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Preface

Ice sheets, ice shelves, ice caps and glaciers are active, dynamic components
of the climate system of the Earth, and they deserve the same scientific at-
tention as the atmosphere and the oceans. However, while the dynamics of
the atmosphere and the oceans have been studied intensively and literature
on these topics abound, awareness of the importance of ice dynamics within
the big picture has increased only recently. Just as an example, the widely
acclaimed and valued book Geophysical Fluid Dynamics by Pedlosky (1987)
states that “the subject has tended to focus on the dynamics of large-scale
phenomena in the atmosphere and the oceans”, and, consequently, only these
are presented in the book. On the other hand, glaciology is an established
field of research, and glacier dynamics has been dealt with in the literature
to some extent; however, with a certain focus on smaller-scale phenomena.
Treatments of the large-scale dynamics of ice sheets are mainly found in the
specialist literature.

In this book, we try to bridge the gap between the conventional under-
standings of geophysical fluid dynamics and glacier dynamics. Chapter 1 puts
the subject into the wider context of climate research. In Chapter 2, the
mathematical properties of vectors and tensors are reviewed briefly. Chapter 3
presents a solid, continuum-mechanical background, which is the foundation
for the subject matter of the remainder of the book. This chapter goes further
than the immediate needs of ice sheet and glacier dynamics in order to provide
a framework applicable to a great variety of related problems in geophysics (in-
cluding the above-mentioned large-scale dynamics of the atmosphere and the
ocean), physics and engineering sciences. The material properties of polycrys-
talline ice, as it occurs in land ice masses on Earth, are discussed in Chapter 4.
The core of this book is made up by Chapters 5-7, devoted to the dynamics
of ice sheets, ice shelves and glaciers, respectively. Special emphasis is put
on systematically developing hierarchies of approximations for the different
systems, and suitable numerical solution techniques are discussed. Chapter 8
is concerned with simple models for glacial isostasy, the reaction of the solid
Earth to temporally varying ice loads. In Chapter 9 some more advanced
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and demanding topics of current research related to ice dynamics (induced
anisotropy, compressible firn, polythermal glaciers) are treated. Chapter 10
concludes the book.

The content is based, largely, on lectures about ice-sheet/glacier dynam-
ics and numerical models in glaciology developed by the authors over the
past years. These lectures are offered jointly at the Hokkaido University, Sap-
poro, and the Swiss Federal Institute of Technology (ETH) Zurich, in associa-
tion with the International Antarctic Institute (IAI), an international, multi-
campus programme in cryosphere science education (http://wwwearth.ees.
hokudai.ac.jp/IAI/, http://www.iai.utas.edu.au/). The level of treatment ca-
ters mainly to graduate students, post-graduate students and researchers, but
most of the material should also be understandable for motivated upper-level
undergraduate students.

In order to eliminate one source of distraction especially for student read-
ers, we have refrained from giving detailed references to original literature in
the style of scientific articles. Instead, references have been kept at a reason-
able minimum, and whenever possible, overview articles and textbooks have
been given preference. An exception is Chapter 9, in which less well estab-
lished topics are discussed, and which is more biased by the authors’ own
perspective than the material in the preceding chapters. The literature list at
the end of the book is also understood as a suggestion for supplemental and /or
further-reaching reading. We apologize to those colleagues whose publications
are not quoted.

Hutter and Johnk (2004) end the preface of their book Continuum Meth-
ods of Physical Modeling with the statement that “writing a book can never
be finished, a book has to be abandoned!” We cannot put it in better words.
Abandoning this book is what we are now going to do, well knowing that it
is not perfect, but nevertheless hoping that a variety of readers with back-
grounds in glaciology, climate science, geophysical fluid dynamics, continuum
mechanics, physics and applied mathematics will find it useful and inspiring
in the years to come.

Sapporo, Japan; Zurich, Switzerland Ralf Greve
June 2009 Heinz Blatter
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1

Ice in the Climate System

1.1 The Terrestrial Cryosphere

The frozen part of the terrestrial climate system is referred to as the cryosphere.
The cryosphere consists of several subsystems, namely ice sheets, ice shelves,
ice caps, glaciers, sea ice, lake ice, river ice, ground ice and snow. Ice sheets
are ice masses of continental size (area greater than 50,000 km?) which rest
on solid land, whereas ice shelves consist of floating ice nourished by the in-
flow from an adjacent ice sheet, typically stabilised by large bays. Extended
land-based masses of ice covering less than 50,000 km? are termed ice caps,
and smaller ice masses constrained by topographical features (for instance a
mountain valley) are called glaciers. Sea ice floats on the ocean; however, in
contrast to an ice shelf it forms directly by freezing sea water. Similarly, lake
ice and river ice form directly on lake and river water, respectively. Ground ice
occurs as permafrost, that is, soil that stays in a frozen state year-round. Snow
is precipitation in the form of crystalline water ice, consisting of a multitude
of snowflakes, which accumulate on the ground at a bulk density significantly
less than that of ice.

Ice sheets (with their attached ice shelves), ice caps and glaciers, which
are subsumed as land ice, are the focus of this book. As a common feature,
these ice bodies show gravity-driven creep flow (“glacial flow”), sustained by
the underlying land. This leads to thinning and horizontal spreading, which is
essentially compensated by snow accumulation in the higher (interior) areas
and melting and calving in the lower (marginal) areas. Any imbalance of this
dynamic equilibrium leads to either growing or shrinking ice masses.

1.2 Land Ice on the Present-Day Earth

By far the largest single land ice body on the present-day Earth is the Antarc-
tic Ice Sheet (Fig. 1.1), with a total ice volume of 25.7 x 10 km?, and addition-
ally 0.58 x 105 km? of the attached ice shelves (Ross Ice Shelf, Filchner-Rgnne

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2_1, (© Springer-Verlag Berlin Heidelberg 2009
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Southern Ocean

Fig. 1.1. Satellite composite image of the Antarctic Ice Sheet. EAIS: East Antarctic
Ice Sheet, WAIS: West Antarctic Ice Sheet, R: Ross Ice Shelf, FR: Filchner-Rgnne
Ice Shelf, A: Amery Ice Shelf, SP: South Pole. Image size is approximately 6500 km x
5600 km. (Credit: NASA Goddard Space Flight Center; public domain.)

Ice Shelf, Amery Ice Shelf and others). This corresponds to a sea level rise
equivalent of 61.1 m (Church et al. 2001). The ice sheet and the ice shelves
cover an area of 12.4 x 10km? and 1.1 x 10%km?, respectively, so that the
mean ice thickness is approximately 2 km. Additional extremes include the
highest surface elevation of the ice sheet of 4.2 km AMSL (above mean sea
level), an annual mean surface temperature which can be as low as —60°C
in central East Antarctica, and the lowest temperature ever measured on the
surface of the Earth, —89.2°C, at the Russian Vostok station. Due to these
low temperatures, surface melting over the ice sheet is essentially non-existent,
and the ice sheet loses its mass mainly by drainage into the surrounding ice
shelves, from where it is ultimately released into the Southern Ocean by either
calving (break-off of icebergs) or basal melting (Bentley 2004).

Compared to this, the second present-day ice sheet on Earth, the Green-
land Ice Sheet, appears modest. Its ice volume amounts to 2.85 x 10%km3
or 7.2 m sea level rise equivalent, with an ice-covered area of 1.71 x 106 km?
(Church et al. 2001). Because of the absence of large bays, the ice sheet releases
its outward mass flow directly into the ocean where it reaches the coast, and
consequently ice shelves do not exist. An important difference to the Antarc-
tic Ice Sheet is that, due to the higher surface temperatures, the regions close
to the ice margin experience a considerable amount of melting during the
summer season, so that the mass loss of the Greenland Ice Sheet is divided
roughly equally between melting and calving (Thomas 2004).

Glaciers occur on every continent and in approximately 47 of the world’s
countries, including tropical locations like the Andes in northern South Amer-
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Atlantic
Ocean

Fig. 1.2. Satellite image of Vatnajokull, Iceland, in September 2002. Image size
is approximately 150 km x 120 km. (Credit: Jacques Descloitres, MODIS Rapid
Response Team, NASA Goddard Space Flight Center; public domain.)

ica, Mount Kilimanjaro (Tanzania) and Puncak Jaya (Western New Guinea,
Indonesia). Examples for ice caps are the two largest European land ice bod-
ies, Vatnajokull in Iceland (largest by volume; Fig. 1.2) and Austfonna in
Svalbard, Norway (largest by area). More than 160,000 glaciers and approx-
imately 70 ice caps of the world have a combined volume of 0.18 x 10% km?
and cover an area of 0.68 x 10%km?. Their total sea level rise equivalent is
therefore estimated as 0.5 m (Church et al. 2001).

1.3 An Excursion into the Past

In the early Tertiary, the global climate was characterised by tropical-to-
moderate worldwide temperatures and the complete absence of a cryosphere.
However, in the course of the Tertiary, climates slowly cooled. Antarctica
drifted to its current position at the South Pole, and in the early Oligocene
(about 30 million years ago) the Antarctic Ice Sheet started to form as a small
ice cap which retreated and advanced many times until the Pliocene, when
it came to occupy almost all of Antarctica. The Greenland Ice Sheet did not
form at all until the late Pliocene, but developed very rapidly with the onset
of the Pleistocene Glacial Epoch about 2 million years ago.

The Pleistocene lasted until about 10,000 years ago and showed a se-
quence of advances (“ice ages” or “glacials”) and retreats (“interglacials”) of
ice sheets and glaciers, known as glacial cycles. According to the now widely-
accepted Milankovitch theory, the main mechanism at work is due to the pe-
riodic changes in the parameters of Earth’s orbit around the sun (eccentricity,
obliquity, precession), which affect the seasonal and latitudinal distribution of
the solar insolation on Earth and, together with the effects of multiple positive
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and negative feedbacks (atmospheric CO5 content, albedo, ice sheet dynamics
etc.), govern the glacial cycles (e.g., Wilson et al. 2000). Until about 1 mil-
lion years ago, their main period was 41,000 years (obliquity cycle), whereas
thereafter the 100,000-year period (eccentricity cycle) prevailed.

About 21,000 years ago, at the Last Glacial Maximum, ice sheets cov-
ered large parts of North America, Greenland, the European Alps, northern
Europe including Scandinavia and Britain, north-western Eurasia, Patagonia
and Antarctica. Also, there were glaciers in the equatorial Andes, on Mauna
Kea (Hawaii), in New Zealand and Tasmania, on several mountains in east
and central Africa and in the Atlas Mountains. Owing to the additional wa-
ter stored in these ice masses, the sea level was about 120-135 m lower than
today, so that Great Britain was a part of continental Europe, the present
Bering Strait was a land bridge between East Siberia and Alaska, and the
northern Japanese island of Hokkaido was connected to Russian Sakhalin. Af-
ter that, the ice retreated gradually, and at around 10,000 years ago the last
ice age ended, marking the transition to the Holocene Epoch with its current,
interglacial ice cover.

1.4 Ice Sheets, Glaciers and Global Warming

What will be the fate of the present-day ice sheets, ice caps and glaciers in
a warming climate during the next decades and centuries? First of all, it is
important to note that the smaller an ice body is, the faster it can respond
to a change in the climatic conditions (surface temperature, precipitation).
Therefore, the smaller glaciers and ice caps are much more vulnerable to
global warming than the large ice sheets of Antarctica and Greenland. On the
other hand, let us recall that the potential for sea level rise of the glaciers and
ice caps is limited to 0.5 m, whereas that of the ice sheets is almost 70 m.
According to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC), Contribution of Working Group I, Chap. 5
(Bindoff et al. 2007), for the periods 1961-2003 and 1993-2003, global sea level
rises of 1.8 = 0.5 and 3.1 4 0.7 mm a~!, respectively, have been observed (the
symbol “a” represents 1 year ~ 31,556,926 s). Estimates of the various con-
tributions suggest that, for the decade 1993-2003, 1.6 £ 0.5 mm a~! can be
attributed to ocean thermal expansion, 0.77 & 0.22 mm a~' to the melting
of glaciers and ice caps, 0.21 4 0.07 mm a~! to changes of the Greenland Ice
Sheet and 0.21 4 0.35 mm a~' to adjustments of the Antarctic Ice Sheet. Ev-
idently, the largest contribution among the different types of land ice is from
the small ice bodies, which becomes manifest in a significant trend towards
retreat of glaciers all over the world (see Fig. 1.3 for an example). By con-
trast, the contribution of recent adjustments of the Antarctic Ice Sheet may
even be negative. This surprising finding is due to the fact that the extremely
low temperatures over Antarctica do not allow for significant increases in sur-
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1909

2004

Fig. 1.3. Recession of McCarty Glacier in Kenai Fjords National Park, Alaska,
1909 — 2004. The glacier retreated approximately 20 km during this period and is
not visible anymore in the 2004 photo. (Sources: 1909 photo by Ulysses Sherman
Grant, U. S. Geological Survey Photo Library, public domain. 2004 photo by Bruce
F. Molnia, U. S. Geological Survey, public domain.)

face melting, whereas increased precipitation rates as a consequence of global
warming deposit more snow on the Antarctic Ice Sheet.

IPCC (Fourth Assessment Report 2007, Contribution of Working Group I,
Chap. 10; Meehl et al. 2007) projections for climate change in the 21st century
(more precisely, for the 2090-2099 average relative to the 1980-1999 average)
give an increase of the globally averaged surface temperature in the range
of 1.1-6.4°C, and a global-average sea level rise in the range of 0.18-0.59 m.
These uncertainties are partly due to the assumption of a variety of greenhouse
gas emission scenarios and partly due to model uncertainties themselves. The
contribution to sea level rise from the glaciers and ice caps is estimated to be in
the range of 0.07 to 0.17 m, the contribution from changes of the surface mass
balance of the Greenland Ice Sheet as 0.01 to 0.12 m and that from changes
of the surface mass balance of the Antarctic Ice Sheet as —0.14 to —0.02 m.
Further contributions are due to ocean thermal expansion, ice sheet dynamics,
thawing of permafrost and anthropogenic change in terrestrial water storage.
Again, the largest contribution among the different types of land ice will likely
be from the small ice bodies. Note that the upper end of the range for glaciers
and ice caps (0.17 m) is approximately one third of their entire sea level rise
equivalent (0.5 m). This illustrates the large vulnerability especially of small
glaciers, many of which will probably have vanished by the end of the 21st
century. In contrast, the large ice sheets are much more inert, and the positive
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contribution of Greenland (due to increased melting and runoff) is expected
to be more or less compensated by the negative contribution of Antarctica
(due to increased precipitation).

On a longer term, if global warming continues, glacier and ice cap retreat
will go on, and the loss of a substantial fraction of their mass is likely within
a few centuries. Also, the Greenland Ice Sheet will finally suffer a significant
decay. For instance, Ridley et al. (2005) found that under climatic condi-
tions resulting from a constant atmospheric CO2 concentration four times the
preindustrial level, after 1000 years only about 40% of the original ice volume
remains. The impact on the Antarctic Ice Sheet as a whole will likely be lim-
ited; however, melting and runoff will finally outweigh increased precipitation,
and due to its huge volume, a contribution to sea level rise of a few metres
within 1000 years is possible.

Poorly understood internal ice flow dynamics make these predictions to
some extent uncertain. For Antarctica, disintegration of attached ice shelves
and accelerating ice streams and outlet glaciers may lead to an acceleration of
the coastward mass flux of the ice sheet and therefore destabilise it. This pos-
sibility has been discussed, in particular, for the smaller part of the ice sheet
in the western hemisphere (West Antarctic Ice Sheet, sea level rise equivalent
of 6 m). For Greenland, surface meltwater percolating to the base may act
as a lubricant on which parts of the ice sheet can glide off into the ocean.
Firm predictions whether such ice-dynamic instabilities are likely for the next
centuries are not possible at present due to inadequate understanding of the
related processes.

Since the cryosphere is an integral part of the climate system, changes of
its state will inevitably feed back on other subsystems. While for the smaller
glaciers and ice caps such feedbacks are limited to local effects due to changes
in albedo and hydrology, ice sheet decay can affect the climate on a global
scale. For the 21st century, the greatest foreseeable problem is the increased
freshwater discharge into the North Atlantic from the melting Greenland Ice
Sheet. Together with increased precipitation rates, this meltwater reduces the
salinity and density of the surface water in the North Atlantic and there-
fore hampers the formation of North Atlantic Deep Water (NADW). Since
NADW plays a vital role in driving the North Atlantic drift (also known as
Gulf Stream), this warm surface current may experience a weakening or even
a complete shutdown, with severe consequences for the climate in Europe and
the whole pattern of heat distribution by the Global Conveyor Belt (e.g., Alley
2000). On longer time-scales, albedo changes due to exposed ice-free land in
Greenland feed back positively on surface temperatures, which can lead to an
accelerated, irreversible disintegration of the ice sheet. Also, major orographic
changes of the Greenland Ice Sheet disturb the atmospheric circulation by al-
tering the stationary Rossby wave pattern. This process may entail a complex
pattern of regional climate change in the Arctic and sub-Arctic areas, which
is difficult, at this point, to assess in detail.
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Vectors, Tensors and Their Representation

2.1 Definition of a Vector, Basic Properties

In mathematics, a vector is defined as an element of a vector space, and a
vector space is a commutative (Abelian) group with a scalar multiplication.
This is an abstract definition which has many possible realisations (numbers,
functions, geometric objects and so on). For our purposes, it is sufficient to
consider one of them, namely the geometric object of an arrow in the three-
dimensional, Euclidian, physical space £. Therefore, in our sense a vector
a € & is an arrow which is characterised by a length and a direction. Physical
quantities which can be described by such vectors are, for instance, velocity,
acceleration, momentum and force. By contrast, scalars are simple numbers
and characterise physical quantities without a direction, like mass, density,
temperature etc.

We will usually denote vectors by bold-face symbols like a, b, c, etc. The
sum

s=a-+b (21)

of two vectors is obtained by the parallelogram construction, and the scalar

multiplication
p=Xa AeR (2.2)

(IR denotes the set of real numbers) is a vector parallel to a with length \|al,
where |a| is the length (absolute value, norm) of a (Fig. 2.1).

The direction of a vector can be characterised by the unit vector (length
equal to one) e, = a/|a|. Further, the dot product (inner product)

S5=a-b (2.3)

of two vectors is equal to the scalar given by |a| |b|cos ¢ (where ¢ is the angle
between the two vectors), and the cross product (vector product)

c=axb (2.4)

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2_2, (© Springer-Verlag Berlin Heidelberg 2009
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Fig. 2.1. Sum s = a + b and scalar multiplication p = Aa of vectors.

is equal to the vector with length |a||b|sin ¢ and direction perpendicular to
the plane spanned by a and b, such that a, b and ¢ form a right-handed
system (Fig. 2.2). Note that

laj =+va-a, (2.5)

a-b=0 < albora=0o b=0, (2.6)
axb=-bxa (2.7)

and
axa=0, (2.8)

where 0 denotes the vector of length zero (“zero vector”).

1&

C

Fig. 2.2. Cross product ¢ = a X b of vectors.

Finally, the dyadic, outer or tensor product ab (sometimes denoted as
a®b) is the linear transformation which, when applied to an arbitrary vector
X, obeys the relation

(ab)-x=a(b-x), (2.9)

where (b-x) means the dot product (2.3). In other words, the transformation
ab maps the vector x on the vector which has the direction of a and length
(b-x)|al.



2.2 Representation of Vectors as Number Triples 9

2.2 Representation of Vectors as Number Triples

Let {e;}i=1,2,3 be a set of unit vectors which are perpendicular to each other
and form a right-handed system. In other words,

e -ej =0, (2.10)

where d;; is the Kronecker symbol defined as

1, fori=y,
0ij = {0, for i #j, (2.11)
and
e; xej=e,, (i,5,k) €{(1,2,3),(2,3,1),(3,1,2)}. (2.12)

We will refer to such a set {e;} as an orthonormal basis (also Cartesian basis).
An arbitrary vector a can then be uniquely written as

3
a=aje; +asey + azes = Z a;e; (2.13)
i=1

where the a; are real numbers. With Einstein’s summation convention, which
says that double indices (here i) automatically imply summation, this can be
written in compact form as

a=ae;. (2.14)

Since the coefficients a; are unique for a given basis {e;}, it is possible to
represent the vector a by these coefficients. It is usual to arrange them in a
column (number triple) and write

a1
a{ei} = az , (215)
as

which is to say, the vector a is represented by the components a; with respect
to the basis {e;}. Of course, when a different orthonormal basis {€}} is used,
the representation of the vector a will change:

a=ale’, (2.16)
or
ai
a{e;} = a§ . (2.17)
a3

Note that the vector a is still the same object (arrow in space), whereas its
components have changed. It is therefore of great importance to distinguish
between vectors themselves and their representation as number triples. Mixing
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up these two different things is a notorious source of confusion. Only when a
single basis {e;} is defined from the outset, is a uniquely expressed by

ay
a=|as | . (2.18)
as

In components with respect to a given basis {e;}, the dot product (2.3)
can be evaluated as
a-b= aibi, (219)

and the ith component of the cross product (2.4) is
(ax b); =eirajby (2.20)

(summation over j and k). In the latter expression, ¢;;; is called the Levi-
Civita symbol or alternator, defined as

1, for (i,5,k) € {(1,2,3), (2,3,1), (3,1,2)},
Eijk = -1, for (i,j, k) € {(1a3’2)v (372’1)7 (27173)}7 (2'21)
0, otherwise (at least two indices are equal) .

The dyadic product defined in Eq. (2.9) is expressed as
ab = (aiei) (bjej) = CL,L'bj €;€;, (222)

(summation over i and j), where e; e; is the dyadic product of the respective
basis vectors.

2.3 Tensors of Order 2

A tensor A of order 2 (often simply called a tensor) is defined as a linear
transformation which maps vectors on vectors:

y=A x. (2.23)

Tensors will generally be denoted by sans-serif symbols like A, B, C, etc.
We have already encountered special tensors of order 2, namely the dyadic
products between two vectors introduced in Eq. (2.9). Their expression with
respect to an orthonormal basis {e;} was given by Eq. (2.22), and similarly a
general tensor of order 2 can be written as

A= Aij €;,€;. (224)

Evidently, the tensor A is represented by the components A;;, and analogous
to Eq. (2.15) this can be denoted by
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A A Ags
Afe,y = | A2 Az Asz |, (2.25)
Az Aszp Ass

where the components have been arranged into a square matrix. Again, if a
different basis {e}} is used, the representation will change,

Afy Ay A7,
Afery = | Az A3y AZs | (2.26)
Az Ay A3y
so that tensors and matrices must be distinguished in the same way as vectors

and number triples. Only when a single, fixed basis {e;} is used, is A uniquely
expressed by the square matrix

A Arp Ags
A= | Ay Ay Aos . (227)
Asy Asy Az

With the representation of Eq. (2.24), the linear transformation (2.23) is
given by
y = (Aijeie;) - (zper) = Ajjrpe; (e - ex)

= Ajjrre; o, = Ayrje;, (2.28)

or

Evidently, this is nothing else but the matrix-column product

Y1 A Aip Ags T
Yo | = [ A21 Aoz Aos | - | @2 (2.30)
Y3 Asy Asy Ass x3

expressed in (Cartesian) index notation. Index notation is a very efficient
method of carrying out computations in vector/tensor algebra and analysis
[see also the expressions (2.19) and (2.20) for the dot product and the cross
product, respectively], and we will use it frequently.

The transpose of a tensor A is the unique tensor AT defined by

AT = Aji €;€;. (231)
In matrix form, this reads
Ay Aoy Az
A’{l“ei} = Alg Agg A32 y (232)

Az Asg Ass
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that is, the elements of the original matrix A,y [Eq. (2.25)] have been mir-
rored along the main diagonal Aji-Ass-Ass. In index notation, this is ex-
pressed by the relation

AL = Ay (2.33)

A symmetric tensor is defined by
AT=A (A =A5), (2.34)
whereas for an antisymmetric tensor
AT =-A  (Ay=-A5) (2.35)

holds. The latter case implies that all main-diagonal elements (A11, Aaa, Ass)
are equal to zero.

An important example for a tensor of order 2 is the unit tensor |, which
provides the identity transformation x = |-x. Its components in any orthonor-
mal basis {e;} are given by the Kronecker symbol ¢;;, that is,

| = 51']' e e;, (236)
so that its matrix representation is given by the unit matrix,

100
lley=[010] . (2.37)
001

The multiplication of two tensors A and B yields the tensor A - B defined
by successive application of first B and then A on an arbitrary vector x,

(A-B) - x=A-(B-x). (2.38)
By expressing the two tensors according to Eq. (2.24), we find
A-(B-x) = (4ieie;) - [(Brexer): (tmen)]
= (Aijeie;) - (Briz ex)
= Az’jBkll’l €e; (Ej . ek)
= A;jBrixie; i
= AijBjizi e
= A-B= AijBﬂ e, e, oOr (A . B)zl = AijBﬂ . (239)
This represents the familiar matrix multiplication

A1 Aip Ags B11 B2 By
(A . B){el} = A21 A22 A23 . Bgl B22 B23 . (240)
Asy Asy Ass Bsy B3y Bss
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The above rules can be extended to the multiplication of more than two tensors
(e.g., A-B-C), and powers of a tensor A are defined by

A2=A-A, A’=A-A-A, etc (2.41)

Note that the multiplication of tensors is associative, but in general not com-
mutative.

An order 2 tensor A in three-dimensional space has three independent
scalar invariants. If A is represented by the matrix Ae,} [Eq. (2.25)], the
invariants are

In =trA= Ay + Agp + Ass,

IIn = 3 [tr (A%) — (tr A)?]
= AjpA91 + A13A31 + Aoz Azs — A11Agy — A1 Azs — AxpAss, (2.42)
IIIn = det A = £ [2tr (A®) — 3trAtr (A?) + (tr A)?]
= A11 Ao Azs + A12A23A31 + A13A21 Aso
— A1 A3 A3y — A12A21 A3z — A13A22A31 .
The important point is that these scalar invariants do not depend on the
particular basis; that is, the same values are obtained when they are com-
puted with a different matrix representation Afery. The first (Ip) and third

(IIIp) invariants are also called the trace and determinant of the tensor A,
respectively. For the determinant, a useful expression in index notation is

det A = %Eijk:glmnAilAijkn , (2.43)
which involves a sixfold summation and the Levi-Civita symbol defined in
Eq. (2.21).

The inverse A~! of the tensor A is defined by the relations

AATT=A"T.A=]. (2.44)
It only exists if the determinant of A is not equal to zero:
detA#0 < 3A': Eq. (2.44) fulfilled. (2.45)

When expressed in component form, a tensor of order 2 is a quantity with
two indices [see Eq. (2.24)]. As we have seen in Sect. 2.2, the expression of a
vector in component form leads to a quantity with one index (for instance, a;),
and a scalar quantity, of course, does not have any indices at all. Therefore,
vectors and scalars are also referred to as tensors of order 1 and 0, respectively.

2.4 Higher Order Tensors

As a generalisation of Eq. (2.23), tensors Al"l of order r > 2 can be defined
inductively as linear transformations which map vectors x on tensors Y[ —1
of order r — 1,
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ylr=t = Al x| (2.46)

Such tensors can be written in component form as
A[T] = Aiﬂz---iT €;, €, ...€;, (247)
(summation over the r indices i1, i, ..., ;). As an example, the Levi-Civita

symbol (2.21) can be interpreted as the components of an order 3 tensor el

(3]

€ =g e €5 ey, (2.48)

which is known as the epsilon or permutation tensor. Tensors of order 4 play
a role in the theories of elasticity and visco-elasticity.

The tensor multiplication introduced in Eq. (2.39) can be generalised to
tensors of arbitrary orders A"l and Bl*!, and the result is a tensor of order
r4+s—2,

MR — (4. . . e e . e e )
A B = (A4, 4. €€y ... €5.) - (Bjijs..j, €1 €y - - - €5,)
= Aiiy.inBjijs..j. €y €iy - -€ip_, (€, -€j,) €, ... €j,

= Aiis.ip Bjijo..j.Oiyjy €iy €y - - €, €, ... €5,

= Ailiz..‘irBirjz..‘js €;,€,...€, €5 ...€5 . (249)

s

This operation is called tensor contraction. The dot product (2.3) between
two vectors, the tensor-vector multiplications (2.23) and (2.46) as well as the
tensor multiplication (2.39) can all be considered as special cases of the general
tensor contraction (2.49).

Further, the dyadic product between two vectors [Egs. (2.9), (2.22)] can
be readily generalised to arbitrary tensors A"l and B!,

AMTBE = (A; 4, i i iy .. €5 ) (Bjij..j. €51 €jy - . €5.)

= Aiyiy.i,Bjijs...j, €1 €iy - - - €, €), €, ... €, (2.50)

which is called tensor product. The result is a tensor of order r + s.

2.5 Vector and Tensor Analysis

In physical applications like the continuum-mechanical modelling of ice sheets
and glaciers, we are often concerned with scalar, vector or tensor fields, in
which the respective quantities depend on space and time. Let us assume
a fixed orthonormal basis {e1, €2, es} (or {ey, ey, e,}), then space can be
described by the Cartesian coordinates x1, x2, x5 (or z, y, z), and time is
designated by the variable ¢.

Partial derivatives of a scalar field \(a1, z2, 23,t) will be denoted by the
alternative notations

— = Ay, =—=A1=A,, ete. (2.51)
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For a vector field a(x1, x2, x3,t),

Oa —a B 8(az ei) N 8a¢ e = a e
_815 =a¢r = ot - ot i = At €,
da  Oa 0(a;e;)  Oa;
B oz aj a, ot 01, €; a;1€;, ( 5 )
etc.,

and analogous for order 2 and higher order tensor fields.
The nabla operator V is defined in terms of spatial partial derivative op-

erators as 9 P 5 P
v:ex%—Feya—y—FeZ&:eia—xi. (253)

It is useful in order to introduce the gradient of a scalar field,

o\ o\ o\ o\
gradAzV)\za—er—l-a—yey—l—&eZ:a—xiei:)\,iei, (2.54)

the divergence of a vector field,

da, % n da,  Oa; — (2.55)

d. = . = = =
va=V-a ox dy 0z dx; ’

the curl of a vector field,
curla=V x a
= aaz_% e+ aaw_% e+ %_6@1 e
S \oy 9z )" 0z ox )Y or Oy ) °

da

k
= Eijk 5 € = Eijk Ok ,j €, (2.56)

J

and the Laplacian of a scalar field,

AN = divgrad A = V2\

[0 WO LD NG ) o [ 0\
e — —_— _—— = )\ i1 . 2.57
0x? v 0y? i 0z? Oz <8xi> (2.57)

These expressions can be generalised to tensor fields
A[T] (1‘1, xT2,X3, t) = Ai1i2...iT (1‘1, Lo, T3, t) eil 61'2 e eiT (258)

of order » > 1 as follows:

dA[7] _ aAiliz...i.,,
gra = T €;, €, ...€;, ej
J
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= Ailiz...ihj €;, €, ...€; ej (order 7+ 1) ; (259)

0Aiyiy. iy 1j
ail,'j

= AiliQ---ir71j7j €, €,...€, (order r— 1) s (260)

div Al =

eil eiz e e,;rfl

6Ai1i2...ir,1k

T
CllI‘lA[ ] = Eijk €;,,€,...€;, €

8$j
= sijk AiliQ---ir—lkyj eil eiz P eiT71 €e; (order 7") s (261)
AA[T] = [ teetr i1 €io - .- €4
i () euenon

= Aijis.iyjj €iy €ig - - - €

(order r).  (2.62)

r

For the sake of simplicity, we refrain from giving the corresponding expressions
for curvilinear coordinates like cylindrical coordinates, spherical coordinates
etc., and refer the interested reader to the mathematical literature (e.g., Hein-
bockel 1996) instead.

Let us finally note two important integral theorems. The divergence theo-
rem relates the integral of the divergence of a vector field a over a volume w
and the integral of the “flux” of a through the surface dw,

/(diva) dv = ?{a ‘nda, (2.63)

w Ow

where dv is the volume increment, da the surface increment and n the outer
unit normal vector on dw. The curl theorem states that the integral of the
curl of a vector field a over a surface o equals the line integral of a over the
curve do bounding the surface,

(curla) -nda= ¢pa-dl, (2.64)
/ /

o do

where dl is the vectorial line increment along the curve do.
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Elements of Continuum Mechanics

3.1 Bodies and Configurations

Continuum mechanics is concerned with the motion and deformation of con-
tinuous bodies (for instance, a glacier). A body consists of an infinite number
of material elements, called particles. For any time ¢, each particle is identi-
fied by a position vector x (relative to a prescribed origin O) in the physical
space &, and the continuous set of position vectors for all particles of the
body is called a configuration x of the body. If ¢ is the actual time, the cor-
responding configuration is called the present configuration k;. In addition,
we define a reference configuration k, which refers to a fixed (or initial) time
to. Position vectors in the reference configuration will be written in capitals,
for example as X; they can be used for identifying the individual particles
of the body, independent of the actual time. Note that different sets of basis
vectors ({Ea}a=123, {€}i=123) and different origins may be used in the two
configurations (Fig. 3.1).

¢

Fig. 3.1. Bodies, reference configuration k, and present configuration x.

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2_3, (© Springer-Verlag Berlin Heidelberg 2009
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The mapping x which provides the position x of each particle at time ¢ as
a function of its reference position X is called the motion of the body,

X Ry — Rt
X —x=x(X,t). (3.1)
It is assumed that the motion x(X,t) is continuously differentiable in the
entire body (with the possible exception of discrete singular lines or surfaces),
and that the inverse mapping x ' exists:

X_l PRt = Ry

x — X = X(x,t). (3.2)

The displacement is defined as the connecting vector between a given particle
in the reference and present configuration. If the connecting vector between
the two origins of the basis systems is denoted by B, then

u=x—-X+B (3.3)

holds. The above relations are illustrated in Fig. 3.1.

Of course, in a deformable body the displacement at time ¢ will in general
be different for different particles, so that it can be written as the vector field
u = u(X,t). However, this is not the only possibility. Equation (3.2) shows
that X can be expressed in terms of x and ¢, so that we can also assume
the displacement field as a function of x and ¢, that is, u = u(x,t). These
two possibilities also hold for other field quantities ¢ (density, temperature,
velocity etc.), and we call ¥(X,t) the Lagrangian or material description,
whereas 1)(x,t) is referred to as the Fulerian or spatial description. Most
frequently, for solid bodies the Lagrangian description is used, whereas the
Eulerian description is more appropriate for problems of fluid dynamics (like
glacier flow).

3.2 Kinematics

3.2.1 Deformation Gradient, Stretch Tensors

The deformation gradient F is defined as the material gradient (gradient with
respect to X) of the motion (3.1),

F = Gradx(X,t), (3.4)

or in components
Fig= 2200 3.5
AT Tax, b (3.5)

where F = F;4 e; E4, the operator Grad () is the material gradient, and the
notation (-) 4 means the partial derivative 0(-)/0X 4. Note that small indices
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K, F i
e O e
ax® ax® ’
dx®

Fig. 3.2. Deformation gradient: Transformation between line and volume elements
in the reference and present configuration.

generally refer to the present configuration and capital indices to the reference
configuration. The deformation gradient is a tensor field of order 2.
According to definition (3.4), the deformation gradient F can be inter-
preted as the functional matrix of the motion function (3.1). It transforms
line elements from the reference configuration (dX) to the present configura-
tion (dx),
dXZF'dX, or dx; = Z'AdXA, (3.6)

which is illustrated in Fig. 3.2.
The determinant of the deformation gradient, called the Jacobian, is given
by
J=detF, or J= %5ijk5ABCFiAFjBFkC§ (3.7)

for the component form on the right see Eq. (2.43). Since we have ensured
that the motion function is invertible, J must be different from zero, and the
inverse deformation gradient F~' exists. Further, real motions cannot invert

the orientation, so that
J>0 (3.8)

must hold. The Jacobian determines the local volume change due to the mo-
tion,
dv=JdV, (3.9)

where dV is the volume element in the reference configuration which may be
spanned by three line elements dX™M), dX® dX®) and dv is the volume
element in the present configuration spanned by dx(), dx(?), dx(®) (Fig. 3.2).

The theorem of polar decomposition tells us that, like any tensor with
positive determinant, the deformation gradient F can be uniquely decomposed

according to
F=R-U=V-R, (3.10)

where R is a proper orthogonal tensor (R-R™T = RT-R =1 and detR = +1),
and the tensors U and V are symmetric (U = UT, V = VT) and positive
definite (Vx # 0: x-U-x > 0, x-V-x > 0) [see, e.g., Liu (2002), Hutter
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and Johnk (2004)]. The tensors U and V are called the right and left stretch
tensor, respectively, and R is the rotation tensor.

The polar decomposition of F can be obtained as follows. From Eq. (3.10)
we compute

FI.F=UT.RT.R-U=U-1-U = U’=FT.F (3.11)

and
F-FFT=V.R-RT.VI=V.I.V = V2=F.F", (3.12)

which determine the stretch tensors U and V in terms of F. The rotation tensor
R follows then from Eq. (3.10) as

R=F-U"', or R=V'.F. (3.13)
Note that Eq. (3.10) also implies the relation
V=R-U-RT, (3.14)

which means that the two stretch tensors are connected by a similarity trans-
formation (e.g., Janich 1994).

The tensors U2 = FT - F and V2 = F - FT which appear in Eqs. (3.11) and
(3.12) are referred to as the right Cauchy Green tensor C and left Cauchy
Green tensor B, respectively. They are related by the same similarity trans-
formation as the stretch tensors U and V,

B=v2 ®IY R.U.RT.R.U.RT
= R-U-l-U-RT
= R-U*>.RT=R.C-RT, (3.15)

and play a role in the description of solid bodies which undergo large defor-
mations (such as rubber).

The polar decomposition of the deformation gradient F allows the inter-
pretation of an arbitrary deformation as a sequence of a stretching followed
by a local rigid body rotation, or vice versa. With Eq. (3.6) we can write

dx=R-U-dX=V-R-dX. (3.16)

Since U is symmetric, there exists a special set of orthonormal basis vectors
{&;}, called the principal azes, for which the matrix Uge,} is diagonal, that is,

A O 0
Ute,y = diag(A1, A2, A3) = | 0 Az 0 (3.17)
0 0 As

(e.g., Janich 1994). The A;, ¢ = 1...3, are the eigenvalues of U, and due to the
positive definiteness they are all positive. This holds also for V, and because
of the similarity transformation (3.14) U and V have the same eigenvalues.
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ds
\ds ds Z’)% 'M&

Fig. 3.3. Polar decomposition of the deformation gradient.

Let us now consider an infinitesimal cube (volume element) in the reference
configuration, of which the edges ds are aligned with the principal axes of U
(Fig. 3.3). The sequence of transformations dx = R-U-dX stretches, in the first
step, the edges of the cube by the factors \; (eigenvalues of U), which deforms
the cube to a rectangular cuboid. In the second step, this element is rotated
by the orthogonal transformation R. The alternative sequence dx =V -R-dX
leads to the same result, but here the initial cube is first rotated by R and
then stretched by V.

Of course, since F, U, V and R are, in general, functions of X and ¢ (or
x and t), this decomposition is only local. In other words, a volume element
at a different position will experience a different stretching and a different
rotation.

3.2.2 Velocity, Acceleration, Velocity Gradient

As usual, we define the velocity v as the first time derivative of the position

x [motion (3.1)], Ox(X. t
v:v(th):%7 (3.18)

and the acceleration a as its second time derivative,

*x(X,t)  ov(X,t)
oz ot

a=a(X,t) = . (3.19)
Evidently, this yields the velocity and acceleration fields in Lagrangian de-
scription. By inserting the inverse motion (3.2) one can readily obtain the
corresponding Fulerian descriptions v(x,t) and a(x,t).
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The time derivatives in Eqs. (3.18) and (3.19) are taken for fixed material
position vectors X. We will call this the material time derivative, denoted
briefly by the operators d(e)/dt or (e)". Therefore, for any field quantity ),

o dy - 0v(X,t)
B S R 2
v dt ot (3:20)
For example, Egs. (3.18) and (3.19) read
. dx . d®x . dv

By contrast, the operator d(e)/0dt denotes the local time derivative for fixed
spatial position vector x,
Oy _ 0Y(x,t)

ot ot
With the chain rule, the relation between the material and local time deriva-
tive is

(3.22)

dy d
E - dtw(x(xat)vt)
0 dx (X
- w(a? D 4 grad(x, ) ‘X(dt’t)

where the operator grad (-) is the spatial gradient, of which the components
are the partial derivatives (-) ; = 9(-)/Ox;. One says that the material time

)

derivative di/dt is composed of a local part 9¢/0t and an advective part

(grad ) - v.
Relation (3.23) is equally valid if ¢ is a vector or tensor field. Therefore,

for the acceleration expressed by Eq. (3.21)s,

0]
a=2" 4 (gradv) - v. (3.24)
ot
The tensor quantity
8’Ui
L=gradv = 8ch €€ =0;;€€; (3.25)

which appears in Eq. (3.24) is called the velocity gradient. It is related to the
material time derivative of the deformation gradient as follows,

82Ii(X,t) . 6’01(X,t) - 8vi(x, t) 81'J(X,t) - a’UZ‘(X, t) F
otoX,  0Xa  Or;  0Xa oz

= F=L-F, or L=F-F!, (3.26)

Fia =



3.2 Kinematics 23

Without proof, we note that the material time derivative of the Jacobian is
J=Jdivv = JtrL (3.27)

[divv = v;; = L; = trlL; for the definition of the trace of a tensor see
Eq. (2.42);]. In words, the divergence of the velocity field determines local
volume changes [see also Eq. (3.9)], which is a very intuitive result.

Like any arbitrary tensor, the velocity gradient can be additively decom-
posed into unique symmetric and antisymmetric parts,

L=D+W, (3.28)
with
D =(L+LT) (“strain-rate tensor” or “stretching tensor”), (3.20)
W= 2(L—LT) (“spin tensor”). '

Evidently, D = DT (symmetry) and W = —W" (antisymmetry) are fulfilled.
In order to give an interpretation of the elements of the matrix of the

strain-rate tensor D (with respect to a given orthonormal basis {e;}), we

now compute the material time derivative of line elements dx in the present

configuration: '
(dx)'=F-dX=L-F-dX=L-dx (3.30)

[where Egs. (3.6), (3.26) and (dX) = 0 were used]. For the scalar product
between two line elements dx(!) and dx(?), this yields

(dx® . dx@) = (dxM) - dx®@ + dx® . (Ax@y’
=(L- dx(l)) dx@ 4 ax® . (L- dx(2))
= dx® . LT . qx@ 4+ dx® . L. ax®@
=2dxM.D-dx®. (3.31)

Let us assume

dx(® = nMds® |

2)
dx® = n@ds®

n® . n® = cos((m/2) —~) =sin~y, (3.32)

where nV, n(® are unit vectors, and ~ is the deviation of the angle between
n and n® from a right angle. Equation (3.31) then reads
(sinydsMds®) = 2dsMds@ n™ . D . n®

. . (dsV)"  (ds®)
= 7Y COS7Y + sy 1) 1@

) —on®.D.n®.  (3.33)

We first make the special choice n(") = n(® = e, (y = 90°) and ds(!) =
ds® = ds (Fig. 3.4, left). Then,
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y ds®(¢+dr)
ds(z+dr)
4
P
ds(?) ds D(r+ds)

Fig. 3.4. Dilatation (left) and shear (right) of line elements in the present configu-
ration.

(ds)’ (ds)’

2——=2e,-D-e, = Dyp=-—"—. 3.34
ds © € ds ( )
Analogous results are found for the y- and z-directions. Therefore, the ele-
ments Dy, Dyy, D.. on the main diagonal of the matrix of D are equal to

the dilatation rates in the x-, y- and z-direction, respectively.
Second, we choose n(Y) = e, and n®® = ey, so that v = 0 (Fig. 3.4, right).

This yields )

y=2%, D-e, = Dy = % . (3.35)

Analogous relations can be obtained for the two other off-diagonal elements
D, and D, . Therefore, 2D,,,, 2D,., and 2D,, denote the shear rates Yoy, V-
and ., that is, the temporal changes of right angles formed by the respective
coordinate directions.

As for the spin tensor W, we note that its matrix has only three inde-
pendent elements (this holds for any antisymmetric tensor). Without loss of
generality, it can therefore be written as

0 —WwW3 W2
W = ws 0 — W1 (336)

—Wwgy W1 0

[see also Eq. (2.18) and the discussion there]. The w; arranged in the above
form are the components of the dual vector

w1
w=dualW = | wy |, (3.37)

w3

with which the linear transformation W - a (arbitrary vector a) can be ex-
pressed as a cross product,

W-a=wxa. (3.38)

Thus, Eq. (3.30) yields
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(dx)" =D -dx+w x dx. (3.39)

The first summand on the right-hand side describes the strain (deformation)
part of the motion, the second summand the local rigid body rotation with
angular velocity w. This justifies the names “strain-rate tensor” and “spin
tensor” for D and W, respectively.

3.3 Balance Equations

3.3.1 Reynolds’ Transport Theorem

We consider a material volume w C k; in the present configuration. “Material”
means that the volume consists of the same particles for all times, dw denotes
the boundary of w, v the velocity field of the body and n the unit normal vector
on Jw (see Fig. 3.5). For an arbitrary scalar, vector or tensor field quantity
¥(x,t), we now calculate the term (d/dt) fw 1 dv, that is, the temporal change
of the field quantity integrated over the volume w.

n v
nCcCK

om

1

Fig. 3.5. On the Reynolds’ transport theorem: Material volume w with boundary
Ow in the present configuration k.

To this end, we transform the integration variable to material coordinates
X, which changes the integration domain w to the volume {2 C k, in the
reference configuration as

%/ww(x t)dv = %/ﬁzb(X(X,t),t) J(X,t)dV . (3.40)

For the transformation of the volume element Eq. (3.9) was used. Since (2, as
a material volume in the reference configuration, is time-independent, differ-
entiation and integration can be exchanged on the right-hand side, provided
that the fields ¢, J and v are sufficiently smooth:
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g/ Y(x,t)dv = / (b J +1pJ)dV
dt /., 0
= / (¢ + o divv) JAV
(7]
= /w +divv)do. (3.41)

w
In the second step, Eq. (3.27) was used, and in the last step the integral was
transformed back to spatial coordinates. The result can be further rewritten
as

ddt/ww(x7t)d11:/c;<8£;f—|—(grad¢)V_‘_wleV) dw

- /w (%erdiv (wv)> dv. (3.42)

By using the divergence theorem (2.63), we now obtain

(i/dw(x,t)dv:-/“)%fdv+ awi/)v~nda, (3.43)
which is known as Reynolds’ transport theorem. It says that the temporal
change of the integral fw 1 dv over the material volume w is composed of two
parts, (i) the local change 0y /0t within w, and (ii) the advective flux ¢v in
the normal direction n across the boundary dw. Note that, if 1 is a tensor
field of order r > 1, 9v is a tensor product which yields a tensor of order
r+ 1.

3.3.2 General Balance Equation

Let G(w,t) be a physical quantity of the entire material volume w, which is
supposed to be additive over subsets of w (e.g., mass, momentum or internal
energy, but not temperature or velocity). We assume that the change of G
with time may be due to three different processes, namely

e the flur F(Ow,t) of G across the boundary dw,
e the production P(w,t) of G within the volume w,
o the supply S(w,t) of G within the volume w.

Therefore, we can balance dG/dt as follows:

%Q(w,t) = —F(Ow,t) + P(w,t) + S(w,t), (3.44)

where positive fluxes have been defined as outflows from the volume, so that
the flux term has a negative sign.
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The idea behind distinguishing between the mathematically equivalent
quantities production and supply is that production is due to internal pro-
cesses (within the volume w) only, whereas supply has an external source.
Conserved quantities are characterised by a vanishing production.

In order to reformulate the statement (3.44), we assume that G, P and S
can be expressed as volume integrals of corresponding densities g, p and s,

G(w,t) = fw g(x,t)dv, g¢: density of the quantity G,
P(w,t) = [ p(x,t)dv, p: production density of G, (3.45)
S(w,t) = [, s(x,t)dv, s: supply density of G,

and that F can be obtained as the surface integral of a flur density ¢,

F(Ow,t) = ¢(x,t) -nda, (3.46)
Ow
where da is the scalar surface element. Note that, if G is a tensor quantity of
order r > 0 (scalar, vector etc.), then the order of g, p and s is also equal to
r, whereas the order of ¢ is r + 1.
Inserting the expressions (3.45) and (3.46) in Eq. (3.44) yields the general
balance equation in integral form,

4 g(x,t)dv = — ¢(x,t) -nda
dt w ow

+ /wp(x,t)dv—k/wS(X,t)dU- (3.47)

Provided that all fields in this equation are sufficiently smooth, it can be
localised as follows. We apply Reynolds’ transport theorem (3.43) to the left-
hand side (with ¢ = g), transform all surface integrals to volume integrals
with the divergence theorem (2.63) and assemble all terms on the left-hand
side:

ot

This relation must hold for any arbitrary material volume w, which is only
possible if the integrand itself vanishes. Thus,

dg

e —div(¢p+gv)+p+s, (3.49)

/ (ag—l—div(gv)—l—divd)—p—s) dv=0. (3.48)

which is the general balance equation in local form. It balances the local change
of the density g with the production and supply densities and the negative
divergence of two flux terms, the actual flux density ¢ and the advective (or
convective) flux density gv.
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3.3.3 General Jump Condition

The local balance equation (3.49) is only valid for those parts of the material
volume w for which all fields are sufficiently smooth. We now consider the case
that there exists an oriented singular surface o within w for which this is not
fulfilled. In particular, the density g may be discontinuous on o. Denote the
unit normal vector on ¢ by n, the side of w into which n points by w™ and
the other side by w™. The singular surface need not be material, that is to
say, it may travel with its own velocity w which may differ from the particle
velocity v (Fig. 3.6).

Fig. 3.6. Singular surface o within the material volume w.

The values which a field quantity 1 (x,t) assumes when the point x € o

(on the singular surface) is approached on an arbitrary path in w™ or w™ are
denoted by 1~ and 9T, respectively:
Vxeo: Y (x,t)=lim,_, - Yy, t),
( ) yY—X, YEw ( ) (350)

¢+ (Xa t) = hmy—>x, yEwT 1#(}” t) .

Of course, this requires that the limits exist and are finite. We define the jump

[¢] of 1 on o as
Vx€o: ] (x,t) =t (x,t) — ¥ (x,1). (3.51)

If 1] # 0, the quantity v experiences a discontinuity on the singular surface.

We now motivate a balance equation similar to Eq. (3.47) for the pill-box
volume v around the singular surface o with basal area Sp und mantle area
S, which is also indicated in Fig. 3.6. It is hereby assumed that Sy and Sy
are very small, so that the curvature of o can be neglected. This entails a very
small volume of the pill-box, so that the three volume integrals in Eq. (3.47)
are negligible compared to the surface integral of the flux density ¢ (provided
that all integrands are bounded). So the first guess for the balance equation
of the pill-box volume v would be §81/ ¢(x,t) - nda = 0. However, in general
we are concerned with a non-material volume here, so that, in addition to the
actual flux density ¢ an advective flux density g(v — w) due to the particle
motion (velocity v) relative to the motion of the singular surface (velocity w)
must be taken into account. Thus, the correct form of the balance equation is
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?g (p+g(v—w)) -nda=0. (3.52)

The geometry of the pill-box volume is such that Sy < Sg, so that all fluxes
through S\ can be neglected in comparison with fluxes through Sg. Therefore,
only the basal surfaces with area Sg on the w' and w™ side of o (denoted as
Sg and Sg, respectively) contribute to the surface integral (3.52):

B Sp

/ (¢+g(v—w))~nda+/ (p+g(v—w))-(—n)da =0 (3.53)
S+

(note that the outer unit normal vector is n on Sf and —n on Sg ). Since all
field quantities are virtually constant on the very small surfaces Sg and Sg,
this can be written as

Sp(@p* +g7(vi—w)) n+Sp(¢~ +g (v —w)) - (-n) =
= ¢' n—¢ n+(g"(vi-w)) n—(97(v  —w))n

0
0, (3.54)
and with definition (3.51) we obtain

[¢-n] +[g((v—w)-n)] =0. (3.55)
This is the general jump condition on singular surfaces. For a formal derivation
of this jump condition see, e.g., Liu (2002), Hutter and Johnk (2004).
3.3.4 Mass Balance

If the physical quantity G is identified with the total mass M of the material
volume w, it is clear that dM/dt = 0, because the mass of a material volume
cannot change. With the (mass) density p this can be expressed as

— [ pdv=0. (3.56)

By comparison with the general balance equation (3.47) we find immediately
g=p, =0, p=0, s=0. (3.57)

With these densities, the local balance equation (3.49) reads

O | . _
% +div (pv) =0. (3.58)

This is the mass balance, also known as the continuity equation. An equivalent
form can be derived by differentiating the product,

ap
ot

= p+pdivv=0. (3.59)

+ (gradp) - v+ pdivv =0
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An important special case is that of an incompressible material, defined
by a constant density, that is, p = const or p = 0. For this case, Eq. (3.59)
simplifies to

divv =0, (3.60)

which is the mass balance or continuity equation for incompressible materials.
Evidently, the corresponding velocity field is source-free (solenoidal).

By inserting the densities (3.57) in the general jump condition (3.55), we
obtain the mass jump condition on singular surfaces as

[p((v—w)-m)]=0. (3.61)

It simply states that the mass inflow at one side of the singular surface must
equal the mass outflow at the other side.
Let us come back to the general balance equation (3.49) and write the
density g as
9= pgs, (3.62)

where g5 denotes the physical quantity under consideration per unit mass
(which, of course, only makes sense if the quantity is not the mass itself).
This yields

d(pgs)
ot

+div(e +pgsv) =p+s

dgs | Op | .. ,
;5 +gsa*f +dive + gsdiv (pv) + (gradgs) - pv =p+ s

09, 0 .
= p{ e+ (aradg) v 0 { 5 v

= —divp+p+s. (3.63)

= p

The first term in curly brackets is the material time derivative of g [see
Eq. (3.23)], the second term vanishes because of the mass balance (3.58).

It remains
dgs

Pt
as an alternative representation of the general balance equation, which can be
used for any quantity except mass.

=—divep+p+s (3.64)

3.3.5 Momentum Balance

Let us now identify the physical quantity G with the total momentum P
(vector!) of the material volume w. Since momentum is equal to mass times
velocity, the momentum density can be expressed as mass density times ve-
locity,

g=pv, (3.65)
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Fig. 3.7. Volume forces f and surface forces t, which act on a material volume w
and its surface dw in the present configuration k.

and the total momentum P is equal to fw pv dv. Following Newton’s Second
Law, its temporal change dP/d¢ must be given by the sum of all forces F
which act on the volume w. These forces can either be external volume forces
f(x,t) acting on any volume element within w (e.g., the gravity field), or
internal stresses (surface forces) tn(x,t) acting on the boundary surface dw
(Fig. 3.7). The latter do not only depend on position x and time ¢, but also
on the orientation of the surface, expressed by the unit normal vector n.
The total force acting on the material volume w is therefore

Fo j{ b (x, 1) da + / £(x, 1) dv, (3.66)
Ow w
and Newton’s Second Law reads

p(x, t)v(x,t) dv:% tn(x,1) da+/f(x,t) dv. (3.67)

Ow w

dt J,

Except for the surface integral (flux term), this has the form of the general
balance equation (3.47). By comparing the flux terms, we infer that the stress
vector t, must be a linear function of n, that is,

tn(x,t) =t(x,t) -n, (3.68)

where t(x,t) is a tensor field of order 2 which is called the Cauchy stress
tensor. Now we can identify

g=pv, ¢p=-t, p=0, s=f1 (3.69)

(the volume force is interpreted as a supply term and not a production term
because it is assumed to have an external source), and from Eq. (3.49) we
obtain the local form of the momentum balance as
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% +div(pvv) =divt+f. (3.70)

With the specific momentum (momentum per unit mass)
gs = — =V (371)

and the representation (3.64) of the general balance equation, an equivalent
form of the momentum balance is

pccll—‘t' —divt+f. (3.72)

Note that, if the momentum balance is formulated in a non-inertial system
(for instance, the rotating Earth), the volume force f contains contributions
from inertial forces (centrifugal force, Coriolis force etc.).

The momentum jump condition on singular surfaces is readily obtained
from Egs. (3.55) and (3.69),

[t-n] —[pv((v—w) -n)]=0. (3.73)

It relates the jump of the stress vector (t-mn) to the jump of the advective
momentum flux across the interface. In the case of a material singular surface
(v n=v~ -n=w-n) the stress vector is continuous,

[t-n]=0. (3.74)

With respect to a given orthonormal basis {e;}, the matrix of the Cauchy
stress tensor t defined by Eq. (3.68) is

t=| tyw tyy ty- | - (3.75)

The elements of this matrix can be interpreted as follows. For a cut along the
ay plane, that is, with unit normal vector n = +e, (the sign depends on the
orientation of the plane), the stress vector

Loz
tie, =tt-e, ==+ [ t,. (3.76)

zz

is obtained. Evidently, the diagonal element ¢,, is perpendicular to the cut
plane, whereas the off-diagonal elements ¢,. and ¢, are parallel to the plane.
The same result is found for cuts along the xz and yz planes. Therefore,
the three diagonal elements (¢, tyys t..) are referred to as normal stresses,
and the six off-diagonal elements (tgy, tys, tozs oz, tyz, tzy) arve called shear
stresses. The meaning of these components is illustrated in Fig. 3.8.
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Fig. 3.8. Components of the Cauchy stress tensor.

3.3.6 Balance of Angular Momentum

In point mechanics, the angular momentum L of a mass point is given by
L = x x P (cross product of position vector and momentum), and the torque
M is defined as M = x x F (cross product of position vector and force
acting on the mass point). In view of the momentum densities (3.69) for the
continuous body, this motivates the following identities for the densities of
angular momentum:

g=xxpv, ¢p=-xxt, p=0, s=xxf. (3.77)

Inserting these identities in Eq. (3.49) yields the balance of angular momen-
tum,

Weriv[(xxpv)v]:div(xxt)+xxf, (3.78)
or in index notation
&(Pﬁijkﬂ?jvk) + (peijrrjorv) g = (€ijrtiter) 1 + €ijrty fr - (3.79)

Using the momentum balance (3.70), this can be drastically simplified. We
compute x x (3.70) in index notation,

0
&(ka) + (pvrvr) g =thig + fr |- €ijre;

0
= a(p €ijkTiVk) + i (pEijrvrvr) 1 = xj(Eijrtrl) 1 + €ijuy fr

0
= —(peijprjor) + (PEHRTUKV) | — PEIjRVRVIT 1

ot
= (&ijk®jtir) 1 — €ijktri®yi + €iju®y fr s (3.80)
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and subtract this from the balance of angular momentum (3.79), which leaves
PEijkVEVIOH = €ijktri0j
= PEijkVkVj = Eijklk;j
= 3(peijrvrvs + peinjvjvr) = 3 (Eiktej + cinjti)
= peijk(Vpvj — vjuk) = Eijr(te; — tjk)
= eijk(try —t1) = 0. (3.81)

Evaluation of this result for ¢ = 1 yields

e123(t32 — tag) + €132(t2z — t32) =0
= (bay —tys) — (tye — o) =0 = b, =t (3.82)

Similarly, for ¢ = 2 and 3 one finds t,, = t., and tzy = ty., respectively. The
balance of angular momentum thus reduces to the statement that the Cauchy
stress tensor is symmetric,

t= "IT7 or tij = tji . (383)

By contrast, an independent jump condition of angular momentum does not
exist; it is equivalent to the momentum jump condition (3.73).

3.3.7 Energy Balance
Balance of Kinetic Energy

We now compute the dot product of the momentum balance (3.72) and the
velocity v. Expressed in index notation, this is

dv
kadftk = tri, vk + frok
d
= rg (vk;k) = (tkivr),g — trvkg + frok
= (t . V)l,l — (t . L)ll + fk:vk
d [v? .
=gl g =div(t-v)—tr(t-L)+f v (3.84)

[in the step from line 2 to 3 the symmetry of t, Eq. (3.83), has been used, and in
the last line we have introduced the speed v = |v|, which is the absolute value
of the velocity]. For the second summand on the right-hand side, tr (t- L), we
apply the decomposition (3.28) of L, the symmetry of t and the antisymmetry
of W,
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tr(t-L) =tr(t-D)+tr(t-W)
=tr(t-D)+ t”WjZ
=tr(t-D) + 3(t;; Wy + t;;Wi;)
=tr (t . D) + 5 (t” W]z tijoi) = tr (t . D) 5 (385)
so that
d [v? .
Sty =div(t-v)—tr(t-D)+f-v. (3.86)

Since the kinetic energy of a mass m is given by mwv? /2, the term v?/2 denotes
the specific kinetic energy (per unit mass) of a continuous body. Comparison
of the above result with the general balance equation (3.64) shows that it can
be interpreted as the balance of kinetic energy, where

g = pv?/2 (kinetic energy density) ,

gs = v%/2 (specific kinetic energy) ,

¢ =-t-v (power of stresses), (3.87)
p = —tr(t-D) (—p: dissipation power),

s =f-v (power of volume forces) .

The attribution of the dissipation power as a production term and the power
of volume forces as a supply term was done because the former is only due
to intrinsic quantities, whereas in the latter the volume force occurs which
has an external source. Thus, in contrast to mass, momentum and angular
momentum, the kinetic energy has a non-zero production density, which means
that it is not a conserved quantity.

Energy Balance, Balance of Internal Energy

The balance of kinetic energy, Eq. (3.86), is not an independent statement,
but a mere consequence of the momentum balance (3.72). However, classical
mechanics and thermodynamics tells us that the kinetic energy is only one
part of the total energy of a system (here: continuous body), and that the
total energy is a conserved quantity (no production). In order to formulate the
(total) energy balance, we thus extend Eq. (3.87) by introducing an internal
energy, a heat flux and a radiation power and setting the production to zero:

g = plu+v%/2) (u: specific internal energy),

gs = u+v?/2,

¢ =q—-t-v (q: heat flux), (3.88)
p =0,

s =pr+f-v (r: specific radiation power) .

By inserting these densities in Eq. (3.49), the energy balance
2

% [p(u—i— U;)] + div [p(u+ %) v}

=—divq+div(t-v)+pr+f-v (3.89)
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is obtained, which is also known as the First Law of Thermodynamics. An
alternative form follows from Eq. (3.64),

d v2

p&(u—i-?):—divq+div(t'v)+pr+fov. (3.90)
This can be simplified further:
+ doe _ + (trve), + pr+ frv
pd pkdt—Qk,k k), + P KUk
= —Qrk + tei, iUk + trve, + pr + frok
du doy,
= Py + v, { E — il — fk} = —Qr,k + tiLia + pr. (3.91)

The term in curly brackets vanishes because of the momentum balance (3.72),
and the term #;, Ly; = tr (t-L) can again be replaced by tr (t-D) [see Eq. (3.85)],
so that we obtain

pd—? = —divq+tr(t-D)+ pr. (3.92)

Evidently, this is the balance of internal energy in the form (3.64), with the
corresponding densities

g =pu,

gs = u (specific internal energy) ,

¢ =q (heat flux), (3.93)
p =tr(t-D) (dissipation power),

s = pr (r: specific radiation power) .

In contrast to the total energy, the internal energy is not a conserved quantity.
Its production density is equal to the dissipation power, which already ap-
peared in the balance of kinetic energy (3.86) with a negative sign. The name
“dissipation power” results from the fact that it annihilates kinetic energy and
changes it into internal energy. In other words, macroscopic mechanical en-
ergy is transformed into heat (microscopic, unordered motion). Therefore, the
dissipation power can also be interpreted as heat production due to internal
friction.
From Egs. (3.55) and (3.88) we obtain the energy jump condition

[a-n]—[v-t-n]+ [[p(u+ 3v?) (v—w) -n)] =0. (3.94)

In case of a material singular surface (v -n = v~ -n = w - n) the third
summand vanishes, and because of the continuity of the stress vector t - n
[Eq. (3.74)] it can be factored out in the second summand:

fa-n] - [v] - n=0
= [a-n] - [v.]-t-n— [[v] -t-n=0
= [a-n] - [[v)]] - t-n=0 (3.95)
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[where v = v + v, with the normal component v, = (v -n)n and the
tangential component v = v — (v - n)n; the jump of v vanishes because of
vT-n = v~ -n]. Only under the additional assumption of a no-slip condition,
that is, [[VH]] = 0, does the normal component of the heat flux (q-n) become
continuous.

3.4 Constitutive Equations

3.4.1 Homogeneous Viscous Thermoelastic Bodies

The balance equations of mass, momentum and internal energy derived in
Sect. 3.3 read

d
d‘: = —pdivv, (3.96)
d

pd—‘t’ = divt+f, (3.97)
du .

e —divg +tr(t-D) + pr (3.98)

[see Egs. (3.59), (3.72) and (3.92); the balance of angular momentum is im-
plicitly included in the symmetry of t]. They constitute evolution equations for
the unknown fields p, v and u; however, on the right-hand sides the fields t and
q are also unknown. The supply terms f and r are assumed to be prescribed
as external forcings. Thus, in component form we have 1+341 = 5 equations
(mass balance: scalar equation, momentum balance: vector equation, energy
balance: scalar equation) for the 1 +3 + 6 + 1 + 3 = 14 unknown fields p
(scalar), v (vector), t (symmetric tensor), u (scalar) and q (vector), and the
system is highly under-determined. Therefore, additional closure relations be-
tween the field quantities are required. These closure relations describe the
specific behaviour of the different materials (whereas the balance equations
are universally valid), and they are called constitutive equations or material
equations.

The general theory of constitutive equations is beyond the scope of this
text [see e.g. Liu (2002), Hutter and Johnk (2004)]. Here, we confine ourselves
to a simple class of materials, the so-called homogeneous viscous thermoelas-
tic bodies. This will be sufficient for our purpose of describing ice-dynamic
processes.

A homogeneous viscous thermoelastic body is defined as a material whose
constitutive equations are functions of the form

t =t(F, F, T, gradT),
a=q(F, F, T, gradT), (3.99)
u = u(F, F, T, gradT),
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where the temperature T'(x,t) has been introduced as an additional scalar field
quantity. Hence, the Cauchy stress tensor t, the heat flux q and the specific
internal energy u are understood as the dependent material quantities, and
the material shows neither non-local nor memory effects. Note that due to
Eq. (3.26) the dependency on F can also be expressed as a dependency on
the velocity gradient L. In the following, we will discuss two examples of
homogeneous viscous thermoelastic bodies relevant for ice dynamics, namely
the linear elastic solid (Hookean body) and the Newtonian fluid.

3.4.2 Linear Elastic Solid
Hooke’s Law

An elastic body is defined as a material for which the stress tensor depends
on the deformation gradient only,

t=1t(F). (3.100)

In particular, this excludes any temperature dependencies, so that the problem
is purely mechanical, and the energy balance (3.98) need not be taken into
account.

For many practical applications, it is sufficient to assume small deforma-
tions, that is, F = |. If we use the same origins (B = 0) and bases (e; = §;aE )
for the reference and the present configurations (see Fig. 3.1), then the dis-
placements u = x—X will be small, that is, x &~ X. The reference configuration
and the present configuration virtually fall together. It is then no longer neces-
sary to distinguish between material and spatial derivatives (0/0x; =~ 0/0X 4
for i = A). For this situation, the displacement gradient H is defined as

H=Gradu=F—1, (3.101)
and the infinitesimal strain tensor € is the symmetric part,
€= %(H + HT) , Or g = %(ui,j + Uj,i) . (3.102)

Without proof let us note that the diagonal elements €,,, €4y, €. correspond
to the dilatations (relative length changes of line elements) in -, y- and z-
directions respectively. Also, the off-diagonal elements €,,, €42, €. are equal
to one half of the shear angles in the z-y, x-z and y-z planes respectively; that
is,
gij = %’Yz‘j ;o (@#7). (3.103)

These interpretations are analogous to those of the components of the strain-
rate tensor D in terms of dilatation rates and shear rates [see Eqs. (3.34) and
(3.35)].

The constitutive equation of an isotropic (identical properties in all direc-
tions), linear elastic solid for small deformations, also known as a Hookean
body, is now



3.4 Constitutive Equations 39

t=(Atre)l +2ue. (3.104)

This material equation is called Hooke’s law, and the two coefficients A, p are
the Lamé parameters.
An alternative formulation is found by splitting up the infinitesimal strain

tensor into an isotropic part and a traceless deviator €P,

e=(Ltre)l+€°, (3.105)
with treP = 0. Inserting this into Hooke’s law (3.104) yields

t=(Atre)l+ (%,utre)l—FQ,ueD
= [(A+ Zp)tre] | 4 2u P
= (ktre)l +2ue”, (3.106)

where K = X + 2u/3 is the elastic bulk modulus. In this form of Hooke’s
law, volume-changing compressions or expansions are described by the first
summand, whereas the second summand accounts for volume-preserving dis-
tortions.

Phenomenological Introduction of Hooke’s Law

Let us consider a small cube of a linear elastic solid, which is subjected to the
normal stress ¢, (Fig. 3.9, left). A linear relation between this stress and the
resulting dilatation e,, will be observed,

the parameter F is called Young’s modulus. Further, in the perpendicular
directions y and z negative dilatations (compressions) €,, and ¢, will occur,
for which the relations

14
zz — — T — **trx 1
€ ve 7 (3.108)

v
Eyy = “VEgx = *Etzm7

hold. The factor v is known as Poisson’s ratio.
Now subject the same cube to a shear stress t;, (Fig. 3.9, right). It will
then suffer a proportional shear by the angle v,,, that is,

Loy = 1Yy - (3.109)

The coefficient u is the shear modulus, and, as we will see below, it is identical
to the 2" Lamé parameter and therefore denoted by the same symbol.

By superposition of relations (3.107) — (3.109) we obtain, for an arbitrary
state of stress,
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~

Mt

<

Fig. 3.9. Tension and shear experiment for a linear elastic solid (Hookean body).

14

Exax = Etzz - E(tyy + tzz)a
1 v

Eyy = Etyy - E(tm +t.2),
1 v

Ezz = Etzz - E(tzz + tyy)a
: (3.110)

Yoy = ;t:cya
1

Yzz = _th7
1
1

’sz = ptyz .

Equations (3.110)4 5,6, using (3.103), can be inverted straightforwardly to yield
the stress expressions

loy =21 Epy, toz =2UEzs, ty:=2uey;. (3.111)

Equations (3.110); 2 3 can be rewritten as

1+4+v v
Exx = Ttwc - Etrta
1+v v
Eyy = Ttyy — Etl‘t, (3112)
14+v v
22 = ——t., — Strt,
€ i o r
and by summation,
v v —2v
tre = trt —3—=trt = trt, (3.113)
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or
trt = tre. 3.114
T 5 Te ( )
This yields
l—ﬁ—y?f v ¢
T — T Tre,
c E -2 €
1+v v
Eyy = i Lyy — T 2Vtre, (3.115)
1+v v
Ezz2 =

tzz - t i
E -2 €
and therefore, together with Eq. (3.111),

t E + Ev £
T - _gzm T N1 Ao\ re?
1+v (14+v)(1-2v)
t + Ev £
= —& ——————(lre
Wl 41 -2v)
¢ E o+ Ev £
zz — E22 T 1 o L€,
1+v (1+v)(1—2v) (3.116)
twy = QMExy )
tmz - 2M€zz 5
Ly, = 2uey; .

This result is identical to the six components of Hooke’s law (3.104). The last
three equations show that the shear modulus is indeed identical to the 2"d
Lamé parameter, and from the first three equations we can infer the relations

Ev FE

BT N ) (3.117)

between the four parameters, of which only two are independent. By invert-
ing Eq. (3.117), E and v can also be expressed as functions of the Lamé
parameters, which yields

3\ +2 A
g HBA+2p)

, - . 3.118
Xt YT ) (3.118)

Navier Equation

The mass balance (3.96) can be integrated directly. With Eq. (3.27) and the
assumption of small deformations, F ~ | = J ~ 1, we find
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p+pdivy=0
o J Lrp T
p+J to(P+J)

=l tmi=0 = Li=1 = p=2xp,, (3.119)
Po Po J

where t( is the initial time which defines the reference configuration, and pg
is the constant density in the reference configuration.

We now insert Hooke’s law (3.104) in the momentum balance (3.97). For
the divergence of the stress tensor we find

(din)i =ty = ()\ Ekk 5ij + 24 Eij),j
= (Aunk0i5) 5 + i gy + pgi;
= A, kj0ij + pi g5 + Ui
= (A + 1) ki + iy
= divt = (A + p) graddivu+ p Au, (3.120)

where A is the Laplacian introduced in Egs. (2.57) and (2.62). With this,
Eq. (3.119) and v = x = (u+ X) = u we obtain

2

u
POz = (A4 p)graddiva+ pAu+f£. (3.121)
This is the equation of motion for the Hookean body, and it is known as
the Navier equation. It consists of three component equations for the three
unknown displacement components v, u, and u., which is a closed system.

Thin Elastic Plate

An important problem of linear elasticity is that of a thin elastic plate, loaded
perpendicular to its plane. Let the plate be oriented in the horizontal z-y
plane, its thickness H be much smaller than the horizontal extent L, and its
load (force) per unit area be given by ¢(z,y) (Fig. 3.10).

The problem is assumed to be static or quasi-static, so that the accelera-
tion term on the left-hand side of the Navier equation (3.121) can be omitted.
The displacement field is then approximately given by u = u,(x, y) e, that is,
a vertical displacement independent of z, with negligible horizontal displace-
ment. A rather lengthy derivation, which is not carried out here [see, e.g.,
Marguerre and Woernle (1969)], shows that the vertical displacement wu,(x, y)
is approximately given by the biharmonic equation

K A?u,(x,y) = q(z,9). (3.122)
The parameter K is the flexural stiffness, defined as

EH? pH?
K= 121—-2v2)  6(1—v)’ (3123)
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Fig. 3.10. Thin elastic plate with area load ¢q. The thickness H is assumed to be
much smaller than the horizontal extent L.

and A? is the biharmonic operator, which in Cartesian coordinates in the z-y
plane takes the form

ot ot ot

A= — 42— —. 3.124

ozt 0x20y? oyt ( )
Of course, in order to provide a unique solution, the biharmonic equation
(3.122) must be complemented by suitable boundary conditions for the dis-
placement at the rim of the plate, which depend on the actual problem.

3.4.3 Newtonian Fluid
Compressible Newtonian Fluid

A material is called viscous if the material function (3.99); for the stress tensor
t contains an explicit dependency on F or L. The most important realisation
of a viscous material is the Newtonian fluid (also called linear viscous fluid),
which can either be compressible or incompressible. For the compressible case,
t depends linearly on the strain-rate tensor D (symmetric part of L), the
density p and the temperature 7', through the following material function,

t=—p(p,T)1+ (AtrD)I+2nD, (3.125)

where p is the thermodynamic pressure, which is a function of the density p
and the temperature T' (“thermal equation of state”), and A and 7 are the
coefficients of viscosity. In principle, A and 7 can also depend on p and T, but
for simplicity we assume that they are constant.

Analogous to Hooke’s law [see Egs. (3.105) and (3.106)], an alternative
form results from splitting the strain-rate tensor into an isotropic part and a
traceless deviator DP,



44 3 Elements of Continuum Mechanics

D= (3trD)I+DP, (3.126)
with tr DP = 0. This yields
t=—p(p, 7)1+ (AtrD) I+ (2ntrD) | 4+ 2n D"
=—p(p, 7)1+ [(A\+ 2n) tr D] I + 27 D
= —p(p,T)1 + (CtrD) I +2nDP, (3.127)
where ¢ = A + 27/3 is the bulk viscosity, and n is also known as the shear

viscosity. We can combine the first two terms on the right-hand side to —pyoq I,
where

Ptot = p(pa T) - CtI’ D= p(pa T) + Dvisc (3128)

is the total pressure, which consists of the thermodynamic pressure p(p,T)
and the viscous pressure pyisc, defined by

Pyise = —CtrD. (3.129)

Except for the pressure term, the material function (3.125) corresponds
largely to Hooke’s law (3.104), and by a computation similar to (3.120) we
solve for the divergence of the stress tensor

divt = —gradp(p,T) + (A +n) graddivv + n Av. (3.130)

With this result, the momentum balance (3.97) yields the equation of motion

pi—z = —gradp(p,T) + (A +n)graddivv +nAv +f, (3.131)
which is the Navier-Stokes equation for the case of a compressible Newto-
nian fluid. Note the formal similarity to the Navier equation (3.121) for the
Hookean body. If we assume that the temperature of the system is known
(for instance, nearly isothermal conditions), then, together with the mass bal-
ance (3.96), we have four component equations for the four unknown field
components vy, vy, v, and p, which is again a closed system.

Incompressible Newtonian Fluid

For the incompressible Newtonian fluid, p = const holds, so that the mass
balance reduces to
divv =0 (3.132)

[see Eq. (3.60)]. It is then convenient to split the stress tensor as
t=—pl+tP, (3.133)

where
p=—itrt (3.134)
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denotes the pressure, and tP is the traceless stress deviator (trtP = 0). Now
the material function (3.99); only determines the stress deviator tP and reads

t? = 2D, (3.135)

where the coefficient 7 is again the shear viscosity (or simply the viscosity).
Note also that the mass balance (3.132) is equivalent to tr D = 0, so that the
strain-rate tensor is equal to its deviatoric part, that is, D = DP.

In order to derive the equation of motion for the incompressible case, we
compute the divergence of the stress tensor with the decomposition (3.133),
the material function (3.135) and the mass balance (3.132),

divt = —grad p + divtP, (3.136)
where

(divt®); = 29 Dyjj = (vi g + vj.65) = 0 (Vi jj + vj.50)
=1 [vij; + (divv)] = nvij; = n(Av);. (3.137)

Insertion of these results in the momentum balance (3.97) yields the Navier-
Stokes equation for the incompressible Newtonian fluid,

dv

T —gradp+nAv +f. (3.138)

p
Note that, in contrast to the compressible case, there is only a single pressure
p involved. It appears as a free field, so that we have the four component
equations (3.132) and (3.138) for the four unknown field components v, vy,
v, and p.

If the viscosity 7 is temperature-dependent and the temperature is not
known a priori, then a thermo-mechanically coupled problem is obtained, for
which the energy balance (3.98) must additionally be solved. This requires
that the material functions (3.99) and (3.99)3 for the heat flux and the in-
ternal energy be specified. Insertion in the energy balance yields the missing
evolution equation for the temperature. For instance, let the heat flow be
given by Fourier’s law of heat conduction,

q=—kgradT, (3.139)
and the internal energy depend linearly on temperature,
u=ug+c(T —Tp), (3.140)

where k is the heat conductivity, ¢ the specific heat, ug a fixed reference value
for v and Tj a fixed reference value for T' [such that u(Ty) = wp]. Then the
energy balance (3.98) results in
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dT
peg = rdivgradT +tr [(—pl+ 2nD) - D] + pr

=kKkAT —ptrD +2ntrD? + pr

dT
= pegr = kAT + 2ntr D% + pr (3.141)
(note that tr D = divv = 0). Now we have the five equations (3.132), (3.138)
and (3.141) which govern the evolution of the five fields v, vy, v., p and T

Gravity-Driven Thin Film Flow

Let us consider a thin film (thickness H) of an incompressible Newtonian fluid
(density p, viscosity 7), which flows down an impenetrable plane (inclination
angle «) under the influence of gravity (acceleration due to gravity g); see
Fig. 3.11. The film is uniform and of infinite extent in the  (downhill) and
y (lateral) directions. At the contact between the fluid and the underlying
plane, no-slip conditions prevail, and the free surface is stress-free. Further,
steady-state conditions are assumed.

T

Fig. 3.11. Gravity-driven thin film flow of an incompressible Newtonian fluid.

This problem is a realisation of plane strain: due to the uniformity in the
y (lateral) direction, the velocity component v, and the strain-rate compo-
nents Dy, Dy, and D, vanish, and all field quantities are independent of
y. Further, the uniformity in the z (downhill) direction and the steady-state
assumption imply that dependencies on x and ¢ will not occur either, so that
only dependence on the vertical coordinate z remains. Moreover, due to the
impenetrable basal plane, there will be no vertical velocity component v,, and
the only remaining velocity component is v, (2).

Taking into account f = pg and g = gsinae, — gcosae,, we note the
a-component of the Navier-Stokes equation (3.138),
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dv, Oy e vy, e Oy, o vy,
P =P \Car T Ty T a2
op v, 0*v,  0%v, .
o +1 ( 2 + e + 5.2 + pgsino. (3.142)

Owing to the above arguments, all terms except the last two vanish, and the

equation simplifies to
O v i (3.143)
= —pgsina. .
1552 Py

This can readily be integrated,
vy

N5, = Cy — pgzsina, (3.144)

where C is an integration constant. Its value can be determined by noting
that, due to the material function (3.135), the left-hand side is equal to the
shear stress t,..,

v, .
lys = na—vz =C1 — pgzsina, (3.145)

which vanishes at the free surface (z = H) as a consequence of the stress-free
boundary condition. Thus,

tezl,.y =C1—pgHsina=0 = C;=pgHsina, (3.146)

and we obtain for the shear stress the linear profile

vy
le =1 Yz _ pg(H — z)sina. (3.147)
0z
A further integration yields the velocity,
2
Vp = °9 (Hz— %) sina + Csy (3.148)
n

and the integration constant Cy is evidently equal to zero due to the no-slip
condition v,|,_, = 0. Therefore, the solution for the downhill velocity is the

parabolic profile
H si 2
Vg = w (z - ;—H> . (3.149)

The solutions (3.147) and (3.149) are also shown in Fig. 3.11.
Analogous to Eq. (3.142), the z-component of the Navier-Stokes equation
(3.138) reads

dv, v, v, v, v,

P = p(W +vw%+vy8—y+vzg>
Op 0%v, 0%v, 0%,
&+n(5‘x2 + Oy? + 022

> — pgcosa, (3.150)
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and simplifies for the thin film problem to

19)
8—]; = —pgcosa. (3.151)

The integral of this equation is
p=C3— pgzcosa, (3.152)

and the integration constant C3 follows from the stress-free boundary condi-
tion at the surface,

pl,_y =Cs—pgHcosa=0 = C(C3=pgHcosa. (3.153)

Thus, we obtain
p=pg(H — z)cosa, (3.154)

which is a hydrostatic pressure profile, that is, the pressure at any point in
the thin film equals the weight of the overburden fluid.

While one may think first of an oil film (7 ~ 0.1Pas) thinner than one
millimetre flowing down some substrate as a realisation of gravity-driven thin
film flow, we can also make the film 100 metres thick and assume a viscosity as
large as n ~ 10'* Pas. Then we already have a very simple model of a flowing
glacier. However, for a realistic description of glacier ice the incompressible
Newtonian fluid is not sufficient. In the next chapter we will formulate more
appropriate constitutive equations for glacier ice.
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Constitutive Equations for Polycrystalline Ice

4.1 Microstructure of Ice

The phase of HyO ice which exists at pressure and temperature conditions
encountered in ice sheets and glaciers is called ice Ih. It forms hexagonal
crystals, that is, the water molecules are arranged in layers of hexagonal rings
(Fig. 4.1). The plane of such a layer is called the basal plane, which actually
consists of two planes shifted slightly (by 0.0923 nm) against each other. The
direction perpendicular to the basal planes is the optic axis or c-azis, and the
distance between two adjacent basal planes is 0.276 nm.

(b)
0.0923 nm
0.276 nm

0.4523 nm

Fig. 4.1. Structure of an ice crystal. The circles denote the oxygen atoms of the
H>O molecules. (a) Projection on the basal plane. (b) Projection on plane indicated
by the broken line in (a). Adapted from Paterson (1994), © Elsevier.

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2_4, (© Springer-Verlag Berlin Heidelberg 2009
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\
SR

R W

Basal Prismatic Pyramidal

Fig. 4.2. Basal, prismatic and pyramidal glide planes in the hexagonal ice Ih crystal.
Reproduced from Faria (2003), © S. H. Faria.

Owing to this relatively large distance, the basal planes can glide on each
other when a shear stress is applied, comparable to the deformation of a deck
of cards. To a much lesser extent, gliding is also possible in the prismatic and
pyramidal planes (see Fig. 4.2). This means that the ice crystal responds to an
applied shear stress with a continuous deformation, which goes on as long as
the stress is applied (creep, fluid-like behaviour) and depends on the direction
of the stress relative to the crystal planes (anisotropy).

Measurements have shown that ice crystals show some creep even for very
low stresses. In a perfect crystal such a behaviour would not be expected.
However, in real crystals dislocations occur, which are defects in its structure.
These imperfections make the crystal much more easily deformable, and this
is enhanced even more by the fact that during creep additional dislocations
are generated. This creep mechanism is consequently called dislocation creep.

4.2 Creep of Polycrystalline Ice

Naturally, ice which occurs in ice sheets and glaciers does not consist of a single
ice crystal. Rather, it is composed of a vast number of crystallites (also called
grains), the typical size of which is of the order of millimetres to centimetres.
Such a compound is called polycrystalline ice. An example is shown in Fig. 4.3.

The c-axis orientations of the crystallites in polycrystalline ice differ from
one another. In the following, we will assume that the orientation distribution
is completely random. In this case, the anisotropy of the crystallites averages
out in the compound, so that its macroscopic behaviour will be isotropic. In
other words, the material properties of polycrystalline ice do not show any
directional dependence.

Let us assume to conduct a shear experiment with a small sample of poly-
crystalline ice as sketched in Fig. 4.4 (left panel). The shear stress 7 is assumed
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e
g lch

Fig. 4.3. Thin-section of polycrystalline glacier ice regarded between crossed polar-
isation filters. The crystallites (grains) are clearly visible, and their apparent colours
depend on the c-axis orientation.

to be held constant, and the shear angle v is measured as a function of time.
The resulting creep curve ~(¢) is shown schematically in Fig. 4.4 (right panel).
An initial, instantaneous elastic deformation of the polycrystalline aggregate
is followed by a phase called primary creep during which the shear rate +
decreases continuously. This behaviour is related to the increasing geomet-
ric incompatibilities of the deforming crystallites with different orientations.
After some time, a minimum shear rate is reached which remains constant sub-
sequently, so that the shear angle increases linearly with time. This phase is
known as secondary creep. In the case of rather high temperatures and/or high
stresses, at a later stage dynamic recrystallisation (nucleation and growth of
crystallites which are favourably oriented for deformation; also known as mi-
gration recrystallisation) sets in, which leads to accelerated creep and finally a
constant shear rate (linear increase of the shear angle with time) significantly
larger than that of the secondary creep. This is called tertiary creep.

> tertiary creep

(5}

p—

bD .

g (accelerating)

S

<

=2 mdary creep

A @ary creep
— H . .

i elastic deformation
T i

Time, ¢

Fig. 4.4. Shear experiment for a sample of polycrystalline ice. 7 denotes the applied
shear stress, v the shear angle and ¢ the time.
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4.3 Flow Relation

4.3.1 Glen’s Flow Law

From the above considerations it becomes clear that the shear rate 4 for
secondary (minimum) creep of isotropic polycrystalline ice under the simple-
shear conditions illustrated in Fig. 4.4 can be expressed as a unique function
of the shear stress 7, the ice temperature 7" and the pressure p,

g =4(r,T,p). (4.1)

Numerous laboratory experiments and field measurements suggest that the
concrete relation is that of a non-linearly viscous fluid,

1

V=T 4.2)

where 7) denotes the shear viscosity. The inverse 1/7 is called fluidity, and its
dependence on the temperature T', the pressure p and the absolute value of
the shear stress |7| can be factorised as

1

n(T,p,|7|)

where A(T, p) is the rate factor and f(|7|) the creep function. These are usually
expressed in the form of an Arrhenius law

=2A(T,p) f(I7]), (4.3)

A(T,p) = Age (@TPVI/RT, (4.4)

(Ap: pre-exponential constant, ): activation energy, V: activation volume,
R =8.314 J mol =t K1 : universal gas constant), and a power law,

fFrh =" (4.5)

(n: stress exponent), respectively.

Let us now generalise the non-linearly viscous flow law (4.2) for secondary
creep to arbitrary deformations and stresses. To a good approximation, ice
can be described as incompressible, so that the pressure p will be a free field,
and the three-dimensional flow law will relate the strain-rate tensor D and the
stress deviator tP (compare Sect. 3.4.3). If we define a Cartesian coordinate
system such that the plane of Fig. 4.4 (left panel) falls on the z-z plane
(where x is the horizontal and z the vertical coordinate), then we can identify
4 = 2D, [see Eq. (3.35)] and 7 = t,, (see Fig. 3.8), so that (4.2) becomes

1

Dzz = ——— tez-
20(T, p, taz])

(4.6)

Since D, is the z-z component of D and t,, the z-z component of t°, this
suggests that the general flow law reads
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1 D

The only non-straightforward point is the question how the |¢,,| in Eq. (4.6)
translates to the newly introduced scalar o. (effective stress). As a relation
between two tensors, Eq. (4.7) must be independent of any particular basis
(coordinate system). Therefore, the effective stress o, cannot be equal to a
single element like |t,.|, but it must be a scalar invariant of t®. An order 2
tensor in three-dimensional space has only three independent invariants [see
Eq. (2.42)], which are for tP

Lo = trtP = 0,
IIo = §[tr (tP)% — (trtP)?] = £ tr (tP)?

= S [(E)2 + (t),)° + (D) + 12, + 2, + t2,
Il = det tP

(4.8)

(note that t;; = ) for i # j). If we choose

0e = /1o = /1 tr (tP)2, (4.9)

then we have found an invariant quantity which simplifies to |t,.| for the

simple-shear conditions of (4.6). It is therefore reasonable to assume that

(4.9) is the correct expression for the effective stress in the flow law (4.7).
As for the fluidity 1/7 in Eq. (4.7), we can directly infer its functional

dependence on T, p and o, from Eqgs. (4.3), (4.4) and (4.5):
1

—  —2A(T,p) f(ow 4.10

TTop00) (T'p) f(oe) (4.10)

[rate factor A(T,p), creep function f(c.)], with the Arrhenius law
A(T,p) = Ag e~ (@FTPVI/RT (4.11)

and the power law
floe) =on™t. (4.12)

The optimum value for the stress exponent n has been a matter of continuous
debate, but most frequently n = 3 is used (Paterson 1994, van der Veen 1999,
and references therein).

The melting temperature of ice, Ty, is pressure-dependent. For low pres-
sures (p < 100kPa), T, = Ty = 273.15K, and for pressures which occur
typically in ice sheets and glaciers (p < 50 MPa) the linear relation

T =Ty — Bp (4.13)

holds. For pure ice, the Clausius-Clapeyron constant 3 has the value g =
7.42 x 1078 K Pa~!, but under realistic conditions the value for air-saturated
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ice, B = 9.8 x 1078 KPa~!, is preferable (Hooke 2005). Under hydrostatic
conditions, this leads to a melting-point lowering of 0.87 K per kilometre of
ice thickness. With (4.13), the temperature relative to the pressure melting
point is defined as

T =T-Ty,+To=T+Bp, (4.14)

so that the pressure melting point always corresponds to 77 = Ty = 273.15K
(or 0°C). Measurements have shown that the pressure dependence in the Ar-
rhenius law (4.11) is accounted for satisfactorily if the absolute temperature
is replaced by the temperature relative to the pressure melting point, that is

A(T,p) = A(T') = Age~@/BT" (4.15)

Recommended values for the pre-exponential constant and the activation en-
ergy are listed in Table 4.1. The larger activation energy for 77 > 263.15K is
probably due to grain boundary sliding and the presence of liquid water at
grain boundaries which contribute to creep in this temperature range [see the
discussion by Paterson (1994), and references therein]. The two values of the
pre-exponential constant yield A(7” = 263.15 K) = 4.9 x 1072*s~1 Pa~2 for
both regimes, so that the function is continuous (Fig. 4.5). Note that these
values are only reasonable for n = 3.

Parameter Value

Stress exponent, n 3

Pre-exponential constant, Ay 3.985 x 10757 Pa™ (for T’ < 263.15K)
1.916 x 10°s™'Pa™®  (for T" > 263.15K)

Activation energy, Q 60kJ mol ! (for T" < 263.15K)
139kJ mol ! (for T" > 263.15 K)

Table 4.1. Stress exponent and parameters for the Arrhenius law (4.15) (Paterson
1994).

Equation (4.7) together with (4.10), (4.12) and (4.15) reads
D=A(T)o" 1P, (4.16)

which is called Nye’s generalisation of Glen’s flow law, or Glen’s flow law for
short (Glen 1955, Nye 1957). Figure 4.6 shows the corresponding viscosity

1

T,0) = ———
7]( )0 ) QA(T') Ug—l

(4.17)

for different stresses and temperatures. Evidently, the viscosity of polycrys-
talline ice is much larger than that of viscous fluids of everyday life. For
instance, the viscosity of motor oil is of the order of 0.1Pas, compared to
~ 1013 Pas for ice at T’ = 0°C and o, = 100kPa (1 bar). On the other hand,
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Fig. 4.5. Rate factor A(T") for the temperature range from —50°C to 0°C (relative
to the pressure melting point) according to the Arrhenius law (4.15). The kink at
—10°C is due to the piecewise definition of the pre-exponential constant Ap and the
activation energy Q.
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Fig. 4.6. Viscosity (4.17) for a stress exponent n = 3, effective stresses up to 100 kPa
(1 bar) and temperatures between —20°C and 0°C (relative to the pressure melting
point).

the upper mantle of the Earth has a viscosity of the order of 10! Pas, which
is further eight orders of magnitude stiffer, but still considered to be a fluid
on geological time-scales.

In order to derive the inverse form of Glen’s flow law, we define the effective

strain rate
de = /3 trD2, (4.18)
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[square root of the second invariant of the strain-rate tensor, compare to (4.9)],
for which we obtain, by inserting (4.16)

do=A(T) 0" loo = A(T) 0" & oo=AT) Ydl/m. (4.19)
Solving (4.16) for tP and using (4.19) yields

D — A(T/)—l Je—(n—l)D
:A(T/)—l A(T/)(nfl)/n de—("—l)/"D
_ A(T/)—l/n dc—(l—l/n)D

=tP =B(1T)d."""D, (4.20)

where the associated rate factor B(T'") = A(T")~/™ has been introduced. We
may write this with the shear viscosity 7 as

t? = 2n(7’,d.) D (4.21)

[see (4.7)], where
1
(T, d.) = §B(T’)d;(1_1/") : (4.22)

Evidently, the flow law for polycrystalline ice in the form of (4.7) or (4.21) is
very similar to that of the incompressible Newtonian fluid which was discussed
in Sect. 3.4.3 [see Eq. (3.135)]. The difference is that here we deal with a non-
linear flow law, in that the viscosity depends on the effective stress or the
effective strain rate.

4.3.2 Regularised Glen’s Flow Law

As a consequence of Egs. (4.10) and (4.12), Glen’s flow law (4.16) with n > 1
yields an infinite viscosity 7 if the effective stress o, approaches zero. Physi-
cally, this is not a problem, because if the effective stress is small, the strain
rate is small, too, and does not contribute significantly to the overall flow field.
However, depending on the mathematical solution procedure, the infinite vis-
cosity limit may introduce a singularity in the equations for the velocity field
if the effective stress is very small, which occurs at ice divides and ice margins.
In order to avoid this problem, a regularisation has been proposed, in which
the power law, Eq. (4.12), is replaced by a polynomial relation,

floe) = 02‘71 + 08_1 (4.23)

(“regularised Glen’s flow law”), where the residual stress og is a small positive
constant. The viscosity is then [see Eq. (4.17)]

1

TI, e) — )
100 = AT o T oy ]

(4.24)
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which has the finite limit

1

AT (4.25)

Noe—0 =

This means that for small effective stresses the flow law of a Newtonian fluid
(with temperature-dependent viscosity) results. There is some, however in-
conclusive, experimental evidence that polycrystalline ice may actually show
this behaviour, which could serve as a physical justification for the polyno-
mial relation (4.23). Generally, if this relation is used, the residual stress og
is chosen as small as possible in order not to influence the overall solution
significantly, but large enough to prevent the problems with the singularity.
Note that, for n > 1, an analytical inversion according to Egs. (4.19) —
(4.22) is not possible for the regularised Glen’s flow law. We can still state

t? = 2n(7’,d.) D, (4.26)

but do not obtain an explicit expression for the viscosity n(T”,d,). Instead,
by using the definitions (4.9) and (4.18), we infer from (4.26) the relation

oo =20(T', do) d. . (4.27)

Inserting this in Eq. (4.24) yields

1
T dy) =
) = T (T d) oy + oy ]
S AT (T d) + 2A(T )0l (T ) =1 =0, (4.28)

which is an implicit representation of the viscosity n(7”,d.) as a polynomial
equation.

4.3.3 Smith-Morland Flow Law

An alternative flow law with finite viscosity in the limit o, — 0 was proposed
by Smith and Morland (1981). It has the form

D = A(T) f(0)t°, (4.29)

where the dimensionless rate factor is given by the two-exponential term ex-
pression

~
|
S

A(T) = 0.7242'19%67T 10,3438 29497 T —

(4.30)

and the creep function is represented by

D
floo) == [0.3336 +0.3200 (E

g0

)2 +0.02063 (%)1 . (4.31)

0o 00
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The constants in Eqs. (4.30) and (4.31) have the values Ty = 273.15K,
[AT] = 20K, Dy = 1la=! = 3.169 x 10~ ¥s~! and 0y = 10° Pa. Note that
the rate factor (4.30) is a function of the absolute temperature T' instead of
the temperature relative to the pressure melting point 7", so that it contains
no pressure dependence.

The flow law (4.29) with the rate factor (4.30) and creep function (4.31)
is referred to as the Smith-Morland flow law. Tts viscosity is given by

.
2A(T) f(oe)

As for the case of the regularised Glen flow law (Sect. 4.3.2), the Smith-
Morland flow law can formally be inverted,

n(T,oc) = (4.32)

t? = 2(T,d.) D, (4.33)

but an explicit representation of the viscosity 7(7’, d.) cannot be obtained.

The Smith-Morland flow law has not been widely used, even though the
authors claim that it matches laboratory data on ice deformation better than
Glen’s flow law. It is therefore worth being explored in more detail in future
studies.

4.3.4 Flow Enhancement Factor

All flow laws of Sects. 4.3.1-4.3.3 are valid for secondary creep of isotropic
polycrystalline ice. However, as we have discussed in Sect. 4.2, in regions
of flowing ice sheets and glaciers with relatively high temperatures and/or
stresses, tertiary creep may prevail, which goes along with the formation
of an anisotropic fabric (non-uniform orientation distribution of the c-axes)
favourable for the deformation regime at hand.

A crude, but very common way of including this effect in the flow law
is by multiplying the isotropic ice fluidity for secondary creep by a flow en-
hancement factor E > 1 (Hooke 2005). This can be conveniently achieved by
replacing the rate factor A(T”) for the Glen and regularised Glen flow law [or
A(T) for the Smith-Morland flow law| by

A(T') — EA(T). (4.34)

Suggested values for the flow enhancement factor vary and depend on the de-
formation regime; however, in practice often an overall constant value some-
where between 1 and 10 for the considered ice sheet or glacier is chosen.

In case of Glen’s flow law, we have seen that an analytical inversion is
possible. Equation (4.34) yields for the associated rate factor introduced in
Eq. (4.20)

B(T') = A(T")™Y™ — [EA(T)]"Y™ = EB(T"), (4.35)

where E; = E~1/" is the stress enhancement factor.
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4.4 Heat Flux and Internal Energy

The heat flux q in polycrystalline ice can be described well by Fourier’s law
of heat conduction [see (3.139)],

q=—kr(T)grad T, (4.36)
with the temperature-dependent heat conductivity
K(T) = 9.828 ¢~ 00057 TIK] iy 1 g~ (4.37)

(Ritz 1987). For T = Ty = 273.15K this yields a value of 2.07Wm™'K~1,
and it increases with decreasing temperature (Fig. 4.7, top panel).

—28
_'>< 2.6
'c 24
<202
“ 2

-50 -40 -30 -20 -10 0
Temperature T [°C]

—

T 2100
Tz 2000
21900
2. 1800

O
17
Q%O -40 -30 -20 -10 0
Temperature T [°C]

Fig. 4.7. Heat conductivity « and specific heat ¢ for the temperature range from
—50°C until 0°C.

The caloric equation of state (constitutive equation for the internal energy)
is given by
T
u= /C(T) dr, (4.38)
To
which is a generalisation of Eq. (3.140) with the temperature-dependent spe-
cific heat
o(T) = (146.3 + 7.253 T[K]) T kg 'K~ * (4.39)
(Ritz 1987). According to this formula, at T = Ty = 273.15K one obtains
2127.5J kg 'K~!. Contrary to the heat conductivity, the specific heat de-
creases with decreasing temperature (Fig. 4.7, bottom panel).
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4.5 Elasticity

For processes on short time-scales (days or less), such as the response of an
ice shelf to oceanic tides, the elastic deformation of polycrystalline ice will be
dominant compared to the deformation by viscous creep. In this situation, the
material behaviour of ice can be described well by Hooke’s law in the form
(3.104), (3.106) or (3.116).

Parameter Value
Young’s modulus, £ 9.33 x 10° Pa
Poisson’s ratio, v 0.325
15° Lamé parameter, \ 6.54 x 10° Pa
274 Lamé parameter (shear modulus), z 3.52 x 10° Pa

Table 4.2. Elastic parameters for isotropic polycrystalline ice at T = —16°C (Pe-
trenko and Whitworth 1999).

Suitable values for the material parameters at T' = —16°C are listed in Ta-
ble 4.2. The temperature dependence is rather small; Petrenko and Whitworth
(1999) give the formula

E(T) E
ANT) | =1 A x [1—1.42 x 1073 (T[°C] +16)],  (4.40)
(T 1) e igec

while the temperature dependence of Poisson’s ratio v can be neglected.
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Large-Scale Dynamics of Ice Sheets

5.1 Full Stokes Flow Problem

5.1.1 Field Equations

With the constitutive equations given in Sects. 4.3 and 4.4, we are now able
to formulate the mechanical and thermodynamical field equations for the flow
of ice in an ice sheet. Figure 5.1 shows the typical geometry (cross section) of
a grounded ice sheet with attached floating ice shelf (the latter will be treated
in Chap. 6), as well as its interactions with the atmosphere (snowfall, melt-
ing), the lithosphere (geothermal heat flux, isostasy) and the ocean (melting,
calving). Also, a Cartesian coordinate system is introduced, where x and y
lie in the horizontal plane, and z is positive upward. These coordinates are
naturally associated with the set of basis vectors {e,,e,,e.}. The free surface
(ice-atmosphere interface) is given by the function z = h(x,y,t), the ice base
by z = b(z,y,t) and the lithosphere surface by z = z(z,y,t). Note that for
the grounded ice sheet the ice base and the lithosphere surface fall together
(b = z) and form the ice-lithosphere interface.

By introducing the Cartesian coordinates x, y, z, we have tacitly assumed
a flat Earth. For the vertical direction, this simplification is justified because
the vertical extent of ice sheets (as well as ice shelves and glaciers) is always
much smaller than the mean radius of the Earth (R, = 6371 km), so that cur-
vature effects are negligible. In the horizontal, the flattening can be achieved
by a suitable map projection. For ice sheets, often the polar stereographic
projection is used, which is illustrated in Fig. 5.2. It preserves angles, but
not distances and areas. The distortions are negligible for most practical ap-
plications, though. Even for the entire Antarctic Ice Sheet (situated between
~ 63°S and 90°S), the distortion of the length scale nowhere exceeds 3% if
the standard parallel is chosen as pg = 71°S.

Since we have assumed ice to be an incompressible material, the mass
balance (3.60) applies,

divv =0. (5.1)

R. Greve, H. Blatter, Dynamics of Ice Sheets and Glaciers, Advances in Geophysical
and Environmental Mechanics and Mathematics,
DOI 10.1007/978-3-642-03415-2_5, (© Springer-Verlag Berlin Heidelberg 2009
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¥ x Atmosphere

Lithosphere z=b(x, ) t)

z=z1(% 5 Y

Y

Fig. 5.1. Ice sheet geometry (with attached ice shelf) and Cartesian coordinate
system. = and y span the horizontal plane, z is positive upward. z = h(zx,y,t)
denotes the free surface, z = b(z,y,t) the ice base, z = zi(x,y,t) the lithosphere
surface and z = zq(t) the mean sea level. Interactions with the atmosphere, the
lithosphere and the ocean are indicated. Vertical exaggeration factor ~ 200-500.

The flow law in the form (4.21) yields for the divergence of the stress
deviator [note that, contrary to (3.137), n is not constant]

(divt®); = 2(1 Dij) ; = 21 Dijj + 2Dyjn
=1 (vijj +vj5) + (Vi +vja)n4
=n[(Av); + (divv) ;] + [(grad v + (grad v)T) - grad nl,
=1 (Av); + [(gradv + (grad v)") - grad 77]11 . (5.2)

The volume force f acting on an ice sheet on the rotating Earth consists
of the force of gravity, the centrifugal force and the Coriolis force (the lat-
ter two are inertial forces). Since the centrifugal force depends only on po-
sition, it is usually combined with the actual force of gravity to form the
effective force of gravity pg, where p = 910kgm™3 is the density of ice, and
g is the gravitational acceleration. On the surface of the Earth, the gravi-
tational acceleration takes values between ~ 9.78 and 9.83ms~2 depending
on latitude. Since this variability is negligible for our purposes, we adopt
the constant standard value g = |g| = 9.81ms~2 instead. The vector g
is directed downward, so that g = —ge,. The Coriolis force depends on
the flow velocity v and the angular velocity € of the Earth. The vector €2
points northward parallel to the rotational axis of the Earth, and its value is
2 =9 =27/(23.9345h) = 7.2921 x 10~° s~ . Hence, the volume force reads
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(a) I Stereographic (b) !

P 1S Stereographic
! plane

Fig. 5.2. Polar stereographic projection for (a) the northern and (b) the southern
hemisphere. The stereographic plane is parallel to the equatorial plane and defined
by the standard parallel g (often chosen as 71°N or 71°S). A point P on the surface
of the Earth is projected on the point st(P) by intersecting the line PS (case a) or
PN (case b) with the stereographic plane.

f=pg—2p02xv. (5.3)

By inserting Eqgs. (5.2) and (5.3) in the momentum balance (3.72) we obtain
the equation of motion

dv

i —gradp +nAv + (grad v + (grad v)") - grad n

p
+ pg —2pQ2 X V. (5.4)

In this equation, let us compare the acceleration term on the left-hand
side with the pressure-gradient term on the right-hand side. To this end, we
introduce typical values for the horizontal and vertical extent of an ice sheet,
the horizontal and vertical flow velocities, the pressure and the time as follows,

typical horizontal extent [L] = 1000km
typical vertical extent [H] = 1km,
typical horizontal velocity [U] = 100ma~!,
typical vertical velocity [W] = 0.1ma~!, (5:5)
typical pressure [P] = pg[H] ~ 10 MPa,
typical time-scale [t] = [L]/[U] = [H]/[W] = 10*a.

Further, the aspect ratio ¢ is defined as the ratio of vertical to horizontal
extents and velocities, respectively:
H] _ (W]

=== (5.6)
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For the horizontal direction, the ratio of acceleration and pressure gradient,
called the Froude number F'r, is then

o AV _ pUP/L O -

[PI/IL] — pglH]/IL] — g[H]

(note that la = 31556926s ~ v/10'%s), and for the vertical direction we
obtain the ratio
2 2
WU/ pWP/H) WP e -,
[Pl/[H]  pglH]|/IH]  g[H]
Consequently, for the flow of ice sheets, the acceleration term in the equation
of motion (5.4) is negligible.

In a similar way, we estimate the ratio between the Coriolis and pressure-
gradient terms in Eq. (5.4). Since the cross product in the Coriolis term mixes
horizontal and vertical contributions, we apply the common scales 2p2[U]
and [P]/[L], respectively, for both the horizontal and vertical direction. By
introducing the Rossby number Ro as

Ro:QgJ[]L]zQXw—S, (5.9)

the Coriolis-force-to-pressure-gradient ratio yields

2pQU] _ 20Q[U|[L] _ [UP? 202[L] _ Fr i
[PI/[L] ~  g[H]  glH] [U]  Ro ~ 5 x 1077, (5.10)

which is seven orders of magnitude larger than the Froude number, but still
very small. Hence, the Coriolis term in the equation of motion (5.4) is also
negligible, and it can be simplified to

—gradp + nAv + (grad v + (gradv)T) -gradn+ pg =0. (5.11)

This is the Stokes equation, and the resulting type of flow is called Stokes flow.

Since the Stokes equation is a differential equation for the velocity field,
it is favourable to employ the form of the viscosity n which depends via the
effective strain rate d, on the velocity gradient. Therefore, n = n(T”,d,), and,
depending on whether the normal or the regularised Glen’s flow law shall be
used, it is determined either by Eq. (4.22) or by Eq. (4.28).

Owing to the temperature dependence of the viscosity, a thermo-mechani-
cally coupled problem applies, and its complete formulation requires an evolu-
tion equation for the temperature field. As it was demonstrated in Sect. 3.4.3,
this equation can be derived by inserting the constitutive equations for the
stress deviator (4.21), the heat flux (4.36) and the internal energy (4.38) in
the internal-energy balance (3.92). We obtain

du dT

pria divq = —div (k grad T) (5.12)
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and
tr(t-D) = tr[(—pl + 2nD) - D] = 2ntr D? = 41 d> (5.13)

[see (4.18)]. Further, except for the very uppermost few centimetres of ice
exposed to sunlight, the radiation r is negligible in an ice sheet, so that we
obtain the temperature evolution equation in the form

pc% = div (kgrad T) + 41 d> . (5.14)
Since the ice temperature must not exceed the pressure melting point, the
solution of (5.14) is subject to the secondary condition T" < Ty,. With the
continuity equation (5.1), the equation of motion (5.11), the expressions (4.22)
or (4.28) for the viscosity and the temperature evolution equation (5.14), we
have found a closed system of six equations for the six unknown fields v, vy,
v,, n, p and T of the thermo-mechanical Stokes flow problem.

5.1.2 Boundary Conditions

In order to provide a solvable problem, the above system of equations needs
to be completed by appropriate boundary conditions at the free surface and
the ice base (see Fig. 5.1). The possible presence of attached ice shelves will
be ignored for now.

Free Surface

Like any boundary, the free surface of an ice sheet can be regarded as a
singular surface in the sense of Sect. 3.3.3. If we denote it in implicit form by
the equation

Fy(x,t) =z — h(z,y,t) =0, (5.15)

then it can be interpreted as a zero-equipotential surface of the function
Fi(x,t), where the unit normal vector is the normalised gradient

Ok

ox

grad Fy 1 oh
n— =— | oh [, (5.16)

lgrad Fy] N oy

1

which points into the atmosphere (Fig. 5.3). Note that the abbreviation Ny
stands for the gradient norm,

N, = |grad Fy| = (1 + (%)2 + (ZZJL)Z)W . (5.17)
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Atmosphere w
n
Fy (x,0)=0
V
Ice

Fig. 5.3. Geometry of the free surface Fs(x,t) = 0. n is the unit normal vector, v
the ice velocity and w the velocity of the free surface.

As a direct consequence of Eq. (5.15), the time derivative of Fy following
the motion of the free surface with velocity w must vanish,

dyFs  OF;

dt ot

+ (grad Fy) -w =0 (5.18)

[compare Eq. (3.23)]. Let v be the ice surface velocity, then we can introduce
the ice volume flux through the free surface,
1_
a; =(wW—v)-n, (5.19)
which is also known as the accumulation-ablation function or surface mass
balance (perpendicular to the free surface). The sign is chosen such that a

supply (accumulation) is counted as positive and a loss (ablation) as negative.
With this definition and (5.16), Eq. (5.18) can be rewritten as

OF;
ot + (grad Fy) - v = —Nsasl , (5.20)

or, by inserting Fy = z — h [see (5.15)],

% + vz% + vyg—z — v, = Nyal. (5.21)
Since this condition has been derived by geometrical considerations only, it
is called the kinematic boundary condition. Provided that the accumulation-
ablation function a is known, it evidently governs the evolution of the free
surface.

If we identify the positive side of the free surface with the atmosphere
and the negative side with the ice, then the momentum jump condition (3.73)
(note that the free surface is a non-material surface if al # 0) yields

fam - n—t-n—p((v —w) 1) [v]

) (5.22)
:tatm'n_t'n"‘paé' [[V]] =0
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[in the first line, the term p((v — w) - n) can be factored out of the jump
brackets because of the mass balance (3.61)]. The advective term pal [v]
is very small and thus negligible due to the small ice flow velocities, and the
atmospheric stress tutm -1 (atmospheric pressure plus wind stress) is also small
compared to the typical stresses in an ice sheet. Thus, we can neglect both
terms, and obtain the stress-free condition

tn=0. (5.23)

This is the dynamic boundary condition for the free surface.

For the temperature evolution equation (5.14), it is further required to
provide a thermodynamic boundary condition. This can be simply done by
prescribing the surface temperature Tj,

T=T,. (5.24)

Measurements have shown that T; can be well approximated by the mean-
annual surface air temperature, as long as the latter is < 0°C.

Ice Base

In a similar manner to the free surface, a kinematic boundary condition for
the ice base can be derived. Let

Fy(x,t) = b(z,y,t) —2=0 (5.25)

be its implicit representation, then the unit normal vector is

o

ox

grad Fj, 1 ob
n——m—m—m—m—m—mmm— — 5 5.26
lgrad Fy,| Ny, oy (5.26)

-1

which points into the bedrock (Fig. 5.4). The abbreviation N, denotes the
gradient norm,

Ny = |grad Fy| = (1 + (%)2 + (22)2)1/2 . (5.27)

Analogous to Eq. (5.18), the time derivative of F}, following the motion of
the ice base vanishes,
doF, O0F,
—_—= dFy)-w=0 5.28
dt g +(erad ) w=0, (5.28)
where w is the velocity of the ice base. With the ice volume flux through the
base,
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Ice
v

w

n

Lithosphere (bedrock)

Fig. 5.4. Geometry of the ice base F,(x,t) = 0. n is the unit normal vector, v the
ice velocity and w the velocity of the ice base.

ar = (v—w)-n, (5.29)

where the sign has been chosen such that a mass loss due to basal melting
(and subsequent penetration of the meltwater into the ground) is counted as
positive, and which is therefore called the basal melting rate (perpendicular
to the ice base), we obtain

oF,
ot
and, by inserting Fj, = b — z [Eq. (5.25)],

+ (grad Fi,) - v = Nypai, (5.30)

0b 0b 0b

a—‘rvmaix +Uyaiy_vz:Nba/]J3" (531)

We identify the positive side of the ice base with the lithosphere and the
negative side with the ice. Then, corresponding to Eq. (5.22), the momentum
jump condition reads

tign N —t-n—pai [v] =0. (5.32)

Again, the advective term pai- [v] is very small and therefore negligible, so
that
t-n =ty -n. (533)

This is to say that the stress vector is continuous across the interface. How-
ever, since we do not have any information about the stress conditions in
the bedrock, this finding does not provide a boundary condition for the basal
stress in the ice. Instead, an empirical sliding law will serve as the required
dynamic boundary condition. It is reasonable to assume that the ice is frozen
to the ground if the basal temperature T3, is below the pressure melting point
T, so that no-slip conditions prevail. By contrast, if the basal temperature is
at the pressure melting point, basal sliding can be expected, and its amount
can be related to the basal drag 71, and the basal normal stress IV}, in the form
of a power law ( Weertman-type sliding law). To this end, we split up the basal
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stress vector ty|.—p = t|.—p - 0 into its normal component, N, = —Npn (the
minus sign causes N}, to be positive for compression, which is the expected
situation), and its shear component, T, = They,

tnl.=p = Ny, +7p = —Npn + 7peq, (5.34)

where e; denotes the direction of the basal shear stress in the plane tangential
to the ice base (e; L n). The basal sliding velocity v}, is then expressed as

0, if Ty, < Ty,
vy = . . (5.35)
_C’bNig €, if Tb :Tm,

where p and ¢ are the basal sliding exponents. As for the stress exponent n
in the creep function (4.12) of Glen’s flow law, the best choice for their values
are a matter of debate, but commonly used values are (p,q) = (3,1) or (3,2)
for sliding on hard rock, and (p,q) = (1,0) for sliding on soft, deformable
sediment.

As for the thermodynamic boundary condition, sufficient information on
the spatio-temporal distribution of the basal temperature is not available, so
that it cannot be prescribed directly. Instead, we will have to formulate the
energy jump condition (3.94) for the ice base. We obtain

2

Qith - n—q-n—[v]-t-n+p((v—w)- -n) Hu—l— UQH =0. (5.36)
Note that the term p((v — w) - n) has been factored out of the jump brackets
because of the mass balance (3.61), and the stress vector t-n has been factored
out due to (5.33). The term —qtp - 1 can be identified with the geothermal
heat fluz qg-eo, that is, the heat flow which enters the ice body from below due
to the warmer Earth’s interior. Further, we insert Eqs. (4.36) and (5.29), and
neglect the very small kinetic energy v?/2 in comparison with the internal
energy u, so that

K(gradT~n)—qg‘eo—[[v]]~t-n+pa§ [u] =0. (5.37)

Two cases are to be distinguished. For a cold base, that is, a basal temperature
below the pressure melting point, there cannot be any basal melting (aﬁ; =0),
and no-slip conditions prevail [see (5.35)1], so that [v] = 0. Thus, Eq. (5.37)
simplifies to

k(gradT -n) = qéeo , (5.38)

which is a Neumann-type boundary condition for the basal temperature. By
contrast, in case of a temperate base (basal temperature at the pressure melt-
ing point), the basal temperature itself is known, namely

T=T, (5.39)
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(Dirichlet-type condition). As a consequence, the energy jump condition (5.37)
is no longer needed as a boundary condition for the temperature field, but it
can be used to compute the unknown basal melting rate af;. Since there will
be meltwater on the positive (lithosphere) side and ice on the negative (ice)
side of the base, the jump of the internal energy [u] is equal to the latent heat
L of ice melt, that is, [u] = L. Furthermore, the velocity jump is given by the
sliding velocity (5.35)2, so that [v] = —vy,. With these settings, the energy
jump condition (5.37), solved for ai-, yields

1 qgeo—n(gradT-n)_vb.t.n

5.40
ay, oL ( )

Evidently, the situation is different from that of the free surface, where the
accumulation-ablation function al must be prescribed as climatic input (along
with the surface temperature T3), whereas the basal melting rate ai- can be
computed. Instead, at the ice base the geothermal heat flux qg-eo must be

prescribed as an input quantity.

5.1.3 Ice Thickness Equation

By combining the continuity equation (5.1) with the kinematic boundary con-
ditions (5.21) and (5.31), we can now derive an evolution equation for the ice
thickness H(z,y,t) = h(z,y,t) —b(z,y,t). To this end, we write (5.1) in com-
ponent form,

Ov,  Ovy  Ov,
=0 5.41
Ox + oy + 0z ’ (5.41)

and integrate it from the ice base to the free surface:
/ 0 / 0 / 0
Vg v, v

= d —d ~dz=0. 5.42
/ ox S / dy e 0z : ( )

b b b

The first two terms can be modified using Leibniz’s rule,

h h
0 Ovy oh 0b
b b

(and accordingly for the y-derivative), and the third term is simply

h
v,
/802 dz = v, |mn — V2|, (5.44)
b

so that
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h h
0 0 Oh Oh
o vmdz—i-a—y vydz—vz|ﬁh%—vy|ﬁha—y+vz|ﬁh
b b
Ob ob

+ Vsl 5 vyl o Vilep =0.  (5.45)
With the kinematic conditions (5.21) and (5.31), this yields

h h

0 0 oh . 0b 1
%/vmdz+6fy/vydz+a—Nsas—§+Nbab—0. (5.46)
b b

By introducing the volume flux Q as the vertically integrated horizontal ve-
locity, that is,

, (5.47)

Q(Qz) /bhvwdz

Q h
! / vy dz
b

rearranging (5.46) and introducing the ice thickness H = h — b, we obtain

86—]: = —divQ + Nyal — Npai (5.48)
(note that divQ = 0Q,/0x + 0Q, /0y). This result is known as the ice thick-
ness equation.

Recall that the accumulation-ablation function (surface mass balance) a2
and the basal melting rate aﬁ are fluxes perpendicular to the free surface and
the ice base, respectively. However, since the term 0H /0t in Eq. (5.48) refers
to the vertical direction, it is desirable to introduce new quantities as and ay,,
which are also taken in the vertical direction.

Let AV be the ice volume which is accumulated on the area AAL on
the surface of the ice sheet during the time At (Fig. 5.5). The accumulation-

ablation function perpendicular to the free surface is then
AV
1 o .
% = Alirgo AA+L At (5.49)

(where AV is positive in case of positive al and negative in case of negative
aF). Similarly, the accumulation-ablation function in the vertical direction is

as

= A Aaar (5.50)

Since AV = AV+ and AA = AA*L cosa (where a is the surface inclination
angle, see Fig. 5.5), the two accumulation-ablation functions are related by
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Atmosphere

AA TN

Fig. 5.5. On the accumulation-ablation functions in the vertical direction (as) and
perpendicular to the free surface (ay). The volumes AV = Py PP3Py and AV =
Py Py P, Py are equal. The areas AALt = PPy = P,P; and AA (projection of AA*
into the horizontal plane) are related by AA = AA* cosa.

Without loss of generality, let us assume for the moment that the coordinates
x and y are oriented such that x is parallel to the line of steepest descent, so
that Oh/0x = tana and 0h/Jy = 0. Then, due to Eq. (5.17),

2\ 1/2 2 Lo\ 1/2
= (” (5) ) — (1 +tan’a) '/ = <W>

Ox cos? a
1
= . 5.52
cos a (5:52)
By inserting (5.52) in (5.51), we find
as = Nyal . (5.53)

With the same arguments, an analogous relation can be established for the
basal melting rates,

We can now insert Eqgs. (5.53) and (5.54) in the ice thickness equation (5.48)
in order to obtain the simplified form

H
aa—t =—divQ +as —ap . (5.55)

The ice thickness equation is usually presented in this form. It is the central
evolution equation in ice sheet dynamics.
5.2 Hydrostatic Approximation

In order to derive a simplified, approximated system of equations for the large-
scale dynamics of ice sheets, we go back to the momentum balance (3.72), and
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write it in component form. By neglecting again the acceleration and Coriolis
terms [see (5.7)—(5.10)] and setting f = pg = —pge., we obtain

Ot Oty | e _
Ox Oy 0z
Otuy Oy, Otye
St G G =0, (5.56)
Ot  Ot,. Ot

+ + = pg.

ox dy 0z

In all parts of an ice sheet, the shear stresses ¢,, and ¢, (< 100kPa) are small
compared to the vertical normal stress ¢.,, which is approximately equal to
the pressure p, so that [t,.] = [P] = pg[H] ~ 10 MPa [see (5.5)]. Consequently,
the vertical momentum balance (5.56)3 can be reduced to a balance between
the vertical gradient of ¢,, and the gravity force,

Ot

5, =PI (5.57)

The same approximation in the vertical component of the stress-free condition
at the free surface (5.23) yields

tozlen =0, (5.58)
so that Eq. (5.57) can readily be integrated,

Evidently, the vertical normal stress ¢, is hydrostatic. With this result, the
pressure p reads

p:p—t?x—t];y—tzDz = _ta]?m_tyDy_tzz
=pg(h—2z) =D, — ), (5.60)

Thus, the horizontal normal stresses t,4, t,, can be expressed as

5.61
tyy = —p+ty, =2ty +10, — pg(h —z). (5.61)

Inserting these in the horizontal (x, y) components of the momentum balance
(5.56)1,2 yields

2815536 N oty), L Otay | Otes o oh
Ox Ox oy 0z ox’
Oty,  Otp, Ot _
Oy + Oy + Ox 0z _pga_y’

(5.62)

2



74 5 Large-Scale Dynamics of Ice Sheets

and the viscous rheology of ice [Egs. (4.7), (4.21)] in Cartesian coordinates is

ov
txx 77 8(1) )

ov
D
tyy = 4] a_yy )
tzDz =2 aavz ’

“ (5.63)

P Ovy n ov,
rz — n az 8x )
P % n v,
v= =\ 5 oy )’
po—p (O Ovy
2y =1 oy  Ox )

Since the trace of the deviatoric stress tensor vanishes (2, + tyDy + 2, =0),
only two out of the first three equations of (5.63) are independent. Inserting
(5.63)17274’5,6 in (562) yields

0 0y, 0 Ovy 0 Ov,  Ovy
Yoz (“%) 25 ("aT,) oy (n(a—y %))
b (B g 22)) =
9z \"\ a2 Oz ~ P (5.64)
o [ v o [ v o vy Ov '
R (i T IO Ty i Yz | TV
0y<n8y)+ 8y<n8x)+8x(n<8y 895))
0 dvy ~ Ov, ~0h
Tz (W%* ay)) =PIy

As for the full Stokes flow problem discussed above, we complement these
differential equations for the velocity field by the functional form (7", d,) of
the viscosity, which is either given by Eq. (4.22) (for the normal Glen flow
law) or by Eq. (4.28) (for the regularised Glen flow law). The component form
of the effective strain rate d,. reads

de = \/% trD? = \/% DijDij

= \/% (D%, + D3, + D35 +2D%, + 2D35 + 2D3;) |

(5.65)

and, due to the continuity equation (5.1), we have divv = tr D = D11 + Das +
D33 =0, so that

de = \/$ (D} + D3 + (~Diy — D2a)? + 2D% + 2D, + 2D
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= \/Dfl + D%z + D11 Dss + D%z + D%:s + Dgg
Oy, 2 vy 2 Ovy Ovy 1 (Ov, ~ Ovy 2
= + Mg e BN +
ox Ay dr dy 4\ Oy ox
1/2
+1 Oy, . ov, 2 8vy n ov, 2\ Y (5.66)
4\ 9z Oz 0z Oy ' '
Equations (5.64) and (4.22) or (4.28), respectively, together with the con-

tinuity equation (5.41) and the temperature evolution equation (5.14), which
is

. ( oT oT oT oT )

ot TVmar Ty, TG,
= 5o (650) + 5 (5y) 5 () + am (a7

are five equations for the five unknown fields v, vy, v;, n and 7. This set of
field equations is called the hydrostatic approzimation. Compared to the full
Stokes flow problem formulated in Sect. 5.1.1, the pressure has been elimi-
nated, which is a substantial simplification of the problem. The field equa-
tions are completed by the kinematic boundary condition (5.21), the stress-
free condition (5.23) and the temperature condition (5.24) at the free surface,
the kinematic condition (5.31), the sliding law (5.35) and the thermodynamic
conditions (5.38), (5.39), (5.40) at the ice base, and the ice thickness equation
(5.55).

5.3 First Order Approximation

With the typical values (5.5) and the aspect ratio (5.6), we find for the ratio
of components of the velocity gradient

CIRRTRTER (5.68)

Ov. /0vs  Qus yOvy W] /[U] W] [H]
or/ 9z oyl 0z [L]

so that horizontal derivatives of the vertical velocity are negligible compared
to vertical derivatives of the horizontal velocity. This allows us to neglect the
terms containing horizontal derivatives of the vertical velocity in the viscous
rheology (5.63)1,2,4,5,6, which yields

34y %y

ov
P —op= =2
Trxr 77 8:C b
D 8Uy
vy a ?
Ovg
tow =1 22 (5.69)
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81}

- %+%
w ="M\ 9y T )

Consequently, the momentum balance (5.64) simplifies to

0 vy 0 vy (’“)vx
Yox (”ax) 252 ( )

0 ([ Ovy 0 ([ Ovg
Yoy ("ay> T2y ( )

2)

ﬂ 6vy
dy

L9 a% oh
to: "oz ) TP
ﬁ 803; 6vy
Ox
L8 % _ @
t9:\a: ) TP,

Again, the viscosity is taken as n(T’,d,) and given by either Eq. (4.22) or
Eq. (4.28), with

v, 2 vy 2 Ovy Ovy
de—{(ax> +(ay> o 37,
+1 Iz +% ’ Iz 1 % N
4\ Oy Ox 0z 4\ 0z
v, 2 vy 2 Ovy Ovy 1 0v, Ouy
= +(5L) + 5t s L
ox dy dr dy 2 0y Ox

1 [/ 0v, 2 Ovy 2 vy 2 Ovy 2 1/2571

4<8y> 4(833) 4<3z> 4(62’) - (57
In this simplified hydrostatic approximation, generally called the first order
approzimation, Eqs. (5.70) and (5.71) [and therefore the viscosity n(T”,d,)]
contain only the horizontal components of the velocity, v, and v,. Thus, the
solution of these equations is fully decoupled from the determination of the
vertical velocity v, via the continuity equation (5.41), in contrast to the hy-
drostatic approximation and the full Stokes flow problem. Once the horizontal
velocity has been computed, the vertical velocity can be obtained by integrat-
ing Eq. (5.41) from z = b to z,

B Z [ 0vy  Ov, B

The vertical velocity at the ice base v,|,—; is obtained from the kinematic
condition (5.31).

(5.70)
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5.4 Shallow Ice Approximation

Everywhere in an ice sheet, except the immediate vicinity of ice domes (up
to and within ~ 10km in the horizontal direction) and ice margins, the flow
regime is essentially simple, bed-parallel shear, and the slopes of the free
surface and the ice base are small (Fig. 5.6). Under these conditions, the
relevant components of the stress deviator tP are the shear stresses in the
horizontal plane, t,. and t,., which are supported by the basal drag. The
normal stress deviators t2 . tP and tD as well as the shear stress in the

zs tyy
vertical planes, t.,, are consequently negligible.

* *
* *
Ice dome *
* * %
* [l .
Ice l l l
sheet |}
vy
Y
e K v N R
Lithosphere (bedrock)

Fig. 5.6. Flow regimes in an ice sheet. In most regions, simple, bed-parallel shear
flow prevails. By contrast, in the vicinity of an ice dome, the flow direction is essen-
tially downward, which leads to vertical compression and horizontal extension. Close
to the ice margin, the slope of the free surface can be large. Vertical exaggeration
factor ~ 200-500.

This allows further simplifications of the hydrostatic approximation to be
made, which go beyond the first order approximation, and are known as the
shallow ice approzimation (SIA) (Hutter 1983, Morland 1984). All normal
stresses are equal to the negative pressure,

tmw = tyy = tzz =P, (573)
so that the vertical momentum balance (5.57) reads

op
5, = P9 (5.74)

and its integrated form [see (5.59)] gives the hydrostatic pressure distribution

P = Phyd = pg(h —z). (5.75)
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The horizontal components of the momentum balance, (5.56)12 or (5.62)1 2,
simplify to
O _0p _ Oh
9z oz Moz
Oty, Op oh
L= =pgy
0z oy dy
Due to the small surface slope, the derivatives Oh/0x and Oh/dy are small,
typically of the order of the aspect ratio e:

(5.76)

onh oh  [H]
e (5.77)

[see Egs. (5.5) and (5.6)]. Thus, the unit normal vector of the free surface
(5.16) is approximately vertical,

n=|0]=e., (5.78)

and the stress-free condition (5.23) reduces to

p|z=h:0, th‘z:h:(), tyz|z:h,:O- (5.79)
With this finding, Eq. (5.76), the right-hand side of which does not depend
on z, can readily be integrated and yields

oh
tyr = *Pg(h - 2)% s

oh
ty, = —pg(h —z)— .
y pg( z)ay

(5.80)

Equations (5.75) and (5.80) tell us that in the SIA the stress field, the only
non-negligible components of which are p, t,. and t,., is fully determined if

the geometry of the ice sheet is known. The effective stress oe [see (4.8)2 and
(4.9)] is then

e = /12, —&—t%z

— pg(h —2) <(gz)2 + (25)2) v pg(h — z) |grad h|.  (5.81)

Since in the STA, the infinite viscosity limit of Glen’s flow law for small stresses
does not cause any mathematical problems, we do not consider its regularised
version of Sect. 4.3.2 here. The above results are therefore inserted in the z-z
and y-z components of Glen’s flow law in the form (4.16):
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1 vy, . v,
2\ 0z ox

) = A(T") ol L t,.

— A(T) [pg(h — )" grad A1 2

ox
1 (0v,  Ov,\ _ N o1
5 (82 + 8y) =AT") ol " ty.

(5.82)

AT [pg(h — =) erad 7 O

Based on the order of magnitudes of the spatial derivatives of velocity com-
ponents, Eq. (5.68), the horizontal derivatives of the vertical velocity are neg-
ligible. This yields

Qs _ 9 A(T") [pg(h — 2)]"|grad b= 2
0z ox (5 83)
ov, o |

— / _ n n—1-"""
5, = —2AT") [pg(h —2)]"|grad h| T

which can be integrated from the ice base z = b to an arbitrary position z in
the ice sheet in order to compute the horizontal velocities,

0 = v~ 2pg)"grad " G [ AT (- 2z,
0 Jy (5.84)
oh [7 )

vy = by — 2(pg)"|grad h|"_la—y s A(T') (h—z)"dz,

where vy, and vy, are the respective velocities at the ice base. Since the bed
slopes are of the same order of magnitude as the surface slopes [see (5.77)],

ob b [H]

5 5~ = (5.85)

and the unit normal vector of the ice base (5.26) is approximately vertical,

0
n=| 0 | =-e,, (5.86)
-1

the tangential plane to the ice base is approximately equal to the horizontal
plane. Therefore, vy, and vy, are the two components of the basal sliding
velocity vy, given by the Weertman-type sliding law (5.35). The basal drag
Th = Thet consists of the z- and y-components of the stress vector tn|.,—p =
t‘z:b ‘n = _t‘z:b - e, that is,

oh

_ th|z:b _ %
Th = — (tyz|z=b) = pgH on |- (5.87)
dy
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Thus,

n= |- ()| = o s = st el (689
yz|z=

and
oh
1 th|z:b 1 %
= —— = — . 5.89
& Th (tyz|z—b) |grad h| % ( )
dy
The basal normal stress N, = —Npn = Npe, is equal to the z-component of
the stress vector,
Nb - *tzz|z:b (S = Nb = *tzz|z:b - ng (590)
Thus we obtain
0, if Ty, < T,
Ubx = oh
7Cb(ng)piq|gra’dh‘pilai ) if Tb = Tm )
x
(5.91)
0, if Ty, < T,
Uby = h

0]
—Cy(pgH )P~ 1|grad h\p’la— , i T, =T
Y
By introducing the horizontal velocity vector

v = (jjz) (5.92)

and the scalar function

2(pg)™|grad h|"—! / A(T") (h—z)"dz, it T, < T,
b
C = { Cy(pgH)P~grad h|P~1 (5.93)
+2(pg)n|gradh|n—l / A(T/) (h‘ - Z)n dzv if Tb = Tm )
b

we can express the horizontal velocity (5.84) as

oh

Vr ) _ ox _

(Uy>— () on | or vy =-—Cgradh. (5.94)
dy

That is, in the shallow ice approximation, the direction of the horizontal
velocity is anti-parallel to the gradient of the free surface. In other words, the
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)
A
/gradh /

Vh (X,0,2,1)

Y
/h5
/
X
z

Fig. 5.7. Surface topography and horizontal velocity in the shallow ice approxi-
mation. The horizontal velocity vy is anti-parallel to the direction of the surface
gradient grad h. Surface-topography contours: h1 > ha > hs > ha > hs.

ice always flows down the steepest surface slope, irrespective of the bedrock
topography (see Fig. 5.7). This holds for any particle of the ice sheet, even
the near-basal ice. However, note that this result is only valid as long as the
bed slopes are sufficiently small, as described by Eq. (5.85).

As for the first order approximation, the vertical velocity can now be
computed by integrating the continuity equation (5.41) from z = b to z,

Z [ 0vy  Ov, _
z = Uzlz=b — dz. :
vy = U] /b (83: + 8y) z (5.95)

In this equation, v, and v, are given by (5.94), and the vertical velocity at
the ice base v,|,=p is determined by the kinematic condition (5.31).

In order to formulate the ice thickness equation in the shallow ice approx-
imation, we compute the volume flux Q [see Eq. (5.47)] with the horizontal
velocities (5.94). This yields

@

Q2 _ ox . o "

(Qy)_—D on |- with D_/b Cdz. (5.96)
dy

The function C depends on z only via the integral term in (5.93), for which
we find by integration by parts
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// A(T") (h - 2) dzdz*/ / A(T) (h—z)"dzdz
:[ / ATy (h—2)"d L—/b 2A(T') (h — 2)"dz

h
=h A( "Y(h—z)"dz — / 2A(T') (h — 2)"dz
b b

-/ AT (h— 2y, (5.97)
b

Thus, the function D is

h
2(pg)lgrad " [ AT (b= 2" e, it Ty < T,
b
D=9 C H(pgH)P~4|grad h|P~! (5.98)
h
2(pg)™|grad h|" 1 / AT (h— 2" dz, if T, =Ty
b

By inserting the volume flux (5.96) with the function (5.98) into the ice thick-
ness equation (5.55), we obtain

OH _Q(D8h> 0 (Dah

o~ ax\Par) Ty a)“ﬂ an (5.99)

or, alternatively, expressed as an evolution equation for the surface topography

h,
oh 0 oh 0 oh ob
EA D—) (D ) . e 5.100
ot 8:1:( oz) Tog\Pay) Tt g (5.100)
Note also that, due to Egs. (5.77) and (5.85), we have Ny ~ 1 and Ny, =~ 1, so
that the accumulation-ablation functions and basal melting rates in the verti-
cal direction and perpendicular to the respective interfaces are approximately
equal,

as = atr, ap ~ap . (5.101)

Mathematically, Eq. (5.100) is a non-linear diffusion equation (the function
D depends itself on h) with additional source terms. As described at the end of
Sect. 5.1.2, the accumulation-ablation function ag is a climatic input quantity,
and the basal melting rate aj, is determined by Eq. (5.40). The unknown
variation 9b/dt of the ice-base/bedrock topography can be obtained from a
model of glacial isostasy, which will be treated later (see Chap. 8).

As for the temperature evolution equation (5.67), we complement the typ-
ical values (5.5) by the typical temperature variation magnitude

[AT] = 20K . (5.102)



5.5 Driving Stress 83
Then, we find for the ratio of horizontal and vertical heat conduction
0 ¢ oT o ¢ dT o ¢ 0T o ¢ OT
5 (552)/ 5 752) - 55 (555) ) 5 (52)

an an HE L,
[L]2/ P = I 1075, (5.103)

so that horizontal heat conduction is negligible. Furthermore, in the dissipa-
tion term we express the effective strain rate d, in terms of the effective stress
o by using (4.19);. This yields

(8T oT oT 8T) 0 ( oT

ERr = 2:\"%z

il 7 2/l 2n
5 5 + v, 9y + v, P )+4nA (T o™, (5.104)

and, by inserting (4.10) and (4.12), we obtain

C(f‘LTH o’ ,.oT_ . fLT) 0 (,ﬁl
ot “ Ox Y oy 0z 0z

= )+ 24T ozt (5.105)

where o, is given by Eq. (5.81). The boundary conditions for this equation are
the prescribed surface temperature (5.24), the temperature gradient (5.38) for
a cold base and the melting temperature (5.39) for a temperate base.

The shallow ice approximation simplifies the problem of large-scale ice
sheet flow drastically. The stress field is given by the simple, analytic expres-
sions (5.75), (5.80) and (5.81), and the velocity field depends only on the
local ice sheet geometry and temperature via (5.94) and (5.95), whereas in
the full Stokes flow problem, the hydrostatic approximation and the first or-
der approximation systems of non-linear differential equations [Eqs. (5.11),
(5.64) and (5.70), respectively] must be solved. The remaining “hard work” is
the solution of the surface evolution equation (5.100) and of the temperature
evolution equation (5.105).

5.5 Driving Stress

Equation (5.80) represents the bed-parallel shear stress in the shallow ice
approximation. Evaluating this equation at the bed (z = b) yields the vector

oh
O
oh |’
dy

T9=—pgH (5.106)

which is often called the driving stress.

By construction, the driving stress corresponds to the basal shear stress
in the shallow ice approximation. However, its definition is not limited to the
shallow ice approximation, and it can be interpreted in general as the action
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which drives the flow of the ice sheet. In the shallow ice approximation, the
driving stress 74 is equal to the negative of the basal drag 7, [see Eq. (5.87)],
which means that the driving forces and the resistive forces are balanced
locally at the bed of the ice sheet. In the full Stokes problem, the hydrostatic
approximation and the first order approximation such a local balance does not
hold; however, the driving stress and the basal drag still balance on average
for the entire domain of the ice sheet (van der Veen 1999). Local imbalances
are compensated by the deviatoric normal stresses t2 and tyDy as well as the

shear stress in the vertical plane t,.

5.6 Analytical Solutions

5.6.1 Simplified Problem

For very simple, idealised cases, the equations of the shallow ice approxima-
tion derived above can be solved analytically. Let us consider the following
situation:

e Plane strain approximation: two-dimensional flow in the z-z plane, any
lateral effects neglected (see Sect. 3.4.3).
Steady-state conditions: d(-)/0t = 0 for all field quantities.
Flat, rigid bed: b(z) = 0.
Ice sheet extent between x = —L and x = L, symmetric around the ice
divide at = = 0.
No basal melting (ap, = 0), no basal sliding (Cy, = 0).
Constant rate factor: A(T') = A = const.

The last assumption decouples the mechanical from the thermodynamical
problem, and therefore we do not have to deal with the temperature evolution
equation (5.105).

With the assumptions made above, the ice thickness equation (5.55) be-
comes

divQ = aq, (5.107)
where, according to Egs. (5.47) and (5.98),

h
—2A(pg)" |grad """ grad h / (h—2)"tdz
b

(h—z)"+2 h
n+2 b

Q

—2A(pg)" |grad h|" " grad h [

2A(pg)™ _
= —MH”+2 lgrad h|"~" grad h
n+ 2

= —Ag H"*?|grad h|" " grad h. (5.108)

In the last step, the abbreviation
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2A(pg)"
Ag= ——— 5.109
0 n-+2 ( )
has been introduced.
Due to the flat bed, the ice thickness H is equal to the surface topography
h, and due to the plane strain approximation, the volume flux Q = Q e, and
the surface gradient grad h = (dh/dz) e,. Hence,

dr|™ ' dn
_ n+2 | Y -
Q=-Aoh . o (5.110)
and .
Q  d P A
1L (th = dx) = ay. (5.111)

In order to find analytical solutions of the steady-state ice thickness equa-
tion (5.111), we recognise that it is a separable ordinary differential equation,
provided that the surface mass balance as is a function of  only. The assump-
tion of symmetry with respect to = 0 implies Q(0) = 0 and (dh/dz),—o = 0.
Thus, a first integral of Eq. (5.111) yields

dh

n—1 T
dh v

n+2 _ / r_
Aoh g I /0 ag(2')da’ = —Q(x) . (5.112)

For the half-domain 0 < = < L, the surface topography h decreases monoton-
ically from the ice divide at = 0 to the margin at x = L, so that Q > 0 and
dh/dxz < 0. This allows to take the nth root of Eq. (5.112),

dh Q)"
pn+2)/m 11
1 m ; (5.113)

and, by separation of variables, compute the second integral

. ’ 1/n
h(z)Crt2)/n — e/ _ 20t 2 / (Q(x )) da’ | (5.114)
0

n AO

where hg is the surface elevation at the ice divide. The ice thickness equation
(5.111) has thus been reduced to a quadrature, which can be solved analyti-
cally depending on the mass balance function as(x).

5.6.2 Vialov Profile

In order to simplify the problem further, we assume that the surface mass
balance ay is a positive constant over the entire domain. From Eq. (5.112), we

obtain the volume flux
Q(z) = asz, (5.115)
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so that Eq. (5.114) reads
w\ U
h(x)Grt2/n = gD/ g <A()> g(mHD)/n (5.116)
With the boundary condition h(L) = 0, we obtain for the surface elevation at
the ice divide

he = 2n/(2n+2) (Zﬁ L2 (5.117)

1/(2n+2)
)

Inserting this result into Eq. (5.116) yields

1/n
p@nt2)/n _ o ( as > (LD _ g(nt1)/m)

Ay
1/n r (n+1)/n
— 2 (Z()) LoD/ g (%) } . (5.118)
which can be written in simpler form as
(n+1)/n] n/(2n+2)
h = ho {1 - (%) . (5.119)

This solution is called the Vialov profile (Vialov 1958). Note that for negative
values of x, that is, for the half-domain —L < x < 0, the variable x must be
replaced by |z| in order to maintain the symmetry of the profile.

4 T T T T T
3
£ 2
<
1
O 1 1 1 1 1
-750 -500 -250 0 250 500 750

x [km]

Fig. 5.8. Vialov profile (5.119) for L = 750km, n = 3, as = 0.3ma ', A =
107%a7'Pa™®, p=910kgm™> and g = 9.81ms™ 2

An example is shown in Fig. 5.8. The parameters are those of the EISMINT
model intercomparison exercise described by Huybrechts et al. (1996), which
resemble the conditions of the Greenland Ice Sheet. For a half-span of L =
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Fig. 5.9. Volume flux for the Vialov profile shown in Fig. 5.8.

750km, the maximum elevation resulting from (5.117) is hg = 3575.1m. It
is interesting to note that the profile appears pointed at the divide. This is
the case since at = 0 the curvature (second derivative) of the function
h(x) defined by (5.119) is infinite, a problem which is related to the fact
that the shallow ice approximation is not valid there. Further, the slope (first
derivative) of the profile is infinite at the margins = +L, which violates the
assumption of small surface slopes.

The volume flux @ follows from Eq. (5.115). For the above EISMINT
parameters, it is shown in Fig. 5.9. The volume flux vanishes at the ice divide,
and it increases linearly away from the divide with a gradient of d@/dxz =
as = 0.3m?a~!/m in order to balance the ice accumulation. At the margin,
the volume flux reaches a value of Q(L) = 2.25 x 105m?a~!, which can be
interpreted as the calving rate into a surrounding ocean.

An unrealistic feature of the Vialov profile is the behaviour of the shear
stress near the margin. According to Eq. (5.106), the basal shear stress in the
shallow ice approximation (driving stress) is proportional to the product of
the ice thickness and the inclination of the ice surface, which yields for the
Vialov profile (5.119)

dh  pgh? N ()y/n] YD
Ta=—pghgs =50 (L) (L) (5.120)

In the limit of x — L this expression diverges, thus the basal shear stress is
unbounded at the ice margin (see also below, Fig. 5.12).

5.6.3 Bueler Profile

Analytical solutions of Eq. (5.114) for variable mass balance functions as(x)
exist under the condition that the integral of Q'/ "(z) can be computed in
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Scaled flux and SMB

0 0.2 0.4 0.6 0.8 1
Scaled horizontal coordinate

Fig. 5.10. Volume flux (solid line) and surface mass balance (dashed line) of the
Bueler profile for the half-domain 0 < < L in scaled units.

closed form. This allows to match physically reasonable boundary conditions
to the ice flux, such as a prescribed calving rate at the margin, Q(L) = Q.
An example is the combination of power functions of « (Bueler 2003, Bueler

et al. 2005), .
Q(z) = [(i)l/n +(1- %)l/n - 1} , (5.121)

where a > 0 is an adjustable parameter. This volume flux fulfills the symmetry
condition Q(0) = 0 at the ice divide and the no-flux condition Q(L) = 0 at the
margin. The corresponding mass balance function results from Eq. (5.111),

ag(z) = % _ % [(E)l/n-i- (1_ ;)Un_l]n—l

x {(z)(l_n)/n _ (1 _ z)(l_")/n} . (5.122)

Figure 5.10 shows the volume flux (5.121) and the mass balance function
(5.122). The surface mass balance is positive (accumulation) in the interior,
high-elevation part of the ice sheet and negative (ablation) in the low-elevation
part near the margin. However, an unrealistic feature is the steep increase
towards the ice divide.

The solution of Eq. (5.114) with the volume flux (5.121) is

1/n
h(x)(2n+2)/n _ h62n+2)/n _9f, (04)
Ao

y {1 B nl—l %+ (%)(nJrl)/n B (1 B z)(n+1)/n]  (5123)
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and the surface elevation at the ice divide follows from the boundary condition
h(L) =0 as

1/n
—1
R/ op (;) o —. (5.124)

Insertion of Eq. (5.124) into Eq. (5.123) yields the Bueler profile

ho
h(z) = (n— 1)n/@n+2)
\ (nt1)/n
JonZon(®)
(n+1)/n n/(2n+2)
+n (1 - %) - 1} (5.125)
2
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Fig. 5.11. Bueler profile (solid line) and Vialov profile (dashed line) in scaled co-
ordinates.

A comparison of the Bueler and Vialov profiles is shown in Fig. 5.11. The
Bueler profile shows similar features as the Vialov profile. The inclination of
the surface is zero at the ice divide, but the curvature is infinite there, and the
inclination at the margin is unbounded. However, an important difference is
the behaviour of the basal shear stress (driving stress), which is for the Bueler
solution

Td = —pghj—h [with h(z) from Eq. (5.125)]. (5.126)
x

A substitution /L = 1—¢ and a subsequent first order expansion in £ (which
shall not be detailed here) shows that 74 remains finite for £ — 0 (x — L) in
the Bueler solution, whereas it is unbounded in the Vialov solution. This is
illustrated in Fig. 5.12.
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Fig. 5.12. Basal shear stress of the Bueler (solid line) and Vialov (dashed line)
solutions for the half-domain 0 < # < L in scaled units.

If for verification purposes more realistic solutions are required, Eq. (5.114)
may be used, even if the integral is not analytically solvable. For smooth
mass balance functions, numerical quadrature is unproblematic and can be
carried out with high accuracy. This extends the range of possible benchmark
solutions of the ice thickness equation considerably.

5.7 Numerical Methods

Apart from idealised cases like those of Sect. 5.6, the field equations and
boundary conditions of the shallow ice approximation for the flow and tem-
perature fields in ice sheets are too complicated to be solved analytically. In
general situations, it is therefore required to solve the equations by means of
numerical techniques. Most existing ice sheet models do this by employing the
finite difference method, which will now be described.

The spatial domain under consideration is covered by a regular, three-
dimensional grid. The equations are then re-written for each grid point by
replacing the differentials by differences of the field variables between the
neighbouring grid points. This yields a set of algebraic equations, which can
then be solved by various methods, such as explicit forward integration, nu-
merical quadrature or solving a set of linear or non-linear equations for the
unknown field variables at the given grid points. Of course, there are many
different ways of realizing this. Here, we shall describe a simplified, yet fully op-
erational version of the numerical scheme employed by the well-established ice
sheet model SICOPOLIS (“SImulation COde for POLythermal Ice Sheets”;
see http://sicopolis.greveweb.net/).
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5.7.1 Terrain-Following Coordinate Transformation

The most straightforward choice for a numerical grid is that of a regular,
rectangular grid with constant grid spacings Az, Ay and Az in the respective
directions. However, such a grid cannot match an irregular domain (like a
real ice sheet) exactly. The surfaces of the domain generally fall in between
the grid points, so that the values of field variables at the true surfaces must
be interpolated. This makes the book-keeping of the values at the surfaces
awkward and introduces additional inaccuracies into the computation.

z ¢
A z=h(xy,) A
1 a
Ice sheet A
H(xp.0) 1A
z=bxy,t 01 —
(x.,0) . A e

Fig. 5.13. Terrain-following sigma transformation (y and ¢ directions not shown).
In the transformed domain (right), a regular, rectangular grid with spacings A¢ and
A( is shown.

In order to avoid these difficulties, it is suitable to introduce a terrain-
following coordinate transformation that maps the local ice thickness onto
unity (Fig. 5.13),

sza Y=Y, CW; T=1, (5127)
where (x,y,z) and (£, ¢,() are the natural Cartesian coordinates and the
curvilinear, transformed coordinates, respectively, and ¢ and 7 are the time.
This transformation, which is often referred to as the sigma transformation,
maps the ice surface h = h(x,y,t) to ( = 1 and the ice base b = b(x, y,t) to { =
0. In the transformed domain, a regular, rectangular grid with spacings A&,
Ayp and A can easily be defined such that the uppermost layer of grid points
matches the ice surface and the lowermost layer the ice base. However, since
the transformation leaves the coordinates in the horizontal plane unchanged,
the ice margin does not necessarily coincide with the grid points (Fig. 5.13).
This may affect the accuracy of the computed position of the ice margin,
especially during advance or retreat stages of the modelled ice sheet when it
changes rapidly over time.

A further difficulty of the sigma transformation is the introduced singular-
ity at the ice margin and outside the ice-covered area, where a zero ice thick-
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ness is mapped onto the unity interval [note the 1/H term in Eq. (5.127)3].
This requires special consideration in the numerical scheme in order to avoid
division-by-zero errors.

Equation (5.127) is a special case of the general, spatio-temporal coordi-
nate transformation

€ - f(ﬂ? y) Zat) ’
¢ = p(z,y,2,1), (5.128)
¢ =((z,y,21),
T =71(2,9,2,1).

The differentials of any scalar field are transformed according to the chain
rule,

2_858_’_@ +8C8+67'(')
or 0x 06 0Oxrde 0O0xrdC Oxor’
9 069 Opd 0CO Ot 0

9y oy " ayop Tayac Toyor
(5.129)

0 _ 960 900 o oo

0z 0206 0z0p 0z0C 0z0T’

0 060 Op0o 0CO0 Or 0

~= 5ttt

ot 0to¢ Otdp OtId¢ Otor
It is evident that for the concrete realisation (5.127) many of the coordinate
differentials are equal to zero. Thus, Eq. (5.129) simplifies to

PR
oxr  0¢  OxdC’
ﬁ S a¢ 9
Ay 350 dy ¢’
(5.130)
i ¢ 9
0z 0z 5(
0 o 0C o

at o o
Note that, although £ = z, ¢ = y and 7 = ¢ [Eq. (5.127); 2.4], the respec-
tive derivatives are not the same. It is therefore imperative to consider the

entire, spatio-temporal transformation (5.127), even though only the vertical
coordinate is changed. The relations for the second derivatives are

LA NN N N
0z Ox \ Oz 0&2 oxr ) 0¢? Ox 9 IC
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and the coordinate differentials in Egs. (5.130) and (5.131) take the forms

9 _ 1
0z H’
9C _ _(1=Obe+Che
33: H 9
00¢ _ _he—bg
oCoxr H
99C __9Che—be (1—Qbec+Chee
% — (]' — C)b,n + Ch,n
dy H ’
(5.132)
2% — 7hﬂ7 — b,n
ooy H
3% = _% hm — ba"? _ (1 B C)b,nn + Chmn
¢ (1=Qbs+Chs
8t o H ’
2% _ _hﬂ' B b,T
ac ot o
0 % % h’T — va _ (1 B C)bﬂ'T + Chﬂ—T

or ot or H H
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Recall that the compact comma notation denotes partial derivatives, that
is, (+),e = 0(-)/0¢, etc. Further, due to Eq. (5.130)1 2.4, the derivatives with
respect to z,y,t and &, ¢, 7 are identical for field quantities which do not
depend on z or (, such as h, b and H.

When dealing with the sigma transformation for ice sheet dynamics, the
transformation for vertical integrals is also required. According to the general
substitution rule for integrals, it is

7(-)dz:7(.)22dg‘:7(.)]{d<' (5.133)
o G G

5.7.2 Plane Strain Shallow Ice Equations

For simplicity, in the following we will employ the plane strain approximation,
which was already used above for the analytical solutions (Sect. 5.6). That
is, we will only consider a two-dimensional problem in the vertical x-z plane,
and ignore any dependencies of the transverse y-direction. In other words,
we assume that ice flow occurs only parallel to the z-z plane, and that the
conditions are homogeneous in the y-direction, so that 9/0y = 0 and v, = 0.
From Glen’s flow law in the form (4.20), it follows readily that t, = t,. =
tyy = 0. Furthermore, the unit normal vectors n of the free surface and the
ice base are parallel to the x-z plane, thus n, = 0.

By subjecting Egs. (5.94), (5.95), (5.100) and (5.105) to these assumptions,
we obtain the following reduced set of equations:

Horizontal velocity:

oh
=—-C— 1
Vg Caz , (5.134)
with the scalar function
on|" ! , I ,
2(pg)n a.. A(T)(h_z) dZ, if Tb <Tm7
ox b
1
On|" (5.135)

C= p—q
Cy(pgH) e

oh

+2(pg)" e

n—1
/A(T’)(h—z)"dz, it T, =T .
b

Vertical velocity:

e
’Um ’
Uz*vz|z b — d

b
= v b / %dz'. (5.136)
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In order to eliminate the unknown vertical velocity at the base (v,|.,—p) and
obtain the second line, the kinematic condition (5.31) has been inserted in
Eq. (5.95). Further, it has been assumed that the ice base is rigid (9b/0t = 0),
and that the basal melting rate is negligible (a, = 0). These assumptions are
not crucial though; they have only been made for reasons of simplicity.

Evolution of the ice surface:

oh 0 oh
— D s .1
5t~ oz ( ax>+“ (5.137)
with the diffusivity
h
D= Cdz. (5.138)

b

Again, note that the vertical movement of the ice base (9b/90t) and the basal
melting rate (ap) have been neglected.

Evolution of the ice temperature:

or  oT 9T\ 0, OT ,
(at —sza R 82) 82( 0z >+2A(T)

90T , it | OB

- 32( = =) +24(1") [pg(h — 2)] . (5.139)

In order to derive the second line, the effective stress (5.81) has been inserted
n (5.105). The boundary conditions result from Egs. (5.24), (5.38) and (5.39),

Tlo=n =T (5.140)
and T
/ﬁ}ai = _qgeo 5 if Tb < Tm s
#le=b (5.141)
Tlip = T s otherwise .

Transformed Equations

The shallow ice equations in the plane strain approximation, Egs. (5.134)
0 (5.141), shall now be subjected to the two-dimensional form of the sigma
transformation (5.127),

f—uz sz—b(x,t)

e - t. (5.142)

Applying this transformation together with Egs. (5.130) and (5.132), and
using the notation u = v, w = v,, yields:
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Horizontal velocity:

oh
u = _Ca_§ s
with the scalar function
2(pg)" H/ AT ( yrdc¢’, if Ty, < T,
_ h|?
C'=1 CulpgH)r~ 0|2
n—1
+2(pg)" H/ AT ( ¢, if Ty = T

Vertical velocity:

ab du (1= Cbe+C'he du
o 1 /o (5 - 7] ac

W= u|¢=05=

Evolution of the ice surface:

oh _ 2( %) ta
or  9E\T o€ °7
with the diffusivity
1
D=H / cdc¢.
0
FEvolution of the ice temperature:
or ot
ar  "oe
+ _[( - C)b,'r + Ch,'r] —u [(1 - C)bé + Ch,f] +w a_T
H ¢
= L OO o gt - g |22
~ mac\"ac Pg 3

with the boundary conditions
Tle=1 =T;
and

k OT

, if Ty < Th,
H@Cco qgeo 1 b

Tle=0 =T, otherwise .

(5.143)

(5.144)

(5.145)

(5.146)

(5.147)

(5.148)

(5.149)

(5.150)
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Note that, while applying the sigma transformation, we have not at-
tempted to write the velocity vector v in components of the curvilinear, trans-
formed coordinates. Instead, the Cartesian components v = v, and w = v,
are treated like scalar fields which are not affected by the transformation.
This is common practise in connection with the sigma transformation; other-
wise, the transformed equations would become very complicated due to the
non-orthogonality of the transformed coordinates.

5.7.3 Discretised Ice Sheet Equations

A regular, rectangular grid as sketched in Fig. 5.13 is now defined in the
(£,¢) space of the transformed coordinates. The grid consists of I 4+ 1 and
K + 1 grid points in the ¢ and ¢ directions, numbered by ¢ = 0,...,I and
k =0,..., K, respectively. It is presupposed that the grid covers the entire
area of the ice sheet at all times, so that the ice thickness and all velocity and
stress components are zero at the end points ¢ = 0 and ¢ = I. The grid points
indexed by k = 0 correspond to the ice base (¢ = 0), and those indexed by
k = K match the free surface (¢ = 1).

For reasons of stability of the numerical scheme, it is not practical to em-
ploy a single grid for all unknowns. Velocity and flux quantities are preferably
defined on a secondary grid, often called a staggered grid, with grid lines in be-
tween the main grid lines. The main grid lines are then numbered by integers,
1=0,1,2,...,I—1,T for the {-direction and k = 0,1,2,..., K—1, K for the (-

direction, and the secondary grid lines by half-numbers, %, %, g, B %, If%
and 3,3,5,... K- 3 K- (Fig. 5.14).

Let &y be the origin of the model domain, then the positions &; of the main
grid points are situated at

§i =& +iIAE. (5.151)
Similarly, the positions (i of the main grid points in the vertical direction are
(o =kAC = K (5.152)

k= =K .

Time is discretised by the time step A7, such that the time after n steps is
Tn = To + NAT, (5.153)

where 79 is the initial time of the numerical simulation.

The staggered grid can be realised in different ways. It turns out that a
very suitable choice for the shallow ice equations is the Arakawa C grid, for
which the velocity components v and w are defined on secondary grid points
as follows,

Uit L ks Wik+tdln- (5.154)
The secondary grid points which result from this choice are indicated in
Fig. 5.14. The positions (i + %, k£ %) are not used as secondary grid points
in the Arakawa C grid.
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Fig. 5.14. Arakawa C grid for the plane strain approximation (two-dimensional
problem). Full circles and solid lines denote main grid points and grid lines with
integer indices, open circles and dashed lines secondary grid points and grid lines
with half-numbered indices.

Furthermore, the volume flux @ = @, (which is independent of z or () is
defined on the staggered grid,

Qitin (5.155)

which is a natural consequence of its definition as the vertically integrated
horizontal velocity. All other quantities are defined on the main grid points,

Tikm s (5.156)
hi,n ) bi,n ) Him . (5157)
If one of the quantities which is defined on the secondary grid is required

on the main grid, it is interpolated by the arithmetic mean of the values on
the neighbouring secondary grid points,

_ 1
Wi keyn = 5 (uiJr%,k,n +ui7%,k,n) R (5158)
_ 1
Din = 5 (Wi gon + Wikmgn) (5.159)
~ 1
Qin =5 (Qiign+Qiy)- (5.160)

Conversely, if a quantity which is defined on the main grid is required on the
secondary grid, the possible interpolations are

— 1
TH»%,k,n =3 (Ti,k,n + Tz‘+1,k:,n) ) (5.161)
— 1
Ti,k-',-%m = 3 (Ti,k,n +Ti,k+1,n) , (5.162)
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hi-i—%,n = % (hi,n + hi-i—l,n) . (5.163)
In all above cases, the interpolation is indicated by the bar symbol over the
variable.
In the following, we are going to discretise the sigma-transformed pl