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Preface

Ice sheets, ice shelves, ice caps and glaciers are active, dynamic components
of the climate system of the Earth, and they deserve the same scientific at-
tention as the atmosphere and the oceans. However, while the dynamics of
the atmosphere and the oceans have been studied intensively and literature
on these topics abound, awareness of the importance of ice dynamics within
the big picture has increased only recently. Just as an example, the widely
acclaimed and valued book Geophysical Fluid Dynamics by Pedlosky (1987)
states that “the subject has tended to focus on the dynamics of large-scale
phenomena in the atmosphere and the oceans”, and, consequently, only these
are presented in the book. On the other hand, glaciology is an established
field of research, and glacier dynamics has been dealt with in the literature
to some extent; however, with a certain focus on smaller-scale phenomena.
Treatments of the large-scale dynamics of ice sheets are mainly found in the
specialist literature.

In this book, we try to bridge the gap between the conventional under-
standings of geophysical fluid dynamics and glacier dynamics. Chapter 1 puts
the subject into the wider context of climate research. In Chapter 2, the
mathematical properties of vectors and tensors are reviewed briefly. Chapter 3
presents a solid, continuum-mechanical background, which is the foundation
for the subject matter of the remainder of the book. This chapter goes further
than the immediate needs of ice sheet and glacier dynamics in order to provide
a framework applicable to a great variety of related problems in geophysics (in-
cluding the above-mentioned large-scale dynamics of the atmosphere and the
ocean), physics and engineering sciences. The material properties of polycrys-
talline ice, as it occurs in land ice masses on Earth, are discussed in Chapter 4.
The core of this book is made up by Chapters 5–7, devoted to the dynamics
of ice sheets, ice shelves and glaciers, respectively. Special emphasis is put
on systematically developing hierarchies of approximations for the different
systems, and suitable numerical solution techniques are discussed. Chapter 8
is concerned with simple models for glacial isostasy, the reaction of the solid
Earth to temporally varying ice loads. In Chapter 9 some more advanced
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and demanding topics of current research related to ice dynamics (induced
anisotropy, compressible firn, polythermal glaciers) are treated. Chapter 10
concludes the book.

The content is based, largely, on lectures about ice-sheet/glacier dynam-
ics and numerical models in glaciology developed by the authors over the
past years. These lectures are offered jointly at the Hokkaido University, Sap-
poro, and the Swiss Federal Institute of Technology (ETH) Zurich, in associa-
tion with the International Antarctic Institute (IAI), an international, multi-
campus programme in cryosphere science education (http://wwwearth.ees.
hokudai.ac.jp/IAI/, http://www.iai.utas.edu.au/). The level of treatment ca-
ters mainly to graduate students, post-graduate students and researchers, but
most of the material should also be understandable for motivated upper-level
undergraduate students.

In order to eliminate one source of distraction especially for student read-
ers, we have refrained from giving detailed references to original literature in
the style of scientific articles. Instead, references have been kept at a reason-
able minimum, and whenever possible, overview articles and textbooks have
been given preference. An exception is Chapter 9, in which less well estab-
lished topics are discussed, and which is more biased by the authors’ own
perspective than the material in the preceding chapters. The literature list at
the end of the book is also understood as a suggestion for supplemental and/or
further-reaching reading. We apologize to those colleagues whose publications
are not quoted.

Hutter and Jöhnk (2004) end the preface of their book Continuum Meth-
ods of Physical Modeling with the statement that “writing a book can never
be finished, a book has to be abandoned!” We cannot put it in better words.
Abandoning this book is what we are now going to do, well knowing that it
is not perfect, but nevertheless hoping that a variety of readers with back-
grounds in glaciology, climate science, geophysical fluid dynamics, continuum
mechanics, physics and applied mathematics will find it useful and inspiring
in the years to come.

Sapporo, Japan; Zurich, Switzerland Ralf Greve
June 2009 Heinz Blatter
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1

Ice in the Climate System

1.1 The Terrestrial Cryosphere

The frozen part of the terrestrial climate system is referred to as the cryosphere.
The cryosphere consists of several subsystems, namely ice sheets, ice shelves,
ice caps, glaciers, sea ice, lake ice, river ice, ground ice and snow. Ice sheets
are ice masses of continental size (area greater than 50,000 km2) which rest
on solid land, whereas ice shelves consist of floating ice nourished by the in-
flow from an adjacent ice sheet, typically stabilised by large bays. Extended
land-based masses of ice covering less than 50,000 km2 are termed ice caps,
and smaller ice masses constrained by topographical features (for instance a
mountain valley) are called glaciers. Sea ice floats on the ocean; however, in
contrast to an ice shelf it forms directly by freezing sea water. Similarly, lake
ice and river ice form directly on lake and river water, respectively. Ground ice
occurs as permafrost, that is, soil that stays in a frozen state year-round. Snow
is precipitation in the form of crystalline water ice, consisting of a multitude
of snowflakes, which accumulate on the ground at a bulk density significantly
less than that of ice.

Ice sheets (with their attached ice shelves), ice caps and glaciers, which
are subsumed as land ice, are the focus of this book. As a common feature,
these ice bodies show gravity-driven creep flow (“glacial flow”), sustained by
the underlying land. This leads to thinning and horizontal spreading, which is
essentially compensated by snow accumulation in the higher (interior) areas
and melting and calving in the lower (marginal) areas. Any imbalance of this
dynamic equilibrium leads to either growing or shrinking ice masses.

1.2 Land Ice on the Present-Day Earth

By far the largest single land ice body on the present-day Earth is the Antarc-
tic Ice Sheet (Fig. 1.1), with a total ice volume of 25.7×106 km3, and addition-
ally 0.58×106 km3 of the attached ice shelves (Ross Ice Shelf, Filchner-Rønne

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
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2 1 Ice in the Climate System

Fig. 1.1. Satellite composite image of the Antarctic Ice Sheet. EAIS: East Antarctic
Ice Sheet, WAIS: West Antarctic Ice Sheet, R: Ross Ice Shelf, FR: Filchner-Rønne
Ice Shelf, A: Amery Ice Shelf, SP: South Pole. Image size is approximately 6500 km×
5600 km. (Credit: NASA Goddard Space Flight Center; public domain.)

Ice Shelf, Amery Ice Shelf and others). This corresponds to a sea level rise
equivalent of 61.1 m (Church et al. 2001). The ice sheet and the ice shelves
cover an area of 12.4 × 106 km2 and 1.1 × 106 km2, respectively, so that the
mean ice thickness is approximately 2 km. Additional extremes include the
highest surface elevation of the ice sheet of 4.2 km AMSL (above mean sea
level), an annual mean surface temperature which can be as low as −60◦C
in central East Antarctica, and the lowest temperature ever measured on the
surface of the Earth, −89.2◦C, at the Russian Vostok station. Due to these
low temperatures, surface melting over the ice sheet is essentially non-existent,
and the ice sheet loses its mass mainly by drainage into the surrounding ice
shelves, from where it is ultimately released into the Southern Ocean by either
calving (break-off of icebergs) or basal melting (Bentley 2004).

Compared to this, the second present-day ice sheet on Earth, the Green-
land Ice Sheet, appears modest. Its ice volume amounts to 2.85 × 106 km3

or 7.2 m sea level rise equivalent, with an ice-covered area of 1.71 × 106 km2

(Church et al. 2001). Because of the absence of large bays, the ice sheet releases
its outward mass flow directly into the ocean where it reaches the coast, and
consequently ice shelves do not exist. An important difference to the Antarc-
tic Ice Sheet is that, due to the higher surface temperatures, the regions close
to the ice margin experience a considerable amount of melting during the
summer season, so that the mass loss of the Greenland Ice Sheet is divided
roughly equally between melting and calving (Thomas 2004).

Glaciers occur on every continent and in approximately 47 of the world’s
countries, including tropical locations like the Andes in northern South Amer-
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Fig. 1.2. Satellite image of Vatnajökull, Iceland, in September 2002. Image size
is approximately 150 km × 120 km. (Credit: Jacques Descloitres, MODIS Rapid
Response Team, NASA Goddard Space Flight Center; public domain.)

ica, Mount Kilimanjaro (Tanzania) and Puncak Jaya (Western New Guinea,
Indonesia). Examples for ice caps are the two largest European land ice bod-
ies, Vatnajökull in Iceland (largest by volume; Fig. 1.2) and Austfonna in
Svalbard, Norway (largest by area). More than 160,000 glaciers and approx-
imately 70 ice caps of the world have a combined volume of 0.18 × 106 km3

and cover an area of 0.68 × 106 km2. Their total sea level rise equivalent is
therefore estimated as 0.5 m (Church et al. 2001).

1.3 An Excursion into the Past

In the early Tertiary, the global climate was characterised by tropical-to-
moderate worldwide temperatures and the complete absence of a cryosphere.
However, in the course of the Tertiary, climates slowly cooled. Antarctica
drifted to its current position at the South Pole, and in the early Oligocene
(about 30 million years ago) the Antarctic Ice Sheet started to form as a small
ice cap which retreated and advanced many times until the Pliocene, when
it came to occupy almost all of Antarctica. The Greenland Ice Sheet did not
form at all until the late Pliocene, but developed very rapidly with the onset
of the Pleistocene Glacial Epoch about 2 million years ago.

The Pleistocene lasted until about 10,000 years ago and showed a se-
quence of advances (“ice ages” or “glacials”) and retreats (“interglacials”) of
ice sheets and glaciers, known as glacial cycles. According to the now widely-
accepted Milankovitch theory, the main mechanism at work is due to the pe-
riodic changes in the parameters of Earth’s orbit around the sun (eccentricity,
obliquity, precession), which affect the seasonal and latitudinal distribution of
the solar insolation on Earth and, together with the effects of multiple positive
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Ocean

SE Iceland
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4 1 Ice in the Climate System

and negative feedbacks (atmospheric CO2 content, albedo, ice sheet dynamics
etc.), govern the glacial cycles (e.g., Wilson et al. 2000). Until about 1 mil-
lion years ago, their main period was 41,000 years (obliquity cycle), whereas
thereafter the 100,000-year period (eccentricity cycle) prevailed.

About 21,000 years ago, at the Last Glacial Maximum, ice sheets cov-
ered large parts of North America, Greenland, the European Alps, northern
Europe including Scandinavia and Britain, north-western Eurasia, Patagonia
and Antarctica. Also, there were glaciers in the equatorial Andes, on Mauna
Kea (Hawaii), in New Zealand and Tasmania, on several mountains in east
and central Africa and in the Atlas Mountains. Owing to the additional wa-
ter stored in these ice masses, the sea level was about 120-135 m lower than
today, so that Great Britain was a part of continental Europe, the present
Bering Strait was a land bridge between East Siberia and Alaska, and the
northern Japanese island of Hokkaido was connected to Russian Sakhalin. Af-
ter that, the ice retreated gradually, and at around 10,000 years ago the last
ice age ended, marking the transition to the Holocene Epoch with its current,
interglacial ice cover.

1.4 Ice Sheets, Glaciers and Global Warming

What will be the fate of the present-day ice sheets, ice caps and glaciers in
a warming climate during the next decades and centuries? First of all, it is
important to note that the smaller an ice body is, the faster it can respond
to a change in the climatic conditions (surface temperature, precipitation).
Therefore, the smaller glaciers and ice caps are much more vulnerable to
global warming than the large ice sheets of Antarctica and Greenland. On the
other hand, let us recall that the potential for sea level rise of the glaciers and
ice caps is limited to 0.5 m, whereas that of the ice sheets is almost 70 m.

According to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC), Contribution of Working Group I, Chap. 5
(Bindoff et al. 2007), for the periods 1961-2003 and 1993-2003, global sea level
rises of 1.8± 0.5 and 3.1± 0.7 mm a−1, respectively, have been observed (the
symbol “a” represents 1 year ≈ 31,556,926 s). Estimates of the various con-
tributions suggest that, for the decade 1993-2003, 1.6 ± 0.5 mm a−1 can be
attributed to ocean thermal expansion, 0.77 ± 0.22 mm a−1 to the melting
of glaciers and ice caps, 0.21 ± 0.07 mm a−1 to changes of the Greenland Ice
Sheet and 0.21± 0.35 mm a−1 to adjustments of the Antarctic Ice Sheet. Ev-
idently, the largest contribution among the different types of land ice is from
the small ice bodies, which becomes manifest in a significant trend towards
retreat of glaciers all over the world (see Fig. 1.3 for an example). By con-
trast, the contribution of recent adjustments of the Antarctic Ice Sheet may
even be negative. This surprising finding is due to the fact that the extremely
low temperatures over Antarctica do not allow for significant increases in sur-
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1909

2004

Fig. 1.3. Recession of McCarty Glacier in Kenai Fjords National Park, Alaska,
1909 – 2004. The glacier retreated approximately 20 km during this period and is
not visible anymore in the 2004 photo. (Sources: 1909 photo by Ulysses Sherman
Grant, U. S. Geological Survey Photo Library, public domain. 2004 photo by Bruce
F. Molnia, U. S. Geological Survey, public domain.)

face melting, whereas increased precipitation rates as a consequence of global
warming deposit more snow on the Antarctic Ice Sheet.

IPCC (Fourth Assessment Report 2007, Contribution of Working Group I,
Chap. 10; Meehl et al. 2007) projections for climate change in the 21st century
(more precisely, for the 2090-2099 average relative to the 1980-1999 average)
give an increase of the globally averaged surface temperature in the range
of 1.1-6.4◦C, and a global-average sea level rise in the range of 0.18-0.59 m.
These uncertainties are partly due to the assumption of a variety of greenhouse
gas emission scenarios and partly due to model uncertainties themselves. The
contribution to sea level rise from the glaciers and ice caps is estimated to be in
the range of 0.07 to 0.17 m, the contribution from changes of the surface mass
balance of the Greenland Ice Sheet as 0.01 to 0.12 m and that from changes
of the surface mass balance of the Antarctic Ice Sheet as −0.14 to −0.02 m.
Further contributions are due to ocean thermal expansion, ice sheet dynamics,
thawing of permafrost and anthropogenic change in terrestrial water storage.
Again, the largest contribution among the different types of land ice will likely
be from the small ice bodies. Note that the upper end of the range for glaciers
and ice caps (0.17 m) is approximately one third of their entire sea level rise
equivalent (0.5 m). This illustrates the large vulnerability especially of small
glaciers, many of which will probably have vanished by the end of the 21st
century. In contrast, the large ice sheets are much more inert, and the positive
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contribution of Greenland (due to increased melting and runoff) is expected
to be more or less compensated by the negative contribution of Antarctica
(due to increased precipitation).

On a longer term, if global warming continues, glacier and ice cap retreat
will go on, and the loss of a substantial fraction of their mass is likely within
a few centuries. Also, the Greenland Ice Sheet will finally suffer a significant
decay. For instance, Ridley et al. (2005) found that under climatic condi-
tions resulting from a constant atmospheric CO2 concentration four times the
preindustrial level, after 1000 years only about 40% of the original ice volume
remains. The impact on the Antarctic Ice Sheet as a whole will likely be lim-
ited; however, melting and runoff will finally outweigh increased precipitation,
and due to its huge volume, a contribution to sea level rise of a few metres
within 1000 years is possible.

Poorly understood internal ice flow dynamics make these predictions to
some extent uncertain. For Antarctica, disintegration of attached ice shelves
and accelerating ice streams and outlet glaciers may lead to an acceleration of
the coastward mass flux of the ice sheet and therefore destabilise it. This pos-
sibility has been discussed, in particular, for the smaller part of the ice sheet
in the western hemisphere (West Antarctic Ice Sheet, sea level rise equivalent
of 6 m). For Greenland, surface meltwater percolating to the base may act
as a lubricant on which parts of the ice sheet can glide off into the ocean.
Firm predictions whether such ice-dynamic instabilities are likely for the next
centuries are not possible at present due to inadequate understanding of the
related processes.

Since the cryosphere is an integral part of the climate system, changes of
its state will inevitably feed back on other subsystems. While for the smaller
glaciers and ice caps such feedbacks are limited to local effects due to changes
in albedo and hydrology, ice sheet decay can affect the climate on a global
scale. For the 21st century, the greatest foreseeable problem is the increased
freshwater discharge into the North Atlantic from the melting Greenland Ice
Sheet. Together with increased precipitation rates, this meltwater reduces the
salinity and density of the surface water in the North Atlantic and there-
fore hampers the formation of North Atlantic Deep Water (NADW). Since
NADW plays a vital role in driving the North Atlantic drift (also known as
Gulf Stream), this warm surface current may experience a weakening or even
a complete shutdown, with severe consequences for the climate in Europe and
the whole pattern of heat distribution by the Global Conveyor Belt (e.g., Alley
2000). On longer time-scales, albedo changes due to exposed ice-free land in
Greenland feed back positively on surface temperatures, which can lead to an
accelerated, irreversible disintegration of the ice sheet. Also, major orographic
changes of the Greenland Ice Sheet disturb the atmospheric circulation by al-
tering the stationary Rossby wave pattern. This process may entail a complex
pattern of regional climate change in the Arctic and sub-Arctic areas, which
is difficult, at this point, to assess in detail.
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Vectors, Tensors and Their Representation

2.1 Definition of a Vector, Basic Properties

In mathematics, a vector is defined as an element of a vector space, and a
vector space is a commutative (Abelian) group with a scalar multiplication.
This is an abstract definition which has many possible realisations (numbers,
functions, geometric objects and so on). For our purposes, it is sufficient to
consider one of them, namely the geometric object of an arrow in the three-
dimensional, Euclidian, physical space E . Therefore, in our sense a vector
a ∈ E is an arrow which is characterised by a length and a direction. Physical
quantities which can be described by such vectors are, for instance, velocity,
acceleration, momentum and force. By contrast, scalars are simple numbers
and characterise physical quantities without a direction, like mass, density,
temperature etc.

We will usually denote vectors by bold-face symbols like a, b, c, etc. The
sum

s = a + b (2.1)

of two vectors is obtained by the parallelogram construction, and the scalar
multiplication

p = λa, λ ∈ IR (2.2)

(IR denotes the set of real numbers) is a vector parallel to a with length λ|a|,
where |a| is the length (absolute value, norm) of a (Fig. 2.1).

The direction of a vector can be characterised by the unit vector (length
equal to one) ea = a/|a|. Further, the dot product (inner product)

δ = a · b (2.3)

of two vectors is equal to the scalar given by |a| |b| cos ϕ (where ϕ is the angle
between the two vectors), and the cross product (vector product)

c = a × b (2.4)

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2 2, c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 2.1. Sum s = a + b and scalar multiplication p = λa of vectors.

is equal to the vector with length |a| |b| sin ϕ and direction perpendicular to
the plane spanned by a and b, such that a, b and c form a right-handed
system (Fig. 2.2). Note that

|a| =
√

a · a , (2.5)

a · b = 0 ⇔ a ⊥ b or a = 0 or b = 0 , (2.6)

a × b = −b × a (2.7)

and
a × a = 0 , (2.8)

where 0 denotes the vector of length zero (“zero vector”).

Fig. 2.2. Cross product c = a × b of vectors.

Finally, the dyadic, outer or tensor product ab (sometimes denoted as
a⊗b) is the linear transformation which, when applied to an arbitrary vector
x, obeys the relation

(ab) · x = a(b · x) , (2.9)

where (b ·x) means the dot product (2.3). In other words, the transformation
ab maps the vector x on the vector which has the direction of a and length
(b · x) |a|.
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2.2 Representation of Vectors as Number Triples

Let {ei}i=1,2,3 be a set of unit vectors which are perpendicular to each other
and form a right-handed system. In other words,

ei · ej = δij , (2.10)

where δij is the Kronecker symbol defined as

δij =
{

1 , for i = j ,
0 , for i �= j ,

(2.11)

and
ei × ej = ek , (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} . (2.12)

We will refer to such a set {ei} as an orthonormal basis (also Cartesian basis).
An arbitrary vector a can then be uniquely written as

a = a1e1 + a2e2 + a3e3 =
3∑

i=1

aiei , (2.13)

where the ai are real numbers. With Einstein’s summation convention, which
says that double indices (here i) automatically imply summation, this can be
written in compact form as

a = aiei . (2.14)

Since the coefficients ai are unique for a given basis {ei}, it is possible to
represent the vector a by these coefficients. It is usual to arrange them in a
column (number triple) and write

a{ei} =

⎛
⎝a1

a2

a3

⎞
⎠ , (2.15)

which is to say, the vector a is represented by the components ai with respect
to the basis {ei}. Of course, when a different orthonormal basis {e�

i } is used,
the representation of the vector a will change:

a = a�
i e

�
i , (2.16)

or

a{e�
i
} =

⎛
⎝a�

1

a�
2

a�
3

⎞
⎠ . (2.17)

Note that the vector a is still the same object (arrow in space), whereas its
components have changed. It is therefore of great importance to distinguish
between vectors themselves and their representation as number triples. Mixing
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up these two different things is a notorious source of confusion. Only when a
single basis {ei} is defined from the outset, is a uniquely expressed by

a =

⎛
⎝a1

a2

a3

⎞
⎠ . (2.18)

In components with respect to a given basis {ei}, the dot product (2.3)
can be evaluated as

a · b = aibi , (2.19)

and the ith component of the cross product (2.4) is

(a × b)i = εijk ajbk (2.20)

(summation over j and k). In the latter expression, εijk is called the Levi-
Civita symbol or alternator, defined as

εijk =

⎧⎪⎨
⎪⎩

1 , for (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} ,

−1 , for (i, j, k) ∈ {(1, 3, 2), (3, 2, 1), (2, 1, 3)} ,

0 , otherwise (at least two indices are equal) .

(2.21)

The dyadic product defined in Eq. (2.9) is expressed as

ab = (aiei) (bjej) = aibj ei ej , (2.22)

(summation over i and j), where ei ej is the dyadic product of the respective
basis vectors.

2.3 Tensors of Order 2

A tensor A of order 2 (often simply called a tensor) is defined as a linear
transformation which maps vectors on vectors:

y = A · x . (2.23)

Tensors will generally be denoted by sans-serif symbols like A, B, C, etc.
We have already encountered special tensors of order 2, namely the dyadic
products between two vectors introduced in Eq. (2.9). Their expression with
respect to an orthonormal basis {ei} was given by Eq. (2.22), and similarly a
general tensor of order 2 can be written as

A = Aij ei ej . (2.24)

Evidently, the tensor A is represented by the components Aij , and analogous
to Eq. (2.15) this can be denoted by
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A{ei} =

⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠ , (2.25)

where the components have been arranged into a square matrix. Again, if a
different basis {e�

i } is used, the representation will change,

A{e�
i
} =

⎛
⎝A�

11 A�
12 A�

13

A�
21 A�

22 A�
23

A�
31 A�

32 A�
33

⎞
⎠ , (2.26)

so that tensors and matrices must be distinguished in the same way as vectors
and number triples. Only when a single, fixed basis {ei} is used, is A uniquely
expressed by the square matrix

A =

⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠ . (2.27)

With the representation of Eq. (2.24), the linear transformation (2.23) is
given by

y = (Aij ei ej) · (xk ek) = Aijxk ei (ej · ek)

= Aijxk ei δjk = Aijxj ei , (2.28)

or
yi = Aijxj . (2.29)

Evidently, this is nothing else but the matrix-column product
⎛
⎝ y1

y2

y3

⎞
⎠ =

⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠ ·

⎛
⎝x1

x2

x3

⎞
⎠ (2.30)

expressed in (Cartesian) index notation. Index notation is a very efficient
method of carrying out computations in vector/tensor algebra and analysis
[see also the expressions (2.19) and (2.20) for the dot product and the cross
product, respectively], and we will use it frequently.

The transpose of a tensor A is the unique tensor AT defined by

AT = Aji ei ej . (2.31)

In matrix form, this reads

AT
{ei} =

⎛
⎝A11 A21 A31

A12 A22 A32

A13 A23 A33

⎞
⎠ ; (2.32)
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that is, the elements of the original matrix A{ei} [Eq. (2.25)] have been mir-
rored along the main diagonal A11-A22-A33. In index notation, this is ex-
pressed by the relation

AT
ij = Aji . (2.33)

A symmetric tensor is defined by

AT = A (Aij = Aji) , (2.34)

whereas for an antisymmetric tensor

AT = −A (Aij = −Aji) (2.35)

holds. The latter case implies that all main-diagonal elements (A11, A22, A33)
are equal to zero.

An important example for a tensor of order 2 is the unit tensor I, which
provides the identity transformation x = I·x. Its components in any orthonor-
mal basis {ei} are given by the Kronecker symbol δij , that is,

I = δij ei ej , (2.36)

so that its matrix representation is given by the unit matrix,

I{ei} =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ . (2.37)

The multiplication of two tensors A and B yields the tensor A · B defined
by successive application of first B and then A on an arbitrary vector x,

(A · B) · x = A · (B · x) . (2.38)

By expressing the two tensors according to Eq. (2.24), we find

A · (B · x) = (Aij ei ej) · [(Bkl ek el) · (xm em)]
= (Aij ei ej) · (Bklxl ek)
= AijBklxl ei (ej · ek)
= AijBklxl ei δjk

= AijBjlxl ei

⇒ A · B = AijBjl ei el , or (A · B)il = AijBjl . (2.39)

This represents the familiar matrix multiplication

(A · B){ei} =

⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠ ·

⎛
⎝B11 B12 B13

B21 B22 B23

B31 B32 B33

⎞
⎠ . (2.40)
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The above rules can be extended to the multiplication of more than two tensors
(e.g., A · B · C), and powers of a tensor A are defined by

A2 = A · A , A3 = A · A · A , etc. (2.41)

Note that the multiplication of tensors is associative, but in general not com-
mutative.

An order 2 tensor A in three-dimensional space has three independent
scalar invariants. If A is represented by the matrix A{ei} [Eq. (2.25)], the
invariants are

IA = trA = A11 + A22 + A33 ,

IIA = 1
2 [tr (A2) − (tr A)2]

= A12A21 + A13A31 + A23A32 − A11A22 − A11A33 − A22A33 ,

IIIA = det A = 1
6 [2 tr (A3) − 3 tr A tr (A2) + (tr A)3]

= A11A22A33 + A12A23A31 + A13A21A32

− A11A23A32 − A12A21A33 − A13A22A31 .

(2.42)

The important point is that these scalar invariants do not depend on the
particular basis; that is, the same values are obtained when they are com-
puted with a different matrix representation A{e�

i
}. The first (IA) and third

(IIIA) invariants are also called the trace and determinant of the tensor A,
respectively. For the determinant, a useful expression in index notation is

det A = 1
6εijkεlmnAilAjmAkn , (2.43)

which involves a sixfold summation and the Levi-Civita symbol defined in
Eq. (2.21).

The inverse A−1 of the tensor A is defined by the relations

A · A−1 = A−1 · A = I . (2.44)

It only exists if the determinant of A is not equal to zero:

det A �= 0 ⇔ ∃A−1 : Eq. (2.44) fulfilled . (2.45)

When expressed in component form, a tensor of order 2 is a quantity with
two indices [see Eq. (2.24)]. As we have seen in Sect. 2.2, the expression of a
vector in component form leads to a quantity with one index (for instance, ai),
and a scalar quantity, of course, does not have any indices at all. Therefore,
vectors and scalars are also referred to as tensors of order 1 and 0, respectively.

2.4 Higher Order Tensors

As a generalisation of Eq. (2.23), tensors A[r] of order r > 2 can be defined
inductively as linear transformations which map vectors x on tensors Y[r−1]

of order r − 1,
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Y[r−1] = A[r] · x . (2.46)

Such tensors can be written in component form as

A[r] = Ai1i2...ir
ei1 ei2 . . . eir

(2.47)

(summation over the r indices i1, i2, ..., ir). As an example, the Levi-Civita
symbol (2.21) can be interpreted as the components of an order 3 tensor ε[3],

ε[3] = εijk ei ej ek , (2.48)

which is known as the epsilon or permutation tensor. Tensors of order 4 play
a role in the theories of elasticity and visco-elasticity.

The tensor multiplication introduced in Eq. (2.39) can be generalised to
tensors of arbitrary orders A[r] and B[s], and the result is a tensor of order
r + s − 2,

A[r] · B[s] = (Ai1i2...ir
ei1 ei2 . . . eir

) · (Bj1j2...js
ej1 ej2 . . . ejs

)
= Ai1i2...ir

Bj1j2...js
ei1 ei2 . . . eir−1 (eir

· ej1) ej2 . . . ejs

= Ai1i2...ir
Bj1j2...js

δirj1 ei1 ei2 . . . eir−1 ej2 . . . ejs

= Ai1i2...ir
Birj2...js

ei1 ei2 . . . eir−1 ej2 . . . ejs
. (2.49)

This operation is called tensor contraction. The dot product (2.3) between
two vectors, the tensor-vector multiplications (2.23) and (2.46) as well as the
tensor multiplication (2.39) can all be considered as special cases of the general
tensor contraction (2.49).

Further, the dyadic product between two vectors [Eqs. (2.9), (2.22)] can
be readily generalised to arbitrary tensors A[r] and B[s],

A[r] B[s] = (Ai1i2...ir
ei1 ei2 . . . eir

) (Bj1j2...js
ej1 ej2 . . . ejs

)
= Ai1i2...ir

Bj1j2...js
ei1 ei2 . . . eir

ej1 ej2 . . . ejs
, (2.50)

which is called tensor product. The result is a tensor of order r + s.

2.5 Vector and Tensor Analysis

In physical applications like the continuum-mechanical modelling of ice sheets
and glaciers, we are often concerned with scalar, vector or tensor fields, in
which the respective quantities depend on space and time. Let us assume
a fixed orthonormal basis {e1, e2, e3} (or {ex, ey, ez}), then space can be
described by the Cartesian coordinates x1, x2, x3 (or x, y, z), and time is
designated by the variable t.

Partial derivatives of a scalar field λ(x1, x2, x3, t) will be denoted by the
alternative notations

∂λ

∂t
= λ,t ,

∂λ

∂x1
=

∂λ

∂x
= λ,1 = λ,x , etc. (2.51)
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For a vector field a(x1, x2, x3, t),

∂a
∂t

= a,t =
∂(ai ei)

∂t
=

∂ai

∂t
ei = ai,t ei ,

∂a
∂x1

=
∂a
∂x

= a,1 = a,x =
∂(ai ei)

∂x1
=

∂ai

∂x1
ei = ai,1 ei , (2.52)

etc. ,

and analogous for order 2 and higher order tensor fields.
The nabla operator ∇ is defined in terms of spatial partial derivative op-

erators as
∇ = ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
= ei

∂

∂xi
. (2.53)

It is useful in order to introduce the gradient of a scalar field,

grad λ = ∇λ =
∂λ

∂x
ex +

∂λ

∂y
ey +

∂λ

∂z
ez =

∂λ

∂xi
ei = λ,i ei , (2.54)

the divergence of a vector field,

diva = ∇ · a =
∂ax

∂x
+

∂ay

∂y
+

∂az

∂z
=

∂ai

∂xi
= ai,i , (2.55)

the curl of a vector field,

curla = ∇× a

=
(

∂az

∂y
− ∂ay

∂z

)
ex +

(
∂ax

∂z
− ∂az

∂x

)
ey +

(
∂ay

∂x
− ∂ax

∂y

)
ez

= εijk
∂ak

∂xj
ei = εijk ak,j ei , (2.56)

and the Laplacian of a scalar field,

Δλ = div gradλ = ∇2λ

=
∂2λ

∂x2
+

∂2λ

∂y2
+

∂2λ

∂z2
=

∂

∂xi

(
∂λ

∂xi

)
= λ,ii . (2.57)

These expressions can be generalised to tensor fields

A[r](x1, x2, x3, t) = Ai1i2...ir
(x1, x2, x3, t) ei1 ei2 . . . eir

(2.58)

of order r ≥ 1 as follows:

grad A[r] =
∂Ai1i2...ir

∂xj
ei1 ei2 . . . eir

ej
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= Ai1i2...ir,j ei1 ei2 . . . eir
ej (order r + 1) , (2.59)

div A[r] =
∂Ai1i2...ir−1j

∂xj
ei1 ei2 . . . eir−1

= Ai1i2...ir−1j,j ei1 ei2 . . . eir−1 (order r − 1) , (2.60)

curl A[r] = εijk
∂Ai1i2...ir−1k

∂xj
ei1 ei2 . . . eir−1 ei

= εijk Ai1i2...ir−1k,j ei1 ei2 . . . eir−1 ei (order r) , (2.61)

ΔA[r] =
∂

∂xj

(
∂Ai1i2...ir

∂xj

)
ei1 ei2 . . . eir

= Ai1i2...ir,jj ei1 ei2 . . . eir
(order r) . (2.62)

For the sake of simplicity, we refrain from giving the corresponding expressions
for curvilinear coordinates like cylindrical coordinates, spherical coordinates
etc., and refer the interested reader to the mathematical literature (e.g., Hein-
bockel 1996) instead.

Let us finally note two important integral theorems. The divergence theo-
rem relates the integral of the divergence of a vector field a over a volume ω
and the integral of the “flux” of a through the surface ∂ω,

∫
ω

(diva) dv =
∮
∂ω

a · nda , (2.63)

where dv is the volume increment, da the surface increment and n the outer
unit normal vector on ∂ω. The curl theorem states that the integral of the
curl of a vector field a over a surface σ equals the line integral of a over the
curve ∂σ bounding the surface,

∫
σ

(curla) · n da =
∮
∂σ

a · dl , (2.64)

where dl is the vectorial line increment along the curve ∂σ.



3

Elements of Continuum Mechanics

3.1 Bodies and Configurations

Continuum mechanics is concerned with the motion and deformation of con-
tinuous bodies (for instance, a glacier). A body consists of an infinite number
of material elements, called particles. For any time t, each particle is identi-
fied by a position vector x (relative to a prescribed origin O) in the physical
space E , and the continuous set of position vectors for all particles of the
body is called a configuration κ of the body. If t is the actual time, the cor-
responding configuration is called the present configuration κt. In addition,
we define a reference configuration κr which refers to a fixed (or initial) time
t0. Position vectors in the reference configuration will be written in capitals,
for example as X; they can be used for identifying the individual particles
of the body, independent of the actual time. Note that different sets of basis
vectors ({EA}A=1,2,3, {ei}i=1,2,3) and different origins may be used in the two
configurations (Fig. 3.1).

Fig. 3.1. Bodies, reference configuration κr and present configuration κt.

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2 3, c© Springer-Verlag Berlin Heidelberg 2009
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The mapping χχχ which provides the position x of each particle at time t as
a function of its reference position X is called the motion of the body,

χχχ : κr → κt

X → x = x(X, t) .
(3.1)

It is assumed that the motion x(X, t) is continuously differentiable in the
entire body (with the possible exception of discrete singular lines or surfaces),
and that the inverse mapping χχχ−1 exists:

χχχ−1 : κt → κr

x → X = X(x, t) .
(3.2)

The displacement is defined as the connecting vector between a given particle
in the reference and present configuration. If the connecting vector between
the two origins of the basis systems is denoted by B, then

u = x − X + B (3.3)

holds. The above relations are illustrated in Fig. 3.1.
Of course, in a deformable body the displacement at time t will in general

be different for different particles, so that it can be written as the vector field
u = u(X, t). However, this is not the only possibility. Equation (3.2) shows
that X can be expressed in terms of x and t, so that we can also assume
the displacement field as a function of x and t, that is, u = u(x, t). These
two possibilities also hold for other field quantities ψ (density, temperature,
velocity etc.), and we call ψ(X, t) the Lagrangian or material description,
whereas ψ(x, t) is referred to as the Eulerian or spatial description. Most
frequently, for solid bodies the Lagrangian description is used, whereas the
Eulerian description is more appropriate for problems of fluid dynamics (like
glacier flow).

3.2 Kinematics

3.2.1 Deformation Gradient, Stretch Tensors

The deformation gradient F is defined as the material gradient (gradient with
respect to X) of the motion (3.1),

F = Gradx(X, t) , (3.4)

or in components

FiA =
∂xi(X, t)

∂XA
= xi,A , (3.5)

where F = FiA ei EA, the operator Grad (·) is the material gradient, and the
notation (·),A means the partial derivative ∂(·)/∂XA. Note that small indices
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Fig. 3.2. Deformation gradient: Transformation between line and volume elements
in the reference and present configuration.

generally refer to the present configuration and capital indices to the reference
configuration. The deformation gradient is a tensor field of order 2.

According to definition (3.4), the deformation gradient F can be inter-
preted as the functional matrix of the motion function (3.1). It transforms
line elements from the reference configuration (dX) to the present configura-
tion (dx),

dx = F · dX , or dxi = FiA dXA , (3.6)

which is illustrated in Fig. 3.2.
The determinant of the deformation gradient, called the Jacobian, is given

by
J = det F , or J = 1

6εijkεABCFiAFjBFkC ; (3.7)

for the component form on the right see Eq. (2.43). Since we have ensured
that the motion function is invertible, J must be different from zero, and the
inverse deformation gradient F−1 exists. Further, real motions cannot invert
the orientation, so that

J > 0 (3.8)

must hold. The Jacobian determines the local volume change due to the mo-
tion,

dv = J dV , (3.9)

where dV is the volume element in the reference configuration which may be
spanned by three line elements dX(1), dX(2), dX(3), and dv is the volume
element in the present configuration spanned by dx(1), dx(2), dx(3) (Fig. 3.2).

The theorem of polar decomposition tells us that, like any tensor with
positive determinant, the deformation gradient F can be uniquely decomposed
according to

F = R · U = V · R , (3.10)

where R is a proper orthogonal tensor (R · RT = RT · R = I and detR = +1),
and the tensors U and V are symmetric (U = UT, V = VT) and positive
definite (∀x �= 0: x · U · x > 0, x · V · x > 0) [see, e.g., Liu (2002), Hutter
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and Jöhnk (2004)]. The tensors U and V are called the right and left stretch
tensor, respectively, and R is the rotation tensor.

The polar decomposition of F can be obtained as follows. From Eq. (3.10)
we compute

FT · F = UT · RT · R · U = U · I · U ⇒ U2 = FT · F (3.11)

and
F · FT = V · R · RT · VT = V · I · V ⇒ V2 = F · FT , (3.12)

which determine the stretch tensors U and V in terms of F. The rotation tensor
R follows then from Eq. (3.10) as

R = F · U−1 , or R = V−1 · F . (3.13)

Note that Eq. (3.10) also implies the relation

V = R · U · RT , (3.14)

which means that the two stretch tensors are connected by a similarity trans-
formation (e.g., Jänich 1994).

The tensors U2 = FT · F and V2 = F · FT which appear in Eqs. (3.11) and
(3.12) are referred to as the right Cauchy Green tensor C and left Cauchy
Green tensor B, respectively. They are related by the same similarity trans-
formation as the stretch tensors U and V,

B = V2 (3.14)
= R · U · RT · R · U · RT

= R · U · I · U · RT

= R · U2 · RT = R · C · RT , (3.15)

and play a role in the description of solid bodies which undergo large defor-
mations (such as rubber).

The polar decomposition of the deformation gradient F allows the inter-
pretation of an arbitrary deformation as a sequence of a stretching followed
by a local rigid body rotation, or vice versa. With Eq. (3.6) we can write

dx = R · U · dX = V · R · dX . (3.16)

Since U is symmetric, there exists a special set of orthonormal basis vectors
{ēi}, called the principal axes, for which the matrix U{ēi} is diagonal, that is,

U{ēi} = diag(λ1, λ2, λ3) =

⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠ (3.17)

(e.g., Jänich 1994). The λi, i = 1 . . . 3, are the eigenvalues of U, and due to the
positive definiteness they are all positive. This holds also for V, and because
of the similarity transformation (3.14) U and V have the same eigenvalues.
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Fig. 3.3. Polar decomposition of the deformation gradient.

Let us now consider an infinitesimal cube (volume element) in the reference
configuration, of which the edges ds are aligned with the principal axes of U
(Fig. 3.3). The sequence of transformations dx = R·U·dX stretches, in the first
step, the edges of the cube by the factors λi (eigenvalues of U), which deforms
the cube to a rectangular cuboid. In the second step, this element is rotated
by the orthogonal transformation R. The alternative sequence dx = V ·R ·dX
leads to the same result, but here the initial cube is first rotated by R and
then stretched by V.

Of course, since F, U, V and R are, in general, functions of X and t (or
x and t), this decomposition is only local. In other words, a volume element
at a different position will experience a different stretching and a different
rotation.

3.2.2 Velocity, Acceleration, Velocity Gradient

As usual, we define the velocity v as the first time derivative of the position
x [motion (3.1)],

v = v(X, t) =
∂x(X, t)

∂t
, (3.18)

and the acceleration a as its second time derivative,

a = a(X, t) =
∂2x(X, t)

∂t2
=

∂v(X, t)
∂t

. (3.19)

Evidently, this yields the velocity and acceleration fields in Lagrangian de-
scription. By inserting the inverse motion (3.2) one can readily obtain the
corresponding Eulerian descriptions v(x, t) and a(x, t).
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The time derivatives in Eqs. (3.18) and (3.19) are taken for fixed material
position vectors X. We will call this the material time derivative, denoted
briefly by the operators d(•)/dt or (•)·. Therefore, for any field quantity ψ,

ψ̇ =
dψ

dt
=

∂ψ(X, t)
∂t

. (3.20)

For example, Eqs. (3.18) and (3.19) read

v = ẋ =
dx
dt

, a = ẍ =
d2x
dt2

= v̇ =
dv
dt

. (3.21)

By contrast, the operator ∂(•)/∂t denotes the local time derivative for fixed
spatial position vector x,

∂ψ

∂t
=

∂ψ(x, t)
∂t

. (3.22)

With the chain rule, the relation between the material and local time deriva-
tive is

dψ

dt
=

d
dt

ψ(x(X, t), t)

=
∂ψ(x, t)

∂t
+ gradψ(x, t) · dx(X, t)

dt

=
∂ψ

∂t
+ (grad ψ) · v , (3.23)

where the operator grad (·) is the spatial gradient, of which the components
are the partial derivatives (·),i = ∂(·)/∂xi. One says that the material time
derivative dψ/dt is composed of a local part ∂ψ/∂t and an advective part
(grad ψ) · v.

Relation (3.23) is equally valid if ψ is a vector or tensor field. Therefore,
for the acceleration expressed by Eq. (3.21)2,

a =
∂v
∂t

+ (gradv) · v . (3.24)

The tensor quantity

L = gradv =
∂vi

∂xj
ei ej = vi,j ei ej (3.25)

which appears in Eq. (3.24) is called the velocity gradient. It is related to the
material time derivative of the deformation gradient as follows,

ḞiA =
∂2xi(X, t)
∂t ∂XA

=
∂vi(X, t)

∂XA
=

∂vi(x, t)
∂xj

∂xj(X, t)
∂XA

=
∂vi(x, t)

∂xj
FjA

⇒ Ḟ = L · F , or L = Ḟ · F−1 . (3.26)
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Without proof, we note that the material time derivative of the Jacobian is

J̇ = J divv = J tr L (3.27)

[divv = vi,i = Lii = tr L; for the definition of the trace of a tensor see
Eq. (2.42)1]. In words, the divergence of the velocity field determines local
volume changes [see also Eq. (3.9)], which is a very intuitive result.

Like any arbitrary tensor, the velocity gradient can be additively decom-
posed into unique symmetric and antisymmetric parts,

L = D + W , (3.28)

with

D = 1
2 (L + LT) (“strain-rate tensor” or “stretching tensor”) ,

W = 1
2 (L − LT) (“spin tensor”) .

(3.29)

Evidently, D = DT (symmetry) and W = −WT (antisymmetry) are fulfilled.
In order to give an interpretation of the elements of the matrix of the

strain-rate tensor D (with respect to a given orthonormal basis {ei}), we
now compute the material time derivative of line elements dx in the present
configuration:

(dx)· = Ḟ · dX = L · F · dX = L · dx (3.30)

[where Eqs. (3.6), (3.26) and (dX)· = 0 were used]. For the scalar product
between two line elements dx(1) and dx(2), this yields

(dx(1) · dx(2))· = (dx(1))· · dx(2) + dx(1) · (dx(2))·

= (L · dx(1)) · dx(2) + dx(1) · (L · dx(2))
= dx(1) · LT · dx(2) + dx(1) · L · dx(2)

= 2dx(1) · D · dx(2) . (3.31)

Let us assume

dx(1) = n(1)ds(1) ,
dx(2) = n(2)ds(2) ,

n(1) · n(2) = cos((π/2) − γ) = sin γ , (3.32)

where n(1), n(2) are unit vectors, and γ is the deviation of the angle between
n(1) and n(2) from a right angle. Equation (3.31) then reads

(sin γ ds(1)ds(2))· = 2ds(1)ds(2) n(1) · D · n(2)

⇒ γ̇ cos γ + sin γ

(
(ds(1))·
ds(1)

+
(ds(2))·
ds(2)

)
= 2n(1) · D · n(2) . (3.33)

We first make the special choice n(1) = n(2) = ex (γ = 90◦) and ds(1) =
ds(2) = ds (Fig. 3.4, left). Then,
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Fig. 3.4. Dilatation (left) and shear (right) of line elements in the present configu-
ration.

2
(ds)·
ds

= 2ex · D · ex ⇒ Dxx =
(ds)·
ds

. (3.34)

Analogous results are found for the y- and z-directions. Therefore, the ele-
ments Dxx, Dyy, Dzz on the main diagonal of the matrix of D are equal to
the dilatation rates in the x-, y- and z-direction, respectively.

Second, we choose n(1) = ex and n(2) = ey, so that γ = 0 (Fig. 3.4, right).
This yields

γ̇ = 2ex · D · ey ⇒ Dxy =
γ̇

2
. (3.35)

Analogous relations can be obtained for the two other off-diagonal elements
Dxz and Dyz. Therefore, 2Dxy, 2Dxz and 2Dyz denote the shear rates γ̇xy, γ̇xz

and γ̇yz, that is, the temporal changes of right angles formed by the respective
coordinate directions.

As for the spin tensor W, we note that its matrix has only three inde-
pendent elements (this holds for any antisymmetric tensor). Without loss of
generality, it can therefore be written as

W =

⎛
⎝ 0 −w3 w2

w3 0 −w1

−w2 w1 0

⎞
⎠ (3.36)

[see also Eq. (2.18) and the discussion there]. The wi arranged in the above
form are the components of the dual vector

w = dualW =

⎛
⎝w1

w2

w3

⎞
⎠ , (3.37)

with which the linear transformation W · a (arbitrary vector a) can be ex-
pressed as a cross product,

W · a = w × a . (3.38)

Thus, Eq. (3.30) yields
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(dx)· = D · dx + w × dx . (3.39)

The first summand on the right-hand side describes the strain (deformation)
part of the motion, the second summand the local rigid body rotation with
angular velocity w. This justifies the names “strain-rate tensor” and “spin
tensor” for D and W, respectively.

3.3 Balance Equations

3.3.1 Reynolds’ Transport Theorem

We consider a material volume ω ⊂ κt in the present configuration. “Material”
means that the volume consists of the same particles for all times, ∂ω denotes
the boundary of ω, v the velocity field of the body and n the unit normal vector
on ∂ω (see Fig. 3.5). For an arbitrary scalar, vector or tensor field quantity
ψ(x, t), we now calculate the term (d/dt)

∫
ω

ψ dv, that is, the temporal change
of the field quantity integrated over the volume ω.

Fig. 3.5. On the Reynolds’ transport theorem: Material volume ω with boundary
∂ω in the present configuration κt.

To this end, we transform the integration variable to material coordinates
X, which changes the integration domain ω to the volume Ω ⊂ κr in the
reference configuration as

d
dt

∫
ω

ψ(x, t) dv =
d
dt

∫
Ω

ψ(x(X, t), t)J(X, t)dV . (3.40)

For the transformation of the volume element Eq. (3.9) was used. Since Ω, as
a material volume in the reference configuration, is time-independent, differ-
entiation and integration can be exchanged on the right-hand side, provided
that the fields ψ, J and v are sufficiently smooth:
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d
dt

∫
ω

ψ(x, t) dv =
∫

Ω

(ψ̇J + ψJ̇) dV

=
∫

Ω

(ψ̇ + ψ divv)JdV

=
∫

ω

(ψ̇ + ψ divv) dv . (3.41)

In the second step, Eq. (3.27) was used, and in the last step the integral was
transformed back to spatial coordinates. The result can be further rewritten
as

d
dt

∫
ω

ψ(x, t) dv =
∫

ω

(
∂ψ

∂t
+ (grad ψ) · v + ψ divv

)
dv

=
∫

ω

(
∂ψ

∂t
+ div (ψv)

)
dv . (3.42)

By using the divergence theorem (2.63), we now obtain

d
dt

∫
ω

ψ(x, t) dv =
∫

ω

∂ψ

∂t
dv +

∮
∂ω

ψv · nda , (3.43)

which is known as Reynolds’ transport theorem. It says that the temporal
change of the integral

∫
ω

ψ dv over the material volume ω is composed of two
parts, (i) the local change ∂ψ/∂t within ω, and (ii) the advective flux ψv in
the normal direction n across the boundary ∂ω. Note that, if ψ is a tensor
field of order r ≥ 1, ψv is a tensor product which yields a tensor of order
r + 1.

3.3.2 General Balance Equation

Let G(ω, t) be a physical quantity of the entire material volume ω, which is
supposed to be additive over subsets of ω (e.g., mass, momentum or internal
energy, but not temperature or velocity). We assume that the change of G
with time may be due to three different processes, namely

• the flux F(∂ω, t) of G across the boundary ∂ω,
• the production P(ω, t) of G within the volume ω,
• the supply S(ω, t) of G within the volume ω.

Therefore, we can balance dG/dt as follows:

d
dt

G(ω, t) = −F(∂ω, t) + P(ω, t) + S(ω, t) , (3.44)

where positive fluxes have been defined as outflows from the volume, so that
the flux term has a negative sign.
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The idea behind distinguishing between the mathematically equivalent
quantities production and supply is that production is due to internal pro-
cesses (within the volume ω) only, whereas supply has an external source.
Conserved quantities are characterised by a vanishing production.

In order to reformulate the statement (3.44), we assume that G, P and S
can be expressed as volume integrals of corresponding densities g, p and s,

G(ω, t) =
∫

ω
g(x, t) dv , g : density of the quantity G ,

P(ω, t) =
∫

ω
p(x, t) dv , p : production density of G ,

S(ω, t) =
∫

ω
s(x, t) dv , s : supply density of G ,

(3.45)

and that F can be obtained as the surface integral of a flux density φ,

F(∂ω, t) =
∮

∂ω

φ(x, t) · nda , (3.46)

where da is the scalar surface element. Note that, if G is a tensor quantity of
order r ≥ 0 (scalar, vector etc.), then the order of g, p and s is also equal to
r, whereas the order of φ is r + 1.

Inserting the expressions (3.45) and (3.46) in Eq. (3.44) yields the general
balance equation in integral form,

d
dt

∫
ω

g(x, t) dv = −
∮

∂ω

φ(x, t) · nda

+
∫

ω

p(x, t) dv +
∫

ω

s(x, t) dv . (3.47)

Provided that all fields in this equation are sufficiently smooth, it can be
localised as follows. We apply Reynolds’ transport theorem (3.43) to the left-
hand side (with ψ = g), transform all surface integrals to volume integrals
with the divergence theorem (2.63) and assemble all terms on the left-hand
side: ∫

ω

(
∂g

∂t
+ div (gv) + divφ − p − s

)
dv = 0 . (3.48)

This relation must hold for any arbitrary material volume ω, which is only
possible if the integrand itself vanishes. Thus,

∂g

∂t
= −div (φ + gv) + p + s , (3.49)

which is the general balance equation in local form. It balances the local change
of the density g with the production and supply densities and the negative
divergence of two flux terms, the actual flux density φ and the advective (or
convective) flux density gv.
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3.3.3 General Jump Condition

The local balance equation (3.49) is only valid for those parts of the material
volume ω for which all fields are sufficiently smooth. We now consider the case
that there exists an oriented singular surface σ within ω for which this is not
fulfilled. In particular, the density g may be discontinuous on σ. Denote the
unit normal vector on σ by n, the side of ω into which n points by ω+ and
the other side by ω−. The singular surface need not be material, that is to
say, it may travel with its own velocity w which may differ from the particle
velocity v (Fig. 3.6).

Fig. 3.6. Singular surface σ within the material volume ω.

The values which a field quantity ψ(x, t) assumes when the point x ∈ σ
(on the singular surface) is approached on an arbitrary path in ω− or ω+ are
denoted by ψ− and ψ+, respectively:

∀x ∈ σ : ψ−(x, t) = limy→x, y∈ω− ψ(y, t) ,

ψ+(x, t) = limy→x, y∈ω+ ψ(y, t) .
(3.50)

Of course, this requires that the limits exist and are finite. We define the jump
[[ψ]] of ψ on σ as

∀x ∈ σ : [[ψ]] (x, t) = ψ+(x, t) − ψ−(x, t) . (3.51)

If [[ψ]] �= 0, the quantity ψ experiences a discontinuity on the singular surface.
We now motivate a balance equation similar to Eq. (3.47) for the pill-box

volume ν around the singular surface σ with basal area SB und mantle area
SM, which is also indicated in Fig. 3.6. It is hereby assumed that SB and SM

are very small, so that the curvature of σ can be neglected. This entails a very
small volume of the pill-box, so that the three volume integrals in Eq. (3.47)
are negligible compared to the surface integral of the flux density φ (provided
that all integrands are bounded). So the first guess for the balance equation
of the pill-box volume ν would be

∮
∂ν

φ(x, t) · nda = 0. However, in general
we are concerned with a non-material volume here, so that, in addition to the
actual flux density φ an advective flux density g(v − w) due to the particle
motion (velocity v) relative to the motion of the singular surface (velocity w)
must be taken into account. Thus, the correct form of the balance equation is
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∮
∂ν

(φ + g(v − w)) · nda = 0 . (3.52)

The geometry of the pill-box volume is such that SM � SB, so that all fluxes
through SM can be neglected in comparison with fluxes through SB. Therefore,
only the basal surfaces with area SB on the ω+ and ω− side of σ (denoted as
S+

B and S−
B , respectively) contribute to the surface integral (3.52):

∫
S+

B

(φ + g(v − w)) · nda +
∫

S−
B

(φ + g(v − w)) · (−n) da = 0 (3.53)

(note that the outer unit normal vector is n on S+
B and −n on S−

B ). Since all
field quantities are virtually constant on the very small surfaces S+

B and S−
B ,

this can be written as

SB (φ+ + g+(v+ − w)) · n + SB (φ− + g−(v− − w)) · (−n) = 0

⇒ φ+ · n − φ− · n + (g+(v+ − w)) · n − (g−(v− − w)) · n = 0 , (3.54)

and with definition (3.51) we obtain

[[φ · n]] + [[g ((v − w) · n)]] = 0 . (3.55)

This is the general jump condition on singular surfaces. For a formal derivation
of this jump condition see, e.g., Liu (2002), Hutter and Jöhnk (2004).

3.3.4 Mass Balance

If the physical quantity G is identified with the total mass M of the material
volume ω, it is clear that dM/dt = 0, because the mass of a material volume
cannot change. With the (mass) density ρ this can be expressed as

d
dt

∫
ω

ρdv = 0 . (3.56)

By comparison with the general balance equation (3.47) we find immediately

g = ρ , φ = 0 , p = 0 , s = 0 . (3.57)

With these densities, the local balance equation (3.49) reads

∂ρ

∂t
+ div (ρv) = 0 . (3.58)

This is the mass balance, also known as the continuity equation. An equivalent
form can be derived by differentiating the product,

∂ρ

∂t
+ (grad ρ) · v + ρdivv = 0

⇒ ρ̇ + ρdivv = 0 . (3.59)
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An important special case is that of an incompressible material, defined
by a constant density, that is, ρ = const or ρ̇ = 0. For this case, Eq. (3.59)
simplifies to

divv = 0 , (3.60)

which is the mass balance or continuity equation for incompressible materials.
Evidently, the corresponding velocity field is source-free (solenoidal).

By inserting the densities (3.57) in the general jump condition (3.55), we
obtain the mass jump condition on singular surfaces as

[[ρ ((v − w) · n)]] = 0 . (3.61)

It simply states that the mass inflow at one side of the singular surface must
equal the mass outflow at the other side.

Let us come back to the general balance equation (3.49) and write the
density g as

g = ρgs , (3.62)

where gs denotes the physical quantity under consideration per unit mass
(which, of course, only makes sense if the quantity is not the mass itself).
This yields

∂(ρgs)
∂t

+ div (φ + ρgsv) = p + s

⇒ ρ
∂gs

∂t
+ gs

∂ρ

∂t
+ divφ + gs div (ρv) + (grad gs) · ρv = p + s

⇒ ρ

{
∂gs

∂t
+ (grad gs) · v

}
+ gs

{
∂ρ

∂t
+ div (ρv)

}

= −divφ + p + s . (3.63)

The first term in curly brackets is the material time derivative of g [see
Eq. (3.23)], the second term vanishes because of the mass balance (3.58).
It remains

ρ
dgs

dt
= −divφ + p + s (3.64)

as an alternative representation of the general balance equation, which can be
used for any quantity except mass.

3.3.5 Momentum Balance

Let us now identify the physical quantity G with the total momentum P
(vector!) of the material volume ω. Since momentum is equal to mass times
velocity, the momentum density can be expressed as mass density times ve-
locity,

g = ρv , (3.65)
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Fig. 3.7. Volume forces f and surface forces tn which act on a material volume ω
and its surface ∂ω in the present configuration κt.

and the total momentum P is equal to
∫

ω
ρv dv. Following Newton’s Second

Law, its temporal change dP/dt must be given by the sum of all forces F
which act on the volume ω. These forces can either be external volume forces
f(x, t) acting on any volume element within ω (e.g., the gravity field), or
internal stresses (surface forces) tn(x, t) acting on the boundary surface ∂ω
(Fig. 3.7). The latter do not only depend on position x and time t, but also
on the orientation of the surface, expressed by the unit normal vector n.

The total force acting on the material volume ω is therefore

F =
∮

∂ω

tn(x, t) da +
∫

ω

f(x, t) dv , (3.66)

and Newton’s Second Law reads

d
dt

∫
ω

ρ(x, t)v(x, t) dv =
∮

∂ω

tn(x, t) da +
∫

ω

f(x, t) dv . (3.67)

Except for the surface integral (flux term), this has the form of the general
balance equation (3.47). By comparing the flux terms, we infer that the stress
vector tn must be a linear function of n, that is,

tn(x, t) = t(x, t) · n , (3.68)

where t(x, t) is a tensor field of order 2 which is called the Cauchy stress
tensor. Now we can identify

g = ρv , φ = −t , p = 0 , s = f (3.69)

(the volume force is interpreted as a supply term and not a production term
because it is assumed to have an external source), and from Eq. (3.49) we
obtain the local form of the momentum balance as



32 3 Elements of Continuum Mechanics

∂(ρv)
∂t

+ div (ρv v) = div t + f . (3.70)

With the specific momentum (momentum per unit mass)

gs =
g

ρ
= v (3.71)

and the representation (3.64) of the general balance equation, an equivalent
form of the momentum balance is

ρ
dv
dt

= div t + f . (3.72)

Note that, if the momentum balance is formulated in a non-inertial system
(for instance, the rotating Earth), the volume force f contains contributions
from inertial forces (centrifugal force, Coriolis force etc.).

The momentum jump condition on singular surfaces is readily obtained
from Eqs. (3.55) and (3.69),

[[t · n]] − [[ρv ((v − w) · n)]] = 0 . (3.73)

It relates the jump of the stress vector (t · n) to the jump of the advective
momentum flux across the interface. In the case of a material singular surface
(v+ · n = v− · n = w · n) the stress vector is continuous,

[[t · n]] = 0 . (3.74)

With respect to a given orthonormal basis {ei}, the matrix of the Cauchy
stress tensor t defined by Eq. (3.68) is

t =

⎛
⎝ txx txy txz

tyx tyy tyz

tzx tzy tzz

⎞
⎠ . (3.75)

The elements of this matrix can be interpreted as follows. For a cut along the
xy plane, that is, with unit normal vector n = ±ez (the sign depends on the
orientation of the plane), the stress vector

t±ez
= ±t · ez = ±

⎛
⎝ txz

tyz

tzz

⎞
⎠ (3.76)

is obtained. Evidently, the diagonal element tzz is perpendicular to the cut
plane, whereas the off-diagonal elements txz and tyz are parallel to the plane.
The same result is found for cuts along the xz and yz planes. Therefore,
the three diagonal elements (txx, tyy, tzz) are referred to as normal stresses,
and the six off-diagonal elements (txy, tyx, txz, tzx, tyz, tzy) are called shear
stresses. The meaning of these components is illustrated in Fig. 3.8.
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Fig. 3.8. Components of the Cauchy stress tensor.

3.3.6 Balance of Angular Momentum

In point mechanics, the angular momentum L of a mass point is given by
L = x×P (cross product of position vector and momentum), and the torque
M is defined as M = x × F (cross product of position vector and force
acting on the mass point). In view of the momentum densities (3.69) for the
continuous body, this motivates the following identities for the densities of
angular momentum:

g = x × ρv , φ = −x × t , p = 0 , s = x × f . (3.77)

Inserting these identities in Eq. (3.49) yields the balance of angular momen-
tum,

∂(x × ρv)
∂t

+ div [(x × ρv)v] = div (x × t) + x × f , (3.78)

or in index notation
∂

∂t
(ρ εijkxjvk) + (ρ εijkxjvkvl),l = (εijkxjtkl),l + εijkxjfk . (3.79)

Using the momentum balance (3.70), this can be drastically simplified. We
compute x × (3.70) in index notation,

∂

∂t
(ρvk) + (ρvkvl),l = tkl,l + fk | · εijkxj

⇒ ∂

∂t
(ρ εijkxjvk) + xj(ρ εijkvkvl),l = xj(εijktkl),l + εijkxjfk

⇒ ∂

∂t
(ρ εijkxjvk) + (ρ εijkxjvkvl),l − ρ εijkvkvlxj,l

= (εijkxjtkl),l − εijktklxj,l + εijkxjfk , (3.80)
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and subtract this from the balance of angular momentum (3.79), which leaves

ρ εijkvkvlδjl = εijktklδjl

⇒ ρ εijkvkvj = εijktkj

⇒ 1
2 (ρ εijkvkvj + ρ εikjvjvk) = 1

2 (εijktkj + εikjtjk)

⇒ ρ εijk(vkvj − vjvk) = εijk(tkj − tjk)

⇒ εijk(tkj − tjk) = 0 . (3.81)

Evaluation of this result for i = 1 yields

ε123(t32 − t23) + ε132(t23 − t32) = 0

⇒ (tzy − tyz) − (tyz − tzy) = 0 ⇒ tyz = tzy . (3.82)

Similarly, for i = 2 and 3 one finds txz = tzx and txy = tyx, respectively. The
balance of angular momentum thus reduces to the statement that the Cauchy
stress tensor is symmetric,

t = tT, or tij = tji . (3.83)

By contrast, an independent jump condition of angular momentum does not
exist; it is equivalent to the momentum jump condition (3.73).

3.3.7 Energy Balance

Balance of Kinetic Energy

We now compute the dot product of the momentum balance (3.72) and the
velocity v. Expressed in index notation, this is

ρvk
dvk

dt
= tkl,lvk + fkvk

⇒ ρ
d
dt

(vkvk

2

)
= (tklvk),l − tklvk,l + fkvk

= (t · v)l,l − (t · L)ll + fkvk

⇒ ρ
d
dt

(
v2

2

)
= div (t · v) − tr (t · L) + f · v (3.84)

[in the step from line 2 to 3 the symmetry of t, Eq. (3.83), has been used, and in
the last line we have introduced the speed v = |v|, which is the absolute value
of the velocity]. For the second summand on the right-hand side, tr (t · L), we
apply the decomposition (3.28) of L, the symmetry of t and the antisymmetry
of W,
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tr (t · L) = tr (t · D) + tr (t · W)
= tr (t · D) + tijWji

= tr (t · D) + 1
2 (tijWji + tjiWij)

= tr (t · D) + 1
2 (tijWji − tijWji) = tr (t · D) , (3.85)

so that

ρ
d
dt

(
v2

2

)
= div (t · v) − tr (t · D) + f · v . (3.86)

Since the kinetic energy of a mass m is given by mv2/2, the term v2/2 denotes
the specific kinetic energy (per unit mass) of a continuous body. Comparison
of the above result with the general balance equation (3.64) shows that it can
be interpreted as the balance of kinetic energy, where

g = ρv2/2 (kinetic energy density) ,
gs = v2/2 (specific kinetic energy) ,
φ = −t · v (power of stresses) ,
p = −tr (t · D) (−p: dissipation power) ,
s = f · v (power of volume forces) .

(3.87)

The attribution of the dissipation power as a production term and the power
of volume forces as a supply term was done because the former is only due
to intrinsic quantities, whereas in the latter the volume force occurs which
has an external source. Thus, in contrast to mass, momentum and angular
momentum, the kinetic energy has a non-zero production density, which means
that it is not a conserved quantity.

Energy Balance, Balance of Internal Energy

The balance of kinetic energy, Eq. (3.86), is not an independent statement,
but a mere consequence of the momentum balance (3.72). However, classical
mechanics and thermodynamics tells us that the kinetic energy is only one
part of the total energy of a system (here: continuous body), and that the
total energy is a conserved quantity (no production). In order to formulate the
(total) energy balance, we thus extend Eq. (3.87) by introducing an internal
energy, a heat flux and a radiation power and setting the production to zero:

g = ρ(u + v2/2) (u: specific internal energy) ,
gs = u + v2/2 ,
φ = q − t · v (q: heat flux) ,
p = 0 ,
s = ρr + f · v (r: specific radiation power) .

(3.88)

By inserting these densities in Eq. (3.49), the energy balance

∂

∂t

[
ρ
(
u +

v2

2

)]
+ div

[
ρ
(
u +

v2

2

)
v
]

= −divq + div (t · v) + ρr + f · v (3.89)
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is obtained, which is also known as the First Law of Thermodynamics. An
alternative form follows from Eq. (3.64),

ρ
d
dt

(
u +

v2

2

)
= −divq + div (t · v) + ρr + f · v . (3.90)

This can be simplified further:

ρ
du

dt
+ ρvk

dvk

dt
= −qk,k + (tklvk),l + ρr + fkvk

= −qk,k + tkl,lvk + tklvk,l + ρr + fkvk

⇒ ρ
du

dt
+ vk

{
ρ
dvk

dt
− tkl,l − fk

}
= −qk,k + tlkLkl + ρr . (3.91)

The term in curly brackets vanishes because of the momentum balance (3.72),
and the term tlkLkl = tr (t·L) can again be replaced by tr (t·D) [see Eq. (3.85)],
so that we obtain

ρ
du

dt
= −divq + tr (t · D) + ρr . (3.92)

Evidently, this is the balance of internal energy in the form (3.64), with the
corresponding densities

g = ρu ,
gs = u (specific internal energy) ,
φ = q (heat flux) ,
p = tr (t · D) (dissipation power) ,
s = ρr (r: specific radiation power) .

(3.93)

In contrast to the total energy, the internal energy is not a conserved quantity.
Its production density is equal to the dissipation power, which already ap-
peared in the balance of kinetic energy (3.86) with a negative sign. The name
“dissipation power” results from the fact that it annihilates kinetic energy and
changes it into internal energy. In other words, macroscopic mechanical en-
ergy is transformed into heat (microscopic, unordered motion). Therefore, the
dissipation power can also be interpreted as heat production due to internal
friction.

From Eqs. (3.55) and (3.88) we obtain the energy jump condition

[[q · n]] − [[v · t · n]] +
[[

ρ
(
u + 1

2v2
)

((v − w) · n)
]]

= 0 . (3.94)

In case of a material singular surface (v+ · n = v− · n = w · n) the third
summand vanishes, and because of the continuity of the stress vector t · n
[Eq. (3.74)] it can be factored out in the second summand:

[[q · n]] − [[v]] · t · n = 0

⇒ [[q · n]] − [[v⊥]] · t · n −
[[
v‖
]]
· t · n = 0

⇒ [[q · n]] −
[[
v‖
]]
· t · n = 0 (3.95)
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[where v = v⊥ + v‖, with the normal component v⊥ = (v · n)n and the
tangential component v‖ = v − (v · n)n; the jump of v⊥ vanishes because of
v+ ·n = v− ·n]. Only under the additional assumption of a no-slip condition,
that is,

[[
v‖
]]

= 0, does the normal component of the heat flux (q ·n) become
continuous.

3.4 Constitutive Equations

3.4.1 Homogeneous Viscous Thermoelastic Bodies

The balance equations of mass, momentum and internal energy derived in
Sect. 3.3 read

dρ

dt
= −ρdivv , (3.96)

ρ
dv
dt

= div t + f , (3.97)

ρ
du

dt
= −divq + tr (t · D) + ρr (3.98)

[see Eqs. (3.59), (3.72) and (3.92); the balance of angular momentum is im-
plicitly included in the symmetry of t]. They constitute evolution equations for
the unknown fields ρ, v and u; however, on the right-hand sides the fields t and
q are also unknown. The supply terms f and r are assumed to be prescribed
as external forcings. Thus, in component form we have 1+3+1 = 5 equations
(mass balance: scalar equation, momentum balance: vector equation, energy
balance: scalar equation) for the 1 + 3 + 6 + 1 + 3 = 14 unknown fields ρ
(scalar), v (vector), t (symmetric tensor), u (scalar) and q (vector), and the
system is highly under-determined. Therefore, additional closure relations be-
tween the field quantities are required. These closure relations describe the
specific behaviour of the different materials (whereas the balance equations
are universally valid), and they are called constitutive equations or material
equations.

The general theory of constitutive equations is beyond the scope of this
text [see e.g. Liu (2002), Hutter and Jöhnk (2004)]. Here, we confine ourselves
to a simple class of materials, the so-called homogeneous viscous thermoelas-
tic bodies. This will be sufficient for our purpose of describing ice-dynamic
processes.

A homogeneous viscous thermoelastic body is defined as a material whose
constitutive equations are functions of the form

t = t (F, Ḟ, T, grad T ) ,

q = q (F, Ḟ, T, grad T ) ,

u = u (F, Ḟ, T, grad T ) ,

(3.99)
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where the temperature T (x, t) has been introduced as an additional scalar field
quantity. Hence, the Cauchy stress tensor t, the heat flux q and the specific
internal energy u are understood as the dependent material quantities, and
the material shows neither non-local nor memory effects. Note that due to
Eq. (3.26) the dependency on Ḟ can also be expressed as a dependency on
the velocity gradient L. In the following, we will discuss two examples of
homogeneous viscous thermoelastic bodies relevant for ice dynamics, namely
the linear elastic solid (Hookean body) and the Newtonian fluid.

3.4.2 Linear Elastic Solid

Hooke’s Law

An elastic body is defined as a material for which the stress tensor depends
on the deformation gradient only,

t = t(F) . (3.100)

In particular, this excludes any temperature dependencies, so that the problem
is purely mechanical, and the energy balance (3.98) need not be taken into
account.

For many practical applications, it is sufficient to assume small deforma-
tions, that is, F ≈ I. If we use the same origins (B = 0) and bases (ei = δiAEA)
for the reference and the present configurations (see Fig. 3.1), then the dis-
placements u = x−X will be small, that is, x ≈ X. The reference configuration
and the present configuration virtually fall together. It is then no longer neces-
sary to distinguish between material and spatial derivatives (∂/∂xi ≈ ∂/∂XA

for i = A). For this situation, the displacement gradient H is defined as

H = Gradu = F − I , (3.101)

and the infinitesimal strain tensor ε is the symmetric part,

ε = 1
2 (H + HT) , or εij = 1

2 (ui,j + uj,i) . (3.102)

Without proof let us note that the diagonal elements εxx, εyy, εzz correspond
to the dilatations (relative length changes of line elements) in x-, y- and z-
directions respectively. Also, the off-diagonal elements εxy, εxz, εyz are equal
to one half of the shear angles in the x-y, x-z and y-z planes respectively; that
is,

εij = 1
2γij , (i �= j) . (3.103)

These interpretations are analogous to those of the components of the strain-
rate tensor D in terms of dilatation rates and shear rates [see Eqs. (3.34) and
(3.35)].

The constitutive equation of an isotropic (identical properties in all direc-
tions), linear elastic solid for small deformations, also known as a Hookean
body, is now
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t = (λ tr ε) I + 2μ ε . (3.104)

This material equation is called Hooke’s law, and the two coefficients λ, μ are
the Lamé parameters.

An alternative formulation is found by splitting up the infinitesimal strain
tensor into an isotropic part and a traceless deviator εD,

ε =
(

1
3 tr ε

)
I + εD , (3.105)

with tr εD = 0. Inserting this into Hooke’s law (3.104) yields

t = (λ tr ε) I +
(

2
3μ tr ε

)
I + 2μ εD

=
[
(λ + 2

3μ) tr ε
]
I + 2μ εD

= (κ tr ε) I + 2μ εD , (3.106)

where κ = λ + 2μ/3 is the elastic bulk modulus. In this form of Hooke’s
law, volume-changing compressions or expansions are described by the first
summand, whereas the second summand accounts for volume-preserving dis-
tortions.

Phenomenological Introduction of Hooke’s Law

Let us consider a small cube of a linear elastic solid, which is subjected to the
normal stress txx (Fig. 3.9, left). A linear relation between this stress and the
resulting dilatation εxx will be observed,

txx = E εxx ; (3.107)

the parameter E is called Young’s modulus. Further, in the perpendicular
directions y and z negative dilatations (compressions) εyy and εzz will occur,
for which the relations

εyy = −ν εxx = − ν

E
txx , εzz = −ν εxx = − ν

E
txx (3.108)

hold. The factor ν is known as Poisson’s ratio.
Now subject the same cube to a shear stress txy (Fig. 3.9, right). It will

then suffer a proportional shear by the angle γxy, that is,

txy = μγxy . (3.109)

The coefficient μ is the shear modulus, and, as we will see below, it is identical
to the 2nd Lamé parameter and therefore denoted by the same symbol.

By superposition of relations (3.107) – (3.109) we obtain, for an arbitrary
state of stress,
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Fig. 3.9. Tension and shear experiment for a linear elastic solid (Hookean body).

εxx =
1
E

txx − ν

E
(tyy + tzz) ,

εyy =
1
E

tyy − ν

E
(txx + tzz) ,

εzz =
1
E

tzz −
ν

E
(txx + tyy) ,

γxy =
1
μ

txy ,

γxz =
1
μ

txz ,

γyz =
1
μ

tyz .

(3.110)

Equations (3.110)4,5,6, using (3.103), can be inverted straightforwardly to yield
the stress expressions

txy = 2μ εxy , txz = 2μ εxz , tyz = 2μ εyz . (3.111)

Equations (3.110)1,2,3 can be rewritten as

εxx =
1 + ν

E
txx − ν

E
tr t ,

εyy =
1 + ν

E
tyy − ν

E
tr t ,

εzz =
1 + ν

E
tzz −

ν

E
tr t ,

(3.112)

and by summation,

tr ε =
1 + ν

E
tr t − 3

ν

E
tr t =

1 − 2ν

E
tr t , (3.113)
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or
tr t =

E

1 − 2ν
tr ε . (3.114)

This yields

εxx =
1 + ν

E
txx − ν

1 − 2ν
tr ε ,

εyy =
1 + ν

E
tyy − ν

1 − 2ν
tr ε ,

εzz =
1 + ν

E
tzz −

ν

1 − 2ν
tr ε ,

(3.115)

and therefore, together with Eq. (3.111),

txx =
E

1 + ν
εxx +

Eν

(1 + ν)(1 − 2ν)
tr ε ,

tyy =
E

1 + ν
εyy +

Eν

(1 + ν)(1 − 2ν)
tr ε ,

tzz =
E

1 + ν
εzz +

Eν

(1 + ν)(1 − 2ν)
tr ε ,

txy = 2μ εxy ,

txz = 2μ εxz ,

tyz = 2μ εyz .

(3.116)

This result is identical to the six components of Hooke’s law (3.104). The last
three equations show that the shear modulus is indeed identical to the 2nd

Lamé parameter, and from the first three equations we can infer the relations

λ =
Eν

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
(3.117)

between the four parameters, of which only two are independent. By invert-
ing Eq. (3.117), E and ν can also be expressed as functions of the Lamé
parameters, which yields

E =
μ(3λ + 2μ)

λ + μ
, ν =

λ

2(λ + μ)
. (3.118)

Navier Equation

The mass balance (3.96) can be integrated directly. With Eq. (3.27) and the
assumption of small deformations, F ≈ I ⇒ J ≈ 1, we find
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ρ̇ + ρdivv = 0

⇒ ρ̇

ρ
+

J̇

J
= 0 ⇒

∫ t

t0

( ρ̇

ρ
+

J̇

J

)
dt = 0

⇒ ln
ρ

ρ0
+ lnJ = 0 ⇒ ρ

ρ0
J = 1 ⇒ ρ =

ρ0

J
≈ ρ0 , (3.119)

where t0 is the initial time which defines the reference configuration, and ρ0

is the constant density in the reference configuration.
We now insert Hooke’s law (3.104) in the momentum balance (3.97). For

the divergence of the stress tensor we find

(div t)i = tij,j = (λ εkk δij + 2μ εij),j

= (λuk,kδij),j + μui,jj + μuj,ij

= λuk,kjδij + μui,jj + μuj,ji

= (λ + μ)uk,ki + μui,jj

⇒ div t = (λ + μ) grad divu + μΔu , (3.120)

where Δ is the Laplacian introduced in Eqs. (2.57) and (2.62). With this,
Eq. (3.119) and v = ẋ = (u + X)· = u̇ we obtain

ρ0
d2u
dt2

= (λ + μ) grad divu + μΔu + f . (3.121)

This is the equation of motion for the Hookean body, and it is known as
the Navier equation. It consists of three component equations for the three
unknown displacement components ux, uy and uz, which is a closed system.

Thin Elastic Plate

An important problem of linear elasticity is that of a thin elastic plate, loaded
perpendicular to its plane. Let the plate be oriented in the horizontal x-y
plane, its thickness H be much smaller than the horizontal extent L, and its
load (force) per unit area be given by q(x, y) (Fig. 3.10).

The problem is assumed to be static or quasi-static, so that the accelera-
tion term on the left-hand side of the Navier equation (3.121) can be omitted.
The displacement field is then approximately given by u = uz(x, y) ez, that is,
a vertical displacement independent of z, with negligible horizontal displace-
ment. A rather lengthy derivation, which is not carried out here [see, e.g.,
Marguerre and Woernle (1969)], shows that the vertical displacement uz(x, y)
is approximately given by the biharmonic equation

K Δ2uz(x, y) = q(x, y) . (3.122)

The parameter K is the flexural stiffness, defined as

K =
EH3

12(1 − ν2)
=

μH3

6(1 − ν)
, (3.123)
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Fig. 3.10. Thin elastic plate with area load q. The thickness H is assumed to be
much smaller than the horizontal extent L.

and Δ2 is the biharmonic operator, which in Cartesian coordinates in the x-y
plane takes the form

Δ2 =
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
. (3.124)

Of course, in order to provide a unique solution, the biharmonic equation
(3.122) must be complemented by suitable boundary conditions for the dis-
placement at the rim of the plate, which depend on the actual problem.

3.4.3 Newtonian Fluid

Compressible Newtonian Fluid

A material is called viscous if the material function (3.99)1 for the stress tensor
t contains an explicit dependency on Ḟ or L. The most important realisation
of a viscous material is the Newtonian fluid (also called linear viscous fluid),
which can either be compressible or incompressible. For the compressible case,
t depends linearly on the strain-rate tensor D (symmetric part of L), the
density ρ and the temperature T , through the following material function,

t = −p(ρ, T ) I + (λ tr D) I + 2η D , (3.125)

where p is the thermodynamic pressure, which is a function of the density ρ
and the temperature T (“thermal equation of state”), and λ and η are the
coefficients of viscosity. In principle, λ and η can also depend on ρ and T , but
for simplicity we assume that they are constant.

Analogous to Hooke’s law [see Eqs. (3.105) and (3.106)], an alternative
form results from splitting the strain-rate tensor into an isotropic part and a
traceless deviator DD,
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D =
(

1
3 tr D

)
I + DD , (3.126)

with trDD = 0. This yields

t = −p(ρ, T ) I + (λ tr D) I +
(

2
3η tr D

)
I + 2η DD

= −p(ρ, T ) I +
[
(λ + 2

3η) tr D
]
I + 2η DD

= −p(ρ, T ) I + (ζ tr D) I + 2η DD , (3.127)

where ζ = λ + 2η/3 is the bulk viscosity, and η is also known as the shear
viscosity. We can combine the first two terms on the right-hand side to −ptot I,
where

ptot = p(ρ, T ) − ζ tr D = p(ρ, T ) + pvisc (3.128)

is the total pressure, which consists of the thermodynamic pressure p(ρ, T )
and the viscous pressure pvisc, defined by

pvisc = −ζ tr D . (3.129)

Except for the pressure term, the material function (3.125) corresponds
largely to Hooke’s law (3.104), and by a computation similar to (3.120) we
solve for the divergence of the stress tensor

div t = −grad p(ρ, T ) + (λ + η) grad divv + η Δv . (3.130)

With this result, the momentum balance (3.97) yields the equation of motion

ρ
dv
dt

= −grad p(ρ, T ) + (λ + η) grad divv + η Δv + f , (3.131)

which is the Navier-Stokes equation for the case of a compressible Newto-
nian fluid. Note the formal similarity to the Navier equation (3.121) for the
Hookean body. If we assume that the temperature of the system is known
(for instance, nearly isothermal conditions), then, together with the mass bal-
ance (3.96), we have four component equations for the four unknown field
components vx, vy, vz and ρ, which is again a closed system.

Incompressible Newtonian Fluid

For the incompressible Newtonian fluid, ρ = const holds, so that the mass
balance reduces to

divv = 0 (3.132)

[see Eq. (3.60)]. It is then convenient to split the stress tensor as

t = −p I + tD , (3.133)

where
p = − 1

3 tr t (3.134)



3.4 Constitutive Equations 45

denotes the pressure, and tD is the traceless stress deviator (tr tD = 0). Now
the material function (3.99)1 only determines the stress deviator tD and reads

tD = 2η D , (3.135)

where the coefficient η is again the shear viscosity (or simply the viscosity).
Note also that the mass balance (3.132) is equivalent to tr D = 0, so that the
strain-rate tensor is equal to its deviatoric part, that is, D = DD.

In order to derive the equation of motion for the incompressible case, we
compute the divergence of the stress tensor with the decomposition (3.133),
the material function (3.135) and the mass balance (3.132),

div t = −grad p + div tD , (3.136)

where

(div tD)i = 2η Dij,j = η (vi,jj + vj,ij) = η (vi,jj + vj,ji)
= η [vi,jj + (divv),i] = η vi,jj = η (Δv)i . (3.137)

Insertion of these results in the momentum balance (3.97) yields the Navier-
Stokes equation for the incompressible Newtonian fluid,

ρ
dv
dt

= −grad p + η Δv + f . (3.138)

Note that, in contrast to the compressible case, there is only a single pressure
p involved. It appears as a free field, so that we have the four component
equations (3.132) and (3.138) for the four unknown field components vx, vy,
vz and p.

If the viscosity η is temperature-dependent and the temperature is not
known a priori, then a thermo-mechanically coupled problem is obtained, for
which the energy balance (3.98) must additionally be solved. This requires
that the material functions (3.99)2 and (3.99)3 for the heat flux and the in-
ternal energy be specified. Insertion in the energy balance yields the missing
evolution equation for the temperature. For instance, let the heat flow be
given by Fourier’s law of heat conduction,

q = −κ grad T , (3.139)

and the internal energy depend linearly on temperature,

u = u0 + c(T − T0) , (3.140)

where κ is the heat conductivity, c the specific heat, u0 a fixed reference value
for u and T0 a fixed reference value for T [such that u(T0) = u0]. Then the
energy balance (3.98) results in
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ρc
dT

dt
= κ div gradT + tr [(−p I + 2ηD) · D] + ρr

= κ ΔT − p tr D + 2η tr D2 + ρr

⇒ ρc
dT

dt
= κ ΔT + 2η tr D2 + ρr (3.141)

(note that tr D = divv = 0). Now we have the five equations (3.132), (3.138)
and (3.141) which govern the evolution of the five fields vx, vy, vz, p and T .

Gravity-Driven Thin Film Flow

Let us consider a thin film (thickness H) of an incompressible Newtonian fluid
(density ρ, viscosity η), which flows down an impenetrable plane (inclination
angle α) under the influence of gravity (acceleration due to gravity g); see
Fig. 3.11. The film is uniform and of infinite extent in the x (downhill) and
y (lateral) directions. At the contact between the fluid and the underlying
plane, no-slip conditions prevail, and the free surface is stress-free. Further,
steady-state conditions are assumed.

Fig. 3.11. Gravity-driven thin film flow of an incompressible Newtonian fluid.

This problem is a realisation of plane strain: due to the uniformity in the
y (lateral) direction, the velocity component vy and the strain-rate compo-
nents Dxy, Dyy and Dyz vanish, and all field quantities are independent of
y. Further, the uniformity in the x (downhill) direction and the steady-state
assumption imply that dependencies on x and t will not occur either, so that
only dependence on the vertical coordinate z remains. Moreover, due to the
impenetrable basal plane, there will be no vertical velocity component vz, and
the only remaining velocity component is vx(z).

Taking into account f = ρg and g = g sinα ex − g cos α ez, we note the
x-component of the Navier-Stokes equation (3.138),
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ρ
dvx

dt
= ρ

(
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

)

= −∂p

∂x
+ η

(
∂2vx

∂x2
+

∂2vx

∂y2
+

∂2vx

∂z2

)
+ ρg sin α . (3.142)

Owing to the above arguments, all terms except the last two vanish, and the
equation simplifies to

η
∂2vx

∂z2
= −ρg sin α . (3.143)

This can readily be integrated,

η
∂vx

∂z
= C1 − ρgz sin α , (3.144)

where C1 is an integration constant. Its value can be determined by noting
that, due to the material function (3.135), the left-hand side is equal to the
shear stress txz,

txz = η
∂vx

∂z
= C1 − ρgz sin α , (3.145)

which vanishes at the free surface (z = H) as a consequence of the stress-free
boundary condition. Thus,

txz|z=H = C1 − ρgH sin α = 0 ⇒ C1 = ρgH sin α , (3.146)

and we obtain for the shear stress the linear profile

txz = η
∂vx

∂z
= ρg(H − z) sin α . (3.147)

A further integration yields the velocity,

vx =
ρg

η

(
Hz − z2

2

)
sinα + C2 , (3.148)

and the integration constant C2 is evidently equal to zero due to the no-slip
condition vx|z=0 = 0. Therefore, the solution for the downhill velocity is the
parabolic profile

vx =
ρgH sin α

η

(
z − z2

2H

)
. (3.149)

The solutions (3.147) and (3.149) are also shown in Fig. 3.11.
Analogous to Eq. (3.142), the z-component of the Navier-Stokes equation

(3.138) reads

ρ
dvz

dt
= ρ

(
∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

)

= −∂p

∂z
+ η

(
∂2vz

∂x2
+

∂2vz

∂y2
+

∂2vz

∂z2

)
− ρg cos α , (3.150)
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and simplifies for the thin film problem to

∂p

∂z
= −ρg cos α . (3.151)

The integral of this equation is

p = C3 − ρgz cos α , (3.152)

and the integration constant C3 follows from the stress-free boundary condi-
tion at the surface,

p|z=H = C3 − ρgH cos α = 0 ⇒ C3 = ρgH cos α . (3.153)

Thus, we obtain
p = ρg(H − z) cos α , (3.154)

which is a hydrostatic pressure profile, that is, the pressure at any point in
the thin film equals the weight of the overburden fluid.

While one may think first of an oil film (η ∼ 0.1Pa s) thinner than one
millimetre flowing down some substrate as a realisation of gravity-driven thin
film flow, we can also make the film 100 metres thick and assume a viscosity as
large as η ∼ 1014 Pa s. Then we already have a very simple model of a flowing
glacier. However, for a realistic description of glacier ice the incompressible
Newtonian fluid is not sufficient. In the next chapter we will formulate more
appropriate constitutive equations for glacier ice.
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Constitutive Equations for Polycrystalline Ice

4.1 Microstructure of Ice

The phase of H2O ice which exists at pressure and temperature conditions
encountered in ice sheets and glaciers is called ice Ih. It forms hexagonal
crystals, that is, the water molecules are arranged in layers of hexagonal rings
(Fig. 4.1). The plane of such a layer is called the basal plane, which actually
consists of two planes shifted slightly (by 0.0923 nm) against each other. The
direction perpendicular to the basal planes is the optic axis or c-axis, and the
distance between two adjacent basal planes is 0.276 nm.

Fig. 4.1. Structure of an ice crystal. The circles denote the oxygen atoms of the
H2O molecules. (a) Projection on the basal plane. (b) Projection on plane indicated
by the broken line in (a). Adapted from Paterson (1994), c© Elsevier.

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2 4, c© Springer-Verlag Berlin Heidelberg 2009
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c cc

Prismatic PyramidalBasal

Fig. 4.2. Basal, prismatic and pyramidal glide planes in the hexagonal ice Ih crystal.
Reproduced from Faria (2003), c© S. H. Faria.

Owing to this relatively large distance, the basal planes can glide on each
other when a shear stress is applied, comparable to the deformation of a deck
of cards. To a much lesser extent, gliding is also possible in the prismatic and
pyramidal planes (see Fig. 4.2). This means that the ice crystal responds to an
applied shear stress with a continuous deformation, which goes on as long as
the stress is applied (creep, fluid-like behaviour) and depends on the direction
of the stress relative to the crystal planes (anisotropy).

Measurements have shown that ice crystals show some creep even for very
low stresses. In a perfect crystal such a behaviour would not be expected.
However, in real crystals dislocations occur, which are defects in its structure.
These imperfections make the crystal much more easily deformable, and this
is enhanced even more by the fact that during creep additional dislocations
are generated. This creep mechanism is consequently called dislocation creep.

4.2 Creep of Polycrystalline Ice

Naturally, ice which occurs in ice sheets and glaciers does not consist of a single
ice crystal. Rather, it is composed of a vast number of crystallites (also called
grains), the typical size of which is of the order of millimetres to centimetres.
Such a compound is called polycrystalline ice. An example is shown in Fig. 4.3.

The c-axis orientations of the crystallites in polycrystalline ice differ from
one another. In the following, we will assume that the orientation distribution
is completely random. In this case, the anisotropy of the crystallites averages
out in the compound, so that its macroscopic behaviour will be isotropic. In
other words, the material properties of polycrystalline ice do not show any
directional dependence.

Let us assume to conduct a shear experiment with a small sample of poly-
crystalline ice as sketched in Fig. 4.4 (left panel). The shear stress τ is assumed
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Fig. 4.3. Thin-section of polycrystalline glacier ice regarded between crossed polar-
isation filters. The crystallites (grains) are clearly visible, and their apparent colours
depend on the c-axis orientation.

to be held constant, and the shear angle γ is measured as a function of time.
The resulting creep curve γ(t) is shown schematically in Fig. 4.4 (right panel).
An initial, instantaneous elastic deformation of the polycrystalline aggregate
is followed by a phase called primary creep during which the shear rate γ̇
decreases continuously. This behaviour is related to the increasing geomet-
ric incompatibilities of the deforming crystallites with different orientations.
After some time, a minimum shear rate is reached which remains constant sub-
sequently, so that the shear angle increases linearly with time. This phase is
known as secondary creep. In the case of rather high temperatures and/or high
stresses, at a later stage dynamic recrystallisation (nucleation and growth of
crystallites which are favourably oriented for deformation; also known as mi-
gration recrystallisation) sets in, which leads to accelerated creep and finally a
constant shear rate (linear increase of the shear angle with time) significantly
larger than that of the secondary creep. This is called tertiary creep.

Fig. 4.4. Shear experiment for a sample of polycrystalline ice. τ denotes the applied
shear stress, γ the shear angle and t the time.
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4.3 Flow Relation

4.3.1 Glen’s Flow Law

From the above considerations it becomes clear that the shear rate γ̇ for
secondary (minimum) creep of isotropic polycrystalline ice under the simple-
shear conditions illustrated in Fig. 4.4 can be expressed as a unique function
of the shear stress τ , the ice temperature T and the pressure p,

γ̇ = γ̇(τ, T, p) . (4.1)

Numerous laboratory experiments and field measurements suggest that the
concrete relation is that of a non-linearly viscous fluid,

γ̇ =
1

η(T, p, |τ |) τ , (4.2)

where η denotes the shear viscosity. The inverse 1/η is called fluidity, and its
dependence on the temperature T , the pressure p and the absolute value of
the shear stress |τ | can be factorised as

1
η(T, p, |τ |) = 2A(T, p) f(|τ |) , (4.3)

where A(T, p) is the rate factor and f(|τ |) the creep function. These are usually
expressed in the form of an Arrhenius law

A(T, p) = A0 e−(Q+pV )/RT , (4.4)

(A0: pre-exponential constant, Q: activation energy, V : activation volume,
R = 8.314 J mol−1 K−1 : universal gas constant), and a power law,

f(|τ |) = |τ |n−1 (4.5)

(n: stress exponent), respectively.
Let us now generalise the non-linearly viscous flow law (4.2) for secondary

creep to arbitrary deformations and stresses. To a good approximation, ice
can be described as incompressible, so that the pressure p will be a free field,
and the three-dimensional flow law will relate the strain-rate tensor D and the
stress deviator tD (compare Sect. 3.4.3). If we define a Cartesian coordinate
system such that the plane of Fig. 4.4 (left panel) falls on the x-z plane
(where x is the horizontal and z the vertical coordinate), then we can identify
γ̇ = 2Dxz [see Eq. (3.35)] and τ = txz (see Fig. 3.8), so that (4.2) becomes

Dxz =
1

2η(T, p, |txz|)
txz . (4.6)

Since Dxz is the x-z component of D and txz the x-z component of tD, this
suggests that the general flow law reads
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D =
1

2η(T, p, σe)
tD . (4.7)

The only non-straightforward point is the question how the |txz| in Eq. (4.6)
translates to the newly introduced scalar σe (effective stress). As a relation
between two tensors, Eq. (4.7) must be independent of any particular basis
(coordinate system). Therefore, the effective stress σe cannot be equal to a
single element like |txz|, but it must be a scalar invariant of tD. An order 2
tensor in three-dimensional space has only three independent invariants [see
Eq. (2.42)], which are for tD

ItD = tr tD = 0 ,

IItD = 1
2 [tr (tD)2 − (tr tD)2] = 1

2 tr (tD)2

= 1
2 [(tDxx)2 + (tDyy)2 + (tDzz)

2] + t2xy + t2xz + t2yz ,

IIItD = det tD

(4.8)

(note that tij = tDij for i �= j). If we choose

σe =
√

IItD =
√

1
2 tr (tD)2 , (4.9)

then we have found an invariant quantity which simplifies to |txz| for the
simple-shear conditions of (4.6). It is therefore reasonable to assume that
(4.9) is the correct expression for the effective stress in the flow law (4.7).

As for the fluidity 1/η in Eq. (4.7), we can directly infer its functional
dependence on T , p and σe from Eqs. (4.3), (4.4) and (4.5):

1
η(T, p, σe)

= 2A(T, p) f(σe) (4.10)

[rate factor A(T, p), creep function f(σe)], with the Arrhenius law

A(T, p) = A0 e−(Q+pV )/RT (4.11)

and the power law
f(σe) = σn−1

e . (4.12)

The optimum value for the stress exponent n has been a matter of continuous
debate, but most frequently n = 3 is used (Paterson 1994, van der Veen 1999,
and references therein).

The melting temperature of ice, Tm, is pressure-dependent. For low pres-
sures (p � 100 kPa), Tm = T0 = 273.15K, and for pressures which occur
typically in ice sheets and glaciers (p � 50MPa) the linear relation

Tm = T0 − β p (4.13)

holds. For pure ice, the Clausius-Clapeyron constant β has the value β =
7.42 × 10−8 K Pa−1, but under realistic conditions the value for air-saturated
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ice, β = 9.8 × 10−8 K Pa−1, is preferable (Hooke 2005). Under hydrostatic
conditions, this leads to a melting-point lowering of 0.87K per kilometre of
ice thickness. With (4.13), the temperature relative to the pressure melting
point is defined as

T ′ = T − Tm + T0 = T + β p , (4.14)

so that the pressure melting point always corresponds to T ′ = T0 = 273.15K
(or 0◦C). Measurements have shown that the pressure dependence in the Ar-
rhenius law (4.11) is accounted for satisfactorily if the absolute temperature
is replaced by the temperature relative to the pressure melting point, that is

A(T, p) = A(T ′) = A0 e−Q/RT ′
. (4.15)

Recommended values for the pre-exponential constant and the activation en-
ergy are listed in Table 4.1. The larger activation energy for T ′ > 263.15K is
probably due to grain boundary sliding and the presence of liquid water at
grain boundaries which contribute to creep in this temperature range [see the
discussion by Paterson (1994), and references therein]. The two values of the
pre-exponential constant yield A(T ′ = 263.15 K) = 4.9 × 10−25 s−1 Pa−3 for
both regimes, so that the function is continuous (Fig. 4.5). Note that these
values are only reasonable for n = 3.

Parameter Value

Stress exponent, n 3

Pre-exponential constant, A0 3.985 × 10−13 s−1 Pa−3 (for T ′ ≤ 263.15 K)
1.916 × 103 s−1 Pa−3 (for T ′ > 263.15 K)

Activation energy, Q 60 kJ mol−1 (for T ′ ≤ 263.15 K)
139 kJ mol−1 (for T ′ > 263.15 K)

Table 4.1. Stress exponent and parameters for the Arrhenius law (4.15) (Paterson
1994).

Equation (4.7) together with (4.10), (4.12) and (4.15) reads

D = A(T ′)σn−1
e tD , (4.16)

which is called Nye’s generalisation of Glen’s flow law, or Glen’s flow law for
short (Glen 1955, Nye 1957). Figure 4.6 shows the corresponding viscosity

η(T ′, σe) =
1

2A(T ′)σn−1
e

(4.17)

for different stresses and temperatures. Evidently, the viscosity of polycrys-
talline ice is much larger than that of viscous fluids of everyday life. For
instance, the viscosity of motor oil is of the order of 0.1Pa s, compared to
∼ 1013 Pa s for ice at T ′ = 0◦C and σe = 100 kPa (1 bar). On the other hand,
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the upper mantle of the Earth has a viscosity of the order of 1021 Pa s, which
is further eight orders of magnitude stiffer, but still considered to be a fluid
on geological time-scales.

In order to derive the inverse form of Glen’s flow law, we define the effective
strain rate

de =
√

1
2 tr D2 , (4.18)
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[square root of the second invariant of the strain-rate tensor, compare to (4.9)],
for which we obtain, by inserting (4.16)

de = A(T ′)σn−1
e σe = A(T ′)σn

e ⇔ σe = A(T ′)−1/n d1/n
e . (4.19)

Solving (4.16) for tD and using (4.19) yields

tD = A(T ′)−1 σ
−(n−1)
e D

= A(T ′)−1 A(T ′)(n−1)/n d
−(n−1)/n
e D

= A(T ′)−1/n d
−(1−1/n)
e D

⇒ tD = B(T ′) d
−(1−1/n)
e D , (4.20)

where the associated rate factor B(T ′) = A(T ′)−1/n has been introduced. We
may write this with the shear viscosity η as

tD = 2η(T ′, de)D (4.21)

[see (4.7)], where

η(T ′, de) =
1
2
B(T ′) d−(1−1/n)

e . (4.22)

Evidently, the flow law for polycrystalline ice in the form of (4.7) or (4.21) is
very similar to that of the incompressible Newtonian fluid which was discussed
in Sect. 3.4.3 [see Eq. (3.135)]. The difference is that here we deal with a non-
linear flow law, in that the viscosity depends on the effective stress or the
effective strain rate.

4.3.2 Regularised Glen’s Flow Law

As a consequence of Eqs. (4.10) and (4.12), Glen’s flow law (4.16) with n > 1
yields an infinite viscosity η if the effective stress σe approaches zero. Physi-
cally, this is not a problem, because if the effective stress is small, the strain
rate is small, too, and does not contribute significantly to the overall flow field.
However, depending on the mathematical solution procedure, the infinite vis-
cosity limit may introduce a singularity in the equations for the velocity field
if the effective stress is very small, which occurs at ice divides and ice margins.
In order to avoid this problem, a regularisation has been proposed, in which
the power law, Eq. (4.12), is replaced by a polynomial relation,

f(σe) = σn−1
e + σn−1

0 (4.23)

(“regularised Glen’s flow law”), where the residual stress σ0 is a small positive
constant. The viscosity is then [see Eq. (4.17)]

η(T ′, σe) =
1

2A(T ′) [σn−1
e + σn−1

0 ]
, (4.24)
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which has the finite limit

ησe→0 =
1

2A(T ′)σn−1
0

. (4.25)

This means that for small effective stresses the flow law of a Newtonian fluid
(with temperature-dependent viscosity) results. There is some, however in-
conclusive, experimental evidence that polycrystalline ice may actually show
this behaviour, which could serve as a physical justification for the polyno-
mial relation (4.23). Generally, if this relation is used, the residual stress σ0

is chosen as small as possible in order not to influence the overall solution
significantly, but large enough to prevent the problems with the singularity.

Note that, for n > 1, an analytical inversion according to Eqs. (4.19) –
(4.22) is not possible for the regularised Glen’s flow law. We can still state

tD = 2η(T ′, de)D , (4.26)

but do not obtain an explicit expression for the viscosity η(T ′, de). Instead,
by using the definitions (4.9) and (4.18), we infer from (4.26) the relation

σe = 2η(T ′, de) de . (4.27)

Inserting this in Eq. (4.24) yields

η(T ′, de) =
1

2A(T ′) [(2η(T ′, de) de)n−1 + σn−1
0 ]

⇒ 2nA(T ′)dn−1
e ηn(T ′, de) + 2A(T ′)σn−1

0 η(T ′, de) − 1 = 0 , (4.28)

which is an implicit representation of the viscosity η(T ′, de) as a polynomial
equation.

4.3.3 Smith-Morland Flow Law

An alternative flow law with finite viscosity in the limit σe → 0 was proposed
by Smith and Morland (1981). It has the form

D = A(T ) f(σe) tD , (4.29)

where the dimensionless rate factor is given by the two-exponential term ex-
pression

A(T ) = 0.7242 e11.9567 T̄ + 0.3438 e2.9494 T̄ , T̄ =
T − T0

[ΔT ]
, (4.30)

and the creep function is represented by

f(σe) =
D0

σ0

[
0.3336 + 0.3200

(σe

σ0

)2

+ 0.02963
(σe

σ0

)4
]

. (4.31)



58 4 Constitutive Equations for Polycrystalline Ice

The constants in Eqs. (4.30) and (4.31) have the values T0 = 273.15K,
[ΔT ] = 20K, D0 = 1a−1 = 3.169 × 10−8 s−1 and σ0 = 105 Pa. Note that
the rate factor (4.30) is a function of the absolute temperature T instead of
the temperature relative to the pressure melting point T ′, so that it contains
no pressure dependence.

The flow law (4.29) with the rate factor (4.30) and creep function (4.31)
is referred to as the Smith-Morland flow law. Its viscosity is given by

η(T, σe) =
1

2A(T ) f(σe)
. (4.32)

As for the case of the regularised Glen flow law (Sect. 4.3.2), the Smith-
Morland flow law can formally be inverted,

tD = 2η(T, de)D , (4.33)

but an explicit representation of the viscosity η(T, de) cannot be obtained.
The Smith-Morland flow law has not been widely used, even though the

authors claim that it matches laboratory data on ice deformation better than
Glen’s flow law. It is therefore worth being explored in more detail in future
studies.

4.3.4 Flow Enhancement Factor

All flow laws of Sects. 4.3.1–4.3.3 are valid for secondary creep of isotropic
polycrystalline ice. However, as we have discussed in Sect. 4.2, in regions
of flowing ice sheets and glaciers with relatively high temperatures and/or
stresses, tertiary creep may prevail, which goes along with the formation
of an anisotropic fabric (non-uniform orientation distribution of the c-axes)
favourable for the deformation regime at hand.

A crude, but very common way of including this effect in the flow law
is by multiplying the isotropic ice fluidity for secondary creep by a flow en-
hancement factor E > 1 (Hooke 2005). This can be conveniently achieved by
replacing the rate factor A(T ′) for the Glen and regularised Glen flow law [or
A(T ) for the Smith-Morland flow law] by

A(T ′) → EA(T ′) . (4.34)

Suggested values for the flow enhancement factor vary and depend on the de-
formation regime; however, in practice often an overall constant value some-
where between 1 and 10 for the considered ice sheet or glacier is chosen.

In case of Glen’s flow law, we have seen that an analytical inversion is
possible. Equation (4.34) yields for the associated rate factor introduced in
Eq. (4.20)

B(T ′) = A(T ′)−1/n → [EA(T ′)]−1/n = EsB(T ′) , (4.35)

where Es = E−1/n is the stress enhancement factor.
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4.4 Heat Flux and Internal Energy

The heat flux q in polycrystalline ice can be described well by Fourier’s law
of heat conduction [see (3.139)],

q = −κ(T ) grad T , (4.36)

with the temperature-dependent heat conductivity

κ(T ) = 9.828 e−0.0057 T [K] W m−1K−1 (4.37)

(Ritz 1987). For T = T0 = 273.15K this yields a value of 2.07W m−1K−1,
and it increases with decreasing temperature (Fig. 4.7, top panel).

−50 −40 −30 −20 −10 0
2

2.2

2.4

2.6

2.8

Temperature T [°C]

κ 
 [W

 m
−

1  K
−

1 ]

−50 −40 −30 −20 −10 0
1700

1800

1900

2000

2100

Temperature T [°C]

c 
 [J

 k
g−

1  K
−

1 ]

Fig. 4.7. Heat conductivity κ and specific heat c for the temperature range from
−50◦C until 0◦C.

The caloric equation of state (constitutive equation for the internal energy)
is given by

u =

T∫
T0

c(T̄ ) dT̄ , (4.38)

which is a generalisation of Eq. (3.140) with the temperature-dependent spe-
cific heat

c(T ) = (146.3 + 7.253T [K]) J kg−1K−1 (4.39)

(Ritz 1987). According to this formula, at T = T0 = 273.15K one obtains
2127.5 J kg−1K−1. Contrary to the heat conductivity, the specific heat de-
creases with decreasing temperature (Fig. 4.7, bottom panel).
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4.5 Elasticity

For processes on short time-scales (days or less), such as the response of an
ice shelf to oceanic tides, the elastic deformation of polycrystalline ice will be
dominant compared to the deformation by viscous creep. In this situation, the
material behaviour of ice can be described well by Hooke’s law in the form
(3.104), (3.106) or (3.116).

Parameter Value

Young’s modulus, E 9.33 × 109 Pa
Poisson’s ratio, ν 0.325
1st Lamé parameter, λ 6.54 × 109 Pa

2nd Lamé parameter (shear modulus), μ 3.52 × 109 Pa

Table 4.2. Elastic parameters for isotropic polycrystalline ice at T = −16◦C (Pe-
trenko and Whitworth 1999).

Suitable values for the material parameters at T = −16◦C are listed in Ta-
ble 4.2. The temperature dependence is rather small; Petrenko and Whitworth
(1999) give the formula

⎛
⎝E(T )

λ(T )
μ(T )

⎞
⎠ =

⎛
⎝E

λ
μ

⎞
⎠
∣∣∣∣∣∣
T=−16◦C

× [1 − 1.42 × 10−3 (T [◦C] + 16)] , (4.40)

while the temperature dependence of Poisson’s ratio ν can be neglected.
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Large-Scale Dynamics of Ice Sheets

5.1 Full Stokes Flow Problem

5.1.1 Field Equations

With the constitutive equations given in Sects. 4.3 and 4.4, we are now able
to formulate the mechanical and thermodynamical field equations for the flow
of ice in an ice sheet. Figure 5.1 shows the typical geometry (cross section) of
a grounded ice sheet with attached floating ice shelf (the latter will be treated
in Chap. 6), as well as its interactions with the atmosphere (snowfall, melt-
ing), the lithosphere (geothermal heat flux, isostasy) and the ocean (melting,
calving). Also, a Cartesian coordinate system is introduced, where x and y
lie in the horizontal plane, and z is positive upward. These coordinates are
naturally associated with the set of basis vectors {ex, ey, ez}. The free surface
(ice-atmosphere interface) is given by the function z = h(x, y, t), the ice base
by z = b(x, y, t) and the lithosphere surface by z = zl(x, y, t). Note that for
the grounded ice sheet the ice base and the lithosphere surface fall together
(b = zl) and form the ice-lithosphere interface.

By introducing the Cartesian coordinates x, y, z, we have tacitly assumed
a flat Earth. For the vertical direction, this simplification is justified because
the vertical extent of ice sheets (as well as ice shelves and glaciers) is always
much smaller than the mean radius of the Earth (Re = 6371 km), so that cur-
vature effects are negligible. In the horizontal, the flattening can be achieved
by a suitable map projection. For ice sheets, often the polar stereographic
projection is used, which is illustrated in Fig. 5.2. It preserves angles, but
not distances and areas. The distortions are negligible for most practical ap-
plications, though. Even for the entire Antarctic Ice Sheet (situated between
∼ 63◦S and 90◦S), the distortion of the length scale nowhere exceeds 3% if
the standard parallel is chosen as ϕ0 = 71◦S.

Since we have assumed ice to be an incompressible material, the mass
balance (3.60) applies,

divv = 0 . (5.1)

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2 5, c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 5.1. Ice sheet geometry (with attached ice shelf) and Cartesian coordinate
system. x and y span the horizontal plane, z is positive upward. z = h(x, y, t)
denotes the free surface, z = b(x, y, t) the ice base, z = zl(x, y, t) the lithosphere
surface and z = zsl(t) the mean sea level. Interactions with the atmosphere, the
lithosphere and the ocean are indicated. Vertical exaggeration factor ∼ 200-500.

The flow law in the form (4.21) yields for the divergence of the stress
deviator [note that, contrary to (3.137), η is not constant]

(div tD)i = 2(η Dij),j = 2η Dij,j + 2Dij η,j

= η (vi,jj + vj,ij) + (vi,j + vj,i) η,j

= η [(Δv)i + (divv),i] +
[(

gradv + (gradv)T
)
· grad η

]
i

= η (Δv)i +
[(

gradv + (gradv)T
)
· grad η

]
i

. (5.2)

The volume force f acting on an ice sheet on the rotating Earth consists
of the force of gravity, the centrifugal force and the Coriolis force (the lat-
ter two are inertial forces). Since the centrifugal force depends only on po-
sition, it is usually combined with the actual force of gravity to form the
effective force of gravity ρg, where ρ = 910 kg m−3 is the density of ice, and
g is the gravitational acceleration. On the surface of the Earth, the gravi-
tational acceleration takes values between ∼ 9.78 and 9.83m s−2 depending
on latitude. Since this variability is negligible for our purposes, we adopt
the constant standard value g = |g| = 9.81m s−2 instead. The vector g
is directed downward, so that g = −g ez. The Coriolis force depends on
the flow velocity v and the angular velocity Ω of the Earth. The vector Ω
points northward parallel to the rotational axis of the Earth, and its value is
Ω = |Ω| = 2π/(23.9345 h) = 7.2921×10−5 s−1. Hence, the volume force reads
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Fig. 5.2. Polar stereographic projection for (a) the northern and (b) the southern
hemisphere. The stereographic plane is parallel to the equatorial plane and defined
by the standard parallel ϕ0 (often chosen as 71◦N or 71◦S). A point P on the surface
of the Earth is projected on the point st(P ) by intersecting the line PS (case a) or
PN (case b) with the stereographic plane.

f = ρg − 2ρΩ × v . (5.3)

By inserting Eqs. (5.2) and (5.3) in the momentum balance (3.72) we obtain
the equation of motion

ρ
dv
dt

= −grad p + η Δv +
(
gradv + (gradv)T

)
· grad η

+ ρg − 2ρΩ × v . (5.4)

In this equation, let us compare the acceleration term on the left-hand
side with the pressure-gradient term on the right-hand side. To this end, we
introduce typical values for the horizontal and vertical extent of an ice sheet,
the horizontal and vertical flow velocities, the pressure and the time as follows,

typical horizontal extent [L] = 1000 km ,
typical vertical extent [H] = 1 km ,

typical horizontal velocity [U ] = 100ma−1 ,
typical vertical velocity [W ] = 0.1ma−1 ,

typical pressure [P ] = ρg[H] ≈ 10MPa ,
typical time-scale [t] = [L]/[U ] = [H]/[W ] = 104 a .

(5.5)

Further, the aspect ratio ε is defined as the ratio of vertical to horizontal
extents and velocities, respectively:

ε =
[H]
[L]

=
[W ]
[U ]

= 10−3 . (5.6)
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For the horizontal direction, the ratio of acceleration and pressure gradient,
called the Froude number Fr, is then

Fr =
ρ[U ]/[t]
[P ]/[L]

=
ρ[U ]2/[L]
ρg[H]/[L]

=
[U ]2

g[H]
≈ 10−15 (5.7)

(note that 1 a = 31556926 s ≈
√

1015 s), and for the vertical direction we
obtain the ratio

ρ[W ]/[t]
[P ]/[H]

=
ρ[W ]2/[H]
ρg[H]/[H]

=
[W ]2

g[H]
= ε2Fr ≈ 10−21 . (5.8)

Consequently, for the flow of ice sheets, the acceleration term in the equation
of motion (5.4) is negligible.

In a similar way, we estimate the ratio between the Coriolis and pressure-
gradient terms in Eq. (5.4). Since the cross product in the Coriolis term mixes
horizontal and vertical contributions, we apply the common scales 2ρΩ[U ]
and [P ]/[L], respectively, for both the horizontal and vertical direction. By
introducing the Rossby number Ro as

Ro =
[U ]

2Ω[L]
≈ 2 × 10−8 , (5.9)

the Coriolis-force-to-pressure-gradient ratio yields

2ρΩ[U ]
[P ]/[L]

=
2Ω[U ][L]

g[H]
=

[U ]2

g[H]
2Ω[L]
[U ]

=
Fr

Ro
≈ 5 × 10−8 , (5.10)

which is seven orders of magnitude larger than the Froude number, but still
very small. Hence, the Coriolis term in the equation of motion (5.4) is also
negligible, and it can be simplified to

− grad p + η Δv +
(
gradv + (gradv)T

)
· grad η + ρg = 0 . (5.11)

This is the Stokes equation, and the resulting type of flow is called Stokes flow.
Since the Stokes equation is a differential equation for the velocity field,

it is favourable to employ the form of the viscosity η which depends via the
effective strain rate de on the velocity gradient. Therefore, η = η(T ′, de), and,
depending on whether the normal or the regularised Glen’s flow law shall be
used, it is determined either by Eq. (4.22) or by Eq. (4.28).

Owing to the temperature dependence of the viscosity, a thermo-mechani-
cally coupled problem applies, and its complete formulation requires an evolu-
tion equation for the temperature field. As it was demonstrated in Sect. 3.4.3,
this equation can be derived by inserting the constitutive equations for the
stress deviator (4.21), the heat flux (4.36) and the internal energy (4.38) in
the internal-energy balance (3.92). We obtain

du

dt
= c

dT

dt
, divq = −div (κ grad T ) (5.12)
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and
tr (t · D) = tr [(−p I + 2ηD) · D] = 2η tr D2 = 4η d2

e (5.13)

[see (4.18)]. Further, except for the very uppermost few centimetres of ice
exposed to sunlight, the radiation r is negligible in an ice sheet, so that we
obtain the temperature evolution equation in the form

ρc
dT

dt
= div (κ grad T ) + 4η d2

e . (5.14)

Since the ice temperature must not exceed the pressure melting point, the
solution of (5.14) is subject to the secondary condition T ≤ Tm. With the
continuity equation (5.1), the equation of motion (5.11), the expressions (4.22)
or (4.28) for the viscosity and the temperature evolution equation (5.14), we
have found a closed system of six equations for the six unknown fields vx, vy,
vz, η, p and T of the thermo-mechanical Stokes flow problem.

5.1.2 Boundary Conditions

In order to provide a solvable problem, the above system of equations needs
to be completed by appropriate boundary conditions at the free surface and
the ice base (see Fig. 5.1). The possible presence of attached ice shelves will
be ignored for now.

Free Surface

Like any boundary, the free surface of an ice sheet can be regarded as a
singular surface in the sense of Sect. 3.3.3. If we denote it in implicit form by
the equation

Fs(x, t) = z − h(x, y, t) = 0 , (5.15)

then it can be interpreted as a zero-equipotential surface of the function
Fs(x, t), where the unit normal vector is the normalised gradient

n =
grad Fs

|grad Fs|
=

1
Ns

⎛
⎜⎜⎜⎜⎝

−∂h

∂x

−∂h

∂y

1

⎞
⎟⎟⎟⎟⎠ , (5.16)

which points into the atmosphere (Fig. 5.3). Note that the abbreviation Ns

stands for the gradient norm,

Ns = |grad Fs| =
(

1 +
(∂h

∂x

)2

+
(∂h

∂y

)2
)1/2

. (5.17)
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Fig. 5.3. Geometry of the free surface Fs(x, t) = 0. n is the unit normal vector, v
the ice velocity and w the velocity of the free surface.

As a direct consequence of Eq. (5.15), the time derivative of Fs following
the motion of the free surface with velocity w must vanish,

dwFs

dt
=

∂Fs

∂t
+ (grad Fs) · w = 0 (5.18)

[compare Eq. (3.23)]. Let v be the ice surface velocity, then we can introduce
the ice volume flux through the free surface,

a⊥
s = (w − v) · n , (5.19)

which is also known as the accumulation-ablation function or surface mass
balance (perpendicular to the free surface). The sign is chosen such that a
supply (accumulation) is counted as positive and a loss (ablation) as negative.
With this definition and (5.16), Eq. (5.18) can be rewritten as

∂Fs

∂t
+ (grad Fs) · v = −Nsa

⊥
s , (5.20)

or, by inserting Fs = z − h [see (5.15)],

∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz = Nsa

⊥
s . (5.21)

Since this condition has been derived by geometrical considerations only, it
is called the kinematic boundary condition. Provided that the accumulation-
ablation function a⊥

s is known, it evidently governs the evolution of the free
surface.

If we identify the positive side of the free surface with the atmosphere
and the negative side with the ice, then the momentum jump condition (3.73)
(note that the free surface is a non-material surface if a⊥

s �= 0) yields

tatm · n − t · n − ρ((v − w) · n) [[v]]

= tatm · n − t · n + ρa⊥
s [[v]] = 0

(5.22)
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[in the first line, the term ρ((v − w) · n) can be factored out of the jump
brackets because of the mass balance (3.61)]. The advective term ρa⊥

s [[v]]
is very small and thus negligible due to the small ice flow velocities, and the
atmospheric stress tatm ·n (atmospheric pressure plus wind stress) is also small
compared to the typical stresses in an ice sheet. Thus, we can neglect both
terms, and obtain the stress-free condition

t · n = 0 . (5.23)

This is the dynamic boundary condition for the free surface.
For the temperature evolution equation (5.14), it is further required to

provide a thermodynamic boundary condition. This can be simply done by
prescribing the surface temperature Ts,

T = Ts . (5.24)

Measurements have shown that Ts can be well approximated by the mean-
annual surface air temperature, as long as the latter is ≤ 0◦C.

Ice Base

In a similar manner to the free surface, a kinematic boundary condition for
the ice base can be derived. Let

Fb(x, t) = b(x, y, t) − z = 0 (5.25)

be its implicit representation, then the unit normal vector is

n =
grad Fb

|grad Fb|
=

1
Nb

⎛
⎜⎜⎜⎜⎝

∂b

∂x
∂b

∂y

−1

⎞
⎟⎟⎟⎟⎠ , (5.26)

which points into the bedrock (Fig. 5.4). The abbreviation Nb denotes the
gradient norm,

Nb = |grad Fb| =
(

1 +
( ∂b

∂x

)2

+
( ∂b

∂y

)2
)1/2

. (5.27)

Analogous to Eq. (5.18), the time derivative of Fb following the motion of
the ice base vanishes,

dwFb

dt
=

∂Fb

∂t
+ (gradFb) · w = 0 , (5.28)

where w is the velocity of the ice base. With the ice volume flux through the
base,
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Fig. 5.4. Geometry of the ice base Fb(x, t) = 0. n is the unit normal vector, v the
ice velocity and w the velocity of the ice base.

a⊥
b = (v − w) · n , (5.29)

where the sign has been chosen such that a mass loss due to basal melting
(and subsequent penetration of the meltwater into the ground) is counted as
positive, and which is therefore called the basal melting rate (perpendicular
to the ice base), we obtain

∂Fb

∂t
+ (gradFb) · v = Nba⊥

b , (5.30)

and, by inserting Fb = b − z [Eq. (5.25)],

∂b

∂t
+ vx

∂b

∂x
+ vy

∂b

∂y
− vz = Nba⊥

b . (5.31)

We identify the positive side of the ice base with the lithosphere and the
negative side with the ice. Then, corresponding to Eq. (5.22), the momentum
jump condition reads

tlith · n − t · n − ρa⊥
b [[v]] = 0 . (5.32)

Again, the advective term ρa⊥
b [[v]] is very small and therefore negligible, so

that
t · n = tlith · n . (5.33)

This is to say that the stress vector is continuous across the interface. How-
ever, since we do not have any information about the stress conditions in
the bedrock, this finding does not provide a boundary condition for the basal
stress in the ice. Instead, an empirical sliding law will serve as the required
dynamic boundary condition. It is reasonable to assume that the ice is frozen
to the ground if the basal temperature Tb is below the pressure melting point
Tm, so that no-slip conditions prevail. By contrast, if the basal temperature is
at the pressure melting point, basal sliding can be expected, and its amount
can be related to the basal drag τ b and the basal normal stress Nb in the form
of a power law (Weertman-type sliding law). To this end, we split up the basal
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stress vector tn|z=b = t|z=b · n into its normal component, Nb = −Nbn (the
minus sign causes Nb to be positive for compression, which is the expected
situation), and its shear component, τ b = τbet,

tn|z=b = Nb + τ b = −Nbn + τbet , (5.34)

where et denotes the direction of the basal shear stress in the plane tangential
to the ice base (et ⊥ n). The basal sliding velocity vb is then expressed as

vb =

⎧⎪⎨
⎪⎩

0 , if Tb < Tm ,

−Cb
τp
b

Nq
b

et , if Tb = Tm ,
(5.35)

where p and q are the basal sliding exponents. As for the stress exponent n
in the creep function (4.12) of Glen’s flow law, the best choice for their values
are a matter of debate, but commonly used values are (p, q) = (3, 1) or (3, 2)
for sliding on hard rock, and (p, q) = (1, 0) for sliding on soft, deformable
sediment.

As for the thermodynamic boundary condition, sufficient information on
the spatio-temporal distribution of the basal temperature is not available, so
that it cannot be prescribed directly. Instead, we will have to formulate the
energy jump condition (3.94) for the ice base. We obtain

qlith · n − q · n − [[v]] · t · n + ρ((v − w) · n)
[[

u +
v2

2

]]
= 0 . (5.36)

Note that the term ρ((v−w) ·n) has been factored out of the jump brackets
because of the mass balance (3.61), and the stress vector t·n has been factored
out due to (5.33). The term −qlith · n can be identified with the geothermal
heat flux q⊥geo, that is, the heat flow which enters the ice body from below due
to the warmer Earth’s interior. Further, we insert Eqs. (4.36) and (5.29), and
neglect the very small kinetic energy v2/2 in comparison with the internal
energy u, so that

κ (grad T · n) − q⊥geo − [[v]] · t · n + ρa⊥
b [[u]] = 0 . (5.37)

Two cases are to be distinguished. For a cold base, that is, a basal temperature
below the pressure melting point, there cannot be any basal melting (a⊥

b = 0),
and no-slip conditions prevail [see (5.35)1], so that [[v]] = 0. Thus, Eq. (5.37)
simplifies to

κ (grad T · n) = q⊥geo , (5.38)

which is a Neumann-type boundary condition for the basal temperature. By
contrast, in case of a temperate base (basal temperature at the pressure melt-
ing point), the basal temperature itself is known, namely

T = Tm (5.39)
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(Dirichlet-type condition). As a consequence, the energy jump condition (5.37)
is no longer needed as a boundary condition for the temperature field, but it
can be used to compute the unknown basal melting rate a⊥

b . Since there will
be meltwater on the positive (lithosphere) side and ice on the negative (ice)
side of the base, the jump of the internal energy [[u]] is equal to the latent heat
L of ice melt, that is, [[u]] = L. Furthermore, the velocity jump is given by the
sliding velocity (5.35)2, so that [[v]] = −vb. With these settings, the energy
jump condition (5.37), solved for a⊥

b , yields

a⊥
b =

q⊥geo − κ (grad T · n) − vb · t · n
ρL

. (5.40)

Evidently, the situation is different from that of the free surface, where the
accumulation-ablation function a⊥

s must be prescribed as climatic input (along
with the surface temperature Ts), whereas the basal melting rate a⊥

b can be
computed. Instead, at the ice base the geothermal heat flux q⊥geo must be
prescribed as an input quantity.

5.1.3 Ice Thickness Equation

By combining the continuity equation (5.1) with the kinematic boundary con-
ditions (5.21) and (5.31), we can now derive an evolution equation for the ice
thickness H(x, y, t) = h(x, y, t)− b(x, y, t). To this end, we write (5.1) in com-
ponent form,

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0 , (5.41)

and integrate it from the ice base to the free surface:

h∫
b

∂vx

∂x
dz +

h∫
b

∂vy

∂y
dz +

h∫
b

∂vz

∂z
dz = 0 . (5.42)

The first two terms can be modified using Leibniz’s rule,

∂

∂x

h∫
b

vx dz =

h∫
b

∂vx

∂x
dz + vx|z=h

∂h

∂x
− vx|z=b

∂b

∂x
(5.43)

(and accordingly for the y-derivative), and the third term is simply

h∫
b

∂vz

∂z
dz = vz|z=h − vz|z=b , (5.44)

so that



5.1 Full Stokes Flow Problem 71

∂

∂x

h∫
b

vx dz +
∂

∂y

h∫
b

vy dz − vx|z=h
∂h

∂x
− vy|z=h

∂h

∂y
+ vz|z=h

+ vx|z=b
∂b

∂x
+ vy|z=b

∂b

∂y
− vz|z=b = 0 . (5.45)

With the kinematic conditions (5.21) and (5.31), this yields

∂

∂x

h∫
b

vx dz +
∂

∂y

h∫
b

vy dz +
∂h

∂t
− Nsa

⊥
s − ∂b

∂t
+ Nba⊥

b = 0 . (5.46)

By introducing the volume flux Q as the vertically integrated horizontal ve-
locity, that is,

Q =
(

Qx

Qy

)
=

⎛
⎜⎜⎜⎝

∫ h

b

vx dz

∫ h

b

vy dz

⎞
⎟⎟⎟⎠ , (5.47)

rearranging (5.46) and introducing the ice thickness H = h − b, we obtain

∂H

∂t
= −divQ + Nsa

⊥
s − Nba⊥

b (5.48)

(note that divQ = ∂Qx/∂x + ∂Qy/∂y). This result is known as the ice thick-
ness equation.

Recall that the accumulation-ablation function (surface mass balance) a⊥
s

and the basal melting rate a⊥
b are fluxes perpendicular to the free surface and

the ice base, respectively. However, since the term ∂H/∂t in Eq. (5.48) refers
to the vertical direction, it is desirable to introduce new quantities as and ab,
which are also taken in the vertical direction.

Let ΔV ⊥ be the ice volume which is accumulated on the area ΔA⊥ on
the surface of the ice sheet during the time Δt (Fig. 5.5). The accumulation-
ablation function perpendicular to the free surface is then

a⊥
s = lim

Δt→0

ΔV ⊥

ΔA⊥ Δt
(5.49)

(where ΔV ⊥ is positive in case of positive a⊥
s and negative in case of negative

a⊥
s ). Similarly, the accumulation-ablation function in the vertical direction is

as = lim
Δt→0

ΔV

ΔAΔt
. (5.50)

Since ΔV = ΔV ⊥ and ΔA = ΔA⊥ cos α (where α is the surface inclination
angle, see Fig. 5.5), the two accumulation-ablation functions are related by

as =
a⊥
s

cos α
. (5.51)
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Fig. 5.5. On the accumulation-ablation functions in the vertical direction (as) and
perpendicular to the free surface (a⊥

s ). The volumes ΔV ⊥ = P1P2P3P4 and ΔV =
P1P

′
2P

′
3P4 are equal. The areas ΔA⊥ = P1P4 = P2P3 and ΔA (projection of ΔA⊥

into the horizontal plane) are related by ΔA = ΔA⊥ cos α.

Without loss of generality, let us assume for the moment that the coordinates
x and y are oriented such that x is parallel to the line of steepest descent, so
that ∂h/∂x = tan α and ∂h/∂y = 0. Then, due to Eq. (5.17),

Ns =
(

1 +
(∂h

∂x

)2
)1/2

=
(
1 + tan2 α

)1/2
=
(

cos2 α + sin2 α

cos2 α

)1/2

=
1

cos α
. (5.52)

By inserting (5.52) in (5.51), we find

as = Ns a⊥
s . (5.53)

With the same arguments, an analogous relation can be established for the
basal melting rates,

ab = Nb a⊥
b . (5.54)

We can now insert Eqs. (5.53) and (5.54) in the ice thickness equation (5.48)
in order to obtain the simplified form

∂H

∂t
= −divQ + as − ab . (5.55)

The ice thickness equation is usually presented in this form. It is the central
evolution equation in ice sheet dynamics.

5.2 Hydrostatic Approximation

In order to derive a simplified, approximated system of equations for the large-
scale dynamics of ice sheets, we go back to the momentum balance (3.72), and
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write it in component form. By neglecting again the acceleration and Coriolis
terms [see (5.7)–(5.10)] and setting f = ρg = −ρg ez, we obtain

∂txx

∂x
+

∂txy

∂y
+

∂txz

∂z
= 0 ,

∂txy

∂x
+

∂tyy

∂y
+

∂tyz

∂z
= 0 ,

∂txz

∂x
+

∂tyz

∂y
+

∂tzz

∂z
= ρg .

(5.56)

In all parts of an ice sheet, the shear stresses txz and tyz (� 100 kPa) are small
compared to the vertical normal stress tzz, which is approximately equal to
the pressure p, so that [tzz] ≈ [P ] = ρg[H] ≈ 10MPa [see (5.5)]. Consequently,
the vertical momentum balance (5.56)3 can be reduced to a balance between
the vertical gradient of tzz and the gravity force,

∂tzz

∂z
= ρg . (5.57)

The same approximation in the vertical component of the stress-free condition
at the free surface (5.23) yields

tzz|z=h = 0 , (5.58)

so that Eq. (5.57) can readily be integrated,

tzz = −ρg(h − z) . (5.59)

Evidently, the vertical normal stress tzz is hydrostatic. With this result, the
pressure p reads

p = p − tDxx − tDyy − tDzz = −tDxx − tDyy − tzz

= ρg(h − z) − tDxx − tDyy . (5.60)

Thus, the horizontal normal stresses txx, tyy can be expressed as

txx = −p + tDxx = 2tDxx + tDyy − ρg(h − z) ,

tyy = −p + tDyy = 2tDyy + tDxx − ρg(h − z) .
(5.61)

Inserting these in the horizontal (x, y) components of the momentum balance
(5.56)1,2 yields

2
∂tDxx

∂x
+

∂tDyy

∂x
+

∂txy

∂y
+

∂txz

∂z
= ρg

∂h

∂x
,

2
∂tDyy

∂y
+

∂tDxx

∂y
+

∂txy

∂x
+

∂tyz

∂z
= ρg

∂h

∂y
,

(5.62)
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and the viscous rheology of ice [Eqs. (4.7), (4.21)] in Cartesian coordinates is

tDxx = 2η
∂vx

∂x
,

tDyy = 2η
∂vy

∂y
,

tDzz = 2η
∂vz

∂z
,

(5.63)

txz = η

(
∂vx

∂z
+

∂vz

∂x

)
,

tyz = η

(
∂vy

∂z
+

∂vz

∂y

)
,

txy = η

(
∂vx

∂y
+

∂vy

∂x

)
.

Since the trace of the deviatoric stress tensor vanishes (tDxx + tDyy + tDzz = 0),
only two out of the first three equations of (5.63) are independent. Inserting
(5.63)1,2,4,5,6 in (5.62) yields

4
∂

∂x

(
η
∂vx

∂x

)
+ 2

∂

∂x

(
η
∂vy

∂y

)
+

∂

∂y

(
η
(∂vx

∂y
+

∂vy

∂x

))

+
∂

∂z

(
η
(∂vx

∂z
+

∂vz

∂x

))
= ρg

∂h

∂x
,

4
∂

∂y

(
η
∂vy

∂y

)
+ 2

∂

∂y

(
η
∂vx

∂x

)
+

∂

∂x

(
η
(∂vx

∂y
+

∂vy

∂x

))

+
∂

∂z

(
η
(∂vy

∂z
+

∂vz

∂y

))
= ρg

∂h

∂y
.

(5.64)

As for the full Stokes flow problem discussed above, we complement these
differential equations for the velocity field by the functional form η(T ′, de) of
the viscosity, which is either given by Eq. (4.22) (for the normal Glen flow
law) or by Eq. (4.28) (for the regularised Glen flow law). The component form
of the effective strain rate de reads

de =
√

1
2 tr D2 =

√
1
2 DijDij

=
√

1
2 (D2

11 + D2
22 + D2

33 + 2D2
12 + 2D2

13 + 2D2
23) , (5.65)

and, due to the continuity equation (5.1), we have divv = tr D = D11 +D22 +
D33 = 0, so that

de =
√

1
2 [D2

11 + D2
22 + (−D11 − D22)2 + 2D2

12 + 2D2
13 + 2D2

23]



5.3 First Order Approximation 75

=
√

D2
11 + D2

22 + D11D22 + D2
12 + D2

13 + D2
23

=

{(
∂vx

∂x

)2

+
(

∂vy

∂y

)2

+
∂vx

∂x

∂vy

∂y
+

1
4

(
∂vx

∂y
+

∂vy

∂x

)2

+
1
4

(
∂vx

∂z
+

∂vz

∂x

)2

+
1
4

(
∂vy

∂z
+

∂vz

∂y

)2
}1/2

. (5.66)

Equations (5.64) and (4.22) or (4.28), respectively, together with the con-
tinuity equation (5.41) and the temperature evolution equation (5.14), which
is

ρc
(∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)

=
∂

∂x

(
κ

∂T

∂x

)
+

∂

∂y

(
κ

∂T

∂y

)
+

∂

∂z

(
κ

∂T

∂z

)
+ 4η d2

e , (5.67)

are five equations for the five unknown fields vx, vy, vz, η and T . This set of
field equations is called the hydrostatic approximation. Compared to the full
Stokes flow problem formulated in Sect. 5.1.1, the pressure has been elimi-
nated, which is a substantial simplification of the problem. The field equa-
tions are completed by the kinematic boundary condition (5.21), the stress-
free condition (5.23) and the temperature condition (5.24) at the free surface,
the kinematic condition (5.31), the sliding law (5.35) and the thermodynamic
conditions (5.38), (5.39), (5.40) at the ice base, and the ice thickness equation
(5.55).

5.3 First Order Approximation

With the typical values (5.5) and the aspect ratio (5.6), we find for the ratio
of components of the velocity gradient

∂vz

∂x

/∂vx

∂z
,

∂vz

∂y

/∂vy

∂z
∼ [W ]

[L]

/ [U ]
[H]

=
[W ]
[U ]

[H]
[L]

= ε2 ∼ 10−6 , (5.68)

so that horizontal derivatives of the vertical velocity are negligible compared
to vertical derivatives of the horizontal velocity. This allows us to neglect the
terms containing horizontal derivatives of the vertical velocity in the viscous
rheology (5.63)1,2,4,5,6, which yields

tDxx = 2η
∂vx

∂x
,

tDyy = 2η
∂vy

∂y
,

txz = η
∂vx

∂z
, (5.69)
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tyz = η
∂vy

∂z
,

txy = η

(
∂vx

∂y
+

∂vy

∂x

)
.

Consequently, the momentum balance (5.64) simplifies to

4
∂

∂x

(
η
∂vx

∂x

)
+ 2

∂

∂x

(
η
∂vy

∂y

)
+

∂

∂y

(
η
(∂vx

∂y
+

∂vy

∂x

))

+
∂

∂z

(
η

∂vx

∂z

)
= ρg

∂h

∂x
,

4
∂

∂y

(
η
∂vy

∂y

)
+ 2

∂

∂y

(
η
∂vx

∂x

)
+

∂

∂x

(
η
(∂vx

∂y
+

∂vy

∂x

))

+
∂

∂z

(
η

∂vy

∂z

)
= ρg

∂h

∂y
.

(5.70)

Again, the viscosity is taken as η(T ′, de) and given by either Eq. (4.22) or
Eq. (4.28), with

de =

{(
∂vx

∂x

)2

+
(

∂vy

∂y

)2

+
∂vx

∂x

∂vy

∂y

+
1
4

(
∂vx

∂y
+

∂vy

∂x

)2

+
1
4

(
∂vx

∂z

)2

+
1
4

(
∂vy

∂z

)2
}1/2

=

{(
∂vx

∂x

)2

+
(

∂vy

∂y

)2

+
∂vx

∂x

∂vy

∂y
+

1
2

∂vx

∂y

∂vy

∂x

+
1
4

(
∂vx

∂y

)2

+
1
4

(
∂vy

∂x

)2

+
1
4

(
∂vx

∂z

)2

+
1
4

(
∂vy

∂z

)2
}1/2

. (5.71)

In this simplified hydrostatic approximation, generally called the first order
approximation, Eqs. (5.70) and (5.71) [and therefore the viscosity η(T ′, de)]
contain only the horizontal components of the velocity, vx and vy. Thus, the
solution of these equations is fully decoupled from the determination of the
vertical velocity vz via the continuity equation (5.41), in contrast to the hy-
drostatic approximation and the full Stokes flow problem. Once the horizontal
velocity has been computed, the vertical velocity can be obtained by integrat-
ing Eq. (5.41) from z = b to z,

vz = vz|z=b −
∫ z

b

(
∂vx

∂x
+

∂vy

∂y

)
dz̄ . (5.72)

The vertical velocity at the ice base vz|z=b is obtained from the kinematic
condition (5.31).
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5.4 Shallow Ice Approximation

Everywhere in an ice sheet, except the immediate vicinity of ice domes (up
to and within ∼ 10 km in the horizontal direction) and ice margins, the flow
regime is essentially simple, bed-parallel shear, and the slopes of the free
surface and the ice base are small (Fig. 5.6). Under these conditions, the
relevant components of the stress deviator tD are the shear stresses in the
horizontal plane, txz and tyz, which are supported by the basal drag. The
normal stress deviators tDxx, tDyy and tDzz as well as the shear stress in the
vertical planes, txy, are consequently negligible.

Fig. 5.6. Flow regimes in an ice sheet. In most regions, simple, bed-parallel shear
flow prevails. By contrast, in the vicinity of an ice dome, the flow direction is essen-
tially downward, which leads to vertical compression and horizontal extension. Close
to the ice margin, the slope of the free surface can be large. Vertical exaggeration
factor ∼ 200-500.

This allows further simplifications of the hydrostatic approximation to be
made, which go beyond the first order approximation, and are known as the
shallow ice approximation (SIA) (Hutter 1983, Morland 1984). All normal
stresses are equal to the negative pressure,

txx = tyy = tzz = −p , (5.73)

so that the vertical momentum balance (5.57) reads

∂p

∂z
= −ρg , (5.74)

and its integrated form [see (5.59)] gives the hydrostatic pressure distribution

p = phyd = ρg(h − z) . (5.75)
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The horizontal components of the momentum balance, (5.56)1,2 or (5.62)1,2,
simplify to

∂txz

∂z
=

∂p

∂x
= ρg

∂h

∂x
,

∂tyz

∂z
=

∂p

∂y
= ρg

∂h

∂y
.

(5.76)

Due to the small surface slope, the derivatives ∂h/∂x and ∂h/∂y are small,
typically of the order of the aspect ratio ε:

∂h

∂x
,

∂h

∂y
∼ [H]

[L]
= ε (5.77)

[see Eqs. (5.5) and (5.6)]. Thus, the unit normal vector of the free surface
(5.16) is approximately vertical,

n =

⎛
⎝ 0

0
1

⎞
⎠ = ez , (5.78)

and the stress-free condition (5.23) reduces to

p|z=h = 0 , txz|z=h = 0 , tyz|z=h = 0 . (5.79)

With this finding, Eq. (5.76), the right-hand side of which does not depend
on z, can readily be integrated and yields

txz = −ρg(h − z)
∂h

∂x
,

tyz = −ρg(h − z)
∂h

∂y
.

(5.80)

Equations (5.75) and (5.80) tell us that in the SIA the stress field, the only
non-negligible components of which are p, txz and tyz, is fully determined if
the geometry of the ice sheet is known. The effective stress σe [see (4.8)2 and
(4.9)] is then

σe =
√

t2xz + t2yz

= ρg(h − z)
((∂h

∂x

)2

+
(∂h

∂y

)2
)1/2

= ρg(h − z) |grad h| . (5.81)

Since in the SIA, the infinite viscosity limit of Glen’s flow law for small stresses
does not cause any mathematical problems, we do not consider its regularised
version of Sect. 4.3.2 here. The above results are therefore inserted in the x-z
and y-z components of Glen’s flow law in the form (4.16):
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1
2

(
∂vx

∂z
+

∂vz

∂x

)
= A(T ′)σn−1

e txz

= −A(T ′) [ρg(h − z)]n|grad h|n−1 ∂h

∂x
,

1
2

(
∂vy

∂z
+

∂vz

∂y

)
= A(T ′)σn−1

e tyz

= −A(T ′) [ρg(h − z)]n|grad h|n−1 ∂h

∂y
.

(5.82)

Based on the order of magnitudes of the spatial derivatives of velocity com-
ponents, Eq. (5.68), the horizontal derivatives of the vertical velocity are neg-
ligible. This yields

∂vx

∂z
= −2A(T ′) [ρg(h − z)]n|grad h|n−1 ∂h

∂x
,

∂vy

∂z
= −2A(T ′) [ρg(h − z)]n|grad h|n−1 ∂h

∂y
,

(5.83)

which can be integrated from the ice base z = b to an arbitrary position z in
the ice sheet in order to compute the horizontal velocities,

vx = vbx − 2(ρg)n|grad h|n−1 ∂h

∂x

∫ z

b

A(T ′) (h − z̄)n dz̄ ,

vy = vby − 2(ρg)n|grad h|n−1 ∂h

∂y

∫ z

b

A(T ′) (h − z̄)n dz̄ ,

(5.84)

where vbx and vby are the respective velocities at the ice base. Since the bed
slopes are of the same order of magnitude as the surface slopes [see (5.77)],

∂b

∂x
,

∂b

∂y
∼ [H]

[L]
= ε , (5.85)

and the unit normal vector of the ice base (5.26) is approximately vertical,

n =

⎛
⎝ 0

0
−1

⎞
⎠ = −ez , (5.86)

the tangential plane to the ice base is approximately equal to the horizontal
plane. Therefore, vbx and vby are the two components of the basal sliding
velocity vb given by the Weertman-type sliding law (5.35). The basal drag
τ b = τbet consists of the x- and y-components of the stress vector tn|z=b =
t|z=b · n = −t|z=b · ez, that is,

τ b = −
(

txz|z=b

tyz|z=b

)
= ρgH

⎛
⎜⎜⎝

∂h

∂x
∂h

∂y

⎞
⎟⎟⎠ . (5.87)
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Thus,

τb =
∣∣∣∣−
(

txz|z=b

tyz|z=b

)∣∣∣∣ =
√

t2xz|z=b + t2yz|z=b = ρgH |grad h| (5.88)

and

et = − 1
τb

(
txz|z=b

tyz|z=b

)
=

1
|grad h|

⎛
⎜⎜⎝

∂h

∂x
∂h

∂y

⎞
⎟⎟⎠ . (5.89)

The basal normal stress Nb = −Nbn = Nbez is equal to the z-component of
the stress vector,

Nb = −tzz|z=b ez ⇒ Nb = −tzz|z=b = ρgH . (5.90)

Thus we obtain

vbx =

⎧⎪⎨
⎪⎩

0 , if Tb < Tm ,

−Cb(ρgH)p−q|grad h|p−1 ∂h

∂x
, if Tb = Tm ,

vby =

⎧⎪⎨
⎪⎩

0 , if Tb < Tm ,

−Cb(ρgH)p−q|grad h|p−1 ∂h

∂y
, if Tb = Tm .

(5.91)

By introducing the horizontal velocity vector

vh =
(

vx

vy

)
(5.92)

and the scalar function

C =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(ρg)n|grad h|n−1

∫ z

b

A(T ′) (h − z̄)n dz̄ , if Tb < Tm ,

Cb(ρgH)p−q|grad h|p−1

+2(ρg)n|grad h|n−1

∫ z

b

A(T ′) (h − z̄)n dz̄ , if Tb = Tm ,

(5.93)

we can express the horizontal velocity (5.84) as

(
vx

vy

)
= −C

⎛
⎜⎜⎝

∂h

∂x
∂h

∂y

⎞
⎟⎟⎠ , or vh = −C grad h . (5.94)

That is, in the shallow ice approximation, the direction of the horizontal
velocity is anti-parallel to the gradient of the free surface. In other words, the
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Fig. 5.7. Surface topography and horizontal velocity in the shallow ice approxi-
mation. The horizontal velocity vh is anti-parallel to the direction of the surface
gradient grad h. Surface-topography contours: h1 > h2 > h3 > h4 > h5.

ice always flows down the steepest surface slope, irrespective of the bedrock
topography (see Fig. 5.7). This holds for any particle of the ice sheet, even
the near-basal ice. However, note that this result is only valid as long as the
bed slopes are sufficiently small, as described by Eq. (5.85).

As for the first order approximation, the vertical velocity can now be
computed by integrating the continuity equation (5.41) from z = b to z,

vz = vz|z=b −
∫ z

b

(
∂vx

∂x
+

∂vy

∂y

)
dz̄ . (5.95)

In this equation, vx and vy are given by (5.94), and the vertical velocity at
the ice base vz|z=b is determined by the kinematic condition (5.31).

In order to formulate the ice thickness equation in the shallow ice approx-
imation, we compute the volume flux Q [see Eq. (5.47)] with the horizontal
velocities (5.94). This yields

(
Qx

Qy

)
= −D

⎛
⎜⎜⎝

∂h

∂x
∂h

∂y

⎞
⎟⎟⎠ , with D =

∫ h

b

C dz . (5.96)

The function C depends on z only via the integral term in (5.93), for which
we find by integration by parts
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∫ h

b

∫ z

b

A(T ′) (h − z̄)n dz̄ dz =
∫ h

b

1
∫ z

b

A(T ′) (h − z̄)n dz̄ dz

=
[
z

∫ z

b

A(T ′) (h − z̄)n dz̄

]h

b

−
∫ h

b

zA(T ′) (h − z)n dz

= h

∫ h

b

A(T ′) (h − z̄)n dz̄ −
∫ h

b

zA(T ′) (h − z)n dz

=
∫ h

b

A(T ′) (h − z)n+1 dz . (5.97)

Thus, the function D is

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2(ρg)n|grad h|n−1

∫ h

b

A(T ′) (h − z)n+1 dz , if Tb < Tm ,

CbH(ρgH)p−q|grad h|p−1

+ 2(ρg)n|grad h|n−1

∫ h

b

A(T ′) (h − z)n+1 dz , if Tb = Tm .

(5.98)

By inserting the volume flux (5.96) with the function (5.98) into the ice thick-
ness equation (5.55), we obtain

∂H

∂t
=

∂

∂x

(
D

∂h

∂x

)
+

∂

∂y

(
D

∂h

∂y

)
+ as − ab , (5.99)

or, alternatively, expressed as an evolution equation for the surface topography
h,

∂h

∂t
=

∂

∂x

(
D

∂h

∂x

)
+

∂

∂y

(
D

∂h

∂y

)
+ as − ab +

∂b

∂t
. (5.100)

Note also that, due to Eqs. (5.77) and (5.85), we have Ns ≈ 1 and Nb ≈ 1, so
that the accumulation-ablation functions and basal melting rates in the verti-
cal direction and perpendicular to the respective interfaces are approximately
equal,

as ≈ a⊥
s , ab ≈ a⊥

b . (5.101)

Mathematically, Eq. (5.100) is a non-linear diffusion equation (the function
D depends itself on h) with additional source terms. As described at the end of
Sect. 5.1.2, the accumulation-ablation function as is a climatic input quantity,
and the basal melting rate ab is determined by Eq. (5.40). The unknown
variation ∂b/∂t of the ice-base/bedrock topography can be obtained from a
model of glacial isostasy, which will be treated later (see Chap. 8).

As for the temperature evolution equation (5.67), we complement the typ-
ical values (5.5) by the typical temperature variation magnitude

[ΔT ] = 20K . (5.102)
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Then, we find for the ratio of horizontal and vertical heat conduction

∂

∂x

(
κ

∂T

∂x

)/ ∂

∂z

(
κ

∂T

∂z

)
,

∂

∂y

(
κ

∂T

∂y

)/ ∂

∂z

(
κ

∂T

∂z

)

∼ κ
[ΔT ]
[L]2

/
κ

[ΔT ]
[H]2

=
[H]2

[L]2
= ε2 ∼ 10−6 , (5.103)

so that horizontal heat conduction is negligible. Furthermore, in the dissipa-
tion term we express the effective strain rate de in terms of the effective stress
σe by using (4.19)1. This yields

ρc
(∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)
=

∂

∂z

(
κ

∂T

∂z

)
+ 4η A2(T ′)σ2n

e , (5.104)

and, by inserting (4.10) and (4.12), we obtain

ρc
(∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)
=

∂

∂z

(
κ

∂T

∂z

)
+ 2A(T ′)σn+1

e , (5.105)

where σe is given by Eq. (5.81). The boundary conditions for this equation are
the prescribed surface temperature (5.24), the temperature gradient (5.38) for
a cold base and the melting temperature (5.39) for a temperate base.

The shallow ice approximation simplifies the problem of large-scale ice
sheet flow drastically. The stress field is given by the simple, analytic expres-
sions (5.75), (5.80) and (5.81), and the velocity field depends only on the
local ice sheet geometry and temperature via (5.94) and (5.95), whereas in
the full Stokes flow problem, the hydrostatic approximation and the first or-
der approximation systems of non-linear differential equations [Eqs. (5.11),
(5.64) and (5.70), respectively] must be solved. The remaining “hard work” is
the solution of the surface evolution equation (5.100) and of the temperature
evolution equation (5.105).

5.5 Driving Stress

Equation (5.80) represents the bed-parallel shear stress in the shallow ice
approximation. Evaluating this equation at the bed (z = b) yields the vector

τ d = −ρgH

⎛
⎜⎜⎝

∂h

∂x
∂h

∂y

⎞
⎟⎟⎠ , (5.106)

which is often called the driving stress.
By construction, the driving stress corresponds to the basal shear stress

in the shallow ice approximation. However, its definition is not limited to the
shallow ice approximation, and it can be interpreted in general as the action



84 5 Large-Scale Dynamics of Ice Sheets

which drives the flow of the ice sheet. In the shallow ice approximation, the
driving stress τ d is equal to the negative of the basal drag τ b [see Eq. (5.87)],
which means that the driving forces and the resistive forces are balanced
locally at the bed of the ice sheet. In the full Stokes problem, the hydrostatic
approximation and the first order approximation such a local balance does not
hold; however, the driving stress and the basal drag still balance on average
for the entire domain of the ice sheet (van der Veen 1999). Local imbalances
are compensated by the deviatoric normal stresses tDxx and tDyy as well as the
shear stress in the vertical plane txy.

5.6 Analytical Solutions

5.6.1 Simplified Problem

For very simple, idealised cases, the equations of the shallow ice approxima-
tion derived above can be solved analytically. Let us consider the following
situation:

• Plane strain approximation: two-dimensional flow in the x-z plane, any
lateral effects neglected (see Sect. 3.4.3).

• Steady-state conditions: ∂(·)/∂t = 0 for all field quantities.
• Flat, rigid bed: b(x) = 0.
• Ice sheet extent between x = −L and x = L, symmetric around the ice

divide at x = 0.
• No basal melting (ab = 0), no basal sliding (Cb = 0).
• Constant rate factor: A(T ′) = A = const.

The last assumption decouples the mechanical from the thermodynamical
problem, and therefore we do not have to deal with the temperature evolution
equation (5.105).

With the assumptions made above, the ice thickness equation (5.55) be-
comes

divQ = as , (5.107)

where, according to Eqs. (5.47) and (5.98),

Q = −2A(ρg)n |grad h|n−1 grad h

∫ h

b

(h − z)n+1 dz

= −2A(ρg)n |grad h|n−1 grad h

[
− (h − z)n+2

n + 2

]h

b

= −2A(ρg)n

n + 2
Hn+2 |grad h|n−1 grad h

= −A0 Hn+2 |grad h|n−1 grad h . (5.108)

In the last step, the abbreviation
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A0 =
2A(ρg)n

n + 2
(5.109)

has been introduced.
Due to the flat bed, the ice thickness H is equal to the surface topography

h, and due to the plane strain approximation, the volume flux Q = Q ex and
the surface gradient gradh = (dh/dx) ex. Hence,

Q = −A0 hn+2

∣∣∣∣dh

dx

∣∣∣∣
n−1 dh

dx
, (5.110)

and
dQ

dx
= − d

dx

(
A0 hn+2

∣∣∣∣dh

dx

∣∣∣∣
n−1 dh

dx

)
= as . (5.111)

In order to find analytical solutions of the steady-state ice thickness equa-
tion (5.111), we recognise that it is a separable ordinary differential equation,
provided that the surface mass balance as is a function of x only. The assump-
tion of symmetry with respect to x = 0 implies Q(0) = 0 and (dh/dx)x=0 = 0.
Thus, a first integral of Eq. (5.111) yields

A0 hn+2

∣∣∣∣dh

dx

∣∣∣∣
n−1 dh

dx
= −

∫ x

0

as(x′) dx′ = −Q(x) . (5.112)

For the half-domain 0 < x < L, the surface topography h decreases monoton-
ically from the ice divide at x = 0 to the margin at x = L, so that Q > 0 and
dh/dx < 0. This allows to take the nth root of Eq. (5.112),

h(n+2)/n dh

dx
= −

(
Q(x)
A0

)1/n

, (5.113)

and, by separation of variables, compute the second integral

h(x)(2n+2)/n = h
(2n+2)/n
0 − 2n + 2

n

∫ x

0

(
Q(x′)
A0

)1/n

dx′ , (5.114)

where h0 is the surface elevation at the ice divide. The ice thickness equation
(5.111) has thus been reduced to a quadrature, which can be solved analyti-
cally depending on the mass balance function as(x).

5.6.2 Vialov Profile

In order to simplify the problem further, we assume that the surface mass
balance as is a positive constant over the entire domain. From Eq. (5.112), we
obtain the volume flux

Q(x) = asx , (5.115)
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so that Eq. (5.114) reads

h(x)(2n+2)/n = h
(2n+2)/n
0 − 2

(
as

A0

)1/n

x(n+1)/n . (5.116)

With the boundary condition h(L) = 0, we obtain for the surface elevation at
the ice divide

h0 = 2n/(2n+2)

(
as

A0

)1/(2n+2)

L1/2 . (5.117)

Inserting this result into Eq. (5.116) yields

h(2n+2)/n = 2
(

as

A0

)1/n

(L(n+1)/n − x(n+1)/n)

= 2
(

as

A0

)1/n

L(n+1)/n

[
1 −

( x

L

)(n+1)/n
]

, (5.118)

which can be written in simpler form as

h = h0

[
1 −

( x

L

)(n+1)/n
]n/(2n+2)

. (5.119)

This solution is called the Vialov profile (Vialov 1958). Note that for negative
values of x, that is, for the half-domain −L < x < 0, the variable x must be
replaced by |x| in order to maintain the symmetry of the profile.
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Fig. 5.8. Vialov profile (5.119) for L = 750 km, n = 3, as = 0.3 m a−1, A =
10−16 a−1 Pa−3, ρ = 910 kg m−3 and g = 9.81 m s−2.

An example is shown in Fig. 5.8. The parameters are those of the EISMINT
model intercomparison exercise described by Huybrechts et al. (1996), which
resemble the conditions of the Greenland Ice Sheet. For a half-span of L =
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Fig. 5.9. Volume flux for the Vialov profile shown in Fig. 5.8.

750 km, the maximum elevation resulting from (5.117) is h0 = 3575.1m. It
is interesting to note that the profile appears pointed at the divide. This is
the case since at x = 0 the curvature (second derivative) of the function
h(x) defined by (5.119) is infinite, a problem which is related to the fact
that the shallow ice approximation is not valid there. Further, the slope (first
derivative) of the profile is infinite at the margins x = ±L, which violates the
assumption of small surface slopes.

The volume flux Q follows from Eq. (5.115). For the above EISMINT
parameters, it is shown in Fig. 5.9. The volume flux vanishes at the ice divide,
and it increases linearly away from the divide with a gradient of dQ/dx =
as = 0.3m2 a−1/m in order to balance the ice accumulation. At the margin,
the volume flux reaches a value of Q(L) = 2.25 × 105 m2 a−1, which can be
interpreted as the calving rate into a surrounding ocean.

An unrealistic feature of the Vialov profile is the behaviour of the shear
stress near the margin. According to Eq. (5.106), the basal shear stress in the
shallow ice approximation (driving stress) is proportional to the product of
the ice thickness and the inclination of the ice surface, which yields for the
Vialov profile (5.119)

τd = −ρgh
dh

dx
=

ρgh2
0

2L

[
1 −

( x

L

)(n+1)/n
]−1/(n+1) ( x

L

)1/n

. (5.120)

In the limit of x → L this expression diverges, thus the basal shear stress is
unbounded at the ice margin (see also below, Fig. 5.12).

5.6.3 Bueler Profile

Analytical solutions of Eq. (5.114) for variable mass balance functions as(x)
exist under the condition that the integral of Q1/n(x) can be computed in
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Fig. 5.10. Volume flux (solid line) and surface mass balance (dashed line) of the
Bueler profile for the half-domain 0 < x < L in scaled units.

closed form. This allows to match physically reasonable boundary conditions
to the ice flux, such as a prescribed calving rate at the margin, Q(L) = QL.

An example is the combination of power functions of x (Bueler 2003, Bueler
et al. 2005),

Q(x) = α

[( x

L

)1/n

+
(
1 − x

L

)1/n

− 1
]n

, (5.121)

where α > 0 is an adjustable parameter. This volume flux fulfills the symmetry
condition Q(0) = 0 at the ice divide and the no-flux condition Q(L) = 0 at the
margin. The corresponding mass balance function results from Eq. (5.111),

as(x) =
dQ

dx
=

α

L

[( x

L

)1/n

+
(
1 − x

L

)1/n

− 1
]n−1

×
[( x

L

)(1−n)/n

−
(
1 − x

L

)(1−n)/n
]

. (5.122)

Figure 5.10 shows the volume flux (5.121) and the mass balance function
(5.122). The surface mass balance is positive (accumulation) in the interior,
high-elevation part of the ice sheet and negative (ablation) in the low-elevation
part near the margin. However, an unrealistic feature is the steep increase
towards the ice divide.

The solution of Eq. (5.114) with the volume flux (5.121) is

h(x)(2n+2)/n = h
(2n+2)/n
0 − 2L

(
α

A0

)1/n

×
[
1 − n + 1

n

x

L
+
( x

L

)(n+1)/n

−
(
1 − x

L

)(n+1)/n
]

, (5.123)
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and the surface elevation at the ice divide follows from the boundary condition
h(L) = 0 as

h
(2n+2)/n
0 = 2L

(
α

A0

)1/n
n − 1

n
. (5.124)

Insertion of Eq. (5.124) into Eq. (5.123) yields the Bueler profile

h(x) =
h0

(n − 1)n/(2n+2)

×
[
(n + 1)

x

L
− n

( x

L

)(n+1)/n

+ n
(
1 − x

L

)(n+1)/n

− 1
]n/(2n+2)

. (5.125)
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Fig. 5.11. Bueler profile (solid line) and Vialov profile (dashed line) in scaled co-
ordinates.

A comparison of the Bueler and Vialov profiles is shown in Fig. 5.11. The
Bueler profile shows similar features as the Vialov profile. The inclination of
the surface is zero at the ice divide, but the curvature is infinite there, and the
inclination at the margin is unbounded. However, an important difference is
the behaviour of the basal shear stress (driving stress), which is for the Bueler
solution

τd = −ρgh
dh

dx
[with h(x) from Eq. (5.125)] . (5.126)

A substitution x/L = 1−ξ and a subsequent first order expansion in ξ (which
shall not be detailed here) shows that τd remains finite for ξ → 0 (x → L) in
the Bueler solution, whereas it is unbounded in the Vialov solution. This is
illustrated in Fig. 5.12.
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Fig. 5.12. Basal shear stress of the Bueler (solid line) and Vialov (dashed line)
solutions for the half-domain 0 < x < L in scaled units.

If for verification purposes more realistic solutions are required, Eq. (5.114)
may be used, even if the integral is not analytically solvable. For smooth
mass balance functions, numerical quadrature is unproblematic and can be
carried out with high accuracy. This extends the range of possible benchmark
solutions of the ice thickness equation considerably.

5.7 Numerical Methods

Apart from idealised cases like those of Sect. 5.6, the field equations and
boundary conditions of the shallow ice approximation for the flow and tem-
perature fields in ice sheets are too complicated to be solved analytically. In
general situations, it is therefore required to solve the equations by means of
numerical techniques. Most existing ice sheet models do this by employing the
finite difference method, which will now be described.

The spatial domain under consideration is covered by a regular, three-
dimensional grid. The equations are then re-written for each grid point by
replacing the differentials by differences of the field variables between the
neighbouring grid points. This yields a set of algebraic equations, which can
then be solved by various methods, such as explicit forward integration, nu-
merical quadrature or solving a set of linear or non-linear equations for the
unknown field variables at the given grid points. Of course, there are many
different ways of realizing this. Here, we shall describe a simplified, yet fully op-
erational version of the numerical scheme employed by the well-established ice
sheet model SICOPOLIS (“SImulation COde for POLythermal Ice Sheets”;
see http://sicopolis.greveweb.net/).
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5.7.1 Terrain-Following Coordinate Transformation

The most straightforward choice for a numerical grid is that of a regular,
rectangular grid with constant grid spacings Δx, Δy and Δz in the respective
directions. However, such a grid cannot match an irregular domain (like a
real ice sheet) exactly. The surfaces of the domain generally fall in between
the grid points, so that the values of field variables at the true surfaces must
be interpolated. This makes the book-keeping of the values at the surfaces
awkward and introduces additional inaccuracies into the computation.

Fig. 5.13. Terrain-following sigma transformation (y and ϕ directions not shown).
In the transformed domain (right), a regular, rectangular grid with spacings Δξ and
Δζ is shown.

In order to avoid these difficulties, it is suitable to introduce a terrain-
following coordinate transformation that maps the local ice thickness onto
unity (Fig. 5.13),

ξ = x , ϕ = y , ζ =
z − b(x, y, t)
H(x, y, t)

, τ = t , (5.127)

where (x, y, z) and (ξ, ϕ, ζ) are the natural Cartesian coordinates and the
curvilinear, transformed coordinates, respectively, and t and τ are the time.
This transformation, which is often referred to as the sigma transformation,
maps the ice surface h = h(x, y, t) to ζ = 1 and the ice base b = b(x, y, t) to ζ =
0. In the transformed domain, a regular, rectangular grid with spacings Δξ,
Δϕ and Δζ can easily be defined such that the uppermost layer of grid points
matches the ice surface and the lowermost layer the ice base. However, since
the transformation leaves the coordinates in the horizontal plane unchanged,
the ice margin does not necessarily coincide with the grid points (Fig. 5.13).
This may affect the accuracy of the computed position of the ice margin,
especially during advance or retreat stages of the modelled ice sheet when it
changes rapidly over time.

A further difficulty of the sigma transformation is the introduced singular-
ity at the ice margin and outside the ice-covered area, where a zero ice thick-



92 5 Large-Scale Dynamics of Ice Sheets

ness is mapped onto the unity interval [note the 1/H term in Eq. (5.127)3].
This requires special consideration in the numerical scheme in order to avoid
division-by-zero errors.

Equation (5.127) is a special case of the general, spatio-temporal coordi-
nate transformation

ξ = ξ(x, y, z, t) ,

ϕ = ϕ(x, y, z, t) ,

ζ = ζ(x, y, z, t) ,

τ = τ(x, y, z, t) .

(5.128)

The differentials of any scalar field are transformed according to the chain
rule,

∂

∂x
=

∂ξ

∂x

∂

∂ξ
+

∂ϕ

∂x

∂

∂ϕ
+

∂ζ

∂x

∂

∂ζ
+

∂τ

∂x

∂

∂τ
,

∂

∂y
=

∂ξ

∂y

∂

∂ξ
+

∂ϕ

∂y

∂

∂ϕ
+

∂ζ

∂y

∂

∂ζ
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∂τ

∂y

∂

∂τ
,

(5.129)
∂
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∂

∂ϕ
+

∂ζ

∂z

∂

∂ζ
+

∂τ

∂z

∂

∂τ
,

∂

∂t
=

∂ξ

∂t

∂

∂ξ
+

∂ϕ

∂t

∂

∂ϕ
+

∂ζ

∂t

∂

∂ζ
+

∂τ

∂t

∂

∂τ
.

It is evident that for the concrete realisation (5.127) many of the coordinate
differentials are equal to zero. Thus, Eq. (5.129) simplifies to

∂

∂x
=

∂

∂ξ
+

∂ζ

∂x

∂

∂ζ
,

∂

∂y
=

∂

∂ϕ
+

∂ζ

∂y

∂

∂ζ
,

(5.130)
∂

∂z
=

∂ζ

∂z

∂

∂ζ
,

∂

∂t
=

∂

∂τ
+

∂ζ

∂t

∂

∂ζ
.

Note that, although ξ = x, ϕ = y and τ = t [Eq. (5.127)1,2,4], the respec-
tive derivatives are not the same. It is therefore imperative to consider the
entire, spatio-temporal transformation (5.127), even though only the vertical
coordinate is changed. The relations for the second derivatives are

∂2

∂x2
=

∂

∂x

(
∂

∂x

)
=

∂2

∂ξ2
+
(

∂ζ

∂x

)2
∂2

∂ζ2
+ 2

∂ζ

∂x

∂2

∂ξ ∂ζ
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+
[(

∂

∂ξ

∂ζ

∂x

)
+

∂ζ

∂x

(
∂

∂ζ

∂ζ

∂x

)]
∂

∂ζ
,

∂2

∂y2
=

∂

∂y

(
∂

∂y

)
=

∂2

∂ϕ2
+
(

∂ζ

∂y

)2
∂2

∂ζ2
+ 2

∂ζ

∂y

∂2

∂ϕ∂ζ

+
[(

∂

∂ϕ

∂ζ

∂y

)
+

∂ζ

∂y

(
∂

∂ζ

∂ζ

∂y

)]
∂

∂ζ
, (5.131)

∂2

∂z2
=
(

∂ζ

∂z

)2
∂2

∂ζ2
,

∂2

∂t2
=

∂

∂t

(
∂

∂t

)
=

∂2

∂τ2
+
(

∂ζ

∂t

)2
∂2

∂ζ2
+ 2

∂ζ

∂t

∂2

∂τ ∂ζ

+
[(

∂

∂τ

∂ζ

∂t

)
+

∂ζ

∂t

(
∂

∂ζ

∂ζ

∂t

)]
∂

∂ζ
,

and the coordinate differentials in Eqs. (5.130) and (5.131) take the forms

∂ζ

∂z
=

1
H

,

∂ζ

∂x
= − (1 − ζ)b,ξ + ζh,ξ

H
,

∂

∂ζ

∂ζ

∂x
= −h,ξ − b,ξ

H
,

∂

∂ξ

∂ζ

∂x
= −∂ζ

∂x

h,ξ − b,ξ

H
− (1 − ζ)b,ξξ + ζh,ξξ

H
,

∂ζ

∂y
= − (1 − ζ)b,η + ζh,η

H
,

(5.132)
∂

∂ζ

∂ζ

∂y
= −h,η − b,η

H
,

∂

∂ϕ

∂ζ

∂y
= −∂ζ

∂y

h,η − b,η

H
− (1 − ζ)b,ηη + ζh,ηη

H
,

∂ζ

∂t
= − (1 − ζ)b,τ + ζh,τ

H
,

∂

∂ζ

∂ζ

∂t
= −h,τ − b,τ

H
,

∂

∂τ

∂ζ

∂t
= −∂ζ

∂x

h,τ − b,τ

H
− (1 − ζ)b,ττ + ζh,ττ

H
.
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Recall that the compact comma notation denotes partial derivatives, that
is, (·),ξ = ∂(·)/∂ξ, etc. Further, due to Eq. (5.130)1,2,4, the derivatives with
respect to x, y, t and ξ, ϕ, τ are identical for field quantities which do not
depend on z or ζ, such as h, b and H.

When dealing with the sigma transformation for ice sheet dynamics, the
transformation for vertical integrals is also required. According to the general
substitution rule for integrals, it is

z2∫
z1

(·) dz =

ζ2∫
ζ1

(·) ∂z

∂ζ
dζ =

ζ2∫
ζ1

(·)H dζ . (5.133)

5.7.2 Plane Strain Shallow Ice Equations

For simplicity, in the following we will employ the plane strain approximation,
which was already used above for the analytical solutions (Sect. 5.6). That
is, we will only consider a two-dimensional problem in the vertical x-z plane,
and ignore any dependencies of the transverse y-direction. In other words,
we assume that ice flow occurs only parallel to the x-z plane, and that the
conditions are homogeneous in the y-direction, so that ∂/∂y = 0 and vy = 0.
From Glen’s flow law in the form (4.20), it follows readily that tDyy = tyz =
txy = 0. Furthermore, the unit normal vectors n of the free surface and the
ice base are parallel to the x-z plane, thus ny = 0.

By subjecting Eqs. (5.94), (5.95), (5.100) and (5.105) to these assumptions,
we obtain the following reduced set of equations:

Horizontal velocity:

vx = −C
∂h

∂x
, (5.134)

with the scalar function

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(ρg)n

∣∣∣∣∂h

∂x

∣∣∣∣
n−1 ∫ z

b

A(T ′) (h − z̄)n dz̄ , if Tb < Tm ,

Cb(ρgH)p−q

∣∣∣∣∂h

∂x

∣∣∣∣
p−1

+2(ρg)n

∣∣∣∣∂h

∂x

∣∣∣∣
n−1 ∫ z

b

A(T ′) (h − z̄)n dz̄ , if Tb = Tm .

(5.135)

Vertical velocity:

vz = vz|z=b −
∫ z

b

∂vx

∂x
dz′

= vx|z=b
∂b

∂x
−
∫ z

b

∂vx

∂x
dz′ . (5.136)
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In order to eliminate the unknown vertical velocity at the base (vz|z=b) and
obtain the second line, the kinematic condition (5.31) has been inserted in
Eq. (5.95). Further, it has been assumed that the ice base is rigid (∂b/∂t = 0),
and that the basal melting rate is negligible (ab = 0). These assumptions are
not crucial though; they have only been made for reasons of simplicity.

Evolution of the ice surface:

∂h

∂t
=

∂

∂x

(
D

∂h

∂x

)
+ as , (5.137)

with the diffusivity

D =
∫ h

b

C dz . (5.138)

Again, note that the vertical movement of the ice base (∂b/∂t) and the basal
melting rate (ab) have been neglected.

Evolution of the ice temperature:

ρc
(∂T

∂t
+ vx

∂T

∂x
+ vz

∂T

∂z

)
=

∂

∂z

(
κ

∂T

∂z

)
+ 2A(T ′)σn+1

e

=
∂

∂z

(
κ

∂T

∂z

)
+ 2A(T ′) [ρg(h − z)]n+1

∣∣∣∣∂h

∂x

∣∣∣∣
n+1

. (5.139)

In order to derive the second line, the effective stress (5.81) has been inserted
in (5.105). The boundary conditions result from Eqs. (5.24), (5.38) and (5.39),

T |z=h = Ts (5.140)

and
κ

∂T

∂z

∣∣∣
z=b

= −q⊥geo , if Tb < Tm ,

T |z=b = Tm , otherwise .

(5.141)

Transformed Equations

The shallow ice equations in the plane strain approximation, Eqs. (5.134)
to (5.141), shall now be subjected to the two-dimensional form of the sigma
transformation (5.127),

ξ = x , ζ =
z − b(x, t)
H(x, t)

, τ = t . (5.142)

Applying this transformation together with Eqs. (5.130) and (5.132), and
using the notation u = vx, w = vz, yields:
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Horizontal velocity:

u = −C
∂h

∂ξ
, (5.143)

with the scalar function

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(ρg)n

∣∣∣∣∂h

∂ξ

∣∣∣∣
n−1

H

∫ ζ

0

A(T ′) (1 − ζ ′)n dζ ′ , if Tb < Tm ,

Cb(ρgH)p−q

∣∣∣∣∂h

∂ξ

∣∣∣∣
p−1

+2(ρg)n

∣∣∣∣∂h

∂ξ

∣∣∣∣
n−1

H

∫ ζ

0

A(T ′) (1 − ζ ′)n dζ ′ , if Tb = Tm .

(5.144)

Vertical velocity:

w = u|ζ=0
∂b

∂ξ
− H

∫ ζ

0

(∂u

∂ξ
− (1 − ζ ′)b,ξ + ζ ′h,ξ

H

∂u

∂ζ ′

)
dζ ′ . (5.145)

Evolution of the ice surface:

∂h

∂τ
=

∂

∂ξ

(
D

∂h

∂ξ

)
+ as , (5.146)

with the diffusivity

D = H

∫ 1

0

C dζ . (5.147)

Evolution of the ice temperature:

ρc

[
∂T

∂τ
+ u

∂T

∂ξ

+
−[(1 − ζ)b,τ + ζh,τ ] − u [(1 − ζ)b,ξ + ζh,ξ] + w

H

∂T

∂ζ

]

=
1

H2

∂

∂ζ

(
κ

∂T

∂ζ

)
+ 2A(T ′) [ρgH(1 − ζ)]n+1

∣∣∣∣∂h

∂ξ

∣∣∣∣
n+1

, (5.148)

with the boundary conditions

T |ζ=1 = Ts (5.149)

and
κ

H

∂T

∂ζ

∣∣∣
ζ=0

= −q⊥geo , if Tb < Tm ,

T |ζ=0 = Tm , otherwise .

(5.150)
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Note that, while applying the sigma transformation, we have not at-
tempted to write the velocity vector v in components of the curvilinear, trans-
formed coordinates. Instead, the Cartesian components u = vx and w = vz

are treated like scalar fields which are not affected by the transformation.
This is common practise in connection with the sigma transformation; other-
wise, the transformed equations would become very complicated due to the
non-orthogonality of the transformed coordinates.

5.7.3 Discretised Ice Sheet Equations

A regular, rectangular grid as sketched in Fig. 5.13 is now defined in the
(ξ, ζ) space of the transformed coordinates. The grid consists of I + 1 and
K + 1 grid points in the ξ and ζ directions, numbered by i = 0, . . . , I and
k = 0, . . . ,K, respectively. It is presupposed that the grid covers the entire
area of the ice sheet at all times, so that the ice thickness and all velocity and
stress components are zero at the end points i = 0 and i = I. The grid points
indexed by k = 0 correspond to the ice base (ζ = 0), and those indexed by
k = K match the free surface (ζ = 1).

For reasons of stability of the numerical scheme, it is not practical to em-
ploy a single grid for all unknowns. Velocity and flux quantities are preferably
defined on a secondary grid, often called a staggered grid, with grid lines in be-
tween the main grid lines. The main grid lines are then numbered by integers,
i = 0, 1, 2, . . . , I−1, I for the ξ-direction and k = 0, 1, 2, . . . ,K−1,K for the ζ-
direction, and the secondary grid lines by half-numbers, 1

2 , 3
2 , 5

2 , . . . , I− 3
2 , I− 1

2
and 1

2 , 3
2 , 5

2 , . . . ,K − 3
2 ,K − 1

2 (Fig. 5.14).
Let ξ0 be the origin of the model domain, then the positions ξi of the main

grid points are situated at
ξi = ξ0 + iΔξ . (5.151)

Similarly, the positions ζk of the main grid points in the vertical direction are

ζk = kΔζ =
k

K
. (5.152)

Time is discretised by the time step Δτ , such that the time after n steps is

τn = τ0 + nΔτ , (5.153)

where τ0 is the initial time of the numerical simulation.
The staggered grid can be realised in different ways. It turns out that a

very suitable choice for the shallow ice equations is the Arakawa C grid, for
which the velocity components u and w are defined on secondary grid points
as follows,

ui± 1
2 ,k,n , wi,k± 1

2 ,n . (5.154)

The secondary grid points which result from this choice are indicated in
Fig. 5.14. The positions (i ± 1

2 , k ± 1
2 ) are not used as secondary grid points

in the Arakawa C grid.
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Fig. 5.14. Arakawa C grid for the plane strain approximation (two-dimensional
problem). Full circles and solid lines denote main grid points and grid lines with
integer indices, open circles and dashed lines secondary grid points and grid lines
with half-numbered indices.

Furthermore, the volume flux Q = Qx (which is independent of z or ζ) is
defined on the staggered grid,

Qi± 1
2 ,n , (5.155)

which is a natural consequence of its definition as the vertically integrated
horizontal velocity. All other quantities are defined on the main grid points,

Ti,k,n , (5.156)
hi,n , bi,n , Hi,n . (5.157)

If one of the quantities which is defined on the secondary grid is required
on the main grid, it is interpolated by the arithmetic mean of the values on
the neighbouring secondary grid points,

ūi,k,n =
1
2

(
ui+ 1

2 ,k,n + ui− 1
2 ,k,n

)
, (5.158)

w̄i,k,n =
1
2

(
wi,k+ 1

2 ,n + wi,k− 1
2 ,n

)
, (5.159)

Q̄i,n =
1
2

(
Qi+ 1

2 ,n + Qi− 1
2 ,n

)
. (5.160)

Conversely, if a quantity which is defined on the main grid is required on the
secondary grid, the possible interpolations are

T̄i+ 1
2 ,k,n =

1
2

(
Ti,k,n + Ti+1,k,n

)
, (5.161)

T̄i,k+ 1
2 ,n =

1
2

(
Ti,k,n + Ti,k+1,n

)
, (5.162)
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h̄i+ 1
2 ,n =

1
2

(
hi,n + hi+1,n

)
. (5.163)

In all above cases, the interpolation is indicated by the bar symbol over the
variable.

In the following, we are going to discretise the sigma-transformed plane
strain shallow ice equations derived above [Eqs. (5.143) to (5.150)]. They take
the following forms:

Horizontal velocity:

First, the scalar function Ci,k,n is computed from Eq. (5.144). The derivative
∂h/∂ξ is approximated by central differences,

∂h

∂ξ

∣∣∣
i,n

∼ hi+1,n − hi−1,n

2Δξ
, (5.164)

and the integral is approximated by the trapezoidal rule,
∫ ζ

0

A(T ′) (1 − ζ ′)n dζ ′

∣∣∣∣∣
i,k,n

∼
[

1
2
A(T ′

i,0,n) +
k−1∑
k′=1

A(T ′
i,k′,n) (1 − k′Δζ)n

+
1
2
A(T ′

i,k,n) (1 − kΔζ)n

]
Δζ . (5.165)

The horizontal velocity itself follows from Eq. (5.143),

ui+ 1
2 ,k,n = −C̄i+ 1

2 ,k,n

hi+1,n − hi,n

Δξ
, (5.166)

where the scalar function C needs to be interpolated onto the secondary grid
points, and central differences have been applied for the derivative ∂h/∂ξ.

Vertical velocity:

Let us abbreviate the integrand of Eq. (5.145) as follows,

U =
∂u

∂ξ
− (1 − ζ)b,ξ + ζh,ξ

H

∂u

∂ζ
. (5.167)

It is discretised by central differences,

Ui,k,n =
ui+ 1

2 ,k,n − ui− 1
2 ,k,n

Δξ

− (1 − kΔζ) (bi+1,n − bi−1,n) + kΔζ (hi+1,n − hi−1,n)
2Δξ Hi,n

× ūi,k+1,n − ūi,k−1,n

2Δζ
. (5.168)
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For the numerical integration of Eq. (5.145), due to the geometry of the stag-
gered grid, it is more convenient to employ Gaussian quadrature instead of
the trapezoidal rule,

wi,k+ 1
2 ,n = ūi,0,n

bi+1,n − bi−1,n

2Δξ

− Hi,n

[
1
2
Ui,0,n +

k∑
k′=1

Ui,k′,n

]
Δζ . (5.169)

Evolution of the ice surface:

For the time derivative ∂h/∂τ in Eq. (5.146), Euler forward stepping is em-
ployed,

∂h

∂τ

∣∣∣
i,n

∼ hi,n+1 − hi,n

Δτ
. (5.170)

The diffusivity Di,n is computed from Eq. (5.147) with the trapezoidal rule,

Di,n = Hi,n

[
1
2
Ci,0,n +

K−1∑
k=1

Ci,k,n +
1
2
Ci,K,n

]
Δζ , (5.171)

which allows as a side result the computation of the volume flux Q,

Qi+ 1
2 ,n = −D̄i+ 1

2 ,n

hi+1,n − hi,n

Δξ
. (5.172)

The non-linear diffusion term in Eq. (5.146) is approximated by central dif-
ferences,

∂

∂ξ

(
D

∂h

∂ξ

) ∣∣∣
i,n

∼ 1
Δξ

[(
D

∂h

∂ξ

)∣∣∣
i+ 1

2 ,n
−
(
D

∂h

∂ξ

)∣∣∣
i− 1

2 ,n

]
, (5.173)

where (
D

∂h

∂ξ

) ∣∣∣
i+ 1

2 ,n
∼ D̄i+ 1

2 ,n

hi+1,n − hi,n

Δξ
,

(
D

∂h

∂ξ

) ∣∣∣
i− 1

2 ,n
∼ D̄i− 1

2 ,n

hi,n − hi−1,n

Δξ
.

(5.174)

This yields an explicit scheme. Provided that all quantities are known at the
old time τn, then Eqs. (5.171) – (5.174) do not contain any unknowns, and
with the prescribed accumulation-ablation function (as)i,n, the discretised ice
surface equation can readily be solved for the unknown surface elevation hi,n+1

at the new time τn+1 [from Eq. (5.170)].
In order to allow larger time steps Δτ while keeping the scheme numeri-

cally stable, it is also possible to introduce some implicitness. Replacing the
surface elevations hi+1,n, hi,n and hi−1,n in Eq. (5.174) by their counterparts
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at the new time, hi+1,n+1, hi,n+1 and hi−1,n+1, yields a semi-implicit scheme.
At each time step, it requires solving a system of linear equations for all new
surface elevations hi,n+1 (i = 0 . . . I) simultaneously. In addition to that, the
diffusivities in Eq. (5.174), which depend non-linearly on the surface eleva-
tions, can also be taken at the new time, D̄i+ 1

2 ,n+1 and D̄i− 1
2 ,n+1, which

renders the scheme fully implicit. The price to pay is that a system of non-
linear equations must be solved at each time-step in order to obtain the new
surface elevations.

Evolution of the ice temperature:

As for the evolution equation of the ice surface, Euler forward stepping is used
for the approximation of the time derivative ∂T/∂τ in Eq. (5.148),

∂T

∂τ

∣∣∣
i,k,n

∼ Ti,k,n+1 − Ti,k,n

Δτ
. (5.175)

For the horizontal advection term u ∂T/∂ξ, central differences are not suit-
able, because this leads to numerical instabilities. Instead, an asymmetric,
“upstream” scheme is employed,

u
∂T

∂ξ

∣∣∣
i,k,n

∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ui− 1
2 ,k,n

Ti,k,n − Ti−1,k,n

Δξ
, if ūi,k,n > 0 ,

ui+ 1
2 ,k,n

Ti+1,k,n − Ti,k,n

Δξ
, if ūi,k,n < 0 .

(5.176)

This scheme accounts for the fact that the flow of information is from the
upstream direction by shifting the discretisation anti-parallel to the flow (sign
of ūi,k,n) by half a grid point.

A similar method is chosen for the vertical advection term. Let us abbre-
viate the pre-factor of ∂T/∂ζ by

W =
−[(1 − ζ)b,τ + ζh,τ ] − u [(1 − ζ)b,ξ + ζh,ξ] + w

H
. (5.177)

Owing to our assumption of a rigid ice base [see discussion of Eq. (5.136)],
b,τ = 0. The further derivatives can be discretised by

(h,τ )i,n+1 ∼ hi,n+1 − hi,n

Δτ
,

(b,ξ)i,n+1 ∼ bi+1,n+1 − bi−1,n+1

2Δξ
, (5.178)

(h,ξ)i,n+1 ∼ hi+1,n+1 − hi−1,n+1

2Δξ
,

where the results of the computation of the ice surface elevation at the new
time τn+1 are used. We now set
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Wi,k+ 1
2 ,n+1 = −

(k + 1
2 )Δζ (h,τ )i,n+1

Hi,n+1

− ūi,k+ 1
2 ,n

×
[1 − (k + 1

2 )Δζ] (b,ξ)i,n+1 + (k + 1
2 )Δζ (h,ξ)i,n+1

Hi,n+1

+
wi,k+ 1

2 ,n

Hi,n+1
, (5.179)

and approximate the vertical advection term by

W
∂T

∂ζ

∣∣∣
i,k,n+1

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wi,k− 1
2 ,n+1

Ti,k,n+1 − Ti,k−1,n+1

Δζ
,

if W̄i,k,n > 0 ,

Wi,k+ 1
2 ,n+1

Ti,k+1,n+1 − Ti,k,n+1

Δζ
,

if W̄i,k,n < 0 .

(5.180)

Note that, in addition to the upstreaming, this is an implicit scheme in which
the temperatures are taken at the new time τn+1, that is, they are unknown
at the time of computation. The necessity to use an implicit discretisation
for the vertical derivatives arises from the sigma transformation. Where the
ice thickness is small (for instance, close to the margin), the spacing Δζ in
the transformed coordinates corresponds to a very small spacing Δz in the
physical space. Using an explicit scheme for the vertical derivatives would
therefore lead to prohibitively small time steps in order to keep the integration
numerically stable.

For the same reason, an implicit scheme, now with central differences, is
applied for the diffusion term,

∂

∂ζ

(
κ

∂T

∂ζ

) ∣∣∣
i,k,n+1

∼ 1
Δζ

[(
κ

∂T

∂ζ

)∣∣∣
i,k+ 1

2 ,n+1
−
(
κ

∂T

∂ζ

)∣∣∣
i,k− 1

2 ,n+1

]
, (5.181)

where (
κ

∂T

∂ζ

) ∣∣∣
i,k+ 1

2 ,n+1
∼ κ̄i,k+ 1

2 ,n

Ti,k+1,n+1 − Ti,k,n+1

Δζ
,

(
κ

∂T

∂ζ

) ∣∣∣
i,k− 1

2 ,n+1
∼ κ̄i,k− 1

2 ,n

Ti,k,n+1 − Ti,k−1,n+1

Δζ
.

(5.182)
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Discretisation of the dissipation term is straightforward, with the only
occurring derivative being the surface gradient, which is also taken at the new
time τn+1,

∂h

∂ξ

∣∣∣
i,k,n+1

∼ hi+1,k,n+1 − hi−1,k,n+1

2Δξ
. (5.183)

The boundary conditions (5.149) and (5.150) enter the discretised problem
as follows. At the free surface, the temperature is set to the prescribed surface
temperature,

Ti,K,n+1 = (Ts)i,n+1 . (5.184)

At the ice base, we obtain

κi,0,n

Hi,n+1

Ti,1,n+1 − Ti,0,n+1

Δζ
= −q⊥geo , if Ti,0,n+1 < (Tm)i,0,n+1 ,

Ti,0,n+1 = (Tm)i,0,n+1 , otherwise .

(5.185)

Since it is not known a priori which of the two cases is applicable for a certain
ice column defined by the index i, a trial-and-error procedure must be applied.
This can be done by first assuming case (5.185)1, computing the new temper-
atures for the ice column, checking whether the result fulfills the condition
of a basal temperature below the melting point, and, if not, discarding the
result and repeating the computation for case (5.185)2. The column-wise com-
putation of the new temperatures is possible because the presented scheme
is only implicit with respect to vertical derivatives, but explicit with respect
to horizontal derivatives. Therefore, for each ice column indexed by i, a sep-
arate system of linear equations must be solved in order to compute Ti,k,n+1

(k = 0 . . . K) simultaneously.
Recall that the numerical scheme discussed in this section is based on the

shallow ice equations in the plane strain approximation. However, this limi-
tation serves didactic purposes only by limiting the length of the discretised
equations and keeping them as clear as possible. The method itself is not lim-
ited to two spatial dimensions, and the extension of the numerical scheme to
the full, three-dimensional case is straightforward.

5.7.4 Example: The EGIG Line of the Greenland Ice Sheet

As an example of a numerical ice-sheet-modelling study using the plane strain
approximation, let us consider the application of a two-dimensional version
of the ice sheet model SICOPOLIS to the EGIG line of the Greenland Ice
Sheet. The EGIG [Expédition Glaciologique International au Grœnland; Hof-
mann (1974)] line is a transect across the ice sheet essentially in the west-east
direction at about 70–72◦N. For most of its length, the EGIG line follows a
flowline of the ice sheet (along the gradient of the ice surface); however, in
the easternmost part it deviates to the north. Therefore, Abe-Ouchi (1993)
defined a modified profile (here referred to as “EGIG1”) in which the flowline
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is extended to the eastern ice margin (Fig. 5.15). The EGIG1 profile is well
suited for the plane strain approximation because of small ice surface slopes
in the transverse direction.

For the definition of the several input quantities, we follow Greve (1994).
The present-day (interglacial) surface temperature is given by

T 0
s (h) = Tsl − γh , (5.186)

where Tsl = −3.5◦C is the temperature at sea level and γ = 8◦Ckm−1 the
atmospheric lapse rate. The surface-temperature anomaly ΔTs(t) at an arbi-
trary time t is prescribed by the cosine function

ΔTs(t) =
10◦C

2

(
cos
( 2πt

100 ka

)
− 1
)

, (5.187)

which represents idealised glacial-interglacial cycles with a period of 100 ka
and glacial minima 10◦C colder than interglacial maxima (see below, top panel
of Fig. 5.17). With Eqs. (5.186) and (5.187), the space- and time-dependent
surface temperature is

Ts(h, t) = T 0
s (h) + ΔTs(t) . (5.188)

The surface mass balance as is the difference between snowfall (accumula-
tion) and melting (ablation). We employ a simple parameterisation with three
parameters, the snowfall rate S0, the melting gradient m0 and the equilibrium
line altitude hEL,

as(h, t) = min[S0(t), m0(h − hEL(t))] (5.189)

(Fig. 5.16). For a present-day (interglacial) climate, the parameters have the
values

S0 = 0.3ma−1 ,

hEL = 1100m , (5.190)
m0 = 0.005 a−1 ,

and a glacial climate is characterised by

S0 = 0.15ma−1 ,

hEL = 100m , (5.191)
m0 = 0.005 a−1 .

For arbitrary times t, we assume that these parameters are related linearly to
the surface-temperature anomaly ΔTs(t). Thus,

S0(t) = (0.3 + 0.015ΔTs(t)[◦C])ma−1 ,

hEL(t) = (1100 + 100ΔTs(t)[◦C])m , (5.192)
m0 = 0.005 a−1 ,
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Fig. 5.15. Surface topography of the Greenland Ice Sheet (in km AMSL, con-
tour spacing 200 m). The original EGIG profile and the modified, flowline-following
EGIG1 profile are indicated as bold lines. Adapted from Calov (1994), c© R. Calov.
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Fig. 5.16. Parameterisation of the surface mass balance as as a function of the
surface elevation h. The three parameters are the snowfall rate S0, the melting
gradient m0 and the equilibrium line altitude hEL.

which fulfills Eq. (5.190) for ΔTs = 0◦C and Eq. (5.191) for ΔTs = −10◦C.
At the base, the parameters for the Weertman-type sliding law (5.91) are

chosen as p = 3, q = 2 and Cb = 6 × 104 a−1/(ρg) = 6.72ma−1 Pa−1. The
geothermal heat flux is set to the often-applied value for Precambrian rocks,
q⊥geo = 42mW m−2.

The spatio-temporal discretisation of the model domain is characterised
by a horizontal resolution of Δξ = 20 km, a vertical resolution of Δζ = 0.0125
and a time step of Δτ = 2.5 a. The simulation runs from t = 0 until t = 400 ka.
The first 200 ka are the spin-up time with a temporally constant, interglacial
forcing [ΔTs(t) ≡ 0◦C], and from t = 200 ka until t = 400 ka the idealised
glacial-interglacial cycles according to Eq. (5.187) are applied.

Figure 5.17 shows the prescribed surface-temperature anomaly ΔTs, the
simulated maximum surface elevation above mean sea level hmax, cross-
sectional area Ages and length of the temperate base Lt,b as functions of
time for the two glacial-interglacial cycles (from t = 200 ka until t = 400 ka).
At t = 250 ka, that is, 50 ka after the onset of the time-dependent climate
forcing, the system has largely forgotten the initial state provided by the
spin-up period, and from then on all shown quantities follow the surface-
temperature anomaly approximately sinusoidally. The positive correlation be-
tween the surface-temperature anomaly, the maximum surface elevation and
the cross-sectional area is counter-intuitive at first glance, as one would ex-
pect more ice in a colder climate and less ice in a warmer climate. However,
the glacial climate is also drier [compare Eqs. (5.190)1 and (5.191)1], and the
reduced snowfall outweighs the reduced melting and slower glacial flow, at
least for the EGIG1 profile. By contrast, the positive correlation between the
surface-temperature anomaly and the length of the temperate base is imme-
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Fig. 5.17. Time series of the prescribed surface-temperature anomaly ΔTs and the
simulated quantities: maximum surface elevation above mean sea level hmax, cross-
sectional area Ages and length of the temperate base Lt,b, over two idealised glacial
cycles.

diately intuitive. Note the ∼ 10 ka phase shift between these two quantities,
which is a result of the transfer time of changes of the surface temperature to
the ice base.

The length of the temperate base, the cross-sectional area and to a lesser
extent the maximum surface elevation show high-frequency oscillations with
an average period of ∼ 1.2 ka. These oscillations are more pronounced during
the cold phases of the sinusoidal climate forcing and can be interpreted as
cycles of mini-surges and subsequent recovery phases of the ice sheet. While
there is observational evidence that ice sheets can undergo even large-scale
surges on millennial time scales (Heinrich 1988, Bond et al. 1992, Bond and



108 5 Large-Scale Dynamics of Ice Sheets

Fig. 5.18. Final state of the simulated EGIG1 profile at t = 400 ka. Top: Velocity
field. Bottom: Temperature field (in ◦C, relative to the pressure melting point).

Lotti 1995), the relevance of such simulated surges (physical process vs. nu-
merical artifact) is a matter of current debate. The ongoing ISMIP (Ice Sheet
Model Intercomparison Project) HEINO (Heinrich Event INtercOmparison)
model intercomparison topic is supposed to shed more light on this problem
(Calov and Greve 2006, Greve et al. 2006; final paper in preparation).

The simulated velocity and temperature fields of the EGIG1 profile at the
end of the simulation (t = 400 ka) are depicted in Fig. 5.18. These results can
be considered as an approximation of the real, present-day state. The velocity
field nicely shows the downward and outward flow of the ice sheet, and the
near-margin velocities are significantly larger than their counterparts in the
center. The temperature contours become denser towards the base, which is
due to the advective, downward transport of cold surface ice. In the western
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half, and to a lesser extent close to the eastern margin, the temperature field
even shows an inversion: starting from the surface, the ice temperature first
decreases with depth, and only from a certain point on does the normal be-
haviour of an increase with depth appear. Melting conditions at the ice base
prevail on 320 km of the 800-km long profile, of which 260 km are found near
the western margin (low-lying ground) and 60 km near the eastern margin
(high-lying ground).

Of course, numerical ice-sheet-modelling studies are not restricted to the
two-dimensional plane strain approach presented here. Three-dimensional ice
sheet models based on the shallow ice approximation are computationally
much less expensive than Atmosphere or Ocean General Circulation Models
(AGCM/OGCM) of comparable complexity and can even be run on modern
PCs. Therefore, a number of ice sheet models have been developed and applied
to problems of past, present and future glaciation of Greenland, Antarctica,
North America, Scandinavia/Eurasia and even the polar ice caps of the planet
Mars [e.g., Greve (2000) and references therein, Forsström et al. (2003), Huy-
brechts et al. (2004), Saito and Abe-Ouchi (2004), Lunt et al. (2008)]. Some
recent efforts have aimed at devising models which go beyond the shallow
ice approximation (Pattyn et al. 2008, and references therein); however, tran-
sient simulations for whole ice sheets have not been accomplished yet with
such models.
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Large-Scale Dynamics of Ice Shelves

6.1 Full Stokes Flow Problem

6.1.1 Field Equations, Boundary Conditions at the Free Surface

Ice shelves are floating ice masses, which are connected to and nourished by
a grounded ice sheet (see Fig. 5.1). Most ice shelves, like the three major
ice shelves of Antarctica (Ross Ice Shelf, Filchner-Rønne Ice Shelf, Amery
Ice Shelf), are confined by large embayments. Smaller ice shelves can also be
unconfined. In the latter case, stabilisation typically results from the contact
with small islands or grounding on shoals.

Ice shelves are smaller and thinner than ice sheets and, on average, the ice
flow is distinctly faster. Suitable typical values are

typical horizontal extent [L] = 500 km ,
typical vertical extent [H] = 500m ,

typical horizontal velocity [U ] = 1000ma−1 ,
typical vertical velocity [W ] = 1ma−1 ,

typical pressure [P ] = ρg[H] ≈ 5MPa ,
typical time-scale [t] = [L]/[U ] = [H]/[W ] = 500 a ,

typical temperature variation [ΔT ] = 20K .

(6.1)

[compare Eqs. (5.5) and (5.102) for ice sheets]. Note the resulting time-scale
[t], which is twenty times smaller than that of ice sheets. The scales (6.1) give
an aspect ratio of

ε =
[H]
[L]

=
[W ]
[U ]

= 10−3 , (6.2)

a Froude number of

Fr =
[U ]2

g[H]
≈ 2 × 10−13 , (6.3)

a Rossby number of

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2 6, c© Springer-Verlag Berlin Heidelberg 2009
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Ro =
[U ]

2Ω[L]
≈ 4 × 10−7 , (6.4)

and a Coriolis-force-to-pressure-gradient ratio of

2ρΩ[U ]
[P ]/[L]

=
Fr

Ro
≈ 5 × 10−7 . (6.5)

Evidently, the aspect ratio is the same as for ice sheets, whereas the Froude
number and Coriolis-force-to-pressure-gradient ratio are larger by factors 200
and 10, respectively, but still very small. As a consequence, the flow of ice
shelves is also governed by Stokes flow, and the equation of motion (5.11)
remains valid. Also, the mass balance (5.1), the temperature evolution equa-
tion (5.14), the kinematic boundary condition (5.21), the stress-free condition
(5.23) and the temperature boundary condition (5.24) for the free surface hold
without any changes.

6.1.2 Boundary Conditions at the Ice Base

The situation is different at the ice base. First of all, it is an interface between
ice and sea water and therefore situated above the lithosphere surface (b ≥ zl,
see Fig. 5.1). Both melting and freezing processes can occur, so that the quan-
tity a⊥

b defined in (5.29) can have either sign and must be interpreted as a
basal melting-freezing rate. It is positive for melting and negative for freezing.
Apart from this extended interpretation of a⊥

b , the kinematic boundary con-
dition (5.31) remains valid. Consequently, the ice thickness equation (5.55),
which has been derived by using the mass balance and the kinematic condi-
tions at the free surface and the ice base, holds as well.

Analogous to Eq. (5.32), the momentum jump condition is

tsea · n − t · n − ρa⊥
b [[v]] = 0 , (6.6)

where the lithospheric stress tlith has been replaced by the stress at the sea
side of the interface, tsea. Whereas the lithospheric stress under an ice sheet
is unknown, the stress conditions in the sea can be described by a hydrostatic
pressure psea plus a shear stress τ sea induced by the circulating sea water. The
former corresponds to the weight of the water column from the water surface
(mean sea level z = zsl) to the ice base (z = b),

psea = ρswg(zsl − b) , (6.7)

where ρsw = 1028 kg m−3 is the density of sea water. The latter can be related
to the flow velocity of the subglacial sea water, vsea, by the empirical relation

τ sea = Cwiρsw|vsea|2 et , (6.8)

where Cwi is the dimensionless water-ice drag coefficient (Cwi ≈ 2.5 × 10−3,
depending on the roughness of the basal ice), and et is the direction of τ sea
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in the tangential plane to the ice base (et ⊥ n), assumed parallel to vsea (so
that et = vsea/|vsea|). Thus,

tsea · n = −psea n + τ sea = −ρswg(zsl − b)n + Cwiρsw|vsea|2 et . (6.9)

Further, the advective term ρa⊥
b [[v]] in the momentum jump condition (6.6)

is negligible. Therefore, we obtain the stress condition

t · n = −ρswg(zsl − b)n + Cwiρsw|vsea|2 et . (6.10)

This relation serves as a dynamic boundary condition at the base of an ice
shelf. Consequently, the additional formulation of an empirical sliding law like
(5.35) is not required.

The temperature of the ice at the ice base is equal to the temperature of
the sea water immediately below,

T = Tsea , (6.11)

which will be at the freezing point under the prevailing pressure and salinity
conditions (typically around −2◦C). The situation is therefore comparable to
that of a temperate base of an ice sheet [see Eq. (5.39)]. In addition to (6.11),
we can formulate an energy jump condition similar to (5.37),

κ (grad T · n) − q⊥sea − [[v]] · t · n + ρa⊥
b [[u]] = 0 , (6.12)

where q⊥sea is the heat flux entering the ice body from the sea water below.
For the third term of (6.12), we find, using (6.8) and (6.10)

[[v]] · t · n = −ρswg(zsl − b) [[v · n]] + [[v]] · τ sea . (6.13)

Using the general mass jump condition (3.61) and the definition (5.29) of a⊥
b

yields
ρsw(vsea − w) · n = ρ(v − w) · n = ρa⊥

b

⇒ (vsea − w) · n =
ρ

ρsw
a⊥
b , (v − w) · n = a⊥

b , (6.14)

so that the jump of the normal velocity in (6.13) is

[[v · n]] = (vsea − w) · n − (v − w) · n =
ρ − ρsw

ρsw
a⊥
b . (6.15)

Further, we define the frictional dissipation of the boundary-layer current
below the ice shelf as

δsea = [[v]] · τ sea

(6.8)
= Cwiρsw|vsea|2 [[v · et]]
= Cwiρsw|vsea|2 (vsea · et − v · et)
≈ Cwiρsw|vsea|3 . (6.16)
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In the last step, the assumptions that the sea-water flow is essentially parallel
to the ice base (vsea ≈ |vsea| et) and much larger than the flow of the ice shelf
(vsea � v) are made. Equation (6.13) then becomes

[[v]] · t · n = (ρsw − ρ)g(zsl − b) a⊥
b + δsea . (6.17)

For the fourth term of (6.12), we state that, as for an ice sheet with a temperate
base, the jump of the internal energy is approximately equal to the latent heat
of ice melt ([[u]] = L). By inserting this and (6.17) in (6.12), we obtain

κ (grad T · n) − (ρsw − ρ)g(zsl − b) a⊥
b + ρLa⊥

b = q⊥sea + δsea (6.18)

as the energy jump condition at the ice shelf base. Since the basal temperature
is already determined by (6.11), Eq. (6.18) is not required as a boundary
condition for the temperature field. However, provided that q⊥sea and δsea are
known (for instance, from measurements), it determines the basal melting-
freezing rate a⊥

b . Alternatively, if a⊥
b is known, Eq. (6.18) can be used to

compute the total heat input q⊥sea + δsea from the sea water below the ice
shelf.

Concerning the effect of the basal shear stress τ sea, an estimate with Cwi =
2.5× 10−3, ρsw = 1028 kg m−3 and |vsea| = 0.1m s−1 gives the values |τ sea| ≈
0.025Pa and δsea ≈ 2.5mW m−2. Evidently, the shear stress itself is extremely
small, and therefore its contribution to the stress condition (6.10) is negligible.
By contrast, the frictional dissipation resulting from it is significant and should
be taken into account in the energy jump condition (6.18).

6.1.3 Boundary Conditions at the Grounding Line and Calving
Front

Boundary conditions are also required at the lateral margins, that is, the
grounding line (in contact with the attached ice sheet) and the calving front
(in contact with the surrounding ocean). At the grounding line, the inflow
vgl and temperature Tgl from the ice sheet are usually prescribed directly. At
the calving front, the temperature can also be prescribed directly as Tcf . The
hydrostatic pressure distribution psw of the sea water provides a boundary
condition for the stress vector t|cf · n,

t|cf · n = −pswn , (6.19)

where n is the unit normal vector which points in a horizontal direction away
from the calving front (assumed to be vertical). The sea water pressure is
given by

psw =

{
0 , for z ≥ zsl ,

ρswg(zsl − z) , for z ≤ zsl

(6.20)

[compare Eq. (6.10) for the ice shelf base]. This relation is illustrated in
Fig. 6.1.
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Fig. 6.1. Stress condition at the calving front of an ice shelf.

For the positions of the grounding line and calving front, let us assume
that they are described by implicit functions

Fgl(x, y, t) = 0 (6.21)

and
Fcf(x, y, t) = 0 , (6.22)

respectively. Since both boundaries are vertical faces, these functions do not
depend on the vertical coordinate z. The unit normal vectors are the nor-
malised gradients,

n =
grad Fgl/cf

|grad Fgl/cf |
=

1
Ngl/cf

⎛
⎜⎜⎜⎜⎜⎝

∂Fgl/cf

∂x
∂Fgl/cf

∂y

0

⎞
⎟⎟⎟⎟⎟⎠

, (6.23)

with the gradient norm

Ngl/cf = |grad Fgl/cf | =
((∂Fgl/cf

∂x

)2

+
(∂Fgl/cf

∂y

)2
)1/2

. (6.24)

We assume that the functions Fgl/cf are chosen such that n points away from
the ice shelf.

Formulating a suitable condition which describes the position of the
grounding line (evolution of the function Fgl) constitutes a major problem
in recent glaciological research. The easiest possibility is to simply prescribe
its position. If this is not possible due to a lack of observational data, the
position of the grounding line can be found by solving a contact problem for
the coupled ice-sheet/ice-shelf problem, according to a recent suggestion by
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Durand et al. (2009). This is based on the topological condition that the ice
base cannot penetrate the lithosphere surface, that is,

∀x, y, t : b(x, y, t) ≥ zl(x, y, t) . (6.25)

For any given point (x, y) and time t, the ice is assumed to be grounded if
it touches the lithosphere surface, and the basal normal stress Nb (which is
positive for compression) is larger than the basal sea water pressure psw,b

[ = ρswg(zsl − b), cf. Eq. (6.20)]:

b(x, y, t) = zl(x, y, t) and Nb(x, y, t) > psw,b(x, y, t) . (6.26)

By contrast, the ice is assumed to be floating if the ice base is above the
lithosphere surface, or if it touches the lithosphere surface, but the basal
normal stress is smaller than or equal to the basal sea water pressure:

b(x, y, t) > zl(x, y, t) ,

or b(x, y, t) = zl(x, y, t) and Nb(x, y, t) ≤ psw,b(x, y, t) .
(6.27)

The position of the grounding line is the boundary of the two domains
(grounded vs. floating ice) which result from the conditions (6.26) and (6.27).
A further possibility will be discussed below (Sect. 6.3).

For determining the position of the calving front, a kinematic condition is
well suited. As a direct consequence of Eq. (6.22), the time derivative of Fcf

following the motion of the calving front with velocity w = wxex +wyey must
vanish,

dwFcf

dt
=

∂Fcf

∂t
+ (gradFcf) · w = 0 (6.28)

[compare Eq. (5.18)]. Let vh be the horizontal component of the ice velocity
at the calving front. We can then introduce the calving rate c⊥,

c⊥ = (vh − w) · n , (6.29)

and rewrite Eq. (6.28) as

∂Fcf

∂t
+ (gradFcf) · vh = Ncfc

⊥ . (6.30)

This equation represents an evolution equation for the calving front, which
can be solved provided that the calving rate c⊥ is prescribed.

6.2 Hydrostatic Approximation

The hydrostatic approximation works the same way as for ice sheets. By
neglecting the shear stresses txz and tyz in the vertical momentum balance,
one finds the hydrostatic distribution (5.59) for the vertical normal stress
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tzz, and the relation (5.60) for the pressure p. This leads to the expressions
(5.61) for the horizontal normal stresses txx and tyy. By inserting them in the
horizontal components of the momentum balance and applying Glen’s flow
law, one obtains the equations of motion (5.64), which replace the full-Stokes-
flow equation (5.11).

6.3 Shallow Shelf Approximation

Similar to ice sheets, the interior regions of an ice shelf (that is, some 10 km
away from the grounding line and the calving front) are characterised by a
small aspect ratio [see Eq. (6.2)] and small slopes of the free surface and the
ice base. The latter can be expressed as

∂h

∂x
,

∂h

∂y
∼ [H]

[L]
= ε ,

∂b

∂x
,

∂b

∂y
∼ [H]

[L]
= ε .

(6.31)

Since at the base of an ice shelf significant shear stresses cannot be maintained
[see the stress condition (6.10); as mentioned at the end of Sect. 6.1, the
contribution from the water-flow-induced shear stress τ sea is negligibly small
in that context], the regime of bed-parallel shear flow found in grounded ice
sheets cannot exist in floating ice shelves. By contrast, the typical situation is
that of plug flow, whereby the horizontal velocities are essentially constant over
depth. Naturally, in the immediate vicinity of the grounding line, a transitional
state between these two limits will develop. The situation is illustrated in
Fig. 6.2.

These considerations will now be used for deriving a further simplification
of the hydrostatic approximation which is called the shallow shelf approxima-
tion (SSA) (Morland 1987). Mathematically, the regime of plug flow can be
defined by

∂vx

∂z
≈ 0 ,

∂vy

∂z
≈ 0 . (6.32)

In other words, the horizontal velocities only depend on the horizontal coor-
dinates and the time,

vx = vx(x, y, t) , vy = vy(x, y, t) . (6.33)

We go back to the horizontal components of the momentum balance of the
hydrostatic approximation in the form (5.62). In order to make use of the fact
that the shear stresses vanish at the surface and at the base, these equations
are now integrated over depth:
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Fig. 6.2. Flow regimes in an ice-sheet/ice-shelf system. In the grounded ice sheet,
shear flow prevails, whereas in the floating ice shelf plug flow is present. The vicinity
of the grounding line shows a transitional flow pattern.
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The first three integrals of each equation can be modified by using Leibniz’s
rule (see also Sect. 5.1.3), whereas the last one simply gives the difference of
txz or tyz at the surface and at the base. One obtains

2
∂

∂x

∫ h

b

tDxx dz − 2tDxx|z=h
∂h

∂x
+ 2tDxx|z=b

∂b

∂x

+
∂

∂x

∫ h

b

tDyy dz − tDyy|z=h
∂h

∂x
+ tDyy|z=b

∂b

∂x

+
∂

∂y

∫ h

b

txy dz − txy|z=h
∂h

∂y
+ txy|z=b

∂b

∂y

+ txz|z=h − txz|z=b = ρgH
∂h

∂x
, (6.35a)
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2
∂

∂y

∫ h

b

tDyy dz − 2tDyy|z=h
∂h

∂y
+ 2tDyy|z=b

∂b

∂y

+
∂

∂y

∫ h

b

tDxx dz − tDxx|z=h
∂h

∂y
+ tDxx|z=b

∂b

∂y

+
∂

∂x

∫ h

b

txy dz − txy|z=h
∂h

∂x
+ txy|z=b

∂b

∂x

+ tyz|z=h − tyz|z=b = ρgH
∂h

∂y
. (6.35b)

By introducing the membrane stress N as the vertically integrated deviatoric
stress,

N =

h∫
b

tD dz , or Nij =

h∫
b

tDij dz , (6.36)

and rearranging terms, this yields

2
∂Nxx

∂x
+

∂Nyy

∂x
+

∂Nxy

∂y

− 2tDxx|z=h
∂h

∂x
− tDyy|z=h

∂h

∂x
− txy|z=h

∂h

∂y
+ txz|z=h

+ 2tDxx|z=b
∂b

∂x
+ tDyy|z=b

∂b

∂x
+ txy|z=b

∂b

∂y
− txz|z=b = ρgH

∂h

∂x
, (6.37a)

2
∂Nyy

∂y
+

∂Nxx

∂y
+

∂Nxy

∂x

− 2tDyy|z=h
∂h

∂y
− tDxx|z=h

∂h

∂y
− txy|z=h

∂h

∂x
+ tyz|z=h

+ 2tDyy|z=b
∂b

∂y
+ tDxx|z=b

∂b

∂y
+ txy|z=b

∂b

∂x
− tyz|z=b = ρgH

∂h

∂y
. (6.37b)

In order to further simplify this system, the stress conditions at the surface
(5.23) and at the base (6.10) must be considered. With the unit normal vector
(5.16), condition (5.23) reads, in component form,

1
Ns

(
−txx|z=h

∂h

∂x
− txy|z=h

∂h

∂y
+ txz|z=h

)
= 0 ,

1
Ns

(
−tyy|z=h

∂h

∂y
− txy|z=h

∂h

∂x
+ tyz|z=h

)
= 0 ,

1
Ns

(
−txz|z=h

∂h

∂x
− tyz|z=h

∂h

∂y
+ tzz|z=h

)
= 0 .

(6.38)
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In the last component, the shear stresses are negligible compared to the ver-
tical normal stress, so that it simplifies to

tzz|z=h = 0 , (6.39)

in agreement with the hydrostatic distribution (5.59). In the first two com-
ponents, we replace the normal stresses txx and tyy by using the expressions
(5.61) evaluated for z = h,

−2tDxx|z=h
∂h

∂x
− tDyy|z=h

∂h

∂x
− txy|z=h

∂h

∂y
+ txz|z=h = 0 ,

−2tDyy|z=h
∂h

∂y
− tDxx|z=h

∂h

∂y
− txy|z=h

∂h

∂x
+ tyz|z=h = 0 .

(6.40)

As a consequence, the second and fifth lines of the vertically integrated mo-
mentum balance (6.37) vanish.

At the ice base, the component form of the stress condition (6.10), with the
unit normal vector (5.26) and upon neglecting the shear stress τ sea, becomes

1
Nb

(
txx|z=b

∂b

∂x
+ txy|z=b

∂b

∂y
− txz|z=b

)
= −ρswg

Nb
(zsl − b)

∂b

∂x
,

1
Nb

(
tyy|z=b

∂b

∂y
+ txy|z=b

∂b

∂x
− tyz|z=b

)
= −ρswg

Nb
(zsl − b)

∂b

∂y
,

1
Nb

(
txz|z=b

∂b

∂x
+ tyz|z=b

∂b

∂y
− tzz|z=b

)
=

ρswg

Nb
(zsl − b) .

(6.41)

Again, in the last component the shear stresses can be neglected compared to
the vertical normal stress, which yields

tzz|z=b = −ρswg(zsl − b) . (6.42)

However, we can also obtain the value of tzz|z=b by evaluating the hydrostatic
distribution (5.59) for z = b,

tzz|z=b = −ρgH . (6.43)

Equating (6.42) and (6.43) relates the ice thickness H to the water column
zsl − b,

ρH = ρsw(zsl − b) . (6.44)

This result is called the floating condition. By replacing b = h − H, it can be
rearranged into a relation for the freeboard, h−zsl, (part of the ice shelf above
the water level),

ρH = ρsw(zsl − h + H) ⇒ h − zsl = H − ρ

ρsw
H =

ρsw − ρ

ρsw
H . (6.45)
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With the values ρ = 910 kg m−3 and ρsw = 1028 kg m−3, the freeboard is
approximately equal to 11.5% of the ice shelf thickness, so that the remaining
88.5% will be below the water level.

In the first two components of (6.41), we replace txx and tyy again by using
(5.61), now evaluated for z = b,

2tDxx|z=b
∂b

∂x
+ tDyy|z=b

∂b

∂x
− ρgH

∂b

∂x
+ txy|z=b

∂b

∂y
− txz|z=b

= −ρswg(zsl − b)
∂b

∂x
,

2tyy|z=b
∂b

∂y
+ txx|z=b

∂b

∂y
− ρgH

∂b

∂y
+ txy|z=b

∂b

∂x
− tyz|z=b

= −ρswg(zsl − b)
∂b

∂y
.

(6.46)

Because of the floating condition (6.44), this simplifies to

2tDxx|z=b
∂b

∂x
+ tDyy|z=b

∂b

∂x
+ txy|z=b

∂b

∂y
− txz|z=b = 0 ,

2tyy|z=b
∂b

∂y
+ txx|z=b

∂b

∂y
+ txy|z=b

∂b

∂x
− tyz|z=b = 0 .

(6.47)

Thus, the terms on the left hand sides in the third and sixth lines of (6.37)
vanish as well.

Application of the conditions (6.40) and (6.47) in the vertically integrated
momentum balance (6.37) provides

2
∂Nxx

∂x
+

∂Nyy

∂x
+

∂Nxy

∂y
= ρgH

∂h

∂x
,

2
∂Nyy

∂y
+

∂Nxx

∂y
+

∂Nxy

∂x
= ρgH

∂h

∂y
,

(6.48)

where h and H are related by the floating condition in the form (6.45). Ver-
tically integrating the flow law (4.21) gives

Nxx = 2η̄ Dxx = 2η̄
∂vx

∂x
,

Nyy = 2η̄ Dyy = 2η̄
∂vy

∂y
,

Nxy = 2η̄ Dxy = η̄

(
∂vx

∂y
+

∂vy

∂x

)
,

(6.49)

where the independence of vx and vy on z, Eq. (6.33), and the definition of
the membrane stresses, Eq. (6.36), have been used, and the depth-integrated
viscosity,
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η̄ =

h∫
b

η dz =

h∫
b

1
2
B(T ′) d−(1−1/n)

e dz , (6.50)

has been introduced. The effective strain rate de, of which the general com-
ponent form is given in Eq. (5.66), can be simplified for the plug flow regime
[Eq. (6.32)] to

de =

{(
∂vx

∂x

)2

+
(

∂vy

∂y

)2

+
∂vx

∂x

∂vy

∂y

+
1
4

(
∂vx

∂y
+

∂vy

∂x

)2

+
1
4

(
∂vz

∂x

)2

+
1
4

(
∂vz

∂y

)2
}1/2

. (6.51)

With the scaling (6.1) and the aspect ratio (6.2), we can estimate the orders
of magnitude of the terms (∂vx/∂x)2 and (∂vz/∂x)2,

(
∂vx

∂x

)2

∼ [U ]2

[L]2
,

(
∂vz

∂x

)2

∼ [W ]2

[L]2
= ε2 [U ]2

[L]2
. (6.52)

Consequently, the term (∂vz/∂x)2 is negligible compared to (∂vx/∂x)2. The
same holds for (∂vz/∂y)2 compared to (∂vy/∂y)2, and so we obtain a further
simplified expression for the effective strain rate,

de =

{(
∂vx

∂x

)2

+
(

∂vy

∂y

)2

+
∂vx

∂x

∂vy

∂y
+

1
4

(
∂vx

∂y
+

∂vy

∂x

)2
}1/2

. (6.53)

This relation is independent of the vertical coordinate z, which reduces the
depth-integrated viscosity (6.50) to

η̄ =
1
2
d−(1−1/n)
e

h∫
b

B(T ′) dz . (6.54)

Inserting the vertically integrated flow law, Eq. (6.49), in the vertically
integrated momentum balance, Eq. (6.48), finally yields

4
∂

∂x

(
η̄
∂vx

∂x

)
+ 2

∂

∂x

(
η̄
∂vy

∂y

)
+

∂

∂y

(
η̄
(∂vx

∂y
+

∂vy

∂x

))
= ρgH

∂h

∂x
,

4
∂

∂y

(
η̄
∂vy

∂y

)
+ 2

∂

∂y

(
η̄
∂vx

∂x

)
+

∂

∂x

(
η̄
(∂vx

∂y
+

∂vy

∂x

))
= ρgH

∂h

∂y
,

(6.55)

which is a system of non-linear elliptical differential equations for the hori-
zontal velocities vx and vy.

This system must be complemented by boundary conditions along the
lateral margin of the ice shelf. At the grounding line, the inflow vgl from the
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nourishing ice sheet is usually prescribed, which serves as a dynamic condition.
The position of the grounding line can either be prescribed or determined by
solving a contact problem (see Sect. 6.1.3). The shallow shelf approximation
allows a simpler formulation of the contact problem by using the floating
condition (6.44), which can be rearranged to

b = zsl −
ρ

ρsw
H . (6.56)

Combining this with the inequality (6.25) yields

zsl −
ρ

ρsw
H ≥ zl ⇒ H ≤ ρsw

ρ
(zsl − zl) . (6.57)

For any point (x, y) and time t, the ice is assumed to be floating if the in-
equality (6.57) is fulfilled. Otherwise, for the case

H >
ρsw

ρ
(zsl − zl) , (6.58)

the ice is assumed to be grounded, and the position of the grounding line is
given by the boundary of the two domains.

At the calving front, the stress condition needs to be evaluated. Equation
(6.19) reads in component form

(−p + tDxx)cf nx + txy|cf ny = −psw nx ,

txy|cf nx + (−p + tDyy)cf ny = −psw ny ,

txz|cf nx + tyz|cf ny = 0 .

(6.59)

With the relation (5.60) for the pressure p in the hydrostatic approximation,
Eqs. (6.59)1,2 yield

(2tDxx + tDyy)cf nx + txy|cf ny = −psw nx + ρg(h − z)nx ,

txy|cf nx + (2tDyy + tDxx)cf ny = −psw ny + ρg(h − z)ny .
(6.60)

Using Eq. (6.20) for the sea-water pressure and definition (6.36) for the mem-
brane stresses, this is readily integrated,

(2Nxx + Nyy)cf nx + Nxy|cf ny

=

(∫ h

b

ρg(h − z) dz −
∫ zsl

b

ρswg(zsl − z) dz

)
nx ,

Nxy|cf nx + (2Nyy + Nxx)cf ny

=

(∫ h

b

ρg(h − z) dz −
∫ zsl

b

ρswg(zsl − z) dz

)
ny .

(6.61)
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The integral terms on the right hand side yield(
. . .

)
=

ρgH2

2
− ρswg(zsl − b)2

2

(6.44)
=

ρgH2

2
−
(

ρ

ρsw

)2
ρswgH2

2

=
ρ

ρsw
(ρsw − ρ)

gH2

2
, (6.62)

so that for the stress condition at the calving front we obtain

(2Nxx + Nyy)cf nx + Nxy|cf ny =
ρ

ρsw
(ρsw − ρ)

gH2

2
nx ,

Nxy|cf nx + (2Nyy + Nxx)cf ny =
ρ

ρsw
(ρsw − ρ)

gH2

2
ny .

(6.63)

Inserting the vertically integrated flow law (6.49) yields the corresponding
boundary condition for the velocities,

4η̄
∂vx

∂x

∣∣∣∣
cf

nx + 2η̄
∂vy

∂y

∣∣∣∣
cf

nx + η̄

(
∂vx

∂y
+

∂vy

∂x

)
cf

ny

=
ρ

ρsw
(ρsw − ρ)

gH2

2
nx ,

η̄

(
∂vx

∂y
+

∂vy

∂x

)
cf

nx + 4η̄
∂vy

∂y

∣∣∣∣
cf

ny + 2η̄
∂vx

∂x

∣∣∣∣
cf

ny

=
ρ

ρsw
(ρsw − ρ)

gH2

2
ny .

(6.64)

The position of the calving front is governed by the kinematic condition
(6.30), which does not simplify in the shallow shelf approximation. Note that
it requires the calving rate c⊥ as an input quantity.

The geometry and structure of the elliptical boundary-value problem for
the horizontal velocity field, which consists of the system of differential equa-
tions (6.55) and its associated boundary conditions at the grounding line and
at the calving front, are illustrated in Fig. 6.3.

The system of model equations in the shallow shelf approximation is com-
pleted by the vertically integrated mass balance, the ice thickness equation
and the temperature evolution equation. The vertically integrated mass bal-
ance is essentially the same as Eq. (5.95); however, we formulate it with the
sea level instead of the ice base as the reference horizon,

vz = vz|z=zsl −
∫ z

zsl

(
∂vx

∂x
+

∂vy

∂y

)
dz̄

= vz|z=zsl − (z − zsl)
(

∂vx

∂x
+

∂vy

∂y

)
. (6.65)
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Fig. 6.3. Ice shelf geometry in the horizontal map plane. The horizontal velocity
field vh is a solution of the elliptical differential equations (6.55) and the boundary
conditions at the grounding line and at the calving front. Input quantities are the
inflow velocity at the grounding line, vgl, and the calving rate at the calving front,
c⊥.

Hence the vertical velocity is linear over depth. The ice thickness equation
results from Eq. (5.55), with Ns ≈ 1 and Nb ≈ 1, so that due to (6.31)
as ≈ a⊥

s and ab ≈ a⊥
b ,

∂H

∂t
= −divQ + as − ab

= −div (Hvh) + as − ab . (6.66)

The temperature evolution equation [see Eq. (5.105)] is

ρc
(∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)
=

∂

∂z

(
κ

∂T

∂z

)
+ 2A(T ′)σn+1

e , (6.67)

and is given simple Dirichlet boundary conditions (prescribed temperatures)
at the surface, the ice base, the grounding line and the calving front as de-
scribed above (Sect. 6.1).

It is instructive to compare the structure of the model equations of the shal-
low shelf approximation with that of the shallow ice approximation (Sect. 5.4).
In the shallow ice approximation for ice sheets, the stresses, the horizontal
velocity and the volume flux are local functions of the ice geometry and tem-
perature. This means that information about the state of the ice sheet at
other positions is not required in order to compute them. This is in strong
contrast to the shallow shelf approximation, where the stresses, the horizontal
velocity and the volume flux are determined by differential equations for the
entire area of the ice shelf. Therefore, at any position they are influenced by
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the state of the whole ice shelf, or, in other words, they depend in a non-local
way on the ice geometry and temperature. Of course, this makes the solution
of the shallow shelf approximation more difficult.

6.4 Ice Shelf Ramp

Under certain conditions, it is possible to obtain analytical solutions for the
equations of the shallow shelf approximation. Let us consider the following
problem:

• Plane strain approximation (two-dimensional flow in the x-z plane).
• Ice shelf extent between x = 0 and x = L, grounding line at x = 0, calving

front at x = L.
• Thickness of the ice shelf linearly decreasing from H = Hgl at the ground-

ing line to H = Hcf at the calving front.
• Mean sea level at z = zsl = 0.
• Inflow from attached ice sheet with velocity vgl = vgl ex.
• Steady-state conditions: ∂(·)/∂t = 0 for all field quantities.
• Constant rate factor: A(T ′) = A = const.

The geometry of this ice shelf ramp is illustrated in Fig. 6.4. The thickness
H(x) can be expressed as

H = Hgl −
Hgl − Hcf

L
x . (6.68)

With the floating condition in the alternative forms (6.44) and (6.45), the free
surface and the ice base are given by

h =
ρsw − ρ

ρsw
H , b = − ρ

ρsw
H . (6.69)

The velocity field consists of the two functions vx(x) and vz(x, z), so that
the effective strain rate (6.53) is simply

de =
∣∣∣∣dvx

dx

∣∣∣∣ = dvx

dx
. (6.70)

The absolute value bars can be dropped because dvx/dx > 0 for the ice shelf
ramp. With this result, the depth-integrated viscosity (6.54) reads

η̄ =
BH

2

(
dvx

dx

)−(1−1/n)

, (6.71)

where the constant B = A−1/n (associated rate factor) has been introduced.
The horizontal velocity vx is governed by Eq. (6.55)1, whereas (6.55)2

vanishes identically due to the plane strain approximation. Equation (6.55)1
simplifies to
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Fig. 6.4. Ice shelf ramp of length L. The thickness is linearly decreasing from
H = Hgl at the grounding line (x = 0) to H = Hcf at the calving front (x = L).

4
d
dx

(
η̄
dvx

dx

)
= ρgH

dh

dx
, (6.72)

and by inserting Eqs. (6.69)1 and (6.71), we obtain

2B
d
dx

[
H

(
dvx

dx

)1/n
]

=
ρ

ρsw
(ρsw − ρ)gH

dH

dx

=
ρ

ρsw
(ρsw − ρ)g

d
dx

(
H2

2

)
. (6.73)

The first integral of this equation is

2BH

(
dvx

dx

)1/n

=
ρ

ρsw
(ρsw − ρ)

gH2

2
+ C1 . (6.74)

The integration constant C1 can be determined by using the boundary con-
dition (6.64) at the calving front. With nx = 1 and ny = 0, it yields

4η̄
dvx

dx

∣∣∣∣
cf

=
ρ

ρsw
(ρsw − ρ)

gH2

2
, (6.75)

or with the depth-integrated viscosity (6.71),

2BH

(
dvx

dx

)1/n
∣∣∣∣∣
cf

=
ρ

ρsw
(ρsw − ρ)

gH2

2
. (6.76)

Comparison of Eq. (6.74), taken at the calving front, and the boundary con-
dition (6.76) yields C1 = 0.
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We proceed by solving Eq. (6.74) for the velocity derivative and integrating
the result from the grounding line x = 0 to an arbitrary position x,

dvx

dx
=
(

ρ

ρsw
(ρsw − ρ)

gH

4B

)n

⇒ vx(x) = vgl +
( �g

4B

)n

Hn(x) , (6.77)

with the abbreviations

� =
ρ

ρsw
(ρsw − ρ) , Hn(x) =

x∫
0

Hn(x̃) dx̃ . (6.78)

For the ice ramp defined by Eq. (6.68), the thickness integral reads

Hn(x) =

[
− L

(n + 1)(Hgl − Hcf)

(
Hgl −

Hgl − Hcf

L
x̃

)n+1
]x

0

=
L

(n + 1)(Hgl − Hcf)

× Hn+1
gl

[
1 −

(
1 − Hgl − Hcf

LHgl
x

)n+1
]

. (6.79)

Equations (6.77) and (6.79) describe the horizontal velocity for the ice shelf
ramp. For the stress exponent n = 3, it is a quartic function of the position
x.
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Fig. 6.5. Ice shelf ramp: Horizontal velocity vx according to Eqs. (6.77) and (6.79),
for Hgl = 400m, Hcf = 200 m, L = 200 km, vgl = 100 ma−1, n = 3, A = 4.9 ×
10−25 s−1 Pa−3 (value for T ′ = −10◦C), ρ = 910 kg m−3, ρsw = 1028 kg m−3 and
g = 9.81 m s−2.

An example is shown in Fig. 6.5. Even though the set-up is that of a rather
small and thin ice shelf (see figure caption), a maximum velocity as large as
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1.66 kma−1 is reached at the calving front. This is due to the fact that our
two-dimensional, plane strain ice shelf does not feel any lateral drag, which
would reduce the flow speed in a natural ice shelf.

The vertical velocity can be computed by inserting the horizontal velocity
(6.77) into the vertically integrated mass balance (6.65),

vz = vz|z=0 −
dvx

dx
z = vz|z=0 −

( �g

4B

)n dHn

dx
z

= vz|z=0 −
(

�gH

4B

)n

z . (6.80)

The value of the integration constant vz|z=0 (vertical velocity at sea level) can
be determined only if the distributions of the surface mass balance as and the
basal mass balance ab are known. For simplicity we assume instead that the
ratio of as and ab is such that vz|z=0 = 0. The result for the vertical velocity
is then

vz(x, z) = −
(

�gH(x)
4B

)n

z . (6.81)

It is illustrated in Fig. 6.6 for the center of the ice shelf described in the legend
of Fig. 6.5.
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Fig. 6.6. Ice shelf ramp: Profile of the vertical velocity vz in the center of the ice
shelf (x = L/2 = 100 km) according to Eq. (6.81). Parameters as in Fig. 6.5.

The total mass balance at the upper and lower interface, as − ab (where
supply is positive and loss negative), can be obtained from the ice thickness
equation (6.66) by employing the steady-state assumption,

as − ab =
d(Hvx)

dx
. (6.82)
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With the horizontal velocity (6.77), this yields

as − ab = H
dvx

dx
+ vx

dH

dx

= H
( �g

4B

)n dHn

dx
+

dH

dx

[
vgl +

( �g

4B

)n

Hn

]

= H

(
�gH

4B

)n

+
dH

dx

[
vgl +

( �g

4B

)n

Hn

]
, (6.83)

which is depicted in Fig. 6.7 for the set-up of Fig. 6.5. In this example, the
total mass balance is positive in slightly more than the inner half of the ice
shelf (until x ≈ 128 km) and negative in the outer part towards the calving
front.
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Fig. 6.7. Ice shelf ramp: Total mass balance at the upper and lower interface, as−ab,
according to Eq. (6.83). Parameters as in Fig. 6.5.

It is also instructive to discuss the degenerate case of an ice shelf with con-
stant thickness, which can be realised by setting Hgl = Hcf = H = const. One
may intuitively conclude that for this situation there is no ice flow, because
the forcing term ρgH(dh/dx) on the right-hand side of the momentum equa-
tion (6.72) vanishes. However, this is not the case. For a constant thickness H,
the thickness integral Hn(x) defined in Eq. (6.78)2 is given by Hn(x) = Hnx.
Inserting this into the velocity equation (6.77) yields the linearly increasing
velocity distribution

vx(x) = vgl +
(

�gH

4B

)n

x , (6.84)

which corresponds to the constant horizontal dilatation rate

Dxx =
dvx

dx
=
(

�gH

4B

)n

. (6.85)

The vertical compression rate [due to Eq. (6.81)] is then
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Dzz =
dvz

dz
= −

(
�gH

4B

)n

. (6.86)

Of course, the two strain rates add up to zero, which is a requirement of
incompressibility.

The reason for this counterintuitive behaviour of horizontal stretching and
vertical compression of the ice, despite constant ice thickness, is the existence
of the calving front as a boundary of the system. Beyond the calving front,
there is no more ice which could hinder the extension of the ice shelf, and the
sea-water pressure at the calving front is not strong enough to buttress the
ice shelf completely.

6.5 Numerical Methods

Of course, the equations of the shallow shelf approximation derived in Sect. 6.3
can be solved numerically by finite difference methods, which have been dis-
cussed for the shallow ice approximation of ice sheets in Sect. 5.7. However,
the two-dimensional, elliptical boundary-value problem (6.55) for the horizon-
tal velocities vx and vy, along with its boundary conditions at the grounding
line and the calving front, is equally well suited for a different type of numer-
ical solution, namely the finite element method [see, e.g., Reddy (2006) for a
general introduction]. The method now described follows Weis (2001) closely.

6.5.1 Mechanical Ice Shelf Problem

Let us assume that, for some given time t, the geometry and temperature field
of an ice shelf are known, and the horizontal velocity field vh = (vx, vy) is com-
puted by solving Eqs. (6.55). By introducing the symmetric, two-dimensional
tensor

M =

⎛
⎜⎜⎜⎝

2
∂vx

∂x
+

∂vy

∂y

1
2

(
∂vx

∂y
+

∂vy

∂x

)

1
2

(
∂vx

∂y
+

∂vy

∂x

)
∂vx

∂x
+ 2

∂vy

∂y

⎞
⎟⎟⎟⎠ (6.87)

and inserting the floating condition (6.45), they can be written in abbreviated
form as

2
∂(η̄Mxx)

∂x
+ 2

∂(η̄Mxy)
∂y

=
ρ

ρsw
(ρsw − ρ)gH

∂H

∂x
,

2
∂(η̄Mxy)

∂x
+ 2

∂(η̄Myy)
∂y

=
ρ

ρsw
(ρsw − ρ)gH

∂H

∂y
.

(6.88)

The combination of density terms on the right-hand sides is equal to the
quantity � introduced in Eq. (6.78)1, and so we can assemble the compact
form
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2
∂(η̄Mij)

∂xj
= �gH

∂H

∂xi
, (6.89)

where the indices i and j can take the values 1 and 2 (note the summation
over j by Einstein’s summation convention).

As for the boundary conditions at the grounding line, the inflow velocity
is prescribed,

vh|gl = vgl . (6.90)

At the calving front, Eq. (6.64) holds, which can be written as

2η̄Mxx|cf nx + 2η̄Mxy|cf ny =
�gH2

2
nx ,

2η̄Mxy|cf nx + 2η̄Myy|cf ny =
�gH2

2
ny ,

(6.91)

or, in compact index notation,

2η̄Mij |cf nj =
�gH2

2
ni . (6.92)

In the following, we will refer to the boundary-value problem consisting of
Eqs. (6.89), (6.90) and (6.92) as the mechanical ice shelf problem.

6.5.2 Weak Formulation

Let ω be the domain covered by the ice shelf in the horizontal plane, and
∂ω its margin, which consists of the grounding line, ∂ωgl, and the calving
front, ∂ωcf (that is, ∂ω = ∂ωgl ∪ ∂ωcf). Since the second order system of
differential equations (6.89) is valid at any point within the domain ω, we can
also multiply it by an arbitrary smooth function w(x, y) and integrate it over
the entire domain,

∫
ω

w

[
2
∂(η̄Mij)

∂xj
− �gH

∂H

∂xi

]
dxdy = 0 . (6.93)

The function w(x, y) is called the weight function, and Eq. (6.93) is the
weighted-integral form of Eq. (6.89).

We proceed by employing the two-dimensional version of the divergence
theorem (2.63) as follows,

∫
ω

∂(wη̄Mij)
∂xj

dxdy =
∫
∂ω

wη̄Mijnj ds

⇒
∫
ω

w
∂(η̄Mij)

∂xj
dxdy =

∫
∂ω

wη̄Mijnj ds −
∫
ω

∂w

∂xj
η̄Mij dxdy , (6.94)
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where ds is a line element along the boundary ∂ω. Then the weighted-integral
statement (6.93) becomes

∫
ω

[
2η̄Mij

∂w

∂xj
+ w�gH

∂H

∂xi

]
dxdy −

∫
∂ω

2wη̄Mijnj ds = 0 . (6.95)

By applying the decomposition ∂ω = ∂ωgl ∪ ∂ωcf and inserting the boundary
condition (6.92) for the calving front, the boundary integral yields

∫
∂ω

2wη̄Mijnj ds =
∫

∂ωgl

2wη̄Mijnj ds +
∫

∂ωcf

2wη̄Mijnj ds

=
∫

∂ωgl

2wη̄Mijnj ds +
∫

∂ωcf

w
�gH2

2
ni ds , (6.96)

and so from (6.95) we obtain
∫
ω

[
2η̄Mij

∂w

∂xj
+ w�gH

∂H

∂xi

]
dxdy

−
∫

∂ωgl

2wη̄Mijnj ds −
∫

∂ωcf

w
�gH2

2
ni ds = 0 . (6.97)

The remaining boundary condition (6.90) for the grounding line reads, in
component form,

vi|gl = (vi)gl , (6.98)

where (vi)gl is a prescribed function along the grounding line.
Equations (6.97) and (6.98) constitute the weak formulation of the me-

chanical ice shelf problem. Note that the second derivatives of the veloc-
ity components in the original differential equation (6.89) and its weighted-
integral form (6.93) have been replaced by first derivatives of the velocity
components (hidden in M) and the weight function. The boundary condition
at the calving front is automatically fulfilled by the integral statement (6.97)
(“natural boundary condition”), whereas the boundary condition (6.98) at
the grounding line needs to be accounted for separately (“essential boundary
condition”).

6.5.3 Discretisation of the Ice Shelf Domain

In order to convert the weak formulation of the mechanical ice shelf problem
into a numerical scheme, the ice shelf domain ω is now divided into non-
overlapping elements ωe (“finite elements”), such that adjacent elements share
common edges and vertices (“nodes”). The entire set of finite elements is
referred to as the finite element mesh.
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Fig. 6.8. Triangulation of an ice shelf domain ω. The boundary ∂ω consists of the
grounding line ∂ωgl and the calving front ∂ωcf . A typical triangular element ωe with
its three element nodes, numbered counterclockwise from 1 to 3, is highlighted.

The decomposition of the domain into finite elements can be achieved in
many different ways, of which we only consider the simplest one, namely a
triangulation (Fig. 6.8). This is to say, the elements are triangles which cover
the domain, and consequently the margin of the domain is approximated by
a closed polygon. The elements are assigned a consecutive numbering e =
1 . . . E, where E is the number of elements, and each element has three nodes,
numbered by l = 1, 2, 3. We also introduce a global (element-independent)
numbering of the nodes, n = 1 . . . N , where N is the number of nodes of
the entire domain (including the boundary). It is of course important to do
careful bookkeeping for the global and element-wise numbering of the nodes
by establishing the relation n(e, l).

Carrying out a triangulation for a given ice shelf domain is a non-trivial
problem. A commonly employed method that has favourable properties for
the finite element method is the Delaunay triangulation. However, this is not
discussed here, and we refer the reader to the numerous literature on the
subject [e.g., de Berg et al. (2008)].

For the computations required in the following, it is convenient to intro-
duce a master element Ω to which the elements ωe are mapped. As shown in
Fig. 6.9, the master element is the isosceles unit triangle with area 1/2 in the
transformed coordinates ξ and η. The transformation is given by

(
x
y

)
=
(

x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
·
(

ξ
η

)
+
(

x1

y1

)
, (6.99)

and its inverse reads
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Fig. 6.9. Mapping of an arbitrary triangular element ωe with nodes P1, P2 and P3

(element numbering) to the master element Ω.

(
ξ
η

)
=

1
2Ae

(
y3 − y1 −(x3 − x1)

−(y2 − y1) x2 − x1

)
·
(

x − x1

y − y1

)
, (6.100)

where 2Ae is the determinant of the transformation matrix,

2Ae = (x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1) . (6.101)

Evaluation of the integral
∫
ωe

dxdy =
∫
ωe

2Ae dξ dη = 2Ae

∫
ωe

dξ dη = 2Ae ×
1
2

= Ae (6.102)

shows that Ae denotes the area of the element ωe.

6.5.4 Galerkin Finite Element Method

We return to the weak formulation (6.97) and (6.98) of the mechanical ice
shelf problem. The horizontal velocity field is now approximated by a set of
basis functions Φn, n = 1 . . . N , as follows,

vx(x, y) ∼
N∑

n=1

(vx)n Φn(x, y) ,

vy(x, y) ∼
N∑

n=1

(vy)n Φn(x, y) .

(6.103)

For the tensor M, which was defined in Eq. (6.87) and can be expressed in
index notation as

Mij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
+

∂vk

∂xk
δij (i, j, k = 1, 2; sum over k) , (6.104)
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we obtain

Mij ∼
N∑

n=1

[
1
2
(vi)n

∂Φn

∂xj
+

1
2
(vj)n

∂Φn

∂xi
+ (vk)n

∂Φn

∂xk
δij

]
. (6.105)

The basis functions Φn must be linearly independent, continuously dif-
ferentiable within the elements and continuous across element boundaries. A
central idea of the finite element method is to employ basis functions which
are non-zero only in a small sub-domain of the discretised ice shelf area.
Specifically, we choose functions with the following properties:

• The basis function Φn is non-zero only in the elements adjacent to the
node n (global numbering, that is, n = 1 . . . N) .

• Φn(xn, yn) = 1, Φn(xm, ym) = 0 for nodes m �= n.
• In the elements adjacent to the node n, Φn is a linear function of x and y

(that is, geometrically a plane).

This yields piecewise linear functions, an example of which is depicted in
Fig. 6.10. Note that the coefficients (vx)n and (vy)n in Eq. (6.103) denote the
values of vx and vy at the element nodes.

Fig. 6.10. Piecewise linear basis function Φn(x, y) associated with the node with
the global number n and the position (xn, yn).

Since in real-world problems the ice thickness H is never known exactly
at every point (x, y) in the domain continuum, but only for a finite number of
points (either from observational data or from simulation results), we express
it also in terms of the basis functions,

H(x, y) ∼
N∑

n=1

Hn Φn(x, y) , (6.106)
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so that only the nodal values Hn, n = 1 . . . N , need to be known. The same
procedure is applied for the depth-integrated viscosity η̄,

η̄(x, y) ∼
N∑

n=1

η̄n Φn(x, y) . (6.107)

Even though the depth-integrated viscosity depends on the velocity compo-
nents [see Eqs. (6.53), (6.54)] and is therefore part of the solution, let us
assume for the moment that its nodal values η̄n are also known. We will come
back to this point in Sect. 6.5.5.

The approximations (6.105), (6.106) and (6.107) are inserted into the in-
tegral statement (6.97) of the weak formulation. In order to turn it into a
set of equations for the unknown nodal values (vx)n and (vy)n, the weight
functions w must be prescribed. It is convenient (but not the only possibility)
to choose the weight functions as the set of basis functions Φn. This is called
the Galerkin finite element method. Specifically, we choose

w = Φm , m = 1 . . . N − Ngl , (6.108)

where Ngl is the number of nodes on the grounding line, which are excluded
because the velocity on the grounding line is already prescribed by the bound-
ary condition (6.98).

For any node m, we define ωm as the area of all adjacent elements, in
which the basis function Φm does not vanish. The intersections of ωm with
the calving front ∂ωcf and the grounding line ∂ωgl are ∂ωcf∩ωm and ∂ωgl∩ωm,
respectively (Fig. 6.11). For all inner nodes, these are both empty. With these
definitions, inserting Eqs. (6.105), (6.106) and (6.107) in the integral statement
(6.97), and choosing the weight functions according to Eq. (6.108), yields

∫
ωm

{
2

N∑
p=1

(η̄p Φp)

×
N∑

n=1

[
1
2
(vi)n

∂Φn

∂xj
+

1
2
(vj)n

∂Φn

∂xi
+ (vk)n

∂Φn

∂xk
δij

]
∂Φm

∂xj

+ Φm�g

N∑
p=1

(Hp Φp)
N∑

n=1

(
Hn

∂Φn

∂xi

)}
dxdy

−
∫

∂ωgl∩ωm

2Φm

N∑
p=1

(η̄p Φp)

×
N∑

n=1

[
1
2
(vi)n

∂Φn

∂xj
+

1
2
(vj)n

∂Φn

∂xi
+ (vk)n

∂Φn

∂xk
δij

]
nj ds
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Calving front, �� cf

Grounding line, �� gl
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Fig. 6.11. Definition of the sub-domains ωm adjacent to the nodes m and their
intersections with the calving front and the grounding line, ∂ωcf ∩ωm and ∂ωgl∩ωm,
for an inner node (m = m1), a node on the calving front (m = m2) and a node on
the grounding line (m = m3).

−
∫

∂ωcf∩ωm

Φm
�g

2

N∑
p=1

(Hp Φp)
N∑

n=1

(Hn Φn)ni ds = 0 . (6.109)

Since i = 1, 2 and m = 1 . . . N −Ngl (all other indices are summation indices),
these are 2(N − Ngl) equations. Let us assemble the 2N nodal values of the
velocities into the column

v̂ =
(
(vx)1, (vy)1, (vx)2, (vy)2, . . . (vx)N , (vy)N

)T

, (6.110)

or
v̂2(n−1)+i = (vi)n (i = 1, 2; n = 1 . . . N) . (6.111)

If the index m in Eq. (6.109) corresponds to an inner node of the ice shelf
domain, the intersections ∂ωgl ∩ ωm and ∂ωcf ∩ ωm are empty. Therefore, the
two boundary integrals are automatically equal to zero, and we only have to
consider the area integral over ωm. By applying Einstein’s summation con-
vention for the node indices n and p, using (6.111) and re-arranging terms,
we obtain, from Eq. (6.109),
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⎛
⎝η̄p

∫
ωm

∂Φm

∂xj

∂Φn

∂xj
Φp dxdy

⎞
⎠ v̂2(n−1)+i

+

⎛
⎝η̄p

∫
ωm

(∂Φm

∂xj

∂Φn

∂xi
+ 2

∂Φm

∂xi

∂Φn

∂xj

)
Φp dxdy

⎞
⎠ v̂2(n−1)+j

= −�gHnHp

∫
ωm

Φm
∂Φn

∂xi
Φp dxdy

(i = 1, 2; m = 1 . . . N − Ncf − Ngl) , (6.112)

where Ncf and Ngl are the numbers of nodes on the calving front and on the
grounding line, respectively.

If the index m in Eq. (6.109) corresponds to a node on the calving front,
then the intersection ∂ωcf ∩ωm will not be empty, and the last line of (6.109)
provides an additional inhomogeneity,

⎛
⎝η̄p

∫
ωm

∂Φm

∂xj

∂Φn

∂xj
Φp dxdy

⎞
⎠ v̂2(n−1)+i

+

⎛
⎝η̄p

∫
ωm

(∂Φm

∂xj

∂Φn

∂xi
+ 2

∂Φm

∂xi

∂Φn

∂xj

)
Φp dxdy

⎞
⎠ v̂2(n−1)+j

= −�gHnHp

∫
ωm

Φm
∂Φn

∂xi
Φp dxdy

+
�g

2
HnHp

∫
∂ωcf∩ωm

Φm Φn Φp ni ds

(i = 1, 2; m = N − Ncf − Ngl + 1 . . . N − Ngl) . (6.113)

The remaining 2Ngl equations are provided by evaluating the boundary
condition (6.98) at the nodes of the grounding line,

v̂2(m−1)+i = [v̂2(m−1)+i]gl (i = 1, 2; m = N − Ngl + 1 . . . N) . (6.114)

Equations (6.112), (6.113) and (6.114) constitute a system of 2N linear
equations for the 2N unknown velocity components, which can be written in
compact form as

K̂ · v̂ = r̂ , (6.115)

where K̂ is the 2N×2N coefficient matrix, and r̂ is the column of size 2N which
contains the inhomogeneities. The integrals in (6.112) and (6.113), which are
required to assemble the coefficient matrix and the inhomogeneity column,
can be relatively easily computed analytically, because the basis functions
are piecewise linear over the elements ωe, and thus their spatial derivatives
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are piecewise constant. In order to do so, it is convenient to transform the
integrals element-wise to the master element Ω discussed above (Sect. 6.5.3);
this is not shown here.

The coefficient matrix K̂ is sparse, that is, most of its entries are equal
to zero, because the basis functions Φm and Φn overlap only if m and n are
identical or adjacent nodes. However, it lacks the property of symmetry. Since
the system (6.115) is usually very large, it is important to choose an efficient
numerical solver, for instance, from the set of generalised conjugate gradient
methods (Press et al. 1996).

6.5.5 Iteration

The nodal values of the depth-integrated viscosity, η̄n (n = 1 . . . N) remain to
be calculated [see Eq. (6.107)]. This can be done by employing an iteration
method.

We start with an initial guess of the depth-integrated viscosity, η̄
(1)
n , for

instance, a constant value everywhere. Based on this, the coefficient matrix
K̂(1) and the inhomogeneity column r̂(1) are assembled, and the system

K̂(1) · v̂(1) = r̂(1) (6.116)

is solved for v̂(1), the first estimate for the velocity field.
Let v̂(l) be the l-th iteration of the velocity field. By inserting v̂(l) into

Eqs. (6.53) and (6.54), improved viscosities η̄
(l+1)
n can be computed. Since we

have assumed that the geometry and temperature of the entire ice shelf are
known, the integral over the associated rate factor in Eq. (6.54) is also known
everywhere. However, due to the choice of piecewise linear basis functions
Φn, the approximated velocity field (6.103) is not differentiable at the nodes.
Therefore, the velocity derivatives in Eq. (6.53), evaluated at the nodes, must
be computed by averaging over the respective adjacent elements, where they
exist. With the viscosities η̄

(l+1)
n , the updated coefficient matrix K̂(l+1) and

the updated inhomogeneity column r̂(l+1) can be constructed, and the system

K̂(l+1) · ˜̂v
(l+1)

= r̂(l+1) (6.117)

solved for ˜̂v
(l+1)

. In order to dampen possible numerical oscillations, only a
certain part w ∈ (0, 1] of ˜̂v

(l+1)
is used for the updated velocity field v̂(l+1),

v̂(l+1) = w ˜̂v
(l+1)

+ (1 − w) v̂(l) . (6.118)

This relaxation scheme averages between the new and the old solution, and the
relaxation factor w should be chosen such that a good compromise is achieved
between speed of convergence and limitation of numerical oscillations.

As the above discussions show, the great advantage of the finite ele-
ment method is the flexibility in the decomposition of the numerical domain.
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Whereas the finite difference method is essentially restricted to a regular grid,
a finite element mesh can easily handle irregularly shaped boundaries and
local refinements of the resolution. The price to pay is that the finite element
method is conceptually more difficult, and, owing to the need to solve large
systems of linear equations, computationally very demanding.

6.5.6 Example: The Ross Ice Shelf

An implementation of the numerical solution of the mechanical ice shelf prob-
lem as laid down above (Sects. 6.5.1–6.5.5) was realised by Weis (2001) with
the model FESSACODE (Finite Element Shallow Shelf Approximation Code).
As an example of a numerical ice-shelf-modelling study, we describe briefly
its application to the Ross Ice Shelf in Antarctica (Humbert et al. 2005, and
references therein).

The Ross Ice Shelf is the largest of the Antarctic ice shelves with an area
of approx. 490,000 km2, situated in a huge embayment of the Antarctic con-
tinent (Figs. 1.1, 6.12). Inflow from the ice sheet occurs mainly by five ma-
jor ice streams from the West-Antarctic Shirase, Siple and Gould Coast (for
simplicity, we will refer to it as “Siple Coast” in the following) and a num-
ber of glaciers from East Antarctica which enter through the steep coast of
the Transantarctic Mountains. The Ross Ice Shelf is well suited for a dy-
namic/thermodynamic modelling study because of the good data coverage:
The geometry, ice thickness distribution, surface temperature and inflow veloc-
ities at the grounding line are reasonably well known. The three-dimensional
temperature field can be interpolated (with some uncertainty) by assuming
that the basal temperature is equal to the freezing temperature of the sea
water below the ice shelf, and that the shape of the vertical profile is every-
where the same as that of an existing ice core measurement (for details see
Humbert et al. 2005). Therefore, all the required input data for the model
FESSACODE are available with acceptable accuracy.

Figure 6.12 shows a triangulation of the Ross Ice Shelf. It consists of 2290
elements with 1398 nodes, and the size of the elements varies from 0.71 km
to 49.8 km (minimum and maximum side length, respectively) depending
on the position in the ice shelf. In order to facilitate comparisons between
simulated velocities and field data, the mesh has been created such that the
locations of stations of the Ross Ice Shelf Geophysical and Glaciological Survey
(“RIGGS”) campaign (Thomas et al. 1984), for which velocities have been
measured, fall on the nodes of the mesh.

In order to account for the fact that the viscosity of the in-situ ice of the
Ross Ice Shelf may deviate from that of pure, isotropic ice, a stress enhance-
ment factor Es has been introduced by replacing the associated rate factor in
Eq. (6.54) according to

B(T ′) → EsB(T ′) (6.119)

[see also Eq. (4.35)]. A value of Es greater than unity makes the ice stiffer,
whereas a value less than unity makes it softer.
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Fig. 6.12. Geometry of the Ross Ice Shelf. TAM: Transantarctic Mountains, GL:
grounding line, CF: calving front. The triangular mesh was created by using the ice
velocity data of the RIGGS campaign (Thomas et al. 1984) as nodes. Adapted from
Humbert et al. (2005), c© American Geophysical Union.

For the simulation shown in Fig. 6.13, the stress enhancement factor Es

has been chosen such that the mean difference between measured RIGGS
(vRIGGS) and simulated (vSIM) velocities is minimised,

∣∣∣∣∣
1
N

N∑
n=1

(vRIGGS,n − vSIM,n)

∣∣∣∣∣
!= min , (6.120)

where v = (v2
x + v2

y)1/2 and the index n numbers the N RIGGS-velocity
data points (which fall together with the nodes of the numerical grid). This
procedure yields the value Es = 0.86, for which the remaining mean difference
is +8.4ma−1.

The simulation reproduces the general flow pattern and the magnitudes
of the flow velocities of the Ross Ice Shelf quite well. The latter generally
increase towards the calving front, where values of up to ∼ 1200ma−1 are
reached. It is also interesting to see how the two islands (Roosevelt Island
close to the calving front, Crary Ice Rise further south) efficiently slow down
the coastward ice flow, which may be important for stabilizing the entire ice
shelf.

The scatter plot (right panel of Fig. 6.13) reveals a systematic devia-
tion, in that the simulation tends to underestimate small and to overestimate
large flow velocities. A number of reasons for this discrepancy are conceivable.
The real temperature field likely shows more spatial variability than the con-
structed one, which affects the distribution of the depth-integrated viscosity.
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Fig. 6.13. Left: Simulated velocity distribution (absolute values only) of the Ross
Ice Shelf. Right: Scatter plot of simulated vs. RIGGS velocities. Reproduced from
Humbert et al. (2005), c© American Geophysical Union.

Also, the local viscosity can be influenced by several types of impurities as
well as anisotropic fabrics of the polycrystalline ice, which are only globally
accounted for by the choice of the stress enhancement factor. Another factor
is that ice originating from fast-flowing ice streams and glaciers of the adja-
cent ice sheet may be heavily damaged, thus softening the ice downstream of
the main inflow systems. This effect may be further complicated by changing
ice stream activities in the past. So it is not surprising that the agreement
between measured and simulated velocities is not perfect, and there is still
room for improvement.



7

Dynamics of Glacier Flow

7.1 Glaciers Versus Ice Sheets

As mentioned in the introduction (Chapter 1), the size of land ice masses
spans several orders of magnitude, from large ice sheets of a few thousand
kilometres in diameter down to small glaciers of a few hundreds of metres in
length. Consequently, the scaling given for ice sheets in Chapter 5 [Eqs. (5.5)
and (5.102)] is not valid for smaller ice caps and glaciers, and needs to be modi-
fied. However, the Froude number (5.7) and Coriolis-force-to-pressure-gradient
ratio (5.10) are always extremely small compared to unity, and therefore the
Stokes flow problem formulated in Sect. 5.1 is applicable to land ice masses
of all shapes and sizes. On the other hand, the applicability of the approxi-
mations defined in Sects. 5.2 to 5.4 is limited by the size of the ice masses.
While the hydrostatic approximation and the first order approximation still
provide reasonable accuracy for most problems of glacier flow, the shallow ice
approximation is valid for the large-scale description of ice sheets and large
ice caps only.

In addition to these dynamical issues, the thermal regime of ice sheets and
glaciers shows important differences. Most ice in ice sheets is cold ice, i.e., its
temperature is below the local pressure melting point. Temperate ice, with a
temperature at the pressure melting point, exists only at the base or in thin,
near-basal layers. While this behaviour is shared by glaciers at high latitudes,
in glaciers at lower latitudes temperate ice occurs alongside cold ice, and many
of them consist entirely of temperate ice except for a thin cold surface layer in
winter. Glaciers that consist entirely of cold ice are called cold glaciers, glaciers
that consist entirely of temperate ice are called temperate glaciers, and glaciers
in which significant amounts of both temperate and cold ice occur are called
polythermal glaciers. We will not expand on glacier thermodynamics in this
chapter, but come back to it in Sect. 9.3.

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2 7, c© Springer-Verlag Berlin Heidelberg 2009
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7.2 Parallel Sided Slab

Depending on the exact geometry, the central part of a small valley glacier
can sometimes be roughly approximated as a parallel sided slab on an inclined
bed, similar to the gravity-driven thin-film flow discussed in Sect. 3.4.3. This
is sketched in Fig. 7.1.

Fig. 7.1. Approximation of the central part of a valley glacier (grey-shaded) as a
parallel sided slab.

In order to formulate the ice-flow problem for the parallel sided slab as
full Stokes flow, let us make the following assumptions:

• Plane strain approximation: purely two-dimensional flow in the vertical
x-z plane, no dependencies on the transverse coordinate y.

• Constant thickness H and inclination angle α.
• Uniformity in the downslope (x) direction: ∂(·)/∂x = 0 for all field quan-

tities.
• Steady-state conditions: ∂(·)/∂t = 0 for all field quantities.
• Flat, rigid bed: b(x, t) = 0 (in the inclined coordinate system). The free

surface is therefore given by h(x, t) = H.
• No surface accumulation (a⊥

s = 0).
• No basal melting (a⊥

b = 0), no basal sliding (Cb = 0).
• Glen’s flow law (4.16) with stress exponent n = 3.
• Constant rate factor: A(T ′) = A = const.
• Constant heat conductivity: κ(T ) = κ = const.

Thus, the mass balance (5.1) simplifies to

∂vz

∂z
= 0 . (7.1)

With the above assumptions, the kinematic conditions (5.21) at the free sur-
face and (5.31) at the glacier bed imply

vz|z=H = 0 , vz|z=0 = 0 , (7.2)
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and so the solution of Eq. (7.1) is simply

vz = 0 . (7.3)

Consequently, the velocity field is entirely described by the profile of the
downslope velocity, vx(z).

With the evident decomposition g = g sin α ex−g cos α ez, the x-component
of the Stokes equation (5.11) reads

−∂p

∂x
+ η

(
∂2vx

∂x2
+

∂2vx

∂y2
+

∂2vx

∂z2

)

+ 2
∂vx

∂x

∂η

∂x
+
(

∂vx

∂y
+

∂vy

∂x

)
∂η

∂y
+
(

∂vx

∂z
+

∂vz

∂x

)
∂η

∂z

+ ρg sin α = 0 , (7.4)

which simplifies to

η
∂2vx

∂z2
+

∂vx

∂z

∂η

∂z
+ ρg sinα = 0

⇒ ∂

∂z

(
η
∂vx

∂z

)
+ ρg sinα = 0 . (7.5)

The first integral of this equation is

η
∂vx

∂z
= C1 − ρgz sin α , (7.6)

where C1 is an integration constant. Due to Glen’s flow law in the form (4.21),
the left-hand side is equal to the shear stress txz,

txz = η
∂vx

∂z
= C1 − ρgz sin α , (7.7)

which vanishes at the free surface (z = H) due to the stress-free boundary
condition (5.23). Hence, the integration constant can be determined,

txz|z=H = C1 − ρgH sin α = 0 ⇒ C1 = ρgH sinα , (7.8)

and we obtain the linear shear stress profile

txz = η
∂vx

∂z
= ρg(H − z) sin α . (7.9)

In order to carry out the second integration, we insert the explicit form of the
viscosity which results from Eq. (4.22),

η =
1
2
B d−(1−1/n)

e , where B = A−1/n and de =
1
2

∂vx

∂z
. (7.10)
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This yields from Eq. (7.9)

1
2
A−1/n

(
1
2

∂vx

∂z

)−(1−1/n)
∂vx

∂z
= ρg(H − z) sin α

⇒ A−1/n

(
1
2

∂vx

∂z

)1/n

= ρg(H − z) sin α

⇒ ∂vx

∂z
= 2A(ρg sin α)n(H − z)n

⇒ vx = −2A(ρg sin α)n

n + 1
(H − z)n+1 + C2 . (7.11)

The integration constant C2 results from the no-slip condition vx|z=0 = 0 (no
basal sliding),

vx|z=0 = −2A(ρg sin α)n

n + 1
Hn+1 + C2 = 0

⇒ C2 =
2A(ρg sin α)n

n + 1
Hn+1 . (7.12)

Therefore, we obtain the velocity profile

vx =
2A(ρg sin α)n

n + 1
[
Hn+1 − (H − z)n+1

]
, (7.13)

which is a quartic function of z for the stress exponent n = 3.
Analogous to Eq. (7.4), the z-component of the Stokes equation (5.11) is

−∂p

∂z
+ η

(
∂2vz

∂x2
+

∂2vz

∂y2
+

∂2vz

∂z2

)

+ 2
∂vz

∂z

∂η

∂z
+
(

∂vx

∂z
+

∂vz

∂x

)
∂η

∂x
+
(

∂vy

∂z
+

∂vz

∂y

)
∂η

∂y

− ρg cos α = 0 , (7.14)

and simplifies, for the parallel-sided-slab problem, to

∂p

∂z
= −ρg cos α . (7.15)

The integral of this equation is

p = C3 − ρgz cos α . (7.16)

Owing to the stress-free boundary condition at the free surface (5.23), the
pressure vanishes there, which yields the integration constant C3,
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p|z=H = C3 − ρgH cos α = 0 ⇒ C3 = ρgH cos α . (7.17)

Thus, we obtain the hydrostatic pressure profile

p = ρg(H − z) cos α . (7.18)

It is interesting to note that the results for the pressure, Eq. (7.18), and
the shear stress, Eq. (7.9), are identical to those for the thin-film flow of an
incompressible Newtonian fluid (see Sect. 3.4.3). The nonlinearity of Glen’s
flow law affects only the velocity profile, which is quartic here [Eq. (7.13)],
but parabolic for the Newtonian fluid [Eq. (3.149)].

It is also possible to compute the temperature profile analytically. The
temperature equation (5.14) reads

ρc

(
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z

)

=
∂

∂x

(
κ

∂T

∂x

)
+

∂

∂y

(
κ

∂T

∂y

)
+

∂

∂z

(
κ

∂T

∂z

)
+ 4ηd2

e , (7.19)

which simplifies to
∂

∂z

(
κ

∂T

∂z

)
= −4ηd2

e . (7.20)

By using Eq. (7.10), this can be rewritten as follows,

∂

∂z

(
κ

∂T

∂z

)
= −4 × 1

2
A−1/n

(
1
2

∂vx

∂z

)−(1−1/n)

×
(

1
2

∂vx

∂z

)2

= −(2A)−1/n

(
∂vx

∂z

)1+1/n

. (7.21)

We substitute the term ∂vx/∂z from (7.13) and obtain

∂

∂z

(
κ

∂T

∂z

)
= −(2A)−1/n [2A(ρg sinα)n(H − z)n]1+1/n

= −2A(ρg sin α)n+1(H − z)n+1. (7.22)

The first integral of this equation is

κ
∂T

∂z
=

2A(ρg sinα)n+1

n + 2
(H − z)n+2 + C4 . (7.23)

By assuming that the basal temperature does not reach the pressure melt-
ing point, the integration constant can be obtained from the basal boundary
condition (5.38),
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−κ
∂T

∂z

∣∣∣∣
z=0

= q⊥geo

⇒ −2A(ρg sin α)n+1

n + 2
Hn+2 − C4 = q⊥geo

⇒ C4 = −q⊥geo −
2A(ρg sinα)n+1

n + 2
Hn+2 , (7.24)

so that

κ
∂T

∂z
= −q⊥geo −

2A(ρg sin α)n+1

n + 2
[
Hn+2 − (H − z)n+2

]
. (7.25)

Further integration yields

T = −
q⊥geo
κ

z − 2A(ρg sinα)n+1

κ(n + 2)

[
Hn+2z +

(H − z)n+3

n + 3

]
+ C5 . (7.26)

With the surface boundary condition (5.24), the integration constant can be
computed,

T |z=H = Ts

⇒ −
q⊥geo
κ

H − 2A(ρg sinα)n+1

κ(n + 2)
Hn+3 + C5 = Ts

⇒ C5 = Ts +
q⊥geo
κ

H +
2A(ρg sin α)n+1

κ(n + 2)
Hn+3 . (7.27)

Thus, we obtain for the temperature profile the relation

T = Ts +
q⊥geo
κ

(H − z)

+
2AHn+3(ρg sinα)n+1

κ(n + 2)

[
1 − z

H
− 1

n + 3

(
H − z

H

)n+3
]

. (7.28)

The first line describes a linear profile due to heat conduction only, and the
nonlinear modification in the second line is due to the dissipation term 4ηd2

e

in the temperature equation (7.20).
For a glacier of 100 m thickness and 10◦ inclination, the results for the ve-

locity profile, Eq. (7.13), and the temperature profile, Eq. (7.28), are depicted
in Fig. 7.2. The simple-shear profile of the horizontal velocity with the largest
shear rates (∂vx/∂z) close to the base and smallest shear rates close to the
surface is evident, and the surface velocity reaches a value of 18.6ma−1. The
temperature increases from −10◦C at the surface to −4.71◦C at the base, and
the profile is slightly curved due to viscous dissipation, which is also largest
near the base. The importance of dissipation is further highlighted by com-
parison with the linear profile resulting from heat conduction only, for which
the basal temperature reaches a mere −7.62◦C.
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Fig. 7.2. Parallel sided slab: Velocity and temperature profiles according to
Eqs. (7.13) and (7.28), for H = 100 m, α = 10◦, Ts = −10◦C, q⊥geo = 50mW m−2,
n = 3, A = 10−16 a−1 Pa−3, ρ = 910 kg m−3, κ = 2.1 W m−1 K−1 and g = 9.81 m s−2

(solid lines). The dashed line in the temperature panel shows the linear profile that
results from heat conduction only (dissipation neglected).

7.3 Scaling Arguments and Hierarchy of Approximations

Basal shear stress is largely independent of the size of an ice mass and hardly
exceeds 1 bar in glaciers, ice caps and ice sheets. This is a result of the power-
law stress-strain-rate relation whereby the ice softens rapidly as the shear
stress exceeds 1 bar. Ice flow velocity also increases rapidly as shear stresses
exceed 1 bar and therefore a glacier would expand and thin correspondingly,
restricting the shear stress to smaller values. The stress threshold may depend
on the ice temperature, however, most ice masses are warmer near the base
where most of the shearing takes place.

The existence of such a threshold for basal shear stress has interesting
consequences for the aspect ratio of glaciers and ice sheets. For the parallel
sided slab, the basal shear stress results from Eq. (7.9) as

τb = ρgH sinα . (7.29)

For a glacier with a geometry as sketched in Fig. 7.3, we infer that the mean
basal shear stress τ̄b is approximately given by

τ̄b ≈ ρgH̄ sin ᾱ , (7.30)



152 7 Dynamics of Glacier Flow

Fig. 7.3. Illustration of the scales: typical vertical extent [H], typical horizontal
extent [L] and typical ice thickness H̄ of a glacier.

where H̄ and ᾱ are the mean ice thickness and the mean inclination of the ice
surface, respectively. The aspect ratio is defined by ε = [H]/[L], see Eq. (5.6),
and thus

ε =
[H]
[L]

= tan ᾱ . (7.31)

For ᾱ ≤ 30◦, which is fulfilled by virtually all glaciers on Earth,

sin ᾱ ≈ tan ᾱ (7.32)

holds (with an error of ≤ 15%). From Eqs. (7.30)–(7.32) we find for the aspect
ratio

ε =
[H]
[L]

≈ τ̄b

ρgH̄
. (7.33)

In the following consideration, we assume [H] ≈ H̄ (which may be violated
for very long and/or very steep glaciers; see Fig. 7.3) and τ̄b ≈ const. Equa-
tion (7.33) then implies

[L] ∼ [H]2 , (7.34)

that is, the horizontal extent of a glacier increases with the square of its
vertical extent. Equivalent statements are

ε ∼ 1
[H]

∼ 1√
[L]

. (7.35)

Thus, glaciers tend to be the shallower the larger they are. Interestingly, the
Vialov profile for ice sheets has the same scaling property [see Eq. (5.117)].

In the shallow ice approximation (Sect. 5.4) ice flow is determined by the
local conditions alone, such as ice thickness, surface inclination and tempera-
ture. This is justified for large ice sheets where conditions generally vary little
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Fig. 7.4. Scatter plot of the horizontal velocity calculated for Haut Glacier d’Arolla
in the first order approximation (FOA) versus the horizontal velocity calculated in
the shallow ice approximation (SIA) for each grid point of the horizontal grid. The
straight line marks equality of the FOA and SIA velocities. (Credit: A. Hubbard,
Aberystwyth University, Wales, UK.)

over horizontal distances of 5-10 times the local ice thickness. This is consid-
ered to be the distance over which significant horizontal coupling of stresses
occurs. Small glaciers may not even be as long as ten times their mean thick-
ness, and their width may be comparable to their maximum ice thickness.
Longitudinal and transverse couplings of stresses may thus become important.
Such couplings may be enhanced even further if sliding varies over distances
comparable to or less than the ice thickness, as occurs frequently in glaciers.
For these reasons, the shallow ice approximation is no longer applicable for
small glaciers. Depending on their geometry, the first order approximation
(Sect. 5.3), the hydrostatic approximation (Sect. 5.2) or the full Stokes flow
problem (Sect. 5.1) must be solved to obtain accurate solutions for the flow
field in glaciers.

In order to illustrate the inadequacy of the shallow ice approximation
for glaciers, Fig. 7.4 shows a scatter plot of horizontal velocity components
computed with the shallow ice approximation (SIA) versus horizontal velocity
components computed with the first order approximation (FOA) for Haut
Glacier d’Arolla in the Swiss Alps. For small velocities, the SIA generally
underestimates the velocities compared to the FOA, and vice versa for large
velocities.

The relation between [H] and [L] in Eq. (7.34) provides the basis for com-
paring flow fields of different approximations in glaciers of different size but
comparable shape. Starting with the size of the longitudinal section of Stor-
glaciären, Sweden, different glacier sizes are synthesised by multiplying the
horizontal scale with a factor Λ and the vertical scale with

√
Λ. The hori-
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Fig. 7.5. Top panel: Surface velocities for Storglaciären, Sweden, for different scal-
ing factors Λ: dashed lines for Λ = 0.25, solid lines for Λ = 1, dash-dotted lines for
Λ = 100. The corresponding upper curves are the solutions of the full Stokes (FS)
equations, the lower curves of the first order approximation (FOA). The dotted line
shows the shallow ice approximation (SIA), which correspond to Λ = ∞. The veloc-
ity scales of the FS and FOA solutions are normalised to the corresponding maximum
velocities of the FS solutions. Bottom panel: Longitudinal section of Storglaciären.
(Credit: A. Aschwanden, Swiss Federal Institute of Technology Zurich, Switzerland.)

zontal component of the velocity at the ice surface is computed with the full
Stokes equations, the first order approximation and the shallow ice approxi-
mation (Fig. 7.5). The results show that a limited area with a steep surface
produces locally high velocities compared with shallower regions in large ice
masses, whereas the velocity field is strongly smoothed by longitudinal cou-
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pling in small ice masses. The differences between the different approximations
also become smaller and vanish for very large ice masses.

7.4 First Order Plane Strain Approximation

Small grounded ice masses, such as ice caps, valley glaciers and cirque glaciers
may have complex basal and surface topographies. Substantial variations in
the ice thickness may occur over horizontal distances comparable to the mean
ice thickness, and thus, horizontal coupling of ice flow may be significant. In
such cases, the ice flow field is essentially three-dimensional, and a numerical
system model to simulate such a glacier must be three-dimensional.

Time scales of climatic variations are of comparable magnitudes as the
corresponding time scales of changes in the glacier geometry. Despite this,
the flow field of glaciers can be computed as a quasi-stationary field in all
situations (see Sect. 5.1.1). However, for cold glaciers, the temperature field
is essentially transient. Therefore, initial conditions and time dependent basal
and surface boundary conditions for the energy flux or the temperature are re-
quired for the time period in consideration. Furthermore, an initial ice surface
topography and the variable climatic conditions for the surface mass balance
must be prescribed.

There are very few glaciers for which such data is available. Even for well
documented glaciers, good coverage of all required information is only avail-
able for the past few decades, for which direct monitoring of the conditions on
the glacier were carried out. Further back in time, data becomes sparse and
indirect reconstruction has to be relied on.

A variety of simplified glacier models have been developed according to the
availability of data or the processes to be investigated. The simplifications may
concern the physical processes taken into account such as surface evolution,
basal sliding and thermomechanical coupling. Other simplifications concern
the degree of approximations for the flow and temperature fields from the
full Stokes problem to the shallow ice approximation (see Sect. 5). Further
simplifications can be introduced by reducing the number of dimensions from
a full three-dimensional time dependent model to zero-dimensional steady
state considerations.

Many valley glaciers are much longer than their average width, and of-
ten they display some degree of symmetry with respect to transverse sections
through their ice body. This motivates the application of glacier models in
which ice flow, temperature and surface changes are computed along a lon-
gitudinal section following a central flow line of the glacier tongue. The ba-
sic assumption to this two-dimensional plane strain approximation is that
transverse gradients of flow and energy are small or may be considered in a
simplified and generalised way (see also Sects. 3.4.3, 5.6.2 and 5.7.2).

For now, let us assume that the temperature field and the geometry (sur-
face and bedrock topography) of the glacier are known for a given time t, and
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restrict our considerations to the diagnostic computation of the stress and ve-
locity fields. We can therefore note the free surface as h = h(x), the bedrock
as b = b(x), and the rate factor as A = A(T ′(x, z)). In order to obtain the
equations for ice flow in the first order plane strain approximation, the method
described in Sect. 5.7.2 is applied. With these assumptions, Eqs. (5.62) and
(5.69) collapse to the reduced set of equations

2
∂tDxx

∂x
+

∂txz

∂z
= ρg

dh

dx
(7.36)

and

tDxx = 2η
∂vx

∂x
, (7.37)

txz = η
∂vx

∂z
. (7.38)

Further, we assume the viscous rheology described by the regularised Glen
flow law (4.24) with stress exponent n = 3.

By inserting Eqs. (7.37) and (7.38) in Eq. (7.36), we obtain the simplified
form of the horizontal momentum balance (5.70),

η

(
4

∂2vx

∂x2
+

∂2vx

∂z2

)
+ 4

∂η

∂x

∂vx

∂x
+

∂η

∂z

∂vx

∂z
= ρg

dh

dx
. (7.39)

Equation (4.28) provides a cubic equation for the viscosity η,

1 − 2Aσ2
0 η − 8Ad2

e η3 = 0 , (7.40)

with a simplified expression for the effective strain rate,

d2
e =

1
4

(
∂vx

∂z

)2

+
(

∂vx

∂x

)2

. (7.41)

As for the dynamic boundary condition at the free surface (stress-free con-
dition), its z-component is given by Eq. (5.58), and the x-component follows
from Eqs. (5.16), (5.17) and (5.23),

tzz|z=h = 0 , (7.42)

−txx|z=h
dh

dx
+ txz|z=h = 0 . (7.43)

By splitting the normal stresses into the hydrostatic pressure and the respec-
tive deviatoric components, this reads

(−p + tDzz)|z=h = 0 , (7.44)

−(−p + tDxx)|z=h
dh

dx
+ txz|z=h = 0 , (7.45)
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and we can use the former equation to replace the pressure in the latter,

− (tDxx − tDzz)|z=h
dh

dx
+ txz|z=h = 0 . (7.46)

Owing to tr tD = 0 and tDyy = 0 (plane strain approximation!), tDxx + tDzz = 0
holds, thus Eq. (7.46) reduces to

− 2tDxx|z=h
dh

dx
+ txz|z=h = 0 . (7.47)

By inserting the viscous rheology (7.37), (7.38), this can also be expressed in
terms of the components of the velocity gradient,

1
2

∂vx

∂z

∣∣∣∣
z=h

− 2
dh

dx

∂vx

∂x

∣∣∣∣
z=h

= 0 . (7.48)

Colinge and Rappaz (1999) demonstrated the well-posedness of the equa-
tions for the first order plane strain approximation for non-sliding basal
boundary conditions.

7.5 Basal Sliding

7.5.1 General Remarks

In Sect. 5.1.2 the Weertman-type sliding law (5.35) was introduced, which is
commonly used in ice sheet models when applying the shallow ice approxima-
tion. In the following section, the conditions at glacier beds and the justifica-
tion of appropriate sliding parameterisations are presented.

It is a well established fact that the glacier base can move. Whether it is
true sliding of the ice base over the glacier bed or a movement of the ice base on
a deforming subglacial layer of some other material, or a combination of both,
depends on local conditions at the glacier bed. Since observations of the glacier
bed are difficult and expensive, and usually restricted to a few isolated points,
basal motion of glaciers remains difficult to constrain. Furthermore, the strong
dependence of basal motion on the local basal hydraulics makes it highly
variable, temporally and spatially. Although variations in basal motion are
reflected in variations of the ice velocity at the glacier surface, the transmission
of basal movement to the surface is non-local and is strongly filtered. This
is especially true for variations occurring on spatial scales smaller than the
local ice thickness. Therefore, the determination of basal sliding from surface
observations is limited to resolutions coarser than local ice thickness.

The sliding speed is essentially defined by the local basal conditions. A
major distinction is given by so-called “hard” and “soft” beds.

A hard bed is a rigid rock bed on which the ice glides. The sliding of the
ice base over the hard surface is sometimes assumed to be friction free due
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to a thin film of liquid water lubricating the interface perfectly. This type
of sliding is thus essentially limited to temperate basal conditions. The basal
motion of the ice is then resisted by the roughness of the bed that forces the
ice to deform around and across the roughness elements. High pressure in the
local basal hydraulic system may lead to partial decoupling of the ice from the
bed and to formation of water filled cavities. As a consequence, the effective
roughness of the bed, and thus, the resistance to basal motion is reduced.

A soft bed is given by a possibly flat and smooth layer of fine grained rocky
material such as sand, gravel or till. This layer may deform due to the stress
exerted by the ice flow across it. In this case, the thickness and the rheological
properties of the layer define the local basal motion of the glacier. High water
pressure may soften the material thus making the basal velocity of the ice
dependent on the pressure in the local hydraulic system. In the extreme case,
part of the layer may become almost liquid and slide almost friction free. In
this limit the basal flow of the ice resembles the flow across basal lakes, such
as occur beneath the Antarctic Ice Sheet, e.g., Lake Vostok.

7.5.2 Mean Sliding over Rough Hard Beds

Early attempts to parameterise basal motion assumed that sliding over a hard
bed is locally friction free due to a thin water layer, but the mean resistance
is caused by the flow of ice over some roughness elements at the glacier bed
(Hutter 1983, p. 139). In this case, it can be assumed that the typical sliding
velocity vb is a function of the typical amplitude a and the mean wavelength
λ of the bed undulation, the basal shear stress τb and the viscosity η of the
ice. Under these assumptions, a sliding parameterisation must have the form

F(v̄b, τ̄b, η, a, λ) = 0 , (7.49)

where v̄b and τ̄b are the mean basal velocity and basal shear stress, averaged
over an appropriate area in consideration, η is the viscosity of ice, a and λ are
the amplitude and wavelength of the bed undulations (Fig. 7.6).

Equation (7.49) can be written in a form such that it is dimensionally
homogeneous. This means that the form of the equation does not change if
any of the dimensional units used in the given quantities changes (Hutter and
Jöhnk 2004). In this case, the dimensions of the quantities involved can be
expressed as combinations of the dimensional quantities of length, L, time, T
and mass, M,

physical quantity dimension,

velocity [v̄b] L · T−1 ,
stress [τ̄b] L−1 · T−2 · M ,

viscosity [η] L−1 · T−1 · M ,
amplitude [a] L ,
wavelength [λ] L .
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Fig. 7.6. Illustration of the basal roughness: mean amplitude a, mean wavelength
λ, mean basal shear traction τ̄b and mean sliding velocity v̄b.

A more convenient representation of this information is given by the dimen-
sional matrix of relation (7.49):

v̄b τ̄b η a λ

L 1 −1 1 1 1
T −1 −2 −1 0 0
M 0 1 1 0 0

(7.50)

The dimensional matrix consists of the exponents of the corresponding di-
mensional quantities (rows) in the dimension of the corresponding physical
quantities (columns).

With the five physical quantities in Eq. (7.49), an infinite number of di-
mensionless products of their powers can be formed, some of which are aλ−1,
τ̄bav̄−1

b η−1, τ̄bλv̄−1
b η−1, τ̄bλ2v̄−1

b a−1η−1. It can easily be verified that for
example, the third product can be obtained by dividing the second prod-
uct by the first. Thus, the four examples given are not independent of each
other. The question arises: Given a physical process described by a number of
physical quantities involving a number of dimensional quantities, what is the
maximum number of dimensionless quantities that are independent?

Let us consider a physical system described by n physical quantities
Wi, i = 1, · · ·n. The physical quantities have dimensions Lk, k = 1, · · ·m,
and there are m different dimensional quantities necessary, such as time, dis-
tance, mass, temperature or electric charge. Now, B is the dimensional matrix
of the set {Wi|i = 1, · · · , n} of physical quantities,
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B ≡

⎛
⎜⎜⎜⎜⎝

b11 · · · b1n

· ·
· ·
· ·

bm1 · · · bmn

⎞
⎟⎟⎟⎟⎠ . (7.51)

The number k of independent dimensionless quantities, which can be formed
with the quantities Wi, i = 1, · · · , n, is k = n − r, where r = rank(B).

This can be demonstrated by the following considerations. Let A =
W x1

1 W x2
2 · · ·W xn

n be a dimensionless quantity, which is formed by some or
all of the given physical quantities Wi. Then the power of the dimensional
unit Li of A is

(Lx1
i )bi1 (Lx2

i )bi2 · · · (Lxn
i )bin = (Li)

0 = 1 , (7.52)

which gives us an equation

bi1x1 + bi2x2 + · · · + binxn = 0 , i = 1, · · · ,m (7.53)

for the xi. This set of linear equations, B ·x = 0, has exactly k = n−r linearly
independent solutions, where r is the rank of the matrix B (Buckingham 1924).

For the example of Eq. (7.49), a dimensionless product D is given by

D = vx1
b τx2

b ηx3ax4λx5 , (7.54)

and consequently

1 · x1 −1 · x2 −1 · x3 +1 · x4 +1 · x5 = 0 ,
− 1 · x1 −2 · x2 −1 · x3 +0 · x4 +0 · x5 = 0 ,

0 · x1 +1 · x2 +1 · x3 +0 · x4 +0 · x5 = 0 .
(7.55)

This is a set of three homogeneous linear equations for five unknowns. The
number k of independent solutions of this set of equations is the number n
of unknowns minus the rank r of the rectangular coefficient (dimensional)
matrix, k = n − r. In the given case, r = 3 and thus, k = 2.

With these quantities, a set with a maximum of two independent dimen-
sionless products can be formed, e.g.

r̃ ≡ a

λ
, τ̃b ≡ τb a

vb η
, (7.56)

where r̃ is called the bed roughness. With this, the sliding parameterisation
(7.49) takes the form

F(r̃, τ̃b) = 0 . (7.57)

If the mean sliding is determined by the drag inferred by deforming the ice over
the roughness elements of the bed, the sliding parameterisation must reflect
the stress-strain-rate relation of the ice, which for Glen’s flow parameterisation
is a power of the effective stress,
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η =
1

c τn−1
, (7.58)

and the sliding parameterisation (7.57) takes the form

F(r̃, a
τn
b

vb
) = 0 . (7.59)

The dimensional analysis alone does not give any information on the form of
the functional F . One of the simplest forms of this functional is a product of
a function f = f(r̃) of the roughness and in proportion to τ̃b,

vb = f(r̃) a τn
b = C1 τn

b , (7.60)

where the coefficient C1 may depend on position and time. This form of sliding
parameterisation has been confirmed by numerical modelling of ice flow over
a sinusoidal bed (Gudmundsson 1994, 1997a,b).

The set of quantities chosen in Eq. (7.49) may be incomplete for some sit-
uations. The viability of the conclusions from a dimensional analysis depends
on the completeness of the chosen set of relevant quantities. In the presented
example, the possible influence of the ice thickness, basal hydrostatic pressure
or basal hydraulic conditions are not yet considered.

For ice sheet modelling, the Weertman-type sliding parameterisation as
given in Eq. (5.35) is commonly applied. The local ice thickness is a necessary
quantity for modelling, and thus, basal hydrostatic pressure is known as well.
The inclusion of the basal hydrostatic pressure into the sliding parameter,

C1 ≡ Cb
1
pq
b

, (7.61)

may serve to remove some of the spatial variability from the coefficient. For
the purpose of tuning an ice sheet model for a given application, it is jus-
tified to assume Cb to be spatially invariant, rather than to apply a sliding
parameterisation in Eq. (7.60) with the coefficient C1.

It is a well established fact that basal hydraulics plays an important role
in the basal motion of glaciers. High basal water pressure reduces the effective
pressure of the ice on the bed through buoyancy. If water pressure reaches the
overburden pressure of the ice, the glacier locally becomes afloat. This leads
to possible uplift of the ice base and formation of cavities. Cavities reduce the
effective roughness of the bed which, in turn, leads to enhanced basal motion.
These considerations suggest a dependency of basal motion on the effective
pressure peff = pb − pw, where p is the hydrostatic pressure of the ice and pw

is the water pressure. This allows the formation of one more dimensionless
quantity

p̃eff ≡ peff

p
, (7.62)

on which the functional F may depend:
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F(r̃, p̃eff , τ̃b) = 0 . (7.63)

A proposed version of such a sliding parameterisation is

vb =
a f(r̃)
peff

τn
b , (7.64)

which for practical applications yields a sliding parameterisation of the form

vb = C2
τn
b

peff
. (7.65)

The coefficient C2, sometimes called the sliding parameter, can serve as a
tuning parameter. However, C2 may depend on the local conditions at the
bed, which in most cases are not well constrained, and it may strongly vary
temporally and spatially.

7.5.3 Soft Beds on Sediment Layers

It has been determined by observations that glaciers may rest at least partially
on layers of deformable granular material, such as till, sand or gravel. In such
cases, not all of the basal motion of the glacier sole may be attributed to true
sliding of the ice over the bed. Part of the basal motion then occurs due to
the deformation of the sediment layer caused by the shear stress exerted on
the layer by the motion of the ice.

The coupling of the motion of the ice to the motion of the deforming
sediment depends on many factors that are difficult to observe. The layer
may be inhomogeneous in its vertical and horizontal extents. The vertical
sub-layering may be due to fractionation of coarse and fine grained material
and to water content. The rheological properties of the layer may depend on
the distribution of grain size, but may also strongly vary with varying water
pressure. Fine grained material is known to liquify at high water pressure. In
such cases, a thin layer may perfectly lubricate the interface between the ice
and the bed, and the ice sole may glide almost friction free. Such a situation
may occur in the fast flowing ice streams of the Siple Coast in Antarctica. The
velocities of these streams seems to be limited essentially by the occurrence of
distributed bounded areas of high sliding resistance, so-called ’sticky spots’.
As a consequence, the local basal movement may be determined not only by
the local basal conditions but by the conditions over a wider region.

The idea of a subglacial layer of deformable material can be used to imple-
ment basal sliding for the commonly assumed sliding parameterisations (Vieli
et al. 2000). Let us assume that the layer is homogeneous in the vertical ex-
tent and over a large enough region in the horizontal extent. The thickness
of the layer is assumed to be sufficiently small that the shear rate and shear
stress are constant over its vertical extent. The base of the layer is kept at
zero velocity and the layer undergoes a simple shearing resulting in a velocity
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Fig. 7.7. Illustration of the shear flow of a basal layer of deformable sediment.

vt at its upper surface equal to the velocity vb of the ice base of the glacier
(Fig. 7.7). Applying Eq. (3.135) for incompressible Newtonian fluids to this
simple situation yields

∂v

∂z
=

1
ηsed

τb , (7.66)

where ηsed is the constant viscosity of the sediment. Integration over the thick-
ness of the layer yields

vb =
d

ηsed
τb . (7.67)

This establishes a parameterisation for the basal velocity of the ice on a de-
formable layer. If the layer deforms like a Newtonian fluid, the corresponding
relation between the basal velocity vb and the basal shear stress τb corresponds
to Eq. (5.35) with p = 1 and q = 0. If the rheology of the layer corresponds
to that of ice, such as given in Eq. (4.22), then the relation between basal
velocity and stress also becomes a power-law-type relation,

vb =
d

Bn
sed

τn
b ≡ Csed τn

b . (7.68)

This result is the basis for a possible implementation of a sliding parameterisa-
tion in a numerical glacier model. The implemented subglacial layer, however,
may be a feature only mimicking the true physical meaning. Depending on
the type of numerics of the flow model, direct implementation of the sliding
with adequate discretisation schemes may be more stable.

Basal motion parameterisations of the forms (7.60) and (7.64) fail for the
case of free slip conditions over large areas of the bed, such as floating ice
shelves, subglacial lakes or decoupled flat beds by high water pressure and
extremely softened bed substrates. In such cases, the basal shear traction
vanishes, giving a well defined basal boundary condition.
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7.6 Numerical Methods for the Stress and Velocity
Fields

7.6.1 Method of Lines

Coordinate Transformation

We now apply a terrain-following coordinate transformation according to
Eq. (5.127),

ξ = x , ζ =
z − b(x)

h(x) − b(x)
. (7.69)

With the notation
τ = txz − c tDxx , σ = tDxx , (7.70)

where τ is the shear traction parallel to surfaces defined by ζ = const, and
the abbreviations

c ≡ (1 − ζ)
db

dx
+ ζ

dh

dx
, (7.71)

a ≡ ∂c

∂ζ
, (7.72)

we obtain from Eqs. (7.36), (7.37) and (7.38)

∂τ

∂ζ
= −2aσ − (h − b)

(
2

∂σ

∂ξ
− ρg

dh

dξ

)
, (7.73)

∂u

∂ζ
= 2(h − b)Af (τ + 2cσ) , (7.74)

0 =
∂u

∂ξ
− Af (2cτ + σ) , (7.75)

where f is defined in Eqs. (4.10) and (4.23) for the regularised Glen flow law.
This is a set of three equations for the variables u, τ and σ. Solutions to it
are sought in the domain bounded by the free and basal surfaces, for which
boundary conditions need to be imposed. In the transformed terrain following
coordinates, the locations of their imposition are ζ = 0 and ζ = 1.

The boundary condition at the free surface consists of a vanishing shear
traction, Eq. (7.47), which in the transformed coordinates reduces to

τs = 0 . (7.76)

For the boundary condition at the ice base, see Sect. 7.5, e.g., Eq. (7.60) or
(7.65).

The field equations (7.73) to (7.75) may be regarded not as a system of
partial differential equations, but rather as if they were ordinary differential
equations to be integrated in the ζ-direction. This will formally be achieved
by replacing all derivatives with respect to ξ by finite differences. We have
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made this interpretation implicitly apparent in (7.73) to (7.75) by writing the
terms involving the ζ-derivatives on the left hand side and all other terms on
the right hand side. Viewed this way, Eqs. (7.73) to (7.75) are two first order
ordinary differential equations (ODEs) in ζ for τ and u and one algebraic
equation for σ, of which the ζ-integration requires three boundary or initial
conditions as defined above. Because one condition is imposed at ζ = 1 and
two are imposed at ζ = 0, i.e., at the two end points of the interval ζ ∈ [0, 1],
the problem is referred to as a two point boundary value problem, which is a
well-posed mathematical problem (Colinge and Rappaz 1999).

Line Integration

The idea of discretizing the partial differential equations in all dimensions
except one to obtain a system of ordinary differential equations is called the
method of lines. By introducing a discrete grid on the ξ-axis and approxi-
mating the ξ-derivatives by finite differences, Eqs. (7.73) and (7.74) can be
rewritten as ODEs, and Eq. (7.75) becomes algebraic.

A regular rectangular grid is defined on the rectangular domain of the
mapped geometry. The grid consists of M and N grid points in the ξ and ζ
directions, and grid points are numbered from i = 1, . . . , M and j = 1, . . . , N ,
respectively, see Fig. 5.14 in Sect. 5.7.3. We assume that the ice thickness and
all velocity and stress components are zero at the end points i = 1 and i = M .
Thus, for i = 2, . . . ,M − 1, substituting the differentials with respect to ξ by
centered finite differences of order two in Eqs. (7.73) to (7.75) yields

∂τ

∂ζ
= (hi − bi) ρg

hi+1 − hi+1

2Δξ

− 2 (hi − bi)
σi+1,j − σi−1,j

2Δξ
− 2ai σi,j , (7.77)

∂u

∂ζ
= (hi − bi)Afi,j (2 τi,j + 4ci,j σi,j) , (7.78)

0 = −ui+1,j − ui−1,j

2Δξ
+ Afi,j (2ci,j τi,j + σi,j) . (7.79)

For each vertical grid line with given i = 2, . . . , M − 1, this establishes a set
of two ordinary differential equations of order one for the two unknowns τi,j ,
and ui,j , and one algebraic equation for σi,j . This large set of ODEs can be
integrated by using a standard numerical integrator, for example, a forward
Euler predictor-corrector scheme or a Runge-Kutta scheme. The integration
begins at the base (ζ = 0), with starting values for τi,1, σi,1 and ui,1 at
each basal grid point. At each step of the numerical integration, the algebraic
equation is solved explicitly or with a numerical root finder. It is important
that the algebraic equation always has a unique real solution. This is the
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case for small aspect ratios generally relevant for glaciers and for the flow law
(4.10) with a flow law exponent n = 3 (Colinge and Rappaz 1999).

To arrive at a proper finite difference scheme several points must be taken
into account. The shear stress component τ is computed from Eq. (7.73)
and depends on the stress components σ and its derivative with respect to
ξ. Furthermore, the stress component σ is computed with Eq. (7.75) and
depends on the derivative of the velocity component u with respect to ξ.
This cascade of dependence on ξ-derivatives reduces the order of the whole
difference scheme to p− 1, even if all difference schemes for single derivatives
are of the order p. Thus, to obtain a consistent difference scheme of a desired
order p, the derivatives of the velocity components in Eqs. (7.74) and (7.75)
must be discretised to order p + 1 (Colinge and Blatter 1998).

The integration from ζ = 0 to ζ = 1 of Eqs. (7.73) and (7.74) with the
chosen starting values for basal shear stress and velocity components, i.e.,
three conditions, does not automatically satisfy the surface boundary condi-
tions (7.76). In order to solve the boundary value problem, the proper basal
values for τi,1 can be found iteratively. A good initial choice is the shallow ice
approximation of the basal shear stress, which in many cases is already close
to the solution. However, if basal conditions have a large variability, then an
initial τ0

i,1 = 0 is often the better choice to start with. With the basal shear
stress and the values for the basal velocity components, Eq. (7.75) is first used
to calculate the basal values for σi,1. Integrating upwards from the base yields
surface values τ0

i,M �= 0. By using this result, a correction to τ0
i,1 must be

found to obtain τ1
i,M closer to the required boundary condition. This method

is called shooting, or single shooting. The type of basal boundary conditions
that must be met is defined by the sliding parameterisation. In the proposed
numerical scheme, prescribing basal velocity is the simplest possibility. Mixed
boundary conditions, vanishing basal velocity at non-sliding locations and
basal friction represented by basal shear traction at sliding locations may be
useful for specific studies on basal conditions. The application of a sliding law
which relates basal shear traction to basal velocity, however, requires a nested
iteration of this sliding law within the shooting procedure.

Single Shooting Fixed Point Iteration

A simple way to define a single shooting procedure is to write the problem,
Eqs. (7.73) to (7.75), as a fixed point problem. We introduce the following
notation, where M is the number of grid points for the method of lines:

Tb = (τb,2, · · · , τb,M−1)T , (7.80)

Ts = (τs,2, · · · , τs,M−1)T , (7.81)

G(Tb) = Tb − α Ts(Tb) , (7.82)

where α > 0 is an underrelaxation factor. A converging fixed point iteration is
equivalent to a constructive proof of Banach’s fixed point theorem (Debnath
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and Mikusinski 1993, Colinge and Blatter 1998). Thus, for α sufficiently small,
the fixed point T ∗

b of G, G(T ∗
b ) = T ∗

b , is the correct solution.
In the simplified case of an infinite slab with parallel flat surface and base,

a simple criterion
α < 4e−8/Δξ (7.83)

can be rigorously proven to ensure the existence and uniqueness of the desired
fixed point (Colinge and Rappaz 1999). This exact criterion for the slab is
approximately valid for the case of realistic glacier geometries, and one can
expect to be forced to decrease α either when Δξ decreases or the aspect ratio
ε increases (Blatter 1995, Colinge and Blatter 1998).

The criterion is very restrictive and explains the impossibility of applying
the method to small and steep glaciers. Moreover, it uses global quantities
of ice geometry, and local conditions may require a smaller α to achieve con-
vergence. This is especially true if the surface slope locally displays large
longitudinal variations, such as in ice-falls or at steep glacier snouts. The cri-
terion provides information regarding the stability of the numerical process.
An unstable process is one which assigns largely different results to pairs of
very close starting conditions. Since the idea of single shooting is to use the
final results to learn something about the starting conditions, it is essential
to avoid instability.

The restrictive criterion (7.83) also indicates the impossibility to apply the
line integration in a single shot inverse mode. One may be tempted to start
the integration at the surface with zero shear traction and measured velocity
components to compute basal shear traction and basal velocity. Although
the mathematical problem is well-posed, it is ill-conditioned, and thus basal
conditions obtained by this integration are extremely sensitive to the input at
the surface, and may be far away from the correct solution.

7.6.2 Global Discretisation Schemes

Transformed Equations

Equations (7.39) and (7.40) give the basis for an iterative solution procedure to
solve the non-linear problem (Colinge and Rappaz 1999). For a given guess of
the initial velocity field v0, the algebraic equation (7.40) can be solved for the
viscosity η, and with the result, the differential equation (7.39) can be solved
for the velocity field vx. If the starting field lies within the attractive domain
for the solution, this fixed point iteration converges towards that solution.
Since the solution of this equation is unique, we obtain the correct solution
for the glacier flow.

The iteration must be started with some initial guess either for the fluidity
or for the velocity field v0(x, z). One possibility of a velocity field may be the
shallow ice approximation. However, this approximation is not always a good
approximation and some other simpler initial field may yield a better start.
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The system of equations is suitable for both finite element and finite dif-
ference discretisations. In this work, a finite difference scheme combined with
a coordinate transformation is used, which maps the longitudinal section of a
glacier onto a rectangular domain

The elliptic differential equation (7.39) and the algebraic equation (7.40)
transform to

L1
∂2u

∂ξ2
+ L2

∂2u

∂ζ2
+ L3

∂2u

∂ξ ∂ζ
+ L4

∂u

∂ξ
+ L5

∂u

∂ζ
= ρg

dh

dx
(7.84)

and

1 − 2Aσ2
0 η − 8A

[(
∂u

∂ξ
+

∂ζ

∂x

∂u

∂ζ

)2

+
1
4

(
∂ζ

∂z

∂u

∂ζ

)2
]

η3 = 0 , (7.85)

and the transformed surface boundary condition (7.48) becomes
(

1
2

∂ζ

∂z
− 2

dh

dx

∂ζ

∂x

)
∂u

∂ζ
− 2

dh

dx

∂u

∂ξ
= 0 , (7.86)

with

L1 = 4 η ,

L2 = η

(
∂ζ

∂z

)2

+ 4η

(
∂ζ

∂x

)2

,

L3 = 8η
∂ζ

∂x
,

(7.87)

L4 = 4
∂η

∂ξ
+ 4

∂η

∂ζ

∂ζ

∂x
,

L5 =
∂η

∂x

[(
∂ζ

∂z

)2

+ 4
(

∂ζ

∂x

)2
]

+ 4
∂η

∂ξ

∂ζ

∂x
+ 4η

[(
∂

∂ξ

∂ζ

∂x

)
+

∂ζ

∂z

(
∂

∂ζ

∂ζ

∂x

)]
.

At the surface, vanishing shear traction, Eq. (7.48), yields

Lh
∂u

∂ζ
− 2

dh

dx

∂u

∂ξ
= 0 , (7.88)

with

Lh ≡
(

1
2

∂ζ

∂z
− 2

dh

dx

∂ζ

∂x

)
. (7.89)

At the base, a no slip condition, ub = 0, a sliding velocity, ub = ub(ξ), or a
basal traction, τb = τb(ξ) may be prescribed,



7.6 Numerical Methods for the Stress and Velocity Fields 169

Lb
∂u

∂ζ
− 2

db

dx

∂u

∂ξ
= τb , (7.90)

with

Lb ≡
(

1
2

∂ζ

∂z
− 2

db

dx

∂ζ

∂x

)
, (7.91)

or a functional relation between basal sliding and basal shear traction, as
described in Sect. 7.5.

The resulting linear system of nx ×nz unknowns, where nx and nz are the
number of grid points in x- and z-directions, can be solved with an adequate
linear solver for sparse systems.

Discretised Equations

To solve Eq. (7.84), a second order centered finite difference scheme is used
on the same rectangular grid as used for the method of lines in Sect. 7.6.1.
For the interior grid points, i = 3, . . . ,M − 2, j = 2, . . . , N − 1, this yields

(
L1

∂2u

∂ξ2

)
i,j

= L1|i,j
ui+1,j − 2ui,j + ui−1,j

Δξ2
,

(
L2

∂2u

∂ζ2

)
i,j

= L2|i,j
ui,j+1 − 2ui,j + ui,j−1

Δζ2
,

(
L3

∂2u

∂ξ∂ζ

)
i,j

= L3|i,j
ui+1,j+1 + ui−1,j−1

4ΔξΔζ

(7.92)

− L3|i,j
ui+1,j−1 + ui−1,j+1

4ΔξΔζ
,

(
L4

∂u

∂ξ

)
i,j

= L4|i,j
ui+1,j − ui−1,j

2Δξ
,

(
L5

∂u

∂ζ

)
i,j

= L5|i,j
ui,j+1 − ui,j−1

2Δζ
,

and by substituting these terms in Eq. (7.84) and rearranging the terms with
respect to the velocities at the different grid points we obtain

ui−1,j−1
L3|i,j

4Δξ Δζ

+ ui−1,j

(
L1|i,j
Δξ2

− L4|i,j
2Δξ

)

+ ui−1,j+1
−L3|i,j
4Δξ Δζ
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+ ui,j−1

(
L2|i,j
Δζ2

− L5|i,j
2Δζ

)

+ ui,j

(
−2L1|i,j

Δξ2
− 2L2|i,j

Δζ2

)

+ ui,j+1

(
L2|i,j
Δζ2

+
L5|i,j
2Δζ

)

+ ui+1,j−1
−L3|i,j
4Δξ Δζ

+ ui+1,j

(
L1|i,j
Δξ2

+
L4|i,j
2Δξ

)

+ ui+1,j+1
L3|i,j

4Δξ Δζ
= Ri . (7.93)

When i = 2 and i = M − 1, the same equation holds, however the terms
containing the velocities at i = 1 and i = M are zero and can be omitted.

To implement the surface boundary conditions, a fictitious external grid
point with j = N + 1 above the surface was introduced and both the field
equation (7.84) and the boundary condition (7.88) were discretised with sec-
ond order centered differences on the boundary grid points. Subsequently, the
values of the requested field on the fictitious grid point in the two equations
are eliminated to obtain one finite difference equation for the boundary points.
This procedure maintains second order discretisation accuracy and allows us
to consider simultaneously both conditions, the field equation (7.84) and the
boundary condition (7.88).

Applying second order centered finite differences to the boundary condition
(7.88) for the surface grid points i = 2, . . . , M − 1 and j = N yields

ui−1,j+1 − ui−1,j−1 = [ui,j − ui−2,j ] Ls,i−1 ,

ui,j+1 − ui,j−1 = [ui+1,j − ui−1,j ] Ls,i , (7.94)

ui+1,j+1 − ui+,1,j−1 = [ui+2,j − ui,j ] Ls,i+1 ,

and to the field equation (7.84) for j = N ,

ui−2,j Li−1
L3|i,j

4Δξ Δζ

+ ui−1,j

[
L1|i,j
Δξ2

− L4|i,j
2Δξ

− Lh,i

(
L2|i,j
Δζ2

+
L5|i,j
2Δζ

)]

+ ui,j−1
2L2|i,j
Δζ2

+ ui,j

[
−2L1|i,j

Δξ2
− 2L2|i,j

Δζ2
− L3|i,j

4Δξ Δζ
(Ls,i−1 + Ls,i+1)

]
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+ ui+1,j

[
L1|i,j
Δξ2

+
L4|i,j
2Δξ

+ Lh,i

(
L2|i,j
Δζ2

+
L5|i,j
2Δζ

)]

+ ui+2,j Li+1
L3|i,j

4Δξ Δζ
= Ri . (7.95)

Note again that for i = 2, i = 3, i = M − 1 and i = M − 2 the vanishing
velocities at the grid points 1, j and M, j occur in Eqs. (7.94) and (7.95).

At the base, j = 1, again the sliding velocity, ui,1 = ub,i, or the basal shear
traction, τb,i, or a sliding relation according to Eq. (7.65) ui,1 = ub,i = f(τb,i)
may be given.

This numerical scheme is of first order accuracy in the overall discretisation
scheme. This is a consequence of the fact that for the algebraic equation,
the available velocity field is of second order accuracy, and a second order
discretisation scheme to obtain the derivatives is one order less than the given
field. To obtain second order accuracy for the overall scheme, higher order
difference schemes have to be used, which of course makes the linear system
less sparse and its solution more time consuming.

To solve the large linear system for the unknown velocities ui,j , i =
2, . . . , M − 1, j = 1, . . . , N , we need to reformulate the equations in the stan-
dard form

A · x = d , (7.96)

where A, x and d are the coefficient matrix, the n-tuple of the unknowns and
the n-tuple of constants in the system of linear equations, respectively. To
this end, the elements of the matrix of the unknown velocity field, ui,j , must
be renumbered to obtain a vector v. For i = 1, . . . ,M and j = 1 . . . , N , the
mapping

ui,j → vk with k = (i − 1)N + j (7.97)

is applied to Eqs. (7.93) and (7.95) to obtain a system of linear equations,

Ak,k−N−1 vk−N−1

+ Ak,k−N vk−N

+ Ak,k−N+1 vk−N+1

+ Ak,k−1 vk−1

+ Ak,k vk

+ Ak,k+1 vk+1

+ Ak,k+N−1 vk+N−1

+ Ak,k+N vk+N

+ Ak,k+N+1 vk+N+1 = −1 , (7.98)

with the coefficients

Ak,k−N−1 =
L3|i,j

4Δx Δz
,
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Ak,k−N =
L1|i,j
Δx2

− L4|i,j
2Δx

,

Ak,k−N+1 =
−L3|i,j
4Δx Δz

,

Ak,k−1 =
L2|i,j
Δz2

− L5|i,j
2Δz

,

Ak,k = −2L1|i,j
Δx2

− 2L2|i,j
Δz2

, (7.99)

Ak,k+1 =
L2|i,j
Δz2

+
L5|i,j
2Δz

,

Ak,k+N−1 =
−L3|i,j
4Δx Δz

,

Ak,k+N =
L1|i,j
Δx2

+
L4|i,j
2Δx

,

Ak,k+N+1 =
L3|i,j

4Δx Δz
,

and correspondingly at the base depending on the chosen boundary conditions.
The coefficient matrix A is a (M +N)× (M +N) matrix in which the lines

or columns contain about nine non-vanishing elements. The non-zero elements
are arranged in bands parallel to the main diagonal i = j.

To start the computation, an initial field, either of the velocity or the
viscosity, must be assumed. If a constant viscosity field is assumed, Eq. (7.84)
can be solved first for the velocity field, which in turn can be used in Eq. (7.85)
to obtain a new viscosity field. Repetition of this process defines a fixed point
iteration which converges to the correct solution, if it converges.

Figure 7.8 shows the computed horizontal component for a longitudinal
section of Storglaciären, Sweden (Aschwanden and Blatter 2005). The non-
linear algebraic equation (7.40) was solved with a Newton-Raphson iteration
scheme. For this purpose, the derivatives of the velocity field were obtained
with a centered second order difference scheme in the interior of the domain
and with one-sided 3-point discretisation for boundary points.

The sliding velocities shown in Fig. 7.9 were chosen as basal boundary
conditions. The values of the basal velocities were obtained by trial and error
matching the observed surface velocities for the given viscosity of temperate
ice. Although Storglaciären is not temperate throughout the entire ice body,
the cold surface layer in the ablation zone does not influence the flow field
substantially.

7.6.3 Vertical Velocity Component

In the first order approximation, the vertical velocity component does not
influence the horizontal velocity component. Thus, once the horizontal com-
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Fig. 7.8. Contour plot of the horizontal velocity component in m a−1 in a longitu-
dinal section of Storglaciären, Sweden. The sliding velocities are taken from the sce-
nario used in Fig. 7.9 to fit the observed annual mean surface velocity in 2001-2002.
Adapted from Aschwanden and Blatter (2005), c© American Geophysical Union.

Fig. 7.9. Measured annual mean surface velocities along the central flow line on
Storglaciären, Sweden, for 2001-2002 (solid line). The dashed and the dash-dotted
lines correspond to the surface and basal velocities computed with the first order ap-
proximation, respectively. Adapted from Aschwanden and Blatter (2005), c© Amer-
ican Geophysical Union.

ponents are known, the vertical components can be computed by solving the
mass continuity equation, which in the two-dimensional form are

∂vz

∂z
+

∂vx

∂x
= 0 . (7.100)
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Equation (7.100) can be solved by a quadrature,

vz − vz,b = −
∫ z

b

∂vx

∂x
dz′ , (7.101)

where vz,b is the vertical velocity at the base. Applying the coordinate trans-
formation, Eq. (7.69), on Eq. (7.101) yields

w − wb = −(h − b)
∫ ζ

0

(
∂u

∂ξ
+

∂ζ ′

∂x

∂u

∂ζ ′

)
dζ ′ , (7.102)

where w and wb are the vertical components of the velocity in the transformed
coordinates. In general, the integration must be performed numerically. As-
suming that the given field of the horizontal velocity is exact, the resulting
vertical velocity component is of the same order of accuracy as the chosen
method for the quadrature.

7.6.4 Trajectories

Let us consider a given velocity field v = v(x), where x = −−→
OP points to a

given position P . The starting point of a particle is P0 with the position vector
x0 = −−→

OP0 at the time t0. The trajectory of the particle follows the differential
equation

dx
dt

= v . (7.103)

A numerical solution of the differential equation (7.103) uses a forward Euler
iteration scheme, sometimes called Petterssen iteration (Seibert 1993) with an
initial step

x1 = x0 + Δtv(x0) (7.104)

and subsequent iteration steps

xi+1 = x0 +
Δt

2
[v(x0) + v(xi)] , (7.105)

for i = 1, . . . , N . If N = 1, this scheme is called a predictor corrector scheme.
The Petterssen iteration scheme is a fixed point iteration scheme of second
order accuracy, which converges towards a fixed point xf = −−→

OP f ,

xf = x0 +
Δt

2
[v0 + v(xf)] . (7.106)

Flow fields of glaciers are generally smooth and trajectories can be com-
puted as accurately as required. Figure 7.10 shows a set of trajectories com-
puted for the velocity field of Fig. 7.8 for Storglaciären. The trajectories were
calculated with a time step of one day with a fixed number of five iteration
steps. To test the accuracy, trajectories were computed starting at given points
in the accumulation area and backward trajectories in the reversed velocity
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Fig. 7.10. Trajectories of ice particles in Storglaciären, Sweden, computed with the
velocity field corresponding to scenario H2, Fig. 7.9. The distances between dots on
the trajectories correspond to 10 years travelling time. Adapted from Aschwanden
and Blatter (2005), c© American Geophysical Union.

field starting at the end points of the previous trajectories. The distances
between the starting points of the trajectories and the end points of the back-
ward trajectories were generally smaller than 10−5 times the lengths of the
trajectories, thus only a few millimetres.

7.6.5 Transverse First Order Flow Profiles

Often, limited information on the geometry or the flow field of a glacier is
available. If only part of a glacier bed is mapped, model calculations are only
possible for this part, and additional boundary conditions at the upper and
lower end of the surveyed domain are required. In two dimensional flowline
models, only shallow ice approximations can be inferred for the velocity profile
at the upper end of the limited domain. In three dimensional models, an
entire transverse profile must be prescribed. One way to impose a boundary
condition is based on the assumption that the glacier is a uniform channel of
given cross sectional shape at the boundary (Fig. 7.11). The velocity profile
in a cross section of such a channel can be computed with either the shallow
ice approximation, or better, with a first order approximation. This first order
approximation takes into account the horizontal shearing due to differential
motion across the channel.

To arrive at the field equation for the flow field in a cross section, the
following assumptions are made (Sugiyama et al. 2007):

• The channel is inclined in the x-direction only.
• The channel is homogeneous in the flow (x-) direction, thus ∂/∂x = 0 for

all velocity components.
• No lateral component of the velocity, vy = 0.
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Fig. 7.11. Schematic of a cross section of a glacier. The dotted line indicates the
glacier surface, the shaded area is the model domain.

With these assumptions, Eqs. (5.62) and (5.63) simplify to equations with a
similar structure as the force balance, Eqs. (7.36), (7.37) and (7.38), for the
longitudinal plane strain approximation

∂txy

∂y
+

∂txz

∂z
= ρg

dh

dx
(7.107)

and the stress-strain-rate relations

txz = η
∂vx

∂z
, (7.108)

txy = η
∂vx

∂y
. (7.109)

The form of these equations is similar to the corresponding equations for
the longitudinal plane strain equations. Thus, the same numerical solution
procedure as described in Sect. 7.6.1 can be applied. A second set of equa-
tions suitable for the global discretisation scheme given in Sect. 7.6.2 can be
obtained by eliminating the stress components in Eqs. (7.107), (7.108) and
(7.109), we obtain an equation with the same structure as Eq. (7.39) for the
plane flow approximation,

η

(
∂2vx

∂y2
+

∂2vx

∂z2

)
+

∂η

∂y

∂vx

∂y
+

∂η

∂z

∂vx

∂z
= ρg

dh

dx
, (7.110)

and
∂h

∂y
= 0 . (7.111)

For the viscosity η, Eq. (7.40) also holds in this case,

1 − 2Aσ2
0 η − 8Ad2

e η3 = 0 , (7.112)

with a simplified expression for the effective strain rate, Eq. (5.66),

d2
e =

1
4

[(
∂vx

∂z

)2

+
(

∂vx

∂y

)2
]

. (7.113)
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Equations (7.41) hold, and for the boundary conditions at the ice surface

∂vx

∂z
− ∂h

∂x

∂vx

∂y
= 0 . (7.114)

The structure of these equations is basically the same as for the set of equa-
tions for the two-dimensional longitudinal plane strain flow field, Eqs. (5.70),
(7.40) and (7.41). Numerical solutions for a cross section of Rhone Glacier,
Swiss Alps, are shown in Fig. 7.12. In these simulations, the basal sliding ve-
locity has been used as a fitting parameter in order to match modelled with
measured surface velocities.
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Fig. 7.12. Modelled longitudinal velocity component vx (panels a and d, in m a−1)
and shear stress txz (panels b and e, in MPa) in a cross section of Rhone Glacier,
Swiss Alps, about 3 km downglacier from the top of the glacier at the end of the 19th
century. Panels c and f show the cross profiles of the longitudinal velocity components
at the surface and at the base, together with measured values of surface velocities
(open circles). The left panels show the non-sliding case, the right panels the sliding
scenario for which good agreement between modelled and measured surface velocities
is achieved. (Credit: S. Sugiyama, Hokkaido University, Sapporo, Japan.)
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7.7 Applications and Limitations of Glacier Models

7.7.1 Information on Glaciers

Numerical models of glaciers require input data on the geometry, climatic
boundary conditions at the ice surface and basal conditions. It is obvious that
information on surface conditions are easier to obtain than on basal conditions.
Furthermore, additional information on englacial temperature and/or velocity
fields are required for the validation of model results.

The surface topography of glaciers can be determined by terrestrial or
aerial photogrammetry to a high accuracy. Some limitation may be caused by
low optical contrasts in firn areas. The bed topography can be obtained with
radio echo soundings, either from surface based or air borne radar systems.
The accuracy is limited by the possible resolution due to the wavelength of the
radar beam, uncertainties in the propagation speed of microwaves in ice and
firn and the uncertainties in the reflection points of the received signals. Other
methods, such as seismic and gravimetric sounding seem to be less accurate.
Direct control of sounding depths may be achieved by drilling to the bed.
However, contrary to the accurate and highly resolved surface topography,
the bed topography can only be sounded with lower accuracy and with lower
spatial resolution.

The velocity field at the surface of the ice can be measured by means of re-
peated surveys of markers with theodolites, global positioning systems (GPS)
or by time lapse photogrammetry of identifiable objects on the ice. Englacial
movement and strain rates can only be measured at a limited number of sites
in boreholes, either by inclinometry for shear strain rates or depth monitoring
of markers in the borehole for vertical normal strain.

The same restrictions apply to the measurement of basal sliding velocities.
Boreholes and subglacial tunnels or caves may give access to the glacier bed
and allow us to measure the local sliding velocities. However, even if some
local sliding velocities can be determined, their representativeness is limited
by the spatial and temporal variations of the sliding patterns. On the other
hand, basal sliding is a necessary boundary condition for reliable modelling of
the thermomechanical behaviour of glaciers. Even if the details of sliding and
its variations are unavailable, knowledge on the annual mean sliding pattern
averaged over regions of a size comparable to the ice thickness is useful for
modelling the surface evolution.

The ice thickness is never in equilibrium with the mass balance on the
surface of a glacier. The rate of change of the surface topography does not
influence the velocity field at any given moment, although the geometry itself
determines the velocity. The adjustment of the velocities is instantaneous
in terms of the time scales of possible observations. Thus, the velocity field
is treated as quasi-stationary, and the acceleration term in the momentum
equation can be omitted in all cases. The rate of change of the velocity field
is strictly defined by the rate of change of the surface geometry, and it does
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not correspond to the Euler acceleration term. The sliding pattern, on the
other hand, is highly variable in time and space. Although the surface reacts
instantaneously to changes in the velocity field, and thus to changes in the
sliding, variations of the latter do not contribute significantly to the long term
changes in the surface. Due to the high variability in the sliding velocities, the
representability of the resulting sliding pattern may be questionable.

To model the evolution of the ice surface topography in a given climate,
a reliable distribution of the surface mass balance is required, in addition to
a reliable velocity field. Ablation and accumulation rates can be determined
in situ, however, it is laborious and expensive to maintain a network of mass
balance sites. This is especially true for remote and inaccessible glaciers where
a remotely sensed mass balance would be desirable. By repeated mapping of
the glacier surface with sufficiently high accuracy, the total mass change over
a given period can be determined by means of remote sensing techniques.
To obtain the distributed mass balance, the vertical component of the surface
velocity needs to be mapped in addition. However, no corresponding sounding
method is available at present.

7.7.2 Inverse Problems

Except for tunnels or caves beneath the ice and boreholes to the base, the
glacier bed is not accessible to observations. Indirect methods are a possibility
to generate information on basal conditions by interpretation of information
obtained on the surface of the ice. One common problem of this type of inverse
method is the fact that the interpretation of basal conditions is not unique for
a given information on the surface. A second problem is frequently that the
mathematical problem relating the known surface conditions to the unknown
basal conditions is unstable or ill-conditioned, thus, small errors in surface
information result in large errors in the basal conditions.

An inverse problem may be formulated in the following way: For a given
surface and bed topography and a given set of measured surface velocities,
find an optimised basal velocity field consistent with the given rheological
properties of the ice. The problem may be extended with the assumption that
unknown bed undulations with short wavelengths also contribute to the vari-
abilities in the surface velocity field. A difficulty lies in the fact that some
types of bed undulations may produce similar signals at the surface as vari-
ation in the sliding pattern may produce. In this section, only the reduced
problem stated above is considered in more details.

The simplest way to solve the inverse problem uses a forward approach.
If for some other reasons, a sliding distribution can be assumed, this sliding
can be used as a basal boundary condition in a numerical model. If the re-
sulting surface velocities deviate from corresponding observed velocities, the
assumptions for sliding may be modified to obtain a better match. These mod-
ifications may be performed by trial and error, or may be carried out by a
systematic procedure, which defines an iterative process.
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The system of equations for ice flow, Eqs. (7.77) to (7.79), requires bound-
ary conditions on both sides, on the surface and at the base. Starting the
line integration with a first guess for basal velocity or basal stress yields a
surface shear traction generally different from the required vanishing shear
traction. With the single shooting fixed point iteration, the correct solution
may be obtained, provided the iteration converges, see Sect. 7.6.1. This defines
a well-posed mathematical problem. If on the other hand, only information
on the surface is available, the same set of equations may be used with pre-
scribed vanishing surface shear traction together with given measured surface
velocities, and the basal conditions can be found in a one-shot line integration
starting at the surface. However, this integration is unstable and the resulting
basal velocities may be totally wrong.

The problem becomes more serious the higher the chosen horizontal res-
olution of the model grid is. For grid sizes Δx smaller than about twice the
local ice thickness, the resulting sliding velocity displays large numerically
induced variations along the base. The numerical error becomes smaller for
larger Δx, which indicates that only mean sliding variations over larger areas
can be resolved with inverse methods. The glacier acts as an efficient low pass
filter for variations in the basal velocity field, such that at the surface, the in-
formation on short wavelength basal variation is mostly diffused away (Bahr
et al. 1994, Truffer 2004).

7.7.3 The Shallowness of Glaciers

The above considerations motivate the attempts to determine basal sliding
and surface mass balance distributions not only by remote sensing techniques,
but also by combinations of them with numerical modelling to complete the
necessary information. In principle, both quantities can be obtained with de-
fined procedures. However, the shallowness of glaciers and the ill-condition of
the equations for ice flow seriously limits the achievable accuracy (Saito et al.
2006).

According to Eq. (5.47), the volume flux Qx is

Qx = H v̄x =

h∫
b

vx(z) dz . (7.115)

For an isothermal parallel sided slab, Qx can be analytically integrated. With
Eq. (7.13) and by setting b = 0 and h = H,

Qx =
2A (ρg sinα)n

n + 1

h∫
b

[
Hn+1 − (H − z)n+1

]
dz

=
2A (ρg sin α)n

n + 2
Hn+2 . (7.116)
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Relative errors (perturbations) in the thickness, H, and in the inclination,
sin α, are transformed to a relative error δv̄x in the mass flux,

δv̄x

v̄x
= (n + 2)

δH

H
+ n

δ(sin α)
sinα

. (7.117)

Thus a relative error in H results in a (n + 2)−fold and a relative error in
the inclination of the slab results in a n−fold relative error of the computed
volume flux. The errors may be smaller in the first order approximation, since
the velocity vectors are not defined solely by the local ice thickness and surface
inclination, but also by their values within a domain up- and downglacier of
about five to ten times the ice thickness.

The method generally used to compute the vertical component of the ice
velocity at the surface is derived by integrating the continuity equation of
mass, in plane flow,

vz|z=h = − ∂

∂x

∫ h

b

vx dz′ ≡ −∂(Hv̄x)
∂x

. (7.118)

For a given horizontal component of the velocity field, vx, and the surface
geometry, h, the accuracy of the integration scheme is second order in the dis-
crete element Δz, if it is assumed that the numerical quadrature is performed
with a second order scheme. In a numerical scheme using finite differences,
this yields

vz|z=h = −∂(Hv̄x)
∂x

≈ −ΔH

Δx
v̄x − H

Δv̄x

Δx
. (7.119)

This computation turns out to be very sensitive to perturbations or errors
in u as well as ΔH/Δx. The term ΔH/Δx is influenced by numerical error
due to the marginal slope singularities. If we assume that the error δvz only
stems from errors δ(Δū) in the difference Δv̄x of horizontal components of
the velocity, vx, then

δvz|z=h =
∂vz

∂(Δv̄x)
|z=h δ(Δv̄x) =

H

Δx
δ(Δv̄x) . (7.120)

To estimate the magnitude of δvz, we introduce the aspect ratio ε = [H]/[L] =
[W ]/[U ]. The length of the glacier is discretised with N grid cells of length
Δx = [L]/N , and thus from Eq. (7.120) we get

δvz

[W ]
|z=h ∝ N

δ(Δv̄x)
[U ]

. (7.121)

Since Δv̄x can be relatively small, the accuracy of this difference may suffer
from digit elimination, especially if Δv̄x is of the same order of magnitude
as the individual errors δv̄x of the mean velocities v̄x. In other words, we
need to differentiate vx numerically in order to compute vz, and numerical
differentiation is not well-posed in the limit of taking small divided differences.
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Fig. 7.13. Scatter plot of mass balance values versus altitude for Haut Glacier
d’Arolla, Switzerland. The mass balance values were determined by a combination of
remote sensing and modelling. Adapted from Hubbard et al. (2000), c© International
Glaciological Society.

This result is rather discouraging. Higher accuracy cannot be achieved by
using higher resolution Δx. The best accuracy lies somewhere between too
high a resolution, where digit elimination becomes damaging, and too low
a resolution, where the discretisation error becomes too large. In any case,
the relative error in the computed vertical velocity component is at least an
order of magnitude larger than the relative error in the computed or modelled
horizontal velocity component.

This result seriously limits the possibility of determining the distributed
mass balance with remote sensing and modelling. In principle, the surface
changes can be measured with repeated altimetry from airplanes or satellites.
The horizontal component of the velocity field can be obtained with numer-
ical modelling, provided that the bed topography is known, and it can be
validated for the surface by measurements using time lapse photogrammetry.
Based on this information, the vertical component of the velocity field at the
surface could in principle be calculated. However, here the above described
error amplification reduces the achievable accuracy for the local values of ver-
tical velocities, and thus for the local mass balance determination. The overall
pattern of the mass balance distribution may still be reasonably well repro-
duced. Figure 7.13 shows a scatter plot of mass balance values determined
for all model grid points on the surface of Haut Glacier d’Arolla, Switzerland,
together with a few points with measured mass balances. Although the scatter
is quite large, the measured points lie well centered in the general pattern of
the cloud of points.
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7.7.4 Discontinuities

The dynamics of glaciers and ice sheets is not only controlled by continuous
processes, such as creep flow and heat flux, but may be dominated by discon-
tinuities, such as sliding and calving. Here, we consider discontinuities from a
macroscopic point of view. On the much smaller scales of molecules, creep flow
and fracturing lie much closer together, and the transition from continuous to
discontinuous becomes very gradual, if not irrelevant.

We define a discontinuity in a field variable by the magnitude of its numer-
ical change compared with the spatial or temporal scales over which it occurs.
Sometimes, a discontinuous surface may be accompanied by additional pro-
cesses that may occur on one side but not on the other side, or only along the
surface. In the following, we give a list, possibly incomplete, of discontinuities
that occur in glaciers and ice sheets, some of them are already described in
more detail in earlier sections of this book.

• Ice surface: The ice surface is treated as a non-material surface where
the density jumps. ”Non-material” indicates that material flows through
the surface, in contrast to material surfaces, where invariant individual
material particles form the surface.

• Ice base: The ice base can be considered as material in the case of a cold
base, and as non-material in the case of a temperate ice base with melt.
Across the base, fields of mechanical qualities of the materials jump. Of
the prognostic fields, velocity may jump, stress and temperature fields are
continuous, however, stress gradients and heat flux may be discontinuous.
The sliding problem is treated in Sect. 7.5, however, melt is a process
which may occur only on one side of the base or at the very base alone.

• Cold-temperate transition surface: The cold-temperate transition surface
(CTS) is characterised by the change between dry cold and wet temperate
ice (see Sects. 7.1 and 9.3.5). Velocity, stress and temperature fields are
continuous, but heat flux may be discontinuous. For heat flux, two dif-
ferent situations must be distinguished, (i) ice flows from the cold to the
temperate part, (ii) ice flows from the temperate to the cold part. In the
first case, no local heat source can produce a jump in the heat flux, and
all fields, including moisture content, are continuous. In the second case,
the liquid water contained in the temperate ice freezes at the CTS, thus
moisture content and heat flux jump.

• Englacial debris layers: Debris layers are observed in several glaciers. How-
ever, it is not clear if these layers lead to gliding and thrusting in the ice.
The debris-ice mixture exhibits different mechanical and thermal proper-
ties than pure ice, and on scales of the ice grains and the pieces of debris,
mechanical fields may be discontinuous.

• Hydraulic system: Water storage and flow occurs on a wide range of scales
on the surface, within and at the base of the ice. Subglacial water strongly
influences sliding, thus plays a crucial role in the overall dynamics of the
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dynamics of the ice masses, together with the capacity of the englacial
conduit system and the basal drainage system. Although the hydraulic
system works on spatial width scales on the order of only decimetres to
metres, it connects through the entire glacier.

• Fracturing and calving : Fracturing occurs locally at very short time scales
and produces local variation on short spacial scales in the mechanical fields.
If fracturing leads to mass loss by calving over cliffs or into water, it con-
tributes to the dynamics of the glacier through mechanisms, which may
be independent of or only weekly coupled to climatic forcings. Calving in-
volves many different processes, such as frontal melt, buoyancy, crevassing,
but may be different for grounded and floating ice tongues.



8

Glacial Isostasy

8.1 Background

The ice sheets on Earth have undergone very large changes over the glacial-
interglacial cycles in the past. Today, ice sheets of significant size occur only in
Antarctica and Greenland, whereas during the Last Glacial Maximum (LGM),
21,000 years ago, extended ice sheets also covered large parts of North Amer-
ica, northern Europe, etc. (see Chapter 1). These ice sheets, with typical thick-
nesses of several kilometres, impose therefore large, time-dependent loads on
the crust of the Earth, to which the body of the Earth as a visco-elastic,
multi-layer system reacts with a delayed, essentially vertical displacement.

At present, this effect is most conspicuous in Scandinavia and North Amer-
ica, where a land uplift of the order of millimetres per year can be detected as
a consequence of the unloading from the glacial ice sheets. Figure 8.1 displays
the measured postglacial Fennoscandian land uplift, and it becomes evident
that the pattern reflects the topography of the Fennoscandian glaciation at
the LGM, with maximum values of more than 8 mma−1 in the northern Gulf
of Bothnia.

The first known documentation of postglacial land uplift in Scandinavia
dates back to the year 1491, when the inhabitants of the Swedish town of
Östhammar located at the southern Gulf of Bothnia reported that their town
could no longer be reached by fishing-boats due to a growth of the land at
the sea [for the historical outline given here cf. Ekman (1991), and references
therein]. First attempts to explain this phenomenon from the 18th century
blamed a decrease of the sea level for the water retreat. So in 1706 Hiärne
proposed that the water of the Baltic Sea runs off into the deeper Atlantic,
and in 1719 Swedenborg claimed that a gradual deceleration of the rotation
of the Earth leads to a general lowering of the sea level in higher latitudes.
In 1743, Celsius calculated the water decrease by reconstructing the sea level
for more than 100 years for a rock at the coast of the small island Iggön, and
published the value 13 mma−1, which is, according to modern knowledge,
about 60% too large, yet of the right order of magnitude. The remarkable

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2 8, c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 8.1. Measured present land uplift in Scandinavia. Adapted from Thoma and
Wolf (1999), c© M. Thoma and D. Wolf.

explanation Celsius had in mind is that the water runs off through a hole at
the sea bottom, just like water in a bath-tub.

An essential prerequisite for understanding the sea-water retreat in the
Gulf of Bothnia, as a consequence of land uplift, was provided in the year
1837, when Agassiz discovered that the Earth had experienced ice ages in
the past, when large parts of the polar and temperate zones of the northern
hemisphere were glaciated. It took another three decades before Jamieson,
in 1865, formulated the idea of glacial isostasy, that is, that the crust of the
Earth rises due to the unloading from the glacial ice coverage. This idea was
finally confirmed by De Geer in 1888 and 1890, who mapped the land uplift in
Scandinavia and eastern North America and concluded that only Jamieson’s
explanation agrees with the spatial uplift pattern.

In 1935, Haskell determined the viscosity of the mantle of the Earth by
inverting land uplift data. He found the value ηm = 1021 Pa s, which is
still a reference for this important quantity. More recently, sophisticated self-
gravitating, spherical, visco-elastic multi-layer (SGVE) models of the Earth
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have been developed which are able to describe the process of glacial isostasy
in great detail, made possible only by modern computer performance.

8.2 Structure of the Earth

From seismic studies it can be inferred that the interior of the Earth reveals a
layered structure, the different layers being mutually separated by changes in
the chemical composition and/or phase transitions (Fig. 8.2, left). The upper-
most layer, the crust, has a mean thickness of 20 km (which, however, varies
significantly from place to place; it is thickest below mountains and thinnest
below oceans), a mineral composition and a mean density of 2900 kg m−3. The
crust is underlain by a mineral mantle of 2900 km in thickness and a density
varying from 3300 kg m−3 at the top to 5700 kg m−3 at the bottom. Below,
the 3500 km thick, metallic core is found, which can be subdivided into an
outer, liquid, and an inner, solid part. The density of the core increases from
approximately 9400 kg m−3 at the top to 13500 kg m−3 at the center of the
Earth.

Fig. 8.2. Layered structure of the Earth’s interior. Left: Classification by chemical
composition. Right: Classification by rheological properties.

However, from the point of view of rheological properties, this classification
is not satisfactory for the upper regions. The crust and the uppermost part of
the mantle behave mainly as an elastic solid; however, with increasing depth,
viscous fluid properties become more dominant over geological periods due to
the increasing temperature of the mantle material. Further down, the viscosity
increases again due to the changing composition. Because of this, the crust
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and the uppermost part of the mantle comprise the ∼ 100 km thick elastic
lithosphere, underlain by a further ∼ 100 km thick layer of low viscosity,
known as the asthenosphere (Fig. 8.2, right). By contrast, the remaining part
of the mantle down to the outer core is characterised by a less pronounced,
but nonetheless relevant, fluid behaviour.

Within this rheological classification, the well-known process of plate tec-
tonics can be interpreted as the motion of solid lithosphere plates on the vis-
cous asthenosphere layer, driven by internal convection currents. As we will
see below, for the dynamics of glacial isostasy the rheological classification is
also favourable and usually applied.

8.3 Simple Isostasy Models

In this section, simple models for the problem of glacial isostasy, based on a
plane, two-layer, lithosphere/asthenosphere system, will be presented. Hereby,
the lithosphere layer is treated in two different ways, either as a locally de-
forming plate (local lithosphere, “LL”), or as a thin elastic plate (elastic litho-
sphere, “EL”). For the asthenosphere, two different approaches are also em-
ployed, namely the relaxing asthenosphere (“RA”) where the viscous effects
are parameterised by a constant time lag, and the diffusive asthenosphere
(“DA”) which consists of a thin layer of a horizontally flowing viscous fluid.
The possible combinations lead to four different models, referred to as LLRA,
ELRA, LLDA and ELDA.

8.3.1 LLRA Model

The most simple isostasy model combines the local lithosphere with the re-
laxing asthenosphere. The idea of the local lithosphere is that an ice load
q(x, y) = ρgH(x, y), at a given position (x, y), causes a steady-state displace-
ment of the lithosphere, wss, in the vertical, z, direction at the position (x, y)
only (Fig. 8.3). Note that, in this chapter, we take z as positive downward,
and identify the undisturbed position of the lithosphere base (in the absence
of any ice loading) with z = 0. The value of wss (taken positive downward as
well) is determined by the balance between the ice load and the buoyancy force
which the lithosphere experiences in the underlying viscous asthenosphere,

ρagwss = ρgH ⇒ wss =
ρ

ρa
H , (8.1)

where ρa = 3300 kg m−3 is the density of the asthenosphere.
Due to the viscous properties of the asthenosphere, for the case of time-

dependent ice loads q(x, y, t), the lithosphere cannot assume the steady-state
displacement wss immediately. Instead, the response will have a time lag, and
the relaxing asthenosphere parameterises this lag by a single time constant,
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Fig. 8.3. Local lithosphere: A localised ice load q = ρgH causes a vertical steady-
state displacement of the lithosphere, wss, at the position of the load only. Hl denotes
the lithosphere thickness.

τa, of the order of 1000s of years (a widely used value is τa = 3ka). The
evolution of the actual displacement, w, with time, t, is then determined by

∂w

∂t
= − 1

τa
(w − wss) , (8.2)

which relates the vertical velocity of the lithosphere, ∂w/∂t, linearly to the
deviation of the displacement from the steady state, w−wss. Provided the ice
thickness H, and therefore the steady-state displacement wss, do not change
with time, the solution of (8.2) is

w(x, y, t) = wss(x, y) + [w0(x, y) − wss(x, y)] e−t/τa , (8.3)

so that any non-steady-state initial displacement w0 relaxes exponentially into
its steady-state value with the time constant τa (Fig. 8.4).
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Fig. 8.4. Vertical displacement of the lithosphere as a function of time for the relax-
ing asthenosphere, with an initial displacement w0 and a steady-state displacement
wss (assumed to be constant over time). Time is shown in units of the time lag τa.
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The great strength of the LLRA model is its simplicity (only a single
parameter, the time-lag constant τa, is needed) and easy implementation in
numerical models. It feeds back to the ice sheet equations of Chapter 5 as
follows. Let zl,0(x, y) be the reference position of the lithosphere surface in
the coordinate system of Chapter 5 (vertical coordinate positive upward, see
Fig. 5.1) for w = 0 (no displacement). The actual position of the lithosphere
surface is then

zl(x, y, t) = zl,0(x, y) − w(x, y, t) , (8.4)

where the displacement w is governed by Eq. (8.3). Since the ice base b and
the lithosphere surface zl fall together under a grounded ice sheet, the time
derivative reads

∂zl

∂t
=

∂b

∂t
= −∂w

∂t
. (8.5)

This result enters the ice surface equation, for instance in its shallow ice form
(5.100).

8.3.2 ELRA Model

The local lithosphere assumption, that the response to an ice load is a purely
local displacement of the lithosphere, is certainly unrealistic. Instead, it is
clear that the elasticity of the lithosphere layer must result in a non-local
response, so that positions at some distance from an imposed ice load still
suffer a displacement (Fig. 8.5).

Fig. 8.5. Elastic lithosphere: A localised ice load q = ρgH causes a horizontally
distributed (non-local) vertical steady-state displacement of the lithosphere, wss. Hl

denotes the lithosphere thickness.

A rather easy way to describe this behaviour more adequately is the thin
elastic plate, governed by the biharmonic equation

Kl Δ2wss + ρagwss = ρgH (8.6)

[see Sect. 3.4.2, Eq. (3.122)]. The parameter Kl is the flexural stiffness of the
lithosphere,
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Kl =
ElH

3
l

12(1 − ν2
l )

=
μlH

3
l

6(1 − νl)
, (8.7)

where Hl is the thickness, El Young’s modulus, νl Poisson’s ratio and μl the
shear modulus of the lithosphere (indicated by the subscript “l”).

Compared to the local lithosphere equation (8.1), the thin plate equation
(8.6) contains an additional term of fourth order in the spatial derivative of
the displacement which represents the flexural rigidity. Note that this term
depends, apart from the elastic coefficients, on the lithosphere thickness Hl,
whereas the simpler equation (8.1) is independent of Hl. The Green’s function
of (8.6) is known and can be given analytically. Assume that the ice load is
localised according to

q(x, y) = ρgH(x, y) = F0 δ(x − x̌) δ(y − y̌) , (8.8)

which describes a single force F0 imposed on the lithosphere surface at the
position (x̌, y̌) [δ(·) denotes Dirac’s δ function], then the solution of (8.6) is

wss(r) = −F0L
2
r

2πKl
kei
(

r

Lr

)
, (8.9)

with

r =
√

(x − x̌)2 + (y − y̌)2, Lr =
(

Kl

ρag

)1/4

(8.10)

(Brotchie and Silvester 1969). Here, kei(·) is a Kelvin function of zero order,
which can be derived from the general Bessel function, and whose values are
tabulated in mathematical handbooks [e.g., Abramowitz and Stegun (1970)].
It is plotted in Fig. 8.6. Evidently, the radius of relative stiffness, Lr, deter-
mines the non-locality of the lithosphere displacement. The Kelvin function
takes the value zero at approximately r = 4Lr, followed by a slight forebulge
(upward displacement) further away from the load.

The Green’s function G of the thin plate equation (8.6) is given by Eq. (8.9)
with the normalised force F0 = 1,

G(r) = G(x, x̌, y, y̌) = − L2
r

2πKl
kei
(

r

Lr

)
. (8.11)

Since the differential equation (8.6) is linear, the Green’s function can be used
to construct its solution for a general distribution of the ice load q(x, y) =
ρgH(x, y) by superposition,

wss(x, y) =
∫

Aice

ρgH(x, y)G(x, x̌, y, y̌) dx̌ dy̌ , (8.12)

where Aice denotes the ice-covered area. Note that the Green’s function
method is not restricted to the thin plate equation; however, it can be used
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Fig. 8.6. Normalised displacement of the elastic lithosphere under a point load.
r/Lr is the normalised distance from the load, kei(·) a zero-order Kelvin function.

to solve linear, inhomogeneous differential equations in general [see e.g. Bron-
shtein et al. (2004)].

The asthenosphere component in the ELRA model is the same as in the
LLRA model described above. So once the steady-state displacement wss is
computed by solving the thin plate equation (8.6), the actual displacement
w follows from the relaxing asthenosphere evolution equation (8.2) as before.
Also, the feedback to the ice sheet equations of Chapter 5 is as described by
Eqs. (8.4) and (8.5).

For terrestrial conditions, a typical value for the radius of relative stiff-
ness Lr is ∼ 100 km. It is much smaller than the typical horizontal extent
[L] = 1000 km of a large ice sheet like Antarctica or Greenland [see Eq. (5.5)],
and consequently the effect of a non-local lithosphere displacement is not too
pronounced. For that reason, the simpler LLRA model still provides reason-
able results. The differences between the two models will be most significant
in regions with large ice thickness gradients, which occur, in particular, close
to the ice margins. By contrast, the extent of ice caps like Vatnajökull or
Austfonna is similar to Lr, so that the non-locality of the elastic lithosphere
approach is essential and must be accounted for. Glaciers are typically much
smaller compared to Lr, which leads to an extreme spreading of the isostatic
displacement and renders it negligible. Thus isostasy need not be considered
for glaciers.

8.3.3 LLDA Model

The LLDA model employs, for the lithosphere component, the local litho-
sphere description, which uses the simple force balance (8.1) in order to obtain
the steady-state lithosphere displacement, wss.

However, for the asthenosphere, the simple, parametric treatment with
the relaxing asthenosphere equation (8.2) is now replaced by a more physical
approach. To this end, the asthenosphere material is described as an incom-
pressible, linear viscous (Newtonian) fluid of viscosity ηa which flows horizon-
tally in a thin channel of constant asthenosphere thickness Ha (Fig. 8.7). As
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Fig. 8.7. Diffusive asthenosphere: Thin channel horizontal flow in the viscous as-
thenosphere of thickness Ha, driven by the deviation of the actual vertical lithosphere
displacement, w, from its steady state, wss.

for the ice flow problems we have discussed in Chapters 5, 6 and 7, the ac-
celeration and Coriolis terms in the momentum balance are neglected (Stokes
flow). Therefore, the Navier-Stokes equation (3.138) reads

− grad p + ηa Δvh = 0 , (8.13)

where we have considered the horizontal components only, so that vh =
(vx, vy) is the horizontal velocity, and grad = (∂/∂x, ∂/∂y). It is reasonable
to assume that for steady-state conditions, that is, w = wss, the adjusting
flow in the asthenosphere vanishes (vh,ss = 0), so that for the corresponding
pressure, pss, the relation

− grad pss + ηa Δvh,ss = −grad pss = 0 (8.14)

holds. By subtracting (8.13) and (8.14),

− grad (p − pss) + ηa Δvh = 0 , (8.15)

which tells us that the driving force for asthenospheric flow is the non-steady-
state pressure, p−pss. Under the assumption of hydrostatic conditions, it can
be related to the non-steady-state lithosphere displacement, w − wss, via

p − pss = −ρag(w − wss) (8.16)

(the minus sign is due to the fact that the displacements are counted positive
downward). Inserting this result in (8.15) and assuming that velocity changes
occur mainly in the vertical direction, that is

∂vh

∂x
,

∂vh

∂y
� ∂vh

∂z
,

∂2vh

∂x2
,

∂2vh

∂y2
� ∂2vh

∂z2
, (8.17)

yields
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∂2vh

∂z2
= −ρag

ηa
grad (w − wss) . (8.18)

Since the right-hand side is independent of z, this can easily be integrated. We
neglect the lithosphere displacements compared to the asthenosphere thick-
ness,

w, wss � Ha , (8.19)

so that the top of the asthenosphere is always approximately at z = 0 and
the bottom at z = Ha. Further, we assume rather arbitrarily that the veloc-
ity vanishes at the top of the asthenosphere, and that the shear stress (and
therefore the vertical derivative of the velocity) vanishes at the bottom:

vh|z=0 = 0 ,
∂vh

∂z

∣∣∣
z=Ha

= 0 . (8.20)

With these boundary conditions, double integration of (8.18) yields the
parabolic velocity field

vh = −ρag

2ηa
(z2 − 2Haz) grad (w − wss) , (8.21)

the shape of which is indicated in Fig. 8.7.
By integrating the mass balance divv = 0 vertically from z = 0 to z = Ha,

one finds, analogous to the derivation of the ice thickness equation (5.55),

∂Ha

∂t
= −div

Ha∫
0

vh dz (8.22)

(note that any mass exchange at the top and the bottom has been neglected).
If we further assume that the bottom of the asthenosphere is rigid, then
∂Ha/∂t = −∂w/∂t, so that

∂w

∂t
= div

∫ Ha

0

vh dz . (8.23)

Inserting the velocity profile (8.21) in this relation yields

∂w

∂t
= −ρag

2ηa
div grad (w − wss)

∫ Ha

0

(z2 − 2Haz) dz

= −ρag

2ηa
Δ(w − wss)

[
z3

3
− 2Ha

z2

2

]Ha

0

=
ρagH3

a

3ηa
Δ(w − wss) , (8.24)

and, by introducing the diffusivity
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Da =
ρagH3

a

3ηa
, (8.25)

one finally obtains the diffusive thin channel equation

∂w

∂t
= DaΔ(w − wss) . (8.26)

With the scale [L] for the horizontal extent of the ice load [see Eq. (5.5)], the
associated time scale for the diffusive asthenosphere motion is

τa =
[L]2

Da
=

3ηa

ρagH3
a

[L]2 . (8.27)

Note that here τa is proportional to the square of the extent of the ice load,
whereas it is a constant parameter in the relaxing asthenosphere approach.

8.3.4 ELDA Model

Finally, the ELDA model combines the elastic lithosphere and the diffusive as-
thenosphere. Therefore, the steady-state lithosphere displacement is computed
by solving the elastic thin plate equation (8.6), and the actual displacement
then follows from the diffusive thin channel equation (8.26).

8.4 Analytical Solution for the Local Lithosphere

We come back to the simplified problem formulated in Sect. 5.6.1, and the cor-
responding ice thickness equation (5.107) with the volume flux (5.108). Let us
now drop the assumption of a flat, rigid bed, assume zl,0(x) = 0 instead (flat
lithosphere surface in the absence of an ice load) and allow isostatic displace-
ment by the local lithosphere mechanism. Since the steady-state assumption
is kept, the displacement of the lithosphere is given by w = wss, and it is not
necessary to specify an asthenosphere model.

With Eqs. (8.1) and (8.4), we find for the ice base

b(x) = zl(x) = −w(x) = −wss(x) = − ρ

ρa
H(x) , (8.28)

or, by using H = h − b and rearranging terms,

b(x) = −λh(x) ,

H(x) = (1 + λ)h(x) ,
with λ =

ρ

ρa − ρ
. (8.29)

Inserting Eq. (8.29)2 into Eq. (5.108) shows that the steady-state ice thickness
equation (5.111) now reads



196 8 Glacial Isostasy

dQ

dx
= − d

dx

(
A0 (1 + λ)n+2 hn+2

∣∣∣∣∂h

∂x

∣∣∣∣
n−1

∂h

∂x

)
= as . (8.30)

By introducing the transformation

h(x) = h̃(x)
(

1
1 + λ

)(n+2)/(2n+2)

, (8.31)

Eq. (8.30) changes to

dQ

dx
= − d

dx

⎛
⎝A0 h̃n+2

∣∣∣∣∣
∂h̃

∂x

∣∣∣∣∣
n−1

∂h̃

∂x

⎞
⎠ = as , (8.32)

which has the same form as the original equation (5.111) for a flat, rigid bed.
Hence, the transformed quantity h̃(x) is identical to the surface topography
for a flat, rigid bed (e.g., the Vialov or Bueler profile derived in Sects. 5.6.2
and 5.6.3, respectively), and the surface topography with isostasy results from
Eq. (8.31). The basal topography and ice thickness can subsequently be com-
puted by Eq. (8.29).

For the parameter values λ = 0.3 and n = 3, the surface elevation of the
ice sheet with isostasy is ∼ 15% lower and the thickness ∼ 10% larger than for
the flat-based ice sheet. Figure 8.8 shows a comparison for the Bueler profile.
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Fig. 8.8. Bueler solution for the ice surface and base with (solid lines) and without
(dashed lines) isostatic displacement of the lithosphere (in scaled coordinates).
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8.5 Numerical Methods

In the finite difference scheme for the plane strain shallow ice equations de-
scribed in Sect. 5.7, a rigid ice base was assumed. We are now going to extend
the scheme by including isostasy, modelled by the four simple models intro-
duced in Sect. 8.3.

8.5.1 Local Lithosphere

The simple, algebraic equation (8.1) for the local lithosphere can readily be
discretised. It yields

(wss)i,n =
ρ

ρa
Hi,n . (8.33)

8.5.2 Elastic Lithosphere

In the case of the elastic lithosphere, things are more complicated. We have
seen above that the Green’s function of the thin plate equation (8.6) is given
by Eq. (8.11). However, under two-dimensional, plane strain conditions, it
changes to

G(r) = G(x, x̌) = − (
√

2Lr)3

8Kl
f(α) , (8.34)

with
r = |x − x̌| , α =

r√
2Lr

, (8.35)

and
f(α) = e−α(cos α + sinα) (8.36)

[see e.g. Turcotte and Schubert (2002)].
Analogous to the continuous superposition (8.12), we can construct the

discretised steady-state displacement (wss)i,n at the point ξi by superposing
the effects of the discretised ice loads at all positions i′ = 0 . . . I. The imposed
load at the position i′ is equal to ρgHi′,n, and so we obtain

(wss)i,n = − (
√

2Lr)3

8Kl

I∑
i′=0

ρgHi′,n f(αii′)Δξ , (8.37)

where

αii′ =
|ξi − ξi′ |√

2Lr

=
|i − i′|Δξ√

2Lr

. (8.38)
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8.5.3 Relaxing Asthenosphere

The discretisation of the evolution equation for the displacement of the relax-
ing asthenosphere model, Eq. (8.2), is straightforward. By employing Euler
forward stepping for the time derivative [see e.g. Morton and Mayers (1994),
Hundsdorfer and Verwer (2003)], we obtain the explicit scheme

wi,n+1 − wi,n

Δτ
= − 1

τa

[
wi,n − (wss)i,n

]
. (8.39)

Alternatively, the scheme can be made implicit by replacing wi,n on the right-
hand side by the value at the new time, wi,n+1. The update of the vertical
position of the lithosphere surface follows from Eq. (8.4),

(zl)i,n+1 = (zl,0)i − wi,n+1 , (8.40)

and, according to Eq. (8.5), its discretised time derivative is the negative of
Eq. (8.39),

(zl)i,n+1 − (zl)i,n

Δτ
=

bi,n+1 − bi,n

Δτ
= −wi,n+1 − wi,n

Δτ

=
1
τa

[
wi,n − (wss)i,n

]
. (8.41)

8.5.4 Diffusive Asthenosphere

The plane strain version of the diffusive thin channel equation (8.26) in the
transformed coordinates of Sect. 5.7 reads

∂w

∂τ
= Da

∂2

∂ξ2
(w − wss) . (8.42)

Employing Euler forward stepping for the time derivative and central differ-
ences for the diffusion term [see e.g. Morton and Mayers (1994), Hundsdorfer
and Verwer (2003)] yields the discretised form

wi,n+1 − wi,n

Δτ
= Da

wi+1,n − 2wi,n + wi−1,n

Δξ2

−Da
(wss)i+1,n − 2(wss)i,n + (wss)i−1,n

Δξ2
. (8.43)

This explicit scheme can be made implicit by replacing all occurrences of
wi(±1),n on the right-hand side by the corresponding values at the new time,
wi(±1),n+1. Analogous to Eqs. (8.40) and (8.41), the vertical position of the
lithosphere surface is updated according to

(zl)i,n+1 = (zl,0)i − wi,n+1 , (8.44)
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and its discretised time derivative is

(zl)i,n+1 − (zl)i,n

Δτ
=

bi,n+1 − bi,n

Δτ
= −wi,n+1 − wi,n

Δτ

= −Da
wi+1,n − 2wi,n + wi−1,n

Δξ2

+Da
(wss)i+1,n − 2(wss)i,n + (wss)i−1,n

Δξ2
. (8.45)

The discretisations of the four simple models are now given by the following
equations:

• LLRA model: Eqs. (8.33) and (8.39)–(8.41).
• ELRA model: Eqs. (8.37)–(8.38) and (8.39)–(8.41).
• LLDA model: Eqs. (8.33) and (8.43)–(8.45).
• ELDA model: Eqs. (8.37)–(8.38) and (8.43)–(8.45).

8.6 Model Intercomparison

The simple isostasy models LLRA, ELRA, LLDA and ELDA described above
will now be compared to the more sophisticated SGVE approach (see the end
of Sect. 8.1). To this end, we follow the study by Le Meur and Huybrechts
(1996), who coupled a three-dimensional dynamic/thermodynamic ice sheet
model with these isostasy models, simulated the evolution of the Antarctic
Ice Sheet from 126,000 years ago until today, and examined the computed
present uplift rates at the top of the lithosphere. The main parameters of the
applied isostasy models are:

• LL: densities ρ = 910 kg m−3, ρa = 3300 kg m−3; ratio ρ/ρa = 0.276.
• EL: flexural stiffness Kl = 1025 Nm.
• RA: relaxation time τa = 3000 a.
• DA: diffusivity Da = 50 km2 a−1.
• SGVE:

– Lithosphere layer down to 100 km depth, linear elastic solid (Hookean
body; see Sect. 3.4.2).

– Upper-mantle layer from 100 km to 670 km depth, visco-elastic Maxwell
fluid (Le Meur 1996), viscosity ηum = 5 × 1020 Pa s.

– Lower-mantle layer below 670 km depth, visco-elastic Maxwell fluid,
viscosity ηlm = 1021 Pa s.

In Fig. 8.9 the computed uplift rates are shown for the five models. Ev-
idently, the uplift is most pronounced in the region between the East and
the West Antarctic Ice Sheet, and reaches maximum values of more than
10 cma−1 in the vicinity of the grounding line of the Filchner-Rønne Ice
Shelf. This is the case because, during the last ice age, the large Filchner-
Rønne and Ross Ice Shelves were partly grounded, which increased the ice
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Fig. 8.9. Lithosphere uplift rates for the modern Antarctic Ice Sheet, computed
with the five isostasy models LLRA, ELRA, LLDA, ELDA and SGVE coupled to
a dynamic/thermodynamic ice sheet model. Reproduced from Le Meur and Huy-
brechts (1996), c© International Glaciological Society.
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thickness between these shelves significantly. Consequently, this region has
experienced a large decrease of the ice thickness since then, which leads to the
large uplift rates. By contrast, the other parts of the Antarctic Ice Sheet did
not suffer similar changes, and therefore the uplift is much smaller.

If we take the result of the SGVE model as a reference, the performance of
the simple models decreases in the order ELRA > LLRA > ELDA > LLDA.
As far as the lithosphere parameterisations LL and EL are concerned, this
order confirms the expectation that the more elaborate EL description should
provide better results. The LL models show distinctly more non-physical fine
structure in the uplift pattern due to the missing low-pass filter of the elastic
lithosphere. By contrast, for the asthenosphere parameterisations RA and DA,
the behaviour is opposite. The apparently more realistic DA models show an
exaggerated concentration of positive uplift rates around the grounding line of
the Filchner-Rønne Ice Shelf, surrounded by a narrow band of negative uplift
rates which does not have any correspondence in the SGVE result. On the
other hand, both RA models reproduce the uplift distribution of the SGVE
model rather well. A likely explanation for this counter-intuitive finding is that
the motion of the mantle induced by the varying ice load reaches far deeper
than to the bottom of the asthenosphere, so that the thin channel assumption
of the diffusive asthenosphere approach is not adequate.

Consequently, as long as the high accuracy of a SGVE model is dispensable
(for instance, in a typical ice-sheet-modelling application), use of the ELRA
model is favourable. The even simpler LLRA model is still a reasonable, com-
putationally faster alternative (at the cost of some artificial fine structure in
the computed uplift patterns), whereas the models with the diffusive astheno-
sphere parameterisation, LLDA and ELDA, should be discarded.



9

Advanced Topics

While in the previous chapters relatively well-established aspects of ice dy-
namics have been treated, we now turn to some more advanced and demanding
topics at the forefront of current research. The selection of the topics (induced
anisotropy, compressible firn, polythermal glaciers) is strongly influenced by
the authors’ own research interests and makes no claim to be complete. Other
issues, such as subglacial hydrology, ice stream dynamics or calving mechan-
ics, deserve equal attention, and we explicitly encourage the interested reader
to follow these paths as well.

9.1 Induced Anisotropy

9.1.1 Background

Let us come back to the basic creep properties of polycrystalline ice. At the
beginning of our discussion in Sect. 4.2, we made the assumption that the
ice crystallites (grains) in a polycrystalline aggregate are essentially randomly
oriented, so that the macroscopic behaviour is isotropic. However, observations
show that this is not always the case. While the assumption holds well at the
surface of an ice sheet or glacier where the ice has formed only recently out of
accumulated snowfall, deeper down into the ice, different types of anisotropic
fabrics with preferred orientations of the c-axes tend to develop (e.g., Paterson
1994).

Many models have been proposed to include anisotropy in the flow law
of polycrystalline ice. On one end of the range in complexity, a simple flow
enhancement factor E is introduced in an ad-hoc fashion as a multiplier of the
isotropic ice fluidity in order to account for anisotropy and/or impurities. This
can be conveniently achieved by replacing the rate factor A(T ′) in the several
versions of isotropic flow laws by EA(T ′) (see Sect. 4.3.4), and it is done in
most current large-scale ice sheet models, often without explicitly mentioning
anisotropy (e.g., Saito and Abe-Ouchi 2004, Greve 2005, Huybrechts et al.

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2 9, c© Springer-Verlag Berlin Heidelberg 2009
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2007). In macroscopic, phenomenological models, an anisotropic macroscopic
formulation for the flow law of the polycrystal is postulated. To be usable,
the rheological parameters that enter this law must be evaluated as functions
of the anisotropic fabric. The concept of homogenisation models, also called
micro-macro models, is to derive the polycrystalline behaviour at the level of
individual crystallites and the fabric. As for the “high-end” complexity, full-
field models solve the Stokes equation for ice flow properly by decomposing
the polycrystal into many elements, which makes it possible to infer the stress
and strain-rate heterogeneities at the microscopic scale. A very comprehensive
overview of these different types of models and many references are given by
Gagliardini et al. (2009). However, the more sophisticated models are usually
too complex and computationally time-consuming to be included readily in a
model of macroscopic ice flow.

Here, the Continuum-mechanical, Anisotropic Flow model, based on an
anisotropic Flow Enhancement factor [“CAFFE model”; see Placidi et al.
(2009), Greve et al. (2009), and references therein], will be described as an
example. The CAFFE model belongs to the class of macroscopic models. The
flow enhancement factor is taken as a function of a newly introduced scalar
quantity called deformability, which is essentially a non-dimensional invariant
related to the shear stress acting on the basal plane of a crystallite, weighted
by the orientation-distribution function which describes the anisotropic fabric
of the polycrystal. Fabric evolution is modelled by an orientation mass balance
which accounts for grain rotation and recrystallisation processes. The CAFFE
model is a good compromise between necessary simplicity on the one hand,
and consideration of the major effects of anisotropy on the other.

9.1.2 Anisotropic Generalisation of Glen’s Flow Law

Deformation of a Crystallite

In order to derive a generalisation of Glen’s flow law (4.16) which accounts for
general, anisotropic fabrics of the ice polycrystal, we first consider the defor-
mation of a crystallite embedded in the polycrystalline aggregate. Only the
dominant deformation along the basal plane is accounted for, and deforma-
tions along prismatic and pyramidal planes, which are at least 60 times more
difficult to activate, are neglected (Fig. 4.2).

The tensor t is interpreted as the macroscopic stress tensor which de-
scribes the stress on a control volume spanning a sufficiently large number
of individual crystallites. Therefore, t does not depend on the orientation n
(unit normal vector of the basal plane, direction of the c-axis), but only on
the position x and time t. Note that the CAFFE model does not deal with
microscopic stresses on the level of the crystallites, and attempts in no way
to relate microscopic and macroscopic stresses. The macroscopic stress vector
on the basal plane is given by the expression t ·n (Fig. 9.1). It is reasonable to
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Fig. 9.1. Decomposition of the stress vector into a part normal and a part tangential
to the basal plane of the ice crystallite.

assume that only the stress component St tangential to the basal plane con-
tributes to its shear deformation, while the component normal to the basal
plane has no effect.

According to Fig. 9.1, the decomposition of the stress vector reads

t · n = (n · t · n)n + Stet , (9.1)

where et denotes the tangential unit vector. Inserting the decomposition
(3.133) of the stress tensor t for incompressible fluids readily eliminates the
pressure p and leaves

tD · n = (n · tD · n)n + Stet . (9.2)

As mentioned above, deformation of the crystallite in the polycrystalline ag-
gregate is attributed to the tangential component St only. Since we aim at a
theory which describes the effects of anisotropy by a scalar, anisotropic flow
enhancement factor, we define the scalar invariant

S2
t = (tD · n)2 − (n · tD · n)2 . (9.3)

This quantity has the unit of a stress squared, and a natural way to non-
dimensionalise it is by the square of the effective stress σe [Eq. (4.9)], which is
also a scalar invariant. Thus, we introduce the crystallite deformability, which
is loaded by the stress t, as

A�(n) =
5
2

S2
t (n)
σ2

e

= 5
S2

t (n)
tr (tD)2

. (9.4)

The factor 5/2 has been introduced merely for reasons of convenience, as it
will become clear below.
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Flow Law for Polycrystalline Ice

In polycrystalline ice, the crystallites within a control volume (which is as-
sumed to be large compared to the crystallite dimensions, but small compared
to the macroscopic scale of ice flow) show a certain fabric. Extreme cases are
on the one hand the single maximum fabric, for which all c-axes are perfectly
aligned, and on the other hand the isotropic fabric with a random distribution
of the c-axes. A general fabric, which is usually in between these cases, can be
described by the orientation mass density (OMD) ρ�(n). It is defined as the
mass per volume and orientation, the latter being specified by the unit normal
vector (direction of the c-axis) n ∈ S2 (S2 is the unit sphere). When integrated
over all orientations, the OMD must yield the ordinary mass density ρ, which
leads to the normalisation condition∫

S2

ρ�(n) d2n = ρ . (9.5)

Alternatively, an orientation distribution function (ODF) f�(n) can be defined
as

f�(n) =
ρ�(n)

ρ
. (9.6)

The ODF is normalised to unity when integrated over all orientations,
∫
S2

f�(n) d2n = 1 . (9.7)

It is physically impossible to distinguish between the orientations n and
−n. This can be accounted for in the OMD and ODF either by allowing non-
zero values on one half of S2 (e.g., the “upper” hemisphere with z ≥ 0) only,
or by imposing the symmetry condition

ρ�(n) = ρ�(−n) , f�(n) = f�(−n) . (9.8)

We use the ODF in order to define the deformability of polycrystalline ice
by weighting the crystallite deformability (9.4),

A =
∫
S2

A�(n) f�(n) d2n

=
5
2

∫
S2

S2
t (n)
σ2

e

f�(n) d2n = 5
∫
S2

S2
t (n)

tr (tD)2
f�(n) d2n . (9.9)

Note that, for the isotropic case, the ODF is f�(n) = 1/(4π), and a labori-
ous, but straightforward calculation of the integral in Eq. (9.9) [writing the
terms S2

t (n) and tr (tD)2 in component form, expressing nx, ny, nz and d2n
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Fig. 9.2. Uniaxial compression on single maximum (UC/SM) and simple shear
on single maximum (SS/SM) for a small sample of polycrystalline ice. Stresses are
indicated as black arrows, and the single maximum fabric is marked by the dark-grey
arrows within the ice sample.

in spherical coordinates, integrating over the zenith angle θ and the azimuth
angle φ; best to be done with a computer algebra tool] yields a deformability
of A = 1 for the isotropic polycrystal. For that reason, the factor 5/2 has been
introduced in Eqs. (9.4) and (9.9).

The CAFFE flow law for anisotropic polar ice can now be formulated.
Essentially, we keep the form of Glen’s flow law (4.16), but with a scalar,
anisotropic enhancement factor E(A),

D = E(A)A(T ′)σn−1
e tD . (9.10)

The function E(A) is supposed to be strictly increasing with the deformability
A, and has the fixed points

E(0) = Emin (uniaxial compression on single maximum),

E(1) = 1 (arbitrary stress on isotropic fabric),

E( 5
2 ) = Emax (simple shear on single maximum).

(9.11)

The “hard” case (9.11)1 and the “soft” case (9.11)3 are illustrated in Fig. 9.2.
Note also that the deformability cannot take values larger than A = 5/2.

As for the detailed functional form of the anisotropic enhancement fac-
tor, experimental data suggest that the enhancement factor depends on the
“Schmid factor” (which can be identified with the shear stress in the basal
plane, St, of the CAFFE model) to the fourth power (Azuma 1995, Miyamoto
1999). Since the polycrystal deformability A contains a dependency of S2

t [see
Eq. (9.9)], it is reasonable to assume a dependency of E on A2. However,
this does not allow Eq. (9.11) for arbitrary choices of the parameters Emin

and Emax to be fulfilled. Hence the function E(A) is chosen to depend on A2

in the interval [1, 5
2 ] only, and for the interval [0, 1] a dependency on At is

introduced. The exponent t is adjusted such that the function is continuously
differentiable at A = 1. This yields



208 9 Advanced Topics

0 0.5 1 1.5 2 2.5
0
1
2
3
4
5
6
7
8
9

10

Deformability

E
nh

an
ce

m
en

t f
ac

to
r E

max
 = 10

E
min

 = 0.1

Fig. 9.3. Anisotropic enhancement factor E(A) as a function of the deformability
A according to Eq. (9.12), for Emax = 10 and Emin = 0.1.

E(A) =

⎧⎪⎪⎨
⎪⎪⎩

Emin + (1 − Emin)At , t =
8
21

Emax − 1
1 − Emin

, 0 ≤ A ≤ 1 ,

4A2(Emax − 1) + 25 − 4Emax

21
, 1 ≤ A ≤ 5

2
.

(9.12)

Several studies (e.g., Russell-Head and Budd 1979, Pimienta et al. 1987, Budd
and Jacka 1989) indicate that the parameter Emax (maximum softening) is
∼ 10. The parameter Emin (maximum hardening) can be realistically chosen
between 0 and ∼ 0.1, a non-zero value serving mainly the purpose of avoiding
numerical problems. The function (9.12) is shown in Fig. 9.3.

Owing to the collinearity of the tensors tD and D, the CAFFE flow law
(9.10) can be written as

D =
1

2η(T ′, σe,A)
tD , (9.13)

with the shear viscosity

η(T ′, σe,A) =
1

2E(A)A(T ′)σn−1
e

. (9.14)

Inversion of the Flow Law

The anisotropic CAFFE flow law (9.10) can be inverted analytically in the
same way as the isotropic Glen flow law; see Eqs. (4.19) – (4.22). Analogous
to Eq. (4.20), the result is

tD = [E(A)]−1/n B(T ′) d−(1−1/n)
e D . (9.15)

The deformability A also needs to be expressed by strain rates instead of
stresses [see Eq. (9.9)]. In analogy to Eq. (9.2), we consider the macroscopic
strain-rate vector D · n in a crystallite, and decompose it according to
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D · n = (n · D · n)n + Dtet , (9.16)

where Dt is the shear rate in the basal plane (see also Fig. 9.1). Analogous to
Eq. (9.3), we define the scalar invariant

D2
t = (D · n)2 − (n · D · n)2 . (9.17)

The crystallite deformability [Eq. (9.4)] can be readily expressed by Dt and
the effective strain rate de,

A�(n) = 5
S2

t (n)
tr (tD)2

(9.3)
= 5

(tD · n)2 − (n · tD · n)2

tr (tD)2

(9.13)
= 5

(2ηD · n)2 − (n · 2ηD · n)2

tr (2ηD)2

= 5
(D · n)2 − (n · D · n)2

tr D2

(9.17)
= 5

D2
t (n)

tr (D2)
=

5
2

D2
t (n)
d2
e

, (9.18)

and the deformability of polycrystalline ice [Eq. (9.9)] yields

A =
∫
S2

A�(n) f�(n) d2n

=
5
2

∫
S2

D2
t (n)
d2
e

f�(n) d2n = 5
∫
S2

D2
t (n)

tr (D2)
f�(n) d2n . (9.19)

The inverse form of the CAFFE flow law (9.15) with the deformability in
the form of (9.19) can also be written with the shear viscosity η,

tD = 2η(T ′, de,A)D , (9.20)

where
η(T ′, de,A) =

1
2
[E(A)]−1/n B(T ′) d−(1−1/n)

e . (9.21)

9.1.3 Proof of Anisotropy for the CAFFE Flow Law

We will now prove explicitly that the flow law (9.10) of the CAFFE model
[or its equivalent, inverse form (9.15)] is anisotropic, despite the fact that the
collinearity between the tensors tD and D has been retained and the effects of
anisotropy are expressed by a scalar enhancement factor only.
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Fig. 9.4. Anisotropy of the CAFFE flow law: If the same stress (̃tD = tD) is applied
to two rotated initial configurations (κt=0, κ̃t=0), the responses A and Ã are different
in general.

In the context of the theory of constitutive equations, the definition of
isotropy states that any rotation of the body in question does not alter its
material response. Mathematically speaking, this means invariance of the ma-
terial functions (or functionals) to arbitrary orthogonal transformations P of
an undistorted configuration κ (e.g., Liu 2002, p. 86). Anisotropy is the logical
opposite: for at least one orthogonal transformation P, the invariance does not
hold.

By construction, the anisotropy of the flow law (9.10) is contained in the
enhancement factor E(A) via the polycrystal deformability A. So let us as-
sume that, at the time t = 0, the initial configuration κt=0 is given by an
unloaded ice specimen with the ODF f�(n). At t = 0+, it is subjected to the
stress tD, and, according to Eqs. (9.3) and (9.9), the resulting deformability
is

A = 5
∫
S2

(tD · n)2 − (n · tD · n)2

tr (tD)2
f�(n) d2n . (9.22)

Now let us consider a second initial configuration κ̃t=0 rotated by an orthogo-
nal transformation P with respect to κt=0. The rotated orientations are given
by

ñ = P · n (9.23)

(Fig. 9.4). The ODF follows the rotation, so that

f̃�(ñ) = f�(n)
(9.23)⇒ f̃�(ñ) = f�(PT · ñ) . (9.24)

At t = 0+, the rotated configuration is subjected to the stress t̃D, which is
supposed to be the same as before,

t̃D = tD (9.25)

(Fig. 9.4). The deformability with respect to the rotated configuration is then
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Ã (9.22)
= 5

∫
S2

(̃tD · ñ)2 − (ñ · t̃D · ñ)2

tr (̃tD)2
f̃�(ñ) d2ñ

(9.24), (9.25)
= 5

∫
S2

(tD · ñ)2 − (ñ · tD · ñ)2

tr (tD)2
f�(PT · ñ) d2ñ . (9.26)

We change the name of the integration variable in the last integral of Eq. (9.26)
from ñ to n,

Ã = 5
∫
S2

(tD · n)2 − (n · tD · n)2

tr (tD)2
f�(PT · n) d2n . (9.27)

This is the same as the deformability with respect to κt=0 [Eq. (9.22)] for
arbitrary orthogonal transformations P if and only if f�(n) = const = 1/(4π).
In this case, the flow law (9.10) is isotropic. For the general case of a non-
constant ODF, the deformabilities (9.22) and (9.27) are not equal for arbitrary
orthogonal transformations P, so that the flow law (9.10) is anisotropic, QED.

9.1.4 Some Examples

The properties of the CAFFE flow law will now be investigated for three
examples, namely (i) simple shear on a rotated single maximum fabric, (ii)
uniaxial compression on a horizontal girdle fabric and (iii) combined shear
and compression on a vertical single maximum fabric.

Simple Shear on Rotated Single Maximum Fabric

We consider an ice sample with a single maximum fabric that has been rotated
by the angle θ0 in the x-z-plane away from the vertical direction,

f�(n) = δ(n − n0) , with n0 =

⎛
⎝ sin θ0

0
cos θ0

⎞
⎠ (9.28)

[δ(·) denotes Dirac’s δ function]. In order to visualise the ODF (9.28), we use
Schmidt diagrams. In a Schmidt diagram, the upper hemisphere S2|z≥0 is pro-
jected on the horizontal plane by a Lambert azimuthal equal-area projection
(Fig. 9.5). This provides for an easy and intuitive representation of ODFs,
and therefore Schmidt diagrams are very commonly used for that purpose.
Figure 9.6 shows the Schmidt diagrams of the ODF (9.28) for three different
rotation angles θ0.

The ice sample is subjected to simple shear in the x-z-plane. The according
Cauchy stress tensor and deviator are
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Fig. 9.5. Construction of a Schmidt diagram: Lambert azimuthal equal-area projec-
tion of points on the upper hemisphere (open circles) on the horizontal plane (solid
circles).

Fig. 9.6. Schmidt diagrams of the rotated single maximum fabric (9.28) for θ0 = 0◦,
45◦ and 90◦.

t = tD =

⎛
⎝ 0 0 τ

0 0 0
τ 0 0

⎞
⎠ , (9.29)

where τ = txz is the shear stress.
Inserting Eq. (9.28) in Eq. (9.9) yields the polycrystal deformability

A = 5
∫
S2

S2
t (n)

tr (tD)2
δ(n − n0) d2n

= 5
S2

t (n0)
tr (tD)2

= 5
(tD · n0)2 − (n0 · tD · n0)2

tr (tD)2
, (9.30)

where, by using Eq. (9.29),

(tD · n0)2 = τ2 cos2 θ0 + τ2 sin2 θ0 = τ2 ,

(n0 · tD · n0)2 = (2τ sin θ0 cos θ0)2 = τ2 sin2 2θ0 , (9.31)
tr (tD)2 = 2τ2 ,

so that the result is

A =
5
2
(1 − sin2 2θ0) =

5
2

cos2 2θ0 . (9.32)

The corresponding enhancement factor [see Eq. (9.12)] is shown in Fig. 9.7.
Maximum softness (E = Emax = 10) occurs for a vertical (θ0 = 0◦) and a
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Fig. 9.7. Anisotropic enhancement factor E(A) as a function of the rotation angle θ0

for the configuration “simple shear on rotated single maximum fabric” [Eq. (9.32)].
Parameters: Emax = 10, Emin = 0.1.

horizontal (θ0 = 90◦) single maximum, maximum hardness (E = Emin = 0.1)
for a single maximum rotated by θ0 = 45◦. The ice is softer than isotropic ice
(E > 1) for angles θ0 < 25.4◦ and θ0 > 64.6◦, and harder than isotropic ice
(E < 1) for angles in between (25.4◦ < θ0 < 64.6◦).

The result (9.32) is a nice illustration for the proof of anisotropy given
above. Let us assume that the stress exponent n is equal to 3, the temperature
is fixed so that A(T ′) = A = const, and the test is done for the extreme cases
(1) θ0 = 0◦ and (2) θ0 = 45◦. Test (1) gives A1 = 5

2 , thus E(A1) = Emax, and
due to the flow law (9.10) the resulting shear rate in the x-z-plane is

γ̇1 = 2Dxz = 2AEmaxτ
3. (9.33)

Test (2) gives A2 = 0, thus E(A2) = Emin and

γ̇2 = 2Dxz = 2AEminτ3. (9.34)

Since Emin � Emax, the shear rate of Eq. (9.34) is much smaller than that
of Eq. (9.33). In other words, the material response of the ice specimen has
changed considerably due to the 45◦ rotation of its initial configuration. This
clearly fulfills the criterion for an anisotropic material.

Uniaxial Compression on Horizontal Girdle Fabric

As a second example, we consider an ice sample with a girdle fabric that is
circularly symmetric with respect to the vertical direction (z-axis) and has
the opening angle θ0.

In order to formulate the ODF of the horizontal girdle fabric, we employ
the spherical coordinates θ (zenith angle) and φ (azimuth angle) [see, e.g.,
Bronshtein et al. (2004)]. With respect to a fixed Cartesian coordinate system
x, y, z, the orientation n reads
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n =

⎛
⎝ cos φ sin θ

sin φ sin θ
cos θ

⎞
⎠ , (9.35)

and the ODF is
f�(n) =

1
2π sin θ0

δ(θ − θ0) . (9.36)

The factor 1/(2π sin θ0) is required in order to fulfill the normalisation condi-
tion (9.7). Figure 9.8 shows the Schmidt diagrams of the ODF (9.36) for three
different opening angles θ0.

Fig. 9.8. Schmidt diagrams of the horizontal girdle fabric (9.36) for θ0 = 0◦, 45◦

and 80◦.

The ice sample is subjected to uniaxial compression in the vertical direc-
tion. The Cauchy stress tensor and deviator read

t =

⎛
⎝ 0 0 0

0 0 0
0 0 −σ

⎞
⎠ ⇒ tD =

⎛
⎝

1
3σ 0 0
0 1

3σ 0
0 0 − 2

3σ

⎞
⎠ , (9.37)

where σ = −tzz is the vertical normal stress, counted positive for compression.
The polycrystal deformability results from Eqs. (9.9) and (9.36),

A =
5

2π sin θ0

∫
S2

S2
t (n)

tr (tD)2
δ(θ − θ0) d2n

=
5

2π sin θ0

∫
S2

(tD · n)2 − (n · tD · n)2

tr (tD)2
δ(θ − θ0) d2n . (9.38)

By using Eqs. (9.35) and (9.37), we find for the several terms the expressions
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(tD · n)2 = 1
9σ2(cos2 φ sin2 θ + sin2 φ sin2 θ + 4 cos2 θ)

= 1
9σ2(sin2 θ + 4 cos2 θ) ,

(n · tD · n)2 = (1
3σ cos2 φ sin2 θ + 1

3σ sin2 φ sin2 θ − 2
3σ cos2 θ)2

= (1
3σ sin2 θ − 2

3σ cos2 θ)2

= 1
9σ2(sin4 θ − 4 sin2 θ cos2 θ + 4 cos4 θ) ,

tr (tD)2 = 2
3σ2 ,

d2n = sin θ dθ dφ ,

(9.39)

and Eq. (9.38) can be evaluated as

A =
5
6
(sin2 θ0 + 4 cos2 θ0 − sin4 θ0 + 4 sin2 θ0 cos2 θ0 − 4 cos4 θ0)

=
5
6
[sin2 θ0(1 − sin2 θ0) + 4 cos2 θ0(1 − cos2 θ0) + 4 sin2 θ0 cos2 θ0]

=
15
2

sin2 θ0 cos2 θ0 =
15
8

(1 − cos2 2θ0) . (9.40)
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Fig. 9.9. Anisotropic enhancement factor E(A) as a function of the opening angle θ0

for the configuration “uniaxial compression on horizontal girdle fabric” [Eq. (9.40)].
Parameters: Emax = 10, Emin = 0.1.

Figure 9.9 shows the enhancement factor which results from the deforma-
bility (9.40). The ice sample is softest for a girdle fabric with opening angle
θ0 = 45◦; however, in contrast to the above case of simple shear on a rotated
single maximum fabric, the enhancement factor does not reach the maximum
value Emax = 10, but only E(θ0 =45◦) = 5.31. Within the interval of opening
angles 23.5◦ < θ0 < 66.5◦, the ice sample is softer than isotropic ice (E > 1).
Outside of this interval it is harder than isotropic ice (E < 1), and maximum
hardness (E = Emin = 0.1) occurs for θ0 = 0◦ (vertical single maximum) and
θ0 = 90◦ (“equatorial” girdle).
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Combined Shear and Compression on Vertical Single Maximum

As a last example, let us assume an ice sample with a vertical single maximum
fabric,

f�(n) = δ(n − ez) , (9.41)

loaded by a combination of simple shear and uniaxial compression,

t =

⎛
⎝ 0 0 τ

0 0 0
τ 0 −σ

⎞
⎠ ⇒ tD =

⎛
⎝

1
3σ 0 τ
0 1

3σ 0
τ 0 − 2

3σ

⎞
⎠ . (9.42)

Computation of the polycrystal deformability (9.9) is straightforward,

A = 5
∫
S2

S2
t (n)

tr (tD)2
δ(n − ez) d2n

= 5
S2

t (ez)
tr (tD)2

= 5
(tD · ez)2 − (ez · tD · ez)2

tr (tD)2
, (9.43)

and with the expressions

(tD · ez)2 = τ2 + 4
9σ2 ,

(ez · tD · ez)2 = 4
9σ2 , (9.44)

tr (tD)2 = 2τ2 + 2
3σ2

we obtain

A =
5
2
× τ2

τ2 + 1
3σ2

=
5
2
× 1

1 + 1
3

(
σ
τ

)2 . (9.45)

Figure 9.10 shows the resulting enhancement factor as a function of the
stress ratio σ/τ . The limits are as expected, namely E → Emax = 10 for
σ/τ → 0 (shear dominates) and E → Emin = 0.1 for σ/τ → ∞ (compression
dominates). In case of equal stresses the enhancement factor has the value
E(σ/τ =1) = 5.31, so that softening due to shear outweighs hardening due to
compression. Only for stress ratios σ/τ > 2.12 is the enhancement factor less
than unity, so that hardening is dominant.

In fact, the behaviour of the configuration for similar stresses (σ/τ ∼ 1)
reveals a general weakness of the CAFFE flow law for complex states of stress
or deformation. The modelled softening or hardening is necessarily the same
for all directions, whereas in reality different directions will show different
degrees of softening or hardening. Concretely, for the above example the ice
sample will be soft for shear and hard for compression, while the CAFFE
flow law predicts some average softening or hardening for both shear and
compression, depending on the stress ratio. This shortcoming is a tribute to
the simple formulation with a scalar enhancement factor, which allows the
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Fig. 9.10. Anisotropic enhancement factor E(A) as a function of the stress ratio σ/τ
for the configuration “combined shear and compression on vertical single maximum”
[Eq. (9.45)]. Parameters: Emax = 10, Emin = 0.1.

flow law to be set up with only two well-known parameters (Emax, Emin).
More complex anisotropic flow laws which give up the collinearity between
the stress deviator tD and the strain-rate tensor D have been formulated [see,
e.g., the overview by Gagliardini et al. (2009)], but the price to pay is an
increased number of parameters and greater computational demands.

9.1.5 Evolution of Anisotropy

Orientation Mass Balance

The anisotropic flow law in the form (9.10) or (9.15) needs to be complemented
by an evolution equation for the anisotropic fabric. This is done by formulating
an orientation mass balance for the OMD ρ�(n).

We are not going to enter into the detailed formalism of orientation bal-
ance equations here [see, e.g., Faria (2003), Placidi (2004)]. Instead, we rather
motivate the form of the orientation mass balance by generalizing the ordinary
mass balance (3.58). The difference is that, in addition to the dependencies on
the position vector x ∈ E and the time t, the density and velocity fields also
depend on the orientation vector n ∈ S2, which is indicated by the notation
ρ�(n) and v�(n). The velocity, which describes motions in the physical space
E , is complemented by an orientation transition rate u�(n), which describes
motions on the unit sphere, that is, changes of the orientation due to grain
rotation (Fig. 9.11). An orientation flux q�(n) is introduced, which allows
redistributions of the OMD due to polygonisation (rotation recrystallisation).
Consequently, the orientation mass balance reads

∂ρ�

∂t
+ div (ρ�v�) + divS2(ρ�u� + q�) = ρ�Γ � . (9.46)
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Fig. 9.11. Orientation transition rate u�(n) on the unit sphere S2.

The first two terms on the left-hand side are straightforward generalisations
of the terms in the ordinary mass balance (3.58). The third term on the left-
hand side is the equivalent of the second term for the orientation transition
rate u�(n) and the orientation flux q�(n), where divS2 is the divergence op-
erator on the unit sphere. On the right-hand side, a source term appears
which allows certain orientations to be produced at the expense of others.
The quantity Γ �(n) is therefore called the orientation production rate. Phys-
ically, it describes dynamic recrystallisation (migration recrystallisation) and
all other processes in which the transport of mass from one grain, having a
certain orientation, to another grain, having a different orientation, cannot be
neglected.

In the following, we will make the reasonable assumption that the spatial
velocity does not depend on the orientation, that is, v�(n) = v. Therefore,
the orientation mass balance (9.46) simplifies to

∂ρ�

∂t
+ div (ρ�v) + divS2(ρ�u� + q�) = ρ�Γ � . (9.47)

By using the Gauss theorem and the mass-conservation requirement∫
S2

ρ�(n)Γ �(n) d2n = 0 , (9.48)

integration of Eq. (9.47) over S2 (all orientations) gives the ordinary mass
balance

∂ρ

∂t
+ div (ρv) = 0 . (9.49)
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In order to solve the orientation mass balance (9.47), constitutive relations
for the orientation transition rate u�(n), the orientation flux q�(n) and the
orientation production rate Γ �(n) must be provided as closure conditions.

Constitutive Relation for the Orientation Transition Rate

As mentioned above, the orientation transition rate corresponds physically to
grain rotation. Since grain rotation is induced by shear deformation in the
basal plane, it is reasonable to assume that it is controlled by the shear rate
Dtet [Eq. (9.16)]. In the CAFFE model, a linear relation is applied,

u�(n) = −ιDtet + W · n = −ι · [D · n − (n · D · n)n] + W · n . (9.50)

The parameter ι is assumed to be a positive constant. The additional term
W·n involving the spin tensor W describes the contribution of local rigid-body
rotations; see Eqs. (3.29) and (3.36) – (3.39).

In the special case ι = 1, the basal planes are material area elements,
that is, they carry out an affine rotation. However, due to geometric incom-
patibilities of the deformation of individual crystallites in the polycrystalline
aggregate, affine rotations are not plausible, and we expect realistic values of
ι to be less than unity. In fact, Placidi (2004) showed that the fabrics in the
upper 2000 m of the GRIP ice core in central Greenland can be best explained
by the value ι ≈ 0.4. A study by Seddik et al. (2008) on the EDML ice core in
Dronning Maud Land, East Antarctica, provided a best fit between modelled
and measured fabrics for ι = 0.6 (see below, Sect. 9.1.6).

Constitutive Relation for the Orientation Flux

The orientation flux is supposed to describe polygonisation (rotation recrys-
tallisation). It is modelled as an isotropic diffusive process,

q�(n) = −λ gradS2ρ�(n) , (9.51)

where the parameter λ > 0 is the orientation diffusivity and gradS2 is the
gradient operator on the unit sphere. Equation (9.51) is equivalent to Fick’s
law of diffusion on the unit sphere.

A problem is that very few data exist which allow values of the parameter
λ to be constrained. This requires further attention.

Constitutive Relation for the Orientation Production Rate

The driving force for the orientation production rate, which essentially models
dynamic recrystallisation (migration recrystallisation), is macroscopic defor-
mations of the polycrystal, which can be more easily followed on the micro-
scopic scale by grains oriented favourably for the given deformation. Therefore,



Fig. 9.12. Orientation production rate according to Eq. (9.52).

it is reasonable to assume that the orientation production rate for a certain ori-
entation n is related to the crystallite deformability A�(n) [Eqs. (9.4), (9.18)].
In the CAFFE model, the linear relation

Γ �(n) = Γ [A�(n) −A] (9.52)

is proposed. Subtraction of the polycrystal deformability A is required in order
to fulfill the mass-conservation condition (9.48). The parameter Γ is assumed
to be positive, which guarantees a positive mass production for favourably
oriented grains, and a negative production for unfavourably oriented grains
(Fig. 9.12). Since dynamic recrystallisation is expected to be strongly depen-
dent on temperature, Γ should increase with increasing temperature. However,
as for the case of the orientation diffusivity λ, it is not possible at the moment
to constrain values of Γ in a reasonable fashion.

The formulation of the CAFFE model is now complete. Equation (9.10) is
the actual flow law, which replaces its isotropic counterpart (4.16). Anisotropy
enters via the enhancement factor E(A) [Eq. (9.12)], which depends on the
deformability A defined in Eq. (9.9). Computation of the deformability re-
quires knowledge of the orientation mass density ρ�, which is governed by
the evolution equation (9.47) and the constitutive relations (9.50), (9.51) and
(9.52).

9.1.6 Application to the EDML Core, Antarctica

The fabric evolution equation (9.47) of the CAFFE model was solved numer-
ically by Seddik et al. (2008) for the site of the EPICA (European Project for
Ice Coring in Antarctica) ice core at Kohnen Station, Dronning Maud Land,
Antarctica (referred to in short as “EDML core”). Kohnen Station is situated
at 75◦00′06′′S, 00◦04′04′′E, at an altitude of 2892 mAMSL (above mean sea
level), and the overall length of the EDML core is 2774 m (EPICA Community
Members 2006). Preliminary fabric data are available from 50 m until 2570 m
depth (I. Hamann, personal communication 2007, Eisen et al. 2007; shown in
Fig. 9.13), against which the results of the CAFFE model can be tested. The
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measured fabrics show a gradual transition from randomly oriented c-axes in
shallower depths (down to 600 m) to a broad vertical girdle fabric (∼ 600
to 1000 m depth). A narrowing of the vertical girdle fabric follows between
∼ 1000 and 2000 m depth. A sudden change in the flow regime is indicated by
a vertical alignment of the c-axes over only 10 m towards a single maximum
(∼ 2040 m depth). Near the bottom (Schmidt diagram for 2563 m depth), the
single maximum fabric shows a slightly widened structure.

Fig. 9.13. Selected Schmidt diagrams for the observed fabrics of the EDML ice
core between 54 m and 2563 m depth. Each dot represents the orientation of a single
grain, and n denotes the number of grains included. Note that the orientations of the
horizontal planes with respect to the ice flow direction are unknown. Reproduced
from Seddik et al. (2008), based on I. Hamann (personal communication 2007) and
Eisen et al. (2007), c© International Glaciological Society.
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Based on the fact that Kohnen Station is located on a flank of the Antarctic
Ice Sheet (rather than a dome like most other deep ice cores), the local flow
profile v(z) for the EDML core was reconstructed by Seddik et al. (2008) with
the following settings and assumptions:

• Horizontal coordinates x, y defined such that Kohnen Station marks the
origin, and the x-axis points in the downslope (∼ 260◦, WSW) direction.

• Horizontal flow field governed by the shallow ice approximation , so that
vx(z) is essentially governed by Eq. (5.84) [neglected basal sliding vbx,
A(T ′) replaced by E(A)A(T ′)], and vy(z) = 0.

• Vertical velocity vz(z) results from a Dansgaard-Johnsen-type distribution
(Dansgaard and Johnsen 1969) of the vertical strain rate Dzz = ∂vz/∂z
(constant negative Dzz from the surface down to two thirds of the ice
thickness, linearly increasing Dzz below, almost zero at the base).

• Similar for the temperature profile T (z): constant T = Ts (surface tem-
perature) from the surface down to two thirds of the ice thickness, linearly
increasing T below, pressure melting point at the base.

• Horizontal stretching in x-direction only: Dxx(z) = −Dzz(z), Dyy(z) = 0.

Under the additional assumptions of steady-state conditions, that is, ∂(·)/∂t =
0, and an isotropic fabric at the ice surface, this allows a numerical solution of
the fabric evolution equation (9.47), which yields the OMB ρ� as a function of
the vertical coordinate z [for details see Seddik et al. (2008)]. Recrystallisation
processes were neglected (λ = 0, Γ = 0), and the remaining parameter ι was
set to the value 0.6, which yielded the best fit between modelled and measured
fabrics.

The computed Schmidt diagrams for the ODF f�(z) = ρ�(z)/ρ are pre-
sented in Fig. 9.14. For the sake of easy comparison with the fabric data, the
depths are the same as in Fig. 9.13. We see a rather good agreement between
the data and the model results for the transition with depth from isotropy via
broad and narrow vertical girdle fabrics to a single maximum at about 2040 m.
The computed girdle fabrics are aligned with the y-axis (perpendicular to the
flow direction), while the alignments of the observed fabrics appear erratic
because the processing of the ice core did not preserve the orientation in the
horizontal plane. Compared to the data, the computed girdle fabrics show a
stronger concentration of c-axes towards the vertical. According to Paterson
(1994, p. 198), this discrepancy indicates that some amount of compression
occurs in transverse (y-) direction, which has not been accounted for in the
above assumptions. At the depths of 2035 m and 2045 m, the single maximum
fabrics obtained have a noticeable deviation from the vertical (center of the
Schmidt diagrams). This is also in agreement with the data, and is an effect of
the transition of the deformation regime from mainly pure shear (compression
in the z-direction, stretching in the x-direction) to mainly bed-parallel simple
shear. However, at 2563 m depth, the modelled fabric shows a widened and
somewhat decayed structure, which is reflected in the data only to a limited
extent. The spurious spatial oscillations in this fabric indicate that it is likely
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Fig. 9.14. Schmidt diagram representation of the EDML fabrics [ODF f�(n)] at
depths between 54 m and 2563 m computed by the evolution equation (9.47) of the
CAFFE model. Reproduced from Seddik et al. (2008), c© International Glaciological
Society.

influenced by a numerical instability of the applied finite volume scheme near
the base. Further, the disregard of recrystallisation processes is critical in the
warm, near-basal part of the ice core, where dynamic recrystallisation is ex-
pected to be important. It is thus understandable that the model results do
not reproduce the observations so well below ∼ 2100 m depth. Future work
will aim at constraining values for the parameters λ and Γ in order to include
recrystallisation processes in applications of the CAFFE model.
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9.2 Compressible Firn

9.2.1 Background

Glaciers and ice sheets do not only consist of ice that is incompressible, as
assumed in earlier discussions. In most glaciers and ice sheets we find a layer
of firn at the surface in the accumulation area. Firn is sometimes defined
as snow that is older than one year, thus having survived at least one melt
season. A characteristic property of firn is its porosity; that is, it consists of
a mixture of ice crystallites and air. Thus, the density of firn is smaller than
that of ice.

The density of a firn layer increases as it moves deeper into the glacier. This
is a consequence of the increasing pressure due to the subsequent deposition
of additional firn layers every year. At some depth, the firn is transformed
into ice at almost the density of pure polycrystalline ice. This depth defines
the thickness of the firn layer.

The accumulation area, and thus the firn zone of glaciers, may extend
over a large range of altitude and thus climatic conditions. Depending on the
summer climate at the given altitudes, a variable fraction of the firn and snow
at the surface may melt and the meltwater may percolate into the firn to
variable depths. At very high altitudes the snow may stay dry throughout the
melt season and melt never occurs.

The densification and transformation of firn into ice strongly depends on
the amount of water percolating into the firn. The presence of water makes the
densification process extremely complex due to melting, refreezing, recrystalli-
sation, and the formation of ice lenses and ice layers within the firn. Generally,
the densification occurs faster with higher water content. Consequently, the
total thickness of the firn layer decreases with higher water content. Wet firn
also loses more of the enclosed air and the resulting ice contains fewer bubbles
than cold firn and ice.

Generally, firn only occurs in a surface layer in the higher parts of glaciers
and ice sheets and the thickness of the layer is generally much smaller than the
total ice thickness. A few exceptional cases exist, such as the highest parts of
cold mountain glaciers (Lüthi and Funk 2001) and firn-filled volcanic craters
(Zwinger et al. 2007).

9.2.2 Densification of Firn

Figure 9.15 shows a density profile in the uppermost part of the Fiescherhorn
Glacier in the Swiss Alps, at about 3800 m AMSL (above mean sea level).
The firn is not entirely dry and some ice layers are found in the firn. The
density profile shows four typical and clearly distinguishable parts separated
by kinks in the profile. In the layer between the surface and about 10 m depth
the density increases from about 400 to 550 kg m−3. In the second layer down
to 40 m the density increases nearly linearly with depth to about 800 kg m−3.
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Fig. 9.15. Density profile measured on Fiescherhorn Glacier, Swiss Alps. Repro-
duced from Schwerzmann (2006), c© A. A. Schwerzmann.

Further down, the density increases at a decreasing rate, and comes close
to pure ice density at a depth of 90 m. Below this depth the ice has an
almost constant density of 900 kg m−3, slightly less than the density of pure
ice. This is a typical density profile for dry or nearly dry snow zones. The
profile gives rise to a distinction of consecutive stages of different types of
densification processes, sometimes called initial, intermediate and final stages
of densification.

The initial stage of densification is complex and conceptually difficult to
describe and quantify. In low density snow and firn, the ice forms a fragile grid
prone to fracturing and rearrangement of the ice grains. When temperature
varies, transport of vapour, evaporation and recrystallisation lead to grain
growth and support the sintering process. Since low density snow and firn
occur only in the uppermost few metres of the firn area, it may not contribute
significantly to the overall glacier flow. However, since low density firn is much
softer than ice, it may lead to substantial shearing in the surface layer even
at low stresses (Fig. 9.16).

In the intermediate stage, the densification is determined by viscoplastic
deformation of the ice at the contact points between ice grains. The air is still
connected throughout this part of the firn and is at atmospheric pressure. To
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Fig. 9.16. Velocity profile measured on Fiescherhorn Glacier, Swiss Alps. Repro-
duced from Schwerzmann (2006), c© A. A. Schwerzmann.

a good approximation, the intermediate stage is modelled as an assembly of
closely packed spherical grains of ice.

The final stage is determined by the closure of air bubbles. Thus, the
final stage firn consists of a solid matrix of ice with pressurised air bubbles
completely enclosed by the ice. A conceptual model assumes a spherical void
filled with air under pressure enclosed in a spherical grain of ice under isotropic
pressure.

At even higher pressure the air in bubbles may start to immerse into the
ice crystallites. Due to this air the ice formed by densification of dry or nearly
dry firn cannot reach the density of pure ice. At high enough pressures and
low enough temperatures, the enclosed gases may form clathrates, i.e., the
gas molecules may become enclosed in polyhedral cavities of water molecules
in the ice lattice. These clathrates may form macroscopically visible crystals
enclosed in normal ice crystallites.

9.2.3 Constitutive Relation for Firn

Similar to ice, firn is assumed to be an isotropic, viscous, heat-conducting
fluid. However, from the above considerations it has become clear that com-
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pressibility must be taken into account. Therefore, a material function of the
form (3.127) is appropriate; however, the bulk and shear viscosities cannot be
taken as constants.

Since hydrostatic equilibrium in the presence of gravity does not exist
for firn, the thermodynamic pressure is negligible. Thus, the total pressure is
equal to the viscous pressure,

ptot = pvisc = −ζ tr D = −ζ divv , (9.53)

see Eq. (3.129). The remaining, deviatoric part of the stress tensor tD is related
to the strain-rate deviator DD via

tD = 2η DD . (9.54)

For the description of the firn rheology, it is convenient to introduce the di-
mensionless relative density

ρ̃ =
ρ

ρ̂i
, (9.55)

where ρ is the density of firn and ρ̂i = 910 kg m−3 is the bulk density of
pure ice. The following power laws for the shear and bulk viscosities, re-
spectively, have been established (Gagliardini and Meyssonnier 1997, Zwinger
et al. 2007),

η(T ′, δ) =
1

2a(ρ̃)
B(T ′) δ−(1−1/n) , (9.56)

ζ(T ′, δ) =
1

2b(ρ̃)
B(T ′) δ−(1−1/n) , (9.57)

where

δ =
( 1

2 tr (DD)2

a(ρ̃)
+

(tr D)2

4b(ρ̃)

)1/2

=
(

tr (DD)2

2a(ρ̃)
+

(divv)2

4b(ρ̃)

)1/2

(9.58)

is a strain invariant. The above viscosities fulfill the relation

ζ(T ′, δ) =
a(ρ̃)
b(ρ̃)

η(T ′, δ) . (9.59)

The dependency of a(ρ̃) and b(ρ̃) upon the relative density has been obtained
from field data,

a(ρ̃) =

⎧⎪⎨
⎪⎩

exp(c1 − c2 ρ̃) , ρ̃ ≤ 0.81 ,[
1 +

2
3

(1 − ρ̃)
]

ρ̃−2n/(n+1) , ρ̃ > 0.81 ,

b(ρ̃) =

⎧⎪⎪⎨
⎪⎪⎩

exp(c3 − c4 ρ̃) , ρ̃ ≤ 0.81 ,

3
4

{
(1 − ρ̃)1/n

n ·
[
1 − (1 − ρ̃)1/n

]
}2n/(n+1)

, ρ̃ > 0.81 .

(9.60)
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Fig. 9.17. Parameters a and b for the shear and bulk viscosities of compressible
firn according to Eq. (9.60).

For n = 3, the constants are c1 = 13.22240, c2 = 15.78652, c3 = 15.09371 and
c4 = 20.46489, see Fig. 9.17. In the limit of pure ice, ρ̃ → 1, we have a → 1,
b → 0, divv → 0 and δ → de, and thus Glen’s flow law in the form (4.21)
with the shear viscosity (4.22) is restored.

9.2.4 Field Equations

Due to the compressibility of firn, the mass balance must be applied in the
form of Eq. (3.58),

dρ

dt
+ ρdivv =

∂ρ

∂t
+ (grad ρ) · v + ρdivv = 0 . (9.61)

The density ρ is now a prognostic variable, and it is necessary to incorporate
the densification process. The stress tensor t for a compressible fluid is given
by Eq. (3.127),

t = −p(ρ, T ) I + (ζ tr D) I + 2η DD , (9.62)

and with Eqs. (3.128), (3.129) and the negligibility of the thermodynamic
pressure this yields

t = (ζ tr D) I + 2η DD (9.63)

= (ζ tr D) I + 2η

[
D − 1

3
(tr D) I

]

= (λ tr D) I + 2η D
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(where λ = ζ − 2η/3). For firn, the viscosities are functions of position, and
thus, the divergence of the stress tensor is

div t = grad (λ divv) + div (2ηD)
= grad (λ divv) + div [η (gradv + (gradv)T)] . (9.64)

Inserting this result in the momentum balance (3.72), neglecting the acceler-
ation term and setting f = ρg yields the equation of motion

grad (λ divv) + div [η (gradv + (gradv)T)] + ρg = 0 . (9.65)

The temperature evolution equation (5.14) for ice sheets can still be applied,

ρc
dT

dt
= div (κ grad T ) + 4η d2

e . (9.66)

Expressions for the heat conductivity κ and specific heat c as functions of
density and temperature have been suggested by Zwinger et al. (2007).

Based on measurements in the cold firn area of central Greenland, Sorge’s
Law was formulated (Bader 1954):

At any given location in a dry firn area of a glacier, the density as a
function of depth below the surface is invariant with time.

Since the surface change of glaciers and ice sheets is slowest in their highest
reaches, Sorge’s Law may be interpreted as

∂ρ

∂t
= 0 (9.67)

in an Eulerian description of a quasi-stationary field. Thus, Eq. (9.61) reduces
to

(grad ρ) · v + ρdivv = 0 . (9.68)

An advection equation of the form (9.68) is difficult to solve numerically. A
possible solution strategy uses the fact that Eq. (9.61) is equivalent to an
integral along the particle trajectories. Thus Eq. (9.68) can be transformed
into

ρdivv + vs
∂ρ

∂s
= 0 , (9.69)

where s and vs are the arc length and component of the velocity vector along
the particle trajectory, respectively. Equation (9.69) constitutes an ordinary
differential equation for ρ that can be solved stably by integration along trajec-
tories. With the additional assumption of a stationary flow field, the particle
trajectories are identical to the flow lines. In this case, a solution strategy
first solves Eq. (9.65) for the velocity with an initially assumed density field,
and then solves Eq. (9.69) for the density with the resulting velocity field.
This procedure offers the possibility of a fixed point iteration scheme to ob-
tain consistent solutions for the velocity and density fields. To obtain a stable
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and smooth convergence, a relaxation scheme analogue to Eq. (6.118) may be
employed for both fields.

Exploiting Sorge’s Law simplifies the problem further if the density field
can be prescribed based on field observations. This then reduces the problem
to the computation of the velocity field for a given density field.

9.2.5 Parallel Sided Slab

Governing Equations

Similar to Sect. 7.2, a parallel sided slab with a given layering of the firn
density can be reduced to a quadrature. We make the following assumptions:

• Plane strain approximation: purely two-dimensional flow in the vertical
x-z plane, no dependencies on the transverse coordinate y.

• Constant inclination angle α.
• Uniformity in the downslope (x) direction: ∂(·)/∂x = 0 for all field quan-

tities.
• Flat, rigid bed: b(x, t) = 0 (in the inclined coordinate system). The ice

thickness may be time-dependent, H(t), and thus the free surface is given
by h(x, t) = h(t) = H(t).

• No surface accumulation (a⊥
s = 0).

• No basal melting (a⊥
b = 0), no basal sliding (Cb = 0).

• Flow law (9.56), (9.57) with exponent n = 3.
• Constant rate factor:

A(T ′) = A = const ⇔ B(T ′) = A(T ′)−1/n = A−1/n = B = const.

Note that we do not make the steady-state assumption ∂(·)/∂t = 0 here. In
particular, Sorge’s Law (9.67) is not applicable to the parallel sided firn slab
because there is no replenishment of fresh snow at the surface (due to a⊥

s = 0)
which counteracts the compaction of the firn.

With the above assumptions, the x- and z-components of Eq. (9.65) reduce
to the forms

∂

∂z

(
η
∂vx

∂z

)
+ ρg sin α = 0 , (9.70)

∂

∂z

[(
ζ +

4η

3

)
∂vz

∂z

]
− ρg cos α = 0 , (9.71)

and Eq. (9.61) becomes
∂ρ

∂t
+

∂

∂z
(ρ vz) = 0 . (9.72)

The first integrals of Eqs. (9.70) and (9.71) are

η
∂vx

∂z
= g sinα

∫ h

z

ρ(z′)dz′ ≡ g sin α D(z) , (9.73)
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(
ζ +

4η

3

)
∂vz

∂z
= −g cos α

∫ h

z

ρ(z′)dz′ ≡ −g cos α D(z) . (9.74)

For the second integrals, the constitutive law for the viscosity of firn, Eqs. (9.56)
and (9.57) must be substituted in Eqs. (9.73) and (9.74). With the symmetry
of the parallel sided slab, the deviatoric strain rate tensor is

DD =
1
2

⎛
⎜⎜⎜⎝

−∂vz

∂z

∂vx

∂z

∂vx

∂z

∂vz

∂z

⎞
⎟⎟⎟⎠ , (9.75)

and thus, the invariant [Eq. (9.58)] becomes

δ2 =
1
4a

(
∂vx

∂z

)2

+
(

1
4a

+
1
4b

) (
∂vz

∂z

)2

. (9.76)

Through the invariant δ, the two equations (9.70) and (9.71) are coupled. The
shear rate of the firn is influenced by the settling rate of the firn, and vice
versa the settling rate is influenced by the shear rate. To illustrate the effects
of shear and compaction in the firn layer, the problem is split into the two
parts. In the first part, the shear flow of the firn layer is computed with the
assumption that the firn does not settle (∂ρ/∂t = 0). In the second part, the
parallel sided slab is set horizontal so that no shear flow occurs (vx = 0).

Shear Flow of Firn

If compaction is disregarded, the second term in the invariant δ in Eq. (9.76)
vanishes; thus Eq. (9.56) becomes

η = B

(
1
2

)1/n

a−(n+1)/2n

(
∂vx

∂z

)−(1−1/n)

. (9.77)

With Eq. (9.73),

η
∂vx

∂z
= B

(
1
2

)1/n

a−(n+1)/2n

(
∂vx

∂z

)1/n

= g sin αD(z) . (9.78)

This can be solved for the shear strain rate,

∂vx

∂z
= 2Aa(n+1)/2n (g sinαD(z))n

, (9.79)

and, by inserting n = 3, integration yields the velocity vx,

vx = 2A (g sinα)3
∫ z

0

a2 D3 dz′ . (9.80)
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Fig. 9.18. Different firn density profiles (left panel) and resulting velocity profiles
(right panel) for a slab with the parameters H = 100m, α = 10◦, n = 3, A =
10−16 a−1 Pa−3 and g = 9.81 m s−2. The firn-ice transitions are (a) 20 m, (b) 40 m,
(c) 60 m, (d) 80 m and (e) 100 m from the surface. The profiles labelled “ice”
correspond to the solution for a homogeneous ice slab (Fig. 7.2, left panel).

Figure 9.18 shows velocity profiles for a slab of 100 m thickness and 10◦

inclination. The different density profiles have been prescribed by quadratic
functions,

ρ(z) = (ρz=h − ρ̂i)
(z − zfi)2

(h − zfi)2
+ ρ̂i , (9.81)

where ρz=h is the firn density at the surface of the slab and zfi the position
of the firn-ice transition.

Settling of a Firn Layer

The bulk viscosity of firn grows asymptotically towards infinity while the
relative density approaches unity. Thus, a layer of firn settles as long as parts
of the layer have relative densities smaller than unity, the densities approach
the density of ice, ρ̂i, everywhere and the thickness of the layer decreases
asymptotically towards

H∞ =
1
ρ̂i

∫ H0

0

ρdz , (9.82)
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where H0 is the initial thickness of the slab. To simplify the ensuing equations,
the following abbreviations are introduced,

Q ≡ 1
4a

+
1
4b

,
1
R

≡ 4
3a

+
1
b

. (9.83)

Then Eq. (9.71) becomes

(
ζ +

4η

3

)
∂vz

∂z
=

B

2
1
R

Q(1−n)/2n

(
∂vz

∂z

)1/n

= −g cos α D . (9.84)

With n = 3 and B = A−1/3 we obtain

∂vz

∂z
= −8A (g cos α)3 D3 R3 Q , (9.85)

and the profile of the vertical velocity component, vz, is given by

vz = −8A (g cos α)3
∫ z

0

D3 R3 Qdz′ . (9.86)

The settling of the firn slab is a transient problem, where not only the
density and the vertical velocity component change with time, but also the
domain in consideration is changing. The handling of the discretised equa-
tions is made easier by mapping the variable layer thickness to unity at every
time. To achieve this, we apply a terrain-following coordinate transformation
according to Eq. (5.127), but for the simplified situation of the slab,

z̃ =
z

H(t)
, t̃ = t , (9.87)

where z̃ is the transformed coordinate in the slab of unit thickness. The re-
quired coordinate differentials are

∂z̃

∂z
=

1
H(t)

,
∂z̃

∂t
= − z̃

H

dH

dt
. (9.88)

Equation (9.85) in the transformed coordinates, with α = 0◦ (horizontal slab),
is

∂vz

∂z̃
= −8H4 Ag3 D3 R3 Q , (9.89)

where

D(z̃) ≡
∫ H

z̃

ρ(z̃′)dz̃′ , (9.90)

and the profile of the vertical velocity component, vz, is given by

vz =
∫ z̃

0

∂vz

∂z̃′
dz̃′ . (9.91)
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Fig. 9.19. Vertical velocity (left panel) and density profiles (right panel) computed
for a settling firn slab with an initial thickness of H0 = 100m and no inclination
(α = 0◦). (a) initial profiles, (b) profiles after 0.5 a, (c) after 1 a, (d) after 2 a, (e)
after 4 a, (f) after 8 a, (g) after 50 a, (h) after 100 a.

Finally, the temporal evolution of the density profile, Eq. (9.72), is given by

∂ρ

∂t̃
=

1
H

[(
z̃ vz|z̃=1 − vz

) ∂ρ

∂z̃
− ρ

∂vz

∂z̃

]
≡ S , (9.92)

and the rate of change of the slab thickness is equal to the firn velocity at the
surface of the slab,

dH

dt
= vz|z̃=1 . (9.93)

To compute the evolution of the thickness of the slab and the density
profiles, an explicit Euler scheme can be applied,

H2 = H1 + Δt vz|z̃=1 , (9.94)

ρ2(z̃) = ρ1(z̃) + Δt S1(z̃) , (9.95)

where the subscripts 1 and 2 denote the corresponding values at the times t1
and t2 = t1+Δt, respectively. For a slab with an initial thickness H0 = 100m,
a time step Δt = 0.01 a is stable. Figure 9.19 shows the temporal evolution
of the profiles of the vertical velocity and the density, and Fig. 9.20 shows
the thinning of the slab. The results demonstrate that low densities cannot
persist very long and settling of the firn rapidly increases the density, except
near the surface.
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Fig. 9.20. Thinning of a horizontal firn slab (see Fig. 9.19). The initial thickness is
H0 = 100m, and the final thickness is H∞ = 85.18 m.

Coupling of Shear and Settling of a Firn Layer

The equations for shear flow and for settling of the firn, Eqs. (9.70) and
(9.71), are coupled through the invariant δ, Eq. (9.76). Substitution of δ from
Eq. (9.76) in the viscosity terms of Eqs. (9.70) and (9.71) yields a system of two
non-linear first order partial differential equations. A solution strategy follows
a similar idea as applied for the solution of the first order approximation of the
ice flow problem, Eqs. (7.39) and (7.40). Assuming that η and ζ are known,
Equations (9.70) and (9.71),

∂vx

∂z
=

g sinα D

η
, (9.96)

∂vz

∂z
= −3g cos α D

3ζ + 4η
, (9.97)

can be solved by integration. Assuming that ηi and ζi are known profiles of the
viscosities, the velocity profiles vx|i+1 and vy|i+1 can be found by integration,

vx|i+1 = g sin α

∫ z

0

D

ηi
dz′ , (9.98)

vz|i+1 = −3g cos α

∫ z

0

D

3ζi + 4ηi
dz′ . (9.99)

With the new vx|i+1 and vz|i+1, the viscosities can be updated by using
Eqs. (9.56) and (9.57) with the updated δ from Eq. (9.76),

ηi+1 =
B

2a
δ−2/3|i+1 , (9.100)
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Fig. 9.21. Vertical (left curves) and horizontal (right curves) velocity components
in a coupled shear and settling flow (solid lines) of a firn slab with a thickness of
100 m. The dashed lines represent the corresponding uncoupled case (b) in Fig. 9.18.

ζi+1 =
B

2b
δ−2/3|i+1 . (9.101)

Equations (9.98) and (9.99), together with Eqs. (9.100) and (9.101) define a
fixed point iteration. The iteration can be started from the uncoupled solutions
for the velocity components, Eqs. (9.80) and (9.86), to compute the starting
values for the viscosities.

Figure 9.21 shows the profiles of the velocity components in the uncoupled
and in the coupled case. Since firn is treated as a strain softening fluid, the
shearing additionally contributes to the decrease of the bulk viscosity and
thus enhances the settling rate. In turn, the settling strain decreases the shear
viscosity and thus enhances the shear rate.
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9.3 Temperate and Polythermal Glaciers

9.3.1 Background

Most ice in large ice sheets and glaciers at high latitudes is cold (temperature
below the pressure melting point). The thermodynamics of cold ice sheets is
therefore described in Chapter 5. However, as mentioned in Sect. 7.1, many
glaciers at lower latitudes contain significant amounts of temperate ice (tem-
perature at the pressure melting point), or are entirely temperate except for
a temporary cold surface layer in winter. Temperate ice may contain a small
fraction of liquid water, and changes in heat content lead to changes in wa-
ter content, whereas for cold ice changes in heat content lead to temperature
changes. Recall that glaciers that consist entirely of cold ice are called cold
glaciers, glaciers that consist entirely of temperate ice are called temperate
glaciers, and glaciers that consist of both temperate and cold parts are called
polythermal glaciers.

9.3.2 Temperate Ice

Flow properties of temperate ice depend on the content of water in the ice
matrix; however, only one study (Lliboutry and Duval 1985) has attempted
to quantify this relation. In order to comprehensively model the flow of a tem-
perate or polythermal glacier, it is essential to know the spatial distribution
of the water content in the temperate part of the glacier and the temperature
in the cold part. This is particularly true near the bed in the ablation area
where shear rates are high, and thus the impact of the water content on the
flow behavior is expected to be significant.

As opposed to cold ice, the temperature of temperate ice is at the pres-
sure melting point, so that it need not be calculated separately, but follows
immediately from Eq. (4.13),

T = Tm = T0 − β p . (9.102)

Temperate ice contains a certain amount of water, described as the mass
fraction W [see Eq. (9.104) below], which takes the role as the main thermo-
dynamic quantity instead of the temperature. Therefore, in contrast to cold
ice, temperate ice must be regarded as a binary mixture of ice and water,
and ρ denotes the density of the mixture. Because of this, it is necessary to
apply some basic concepts of mixture theory (Müller 1985). Since measured
water contents in temperate ice are generally less than 3% (Pettersson et al.
2004, and references therein) and thus small, temperate ice will be described
by two mass balances, one for the mixture as a whole and one for the water
component, but only one momentum and one energy balance for the mixture.
That is, water is considered as a tracer component whose motion relative to
the barycentre of the mixture is described as a diffusive process. Alternative
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concepts, not considered here, include two separate momentum balances with
a Darcy-type interaction force between the two components (Fowler 1984,
Hutter 1993).

For the formulation of the field equations for temperate ice, we closely
follow the description by Greve (1997). First, some quantities from mixture
theory are introduced. The barycentric velocity is defined as

v ≡ 1
ρ
(ρivi + ρwvw) . (9.103)

The indices i and w refer to the ice and water components, respectively, ρi and
ρw denote the corresponding partial densities (mass of ice or water per unit
volume of the mixture), and vi and vw are the corresponding velocities. The
water content is introduced as the mass fraction, W , of water in the mixture,

W ≡ ρw

ρ
. (9.104)

In addition, a diffusive water mass flux j is defined that describes the water
motion relative to the motion of the barycentre,

j ≡ ρw(vw − v) = ρW (vw − v) . (9.105)

As for pure (cold) ice, the mixture of ice and water is assumed to be incom-
pressible. This is problematic in so far as the bulk densities of ice and water
are distinctly different (ρ̂i = 910 kg m−3 vs. ρ̂w = 1000 kg m−3). However, as
long as the water content is less than 3%, relative changes of the mixture den-
sity due to changes of the water content do not exceed 0.5%. This variability
is negligible, and we set ρ ≈ ρ̂i = 910 kg m−3 instead. As a consequence, the
mixture mass balance and the mixture momentum balance have the same form
as for cold ice,

divv = 0 , (9.106)

− grad p + div tD + ρg = 0 , (9.107)

where the stress tensor t has again been decomposed as t = −p I + tD, the
acceleration term has been neglected and the volume force has been set to
f = ρg.

When formulating the mass balance for the component water, it must be
noted that the partial density of water, ρw, is not constant, but depends on
the water content itself. Furthermore, the mass of water is not conserved due
to the possibility of melting and freezing processes. It is therefore necessary
to use the general form (3.58) of the mass balance and include a production
term M , the rate of water mass produced per unit mixture volume,

∂ρw

∂t
+ div (ρwvw) = M . (9.108)

This is equivalent to
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ρ Ẇ = −div j + M . (9.109)

As was the case for cold ice, constitutive relations are required to close the
system,

D = At(W )σn−1
e tD , (9.110)

u̇ = LẆ + c(Tm) Ṫm , (9.111)

j = −ν grad W , (9.112)

qs = −κ(Tm) grad Tm . (9.113)

The first equation is the counterpart of Glen’s flow law (4.16) for cold ice;
however, the temperature-dependent rate factor is replaced by a factor de-
pending on the water content, At(W ). Following Lliboutry and Duval (1985),
it can be chosen as

At(W ) = A(T ′=0◦C) × (1 + 1.8125W [%]) . (9.114)

The second equation relates changes of the internal energy to changes of the
water content and of the melting temperature. From a strict thermodynamical
point of view this relation is merely approximate. The third equation is Fick’s
diffusion law for the motion of water, and the last equation is Fourier’s law
of heat conduction for the sensible heat flux qs [see the counterpart for cold
ice, Eq. (4.36)]. The latent heat L has the value L = 3.35 × 105 J kg−1, while
suitable values for the water diffusivity ν (assumed to be constant) are not
well constrained.

Next, consider the mixture energy balance. In (9.111) the internal energy
u depends on the water content W , so that a non-vanishing diffusive water
mass flux j contributes to a flux of internal energy, the so-called latent heat
flux ql = Lj. Therefore, the total heat flux q can be expressed as

q = qs + ql = qs + L j . (9.115)

With this modified form of the energy flux, the mixture energy balance results
from the general energy balance (3.92) as

ρu̇ = −div (qs + Lj) + tr (tD · D) , (9.116)

where the radiation r has been neglected. Introducing the constitutive rela-
tions (9.110)–(9.113) into the water mass balance (9.109) and into the mixture
energy balance (9.116) yields the respective relations

ρ Ẇ = νΔW + M (9.117)

and

ρLẆ + ρcṪm = LνΔW + div (κ grad Tm) + 2At(W )σn+1
e , (9.118)

which are consistent, provided that the water production rate M is given by
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M =
1
L

(
2At(W )σn+1

e + div (κ grad Tm) − ρcṪm

)
. (9.119)

This has the physical interpretation that the energy available for melting is
composed of three terms, (i) the heat dissipated by stress power, (ii) the heat
conducted to the point under consideration and (iii) the heat stored by changes
in the melting temperature, the latter term being negative for Ṫm > 0). The
latter two effects contribute only little to M , so that the dominant effect is
water production by heat dissipation, which is the expected behaviour in an
environment with two coexisting, exchanging phases.

9.3.3 Temperate Ice Surface

At a temperate ice surface, the kinematic and dynamic boundary condi-
tions described in Sect. 5.1.2 [Eqs. (5.15)–(5.23)] are applicable without any
changes. However, the thermodynamic boundary condition (5.24) must be
replaced by an analogous statement for the water content,

W = Ws . (9.120)

The surface water content Ws, which results from water entrapment in the
upper firn layer, must be prescribed.

9.3.4 Temperate Ice Base

Next consider a temperate ice base, where the temperature at the ice-
lithosphere interface is at pressure melting. However, the presence of a tem-
perate ice base does not necessarily entail the occurrence of a temperate ice
layer of non-vanishing thickness above it. It is equally possible that the tem-
perature gradient at the ice base is below the Clausius-Clapeyron gradient, so
that the ice becomes cold immediately above the base, even though the base
itself is temperate. The latter case is fully covered by Sect. 5.1.2, Eqs. (5.25)–
(5.40), whereas the former case (temperate base with temperate layer above)
requires some modifications that will now be discussed.

We formulate a mass jump relation for the component water. In order to
account for basal melting, a surface production term Pw

b = ρa⊥
b must be

introduced in the general form (3.61). This yields

[[ρw(vw − w) · n]] = Pw
b = ρa⊥

b , (9.121)

where a⊥
b is the basal melting rate. Equation (9.121) can be transformed to

ρw(vw − w) · n = ρW (vw − w) · n = ṁw
b − ρa⊥

b , (9.122)

where the water mass flux into the base has been defined as

ṁw
b ≡ ρlith

w (vlith
w − w) · n . (9.123)
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This quantity must be prescribed in general. Analogous to Eq. (9.121), the
mass jump relation for the component ice yields

[[ρi(vi − w) · n]] = −Pw
b = −ρa⊥

b . (9.124)

Since the lithosphere is impermeable to ice, and therefore does not contain
any ice, ρlith

i = 0, and thus Eq. (9.124) simplifies to

ρi (vi − w) · n = ρ(1 − W ) (vi − w) · n = ρa⊥
b . (9.125)

With the definition (9.103) of the barycentric velocity, it follows that

v − w = W (vw − w) + (1 − W )(vi − w) , (9.126)

which upon scalar multiplication by n and use of (9.122) and (9.125) becomes

(v − w) · n =
ṁw

b

ρ
. (9.127)

In the case of a negligible diffusive water mass flux j (i.e., vw = vi = v), the
water mass flux into the base ṁw

b can be calculated by comparing (9.125) and
(9.127),

ṁw
b

ρ
=

a⊥
b

1 − W
≈ a⊥

b , (9.128)

and therefore, in contrast to the general case, does not need separate prescrip-
tion. The approximation 1 − W ≈ 1 is justified because of W < 0.03 (water
content less than 3%; see Sect. 9.3.2).

By applying (9.127), the kinematic condition (5.30) changes to

∂Fb

∂t
+ (gradFb) · v = Nb

ṁw
b

ρ
, (9.129)

or, equivalently,
∂b

∂t
+ vx

∂b

∂x
+ vy

∂b

∂y
− vz = Nb

ṁw
b

ρ
. (9.130)

For the diffusive water mass flux j, from (9.105), (9.122) and (9.127),

j · n = ρW (vw − v) · n
= ρW (vw − w) · n − ρW (v − w) · n
= ṁw

b − ρa⊥
b − Wṁw

b

= (1 − W )ṁw
b − ρa⊥

b ≈ ṁw
b − ρa⊥

b . (9.131)

Together with the diffusion law (9.112), Eq. (9.131) represents a Neumann-
type boundary condition for the basal water content.

The continuity of the stress vector, Eq. (5.33), the basal sliding law,
Eq. (5.35)2, and the temperature condition, Eq. (5.39), remain valid. The
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energy jump relation for the mixture follows from the general form (3.94)
with the extended energy flux (9.115),

[[qs · n]] + L [[j · n]] − [[v]] · t · n +
[[

ρ
(
u + 1

2v2
)
((v − w) · n)

]]
= 0 (9.132)

[compare also Eq. (5.36)]. Ignoring the contribution from the kinetic energy
and setting u = LW [due to Eq. (9.111)] yields

[[qs · n]] + L [[j · n]] − [[v]] · t · n + L [[ρW (v − w) · n]] = 0 . (9.133)

By introducing Fourier’s law of heat conduction (9.113), the geothermal heat
flux q⊥geo = −qlith ·n, the sliding velocity vb = − [[v]] and the definition (9.105)
of j,

κ (grad Tm · n) − q⊥geo + vb · t · n + L [[ρW (vw − w) · n]] = 0

(9.121)⇒ κ (grad Tm · n) − q⊥geo + vb · t · n + Lρa⊥
b = 0

⇒ a⊥
b =

q⊥geo − κ (grad Tm · n) − vb · t · n
ρL

. (9.134)

This is the same result as Eq. (5.40), saying that the basal melting rate orig-
inates from the heat fluxes flowing toward the interface from the ice and
lithosphere sides, and from the basal heat production due to sliding.

9.3.5 Transition Conditions at the CTS

The cold-temperate transition surface, henceforth called CTS, constitutes the
phase-change surface between the cold and temperate regions of a glacier and
is therefore a singular surface at which the physical quantities may suffer a
jump. The CTS is described explicitly by

z = zm(x, y, t) (9.135)

or implicitly by
Fm(x, t) = z − zm(x, y, t) = 0 . (9.136)

As indicated in Fig. 9.22, the positive side is by convention the cold ice side,
the negative side the temperate ice side, and the normal unit vector

n =
grad Fm

|grad Fm| (9.137)

points into the cold ice.
Analogue to Eq. (5.20) for the ice surface, the kinematic condition for the

CTS is
∂Fm

∂t
+ (gradFm) · v = −Nma⊥

m , (9.138)
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Fig. 9.22. Geometry of the CTS.

which becomes, with the above choice for Fm,

∂zm

∂t
+ vx

∂zm

∂x
+ vy

∂zm

∂y
− vz = Nma⊥

m , (9.139)

where
a⊥
m = (w − v) · n (9.140)

is the ice volume flux through the CTS, and

Nm = |grad Fm| =
(

1 +
(∂zm

∂x

)2

+
(∂zm

∂y

)2
)1/2

. (9.141)

The sign choice in Eq. (9.140) causes a⊥
m to be positive when ice flows from

the cold into the temperate region, and negative when ice flows from the
temperate into the cold region. Because of the continuity of v across the CTS
[see below, Eq. (9.144)], it is not necessary to distinguish between v+ and
v−. In contrast to the accumulation-ablation function a⊥

s on the free surface,
a⊥
m arises in the interior of the glacier, and in consequence it is part of the

solution.
The temperature and the tangential velocity are assumed to be continuous

across the CTS,
[[T ]] = 0, [[v − (v · n)n]] = 0 . (9.142)

The density difference between cold and temperate ice is at most 0.5% (see
Sect. 9.3.2). If this small difference is ignored, the mass jump relation (3.61)
yields continuity for the normal velocity at the CTS as well,

[[v · n]] = 0 , (9.143)

so that the entire velocity vector is continuous,

[[v]] = 0 . (9.144)

From this and from the momentum jump relation (3.73) follows the continuity
of traction,
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[[t · n]] = 0 . (9.145)

Now consider the mass jump relation for the component water. Since melting
and freezing processes may occur at the CTS, a surface production term Pw

m

for the component water must be introduced in the general form (3.61). Thus

[[ρw(vw − w) · n]] = Pw
m , (9.146)

or with the diffusive water mass flux given by Eq. (9.105), in view of the fact
that at the positive (cold) side of the CTS no water is present, so that the
quantities W+ and j+ vanish,

− j− · n + ρa⊥
mW− = Pw

m . (9.147)

This relation can be interpreted in terms of a total water flux jtot relative to
the CTS velocity w, defined by

jtot ≡ ρw(vw − w) , (9.148)

with which Eq. (9.147) becomes

− j−tot · n = Pw
m . (9.149)

That is, the normal component of the total water flux relative to the CTS at
the temperate side of the CTS equals the surface production of water.

In order to formulate the energy jump relation (3.94), as in the derivation
of Eq. (9.133), the extended energy flux (9.115) for temperate ice is used, so
that at the cold (positive) side q = qs, and at the negative (temperate) side
q = qs + Lj. With Eqs. (9.111), (9.144) and (9.145),

q+
s · n − q−

s · n − Lj− · n = LW−ρ(v − w) · n = −LW−ρa⊥
m , (9.150)

or, with Fourier’s law of heat conduction [Eqs. (4.36), (9.113)] and the defini-
tion (9.148) of jtot,

κ (grad T+ − grad T−
m ) · n + L j−tot · n = 0 . (9.151)

At the cold side of the CTS the temperature T = Tm cannot increase from the
CTS into the cold zone, otherwise the temperature would exceed the melting
temperature, thus

grad T+ · n − grad T−
m · n ≤ 0 . (9.152)

This and Eq. (9.151) imply j−tot · n ≥ 0, so that

Pw
m (= −j−tot · n) ≤ 0 ; (9.153)

that is, the surface production of water Pw
m cannot be positive.

Because of this condition, for each point of the CTS three cases must be
distinguished, depending on the sign of the quantity (w − v−

w) · n:
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• (w − v−
w) · n > 0 (“melting condition”):

With the above definition (9.148) of jtot and ρw = ρW , Eq. (9.153) can
only be fulfilled if

W− = 0 , (9.154)

so the equality in Eq. (9.153) holds. Inserting this into Eq. (9.151) yields
further

grad T+ · n = gradT−
m · n , (9.155)

which means that in case of melting conditions both the water content and
the normal temperature derivative are continuous at the CTS, because W+

is equal to zero anyway at the cold side of the CTS.

• (w − v−
w) · n < 0 (“freezing condition”):

In this case, Eq. (9.153) is compatible with

W− ≥ 0 , (9.156)

so that Eq. (9.152) can hold in its general form

grad T+ · n ≤ grad T−
m · n . (9.157)

As a consequence, in case of freezing conditions the water content and
the normal temperature derivative can be discontinuous at the CTS; the
jumps of these quantities are connected by Eq. (9.151).

• (w − v−
w) · n = 0 (“parallel-flow condition”):

For this case, too, Eq. (9.153) is compatible with Eq. (9.156), however,
equality holds automatically in Eq. (9.153). Inserting this into (9.151)
provides

grad T+ · n = gradT−
m · n . (9.158)

Hence, the parallel-flow condition is characterised by a continuous normal
temperature derivative as for melting conditions, but the possibility of a
jump in water content as for freezing conditions.

This behaviour can be understood as follows: if a non-vanishing total wa-
ter flux j−tot reaches the CTS from the temperate side (freezing condition),
the transported water can freeze at the CTS. The latent heat released must
be conducted away by a negative normal temperature derivative in the cold
zone exceeding the small negative gradient in the temperate zone. Therefore,
this entails a jump of both the normal temperature derivative and the water
content.

However, the opposite situation cannot occur: it is impossible that cold ice
flows toward the CTS, melts partly at the CTS and produces a non-vanishing
total water flux at the temperate side. The reason for this is that the melting
heat necessary for this process cannot be produced at or transported to the
CTS. To achieve this the normal temperature derivative would have to be



246 9 Advanced Topics

more positive at the cold side than at the temperate side, which is impossible
because then the temperature in the cold zone would exceed the melting
temperature of ice. Ice flow from the cold region through the CTS toward the
temperate region is only possible without surface melting when passing the
CTS, so that in this case W− = 0 and gradT+ · n = gradT−

m · n hold, thus
the water content and the normal temperature derivative are continuous.

In the case of a negligible diffusive water mass flux j in temperate ice, that
is, a very small water diffusivity ν, the distinction between melting conditions,
freezing conditions and parallel-flow conditions can simply be made by the
sign of the ice volume flux through the CTS a⊥

m, because in this case v = vw

holds. Ice flow from cold to temperate ice, a⊥
m > 0, then corresponds to the

melting condition, ice flow from temperate to cold ice, a⊥
m < 0, to the freezing

condition and a⊥
m = 0 to the parallel-flow condition.

9.3.6 Parallel Sided Polythermal Slab

Let us once more consider a parallel sided slab (see Sects. 7.2 and 9.2.5), this
time for polythermal conditions with a cold ice layer on top of a temperate
layer (Fig. 9.23). The following assumptions are made:

• Plane strain approximation: purely two-dimensional flow in the vertical
x-z plane, no dependencies on the transverse coordinate y.

• Constant thickness H and inclination angle α.
• Uniformity in the downslope (x) direction: ∂(·)/∂x = 0 for all field quan-

tities.
• Steady-state conditions: ∂(·)/∂t = 0 for all field quantities.
• Flat, rigid bed: b(x, t) = 0 (in the inclined coordinate system). The free

surface is therefore given by h(x, t) = H.
• Prescribed surface mass balance a⊥

s .
• Prescribed basal sliding velocity vbx.
• Glen’s flow law (4.16), (9.110) with stress exponent n = 3.
• Constant rate factors: A(T ′) = At(W ) = A = const.
• Constant heat conductivity: κ(T ) = κ = const.
• Neglect of the pressure dependence of the melting point of ice: Tm = 0◦C.
• Neglect of water diffusion: ν = 0 ⇒ j = 0.

With these assumptions, the velocity field is not coupled to the thermo-
dynamics, and the solutions (7.3) and (7.13) for the parallel sided slab in
Sect. 7.2, modified by the prescribed basal sliding velocity vbx and surface
mass balance a⊥

s , can be applied:

vx(z) =
A(ρg sin γ)3

2
[H4 − (H − z)4] + vbx , (9.159)

vz(z) = −a⊥
s = −a⊥

m = const . (9.160)

The energy balance for the cold region, Eq. (5.14), reduces to



9.3 Temperate and Polythermal Glaciers 247

Fig. 9.23. Parallel sided polythermal slab: geometry and coordinate system. C. I.:
cold ice, T. I.: temperate ice.

ρcvz
dT

dz
= κ

d2T

dz2
+ 2Aσ4

e , (9.161)

and for the temperate region, corresponding to the mass balance for the com-
ponent water, Eqs. (9.117) and (9.118)) reduce to

ρ vz
dW

dz
= 2

A

L
σ4

e . (9.162)

The thermal boundary condition at the cold free surface is a prescribed
surface temperature,

T = Ts . (9.163)

The boundary condition (9.131), which determines the normal diffusive
water mass flux, is also redundant, since water diffusion is neglected. For
simplicity, the sliding velocity vbx is directly prescribed. The only impact of
vbx on the results is that it adds a constant to the velocity profile vx(z),
whereas temperature and water contents are not affected at all.

The transition conditions at the CTS follow from Eqs. (9.142), (9.144),
(9.145), (9.150) and (9.152),

T+ = T− ,

v+
x = v−

x , v+
z = v−

z ,

κ
dT+

dz
= LW−ρ a⊥

m with
dT+

dz
≤ 0 .

(9.164)

The secondary condition in the last equation entails that two different cases
must be distinguished (see Sect. 9.3.5):

• Melting condition: a⊥
m > 0 and dT+/dz = 0, W− = 0.
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• Freezing condition: a⊥
m < 0; Eq. (9.164) in its non-trivial form, i.e., dT+/dz

can be strictly negative and W− strictly positive; in this case an additional
boundary condition for the basal water content is required.

The case of parallel flow is ignored, because it does not allow a steady-state
solution. For this situation, because of Eq. (9.160) vz = 0 would hold, and thus
the left-hand side of Eq. (9.162) would be zero, whereas its right-hand side
would be strictly positive. This contradiction proves that steady parallel-flow
conditions of this sort cannot occur.

Integration of the Slab Equations

The equations derived above can be solved almost entirely analytically. Only
for the CTS position z = zm does an implicit algebraic equation remain, which
can easily be solved by a numerical root finder.

The construction of the solution of Eqs. (9.161) and (9.162) for the tem-
perature and the water content in the cold and the temperate region, respec-
tively, and the associated determination of the CTS position, is outlined in
the following. First, inserting Eqs. (7.9) for σe and (9.160) for vz yields

κ
d2T

dz2
+ ρca⊥

s

dT

dz
= −2A (ρg sin γ)4(H − z)4 (9.165)

and
ρa⊥

s

dW

dz
= −2

A

L
(ρg sin γ)4(H − z)4 . (9.166)

For easier calculation, the vertical coordinate z is mapped onto the interval
[0,1] by the transformation z = Hζ,

D
d2T

dζ2
+ M

dT

dζ
= −K(1 − ζ)4 (9.167)

and
M

dW

dζ
= −Kt(1 − ζ)4 , (9.168)

where

D =
κ

ρc
,

M = Ha⊥
s ,

K =
2A

ρc
H6(ρg sin γ)4 ,

Kt =
2A

ρL
H6(ρg sin γ)4 . (9.169)

The solution of the homogeneous part of Eq. (9.167) is
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Th = c1 e−(M/D)ζ + c2 . (9.170)

A particular integral of the inhomogeneous equation has the form

Tp = a1ζ + a2ζ
2 + a3ζ

3 + a4ζ
4 + a5ζ

5 , (9.171)

where the coefficients a1 to a5 are calculated by balancing powers of ζ in
Eq. (9.167), yielding

a5 = − K

5M
,

a4 =
K

M
+

DK

M2
,

a3 = −2
K

M
− 4

DK

M2
− 4

D2K

M3
, (9.172)

a2 = 2
K

M
+ 6

DK

M2
+ 12

D2K

M3
+ 12

D3K

M4
,

a1 = −K

M
− 4

DK

M2
− 12

D2K

M3
− 24

D3K

M4
− 24

D4K

M5
.

With the above results, the general solution of the temperature equation
(9.167) is

T = c1 e−(M/D)ζ + c2 + a1ζ + a2ζ
2 + a3ζ

3 + a4ζ
4 + a5ζ

5 . (9.173)

The constants c1 and c2 are still free and must be determined by boundary
and transition conditions.

The water content equation (9.168) can be integrated directly,

W =
Kt

5M
(1 − ζ)5 + c3 , (9.174)

leaving a further constant c3 to be determined. The last step consists of calcu-
lating the integration constants c1, c2 and c3, and the CTS position ζm. This
must be performed separately for the cases of melting conditions (a⊥

m > 0)
and freezing conditions (a⊥

m < 0) at the CTS.

Slab with Melting Condition at the CTS

In this case, according to Eq. (9.160), the velocity perpendicular to the bed
is negative, i.e., the ice flows from the free surface toward the base. Owing to
Eqs. (9.163) and (9.164) and the subsequent discussion,

T (1) = Ts , T+(ζm) = 0 , (dT+/dζ)ζm = 0 , W−(ζm) = 0 . (9.175)

Substitution of the first three of these equations into the general temperature
solution (9.173) yields
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Ts = c1 e−(M/D) + c2 + a1 + a2 + a3 + a4 + a5 , (9.176)
0 = c1 e−(M/D)ζm + c2 + a1ζm + a2ζ

2
m + a3ζ

3
m + a4ζ

4
m + a5ζ

5
m , (9.177)

0 = −M

D
c1 e−(M/D)ζm + a1 + 2a2ζm + 3a3ζ

2
m + 4a4ζ

3
m + 5a5ζ

4
m ,

(9.178)

which are three equations for the three unknowns c1, c2 and ζm. With c2 from
Eq. (9.177) and c1 from Eq. (9.178), Eq. (9.176) becomes an implicit algebraic
equation for the CTS position ζm,

0 =
D

M

(
1 − e(M/D)(ζm−1)

)
(a1 + 2a2ζm + 3a3ζ

2
m + 4a4ζ

3
m + 5a5ζ

4
m) + Ts

+a1(ζm − 1) + a2(ζ2
m − 1) + a3(ζ3

m − 1) + a4(ζ4
m − 1) + a5(ζ5

m − 1)
=: f(ζm) . (9.179)

Equation (9.179) can be solved with a numerical root finder, which yields ζm

with great accuracy. This is the only step in the whole solution procedure that
must be performed numerically. Now c1 follows from Eq. (9.178), and then c2

from Eq. (9.176). The temperature in the cold region, given by Eq. (9.173),
is therefore determined completely.

The forth boundary condition of Eq. (9.175) determines the coefficient c3

in the expression (9.174) for the water content,

W =
Kt

5M
[(1 − ζ)5 − (1 − ζm)5] . (9.180)

Figure 9.24 shows computed profiles for the velocity vx, temperature T
and water content W for a slab with melting condition at the CTS.

Slab with Freezing Condition at the CTS

In this case, the velocity perpendicular to the bed is positive due to Eq. (9.160).
The boundary conditions, by Eqs. (9.163), (9.164) and the subsequent discus-
sion, are

T (1) = Ts , T+(ζm) = 0 ,
κ

H

dT+

dζ
= LW−ρa⊥

m , W (0) = 0 . (9.181)

It is convenient to first determine c3 by the last condition, when (9.174) be-
comes

W =
Kt

5M
[(1 − ζ)5 − 1] . (9.182)

Thus the water content at the temperate side of the CTS is

W− = W (ζm) =
Kt

5M
[(1 − ζm)5 − 1] , (9.183)
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Fig. 9.24. Velocity vx parallel to the bed, temperature T and water content W ,
for the slab with melting conditions at the CTS. H = 200m, γ = 4◦, Ts = −3◦C,
a⊥
s = a⊥

m = 0.2 m a−1, vbx = 5 ma−1.

where, however, ζm is still undetermined. Now, the temperature-gradient con-
dition becomes

dT+

dζ
=

H

κ
Lρa⊥

m

Kt

5M
[(1 − ζm)5 − 1]

=
LρKt

5κ
[(1 − ζm)5 − 1], since M = Ha⊥

s = Ha⊥
m . (9.184)

The three temperature conditions, Eqs. (9.181)1,2 and (9.184), now relate c1,
c2 and ζm,

Ts = c1 e−(M/D) + c2 + a1 + a2 + a3 + a4 + a5 ,

(9.185)
0 = c1 e−(M/D)ζm + c2

+a1ζm + a2ζ
2
m + a3ζ

3
m + a4ζ

4
m + a5ζ

5
m , (9.186)

LρKt

5κ
[(1 − ζm)5 − 1] = −M

D
c1 e−(M/D)ζm

+a1 + 2a2ζm + 3a3ζ
2
m + 4a4ζ

3
m + 5a5ζ

4
m . (9.187)

Again, with c2 from Eq. (9.186) and c1 from Eq. (9.187), Eq. (9.185) becomes
an implicit algebraic equation for ζm,

0 =
D

M
(1 − e(M/D)(ζm−1))

(
a1 + 2a2ζm + 3a3ζ

2
m + 4a4ζ

3
m + 5a5ζ

4
m
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−LρKt

5κ
[(1 − ζm)5 − 1]

)
+ Ts

+a1(ζm − 1) + a2(ζ2
m − 1) + a3(ζ3

m − 1) + a4(ζ4
m − 1) + a5(ζ5

m − 1)
=: g(ζm) . (9.188)

After solution by a Newtonian root finder, c1 follows from Eq. (9.187), c2 from
Eq. (9.185), and the temperature distribution, Eq. (9.173), is fully determined.
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Fig. 9.25. Velocity vx parallel to the bed, temperature T and water content W ,
for the slab with freezing conditions at the CTS. H = 200 m, γ = 4◦, Ts = −10◦C,
a⊥
s = a⊥

m = −0.2 m a−1, vbx = 5 m a−1.

Figure 9.25 shows computed profiles for the velocity vx, temperature T and
water content W for a slab with freezing condition at the CTS. The distribu-
tion of the velocity vx is identical to the slab with melting condition shown
in Fig. 9.24. However, the behaviour of the temperature and the water con-
tent are entirely different. In the case of melting conditions the temperature
gradient dT+/dz at the cold side of the CTS and the water content at the
temperate side vanish. Since these quantities are zero on the corresponding
opposite sides of the CTS anyway, they are continuous and therefore do not
jump. On the other hand, in the case of freezing conditions a strictly nega-
tive temperature gradient dT+/dz and a strictly positive water content W−

appear, so that indeed there are discontinuities of these quantities.
The slab solutions demonstrate that the model equations are well posed.

The solutions are analytic except for the determination of the CTS position by
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a numerical root finder, which can easily be done with great accuracy. There-
fore, they can be used to check the performance of any numerical solution
procedure.

9.3.7 Polythermal Glaciers

Polythermal glaciers occur in different climates and at different geographic
locations. Given the winter cooling of the surface layer in temperate glaciers,
or the summer warming of the surface layer in cold glaciers, most glaciers are
seasonally polythermal. The only exceptions are perhaps cold glaciers in the
extremely cold climate of Antarctica. Considering only perennial polythermal
glaciers, the most frequent structures are the so-called Scandinavian-type and
Canadian-type polythermal glaciers (Fig. 9.26).

The Scandinavian type occurs in Svalbard (Bamber 1988, Jania et al.
1996), Scandinavia (Holmlund and Eriksson 1989), the Rocky Mountains (Pa-
terson 1971), Alaska and the Antarctic Peninsula (Breuer et al. 2006). Such
glaciers are mostly temperate except for a cold surface layer in the ablation
zone. This seemingly paradoxical situation may be explained by the summer
heat input, which is stored due to percolation of meltwater into the upper firn
area, whereas this heat is lost due to runoff of meltwater over the impermeable
surface ice in the ablation zone. If winter temperatures increase, the cold layer
thins and may eventually disappear, leaving an entirely temperate glacier.

The Canadian type occurs at high Arctic latitudes in Canada (Blatter
1987, Blatter and Kappenberger 1988) and Alaska, but the large ice sheets
in Greenland and Antarctica also show this polythermal structure locally.
Canadian-type glaciers are mostly cold except for a temperate layer at the
bed in the ablation zone. Depending on the climate, ice thickness and ice flow,
the thickness of this basal layer may shrink to zero, leaving a so-called basal
hot spot (Classen and Clarke 1971). There may be additional polythermal
structures, such as combinations of the above if glaciers span an extreme
altitude range, or at confluences of glaciers with different thermal structures
(Eisen et al. 2009).

In order to describe the thermal structures, the source of the englacial
water must be identified. In this context, we do not consider the water in
englacial channels and in the basal hydraulic system, which has a relatively
short residence time of hours to days. The water content in consideration is
given by water included in the ice matrix on length scales of the grain size.

Equation (9.118) determines changes of the water content by boundary
conditions, internal transport processes (advection, diffusion) and sources
(strain heating, pressure changes). Changes of the hydrostatic pressure con-
tribute only 0.007 grams of water per kilogram ice-water mixture per metre
change of depth, which makes this contribution to the water content negligibly
small everywhere in the temperate part of a glacier (Pettersson et al. 2004).
Thus, water entrapment in the firn zone and strain heating are the major
sources of water in the ice.
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a)

b)

temperate cold

Fig. 9.26. Longitudinal section of glaciers with (a) Canadian-type and (b)
Scandinavian-type polythermal structures. (Credit: A. Aschwanden, ETH Zurich,
Switzerland.)

Water entrapment must be taken into account as a boundary condition
at the firn surface in the accumulation area, if the firn is temperate [see
Eq. (9.120)]. This leaves strain heating as the only significant source of wa-
ter in the interior of the ice. If the diffusive water transport is neglected,
Eq. (9.118) reduces to

dW

dt
=

2At(W )
ρL

σn+1
e . (9.189)

This advection-production equation is difficult to handle since numerical solu-
tions tend to be unstable. One way to solve it is to take advantage of the fact
that water accumulates in an ice particle while it travels along its trajectory
in the glacier. If the dependence of the rate factor on water content is ignored
[At(W ) = A = const], Eq. (9.189) can readily be separated by variables, and
integration along a trajectory from point O to point P yields

WP = WO +
∫ P

O

2A

ρL
σn+1

e dt . (9.190)

In the case of a stationary flow field, trajectories are equivalent to flow lines.
This simplifies the computation of the water-content field since the flow lines
can be computed first and need not be updated during the integration.
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Fig. 9.27. Water content (in g water per kg ice-water mixture) due to strain heat-
ing in a longitudinal section of Storglaciären, Sweden, computed by integration of
Eq. (9.190) along trajectories, starting with zero water content at the ice surface in
the accumulation area. Adapted from Aschwanden and Blatter (2005), c© American
Geophysical Union.

Figure 9.27 shows the water content accumulated in the ice of Stor-
glaciären, Sweden, by strain heating alone (Aschwanden and Blatter 2005).
The flow and stress fields have been obtained by solving the full Stokes prob-
lem, and the water content has been computed by integrating Eq. (9.190) with
the boundary condition WO = 0 at the ice surface in the accumulation zone
of the glacier.

The numerical model SICOPOLIS (see Sect. 5.7) can handle polythermal
situations of the Canadian type in ice sheets. To this end, the temperature
evolution equation (5.105) is solved in the cold domain and the evolution
equation for the water content (9.118) in the temperate domain. The position
and motion of the CTS are determined by exploiting the matching conditions
described in Sect. 9.3.5. This front tracking method contrasts with enthalpy
or enthalpy gradient methods (Nedjar 2002) which will be discussed in the
following.

9.3.8 Enthalpy Formulation

Enthalpy Balance

The specific enthalpy, h, is commonly defined as (e.g., Moran and Shapiro
2000)

h = u +
p

ρ
, (9.191)

where u is the specific internal energy, p the pressure and ρ the density. If
an incompressible material is heated under constant pressure, the enthalpy is
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equal to the internal energy (Alexiades and Solomon 1993). Since the term
“enthalpy method” is widely used in the computational fluid dynamics liter-
ature, we refer to enthalpy instead of internal energy and rewrite Eq. (3.92)
as

ρḣ = −divq + tr (t · D) , (9.192)

where the radiation r has again be neglected.
The enthalpy of ice is assumed to be uniquely related to temperature,

T = T (h), and water content, W = W (h), in their respective domains (As-
chwanden and Blatter 2009). In other words, enthalpy represents temperature
in cold ice and water content in temperate ice.

We define hi and hl as the enthalpies of pure ice and pure water at the
melting temperature Tm. Thus

hi = −L + hl = −L + cwTm (9.193)

and

Cold ice:
T = (h − hi) /c + Tm

W = 0

}
if h < hi ,

CTS:
T = Tm

W = 0

}
if h = hi ,

Temperate ice:
T = Tm

W = (h − hi)/L

}
if hi < h < hl ,

Liquid water:
T = (h − hl) /c + Tm

W = 1

}
if h ≥ hl ,

(9.194)

where L is the latent heat, ci the specific heat of ice, cw the specific heat of
water and c = (1 − W ) ci + W cw the specific heat of the ice-water mixture.
Measured water contents in temperate ice are generally less than 3% (Pet-
tersson et al. 2004, and references therein), and thus liquid water (h ≥ hl)
is disregarded. A schematic plot of the temperature and water content as
functions of enthalpy is shown in Fig. 9.28.

Enthalpy Gradient Method

The enthalpy gradient method is suitable for smooth enthalpy distributions
(Pham 1995). The enthalpy gradient method requires an enthalpy-gradient-
driven energy flux in both cold and temperate ice. We assume that hi and Tm

vary negligibly with pressure and that thermodynamic properties such as c
and κ are constant. To solve the enthalpy balance (9.192), the heat flux q is
expressed in terms of enthalpy. In cold ice, the gradient of Eq. (9.194) gives

grad T =
1
c

grad h . (9.195)
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W

hi hl
h

Fig. 9.28. Temperature-enthalpy relation (solid line) and water-content-enthalpy
relation (dotted line). T is the temperature, W is the water content, Tm is the
melting temperature, hi and hl are the enthalpies of pure ice and pure water at
T = Tm, respectively. (Credit: A. Aschwanden, ETH Zurich, Switzerland.)

Introducing Eq. (9.195) into Fourier’s law of heat conduction (4.36) yields the
heat flux in cold ice as a function of enthalpy,

q = −κ

c
grad h . (9.196)

In temperate ice, the heat flux is governed by Eq. (9.115). The sensible heat
flux qs which arises from Eq. (9.113) is extremely small. As for the latent heat
flux ql = Lj, we assume a negligible diffusive water mass flux j, so that ql is
also negligible. Thus,

q = 0 . (9.197)

By combining Eqs. (9.196) and (9.197), the heat flux q in both cold and
temperate ice can be expressed in terms of the enthalpy gradient,

q = −ρk grad h , (9.198)

with the enthalpy diffusivity

k =
{

κ/(ρc) for cold ice ,

0 for temperate ice .
(9.199)

Therefore, Eq. (9.192) can be rewritten as

∂h

∂t
+ v · grad h = div (k grad h) +

tr (t · D)
ρ

, (9.200)

which holds for both cold and temperate ice. Equation (9.200) represents an
advection-diffusion-production transport problem with the same mathemati-
cal form as the temperature evolution equation (5.14) for cold ice. The first
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Fig. 9.29. Top: Horizontal velocity at the surface and the base of a Canadian-type
polythermal glacier with a synthetically created geometry. Bottom: Contours of the
ice temperature (dashed lines, in ◦C) and the water content (dotted lines, 0.3 and
1 g kg−1). The solid line in the ice domain represents the contour line h = hi of the
CTS. (Credit: A. Aschwanden, ETH Zurich, Switzerland.)

term is the local rate of change of enthalpy, the second term is the enthalpy
advection, the third term is the enthalpy diffusion and tr (t ·D) is the enthalpy
production due to strain heating.

At the glacier surface, a Dirichlet condition, h = hs, with

hs = hi + c (Ts − Tm) if hs < hi ,
hs = hi if hs = hi ,
hs = hi + LWs if hi < hs < hl ,

(9.201)

is applied, where Ts and Ws are the prescribed temperature at the cold surface
and water content at the temperate surface, respectively. At a cold glacier bed,
all geothermal heat q⊥geo enters the ice [see Eq. (5.38)]. At a temperate glacier
bed, due to the neglect of water diffusion, no physical boundary condition is
available although it is required by Eq. (9.200) (Griffiths 1997). Therefore, we
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choose a homogenous Neumann (zero flux) condition, because this boundary
condition influences the result the least. This yields

(q · n)b = −q⊥geo if hb < hi ,
(q · n)b = 0 if hi ≤ hb < hl .

(9.202)

The physical interpretation of the homogenous Neumann condition (9.202)2
is that all heat from the geothermal heat flux and produced by basal friction
is used for melting ice at the base.

Figure 9.29 shows results for a Canadian-type polythermal glacier com-
puted with the enthalpy gradient method and a full Stokes solution for the
velocity field. The enthalpy gradient method offers the advantage that the type
of the polythermal structure emerges from the given boundary conditions. Fur-
thermore, the CTS is given by the contour line h = hi of the enthalpy field,
thus no front tracking is necessary.
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Conclusions, Summary and Outlook

In agreement with the scope of the series Advances in Geophysical and En-
vironmental Mechanics and Mathematics (AGEM2), it is our intention that
this book serves the purposes

• to be a compact and up-to-date source of reference on the topic of ice sheet
and glacier dynamics;

• to be an accessible introduction to this field for advanced students and
researchers from related areas;

• to be a source of advanced teaching material for specialised seminars,
courses and schools;

see http://www.springer.com/series/7540. We hope that it will be received in
that sense. Naturally, the choice which topics are included and which ones
are omitted was difficult. In order to stick to the above points, in particular
the compactness and the introductory nature, we put the emphasis on the
relatively well understood and established aspects of the field, and did not
attempt to give an exhaustive overview of all directions of current research in
a 600+ pages volume.

Regular flow of ice sheets and glaciers can be described well with the
concepts presented in this book. This means that the dynamic and thermal
response of the system depends smoothly on the boundary conditions. How-
ever, in certain situations small changes of the external forcings can trigger
drastic reactions, such as surges, large calving events or break-off of large por-
tions of ice. This lies partly in the non-linear nature of the problem (see, e.g.,
the mini-surges observed in the simulations of Sect. 5.7.4), but to a larger
extent discontinuities are involved, which require a separate treatment.

The grand questions in future glaciology and glacier and ice sheet mod-
elling concern possible rapid changes of ice masses in response to global warm-
ing. The conjectured processes are mostly related to discontinuities, which are
not well understood (Sammonds 1999). Basal sliding (see Sect. 7.5) is strongly
related to englacial and subglacial hydrology (e.g., the much discussed accel-
eration of basal sliding by surface meltwater percolating to the base; Zwally

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2 10, c© Springer-Verlag Berlin Heidelberg 2009
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et al. 2002, Greve and Sugiyama 2009) and basal conditions (such as hard
rocky beds with complex micro-topography or layers of granular material).
This fact partly explains the difficulties encountered with a reliable handling
of sliding in numerical glacier and ice sheet models. The often applied shallow
ice approximation in conjunction with a Weertman-type sliding law falls short
of modelling the details of basal sliding adequately, a fact that reduces the
prognostic value of model calculations.

Fracturing of ice plays an important role in the dynamics of ice masses and
may lead to instabilities. Glaciers that reach the water of lakes or oceans start
to calve icebergs into the water, thus contributing to mass loss. The terminus
of calving ice masses may remain grounded or become floating, two differ-
ent conditions that are governed by different processes and require different
treatment in numerical models.

Calving of grounded glaciers is mostly treated by simple parameterisations
which must be tuned to observations (Vieli et al. 2001, Benn et al. 2007a,b);
however, this does not allow a prognostic approach for glaciers without di-
rect observations. A novel approach to predict fracturing, and thus calving,
has been attempted with damage mechanics (Pralong and Funk 2005, 2006,
Pralong et al. 2006). The state of the ice is described by a continuous quan-
tity, called “damage”, which has a source and a sink, and evolves in response
to the state of stress. Fractures develop if damage values reach a threshold
level, thus the basically discontinuous process of fracture is described by a
continuous field.

Calving of floating ice shelves thus far resists successful treatment, both
conceptually and in numerical models. The mechanisms of this process were
discussed by Reeh (1968). In Sect. 6.1.3 we provided a continuous description
based on a kinematic boundary condition, but the problem remains how to
prescribe the parameter c⊥ (“calving rate”). While sometimes a very simple,
indirect approach is chosen by assuming a threshold value (e.g., 200 m) for
the frontal ice thickness, in a recent study, Alley et al. (2007) suggested to
relate the calving rate to the along-flow strain rate near the front of the ice
shelf. In any case, it is still a long way to a description that allows prognostic
simulations of rapid events like the recent disintegrations of the Larsen A,
Larsen B and Wilkins Ice Shelves of the Antarctic Peninsula.

A related problem is to predict the position and migration of the grounding
line of ice shelves (see Sect. 6.1.3), which is probably a key process affecting
the stability of the West Antarctic Ice Sheet. Various model approaches have
been tested to identify conditions for instabilities (Schoof 2007a,b); however,
it is difficult to judge how conclusive they are (Vieli and Payne 2005). This
leads to the question of the dynamic stability of ice sheets, ice shelves and
glaciers in general, and whether there are critical thresholds (“points of no
return”) beyond which they evolve inevitably and irreversibly towards rapid
disintegration.
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Eisen, O., A. Bauder, M. Lüthi, P. Riesen and M. Funk. 2009. Deducing the
thermal structure in the tongue of Gornergletscher, Switzerland, from radar
surveys and borehole measurements. Annals of Glaciology, 50 (51), 63–70.

http://www.pik-potsdam.de/~{}calov/heino.html


266 References Cited or Recommended

Eisen, O., I. Hamann, S. Kipfstuhl, D. Steinhage and F. Wilhelms. 2007.
Direct evidence for continuous radar reflector originating from changes
in crystal-orientation fabric. The Cryosphere, 1 (1), 1–10. URL
http://www.the-cryosphere.net/1/1/2007/.

Ekman, M. 1991. A concise history of postglacial land uplift research (from
its beginning to 1950). Terra Nova, 3, 358–365.

EPICA Community Members. 2006. One-to-one coupling of glacial climate
variability in Greenland and Antarctica. Nature, 444 (7116), 195–198. doi:
10.1038/nature05301.

Faria, S. H. 2003. Mechanics and thermodynamics of mixtures
with continuous diversity. Doctoral thesis, Department of Me-
chanics, Darmstadt University of Technology, Germany. URL
http://tuprints.ulb.tu-darmstadt.de/307/.

Forsström, P.-L., O. Sallasmaa, R. Greve and T. Zwinger. 2003. Simulation
of fast-flow features of the Fennoscandian ice sheet during the Last Glacial
Maximum. Annals of Glaciology, 37, 383–389.

Fowler, A. C. 1984. On the transport of moisture in polythermal glaciers.
Geophysical and Astrophysical Fluid Dynamics, 24, 99–140.

Gagliardini, O., F. Gillet-Chaulet and M. Montagnat. 2009. A review of
anisotropic polar ice models: from crystal to ice-sheet flow models. In:
T. Hondoh (Ed.), Physics of Ice Core Records Vol. 2. Yoshioka Publishing,
Kyoto, Japan. In press.

Gagliardini, O. and J. Meyssonnier. 1997. Flow simulation of a firn-covered
cold glacier. Annals of Glaciology, 24, 242–248.

Glen, J. W. 1955. The creep of polycrystalline ice. Proceedings of the Royal
Society London A, 228 (1175), 519–538. doi:10.1098/rspa.1955.0066.

Greve, R. 1994. Zwischenbericht zur Dissertation “Thermomechanisches Ver-
halten polythermer Eisschilde”. Unpublished report, Department of Me-
chanics, Darmstadt University of Technology, Germany.

Greve, R. 1997. A continuum-mechanical formulation for shallow polyther-
mal ice sheets. Philosophical Transactions of the Royal Society London A,
355 (1726), 921–974. doi:10.1098/rsta.1997.0050.

Greve, R. 2000. Large-scale glaciation on Earth and on Mars. Habilitation
thesis, Department of Mechanics, Darmstadt University of Technology, Ger-
many. URL http://tuprints.ulb.tu-darmstadt.de/816/.

Greve, R. 2005. Relation of measured basal temperatures and the spatial
distribution of the geothermal heat flux for the Greenland ice sheet. Annals
of Glaciology, 42, 424–432.

Greve, R., L. Placidi and H. Seddik. 2009. A continuum-mechanical model
for the flow of anisotropic polar ice. In: T. Hondoh (Ed.), Physics of Ice
Core Records Vol. 2. Yoshioka Publishing, Kyoto, Japan. In press, preprint
at arXiv:0903.3078 [physics.geo-ph].

Greve, R. and S. Sugiyama. 2009. Decay of the Greenland Ice Sheet due
to surface-meltwater-induced acceleration of basal sliding. arXiv:0905.2027
[physics.geo-ph]. URL http://arxiv.org/abs/0905.2027.

http://www.the-cryosphere.net/1/1/2007/
http://tuprints.ulb.tu-darmstadt.de/307/
http://tuprints.ulb.tu-darmstadt.de/816/
http://arxiv.org/abs/0905.2027


References Cited or Recommended 267

Greve, R., R. Takahama and R. Calov. 2006. Simulation of large-scale ice-sheet
surges: The ISMIP HEINO experiments. Polar Meteorology and Glaciology,
20, 1–15.

Griffiths, D. F. 1997. The ‘no boundary condition’ outflow boundary condi-
tion. International Journal for Numerical Methods in Fluids, 24, 393–411.

Gudmundsson, G. H. 1994. Glacier sliding over sinusoidal bed and the char-
acteristics of creeping flow over bedrock undulations. Mitteilungen No. 130.
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich,
Switzerland.

Gudmundsson, G. H. 1997a. Basal-flow characteristics of a linear flow sliding
frictionless over small bedrock undulations. Journal of Glaciology, 43 (143),
71–79.

Gudmundsson, G. H. 1997b. Basal-flow characteristics of a non-linear flow
sliding frictionless over strongly undulating bedrock. Journal of Glaciology,
43 (143), 80–89.

Heinbockel, J. H. 1996. Introduction to Tensor Calculus and Contin-
uum Mechanics. Trafford Publishing, Victoria, BC, Canada and Ox-
ford, UK. ISBN 1-55369-133-4. Free online version available at
http://www.math.odu.edu/∼jhh/counter2.html (retrieved 2009-03-11).

Heinrich, H. 1988. Origin and consequences of cyclic ice rafting in the North-
east Atlantic Ocean during the past 130,000 years. Quaternary Research,
29 (2), 142–152.

Hindmarsh, R. C. A. 2004. A numerical comparison of approximations to
the Stokes equations used in ice sheet and glacier modeling. Journal of
Geophysical Research, 109 (F1), F01012. doi:10.1029/2003JF000065.

Hofmann, W. 1974. Die Internationale Glaziologische Grönland-Expedition
EGIG. Zeitschrift für Gletscherkunde und Glazialgeologie, 5, 217–224.

Holmlund, P. and M. Eriksson. 1989. The cold surface layer on Storglaciaren.
Geografiska Annaler, 71A (3-4), 241–244.

Hooke, R. L. 2005. Principles of Glacier Mechanics. Cambridge University
Press, Cambridge, UK and New York, NY, USA, 2nd ed.

Hubbard, A., I. Willis, M. Sharp, D. Mair, P. Nienow, B. Hubbard and H. Blat-
ter. 2000. Glacier mass-balance determination by remote sensing and high-
resolution modelling. Journal of Glaciology, 46 (154), 491–498.

Humbert, A., R. Greve and K. Hutter. 2005. Parameter sensitivity studies
for the ice flow of the Ross Ice Shelf, Antarctica. Journal of Geophysical
Research, 110 (F4), F04022. doi:10.1029/2004JF000170.

Hundsdorfer, W. and J. G. Verwer. 2003. Numerical Solution of Time-
Dependent Advection-Diffusion-Reaction Equations. Springer, Berlin, Ger-
many etc.

Hutter, K. 1983. Theoretical Glaciology; Material Science of Ice and the Me-
chanics of Glaciers and Ice Sheets. D. Reidel Publishing Company, Dor-
drecht, The Netherlands.

Hutter, K. 1993. Thermo-mechanically coupled ice-sheet response – cold,
polythermal, temperate. Journal of Glaciology, 39 (131), 65–86.



268 References Cited or Recommended
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List of Symbols

Only the principal symbols are listed. A scalar is indicated by italics type, a
vector by bold face upright type and a tensor by sans serif upright type.

0 zero vector
I unit tensor

a acceleration (= dv/dt = d2x/dt2 )
ab basal melting (-freezing) rate in the vertical direction
a⊥
b basal melting (-freezing) rate

a⊥
m volume flux through the CTS

as accumulation-ablation function (surface mass balance)
in the vertical direction

a⊥
s accumulation-ablation function (surface mass balance)

b z-coordinate of the ice base
b0 isostatically relaxed value for b without ice load
c (1) specific heat in general

(2) specific heat of ice [= (146.3 + 7.253T [K]) J kg−1K−1 ]
(3) specific heat of firn (Sect. 9.2)

c⊥ calving rate
de effective strain rate
ei set of orthonormal basis vectors

(in the present configuration κt)
et tangential unit vector
f volume force
f(σe) creep function
f�(n) orientation distribution function [= ρ�(n)/ρ ]
g, g gravitational acceleration (= 9.81m s−2 )
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g density of arbitrary physical quantity
gs arbitrary physical quantity per unit mass (“specific ...”)
h (1) z-coordinate of the ice surface

(2) specific enthalpy (= u + p/ρ ; Sect. 9.3)
j diffusive water mass flux in temperate ice
k enthalpy diffusivity
ṁw

b water mass flux into the base
n (1) unit normal vector

(2) orientation (direction of the c-axis; Sect. 9.1)
n stress exponent (= 3 )
p (1) pressure

(2) production density of arbitrary physical quantity
(Chapter 3)

p(ρ, T ) thermodynamic pressure
pvisc viscous pressure
ptot total pressure [= p(ρ, T ) + pvisc ]
psw hydrostatic pressure of sea water
psea hydrostatic pressure of sea water at the ice-sea interface
p, q basal sliding exponents
q heat flux
q�(n) orientation flux
ql latent heat flux in temperate ice
qs sensible heat flux in temperate ice
q load per unit area
q⊥geo geothermal heat flux
q⊥sea heat flux on the sea side of the ice-sea interface
r specific radiation power
s supply density of arbitrary physical quantity
t Cauchy stress tensor
tD Cauchy stress deviator [= t − ( 1

3 tr t) I ]
tlith stress at the lithosphere side of the ice-lithosphere interface
tsea stress at the sea side of the ice-sea interface
tn stress vector
t time
[t] typical time-scale
u displacement
u�(n) orientation transition rate
u specific internal energy
v velocity (= dx/dt )
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v�(n) orientation-dependent velocity
vb basal sliding velocity
vgl velocity at the grounding line
vh horizontal velocity
vi ice velocity in temperate ice
vsea velocity of subglacial sea water
vw water velocity in temperate ice
w velocity of a singular surface
w vertical displacement of the lithosphere
wss steady-state value of w

x position vector (in the present configuration κt)
x, y horizontal Cartesian coordinates
z vertical Cartesian coordinate
zl z-coordinate of the lithosphere surface
zm z-coordinate of the CTS
zsl z-coordinate of the mean sea level

A(T ′) rate factor
At(W ) rate factor of temperate ice
A deformability of polycrystalline ice
A�(n) crystallite deformability
A0 pre-exponential constant

(= 3.985 × 10−13 s−1 Pa−3 for T ′ ≤ 263.15K ,
= 1.916 × 103 s−1 Pa−3 for T ′ > 263.15K )

B left Cauchy Green tensor (= V2 )
B(T ′) associated rate factor
C right Cauchy Green tensor (= U2 )
Cb basal sliding coefficient
Cwi water-ice drag coefficient (≈ 2.5 × 10−3 )
D strain-rate (stretching) tensor [= (L + LT)/2 ]
DD strain-rate (stretching) deviator [= D − ( 1

3 tr D) I ]
D diffusivity of the ice surface
Da diffusivity of the asthenosphere
EA set of orthonormal basis vectors

(in the reference configuration κr)
E (1) flow enhancement factor

(2) Young’s modulus
E(A) anisotropic flow enhancement factor
Es stress enhancement factor



276 List of Symbols

F deformation gradient (= Gradx )
Fb implicit representation of the ice base (= b − z )
Fcf implicit representation of the calving front
Fgl implicit representation of the grounding line
Fm implicit representation of the cold-temperate transition surface

(= z − zm )
Fs implicit representation of the ice surface (= z − h )
Fr Froude number [= [U ]2/(g[H]) ]
H displacement gradient (= Gradu = F − I )
H (1) thickness in general

(2) ice thickness (= h − b )
Ha thickness of the asthenosphere
Hl thickness of the lithosphere
[H] typical vertical extent
J Jacobian of the deformation gradient (= detF )
K flexural stiffness
Kl flexural stiffness of the lithosphere (≈ 1025 N m )
L velocity gradient (= gradv )
L latent heat of ice (= 3.35 × 105 J kg−1 )
Lr radius of relative stiffness [= (Kl/(ρag))1/4 ]
[L] typical horizontal extent
M water mass production rate in temperate ice
N membrane stress
Nb, Nb basal normal stress
[P ] typical pressure
Pw

m water surface production rate at the CTS
Q horizontal volume flux
Q activation energy (= 60 kJ mol−1 for T ′ ≤ 263.15K ,

= 139 kJ mol−1 for T ′ > 263.15K )
R rotation tensor (= F · U−1 = V−1 · F )
R universal gas constant (= 8.314 J mol−1 K−1 )
Ro Rossby number [= [U ]/(2Ω[L]) ]
T temperature
Tm pressure melting temperature
T0 melting temperature at standard pressure (= 273.15K )
T ′ temperature relative to the pressure melting point

(= T − Tm + T0 )
Tcf temperature at the calving front
Tgl temperature at the grounding line
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Ts ice surface temperature
Tsea temperature of sea water at the ice-sea interface (≈ − 2◦C)
U right stretch tensor [= (FT · F)1/2 ]
[U ] typical horizontal velocity
V left stretch tensor [= (F · FT)1/2 ]
V activation volume
W spin tensor [= (L − LT)/2 ]
W water content of temperate ice (mass fraction)
Ws water content at the ice surface
[W ] typical vertical velocity
X position vector (in the reference configuration κr)

α inclination angle
β Clausius-Clapeyron constant

(= 7.42 × 10−8 K Pa−1 for pure ice,
= 9.8 × 10−8 K Pa−1 for air-saturated glacier ice)

γij (i �= j) shear angle
γ̇ij (i �= j) shear rate
δ(·) Dirac’s delta function
δij Kronecker symbol
δsea frictional dissipation at the sea side of the ice-sea interface
ε infinitesimal strain tensor [= (H + HT)/2 ]
εD infinitesimal strain deviator [= ε − ( 1

3 tr ε) I ]
ε aspect ratio (= [H]/[L] = [W ]/[U ] )
εijk Levi-Civita symbol
ζ (1) bulk viscosity (= λ + 2η/3 )

(2) vertical coordinate of the sigma transformation
η shear viscosity
η̄ depth-integrated shear viscosity
ι constitutive parameter for the orientation transition rate
κ (1) bulk modulus (= λ + 2μ/3 )

(2) heat conductivity in general
(3) heat conductivity of ice (= 9.828 e−0.0057 T [K] W m−1K−1 )
(4) heat conductivity of firn (Sect. 9.2)

κr reference configuration
κt present configuration
λ (1) 1st Lamé parameter

(2) viscosity coefficient
(3) orientation diffusivity (Sect. 9.1)
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μ 2nd Lamé parameter (shear modulus)
ν (1) Poisson’s ratio

(2) water diffusivity in temperate ice (Sect. 9.3)
ξ, ϕ horizontal coordinates of the sigma transformation
ρ (1) density in general

(2) density of ice (= 910 kg m−3 )
(3) density of firn (Sect. 9.2)

ρ̃ relative density of firn (= ρ/ρ̂i )
ρ�(n) orientation mass density
ρa density of the asthenosphere (= 3300 kg m−3 )
ρi partial density of ice in temperate ice
ρ̂i bulk density of ice (= 910 kg m−3 )
ρsw density of sea water (= 1028 kg m−3 )
ρw partial density of water in temperate ice
ρ̂w bulk density of water (= 1000 kg m−3 )
σe effective stress
σ0 residual stress
τ time coordinate of the sigma transformation
τa time lag of the relaxing asthenosphere (≈ 3000 a )
τ b, τb basal drag (shear stress)
τ d driving stress
τ sea basal drag (shear stress) induced by circulating sea water
φ flux density of arbitrary physical quantity
ψ arbitrary scalar, vector or tensor field
ω material volume in the present configuration κt

Γ constitutive parameter for the orientation production rate
Γ �(n) orientation production rate
Δζ spacing of vertical coordinate ζ

Δξ, Δϕ spacing of horizontal coordinates ξ and ϕ, respectively
Δτ spacing of time coordinate τ

[ΔT ] typical temperature variation
Φn set of basis functions
Ω, Ω angular velocity of the Earth (= 7.2921 × 10−5 s−1 )
Ω material volume in the reference configuration κr



List of Acronyms

AGCM Atmosphere General Circulation Model
AMSL Above Mean Sea Level
CAFFE Continuum-mechanical, Anisotropic Flow model,

based on an anisotropic Flow Enhancement factor
CTS Cold-temperate Transition Surface,
DA Diffusive Asthenosphere
EAIS East Antarctic Ice Sheet
EDML EPICA ice core in Dronning Maud Land
EGIG Expédition Glaciologique International au Grœnland
EISMINT European Ice Sheet Modeling INiTiative
EL Elastic Lithosphere
ELDA Elastic Lithosphere / Diffusive Asthenosphere
ELRA Elastic Lithosphere / Relaxing Asthenosphere
EPICA European Project for Ice Coring in Antarctica
ETH Eidgenössische Technische Hochschule

(Swiss Federal Institute of Technology) Zurich
FESSACODE Finite Element Shallow Shelf Approximation Code
FOA First Order Approximation
FS Full Stokes
GCM General Circulation Model
GPS Global Positioning System
GRIP Greenland Ice Core Project
HEINO Heinrich Event INtercOmparison
IAI International Antarctic Institute
IPCC Intergovernmental Panel on Climate Change



280 List of Acronyms

ISMIP Ice Sheet Model Intercomparison Project
LGM Last Glacial Maximum
LL Local Lithosphere
LLDA Local Lithosphere / Diffusive Asthenosphere
LLRA Local Lithosphere / Relaxing Asthenosphere
MODIS MODerate-resolution Imaging Spectroradiometer
NADW North Atlantic Deep Water
NASA National Aeronautics and Space Administration
ODE Ordinary Differential Equation
ODF Orientation Distribution Function
OGCM Ocean General Circulation Model
OMD Orientation Mass Density
QED Quod Erat Demonstrandum

(which was to be demonstrated)
RA Relaxing Asthenosphere
RIGGS Ross Ice Shelf Geophysical and Glaciological Survey
SGVE Self-Gravitating, spherical, Visco-Elastic multi-layer
SIA Shallow Ice Approximation
SICOPOLIS SImulation COde for POLythermal Ice Sheets
SSA Shallow Shelf Approximation
WAIS West Antarctic Ice Sheet
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ablation, 66, 104, 179

acceleration, 21, 63, 73, 193

accumulation, 1, 66, 104, 179

accumulation area, 174, 224

accumulation-ablation function, 66, 71,
82

activation energy, 52, 54

activation volume, 52

additivity, 26

advection, 22, 26, 27

AGCM, 109

air bubble, 226

Alaska, 253

albedo, 4

alternator, 10

Amery Ice Shelf, 2, 111

AMSL, 2, 105, 224

Andes, 2, 4

angular momentum, 33

angular momentum density, 33

angular velocity, 62

anisotropic enhancement factor, 205,
207, 208, 213, 215, 217

anisotropic fabric, 203, 204

anisotropy, 50, 203

Antarctic Ice Sheet, 1, 3–5, 61, 109,
158, 185, 192, 199, 220, 222, 253

Antarctic ice shelves, 111

Antarctic Peninsula, 253, 262

antisymmetric tensor, 12, 23

Arakawa C grid, 97

Arrhenius law, 52–54

arrow, 7

aspect ratio, 63, 78, 111, 117
associated rate factor, 56
asthenosphere, 188
Atlas Mountains, 4
atmosphere, 61
atmospheric circulation, 6
Austfonna, 3, 192

balance equation, 27, 30
balance of angular momentum, 33
balance of internal energy, 36, 37, 64
balance of kinetic energy, 35
barycentric velocity, 238
basal drag, 68, 79
basal melting, 2
basal melting rate, 68, 71, 82, 240
basal melting-freezing rate, 112
basal plane, 49
basal sliding, 68, 79, 157, 261
basal sliding exponent, 69
basal sliding velocity, 69, 79, 158, 163,

178
basis, 9
basis function, 135
Bessel function, 191
biharmonic equation, 42, 190
biharmonic operator, 43
binary mixture, 237
body, 17
British Isles Ice Sheet, 4
Bueler profile, 88, 89
bulk modulus, 39
bulk viscosity, 44
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buoyancy, 188

c-axis, 49, 50, 203, 204, 206
CAFFE flow law, 207, 208
CAFFE model, 204
caloric equation of state, 59
calving, 1, 2, 61, 184, 203, 261, 262
calving front, 114, 117, 123
calving rate, 87, 116
Canadian Arctic, 253
Canadian-type polythermal glacier, 253,

259
Cartesian basis, 9
Cartesian coordinates, 14, 61
Cauchy Green tensor, 20
Cauchy stress tensor, 31, 32, 34
centrifugal force, 62
clathrate, 226
Clausius-Clapeyron constant, 53
Clausius-Clapeyron gradient, 240
climate system, 1
closure of air bubbles, 226
closure relation, 37
coefficient of viscosity, 43
cold base, 69
cold glacier, 145, 237
cold ice, 145, 183, 237
cold-temperate transition surface, 183,

242
column, 9
compressibility of firn, 228
compressible, 43, 228
configuration, 17
conserved quantity, 27
constitutive equation, 37
contact problem, 115, 123
continuity equation, 29, 75
continuum mechanics, 17
core, 187
Coriolis force, 62, 73, 112, 145, 193
creep, 1, 50
creep function, 52, 53
cross product, 7, 10
crust, 185, 187
cryosphere, 1
crystallite, 50, 203
CTS, 242
curl, 15
curl theorem, 16

damage mechanics, 262
Darcy-type interaction force, 238
debris layer, 183
deformation, 17, 20
deformation gradient, 18, 22
Delaunay triangulation, 134
densification of firn, 224
density, 27, 29
density of firn, 224, 227
density of ice, 62, 225, 227, 232
density of sea water, 112
density of the asthenosphere, 188
depth-integrated viscosity, 121
determinant, 13
diffusion equation, 82
diffusive asthenosphere, 188, 195
diffusive water mass flux, 238, 239, 241,

244
dilatation, 38
dilatation rate, 24, 130
dimensional matrix, 159
Dirac’s δ function, 191, 211
discontinuity, 183, 261
dislocation, 50
dislocation creep, 50
displacement, 18
displacement gradient, 38
dissipation power, 35, 36
divergence, 15
divergence theorem, 16, 26, 27, 132
dot product, 7, 10
driving stress, 83
Dronning Maud Land, 219, 220
dual vector, 24
dyadic product, 8, 10
dynamic boundary condition, 67, 113
dynamic recrystallisation, 51, 218, 219,

223

East Antarctic Ice Sheet, 219
eccentricity, 3
EDML ice core, 219, 220
effective pressure, 161
effective strain rate, 55, 74
effective stress, 53
EGIG line, 103
Einstein’s summation convention, 9
EISMINT model intercomparison, 86
elastic body, 38
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elastic deformation, 51, 60
elastic lithosphere, 188, 190, 195
ELDA model, 188, 192, 195, 199
elliptical boundary-value problem, 124
ELRA model, 188, 199, 201
emission scenario, 5
energy, 35
energy balance, 35, 45
energy jump condition, 36, 69, 113
enthalpy, 255
enthalpy diffusivity, 257
enthalpy gradient method, 256, 259
EPICA, 220
epsilon tensor, 14
equation of motion, 63, 112, 229
equilibrium line altitude, 104
essential boundary condition, 133
Euclidian space, 7
Euler forward stepping, 100, 101
Eulerian description, 18
Eurasian Ice Sheet, 4, 109
European Alps, 4
evolution equation, 37

fabric, 58, 203, 204, 206, 217
FESSACODE, 141
Fick’s diffusion law, 239
Fiescherhorn Glacier, 224
Filchner-Rønne Ice Shelf, 2, 111, 199
final stage of densification, 226
finite difference, 164, 165
finite difference method, 90, 131, 141
finite difference scheme, 166, 168, 169,

181, 197
finite element, 133
finite element mesh, 133, 141
finite element method, 131, 168
firn, 224
First Law of Thermodynamics, 36
first order approximation, 76, 145, 153
first order plane strain approximation,

156
fixed point iteration, 166, 167, 172, 174,

180, 229, 236
flexural stiffness, 42, 190
floating condition, 120
flow enhancement factor, 58, 203
fluidity, 52, 53
flux, 26

flux density, 27
force, 31
force of gravity, 62
forebulge, 191
Fourier’s law of heat conduction, 45, 59,

239, 257
fracturing, 184, 262
free surface, 61, 65, 112
freeboard, 120
freezing condition, 245, 248, 250
frictional dissipation, 113
front tracking, 255, 259
Froude number, 64, 111, 145

Galerkin finite element method, 137
general balance equation, 27, 30
general jump condition, 29
geothermal heat flux, 61, 69, 242
girdle fabric, 213, 221
glacial, 3
glacial cycle, 3, 104, 185
glacial flow, 1
glacial isostasy, 61, 82, 186
glacier, 1, 2, 17, 48, 192, 237
Glen’s flow law, 54, 55, 204, 207, 208
Global Conveyor Belt, 6
global positioning system, 178
global warming, 4, 261
GPS, 178
gradient, 15
grain, 50, 183, 203
grain boundary sliding, 54
grain rotation, 204, 217, 219
gravitational acceleration, 62
Green’s function, 191, 197
greenhouse gas, 5
Greenland Ice Sheet, 2–5, 86, 103, 109,

185, 192, 253
GRIP ice core, 219
ground ice, 1
grounding line, 114, 117, 122, 262
Gulf of Bothnia, 185
Gulf Stream, 6

hard bed, 157, 158
Haut Glacier d’Arolla, 153, 182
heat conductivity, 45, 59, 229
heat flux, 35, 36, 59, 239
hexagonal crystal, 49
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Holocene Epoch, 4
homogeneous viscous thermoelastic

body, 37
Hooke’s law, 39, 41, 60
Hookean body, 38, 199
horizontal velocity, 76, 80, 117, 122, 182
hydraulic system, 183
hydrology, 203, 261
hydrostatic approximation, 75, 116,

145, 153
hydrostatic pressure, 48, 161

ice age, 3, 186
ice base, 61, 67, 112, 183, 190
ice cap, 1, 3, 192
ice core, 141, 219, 220
ice crystal, 50
ice dome, 77
ice Ih, 49
ice load, 185, 188
ice margin, 77
ice sheet, 1, 61, 111, 185, 192, 237
ice sheet model, 90, 103, 109
ice shelf, 1, 60, 111, 262
ice stream, 6, 203
ice surface, 61, 65, 112, 183
ice thickness equation, 71, 72, 81, 112,

125, 194
ice-dynamic instability, 6
identity transformation, 12
incompressible, 30, 44, 52, 61, 149, 163,

192, 224
index notation, 11
inertial force, 62
infinite viscosity, 56
infinitesimal strain deviator, 39
infinitesimal strain tensor, 38, 39
initial stage of densification, 225
inner core, 187
inner product, 7
interglacial, 3
intermediate stage of densification, 225
internal energy, 35, 255
inverse problem, 179
inverse tensor, 13
IPCC, 4
ISMIP model intercomparison, 108
isostasy, 61, 82, 186
isotropic fabric, 206, 207, 222

isotropy, 38, 50, 203
iteration method, 140

Jacobian, 19, 23
jump, 28
jump condition, 29
jump condition of angular momentum,

34

Kelvin function, 191
kinematic boundary condition, 66, 67,

112
kinetic energy, 35
kinetic energy density, 35
Kohnen Station, 220
Kronecker symbol, 9, 12

Lagrangian description, 18
lake ice, 1
Lake Vostok, 158
Lamé parameter, 39, 41, 60
land ice, 1
Laplacian, 15, 42
large-scale surge, 107
Larsen Ice Shelf, 262
Last Glacial Maximum, 4, 185
latent heat, 70, 256
latent heat flux, 239
Leibniz’s rule, 70, 118
Levi-Civita symbol, 10, 13, 14
line integration, 167
linear elastic solid, 38, 199
linear transformation, 8, 10, 13
linear viscous fluid, 43, 192
lithosphere, 61, 188
lithosphere surface, 61, 112, 116, 190
LLDA model, 188, 192, 199
LLRA model, 188, 190, 199
local lithosphere, 188, 192
local time derivative, 22
localisation, 27

mantle, 187
Mars, 109
mass, 29
mass balance, 29, 37, 41, 44, 61, 112,

124, 228
mass jump condition, 30, 113
master element, 134
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material description, 18
material equation, 37
material quantity, 38
material time derivative, 22
material volume, 25, 26
matrix, 11
Mauna Kea, 4
Maxwell fluid, 199
mechanical ice shelf problem, 132
melting, 1, 61, 104, 224
melting condition, 245, 247, 249
melting temperature, 53
membrane stress, 119
method of lines, 165
migration recrystallisation, 51, 218, 219
Milankovitch theory, 3
mixture energy balance, 239
mixture mass balance, 238
mixture momentum balance, 238
mixture theory, 237
momentum, 30
momentum balance, 31, 32, 37, 42, 44,

45, 63, 72, 76, 77, 117, 229
momentum density, 30
momentum jump condition, 32, 66, 68,

112
motion, 17, 18
motor oil, 54
Mount Kilimanjaro, 3

nabla operator, 15
NADW, 6
natural boundary condition, 133
Navier equation, 42
Navier-Stokes equation, 44–47, 193
New Zealand, 4
Newton’s Second Law, 31
Newtonian fluid, 43, 44, 56, 57, 149,

163, 192
no-slip condition, 37, 46, 68
non-material volume, 28
norm, 7
normal stress, 32
North American Ice Sheet, 4, 109
North Atlantic, 6
North Atlantic drift, 6
number triple, 9
numerical grid, 91

Nye’s generalisation of Glen’s flow law,
54

obliquity, 3
ocean, 61, 114
oceanic tide, 60
OGCM, 109
Oligocene, 3
optic axis, 49
orthonormal basis, 9
outer core, 187
outer product, 8

parallel sided slab, 146, 230, 246
partial density, 238
particle, 17
Patagonian Ice Sheet, 4
permafrost, 1, 5
permutation tensor, 14
Petterssen iteration, 174
photogrammetry, 178
plane strain, 46, 84, 126
plate tectonics, 188
Pleistocene, 3
Pleistocene Glacial Epoch, 3
Pliocene, 3
plug flow, 117
Poisson’s ratio, 39, 60, 191
polar decomposition, 19
polar ice caps of Mars, 109
polar stereographic projection, 61
polycrystalline ice, 50, 203
polygonisation, 217, 219
polythermal glacier, 145, 237, 253
porosity, 224
position vector, 17
positive definite, 19
power law, 52, 53, 68
power of stresses, 35
power of volume forces, 35
pre-exponential constant, 52, 54
precession, 3
present configuration, 17, 25
pressure, 43–45
pressure melting point, 54, 65
primary creep, 51
principal axis, 20
prismatic plane, 50
production, 26
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production density, 27
proper orthogonal tensor, 19
Puncak Jaya, 3
pure shear, 222
pyramidal plane, 50

radiation power, 35
radius of relative stiffness, 191
radius of the Earth, 61
rate factor, 52, 53
recrystallisation, 204, 224
rectangular grid, 91, 97
reference configuration, 17, 25
refreezing, 224
regularised Glen’s flow law, 56
relative density, 227
relaxation scheme, 140, 230
relaxing asthenosphere, 188, 192
residual stress, 56
Reynolds’ transport theorem, 26, 27
Rhone Glacier, 177
RIGGS campaign, 141
rigid body rotation, 25
river ice, 1
Rocky Mountains, 253
Ross Ice Shelf, 1, 111, 141, 199
Rossby number, 64, 111
rotation recrystallisation, 217, 219
rotation tensor, 20
Runge-Kutta scheme, 165

scalar, 7
scalar field, 14
scalar invariant, 13, 53
scalar multiplication, 7
Scandinavia, 253
Scandinavian Ice Sheet, 4, 109
Scandinavian-type polythermal glacier,

253
Schmidt diagram, 211, 214, 221–223
sea ice, 1
sea level, 4
sea level rise, 2–4
secondary creep, 51, 58
seconds per year, 64
sediment layer, 162
settling of firn, 232
SGVE model, 186, 199

shallow ice approximation, 77, 125, 145,
152, 222, 262

shallow shelf approximation, 117, 125
shear, 38
shear angle, 51
shear experiment, 50
shear modulus, 39, 60, 191
shear rate, 24
shear stress, 32, 50
shear traction, 164
shear viscosity, 44, 45, 52
shooting, 166, 180
SICOPOLIS, 90, 103, 255
sigma transformation, 91
simple shear, 52, 77, 207, 211, 216, 222
single maximum fabric, 206, 207, 211,

216, 221, 222
single shooting, 166, 180
singular surface, 28
sliding law, 68, 113
small deformation, 38
Smith-Morland flow law, 58
snow, 1
snowfall, 61, 104
soft bed, 158
solar insolation, 3
Sorge’s Law, 229, 230
Southern Ocean, 2
sparse matrix, 140
spatial description, 18
specific enthalpy, 255
specific heat, 45, 59, 229, 256
specific internal energy, 35, 36, 255
specific kinetic energy, 35
specific momentum, 32
specific radiation power, 35, 36
speed, 34
spherical coordinates, 207, 213
spin tensor, 23, 24
staggered grid, 97
standard parallel, 61
stationary Rossby wave, 6
steady state, 46, 84, 126, 222
Stokes equation, 64
Stokes flow, 64, 112, 145, 146, 153, 193
Storglaciären, 153, 172, 174, 255
strain-rate deviator, 43
strain-rate tensor, 23, 52
stress, 31
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stress deviator, 45, 52
stress enhancement factor, 58, 141
stress exponent, 52, 53
stress tensor, 31, 32, 34
stress vector, 31, 32
stress-free condition, 46, 67, 78, 112
stretch tensor, 20
stretching tensor, 23
subglacial hydrology, 203, 261
sum of vectors, 7
supply, 26
supply density, 27
surface mass balance, 66, 71, 104
surface slope, 81
surface temperature, 67, 83, 104
surge, 107, 261
Svalbard, 253
Swiss Alps, 153, 177, 224
symmetric tensor, 12, 19, 23

Tasmania, 4
temperate base, 69, 113, 240
temperate glacier, 145, 237
temperate ice, 145, 183, 237
temperate surface, 240
temperature, 38
temperature evolution equation, 65, 75,

82, 112, 125
temperature of sea water, 113, 141
temperature relative to the pressure

melting point, 54
tensor, 10, 13
tensor contraction, 14
tensor field, 14
tensor multiplication, 12
tensor product, 8, 14
terrain-following coordinate transforma-

tion, 91, 164, 233
Tertiary, 3
tertiary creep, 51
thermal equation of state, 43
thermal expansion, 5
thermodynamic boundary condition,

67, 69
thermodynamic pressure, 43, 44, 227
thermomechanically coupled problem,

64
thin channel, 192
thin channel equation, 195

thin elastic plate, 42, 190
thin film, 46, 146
time derivative, 22
total pressure, 44
trace, 13
trajectory, 174
transformed equations, 167
transverse flow profile, 175
triangulation, 134, 141
tropical glacier, 2
typical value, 63, 82, 111

uniaxial compression, 207, 214, 216
unit matrix, 12
unit tensor, 12
unit vector, 7
universal gas constant, 52
uplift, 185
uplift rate, 199
upper mantle, 55

Vatnajökull, 3, 192
vector, 7
vector field, 14
vector product, 7
vector space, 7
velocity, 21
velocity gradient, 22
vertical velocity, 76, 81, 125, 172, 182
Vialov profile, 86, 89
visco-elastic fluid, 199
viscosity, 44, 45, 52, 54, 56, 64, 74, 76,

186, 192
viscous material, 43
viscous pressure, 44, 227
volume flux, 71, 81
volume force, 31, 62
Vostok station, 2

water flux, 244, 245
water pressure, 161
water-ice drag coefficient, 112
weak formulation, 133
Weertman-type sliding law, 68, 79, 106,

157, 161, 262
weight function, 132
West Antarctic Ice Sheet, 6, 262
Wilkins Ice Shelf, 262

Young’s modulus, 39, 60, 191
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