of the single vector 
r that points along the propagating pathway of the transmitted or outgoing ray. In the FSA 
case there are two of those vectors – one pointing in the transmitted direction and one in 
the backscattered direction. 

The consequence of having just one directional vector for propagation (in the forward 
direction) is that the returning wave is travelling in the –r direction. To make that possible 
in terms of the right hand rule of Fig. E.1, the sense of one of the components of the 
backscattered wave has to be reversed. Conventionally we reverse the horizontal 
component as shown in Fig. E.3. This system is referred to as backscatter alignment 
(BSA) and, while it appears a little awkward, it is the most natural system when dealing 
with backscatter problems as Fig. 3.18 demonstrates. It also aligns with the fact that a 
single antenna is used for both transmission and reception and so we sometimes say the 
wave is described in terms of antenna coordinates. 

Since the difference between the two systems lies in the opposite orientations of the 
horizontal received component of the field, the scattering matrix expressed in FSA can be 
derived from that for BSA by reversing the polarities of elements concerned with 
reception in the horizontal component – i.e. the entries on the first row. This is effected 
by the transformation 
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Fig. E.3 (a) Maintaining forward scattering alignment for backscattering and (b) using a 
backscatter alignment, so that there is a single propagation vector 
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eccentricity, 32 
ellipticity, 32 
inclination angle, 32–33 
semi-major axis, 32 
semi-minor axis, 32 
tilt angle, 32 

Emission 
atmosphere, 320 
 

 356 Index

Dihedral corner reflector, 100, 102 

dihedral, 100, 102, 116, 117 

Complex numbers, 6, 321 

Coherency matrix, 39, 86–89, 274 

complex plot, 207–208 



rough surfaces, 314–315 
sea surface, 316–318 
still water, 313 

Emissivity, 310 
harmonic coefficients, 317 
vector, 311 

ocean, 316 
Emissivity (of a black body), 13 
Entropy, 292 
Euler’s theorem, 323 
Exponential distribution, 123–124, 276 
Extinction coefficient, 153 
Extinction cross section, 155 
 
F 
Faraday rotation, 19–20, 85, 106–108 
Faraday rotation angle, 107 
Far field, 26–28 
Far swath, 55 
Filter vector, 204 
Flat earth phase, 186–187 
Forward scatter alignment coordinates, 

81, 261, 351 

Freeman-Durden decomposition, 284 
Frequency, 24 
Frequency domain, 341 
Fresnel reflection coefficient, 137, 313 
 
G 
Galileo, 233 
Gamma distribution, 124 
Gamma function, 124, 278 
Generalised scattering coefficient,  

205 

artificial control points, 115 
high relief, 118–120 
low relief, 115 
natural control points, 115 

foreshortening, 111–113 
layover, 111–113 
near range compressional, 109–111 
relief displacement, 111–113 
S bend, 110 
shadowing, 111–113, 115 

Geometric optics, 22 
Global Navigational Satellite System 

(GNSS), 115, 233, 258 
Glonass, 233 
GPS, 115, 233, 258 
Gradient operator, 251 
Gravity waves, 173 
Ground range resolution, 56–57, 59–60 

bistatic, 237–242 
general, 251–252 

 
H 

Hitchhiking, 258 
Hyperspectral, 266 
 
I 
Imaginary number, 321 
Impedance of free space, 24, 77 
Incidence angle, 56 
Inclined baseline, 190–191 
Inner product, 331 
In-SAR, 183–185 
Instantaneous frequency, 64 

constructive, 48 
destructive, 48 

Interferogram, 186 
Interferometer, 183 
Interferometric cartwheel, 257 
Interferometric coherence, 302 
Interferometric phase angle, 184 
Interferometric phase factor, 185 
Interferometry, 181 

repeat pass, 192–193 
single pass, 192–193 

Internal waves, 178 

Ionosphere, 2, 19–20, 106 
electron density, 107 

Isorange ellipses, 260 
Isotropic radiator, 11, 75 
 
J 
Joint image complex coherency  

matrix, 206 
Jones matrix, 261 
Jones vector, 33–36 

357 Index

H-α plot, 292, 297, 298 

Interference, 48 

Inverse Fourier transform, 215, 341 

Fourier transform, 215, 341 

bistatic, 259–260 

Geometric correction, 115–120 

Geometric distortion



 

K 
Kennaugh matrix, 90, 96, 262 
Kronecker product, 39, 329 
 
L 
Lambertian surface, 140 
Lee sigma filter, 129 
Left hand rule, 30 
Legendre expansion coefficients, 225 
Legendre polynomials, 224–225 
Lexicographical ordering, 85 
Look angle, 57 
Look averaging, 66 
Look filters, 345 
Looks, 66, 68, 124, 128 
Look summing, 342–345 
 
M 
Magnetic field, 23 
Mahalanobis distance, 278 
Margin of safety, 69 
Matrix(ces), 6 

adjoint, 332 
adjugate, 332 
characteristic equation, 333 
cofactor, 331 
conjugate, 333 
degenerate eigenvalues, 293 
diagonal elements, 329 
diagonal form, 335 
diagonalisation, 334–335 

Hermitian, 333 
identity, 329–330 
inverse, 332 
off-diagonal elements, 329 
orthogonal, 332 
positive definite, 334 
positive semi-definite, 334 
pre-multiplication, 328 
principal diagonal, 329 
principal minor, 290 

singular, 332 
square, 329 
symmetric, 332 
trace, 329 

transpose, 330 
unitary, 333 

Mean value smoothing, 128 
Metallic plate reflector, 98, 116 
Metric prefixes, 337 
Mie scattering, 268 
MIMO radar, 234 

coherent, 235 
statistical, 235 

Monostatic radar, 2, 53, 54 
Mueller matrix, 90, 262 
Multiplicative noise, 125 
Multistatic radar, 234 
 
N 
Near field, 26–28 
Near swath, 55 

 
O 
Orthogonal baseline, 183 
Outer product, 331 
 
P 
Partially polarised radiation, 40–41 
Passive bistatic radar, 258 
Passive coherent location, 258 

Passive radar calibrators, 116–117 
Passive remote sensing, 53 
Permanent scatterers, 202 
Permeability, 136 

free space, 150 
Permittivity, free space, 150 
Persistent scatterers, 202 

Phase constant, 25 
Phase difference, 29 
Phase unwrapping, 188–190 
Phasor, 26 
Photointerpretation, 266–267, 271 
Physical optics, 22 
Pi/4 mode, 104 
Ping pong mode, 191–192 
Planck’s constant, 12 
Planck’s law, 12 
Plane of incidence, 28 

 358 Index

Nepers per metre, 152 

eigenvalue, 289, 333–334 
eigenvector, 292, 333–334 

rank, 290, 335 

Passive microwave remote 
sensing, 19, 309 

Phase angle, 24, 26 



Plane wave approximation, 184 
Poincaré sphere, 42–44 
Polarimetric active radar calibrator 

(PARC), 118 
Polarimetric interferometric SAR, 

202–208 

circular, 36–38, 99 
coherence tomography, 217–229, 

306 
diagonal, 105 
horizontal, 22, 29 
left circular, 30 
left elliptical, 30 
parallel, 28 
perpendicular, 28–29 
phase difference, 281–283 
right circular, 30 
right elliptical, 30 
rotation, 80 
synthesis, 81, 92–103 
vertical, 22, 29 

PolInSAR, 202–208 
Power density, 11 

average, 24 
peak, 24 

Power reflection coefficient, 137 

Prior probability 
conjugate prior, 277 
non-informative, 277 

Pulse compression radar, 58–61 
Pulse repetition frequency (PRF), 55, 

66–68 
 
Q 
Quadrature polarisation, 104 
Quantitative analysis, 265, 273–274 
 
R 
Radar cross section, 75–77, 93, 97 

bistatic, 236 
dielectric sphere, 268 
flat plate, 161 
thin wire, 168 
tree trunk, 164 

Radar image types, 127–128 
Radar range equation, 75–77 

bistatic, 236–237 
Radar scattering coefficient, 78–80 
Radiometer, 309 
Radiometric distortion, antenna 

effects, 133–134 
Rain, 20 
Random volume over ground model, 

306 
Range ambiguity, 67 
Range compression, 341–342 
Range curvature, 345–347 
Range migration, correction, 347 
Range resolution, 71 

Range walk, 71, 347 
Rayleigh criterion, 139 
Rayleigh distribution, 126, 276 
Rayleigh-Jeans law, 18 
Rayleigh scattering, 268 
Real aperture radar, 62 
Real number, 321 
Reciprocity condition, 85, 87, 88, 108 
Reflection coefficient 

Reflection symmetry, 87, 89 
Refractive index, 136 
Relative permittivity, 136, 150 
Resolution cell, 4, 68 
Resolution element, 4 
Right hand rule, 23, 30 
Root mean square, 25 

 
S 
Scalar product, 45 
Scanning cell, 70 
ScanSAR, 65, 68–71 
Scattering 

bistatic, 261–263 

bridge, 165 
corner reflector, 136 
dielectric cylinder approximation, 

163 
dielectric dihedral, 167 

359 Index

Plane wave, 22 

Polarisation, 28–33 

Propagation constant, 150, 325 

Bragg, 140, 285 

Rough surface, 102, 139 

vertical polarisation, 137–139 
horizontal polarisation, 137–139 

Range spectral filtering, 218, 229–231 

Poynting vector, 45, 46 



diffuse, 139 
dihedral, 269 
dihedral corner reflector, 162–167 
double bounce, 162, 166 

resonant elements, 167–169 
rotated dihedral, 270 
sea ice, 178–180 
sea surface, 172–177 
specular, 139 
strong, 135 
sub-surface, 135 
surface, 135 
tree trunk, 163 
triple bounce, 166–167 
volume, 135, 153–160 

Scattering coefficient, generalised, 205 
Scattering loss coefficient, 153 
Scattering matrix, 81–85, 89–90,  

279–280 
dielectric dihedral, 167 
rough surface, 102, 146 

Sea surface wave power spectrum, 
173, 174 

Secondary radar, 234 
Semi-empirical model, 141, 142 
Shadowing, bistatic, 259–260 
Shuttle Topography Mapping Mission, 

191, 192 
Side lobe, suppression, 347–349 
Side looking airborne radar (SLAR), 

57, 62 
Sigma nought, 78 
Sigma nought matrix, 80–81 
Signal to noise ratio, 197 
Sinc function, 59 
Sinc function side lobes, 60 
Sinclair matrix, 82 
Single look complex data, 128 
SI symbols, 337 
Slant distance, 61 
Slant range, 55 

imagery, 113–114, 116 
resolution, 56, 59–60 

Small perturbation model, 140 
Solar constant, 17 

Span, 85, 287, 300 
Spatial wavelength, 170 
Speckle, 66, 68, 120–127 

bright targets, 132 
improved Lee sigma filter, 130, 

131 
Lee sigma filter, 129 

Speckle statistics, 122 
Spectral power density, 12 
Spectral radiant exitance, 12 
Specular surface, 139 
Spotlight mode, 71–74 
Squint, 71–74 

Standard mode, 191–192 

Stefan-Boltzmann law, 16 
Stokes matrix, 90 
Stokes parameters, 38 
Stokes scattering operator, 94, 96, 97, 

102, 279–280 
Stokes vector, 38, 90–92, 94 

brightness temperature, 311 
modified, 40 

Structural decomposition, 283–302 
Sub-surface imaging, 153 
Supervised labelling, 271 
Surface correlation length, 141 
Surface height variation, 140–141 
Surface penetration, 148–153 
Swath, 4 
Swath width, 54, 66–68 
Synthetic aperture, 3 
Synthetic aperture radar, 61 
 
T 
TanDEM-X, 256 

Pauli basis, 85 
span, 85 

Terrahertz radiation, 3 
TerraSAR-X, 256, 260 
Thermal equilibrium, 312 
Tomographic aperture, 209 

Fourier transform, 215–216 

 360 Index

facet, 161–162 
hard target, 135, 160–170 
Lambertian, 140, 314 

Speckle filtering, 128–133 

Squint angle, 71 

Stefan-Boltzmann constant, 16 

Target vector, 85–86, 274 

Tomography, 209–215 

polarisation coherence, 217–229 



Topographic change, 198–202 
Topographic phase, 221 
Total electron count, 107 
Transmission coefficient, 137,  

149 
Transponder, 117 
Transverse electromagnetic (TEM) 

wave, 23 

 
U 
Unit vector, 23, 29 

antenna, 45 
Unpolarised radiation, 40–41 

Unsupervised labelling, 271, 274 
 
V 
Vector, 6 

column, 327 

product, 46 
row, 327 
transpose, 330 

Vegetation bias, 222 
Velocity of light, 12 
Volume attenuation coefficient, 160 
Volume extinction, 159–160 
 
W 

Wave coherency matrix, 39 
Wave coordinates, 261 
Wave coordinate system, 351 
Wavefront, 22 
Wave number, 25 
Wave velocity, 25 
Window function 

Hann, 348 
raised cosine, 348 

Wishart distribution, 278 

361Index

Trihedral corner reflector, 101, 116 

Unpolarised scattering, pedestal, 270 

Water cloud model, 155–157 

magnitude, 23 
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