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1. Introduct ion  

Earthquake prediction research has been carried out for over t00 years now. 
There has been no success in the sense of a reproducible prediction of the time, 
location and magnitude of earthquakes (e.g. [Gel97]). The discussion whether 
earthquakes are predictable at all has gained some impetus during the last 
few years (e.g. [~r97,  GJKM97, Wys97]). At the same time there has been 
a great development in the fields of fractal geometry (e.g. [Kor92, HS93]) 
and nonlinear dynamics (e.g. fABST93]), especially in numerical analysis. 
Fractality of real-world earthquake statistics has by now been established 
beyond doubt (e.g. [Wak90]) and is in agreement with modern models of 
seismicity (e.g. [Tur97]). While there is no proof of deterministic chaos in real 
earthquake data, nobody questions nonlinearity of the earthquake process 
(e.g. [Mei94]) and slider block models have been shown to exhibit chaotic 
behaviour (e.g. [HT92]). 

Have inappropriate (Euclidean, linear) methods of analysis been used so 
that possibly existing earthquake precursors simply couldn't be detected? Or 
is it that individual earthquakes are inherently unpredictable due to their 
chaotic dynamics or high "complexity"? Both issues will be addressed in a 
theoretical as well as empirical fashion in this book. 

Part I discusses the application of fractat concepts to seismicity, while Part 
II applies ideas from nonlinear analysis. Emphasis is on numerical analysis 
of real-world data with theoretical background and models introduced where 
applicable to show the motivation behind the analyses and to aid in the 
interpretation of the results. 

Part I begins with the introduction of fractal fundamentals and discusses 
the various fractal dimensions including multifractals. Special attention is 
given to deviations from ideal scaling behaviour and to practical aspects of 
the numerical determination of fractal properties. 

A comprehensive sample application to landslides in Chapter 3 may be 
read on its own. It deepens the understanding of multifractals and addresses 
further problems in numerical analysis. Configuration entropy analysis as a 
promising complementary tool to fractal methods is also applied. Implications 
of the confirmation of landslides as' a multifractal process are discussed. 

Chapter 4 summarises the various fractal properties of earthquakes which 
have been established or rediscovered during the past years. 
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A fascinating "fractal" property of many natural systems is the Hurst 
phenomenon which characterises persistence or antipersistence of processes, 
i.e. their long time memory. This phenomenon is discussed in connection 
with seismicity in Chapter 5. Hurst analysis is used to describe anisotropy in 
scaling properties of earthquake fields. 

Chapter 6 sheds some light on the relationship between multifractal spec- 
tra and phase transitions and what precursory qualities these spectra might 
have and why. 

In Chapter 7 the whole toolbox of fractal analysis is applied to seismicity 
in a region containing the Kobe earthquake of January 1995. After deter- 
mination of the overall properties of the earthquake catalogue the temporal 
variation of fractal properties is obtained to check for fractal precursors. A 
comparison of overall and aftershock seismicity concludes Part I. 

Part II first introduces some principles of nonlinear time series analysis. 
Analysis of three synthetic time series from different classes of dynamics 
(quasi-periodic, infinite-dimensional and low-dimensional chaotic) illustrates 
the methods and shows what may be obtained. Next, nonlinear analysis is 
applied to radon emission and strain, two prominent earthquake-related real- 
world time series and to earthquake inter-arrival times directly derived from 
an earthquake catalogue. Finally, "complexity" of earthquake dynamics is 
discussed by monitoring the variation of apparent attractor dimension with 
time. 



Part I 

Earthquakes and Fraetals 





2. Fractal Concepts 

2 .1  I n t r o d u c t i o n  

Mandelbrot [Man77] stated that after his introduction of the concept of frac- 
tals, scientists will surely be delighted to be able to describe shapes in a 
rigorous quantitative fashion they formerly called grainy, hydraIike, in be- 
tween, pimply, pocky, ramified, seaweedy, strange, tangled, tortuous, wiggly, 
wispy, wrinkled and so on. 

These adjectives all meant the same thing: The shape was not Euclidean-- 
it could not be described by line segments or any elements of standard geome- 
try. The latter is the reason why objects occurring in nature were historically 
regarded as "imperfect" and mathematical objects with this property (e.g., 
the Cantor set or the related Devil's Staircase, cf. [Bak86] and section 5.2) 
were called "monsters" and disregarded as curiosities. 

The fundamental mathematical definition of a fractal [Man83] is not use- 
ful for practical application (it is, on purpose, not complete either, see for 
example [FedS8]) as it is based on the Hausdorff Besicovitch dimension which 
is impractical to calculate. Barnsley (1988) describes this in detail (see also 
section 2.2). In the following, D is used as a generic term for fractal di- 
mensions (of which there are infinitely many), d for the classical (Euclidean) 
integer dimension (also called linear dimension). 

More practical definitions of a fractal are: 

- Every set with a noninteger D is a fractal. 
This definition anticipates the definition of the fractal dimension D in 
section 2.2. It is the most practical in the analysis of experimental data  as 
will be seen. 

- Most fractals are invariant under scaling transformations. 
Those invariant under ordinary geometric similarity ("magnification") are 
called self-similar. Another word for self-similarity is scale invariance. Scale 
invariance or self-similarity is the rule, the geometric regularity, behind 
seemingly unlimited complexity and therefore the only means to charac- 
terise a fractal structure. The fractal dimension quantifies the scaling be- 
haviour, i.e. is a quantitative measure of fractal quality. For natural objects, 
this does not mean that  different magnifications of the set can be precisely 
superimposed but they can be made superposable in a statistical sense. 
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Figure 2.1 implies the practical consequence of this property: Is the object 
a mountain or a rock? Only the inclusion of an object with a characteristic 
length (the hammer)  enables us to tell. This leads to another way of say- 
ing the above: Fractals do not possess a characteristic length: further and 
further magnified, they never become smooth but stay complex. 

Fig. 2.1. Mountain or 
rock? An example for scale- 
invariance (From B6bien et 
az. (1987)) 

Everyday examples of such objects are smoke, clouds, trees, blood vessels 
and coastlines. Objective of Par t  I of this work is to show and describe 
the fractal structure of earthquakes as for their distribution in space and 
t ime and to t ry  and extract  possibly useful information for earthquake 
prediction from their temporal  variation. Chapter  4 will summarise some 
previous findings in this direction. 

- Fractal  curves are nowhere differentiable. 
This is a revolutionary aspect of fractal geometry as it denies the use of 
ordinary differentiation. 

- A power law relation exists between some linear distance r and the "mass" 
(any measure such as seismic energy, size of landslides or number of events) 
of a fractal. 

Several deviations from such ideal fractal properties exist. They will be 
addressed in section 2.2.7. Leading to the next section: "The only thing which 
must be studied closely is the fractal dimension"[Tak90]. 

2 .2  S o m e  I m p o r t a n t  F r a c t a l  D i m e n s i o n s  

The definitions of "fractar '  and "fractal dimension" go together. Therefore 
it is not surprising tha t  a definition of the fractal dimension does n o t  exist. 
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In fact there is an infinite number of fractal dimensions. Furthermore, even 
when the type of fractal dimension is given, the method and details of estima- 
tion must be mentioned. Otherwise results are not comparable and therefore 
meaningless. 

Often the term "Hausdorff dimension" is used inappropriately for prac- 
tical estimations of fractal dimensions or specific definitions of one fractal 
definition are called the fractal dimension. This is a result of Mandelbrot 's 
"vague" definition of a fractal which was done in order not to exclude future 
developments and discoveries in the field of fractals. 

In the following, only the fractal dimensions which have been applied in 
this work will be discussed in detail and some related definitions and methods 
will be mentioned briefly to back up the definitions and methods used later. 
A similar introduction with less mathematical and numerical detail may be 
found in [Go196]. An overview with thorough mathematical background and 
detailed discussion of the advantages and drawbacks of most fractal dimen- 
sions and their methods of determination may be found in [Cut93]. 

2.2.1 Euc l idean  and Similarity D i m e n s i o n  

The dimensions of a line, plane and cube are 1, 2 and 3 respectively. In 
physics, 4-dimensional space-time is common through the addition of a time 
axis, earthquakes occupy a five-dimensional space: three spatial coordinates, 
t ime and size. The integer values for these dimensions coincide with the degree 
of freedom--the number of independent variables (see also Part  II). This 
positive integer dimension is the Empirical or Euclidean Dimension d. 

Dividing a line segment, a square and a cube into similar forms of half the 
size I gives 21, 22 and 23 smaller objects respectively. Taking the exponent 
to be d, this is in accordance with the Euclidean dimension. Generally, if an 
object consists of n d similar shapes of size 1/n, d is the dimension. When a 
shape consists of b similar objects of size 1/a 

log b (2.1) 
Ds = log a 

gives the similarity dimension. It can take non-integer values and is there- 
fore the first fractal dimension. However, it can only be applied to strictly 
self-similar shapes and is therefore useless for natural objects. The term 
log b~ log a nevertheless serves to understand the following definitions which 
would otherwise seem arbitrary. 

2.2.2 Hausdorf f  D i m e n s i o n  

The generalisation towards not strictly self-similar shapes is the Hausdorff 
dimension [Haul9] mentioned earlier. It is defined by a method of covering: 

1 Size means linear dimension here, i.e. (side)length. 
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Let D > 0 and e > 0 be real numbers. Cover a set S by k spheres 2 whose 
diameters are smaller than  e. Denote the radii of the spheres by r l ,  r2, ..., rk. 
Then the D-dimensional Hausdorff measure is defined by: 

k 

MD(S) = lim inf ~ r ~  (2.2) 
e--~O r u  < e 

1 

The Hausdorff  Dimension DH of the set S is the special value of D where 
the Hausdorff  measure varies from infinity to zero. 

Fig. 2.2. The Hausdorff di- 
mension: the set of points is 
covered with k overlapping 
spheres of radii ri (here k = 
10) and the Hausdorff mea- 
sure is calculated by sum- 
ming the Dth powers of the 
radii. If  the points were sam- 
ples of a line, the one di- 

k mensional measure ( ~ 1  ri) 
would give an estimate of the 
length of the curve. Minimal 
overlapping of the spheres is 
guaranteed by taking the in- 
fimum in (2.2) 

DH is a generalisation of d and Dz  and can be applied to any set of 
points through the method of covering. Considering the 2-dimensional case, 
the spheres become circles. These circles may overlap and their radii are not 
constant as can be seen from Fig. 2.2. From this and the actual  definition of 
D/~ it can be seen tha t  not only the mathemat ica l  determination but  also 
the est imation by computer  is very difficult. Therefore more practically useful 
definitions of D are needed. 

2.2.3 Capacity Dimension Do 

One of them is the Capacity dimension Do. I t ' s  practical variant is also called 
the box counting dimension (see below). Like DH, it is based on the covering 
of a set by spheres. Kolmogorov [Ko159] introduced the capacity dimension 
(therefore sometimes also called Kolmogorov dimension) to be: 

2 A sphere is the surface of a d-dimensional body. 
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Do = lira log N(S, e) 
~-~0 log 1/e (2.3) 

where N(S, e) denotes the smallest number of spheres of size 1/e needed to 
cover the set S (minimal covering). 

Fig. 2.3. The box-counting dimension: The set of points in three dimensions is cov- 
ered with spheres ("boxes") of successively smaller size and the number of spheres 
which contain at least one point is counted at each resolution (after Abarbanet et 
al. (1993)) 

Definition 2.3 is equivalent to 

(2.4) 

i.e. a power law relation exists between the number of spheres and their 
size. This power law relation occurs in all (following) definitions of fractal 
dimensions. In fact this is necessarily so, as there is no other scale-invariant 
function than a power function (a function f(x) is scale-invariant if f(x) c< 
f(Ax) for all A). 

Do may be seen as a special case of DH where the sizes e of the spheres 
are constant. The idea is illustrated in Fig. 2.3. It is 

Do <_ DH <_ d (2.5) 

In a sense, DH describes the size of fractals which possess the same Do 
([Bar88]). Again, as for all definitions of fractal dimensions, Do coincides 
with all other dimensions in the case of Euclidean shapes (e.g. equality in 
relation (2.5) is given). 

Do is a geometric measure, it does not account for the frequency of points 
in the covering spheres, i.e. a possibly non-uniform distribution which might 
be caused by clustering. Thus an important  aspect of the finer structure of a 
fractal distribution is lost. 

Pract ica l  D e t e r m i n a t i o n  o f  Do.  Replacing ¢ by a discrete variable and 
using the Euclidean metric (see 2.11), it follows the Box-Counting-Theorem, 
i.e. the definition of the box counting dimension ([Bar88]): 



10 2. Practal Concepts 

D o ' =  lira l°g2cn(S) (2.6) 
n-+oo log(2 n) 

for the 2-dimensional case. Then Nn (S) denotes the number of closed adjacent 
squares of sidelength 1/2 n needed to cover the set S in the plane (or: Nn(S) 
is the number of closed, adjacent squares of sidelength 1/2 n which contain at 
least one point of the set S). This definition is the basis for every computer 
program which estimates Do. In the following, Do will be used instead of Do ~ 
because only the applied point of view is of interest here. 

The equality between d and Do for the case of a Euclidean set can now 
easily be seen: For the line segment (/) it is NI( / )  -- 2, ~½(/) = 4, N3(/) = 8, 
and in general N,~(/) = 2 n, so that  Do = lim~ ÷~ log(2~)/log(2 n) = 1. For 
the solid square (D) it is At([])  = 4 ~, i.e. Do = l im~oo  log(nn)/log(2 n) = 2. 

The definition of the box counting dimension leads to the practical box 
counting method (see also [Gol90]): 

From the condition n -+ c~ in 2.6 it may already be seen that Do can 
only be estimated by computer (another, even more critical, reason is that  the 
infinite set S can only be sampled discretely for digital analysis). However, 
given the finite representation of S, it is covered by successively finer meshes 
according to 2.6 and the number of non-empty boxes is counted for each 
resolution. 

Then log Nn(S) is plotted against log(2 ~) and a line is fitted through these 
points. The slope of this line approximates Do. Usually a least squares fit, i.e. 
a maximum likelihood approach, is used to carry out this linear regression. 
Obviously, the standard deviation of the error, which describes the quality of 
the fit, can be used as a first simple measure for the reliability of the estimate. 
As will be seen later, however, the standard deviation is not sufficient to 
estimate the error in D (not to mention the coefficient of correlation; cf. 
[GMM98]). Also other methods, such as taking for example half the difference 
of the maximum and minimum piecewise slope over a fixed range in the 
log - log plots (c£ [SR95]) are problematic; in general, no method one could 
automatically rely on exists. Goltz (1996) has used non-linear optimisation for 
the automatic simultaneous determination of scaling region and exponent but 
found that  manual control is still required sometimes. Appendix A outlines a 
modified algorithm which is very fast and thus preferable for large data sets 
in low embedding dimensions. 

2.2.4 Information Dimens ion D1 

Extending the definition of Do leads to the information dimension Dt which 
is especially applicable to stochastic, i.e. uncorrelated, distributions of points. 
Before giving it's definition, some background from information theory is 
useful (cf. also [Go196]): The amount of information (or surprise) associated 
with the occurrence of an event E with probability P(E) is measured by 

I(E) = - log P(E) = log 1/P(E). (2.7) 
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This becomes clear when noting that if P(E) = 1, i.e. when the event is cer- 
tain, I(E) = 0, i.e. there is no surprise at all. On the contrary, if P(E) = 0, 
I(E) as the limit of P(E) -+ 0 becomes infinite--the surprise about the im- 
possible happening is unlimited. Furthermore this measure has the property 
I(E) = I (F)+I(G)  when F and G are two independent events and the occur- 
rence of E is dependant on the simultaneous occurrence of F and G. It means 
that  the surprise about two independent events happening simultaneously is 
equal to the sum of the information conveyed by each event individually. 

Again covering the set S with a minimal number N(S, e) of spheres of 
size e, the probability Pi(S,e)  for finding a randomly chosen point in the 
ith sphere can be calculated. Now the information conveyed by each cell (the 
surprise of finding a point in sphere i) is Ii (S, ¢) = - log Pi (S, ¢). The average 

N(S,e) 

I(S, e) = E -Pi(S,e)logP,(S, e) (2.8) 
i = l  

measures the average information conveyed by finding which sphere a point 
is in 3. This quantity is also called the information entropy (entropy in the 
sense of information theory, see for example [Sha81]). 

Together with the shown properties of (2.7), it becomes clear that  I(S, e) 
is also a measure for unpredictability: If the points are uniformly distributed 
in S, I(S, e) has it's maximum (minimum predictability). In the extreme non- 
uniform case (all points are clustered in one sphere) it is P1 = 1, P/¢1 = 0 
and therefore I = i log 1 = 0 (maximum predictability). 

Defining a fractal dimension to be: 

D1 = lim I(S, e) (2.9) 
~-~0 log 1/e 

finally gives the information dimension. This definition means that  if I(S, e) ~x 
- D 1  log e with varying e, D1 is a fraetal dimension. 

The similarity between (2.3) and (2.9) shows that  D1 is a generalisation of 
Do: If all probabilities are equal (P~(S, e) = 1IN(S, e)), i.e. the distribution of 
points is uniform, (2.8) becomes log N(S, e) and DI=Do. Furthermore, if the 
points are uniformly distributed in d-dimensional space,D1 becomes d: In this 
case P~(S, e) simply depends on the sphere size, i.e. P~(S, e) c( e d. Substituting 
this into (2.8) the equality follows from (2.9). Thus the definition of D1 is 
also in accordance with the intuitive notion of the empirical dimension. 

If the data  is non-uniform, the information dimension is smaller than the 
capacity dimension. This leads to 

D1 _< D0 (2.10) 

3 When log 2 is used, I(S, e) is in bits, which is a practical property for computer 
application. 
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Therefore D1 can be said to quantify the non-uniformity of the point distri- 
bution by giving less weight to spheres which contain less points than others. 
The idea is illustrated in Fig. 2.4. 

] ' .  

Fig. 2.4. The information dimension: The process of estimating D1 is shown for 
one specific stage of the successively finer covering. In the left part the minimal 
covering with boxes of the minimum possible size is shown: each box contains only 
one point, the set contains no further information below this resolution. The outline 
of the fractal (the fractal support), as it is seen by the computer at this resolution, 
is the same. In the left part, however, the point distribution is uniform, while it is 
non-uniform in the right part. Therefore Do is the same for both situations, while 
D1 differs. 

P r a c t i c a l  Determinat ion  of  D1. Analogous to the determination of Do, 
the method to estimate D1 is straightforward: For each minimal covering 
of the set S (a minimal covering is the one that  uses the minimum num- 
ber of spheres of a given size) the probabilities PI(S, e) are calculated to be 
Ni(S, e)/ tl S II where tl S II is the total number of points in S. The limit 
calculation is replaced by averaging techniques because of the finite sample. 

2.2.5 Correlation Dimension D2 

A further generalisation leads to the correlation dimension 02 which is not 
based on a covering of the regarded set, but on the distances (spatial cor- 
relations) between pairs of points of the set (practically, nevertheless, the 
correlations are determined by a method of covering again, see below): 

First the distances between all N distinct points (~i, ~j ,  i ¢ j)  are calcu- 
lated using for example the Euclidean norm 

Jl - H = Z - ( 2 . n )  
k=l 
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or the maximum norm 

d 

where d is the dimensionality of the embedding space. 
Then the correlation function is defined to be 

N 

C(r) = lim 1 N - ~  ~ -  ~ O(r-11 ~ -  "j II) (2,12) 
i,j=l,i~j 

O is the Heavyside function (O = 0 if the argument is less than zero, otherwise 
O = 1). For a fractal set, the correlation function has a power law dependence 
o n  r :  

lim C(r) oc r D~ (2.13) 
r - + 0  

Thus 
log C(r) 

Dz = lim (2.14) 
~-~0 log r 

C(r) accounts for the probability of finding two points in the same sphere 
([GP84]) or, in other words, measures the number of points x j  that  are 
correlated with each other in a sphere of radius r around the reference points 
~j  ([Kru91]). 

It can be shown that D2 < D1 and therefore, keeping (2.5) and (2.10) in 
mind: 

D2 <_ D1 <_ Do < d (2.15) 

As should be clear from the remarks made when discussing D1, D2 even 
more emphasises densely populated spheres as opposed to sparse spheres. 
The latter generally leads to bet ter  statistics, making the correlation dimen- 
sion the most encountered measure for fractal scaling in the literature when 
analysing real world data  sets. 

Pract ica l  D e t e r m i n a t i o n  o f  D~. Grassberger and Procaccia (1993) 0 
have shown that  C(r) may be more effectively calculated by constructing 
spheres around fixed points aei and counting the number of points mj in 
these spheres as is shown in Fig. 2.5. This method is called sphere counting 
and it is realized by the Grassberger-Procaccia-algorithm. Additionally, C(r) 
is usually only determined for a number of reference points N ~  I < N to save 
computation time. 

(2.12) thus becomes 

C(r )=  lim 1 1 N~el g ~ 0(r-II "~-  ~ I1). (2.16) 
~" --+ 0 N~S N 

~=1 i=1 
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To prevent confusion between the usage of correlation function (2.12) 
and correlation sum (also called correlation integral), the definition of the 
correlation dimension is given once more in (2.17) using the correlation sum: 

D2 = lira lim log C(r) (2.17) 
N - + o o r - + O  logr 

where 

C(r) -  1 1 N..j N 
N~ I N E E O(r- tl - I1). (2.18) 

i-----1 j = l  

Fig. 2.5. The correlation di- 
mension: The number of points 
within the varying radii of spheres 
around fixed reference points is 
counted. Here seven successive 
radii for three reference points are 
shown 

As has been mentioned briefly above, the correlation dimension is more 
accurate for small data sets because it weighs heavier those regions of the 
embedding space that  contain data [GP83, GP84]. Greenside et al. [GWSP82] 
have shown that  it is very difficult to obtain a reliable estimation of Do > ~  
2: The very large number of data points N = M D° with 10 < M < 42 
has been estimated to be necessary in various cases ([Smi88]). Therefore 
generally D2 should be preferred to Do if the expected fractal dimension 
is high ([Smi88, AAD+86, HE89]). A recent result by Hong and Hong (the 
former from the Seismological Bureau of Chengdu) (1994) is that  

N ~ n  > 

i.e. to be able to obtain a reliable estimate for D2 in the order of 3, about 
204 data points are required at least (when using the sphere counting algo- 
rithm). The latter result is much lower than previous ones and makes the 
determination of D2 seem feasible for quite small data sets. The correlation 
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dimension belongs to the class of pointwise dimensions in that it is sensitive 
to the local behaviour of S in the vicinity of a specific point. An estimate for 
the overall fractal dimension is obtained by averaging. The popular sandbox 
method ([Vic92]) also belongs to this category. An pointwise estimators are 
prone to boundary effects because if reference points are chosen too close to 
the edges of S, the sphere contents will be underestimated• 

2.2.6 General i sed  Dimens ions  and Mult i fraetals  

Although each of the successive definitions of D0,Di and D2 is a generalisa- 
tion of the previous one, it might already be apparent that  a single dimension 
can not entirely characterise a non-uniform (inhomogeneous) fractal distri- 
bution. If the fractal distribution possesses different degrees of clustering in 
different vicinities, but all groups of clusters of equal "density" (more pre- 
cisely: of equal local fractal dimension) again form fractals, the distribution 
is called a multifractal. In that sense, a multifractal is an intertwined set of 
fractals. 

A detailed introduction to mnltifractals from the geoscientific view is given 
in Goltz (1996) and not to be repeated here• In the context of the previous 
sections, however, it is interesting to see how all of the above fractal dimen- 
sions can be derived from one single formula ([HP83, GP83, Moo92]): Let 

g(c) 

1 log E P(i'e)q (2.19) 
- -  1- q i=1 

where P(i,  e) q is the qth power of the probability that  points of S lie in the 
i th cell of a minimal covering of S with spheres of size ¢ and N(e) is the 
number of spheres (more generally, P can denote any measure on the fractal 
support).  

Then 
• I(q,c) (2.20) nq(q) = tim loge 

defines the generalised fractal dimension Dq. 
As can be easily verified, for q -+ 0, i.e. harmonic mean, one obtains Do, 

for q -+ 1 we get Di  and for q -+ 2, i.e. arithmetic mean, D2 results. 
For a heterogeneous fractal, D ~  is the lower limit of fractal dimensions, 

i.e. the fractal dimension of the most intensive clustering, while D-o¢ charac- 
terises the least intensive clustering within a point distribution (or the lowest 
concentration of seismic energy etc.). 

Generally, the resulting Dq c u r v e  for the multifractal case looks like the 
one given in the left part  of Fig. 2.6 while a monofractal produces a straight, 
horizontal line through Do. Also shown are the parametric curves f(q) and 

Stiown in the right part of Fig. 2.6 is the typical f ( a )  - a curve and its 
relation with the Dq curve: Simply speaking, the f ( a ) - a  curve describes the 
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Fig. 2.6. A typi- 
cal Dq curve for a 
multifractal and the 
parametric curves 
f(q) and a(q) (top) 
and the f ( a ) -  a 
curve and its geomet- 
ric relation with Dq 
(bottom) (from Kruel 
(1992)) 

curvature of Dq, The introduction to the latter spectrum, however, is also 
not to be repeated hers (see [Got96] instead) but it should be mentioned that 
the f ( a )  - a curve has a physical interpretation attached which the spectrum 
of generalised dimensions lacks. The meaning of the former curve will also 
become apparent in the sections were it is obtained from earthquake data 
later on. 

Practical  Determinat ion  of  Multifractal Spectra. Problems and er- 
rors associated with the determination of Dq multiply in comparison to the 
difficulties associated with the estimation of a single fractal dimension. 

Equations (2.19) and (2.20) may be directly exploited to calculate the 
generalised dimensions simultaneously (i.e. by going through the procedure 
of covering only once) by computer ([Sar92, LT89, PS87]). Although the 
method of generalised sphere counting as outlined in [Go196] is preferable 
especially for small data sets and high embedding dimensions (e.g. > 3), a 
method based directly on box-counting may be used for large data sets in 
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low embedding dimension (such as one-dimensional dusts of earthquake event 
times or epicentre distributions, for example). The latter approach is outlined 
in appendix A. Another more complex idea is based on nearest neighbour 
information ([FPH90, PBJD79, vdWS88]); although the latter method has 
not been employed to obtain the results given in this work, its application to 
several (synthetic) data sets yielded results that make the method seem worth 
further investigation in the future. As has been said earlier, the multifractal 
spectra were obtained from the spectra of generalised dimensions in each 
case. This is the usual way followed in the literature in spite of a method 
published by Chhabra (1989) which permits the direct determination of f(a). 
The latter method should definitively be compared to the above mentioned 
ones in future studies. 

A problem especially prevalent when estimating multifractal spectra is the 
determination of the scaling region--choosing a slightly different lower and 
upper scaling limit has profound influence on the obtained slopes and proba- 
bly accounts for the differences found in published results for similar or even 
the same data sets. A non-linear optimisation approach for the automatic 
simultaneous detection of scaling region and exponent has been described in 
[Go196] and used throughout this work. The issue of discrimination between 
spuriously multifractal data and truly multifractal data is also addressed in 
[Co196]. 

2 . 2 . 7  D e v i a t i o n s  f r o m  I d e a l  F r a c t a l s  

Several deviations from ideal fractal behaviour exist as has been indicated 
earlier already. Usually, these "anomalies" are ignored in published fractal 
analyses not only of earthquake data. The latter is unfortunate not only 
because results may be seriously altered and thus rendered meaningless, but 
it also ignores additional information which might in fact be more significant 
than the scaling exponents themselves. A brief overview of such deviations 
has been given by Goltz (1996), a more detailed discussion is presented by 
Hastings and Sugihara (1993). 

Here is nevertheless a concise summary of possible deviations because 
some of these features will be used extensively in the chapters to come. 

As has been outlined in the course of introduction of the different impor- 
tant fractal dimensions, one important "deviation" is the non-uniformity of 
fractals. The latter is only recognised during a multifractal analysis which 
has been described above and elsewhere. Deviations which may occur inde- 
pendently of mono- or multifractality include: 

- Limited scaling region 
In theory, a fractal scales from infinitely small scales up to the overall size 
of the object. In practice, the size of the data set is limited, leading to 
upper and lower scaring limits. During the determination of the scaling 
exponent, the sufficient size of the scaling region must be ensured. Usually, 
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a range varying over a factor of 10 is considered sufficient to believe in the 
fractal structure (also e.g. a circle produces a limited linear range in the 
log - log plot!). 

- Multiscaling 
The above mentioned sufficiently large scaling region might display two 
(bi-fractality) or more regions of distinct slopes. This implies that  different 
physics underlie different scales. The fragmentation of large rocks might for 
example produce fragments of different fractal shape or size distribution 
than the fragmentation of very small samples because the fragmentation 
process obeys different physics at large and small scales. When analysing 
samples of all sizes, a crossover point in the log - log plot would indicate 
such a transition. Averaging over such a piecewise linear curve obviously 
produces dubious results. 

- Anisotropy 
All profiles (i.e. also "time series") axe self-affine, i.e. possess a different 
fractal dimension in perpendicular directions parallel to the x- and y-axis. 
This must be so because these "objects" are single-valued and the two axes 
usually represent very different physical quantities (e.g. time and concen- 
tration of Radon gas in groundwater). But also topographical profiles are 
self-affine because gravity works only in the vertical direction, while ero- 
sion and other land-forming processes work in all directions (e.g. [OM92]). 
More general, if D varies freely with direction, the fractal may be called 
(strongly) anisotrop. 

In this work, sufficient size of the scaling region was assured either manu- 
ally or by automatic nonlinear optimisation, all l o g -  log curves were manu- 
ally inspected for multiscaling but no such behaviour was found. The analyses 
of multifractal properties is a major point and detailed anisotropy analyses 
were carried out for several examples of seismic fields. 
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3.1  I n t r o d u c t i o n  

Landslide distributions in two major areas of northern Japan, Tohoku and 
Hokkaido, are analysed for multifractal properties. For the latter data set, 
the multifractal spectrum for the spatial landslide size distribution is also de- 
termined and compared to the probability distribution. It is concluded that 
the fields possess definite multifractal character. This finding is supported by 
the known multifraztality of the main triggering processes, rain and earth- 
quakes. Further support comes from a configuration entropy analysis which 
is found to be a useful complimentary tool to multifractal analysis. Models 
leading to multifractality are briefly reviewed. Careful attention is paid to 
the algorithms used and to the verification of the numerical results. Some 
general suggestions concerning numerical methods are made. 

Landslides, while historically not renowned for being as disastrous as 
earthquakes or tropical cyclones, have had just as dramatic an impact on 
property and lives. Landslides are a rapid onset natural hazard just like 
earthquakes but they are more widespread and thus form one of the pro- 
cesses responsible for the shape of the earth's surface (Scheidegger 1991). 
Japan lies on the border between oceanic and continental crust and therefore 
shows complex geological structure. Seventy percent of Japan is mountainous 
and the population and industry is therefore concentrated in the narrow strip 
between the mountains and the sea. 

The approach to landslides usually concentrates on the slope failure and 
subsequent debris flow (e.g., [Tak91]). However, observational data under 
controlled conditions is difficult to obtain so that computational models are 
usually studied. In recent years cellular automata, lattices where the usually 
discrete evolution of sites depends on their immediate neighbours by local 
rules, have been increasingly applied to the modelling of landslides (e.g., 
[SD95]) and many other physical phenomena (Carlson et al. 1993). In partic- 
ular the sandpile automaton by Bake t  al. (1988), introduced in connection 
with avalanche dynamics, has made an attempt to explain the frequent oc- 
currence of power-law statistics, i.e. fractality, in nature. The explanation 
is given by a supposedly universal feature, the self-organised criticality, in 
which systems evolve towards a critical state without any control from out- 
side. Several automatons leading to criticality have been shown to adhere to 
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fundamental macroscopic differential equations in their thermodynamic limit 
(e.g., Frisch et al. 1986). 

Due to these relationships between thermodynamics, self-organised criti- 
cality and multifractals ([SL93]), the concept of multifractals comes naturally 
into play when considering landslides. Indeed Segre and Deangeli (1995) per- 
form a multifractal analysis of the temporal behaviour of their cellular au- 
tomaton for the realistic modelling of debris flow to  validate it. Their line of 
argument is that the model must show distinctive nonlinear behaviour which 
can be identified by detecting intermittency, i.e. rare irregular burst of en- 
hanced activity. Intermittent behaviour in turn requires multifractality of a 
signal that describes the global behaviour of the process in a suitable way 
(see also [PVBV93]). 

All the above studies focus on individual, isolated sites. In this paper, 
landslides are regarded as a spatially distributed system, assuming that they 
might as a whole be the expression of some, possibly nonlinear, dynamic 
process. Basically, the idea is that, if the individual event on its local (fractal) 
topography and with its local geotechnical parameters shows multifractality, 
the whole process might have the same property on larger scales (see [Ito92] 
for a similar line of thought in the case of earthquakes). 

While geological and topographical factors condition the location and 
size of landslides, the possible trigger mechanisms form a multitude of inter- 
related primary and secondary effects (e.g., [Cro86]). These effects include 
interactions between landslides on various scales which supports a dynamical 
system approach. The primary causes for the triggering of landslides, how- 
ever, are heavy rainfalls and earthquakes, both of which have been shown 
to be multifractals ([SL93] and references therein, [HLS+94, HIY92, GGPg0, 
HI91], Godano and Caruso 1995). Recently examples for the multifractal- 
ity of topography itself have also been given ([SL93] and references therein). 
Analyses of radar reflectivity data obtained from rain fields show a strong cor- 
relation with the location of landslides (e.g., [SAK88]). These findings further 
strongly support the assumption of multifractality of the landslide process. 

Multifractality of the spatial landslide distribution was first assumed by 
Fukuoka et al. (1994) when numerical results indicated the inequality of the 
first three generalised dimensions but no further analysis was carried out at 
that time. However, the results led to the present study in which also the 
spatial distribution of landslide sizes is analysed for the first time. A consid- 
erable part of this chapter is devoted to the theoretical background of fractais 
and multifractals and the related numerical methods as well as their verifica- 
tion. Finally a configuration entropy analysis ([BAL+94]) complements the 
multifractal analysis. 
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3.2 The  Data  

Figure 3.1 gives the geographical situation of the regions under consideration 
and shows the landslide distributions for Hokkaido Island and the Tohoku 
region. 

N 

ToL  
district 

3 0  N i 
130" F-, 

Hokkaido 

40* J 

tollOKU district 

Fig. 3.1. Geographical location of regions considered and their landslide distri- 
butions. Also indicated are four subsets of Tohoku which will be referred to later 
(after Hiura and F~kuoka, 1994) 

Both landslide distribution sets were obtained by examining aerial pho- 
tographs and topographical maps and cover roughly 10 000 years of the land- 
slide history. The location and, in the case of the Hokkaido data, the size 
(area) of the landslide was obtained from the center and area of an ellipsoid 
fitted to the amphitheatre produced by the respective landslide. 
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F ig .  3.2. Perspective three-dimensional views of the probabil i ty density distribu- 
t ion (a) and the landslide size distribution (b) in Hokkaido. The fields were gener- 
a ted by calculating the normalised cumulative probabilities and sizes for 3 km by 
3 km cells and thus represent the respective measures at that  resolution 
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The location error is estimated to be bet ter  than 250 m for both  sets. 
The Tohoku data  set contained 57 520 events, Hokkaido consisted of 12 842 
data points where the smallest landslide had a size of 0.004023 km 2 and the 
largest had a size of 13.0017 km 2. 

To gain an impression of the variability, or intermittency, of the land- 
slide phenomenon, Fig. 3.2 gives three-dimensional perspective views of the 
probability density distribution (a) and the landslide size distribution (b) for 
Hokkaido. To generate the shown fields, the plane was partitioned into 3 km 
by 3 km cells. For each cell the cumulative normalised probability respectively 
the cumulative size was calculated. 

In both  cases, landslides are concentrated in tectonicaUy active zones. In 
Hokkaido, this area is represented by the mountainous zone near the middle 
of the island, from north to south; in Tohoku, the densest clustering occurs 
in the green tuff zone along the Ohu chain and the Dewa mountains. No easy 
distinction can be made between the surface geologies, although Tohoku fea- 
tures large regions of tert iary clay layers while Hokkaido shows large regions 
of non-metamorphic rock. 

Due to the missing elevation value in the location of the landslides, the 
data  represents a projection onto the two-dimensional plane. However, as the 
results for Do will show, the sets posses a capacity dimension well below 2 so 
that  it is assumed that  no information is lost. This is inferred from the fact 
that  a projection of a set into a lower dimension d will have fractal dimension 
Do = d if the original set had a fractal dimension higher than d, otherwise 
the fractal dimension is the same (e.g., [HS93]). 

3 . 3  F r a c t a l  A n a l y s i s  

For practical purposes, a fractal is an object or set of non-integer, i.e. fractal, 
dimension. For natttral objects the fractal dimension is an expression of sta- 
tistical self-similarity or, in other words, scale invariance, which in turn can 
be understood to be a principle of symmetry. Thus one would expect many 
geophysical processes to be scaling because often no predominant mechanisms 
are present which could break the scaling. 

The most basic definition of fractal dimension for a natural object is the 
one based on box-counting (e.g., [Bar88]) where the minimal covering of the 
set is determined at successively finer resolution: The capacity dimension is 
defined to be 

logN(r )  
D0 = l o g ( l / r )  

where N(r) is the number of non-empty boxes of size r. The information 
dimension D1 and correlation dimension D2 are two more fractal dimensions 
which are frequently encountered in the literature and which have specific 
interpretations attached (e.g., [Fed88]). D2, respectively an algorithm for 
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its determination, the Orassberger-Procaccia algorithm ([GP8a]), often also 
called sphere-counting, was shown to be more robust a measure of fractality 
because it weighs more heavily the denser regions of a set whereas the box- 
counting method weighs equally all non-empty boxes regardless of the number 
of points contained. 

The above three dimensions are a small subset of infinitely many gener- 
alised dimensions (Halsey et al. 1986) of the form 

D q -  1 limlog,~_.,i~pi,r,j,(V'.r ( y~ ] (3.1) 
q - 1 r-+o log r 

where Pi(r) = N~(r ) /N  is the probability or density (or, more general, any 
measure or "mass") in the ith box. For q = 0, boxes are weighted only 
according to whether they contain points of the set or not, leading to the 
capacity dimension, for q = I the information dimension is obtained and the 
correlation dimension follows for q = 2. As will be seen below, for a simple 
self-similar fractal (a homogeneous fractal or monofractal), Dq = const, for 
q being a real value in the range -oo < q < oo. Dq > Dq+zi q is characteristic 
of a multifractal and will be the case of interest in this paper. 

The formulation in Eq. (3.1) has been coined "strange attractor notation" 
because it was first applied to probability distributions on strange attractors 
in the phase space of nonlinear dynamic systems. Here, an alternative formal- 
ism, the multifractal f ( a ) - a  spectrum, will be introduced later on because 
the generalised dimensions offer no direct physical interpretation. 

In practice, D e is determined from the slope of a linear region (the scal- 
ing region) in a log(~i{Pi(r)}q ) versus log r plot. Ideally, the scaling region 
extends from the minimum distance of any pair of points in the set to the 
overall size of the set. With experimental data, the scaling region is often 
much smaller, leading to uncertainty in the determination of the scaling ex- 
ponent. An additional possible deviation is that two or more piecewise linear 
regions might be present instead of only one, yielding several different scaling 
exponents at different scales. The latter case is termed multi-scaling as op- 
posed to mnltifractal (although, unfortunately, some confusion exists in the 
literature about these terms). 

Another, usually not considered, deviation from ideal self-similar be- 
haviour is self-affinity or, more general, free variation of the fractal dimension 
with direction (anisotropy of the fractal dimension). While time series and 
profiles are necessarily self-affine (e.g., [Fed88]), all other fractats occurring 
in nature might also have this property. Examples are rain fields ([SL93] and 
references therein) and other atmospheric phenomena due to the stratifica- 
tion of the atmosphere and intrinsically directional processes like machining 
and wear of material surfaces ([Rus94]). Anisotropy could be introduced into 
the landslide fields when landslides would happen along several predominant 
superimposed ridges for example. Self-affinity may be artificially introduced 
by the unequal rescaling of the axes of finite data sets, too. Such anisotropy 
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does not show up during the standard methods of fractal analysis. Instead, 
depending on the algorithm used, some average or extremal result will be 
found. A test for directionality of the scaling exponents should therefore be 
included in every fractal analysis. A simple way to achieve this is the analysis 
of several profiles in different directions. 

Box-counting is not affected by boundary effects, while the effect on 
sphere-counting depends on the density of points near the boundaries. If 
the regions near the boundaries are densely populated, more centres of disks 
will lie close to the boundaries and the sphere counts will consequently be 
underestimated because part  of the disk falls outside the limits of the data  
set. A comparison between the value of Do obtained by box-counting and by 
sphere-counting might be useful. 

Figure 3.3 shows the log-log plots for the landslide distributions in 
Hokkaido (circles) and Tohoku (crosses). Linear regression over the range 
of 2.73 km to 174.57 km gives Do = 1.57 =k 0.02 for Hokkaido and 
Do = 1.65 =h 0.03 over a range of 0.87 km to 110.80 km for Tohoku (errors 
given are one standard deviation of the slope). The scaling regions extend 
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Fig. 3.3. Plot oflog(t/N(r))  
versus log r for the landslide 
sets of Hokkaido (circles) and 
Tohoku (crosses). The solid 
lines show the least square 
fits the slope of which gives 
Do 

over ranges which vary by at least a factor of about 60, which can be consid- 
ered sufficient to believe in the fractal structure of the data. No multiscaling 
behaviour is apparent which shows that  there are no different superimposed 
physical processes acting at different scales. Furthermore no directionality 
of Do was found. The latter two findings might be at t r ibuted to the high 
complexity of the phenomenon due to the underlying factors which possess 
no directional or predominant features at different scales. 
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3 . 4  M u l t i f r a c t a l  A n a l y s i s  

Above it was shown that  the data  possesses a fractal structure. However, 
there are different degrees of clustering in the landslide distribution meaning 
that  the distribution differs from the neighbourhood of one landslide to the 
neighbourhood of another. In a homogeneous fractal all neighbourhoods are 
similar. Differences between neighbourhoods can be described by the con- 
cept of multifractality if the irregularities have statistical similarity over a 
sufficient range of scales. 

A concrete idea of a multifractal can be obtained from the distribution 
of mineral in the earth's crust in a certain region S: Imagining a measure 
which denotes the amount of mineral contained in every subregion, it is cer- 
tainly expected that  this measure is not regular: Dividing the original region 
into two halves $1 and $2, one expects #($1) and #($2) to be different. Di- 
viding $1 again, $11 and $1~ again contain different amounts of mineral. This 
unequalness is valid down to very small rock samples. # is a measure which is 
irregular at all scales. The irregularity of mineral distribution furthermore is 
statistically the same at all scales, it is a self-similar measure or multifractal 
as was shown by the mineralogist De Wijs as early as about 1950. 

De Wijs (1953) found the distribution of mineral in rock to be well ap- 
proximated by the following model: A rock contains a certain mineral of total  
mass (measure) #. If the rock is cut into two, one half contains a fraction p/z 
of the mineral, the other half contains (1 - p)#. Splitting the left half of the 
rock into equal volumes again, the left quarter contains p2#, the right quarter 
contains p(1 - p ) # .  At every stage of the construction, every part  is divided 
into two equal parts and the mineral is redistributed unevenly according to 
the same rule. Thus, at every step, the mineral is divided in the ratio p : 1 - p .  
The right two quarters of the second stage hence contain mineral of masses 
(1 - p)p# and (1 - p ) 2 / z .  This model, which for p ¢ 1/2 (as observed exper- 
imentally) leads to a deterministic multifractal on a non-fractal support, is 
used later on to produce artificial data sets. If the above process is imagined 
to take place in the plane and the total mass of mineral is unity, the result is 
a probability measure and the amount of mineral in every fragment may be 
thought to represent the number of landslides in every subregion. 

In the following the concept of multifractality is quantitatively introduced 
in a simplified way. The introduction mostly follows Feder (1988) and Em- 
merson and Roberts (1994), i.e. the multifractal spectrum ("f-a-formal ism")  
is used instead of the related generalised dimensions ("Dq-formalism"). 

The  Lipschitz-HSlder Exponent  a 

Clearly some measure is needed to quantify the different degrees and kinds of 
clustering around every landslide. The Lipschitz-HSlder exponent c~ at tempts 
this by describing the scaling properties of the neighbourhoods. If  there are 
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Ni(r ) landslides within the neighbourhood of radius r around the j t h  land- 
slide, the fraction ~,j(r) = Ni(r)/N of all landslides is contained in this 
disk. I f  ~'j(r) scales with r like ui ( r  ) o¢ r ~, i.e. the neighbourhood is a fractal, 
then, for r --+ 0, the scaling exponent a is a local proper ty  peculiar to the j t h  
landslide. Hence the name local fractal dimension for a .  As a is actually the 
correlation dimension D2 (cf. [GP83]), it is obvious tha t  a must be est imated 
from a significant scaling region somewhere between the minimum distance in 
the set and its overall extent ra ther  than  from "r  -+ 0": insisting on "r  --~ 0" 
renders all finite sets to have dimension 0 (which is true as the self-similarity 
breaks down below the minimum resolution). 

For a homogeneous fractal, a is the dimension of the set, which is what 
the Grassberger-Procaccia algorithm and all other pointwise dimension esti- 
mators  are based on. Examples of homogeneous sets are equidistantly placed 
points on a line (uj(r)  o¢ r l, 1 being indeed the dimension of the line), points 
placed on a regular grid in the plane (uj (r) o¢ r 2, 2 being the dimension of the 
Euclidean plane) and the classical two-thirds Cantor set (u i (r) c( r l°g 2/log 3). 
Examples  for non-uniform distributions in one dimension can be easily con- 
structed by placing points at xj = ± IjIP: start ing at point x0 = 0, it is 
No(r) c< r l/p, that  is a = lip. For p = 2 the points are quadratically in- 
creasingly farther apar t  with increasing distance from the origin, a associated 
with ~c0 is 0.5. For p = 1/2, on the other hand, points are spaced closer and 
closer together the farther away from the origin. Here a is 2, which is twice 
the dimension of the embedding space! Thus, roughly, for a non-uniform dis- 
tribution, a low value of a corresponds to a dense cluster in a less populated 
surrounding and a high value means tha t  a sparse area is surrounded by a 
vicinity of denser clusters. Hence also the names crowding index, singularity 
s trength or singularity index for a .  

The M u l t i f r a c t a l  f ( a )  Spectrum 

As every landslide has a value of a associated with it, one now has just 
another  set of numbers if the distribution is non-uniform. One approach to 
describe this set more conveniently is the multifractat spectrum in which the 
fractal dimension f of all landslides with a common a is calculated. The 
f(a) curve is the multifractal  spectrum. Thus the original data  is decom- 
posed into several subsets of landslides with common distributions in their 
immediate  neighbourhoods. This is why a multifractal may be called a union 
of intertwined fractals of different dimension. I t  should be noted, however, 
that  multifractali ty is a proper ty  of a measure, not of a set itself. The De 
Wijs multifractM mentioned earlier is defined on an Euclidean support  for 
example. In  the uniform case a is independent of the location of the landslide 
and thus f = a -- Do and the f(a) curve collapses into a single point. The 
Dq curve becomes a straight line through Do parallel to the abscissa. Only 
then a single fractal dimension suffices to describe the fractal. 
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Figure 3.4 shows the theoretical f ( a ) - a  curve for the De Wijs fractal in 
two dimensions with p -- 0.25. The curve can be interpreted as follows: The 
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Fig. 3.4. Theoretical multi- 
fractal spectrum of the two- 
dimensional De Wijs fractal 
with p -- 0.25 

spectrum, which looks like an upside down parabola, peaks at f (ao)  -- Do 
and stretches from amin to a,~a~. Recalling that  the fractal dimension tells 
how densely a set occupies its embedding space, it becomes clear that  most 
landslides (assuming for now that  the model of De Wijs does not redistribute 
mineral but  landslide events) contribute to the peak as this is the highest 
fractal dimension occurring in the union. Thus, if a0 > 2, most landslides 
are surrounded by denser clusters, if a0 < 2, most landslides are s i tuated 
among sparser regions. For p -- 0.25, most events are therefore surrounded 
by denser clusters. The large a side is generated by landslides in sparsely 
populated areas. The lower value of f ,  i.e. the lower fractal dimension of the 
set consisting of landslides in low density regions, shows that  there are fewer 
of them. The low a side describes densely clustered landslides and similarly 
there are fewer of them. In summary, the range ami~ to OLma:~ quantifies 
the non-uniformity of the fractal while f ( a )  tells how frequently events with 
scaling exponent a occur. 

Mass Exponents  

Unfortunately the computational determination of the multifractat spec- 
t rum is much more difficult than the often already ambiguous determination 
of one single fractal dimension. This becomes especially evident when the 
(multi)fractal properties of different sets are to be compared and conclusions 
as to the underlying dynamics or the universality of the phenomenon are to 
be made. 
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Here the description by Feder (1988) is adapted in which the embedding 
plane is partitioned into squares of size 5 first and only non-empty boxes 
are kept. If N~ (5) is the number of landslides within the ith box, the mass 
#~ = N i / N ,  where N is the total number of landslides, is assigned to the 
ith box. The mass values on their support of non-empty boxes constitute the 
measure (here the probability measure or natural measure in strange attractor 
terminology) which is analysed for multifractality, not the set itself. 

Having obtained the measure, which here constitutes a geophysical field, 
one calculates for various exponents q 

C(q ,5 )  : (3.2) 
i 

and attempts to determine the mass exponent T(q) from 

C(q, 5) (x 5 -~'(q) . (3.3) 

v(q) is determined by plotting log C versus log 5. Due to its usage in ther- 
modynamics, C(q, 5) is frequently called partition function. The effect of the 
normalisation ~ # i  = 1 is that T(1) = 0 and T(0) = Do because for 
q = 0, C is just the count of boxes needed to cover the set. For measures 
other than the natural one, normalisation to a probability measure is also es- 
sential because otherwise the possibly existing scaling will not be discernible. 

For increasingly large positive q, large values of #i contribute increasingly 
more to the qth statistical moment ~-~{ #q while small values get weighted 
less and less. Thus more emphasis is put on the densely clustered landslides 
respectively the larger events. On the other hand, for increasingly negative 
values of q, the sparse regions (or small events) dominate the moments. Hence 
the fractal dimension is determined for separate subsets consisting of points 
associated with different magnitudes of #i. The latter formulation leads to a 
simple test for multifractality (cf. [HS93]): One may check whether e.g. the 
correlation dimension changes when successively thresholding the data. 

Using statistical moments, one can describe the multifractal by recovering 
information about the different regions with different scaring exponents by 
examining the variation of the mass exponent "r(q) with q. a and f can then 
finally be obtained parametrically from the relations 

a(q) = - d~'/dq 

and 
f (q )  = qo~(q) + 7  

([Fed88]) or, explicitly and computationally more stable, from 

f ( a )  = min{qc~ + ~'(q)}. 
q 

Having in mind the often encountered better robustness of sphere-counting 
as compared to box-counting, a slightly different approach is followed here in 
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the determination of T(q). Namely, the approach is based on the correlation 
dimension, leading to the method of generalised sphere counting as proposed 
by Pawelzik and Schuster (1987): Recalling the context of Eqs. (3.2) and 
(3.3), a disk of radius r around the j t h  landslide contains Nj(r)  landslides 
and thus the mass #j = uj = N j / N .  A fraction 1/Nj of the disks contents 
is needed to cover the j t h  landslide itself. Thus the j t h  landslide contributes 
(1/Nj)v~ to the sum in Eq. (2). One may thus calculate 

N 
1 

C(q,r) = -~ E u q - 1 .  
j = l  

Then, plotting log(C U(q-1)) versus log r, the linear region will yield D a = 
~-/(1 - q). Thus Dq is estimated rather than v(q). 

The method for multifractal analysis employed here is, like many other 
methods (e.g., Borgani et al. 1993), dependent on the convergence of sta- 
tistical moments. The divergence, i.e. non-existence, of a moment does not 
necessarily require an infinite singularity but may be caused by a power-type 
long time tail behaviour as well: In the case of 1 / f  noise for example, the vari- 
ance is infinite. Indeed also the Gutenberg-Richter power-law of earthquake 
magnitude versus frequency predicts the divergence of statistical moments 
([HLS+94]). Even if they exist, however, statistical moments get less robust 
with increasing order (e.g., [P+92]). Therefore, careful attention was paid to 
the convergence of the statistical moments involved. Namely, it was assured 
that  the moments were finite, showed convergence as the number of data 
points was increased and that  they were consistent for different data sets 
obtained from the same distribution. 

D e t e r m i n i n g  t h e  r eg ion  a n d  t h e  e x p o n e n t  o f  scal ing The tog-log plots 
consist of a linear region sandwiched between two horizontal regimes. The 
horizontal regime for low r results from the finite resolution of the data  below 
which the number of points stays constant for decreasing r. The horizontal 
high r region results from the finite size of the data where no additional 
points are found for increasing r. As the linear range is unknown beforehand 
and varies from data set to data set and with q, it is not advisable to perform 
a blind linear regression over a fixed range. A reliable and automatic way 
which also determines the scaling region is instead desirable. 

A possible solution ([ER94]) is to fit the data  by a transcendental curve 
of the form 

- 1 = + D {¢I log[2 cosh((  - - log[2 cosh((  - 

where ~ = logl0r, rl = lOgl0(1/C ) were substituted, ~ = ~(r/+o~l + 
r/-c~) and D = (~+o~ - ~-oo)/(~2 - (1). These functions have the following 
properties: The graph is horizontal and asymptotically approaches r/ = r/_~ 
for ( << ~1; for ~ >> (2 it is also horizontal and approaches r / = rl+c¢. In 
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the range ~1 ~< ~ <~ ~2 it is asymptotically a straight line of slope D. ~1 and 
(2 describe the widths in r /o f  the exponential transitions between the three 
domains. Thus, after minimisation of the root-mean-square distance between 
the transcendental curve and the data, D gives the fractal dimension and ~1 
and ~2 give an estimate of the lower and upper limits of the scaling region. 
Confidence in the result for D may then be obtained from the range of ~1 
and ~2 which should span at least a factor of 10. 

As the curve depends nonlinearly on the four parameters ~1, ~2, ~1 and 
~2, nonlinear optimisation must be utilised. Several different approaches to 
nonlinear optimisation exist (e.g., [P+92]) and a comparison mainly showed 
different robustness with respect to the accuracy of initial guesses. The 
Marquardt-Levenberg method ([P+92]) was found to be reasonably reliable 
even under slightly disturbed conditions (see below). While large absolute 
values of q still required manual checking, results for the range 0 <_ q _< 5 
were reliable in all cases when the optimisation was modified as to avoid 
degenerate curve fits of the form ~1 + ~1 >_ ~2 - ~2. 

Figure 3.5 shows the log(C(q,r) I/(q-1)) versus logr  plots together with 
the automatically determined best nonlinear fits for q = 15, 0 , - 1 5  (from 
top to bot tom) for the Tohoku landslide distribution. The raw data is drawn 
in solid, the fitted curves are dashed. The automatically determined scaling 
regions were 0.22 km to 105.95 km (q = 0), 0.16 km to 64.90 km (q = 15) 
and 4.76 km to 129.28 km (q = - 15). Note that  the optimisation algorithm 

0 . 0  

- 2 . 5  

T 

- 5 . 0  " 

o~ 
"~ - 7 . 5  " 

-10.0 ' 

/ 

J 
''''I''''I'" 

- 7 . 0  " 3 . 5  0 . 0  

l o q r  

3.5 

Fig. 3.5. log(C(q, r) 1/(q-1)) 
versus log r plots (solid) 
together with the auto- 
matically determined best 
nonlinear fits (dashed) for 
q -- 15,0,-15 from top 
to bottom for the Tohoku 
landslide distribution 

is capable of dealing with the anomalous behaviour at low r for q -- - 15 
and that  the results agree with an optimal manual choice to such an extent 
that  they can be used safely to gain confidence in the fractality of the data. 
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3 .5  A n a l y s i s  of  S y n t h e t i c  D a t a  

While the problem of accuracy of fractal dimension estimates from finite 
data sets and the definition of confidence limits has received much attention 
([BMPV93, Gra88, RYg0, HH94]), no readily applicable rules are available so 
far. The standard deviation of regression parameters tells nothing about pos- 
sible methodical errors for example (cf. [GMMg8]). Here a direct comparison 
between the results obtained from experimental data and from mono- as well 
as multifractal synthetic data with the same overall characteristics is carried 
out therefore. Performing the same numerical analysis on these data sets, one 
may estimate the range of results obtainable from these fractal models. All 
sets are generated to have the same number of data points and to occupy 
the same space in the plane to exclude possible differences due to size and 
spatial extent. 

Artificial Monofractals 

Numerous methods exist to generate data sets of a specific fractal dimension 
of the support (e.g., [PS88, HS93, Rus94]). Most simple are deterministic sets 
like the Sierpinski triangle or the Cantor set. The dimension of all determin- 
istic fractals can be changed by modifying the generator. A general approach 
to the modelling of arbitrary fractal objects which also yields more realistic 
sets is the one by affine transformations. Random fractals are more realistic 
alone by the fact that most fractals in nature are not deterministic. 

Here Iterated Function Systems (IFS; [BarS8], [GW88]), each consisting 
of N contractive affine transformations with associated probabilities, were 
used to produce monofractals of a given Do. Monofractals as opposed to 
mnltifractals were obtained by utilizing only angle-preserving transformations 
so that 

N 

Is, I Do = 1 (3.4) 
i = 1  

(e.g., Feder 1988), where si = const,  are the scaling factors of the maps, 
could be exploited to get D0 as a convenient function of sl only. So far, Eq. 
(3.4) has been used to estimate Do of self-similar deterministic sets, i.e. in 
the inverse problem. The approach delivers an overwhelming multitude of 
optically different fractals not only with the same dimension of the support 
but also with equally narrow multifractal spectra. 

Thus the weakness not only of a single fractal dimension but also of the 
multifractal spectrum in distinguishing optically distinct fractals is demon- 
strated. On the other hand, all these fractals certainly belong to the same 
"universality class" insofar as they are generated by the same principle. In 
that sense the multifractal spectrum allows to classify them. The problem 
of the seemingly contradictory goals of distinguishing fractals and classifying 
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t hem by multifractal  spectra is addressed again later on. The familiar Sier- 
pinski triangle can be obtained from an IFS with N = 3 and s = 0.5. 
Equat ion (3.4) then  correctly gives Do = log 3 / log  2. Sets of given spa- 
tial extent were obtained here by assuring tha t  the a t t rac tor  was larger than  
needed and then a zoom window of desired size was filled with the needed 
number  of points. This agrees with the fact tha t  experimental  observations 
usually also represent a subset limited by the extents of the area of observa- 
tion. 

Fig. 3.6. Three artificial 
monofractals with the same 
overall characteristics as 
the landslide distribution 
in Hokkaido. Note that 
these sets are perfectly 
equivalent to each other 
and the Hokkaido data as 
for the fraetal properties 
of the support and that a 
multifractal analysis cannot 
distinguish the artificial sets 
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Figure 3.6 gives three examples of IFS-monofractals generated to fit the 
overall characteristics of the Hokkaido data set (Do -- 1.57 =k 0.02). They will 
be referenced as sets F1, F2 and F3 (from top to bottom) further on. 

Note that  these sets are perfectly equivalent to the Hokkaido data as for 
the fractal properties of the support. Furthermore one would expect equiva- 
lence of the multifractal spectra for the artificial sets which is confirmed in 
Fig. 3.7, where the numerically determined f(a)-a curves are shown. One 

2.0 

1.5 

1.0 

0.5 

o .o  ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' 

0 1 2 3 4 

Fig. 3.7. Multifractal spec- 
tra of the artificial monofrac- 
tals shown in Fig. 3.6 (solid: 
F1, short dash: F2, dash 
dot: F3). Also shown is the 
spectrum for a determinis- 
tic Sierpinski triangle with 
Do = 1.8 (long dash) 

notices good agreement of the location of the maxima with the expected 
value f -- a = Do ~ 1.57 and that  the spectra are barely distinguish- 
able. For comparison, the spectrum of a deterministic Sierpinski triangle with 
Do = 1.8 was determined and the resulting maximum is also found to be 
very close to the theoretical value. The finite range in a and the observed 
variation in the location of the maximum is due to the limited amount of 
data points. It  is interesting to note that  Aa is narrower for the determin- 
istic construction than for the random fractals, implying that  the accuracy 
of the determined spectrum does not depend on the number of data points 
alone. In fact more points are required to determine a higher fractal dimen- 
sion with the same accuracy as a smaller one ([HH94] and references therein). 
Overall, Aa is found to be smaller than 0.5. 

Ar t i f i c i a l  Multifractals 

IFSs usually produce multifractal-like measures and may be used to produce 
given multifractal measures (e.g., [EM92]) but here a direct deterministic ap- 
proach is preferred. Namely the De Wijs model for the distribution of mineral 
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in rock is used. In physics, the model is known as binomial multifractal or 
binary multiplicative fractal and is the simplest multiplicatively generated 
measure. The process, which fragments a set (e.g. the rock) into smaller and 
smaller units according to a fixed rule (halve it at each step), and simulta- 
neously fragments the measure of the units (e.g. the mineral) according to 
another one, is also called a cascade process. The idea of cascades has found 
application in the modelling of nonlinear dynamical systems like fully devel- 
oped turbulence where energy is passed on to smaller and smaller eddies until 
it is finally dissipated. An extensive treatment of the multifractal aspects of 
the binomial rnultifractal may be found in Feder (1988). 

An extension of the binomial De Wijs construction leads to multinomial 
multiplicative processes and finally to random multiplicative cascades where 
the multipliers for the mass redistribution are the outcome of some probabilis- 
tic process. While random cascades produce more realistic measures, physical 
models often remain elusive ([EM92]). The most realistic self-similar mea- 
sures are probably produced by nonlinear stochastic processes as expressed 
by stochastic differential equations (Provenzale et al. 1993). 

For numerical purposes, however, the binomial measure is most suitable 
as, due to the simple deterministic construction, the f ( a )  - a spectrum for 
the case of redistribution of mass on a line is given by ([Tak90]) 

pq log 2 p q- (1 - p)q log2(1 - p) 
O~q 

pq + (1 - p ) q  

f (aq)  ---- qaq +log2(p q + ( 1 - p ) q ) ) .  

For p -- 1/2, the distribution is uniform, i.e. the construction yields a 
monofractal. 

One can easily generate a multifractal distribution of points in the plane: 
In Fig. 3.8, a set of 12 842 points is shown where the x and y co-ordinates were 
chosen independently and at random from the one-dimensional distribution 
(p -- 0.25). The right-hand sides of the above equations have to be doubled 
in this case. 

A peculiarity of the binomial measure is that  the extremal values a~ir~ 
(highly clustered immediate vicinity) and ama~ (sparsely populated immedi- 
ate vicinity) are typically found in the left-most and right-most subintervals 
respectively. In general the minimal and maximal Lipschitz-HSlder exponents 
can lie anywhere in the support. 

In Fig. 3.9, a comparison between the theoretical (solid) and two numeri- 
cally determined multifractal spectra (dashed) is shown. The two numerically 
determined spectra stem from the set shown in Fig. 3.8 and another random 
subset of the same size. The scaling exponent a can be seen to vary between 
about  0.8 for highly clustered points and about 3.5 to 4.4 for least clustered 
points. As is shown by their low fractal dimension f ,  these extremal clusters 
occupy very little space of the fractal; they occur very rarely. Much more 
common are regions characterised by an a of about 2-3, showing a fractal di- 
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Fig. 3.8. Multifractal point distribution according to the De Wijs model for 
p -- 0.25. The fractal has the same number of data points and the same spa- 
tial extent as the landslide distribution on Hokkaido 

mension of ~ 1.8 to 2. This range of ~ is characteristic of clusters interspersed 
with denser clusters. 

Comparing the theoretical with the numerically obtained curves, it be- 
comes obvious that ,  at  least at 12842 data  points, the experimental result 
has to be interpreted carefully: I t  is quite accurate for small values of a ,  
while f becomes increasingly uncertain for the right half of the curve, ama~ 

also has an error of about  10%. The position of the peak is very close to the 
expected Do of the support  (2.0) in f and also reasonably placed in c~. The 
larger error for higher values of c~ is due to the fact tha t  these estimates are 
based on few sparsely populated regions, thus leading to weak statistics. The 
left side of the curve is based on strongly clustered regions, leading to more 
reliable statistics because more da ta  points are available. 

Similar errors are expected for the landslide distribution da ta  even though 
the Tohoku da ta  consists of roughly four times the number of da ta  points. 
This is because of the previous finding that  the multifractal properties of 
randonl fractals seem to be more difficult to determine than  the ones of 
deterministic constructions. Note, however, the definite distinction between 
monofractals and muitifractals when comparing Figs. 3.7 and 3.9. The com- 
parison of results obtained from experimental  da ta  with those from synthetic 
monofractal  da ta  thus permits  to confirm or reject multifractality while anal- 
ysis of artificial multif~actal da ta  allows the rough estimation of the error in 
f and o~. 
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Fig. 3.9. Multifractal spec- 
tra for the data shown in 
Fig. 3.8 and another random 
set of the same size (dashed). 
Also shown is the theoretical 
spectrum (solid) 

3.6 Mult i fractal  Results  for Hokkaido and Tohoku 

The numerically determined multifractal spectra for the landslide data  are 
given in Fig. 3.10. All spectra can be said to be typical in the sense that  they 
follow the shape of an upside down parabola (this is not always so) and lean 
to one side ([EM92]). 

Considering the curves for the probability measures first, one notices very 
close agreement between the values of f,n~x = f ( s0 )  and the results of 
the box-counting analysis performed earlier (1.58 vs. 1.57 for Hokkaido and 
1.64 vs. 1.65 for Tohoku). Box- and sphere-counting thus yield the same 
results for Do here, leading to great confidence into the obtained value. The  
surprisingly accurate positioning of f ( so )  in turn results in high confidence 
into the respective values of s0, especially when taking the results shown in 
Fig. 3.9 into account, so is about 1.9 for Hokkaido and about 1.8 for Tohoku. 
Both values are smaller than the dimension of the embedding space, thus 
most landslides in Hokkaido and Tohoku are surrounded by sparser clusters. 
The effect is more pronounced for Tohoku though. 

Smin is estimated to be about 1.1 for both cases and describes the areas 
of most intensive clustering (smi,~ corresponds to D ~ ) .  Thus, both regions 
concerned possess the same degree of most intensive clustering. Interpreta- 
tion of ~ma~, corresponding to D _ ~  and characterising the least populated 
vicinities, is more difficult due to the large error expected. Assuming an error 
of also about  10%, the values of ama~ are essentially equal. Note, however, 
the different overall shapes of the hlgh-a sides, indicating that  the landslide 
distribution in Hokkaido generally contains more regions of sparse clustering 
than Tohoku. The probability measure in Hokkaido can thus be regarded to 
be more inhomogeneous than the one in Tohoku. The landslide process in 
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Fig. 3.10. Multifractal 
spectra for the landslide 
data: Probability measures 
for Hokkaido (solid) and 
Tohokn (long dashed) and 
landslide size measure for 
Hokkaido (short dashed) 

Hokkaido shows stronger spatial intermittency as for the occurrence prob- 
ability. Nevertheless assuming the range from arnin to ama~ to be roughly 
2.4 for both distributions and comparing this with the value obtained for 
the artificial monofractals, one may be confident that  the distributions re- 
ally are multifractals. Comparing the results in Fig. 3.10 with the f ( a ) - a  
curve in Fig. 3.4, it can be seen that  the landslide probability distributions 
are less inhomogeneous than the artificial binomial distribution. This agrees 
with the optical impression obtained when comparing the three-dimensional 
visualisations in Figs. 3.2a and 3.8. 

Finally, the multifractal spectrum for the spatial distribution of landslide 
sizes in Hokkaido can be seen to be much more inhomogeneous than the 
probability distributions and even the multiplicative binary fractal: a varies 
over a range of at least 3.5. This is confirmed when examining Figs. 3.2a,b and 
3.8. The finding might be expected because the size distribution of landslides 
follows a power-law over a wide range of sizes ([FHG94], see also [HIY92] for 
the case of earthquakes). 

The scaling regions used for the determination of the slopes varied between 
the values shown in Fig. 3.3 down to a factor of 20 at worst for the Hokkaido 
size distribution. 

3 . 7  C o n f i g u r a t i o n  E n t r o p y  

Beghdadi et al. (1994) found that  multifractal spectra determined by the 
sandbox method (e.g., [Vic92]) could not distinguish data sets with notably 
different optical properties. This is not surprising, as even multifractal spectra 
do not yield a complete but only an optimal description in the thermodynamic 
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sense (e.g., [McC94]). Beghdadi st at. (1994), hereafter referred to as paper 
1, applied the idea of configuration entropy (e.g., [PS88]) to their data  and 
found it less ambiguous and less sensitive to the finite size of data  than the 
sandbox method. 

In this entropy analysis, the landslide data is regarded to be a point 
process and to constitute a binary image with pixels either on (active, no 
event) or off (inactive, representing a landslide event). Mostly following paper 
1, the data  is analysed as follows. 

Cells of size r are centred on a random subset of inactive pixels and for 
each cell the number of active pixels is determined. Then Nk(r), the number 
of cells containing k active pixels, is calculated. The probability for a cell to 
contain k active pixels is then Pk(r) = N~(r)/N(r) where N(r) is the total 
number of cells of size r. The configuration entropy is then given by 

r 2 

H(r) = - E p k ( r )  lnpk(r) 
k=0 

and is a measure for the uncertainty in the realisation of a certain state for a 
cell of size r. H(r) describes probabilities distributed over boxes of fixed size 
of the partitioned space the set occupies. Deriving the general expression for 
the information dimension from Eq. (3.1), one obtains 

D1 = lira E i  -Pi(r) log Pi(r) (3.5) 
r~0 log 1/r 

and the relation H(r) ~ -D1 log r becomes apparent. D1 describes the scal- 
ing behaviour of the partition information of the measure on the set. To 
clarify the idea of information here, consider that,  if Pi = 1, i.e. it is certain 
to find an event in cell i, the information - l o g  Pi gained by finding a point 
in that  cell will be zero, while, when Pi = 0, the information (or surprise) 
will be infinite. The sum ~ - P ~ ( r ) l o g P ~ ( r )  in Eq. (3.5) thus measures the 
average information (or also information entropy) conveyed by knowing what 
cell a point is in. H(r) assumes its maximum when the different states are 
all equally probable, i.e. when pk(r) = 1/(r  2 + 1) independent of k (for this 

r 2  
~k=o pk(r) = 1 is required, thus one must remove non-unique points from 
the data  set). 

The coarse graining is carried out by varying r over an appropriate range. 
To be able to compare H for the different resolutions, the entropy value is 
normalised by its maximal value Hm~(r) = ln(r 2 ÷ 1), leading to 

H*(r) = H(r)/gmaz(r). 

The characteristic length r* where H* (r) has its maximum is called the en- 
tropy optimum length in paper 1. It is at this resolution were the image reveals 
most information and at which it should subsequently be analysed. Here the 
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entropy analysis thus determines an optimal scale at which the support of 
the data  shows maximum disorder while the multifractal analysis aims to 
describe scale independent properties of measures associated or derived from 
the data. In this analysis the value of H* was found to depend strongly on 
the number of data  points while r* showed no such dependency, r* was also 
independent of the number of randomly chosen reference cells. 

The determination of r* hence really is a robust additional means of unam- 
biguous characterisation of point sets. In particular it avoids the asymptotic 
evaluations necessary in the determination of fractal dimensions, it does not 
involve the sometimes difficult selection of a scaling region and the analysis 
is feasible even for small data  sets. Due to the high accuracy in the deter- 
mination of r*, even small differences in the result can be regarded to be 
significant. Therefore the method can also, as will be shown below, comple- 
ment a multifractal analysis in that  it yields i~formation about the tacunarity, 
i.e. the more or less periodic occurrence of voids in the support. 

3.8 Entropy Results  for Hokkaido and Tohoku 

To rule out possible effects due to artificial differences between the data  
sets such as digitisation with different resolutions, four arbitrary regions of 
50 km by 50 km of the less sparse Tohoku data set were analysed instead of 
comparing Hokkaido and Tohoku. The locations of these regions were already 
indicated in Fig. 3.1. The sets will be labelled T1 to T4 in the following. 
The results are given in Fig. 3.11 and they are summarised in Table 3.1 
together with the results of a sphere-counting analysis. The results for D2 
together with the scaling region of 0.78 km to 14.49 km explicitly confirm the 
fractality of the subsets. The number of events varied between 5254 and 2545 
and is clearly reflected in the magnitude of H*. r* varied between 4.4 km 
and 6.4 km. Besides the differences in r* however, the shapes of the entropy 
curves vary considerably which cannot be at tr ibuted to the different number 
of data  points. 

Table 3.1. Results of entropy analyses of the data sets T1 to T4 together with the 
correlation dimensions of the sets 

Data Set Data Size H~a~ r* D2 
T1 5254 0.58 5.1 1.72=k0.03 
T2 3248 0.54 4.4 1.60+0.07 
T3 2545 0.50 6.4 1.72=k0.06 
T4 2935 0.51 5.2 1.71=k0.05 

To be able to interpret these differences, some additional calculations 
with artificial data  sets were carried out. Figure 3.12 shows, from top to 
bot tom, the configuration entropy curves for an original Sierpinski triangle, a 
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Fig. 3.11. Configuration en- 
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homogeneous random set (the x- and y-co-ordinates were selected at random 
from a gaussian distribution) and a "crystal" (a set of points placed on a an 
equidistant grid with Ax = Ay = 0.69). The sets were scaled to have 
an extent like the Tohoku subsets and contained the same number of data 
points like T1. Thus in this case also the values of H* are significant. 

The most striking result is the one for the "crystal". The low value of 
H* shows, as was to be expected, a low degree of disorder and the peaks 
appear when r extends beyond the voids. Their spacing of about 0.69 thus 
corresponds exactly to the spacing of the grid points. This example can be 
regarded to represent an extreme case of lacunarity in that  the entropy shows 
abrupt  changes as r is varied. One may conclude that  multiple peaks in H* in- 
dicate lacunarity in general. This finding makes the entropy analysis a useful 
complementary tool for a multifractal analysis as lacunarity leads to piece- 
wise linear regions in the log-log plot (e.g., [BMPV93]) which might easily be 
misinterpreted to be multiscaling. The curve for the random data  shows no 
clear peak at all and the data  has a relatively higher degree of disorder, both  
of which were to be expected. There are no multiple peaks because no roughly 
periodic voids are present and there is no single sharp peak because the image 
possesses about the same information at all scales once a minimum resolution 
has been reached. The Sierpinski triangle produces a somewhat similar curve 
to the random one in that  it shows no clear maximum, rather it stays at a 
relatively high level once a resolution of about 4 has been reached. This is 
to be expected for a fractal, which by definition contains the same statisti- 
cal information at all scales due to its self-similarity. However, fluctuations 
around this maximum level occur and again they can be at t r ibuted to the 
lacunarity produced by the void triangles in the Sierpinski construction. Why 
the overall level of H* is higher than that  of the random distribution is not 
clear at present but  may probably be at tr ibuted to the finite sample. Care 
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is necessary even when comparing H* of different distributions of the same 
number of data points. Recalling that the Sierpinski triangle is a monofrac- 
tal and that the random distribution is homogeneous as well, an important 
conclusion is that monofractals should not produce sharp peaks in H*. 
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Fig. 3.12. Configuration en- 
tropy curves for, from top to 
bottom, an original Sierpin- 
ski triangle, a homogeneous 
random distribution and a 
regularly spaced set of grid 
points 

Regarding the results for the Tohoku subsets again in this light and keep- 
ing in mind that the fractality of these distributions has been shown earlier, 
one may conclude that the comparatively sharp peaks in H* are due to the 
inhomogeneity of the data. The entropy curves clearly reflect the different 
degrees of clustering present in each of the respective landslide distributions. 
The entropy analysis may thus be regarded as an indicator for multifractality 
of the probability measure. Comparing the curves for T1 and T4, one might 
also conclude that T1 is more inhomogeneous than, for example, T4 which 
comes close to a monofractal. The crucial advantage of this approach is that 
the entropy analysis can be carried out reliably for small data sets while a 
multifractal analysis requires much larger data sets. In the present case no 
sufficient scaling behaviour could be obtained over a Sufficient range of q to 
produce multifractal spectra for the subsets T1 to T4. The double peak in 
the entropy curve for T2 furthermore indicates the presence of big voids with 
approximately periodic structure, i.e. lacunarity, which should be taken into 
consideration when attempting to determine the slope in a scaling analysis. 

It is thus recommended to carry out an entropy analysis in addition to a 
(multi)fractal analysis even when the number of data points is sufficient to 
allow a reliable scaling analysis. Another possible benefit from the suggested 
procedure is that if the entropy curve shows no multiple peaks but the log- 
log plot is piecewise linear, the assumption of multiscaling is supported. In 
the latter case the entropy curve would be expected to be discontinuous at 
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the crossover points instead of showing multiple peaks but this has yet to 
be numerically confirmed. It is concluded from the above findings that  the 
entropy curves in Fig. 3.11 further support the assumption of monoscaling 
multifractality of the landslide probability fields as reported in Fig. 3.10. 

3.9 Discuss ion of Landslide Results  

This work has led to the unambiguous identification of the landslide process 
to produce multifractal measures. While the multifractal spectra for the dis- 
tribution of landslide sizes and locations in Hokkaido were quite different, as 
was to be expected, the spectra of the probability measures for Hokkaido and 
Tohoku were found to be rather similar. It is not clear at present whether 
this should be interpreted to reflect universality of the landslide process, i.e. 
independence of many of the geological and meteorological details, or if it 
should be ascribed to the inability of the multifractal analysis to distinguish 
different finite data sets. A comparison with further landslide distributions 
of different regions from within Japan and the world would help to clar- 
ify this and is, together with a similar analysis of the earthquake epicentre 
distributions, intended in the near future. 

While it was found that  the utilised method of multifractal analysis was 
not suitable for local landslide distributions, regions of up to 5000 events 
in this case, a configuration entropy analysis was able to describe and dis- 
tinguish such small sets very clearly. Beyond the possible applications within 
practical disaster mitigation, relations of the entropy curves with multifractal 
properties of the fields were also discovered. Further research in this direction 
seems rewarding as the problem of small data  sets is frequently encountered 
within geoscience. 

Although the recent years of research have unveiled that  fractality in na- 
ture seems to be more the rule than the exception, this is not necessarily true 
for multifractality. Multifractality requires that  measures on fractal or non- 
fractal supports possess similar irregularity at all scales. While multifractality 
in nature implies a nonlinear underlying process because no linear process is 
capable of producing truly intermittent signals, not all nonlinear processes 
produce multifractals. However, it has become increasingly clear that scaling 
nonlinear dynamic processes lead to multifractals on fractal supports. Multi- 
fractality does not necessarily imply chaos though, despite the fact that  the 
invariant probability measure (natural measure) on strange attractors seems 
to be multifractal ([GP83], [HJK+86], [Sch88]). 

The above empirical finding of multifractality thus assigns the landslide 
process to the same class of nonlinear processes as earthquake dynamics and 
rain, the main triggering mechanisms for landslides. As for disaster mitiga- 
tion, the findings require a nonlinear modelling and explain the difficulty of 
landslide prediction which remains, as with earthquakes, impossible to date. 
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In particular it was shown that  the prediction of the size of landslides should 
be considered even more difficult than  the prediction of the location. 



4. S o m e  F r a c t a l  P r o p e r t i e s  o f  E a r t h q u a k e s  

"Earthquakes have so many different fractal properties that they belong to 
the most interesting fractal phenomena" [Tak90]. 

Omori discovered scaling in earthquakes in the frequency distribution of 
aftershocks over a hundred years ago (1895). His discovery was not accepted 
for a long time because for modelling purposes, a Poisson distribution was 
convenient([Man83]). Omori's formula: 

n(t) t (4.1) 

says that the number of aftershocks n(t), measured at time t after time to of 
the main shock, decays following a power law. It implies a scaling property 
in the relation between the mainshock and its excited aftershocks ([KK78, 
Oga88]. Verification of Omori's formula was done by laboratory experiments 
on acoustic emission (AE) as well ([Sch68, HirS7a]). Aftershock behaviour is 
a transient fractal property in time, called the long time tail. It occurs for 
example in the relaxation of most amorphous materials: A simple relaxation 
is exponential, but amorphous materials contract slower, following the power 
law t-% They possess long time correlations which means that the process 
depends on its history (e.g. [Wak90]). 

Another well known "fractal" property is the Gutenberg-Richter relation: 

log (4.2) 
where m is the magnitude and N(m)  is the number of earthquakes with 
magnitude bigger than m. Equation (4.2) may be rewritten as 

f(ra) cx m - °  (4.3) 

in power-law form where f ( m )  denotes the frequency of earthquakes above 
magnitude m. As this is a power law of the form (2.4), it is easy to see 
that D is a kind of fractal dimension. The b-value of the Gutenberg-Richter 
relation is theoretically related to the fractal dimension of the fracture size 
distribution, respectively the epicentre distribution ([Aki81, Kin83, Hir89a], 
see also section 7.2). 

In the vicinity of Japan, earthquakes with magnitude bigger than 6 occur 
about 7 times a year, earthquakes with magnitude bigger than 5, about 70 
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times. For earthquakes with magnitude greater than 1, the relation yields 
roughly 530000--on average one earthquake every minute. It is important 
to note that "on average" may only be taken in the strict statistical sense, 
as a scaling relation like (4.2) explicitly shows that there is no characteristic 
time span between events and that no specific magnitude is preferred. Also 
no characteristic fracture size exists and the size-distribution is self-similar. 
Thus the statistic average (recurrence period) of earthquakes does not imply 
a regular cyclicity (e.g. [Hsii92]): The fractal relation implies that the time 
interval between two events of the same magnitude is proportional to the 
magnitude of the event. In disaster science, the average time interval has been 
called the waiting time. Clustering (in space and time) has been generally 
found to be the rule, not the exception (see section 7 for more on this). 

Using the fact that magnitude is approximately proportional to two-thirds 
of the logarithm of released strain energy ([Takg0] and section 7), another 
"fractal" relation is given by (4.2): 

N ( E )  c¢ E -2b/3 (4.4) 

where E is the total seismic energy released by the earthquake. 
In the strict geometrical sense, neither D of Eq. (4.3) nor the exponent 

-2b/3 in Eq. (4.4) can be called a fractal dimension because magnitude, 
energy and most of the quantities mentioned here are not measured by length. 
From the viewpoint of dynamic systems or numerical analysis, however, these 
quantities may be thought of as points or vectors represented in an embedding 
geometrical space (just like time series are usually represented in a plane as 
a curve of points in a diagram of one quantity versus time). 

One of the main objects of analysis in this work is the spatial distribution 
of earthquakes. The fractal dimension of the worldwide epi- and hypocentre 
pattern (i.e. the fractal support of earthquake fields) is given to be in the range 
of 1.2 to 1.6 by several authors in the 1980's [KK80, S+84, OA87, ASB87]. 
The results of these monofractal analyses were mostly estimated using the 
correlation function or a box-counting algorithm, the scaling region was typ- 
ically between 5 and 500 kin. Interestingly, D was found to be smaller (1.5 - 
1,6) for deep earthquakes (280 - 700 km) than for intermediate earthquakes 
(70 - 280 km, 1.8 - 1.9). 

Kagan (1992) found the fractal dimension of brittle shear fracture of rocks 
to be 2.20 ± 0.05 and, using further arguments, concludes that the con- 
ventional model of earthquake hypocentres occurring on isolated plains (i.e. 
d = 2) must be abandoned in favour of non-planar fractal fault zones. One 
year later, the same author goes one step further (in [Kag93]) and states 
that " . . .  earthquakes do not occur on a single (possibly wrinkled or even 
fractal) surface, but on a fractal structure of many closely correlated faults", 
essentially implying that it is impossible to define individual faults. Kagan 
further illustrates his view by saying that " . . .  the objective selection of fault 
segments is as impossible as it is infeasible to devise a computer algorithm 
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that  would subdivide a mountain ridge into mountains or a cloudy sky into 
individual clouds". A fractal surface in three-dimensional embedding space, 
however, may have a dimension ranging from 2 to 3, so the wording in the 
first quote is a little unfortunate. 

As most earthquakes nevertheless occur along structures usually called 
fault zones, it is not surprising that  faults, or, more generally, fractures and 
their distribution in heterogeneous materials, also possess a fractal structure. 
Indeed, the geometry of fractures in rocks and in the crust is a classic example 
of a fractal which holds well over a wide scaling region: It spans 10 -6 to 105 m 
([BS85, SA86, OA87, SB89, Hir89b]). Obviously, the scaling region and also 
the dimension determined depend on the resolution and detail (to what degree 
sub-faults are included and known) of the fault map. Results based on such 
maps therefore must certainly be regarded as rather crude approximations. 
Bodri[Bod93] showed a very good correlation between the fractal dimension 
of faultlines and the epicentre distribution in the Izu Peninsula, Japan. Like 
in the case of Omori's formula, these findings have been reproduced in rock 
fracture experiments ([HSI87, SirS7b]. 

The Omori law only states temporal scaling for aftershocks but fractality 
of the temporal distribution of earthquakes is a general feature (e.g. [GC95]). 
The spatial distribution of earthquake size has also been shown to scale (e.g. 
[HIY92, HLS+94]). 

Omori's law and the general empirical finding of temporal scaling, to- 
gether with the fractality of the earthquake locations (and their correspond- 
ing spatial density), shows that  the earthquake process is a scaling space-time 
process (cf. section aftershocks). 

Sato [Sat88], by relating the values of fractal dimensions of the hypocentre 
distribution and the distribution of absorbers or scatterers, explains the lin- 
ear relation between the logarithms of maximum amplitude and hypocentral 
distance of seismic waves. Thus the characteristics of seismic waves can be 
described as a function of hypocentral distance using the fractal dimension of 
the absorbers or scatterers. Also the power spectrum of seismic waves often 
obeys an inverse power law in a certain frequency range, indicative of scaling. 

Epicentres and hypocentres are clustered, i.e. their distribution and the 
distribution of seismic energy is non-uniform. If a distribution has a het- 
erogeneous fractal structure, a multifractal analysis is required to resolve it. 
Multifractality has also been confirmed by some authors in recent years. Their 
results and the implications of multifractality are mentioned in [Go196] and 
discussed in more detail in chapters 6 and 7. 





5. The Hurst Phenomenon  

5.1 T h e o r e t i c a l  B a c k g r o u n d  

Many models and methods of analysis (using random selections) are based 
on two popular dogmas of science (cf. also [Kor92]): 

- Natural systems have short time memory: The effects of random perturba- 
tions of duration T decorrelate exponentially with exp(-t/T), i.e. the power 
spectrum will fall off for w(>> l / r )  like w-2 (as is the case with Brownian 
signals). At low frequencies, the lack of long-time correlations produces a 
white spectrum. 

- Small random perturbations cause predictable or neglectable changes in the 
future behaviour of the system. 

Particularly in geoscience, several phenomena however display unexpected 
long-time correlations (long-time memory, long-term persistence) and ex- 
treme sensitivity to initial conditions. The former effect is called the Hurst 
phenomenon, the latter is due to nonlinear dynamics, which is the subject of 
the second part of this work. In both cases fractals have an important role 
to play. 

Hurst ([Hut51, Hur56]) found that fluctuations in Nile River outflows 
displayed unexpected long-time correlations when he wanted to determine 
the optimal storage capacity of the Aswan Dam (for modern references see 
[Man83, Man65, Kle74, Boe88]). 

Here I will restate briefly the original problem to introduce some of the 
terms used later. Following Feder (1988), if X~ is the net inflow of water 
into the dam in~ear t, t = 1, 2 , . . . ,  N, the average inflow over N years is 
X N  = ( l /N)  ~ = 1  Xt. If every year during the N years -~g is released from 
the reservoir, at year t the dam will contain 

X ( t , N )  = E ( X ,  - XN)  = X{ - tXN.  
i = 1  i = 1  

Thus, after N years, X ( N ,  N)  = O. 
Hurst's problem was that the dam should never overflow or go dry during 

N years, i.e. it's capacity had to be larger than the difference R ( N )  between 
the maximum and minimum amounts of water, where 
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R(N)  = max X ( t , N )  - rain X( t ,N ) .  (5.1) 
l < t < N  l < t < N  

R(N)  can be determined for any sequence of (random) numbers and is 
called the range of Xt. Obviously R depends on N and the standard deviation 
a(N)  of the data (which grows with N). 

To exclude the effect of N, Hurst ([HurS1]) introduced the dimensionless 
rescaIed range: 

R(N) (5.2) R*(N) = a ( Y ) "  

A simple experiment in which k coins are tossed N times and where Xt 
is defined to be the difference between the number of heads and the number 
of tails at experiment t yields: R*(N) ~ (~N) ~/2 (a = kl/2). 

But when Hurst et al. ([Hur56]) analysed 120 geophysical and statistical 
time series, they found 

R*(N) o( N H (5.3) 

with H = 0.73 :t: 0.09, i.e. significantly different from the theoretical 0.5 
(The relationship R(N)/cr(N) ~ N H is meant when Hurst's rule is men- 
tioned. Thus also the name R / S  analysis for a Hurst analysis). 

Some possible reasons for such a behaviour conld be ([Boe88]) non-statio- 
narity, pre-asymptotic behaviour or long-time correlations in the stationary 
Xt. 

If the rescaled range is calculated analytically for independent standard 
normal variables ([AL76]) and the local Hurst exponent 

HN = Clog R~v+l - log R~v) / (log ( N + 1) - logN) 

is plotted as a function of N, H can be seen to asymptotically reach 0.5 at 
about N = 10000. For correlated sequences with limited time dependency, H 
approaches it 's theoretical value much later (see [Fed88] for a computer sim- 
ulation of Hurst 's original "biased card" experiment). Thus onlysta t ionary 
processes with auto-correlations falling off slowly as a power of the time lag 
can preserve a H > 0.5 for N ~ c¢. Fract(ion)al Brownian motion (fBm, see 
e.g. section 9.3.3) represents such data. 

A continuous process y(t) is a Brownian process (a continuous-time ran- 
dom walk) if, for any time step At, the differences Ay(t) = y(t + At) - y(t) 
have the following properties: 

1. They are Gaussian (i.e. y(t) is Gaussian). 
2. Their mean is 0. 
3. Their variance is proportional to At, which means, due to item 2, that  

successive differences are uncorrelated. 
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The generalisation to fractal Brownian processes is done by simply re- 
placing property 3 by 

- Their variance is proportional to At 2H 

where 0 < H < 1 is the Hurst exponent (so called by Mandelbrot in [Man77]). 
Ordinary Brownian motion has H = 0.5, i.e. it is uncorrelated white noise. 
Again property 3 is equivalent to a correlation property of successive in- 
crements: In the fractal case, successive increments are correlated with a 
correlation coefficient p which is defined: 

2 2 H  - -  2 
# - -  2 , - 1 / 2 < p < 1 .  (5.4) 

This correlation is independent of the time step and, together with prop- 
erties 1 and 2, characterises the scaling behaviour (thus it's fractal dimension) 
of a fractal process: If y(t) is a fractal process with Hurst exponent H, then, 
for any constant c > 0, the process Yc = (1/cH)y(ct) possesses the same 
statistics (thus, one might require for y(t) to be a ibm: y(t) is statistically in- 
variant with respect to the affine transformation t --4 et, y(t) - 4  cHy(t) which 
shows that  these processes are self-affine rather than self-similar). This prop- 
erty is exploited in the renormalisation approach (the rescaling by c is called 
renormalisation) (cf. also [~1r92]). Another important practical application 
resulting from the above is the fact that  

D = d - H (5.5) 

where d is the Euclidean embedding dimension of a graph ((hyper-)surface), 
D is its fractal (capacity) dimension and H was determined from the trace 
of the graph in d - 1-dimensional space (see e.g. [HS93]). One may thus de- 
termine D of any graph in three dimensions (e.g. a geophysical field) by esti- 
mating H for profiles in arbitrary directions. The latter possibility becomes 
especially interesting for anisotropic (possibly self-affine) data  and will be 
exploited further below. 

The correlation between Yl and Yk for a ibm is (from the scale invariance 
and Eq. (5.4) thus proportional to cr2H(2H - 1)k 2H-2 i lk  >> 1 and H ~ 1/2. 
The power spectrum of a i bm with Hurst exponent H is hence G(f) oc 
f -2g+l  (self-similarity is achieved for H = i and the power spectrum reduces 
to G(f) oc f - i ) .  H is thus simply related to the exponent of the power-law 
autocorrelation function of y(t). 

Furthermore, a power law fall-off of the power spectrum of a fractal curve 
(e.g. a ibm) is expected ([Vos88]): the power spectrum should fall off c< f - ~  
with/3 ~ 2H - 1. This property makes possible an independent check for the 
determination of H (respectively a determination of H by getting 13 or vice 
versa, see e.g. [HS93]). Also the power spectrum of a fractal must obviously 
be broad because no characteristic scales exist. 

Random processes with 1/f-l ike power spectrum are called 1~f-noise or 
flicker-noise or also pink noise. Contrary to the extremes of white noise 
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(G(f) c( fo)  and Brownian noise (G(f) o~ f -2 ,  the integral of white noise, 
cfl also section 9.3.3) 1/f-noise was observed to be the "most natural" for 
modelling natural (geophysical) processes (see for example [CJ89b] for an ap- 
plication in refraction seismics). 1 / f  spectra were concretely observed from 
time series such as for example the velocity of undersea ocean currents, so- 
lar normal modes, sunspot numbers and weekly earthquake frequencies. The 
above mentioned analysis of the secular motion of the earth's pole ([MMT0]) 
also showed this behaviour. In the same paper, a further important property 
of 1/ f  processes is mentioned: Due to the large amount of energy contained at 
low frequencies ("red" spectra) the processes are invariant under averaging, 
i.e. averaging (smoothing) cannot reduce the randomness of the signal. A pos- 
sible explanation for 1/ f  behaviour comes from the theory of self organised 
criticality. 

Flicker noise and the Hurst phenomenon pose the same puzzling question: 
How can a system (an electric resistor in the case of electronics, the temper- 
ature at a specific geographical location in the case of meteorology) carry 
on the influence of a "local" trend over very long time intervals? "By what 
sort of physical mechanism can the influence of, say, the mean temperature 
of this year at a particular geographic location be transmitted over decades 
and centuries?" ([Kle74]). 

Problems related to the interpolation or prediction of processes exhibiting 
the Hurst phenomenon (see for example [MN68, Hew86]) yielded the following 
interpretations of the value of H: 

- For H : 1/2, successive steps are independent and the best prediction is 
the last measured value. 

- For H > 1/2, the local trend over the interval will continue (frequently 
termed persistence). The best prediction is based on an extrapolation of 
the trend. 

- For H < 1/2, the local trend will reverse (antipersistence). The best pre- 
diction tends to the mean value over the interval. 

Mandelbrot and Wallis (1968) introduced the terms "Joseph effect" to 
designate persistent processes with H > 1/2 (after Genesis, 41.29-30, where 
it is observed that seven plentiful years shall be followed by seven years of 
famine) and "Noah effect" for processes with H < 1/2 (after Genesis, 7.11- 
12, where very rapid and large (intermittent, singular) events happen). 

Recent applications of R/S analysis which yielded H > 0.5 include the 
secular component of the earth's polar motion ([MM70]), precipitation data 
([MW69, HS93]), global climatic change (oxygen isotope ratios) ([FS89]), 
reservoir performance (density porosity logs) ([Hew86]). 
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5.2 The Hurst Phenomenon and Earthquakes 

Besides the fact that  weekly earthquake rates show persistence, in that  the 
time series possess a Hurst exponent H > 0.5 (see above), an early example 
of "Hurst analysis" is shown in Fig. 5.1: In this plot from Richter (1958) 
, the cumulative global strain release from large shallow earthquakes from 
1904 to 1955 is shown. The plot strongly resembles the Devil's staircase, a 
plot of the cumulative mass of the Cantor bar (see e.g. [Fed88]), showing 
that  an underlying distribution of earthquakes of a particular H exists. The 
latter in turn already shows that,  even without knowing the value of H,  
the earthquake process possesses long time memory. It is interesting to note 
that  Devil's staircases frequently arise in physical systems with non-linearly 
coupled oscillatory components (see [Bak86]), leading also to "clusters of 
activity" which can easily be observed in Fig. 5.1. 
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Fig. 5.1. StrMn release from 
shallow large earthquakes on 
a worldwide basis exhibit- 
ing the typical shape of 
a Devil's staircase (From 
Elementary Seismology by 
Charles F. Richter. @1958 
by W. H. Freeman and Com- 
pany. Used with permission.) 

A thorough treatment of the Hurst phenomenon in connection with earth- 
quake cycles (i.e. clustered activity, not periodic behaviour) may be found in 
Lomnitz (1994) where the Hurst method is used as a model for the pre- 
diction of the nonlinear clustering process of earthquakes (quiet years tend 
to be followed by quiet years and active years by active years). Figure 5.2 
gives a Hurst diagram of cumulative earthquake energy for Mexico, where 
the large dot represents the 1985 Mexico earthquake. The upper and lower 
dashed lines indicate the range R(N) as determined according to Eq. 5.1, 
D signifies the deviation of the cumulative energy function from its average 
trend. One immediately recognises the resemblance to Fig. 5.1 in that  both 
curves constitute a Devil's staircase. 
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Fig. 5.2. Cumulative earth- 
quake energy for Mexico in 
a Hurst diagram. Dashed 
lines indicate R, D is the 
deviation from the average 
trend (From Fundamentals 
of Earthquake Prediction by 
C. Lomnitz. @1994 by John 
Wiley & Sons, Inc. Reprinted 
by permission of John Wiley 
& Sons, Inc.) 

Lomnitz (1994) has successfully applied the rescaled range analysis to es- 
timate the future maximum magnitude for a given region by first determining 
H for that region and then calculating the range R as 

R(N) = cr(N)(aN) H. 

R here gives an estimate of the total energy that can be released in any given 
time period N. If cr is assumed to be constant, a conservative estimate of the 
upper bound M of the maximum magnitude can be obtained from 

M(N)  = 0.75 log R(N) - 3. 

Ogata and Abe (1991) applied a Hurst analysis to the magnitudes of 
earthquakes in Japan and the world and obtained values of H of about 0.5, 
apparently signifying independence of earthquake events. As pointed out by 
Lomnitz (1994) however, the analysis was meaningless due to two reasons: 
the unphysical magnitude should not have been used as a measure and the 
Hurst analysis should not be applied to large complex regions, where localised 
effects superimpose in such a way that the statistics is destroyed (see also the 
discussion of homogeneous seismogenic structures in appendix B). 



5.3 Application of Hurst Analysis to Seismicity 55 

5.3 Application of Hurst Analysis to Seismicity 

While the idea of the Hurst phenomenon and analysis originates from time 
series analysis, the principles can easily be applied to any "profiles", e.g. 
for determining D (see Eq. (5.5)). In practice, different approaches exist for 
the estimation of H,  a good overview including program listings is given by 
Hastings and Sugihara (1993). The approach based directly on Eqs. (5.1) 
and (5.3) respectively (5.2) and (5.3) is illustrated in Figs. 5.3 to 5.5: Fig. 
5.3 shows a portion of a profile with the lower and upper bounds (R in Eq. 
(5.1)) for a neighbour distance of ! 2 points. The greatest vertical difference 
between the bounds becomes one point (R) in a log N versus log R(N) plot 
from which H can be estimated by linear regression according to Eq. (5.3). 
The procedure is shown in more detail in Fig. 5.4, where a fractal elevation 
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Fig. 5.3. Upper and lower 
bounds of the range of a frac- 
tal profile at 2nd neighbour 
distance (from Russ, 1994) 

profile and a zoom window containing the interval with the largest 1st neigh- 
bottr and 4th neighbour ranges is shown. Thus 2 points for the Hurst plot are 
obtained. The resulting complete plot is given in Fig. 5.5 which was obtained 
by varying N over an appropriate range of N t h  nearest neighbour distances. 
The slope of the log-log plot gives H and therefore, using Eq. (5.5), D. 

Also from Fig. 5.3 or 5.4 it becomes clear that  a single outlier can ruin 
the Hurst statistics--the method is very sensitive to noise. Obviously the 
greater the dynamical range of the signal, the greater the associated range of 
error. In the case of seismic energy for example, the application of the Hurst 
method outlined above is questionable: When converting the magnitude val- 
ues given in earthquake catalogues into seismic energy or seismic moment by 
the formulas given in section 7.2, an error of =k0.1 in the magnitude value 
translates into an error of e.g. -29% to +41% in the energy (cf. [Lom94]). 
Below, I therefore use the rupture size as a measure for earthquake size (see 
section 7.2). 

Here, however, the interest lies in the determination of H as a function 
of direction as a means to detect and characterise anisotropy of the fractal 
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dimension. An obvious and easy approach in the case of epicentre distribu- 
tions would be to simply calculate the fractal dimensions of "Cantor dusts" 
describing the distribution in one direction, i.e. of sets of points obtained 
from the intersections of the epicentre distribution with a line. Such analyses 
have been carried out by e.g. Hubert  and Carbolmel (1991) in the case of 
tropical rainfall da ta  obtained over an area of over 10 000 km 2 by employing 
111 rain gauges. The authors conclude that  the rain fields possess anisotropic 
fractal properties and suggest that  the ardsotropy might be controlled by the 
direction of movement of meteorological perturbations (see e.g. [SL93] for a 
detailed description of anisotropy in the case of atmospheric phenomena). 
The disadvantage, especially in the case of sparse data like epicentre distri- 
butions, is the poor statistics obtained by this method because it only uses 
points along single profiles. 

A statistically more sound approach suitable for two-dimensional arrays 
of a measure (i.e. geophysical fields or, e.g. in materials science, a matrix 
of surface elevation data) is to move a disk of radius r across the data and 
to record the differences between highest and lowest values within the disk 
(see [Rus94]). This, however, is only applicable to isotropic fields because the 
range is determined regardless of direction (the Hurst plot would only report  
the highest fractal dimension encountered in all directions). A generalisation 
which allows to record the range as a function of distance and direction is 
called the Hurst Orientation Transform (HOT). By comparing the values of 
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Hurst Slope= 0.6548 =0,0104 § D=1.345 

Log.Vert.Scalefrom 0.1112 to 1.196 
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Fig. 5.5. Hurst plot (logN 
vs. logR(N)) for the profile 
in Fig. 5.4, giving H as the 
slope (from Russ, 1994) 

the measure for all pairs of values within the Hurst disk of radius r which is 
in turn moved across the field systematically, a table containing the greatest 
differences as a function of orientation and distance is constructed. From the 
HOT table, H can be obtained as a function of orientation to reveal the 
possible anisotropy ([Rus90]). Here, a slightly modified approach had to be 
used due to the sparsity of the earthquake data: Differences between occupied 
and void cells of the fields constructed as input for the Hurst analysis (cf. 
chapter 7, fields were generated in the same way as for multifractal analysis) 
had to be neglected because otherwise the great steps between void and 
occupied would overwhelm the relevant statistics of the areas where seismicity 
occurred. Sparsity of the earthquake fields also prevents the use of Fourier 
analysis for an anisotropy analysis because there is no way to interpolate the 
gaps 1. 

The HOT table itself can be plotted, using brightness as a measure for the 
ranges (see below). From the HOT table, a Hurst plot is constructed from 
each row corresponding to one particular direction. The number of points 
in the table and thus also the number of distinct directions depends on the 
size of the Hurst disk (the larger the disk, the finer the spatial and angular 
resolution). In several experiments, a size of r = 16 was found to be sufficient 
for the fields of 256×256 cells used throughout this work. Obviously, the 
number of points on the individual Hurst plots also varies with direction, so 
that  unfortunately some values of H are more reliable than others. However, 
as the results are only used to compare data sets and no absolute accuracy 
is aimed at, this drawback can be safely ignored. 

1 To a certain extent, it might be possible to use Iterated F~nction Systems to 
fractally interpolate the measure (e.g. [Bar88]) before performing a Fourier anal- 
ysis. 
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Fig. 5.6. Range image of an isotropic field (D = 2.5) with resulting HOT table 
and rose plot of H as a function of direction (see text) 

One example each of an isotropic and an anisotropic field are given in 
Figs. 5.6 and 5.7. Shown are the fields as range images, i.e. as a gray-scale 
rendering where brighter pixels represent higher values, their respective HOT 
matrices (for clarity each position has been enlarged to an area of 3 × 3 pixels) 
and finally their rose plots. The HOT plots show the maximal differences R 
as a function of neighbour distance N (horizontal axis) and direction (vertical 
axis) while the rose plots show H as a function of angle together with the 
major  and minor axes of a least squares fitted ellipse from which the degree of 
anisotropy is estimated. Note that  the degree of anisotropy is not estimated as 
a ratio of the extremal values of H because of the possible unreliability of the 
individual value of H mentioned above. The isotropic example was generated 
by using a fBm with H = 0.5 in two dimensions (see [PS88]), hence a fractal 
dimension of 2.5 in all directions is expected. For the anisotropic example, 
an F F T  method was employed by first generating data  with an appropriate 
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slope in the log(power) versus log(frequency) plot in Fourier space and then 
retransforming it into the time domain with phase randomisation (see also 
[PS88] for details). The latter method would produce an isotropic fractal if 
not two slope values were used which produce a maximum and minimum 
fractal dimension orthogonal to each other. Here slope values of 0.8 and 0.1 
were used, resulting in extremal fractal dimensions of 2.2 and 2.9. 

The resulting D-values as obtained for the isotropic case varied between 
2.30=L0.15 and 2.65±0.07 (average 2.55), the ratio of the ellipse axes (other- 
wise called degree of anisotropy here) was 0.96, i.e. close to unity as expected 
for the isotropic case. The orientation of the ellipse, i.e. the direction of ex- 
tremal fractal dimension with respect to a horizontal line (i.e. geographic 
North), was found to be about 25 ° which was in relative good agreement 
with the expected 30 °. In the anisotropic case, a degree of anisotropy of 0.52 
and fractal dimensions in the range of 1.93 to 2.92 resulted. 

Fig. 5.7. Range image of an anisotropic field (D = 2.2 - 2.9) with resulting HOT 
table and rose plot of H as a function of direction (see text) 
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To conclude this section, it should be pointed out that fractal anisotropy 
may of course vary with thresholding the data, i.e. anisotropic multifractMs 
exist (e.g. [SL93]). Here however, the analysis of directionality of the fractal 
dimension is carried out separately from multifractal analyses. 



6. Mult i fracta l  Spec tra  as Precursors  

6.1  M u l t i f r a c t a l  E a r t h q u a k e  P r e c u r s o r s  

As has been pointed out earlier, (cf. also [Mei94]) a single fractal dimension 
is generally not very useful to characterise changes in temporal or spatial 
seismicity patterns and therefore quite useless in the search for possible pre- 
cursors. Again, this is not surprising as the earthquake process belongs to 
the class of phenomena which produce multifractal measures. Seismicity pat- 
terns are therefore inhomogeneous and changes are expected to show up the 
clearest in changes in the degree of heterogeneity, not in properties of the 
support , i.e. Do, or also D2. 

While the multifractality of earthquake patterns has been firmly estab- 
fished by now, only very little on the use of multifractal spectra respec- 
tively their change with time as a precursor may be found in the litera~ 
ture. This is so although several authors mention the exciting possibility 
(e.g. [HI91, GC95, HIY92]) and announce further research in this direction. 

In fact only two sources are known to me where the problem is approached: 
Haikun (1993) presented a talk entitled "The Multifractal Local Scaling Fea- 
ture of Spatial 'Energy Generating' and its Seismic Precursory Information" 
at the International Symposium on Fractals and Dynamic Systems in Geo- 
science in Frankfurt in which he discusses precursory changes of the f (a)  - a 
curve. Besides the theoretical study of the spatial partitioning of seismic en- 
ergy, he analysed earthquake catalogues for the years 1970-1991 for the Da- 
tong area, China, for multifractal features. For all three moderately strong 
earthquakes in 1976, 1989 and 1991, repeatable pre- and post-seismic fea- 
tures in the ] (a)  - a curves are mentioned in [Hai93]: several years before an 
earthquake, the curve changes from "about symmetrical or a little low with 
the right side to much low with the left side". Also the range in a, i.e. the 
opening of the upside-down parabola, became wider and the maximum, i.e. 
f(ao), moved to the right. Haikun (1993) found by computer modelling that 
this behaviour corresponds to a transition from stochastic to ordered and 
clustered patterns and that the seismic energy distribution changed from 
homogeneous to inhomogeneous. He also found that this process ended 1-2 
years before the main shock. After the main shock, he observed the reversed 
behaviour. In only one case, before the 1989 Datong-Yanggao earthquake, 
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the multifractal spectrum showed a transition from "ordered (i.e. clustered) 
to disordered" during a short period. 

He concludes that  the temporal variations in Aa and A ]  "provide some 
message for medium forecast". The variation in Aa is caused by a simul- 
taneous translation of am~,~ and a, ,ax while the variation in Af is mainly 
caused by a changing f(ami,~). He explains that  the latter means that  the 
" A a  seismic precursory information" comes from both the vicinities of very 
small measure as well as the very high areas (i.e., for the occurrence probabil- 
ity measure: sparsely populated and highly clustered areas within the area of 
observation) while the A f  information is caused almost exclusively by large 
values within the measure (e.g. larger earthquake events respectively dense 
clusters ). Finally Haikun (1993) summarises that  the pre-seismically expand- 
ing Aa indicates an increase in the range of local scaling properties which 
implies increasing complexity and that  the shift of f(Cto) to higher values 
of a shows that  areas of high values of the measure increase while almost 
void areas expand. The latter in turn implies a rising energy concentration. 
Although he also mentions a change in A f  = f ( a m a , )  - f ( a m i n ) ,  it is not 
mentioned which extremal value of a is the cause and whether the respective 
values of f increase or decrease. 

Details of Haikun's (1993) analysis are unfortunately not available. It 
would have been important  to know the spatial extent respectively the choice 
of seismogenic structures included, the size of the temporal window and the 
data  sets at large as well as the absolute values obtained. The latter would 
have been interesting for a comparison. The problem of area choice is ad- 
dressed further below. Here the question is whether Haikun analysed areas 
peculiar to each of the three mentioned earthquakes or whether he regarded 
the Datong area as a whole (the word "local" in the title of his presentation 
refers to the local scaling exponent a,  not to local seismicity). However, in 
spite of these shortcomings, a schematic illustration of the above mentioned 
findings is given in Fig. 6.1. It  allows a discussion of Haikun's (1993) in- 
terpretations, also in the tight of Chapter 3. Looking at Fig. 6.1, one may 
summarise and add to Haikun's (1993) interpretation: 

- The increase in Aa  indeed means a transition from homogeneous (random, 
space tilting) to heterogeneous (ordered, complex, clustered) patterns. 

- The shift to the right of O~rnin means that  the clustering within the most 
clustered areas becomes more intense (th~ local fractal dimension increases 
within these vicinities). 

- The analogous shift of area, indicates that  the clustering within the sparse 
areas also increases. Thus the degree of clustering increases overall. 

- The increase of a0 shows that  most clusters now possess a higher local 
fractal dimension than before. Should a0, for the case of epicentres with an 
embedding dimension of 2, increase from below 2 to above 2, it would mean 
that  before a major earthquake most clusters are surrounded by denser 
clusters while before most events were surrounded by sparser clusters. 
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Fig. 6.1. Schematic Illustra- 
tion of the precursory be- 
haviour of multifractal spec- 
tra as observed by Haikun 
(1993): The f(c~) - ~  curve 
changes from the solid one to 
the dashed one several years 
before a major earthquake 
O c c u r s  

- As f(c~) tells how many clusters of a given a exist, it would have been 
important  to know whether e.g. f (~0)  also changed. An increase in f(~0) 
would mean an increase in D0--which, see above, is not usually observed. 

- The mentioned increase in A f ,  without further details, only tells that  a 
change occurred in the ratio of highly clustered and sparsely populated 
areas. 

In chapter 7, the above findings will be tested on data sets from Japan. 
The second work which explicitly addresses multifractal precursors is the 

one by Hirabayashi et al. (1992). While the main focus of that  paper is on 
showing that  seismicity from three major regions (California, Greece and 
Eastern Japan) constitutes multifractal measures, the last section is enti- 
tled "Temporal  Change of the Multifractal Distribution". There, the authors 
analyse the temporal  behaviour of the spectrum of generalised dimensions 
(the Dq curve) obtained from the epicentre distributions. 

The authors mention the contradicting requirements of as short as possi- 
ble data  sets to be able to detect sudden changes and of as long as possible 
temporal  windows to achieve sufficient numerical accuracy. They compromise 
in using windows of 500 events, pointing out that  the absolute values of Dq 
are not reliable then but  that  the relative changes may still be considered 
significant. The analysis was carried out with windows which overlapped 250 
events. Important  is the fact of keeping the number of events constant to 
ensure comparable results--i t  seems physically desirable to keep the time 
interval constant to include the temporal  dynamics of the seismicity pat- 
tern but  then the number of events would vary extremely due to the strong 
spatio-temporal coupling as shown by, e.g., the Omori law. It seems that  the 
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temporal behaviour itself has to be addressed separately as has been done in 
section 7.3.1. 

Figures 6.2 to 6.5 show results ([HIY92]) given as examples for California 
and Japan: the upper part of Fig. 6.2 shows the earthquake frequency per 
10 days of Californian earthquakes for 1971-1985, the lower part selectively 
shows the temporal behaviour for D-2 and D2, i.e. the correlation dimension. 
Most notable is the increased activity around event number 3000 where the 
strongest earthquake of magnitude m = 6.1 occurred and the corresponding 
increase in D-2. Again it is confirmed that D2 alone is not useful for the 
distinction of anomalous seismicity patterns. Although it might seem here 
that e.g. D-2 would be a sufficient measure, Fig. 6.3 is even more convincing 
and yields much additional information. The left part shows a Dq spectrum 
for the Californian earthquakes for a "normal", quiet period (here events 
number 0 to 500) while the right part shows the spectrum for the period 3000 
to 5000. The transition from almost monofractal to a definite multifractal is 
very obvious. Recalling the relationship between the Dq and f (a )  - a curve 
(section 2.2.6) the change shown in Fig. 6.3 may be described to be very 
similar to the observations by Haikun (1993) in "](a)  - a terminology". 
Here, however, a significant increase in Do may also be observed, i.e. f(ao) 
goes up, the density of the support increases. Unfortunately the steep Dq 
curve was obtained during the earthquake, not before, so its precursory value 
is not evident here. The change in D-2 shown in Fig. 6.2, however, might 
possess precursory quality. 
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Fig. 6.2. 10-daily 
frequency of earth- 
quakes in California 
with events of 
m > 6.0 indicated 
by crosses (upper 
part) and the tem- 
poral behaviour of 
D2 and D-2 of the 
epicentre distribution 
(from Hirabayashi et 
al. (1992)) 

Looking at the lower part of Fig. 6.2, the question of how to represent, 
respectively compare, multifractal spectra over time comes to mind: it would 
certainly be as impractical to plot many f ( a ) - a  curves as it would be to plot 
the curves for a]l values of q as is done in Fig. 6.2 for q = 2, -2.  Instead one 
might want to summarise the multifractal properties into the non-uniformity 
factor 
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Do 

For a monofractal, A should thus be close to 0, while for a multifractal, the 
non-uniformity factor may theoretically assume any real value > 0. Changes 
of the capacity dimension of the support are taken care of by the normalisa- 
tion by the denominator so that  A is really comparable throughout different 
time windows. Although A can of course not completely describe the spectra, 
it will be convem'ent in the representation of temporal  changes of multifractal 
properties in chapter 7 where it is also used for the first time in multifractal 
applications. Experience throughout this work has shown, however, that ,  due 
to largely varying scaling limits as a function of q, the lower limit for q which 
can still be safely determined, varies from dataset to dataset. Therefore a 
simplified non-uniformity factor A r ---- ( D - 2  - D 2 ) / D o  is determined where 
indicated. 
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m > 6.5 indicated 

| |  by crosses (from 
_L~.. Hirabayashi et al. 
lsoO DAY (1992)) 

Figures 6.4 and 6.5 show similar results for Japanese earthquakes of the 
time 1983-1987. The same phenomenon, namely the transition from gently 
sloped to steep Dq curves is observed although even the gentle type has a 
more definite multifractal character than the gentle Californian spectrum, 
indicating that  seismicity in Japan is generally more inhomogeneous than 
in California. The steep spectrum in Fig. 6.5 was obtained during the in- 
terval centred on event number 556 where an m - 7.7 earthquake occurred. 
Hirabayashi et al. (1992) point out that  in the case of Japan, steep Dq spectra 
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were also found in quiet periods, e.g. period 3500-4000, indicating a worse cor- 
respondence of seismic activity and Dq curve for Japan than for California. 
Inspecting Fig. 6.4, however, one notices that  the offending interval starts 
shortly after a major earthquake, thus making it possible that  the reverse 
transition had not yet taken place (completely). 
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Fig. 6.5. Gentle multifractal 
Dq curve (left) and extreme 
multifractal spectrum (right) 
for seismically quiet and ac- 
tive intervals respectively of 
the data in Fig. 6.4 (from 
Hirabayashi et al. (1992)) 

In conclusion, Hirabayashi et al. (1992) regard the continuous observation 
of Dq as a promising method to detect anomalous changes of seismicity, 
emphasising the great sensitivity of Dq for q < 0. For prediction purposes, the 
size of the area should be restricted and the lower magnitude cutoff decreased 
to include microseismicity.The latter two statements are important and are 
addressed again further below. 

6 . 2  M u l t i f r a c t a l  P h a s e  T r a n s i t i o n s  

After the (semi-)empirical evidence for multifractal precursors or at least 
multifractal changes in connection with anomalous seismicity given in the 
previous section, it is interesting to take at least a superficial look at the 
possible theoretical reasons for (abrupt) changes in the f ( a )  - v~ curve before 
major earthquakes: 

The connection between earthquakes and turbulence was already men- 
tioned in Hirabayashi et al. (1992). The first fractal model of turbulence 
was monofractal ([FSNT8]) and could not explain the intermittent (nonlin- 
ear) fluctuations of velocities ([BPPV84]). Meneveau and Sreenivasan (1987) 
experimentally found the dissipation field to be multifractal by analysing one- 
dimensional sections of turbulent flow. During that work, it was found that  
Do was 1, e.g. there are no areas within a turbulent flow where absolutely 
no dissipation occurs. The capacity dimension of epicentre distributions is 
usually close to 2, i.e. there are no earthquake-free areas either. Revision of 
the physical model for turbulence led to multifractals as described in [Go196] 
where the basic idea of cascade processes was introduced. Earthquakes might 
be regarded to be analogous to the vortices in turbulent flow where energy 
is dissipated. 
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It thus becomes obvious that earthquakes may be regarded as turbulence 
in solids (cf. [HIY92]). However, earthquakes are coupled in space and time, 
i.e. they are an integrated spatio-temporal phenomenon which is even more 
complicated than turbulence. Consequently a theoretical model for earth- 
quakes must be considered elusive in the near future. Current studies focus 
on the implications of self-organised criticality and the properties of cellular 
automata. 

While the analogy between earthquakes and turbulence is established by 
the above facts, it remains a question why the multifractal spectrum should 
reflect anomalous seismicity or even show precursory behaviour before a ma- 
jor earthquake. This question is closely related to phase transitions and there- 
fore critical states, universality and possibly chaos. Here however, only the 
connection between phase transitions and the multifractal spectrum as a de- 
scriptor of the "energy dissipation field" will be given. The energy dissipation 
field corresponds to the distribution of seismic energy in the crust, or, as an- 
other measure of seismic activity, the spatial density of epicentres. As already 
mentioned before, a further analogy exists between multifractals and thermo- 
dynamics ([Ott93]) in that f and a correspond to the entropy (cf. [Go196]) 
and internal energy per unit volume respectively. Certain changes in the mul- 
tifractal spectrum are also referred to as multifractal phase transitions (e.g. 
[Hoo93] in connection with earthquakes). 

A classical example of a (second order or continuous) phase transition, 
which will also explain the occurrence of scaling, is the transition of water 
to vapour. At a pressure of 1 at, the boiling point of water is 100°C. At the 
transition from liquid to vaporous state, the volume of a given mass expands 
suddenly to about 1600 times its original volume, i.e. the phase transition is 
accompanied by an abrupt jump in the density (the phase transition w.r.t. 
the density is of first order). If the external pressure is increased, the boiling 
point raises while the difference in density tends to 0 at the critical point 
(218 at at 647 K). At this point, the dry vapour has the same density as 
the boiling liquid, i.e. the two phases cannot be distinguished. Steam bubbles 
and water droplets are mixed together at all scales, making the substance 
scale invariant, i.e. fractal. Near the critical point, the substance becomes 
milky (opalescent) because the droplets reach a dimension of the order of the 
wavelength of light. The latter might lie regarded as a macroscopic precursor 
which is easily observable and which is due to the divergence of correlation 
length at microscopic scales (which might not be observable). In the lat- 
ter case, patterns change from non-fractal to fractal. Another example of 
"pattern change" is given by the transition from magnetic to non-magnetic 
in ferromagnets: as the temperature approaches the Curie temperature, the 
magnetisation M goes to zero (with no outer magnetic field) and the formerly 
parallel, i.e. ordered, elementary magnets cannot interact anymore (the cor- 
relation length diverges) and become disordered. The magnetic transition is 
thus accompanied by a change from order to disorder. Again a power law 
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applies near the critical temperature Tcr: 

M c< IT - Tc~ t z .  

If one wants to carry the idea of "seismic phase transitions" further, one 
might possibly say that the transition from one seismic pattern to another 
(be it from random to complex or vice versa, but significant in the singu- 
larity spectrum and hence a "multifractal phase transition") during a major 
earthquake is accompanied by the sudden release of an enormous amount of 
seismic energy (an analogous formulation can be made when regarding the 
energy release as the primary characteristic, then being accompanied by a 
sudden change in epicentre distribution). Indeed the fact that seismicity pat- 
terns seem to possess scaling at all stages of the seismic cycle supports the 
assumption that the earth's crust is in a constant critical state (as suggested 
by the theory of seff-organised criticality). 

To end this section, it should be summarised that phase transitions in gen- 
eral are singularities of some characteristic quantity (e.g. the energy) at cer- 
tain critical parameter values. As the multifractal spectrum is the spectrum of 
singularities (earthquakes: in the epicentre probability distribution or in the 
distribution of seismic energy), it shows the singular behaviour near critical 
points. The theoretical Dq or f ( a )  - a curve becomes non-differentiable (see 
e.g. [OGY89]). Examples of such curves for certain models (maps) showing 
chaotic behaviour are shown in Figs. 6.6 and 6,7. Due to numerical limita- 
tions, such shapes will never be discernible in spectra obtained from limited 
data sets, but significant deviations from the usual "upside-down parabola" 
(cf. [Go196]) and relative changes might be detectable. 
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Fig. 6.6. Example of an 
](a) spectrum obtained 
from a singular probability 
distribution at the critical 
point of a phase transition 
(from Beck and SchlSgl 
(1993)) 

Extensive literature on phase transitions exists (e.g. [BS93] and references 
therein) and a treatment in the context of earthquakes and seff-organised 
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criticality may be found in Hooge et al. (1994). In the latter paper (see also 
[Hoo93]) it is also stated that the seismic process satisfies the requirements for 
a first order phase transition. While this has implications for the predictability 
of earthquakes, the issue of predictability if addressed in Part 2 of this work-- 
here only empirical evidence for multifractal precursors is sought. 





7. Fractal Precursory Behaviour 

7 . 1  T h e  D a t a  

(Multi)-fractal observations seem promising for the detection of anomalous 
seismicity or even precursory behaviour. In this chapter, most of the frac- 
tal concepts introduced earlier will be applied to the temporal evolution of 
seismicity prior to the m = 6.9 Hyogo-ken Nanbu (Kobe) earthquake which 
occurred on Jan. 17, 1995 at 34.601 ° lat. N, 135.032 °lon.  E near Kobe, Japan 
(see e.g. lEER95, EQE95] for seismological and other details and Fig. 8.1). 

The data  used in this analysis was produced by Abuyama Observatory of 
Disaster Prevention Research Institute, Kyoto University and kindly made 
available by Dr. Hiroshi Katao. The obtained catalogue started in January 
1976 and reached up to the main shock of interest here. During that  time no 
major change in the seismometric network occurred, i.e. sensitivity can be 
regarded to be constant. The lower magnitude cutoff for completeness of the 
record is about 1.5 ([Kat95]). 

From the original data, a region was selected according to the following 
criteria: 

- Be more or less centred around the epicentre of the main shock 
- Contain as many data  points as possible 
- Do not cut through apparent seismogenic structures at the borders 
- Have a size so as not to include too many, possibly unrelated, different 

seismogenic zones 
- Have a size so as not to be too localised, i.e. sparse 
- Do not contain a high density of events at the boundaries 
- Be roughly square 

The conditions given above partially reflect geophysical considerations 
such as not to include zones of different seismicity and partially show the 
constraints imposed by numerical considerations. Following the above rules, 
the area of 33.7 ° lat. N to 35.7 ° lat. N and 134.3 ° lon. E to 136.3 ° l o n .  
E was selected for analysis. After elimination of events of magnitude < 1.5 
and undetermined events, a catalogue of less than 10 000 events resulted. 
Therefore the lower completeness level was ignored in favour of more data 
points and the inclusion of microseismicity (as suggested in [HIY92]). Due 
to the above mentioned continuity of the network, one may assume that  the 
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missing events axe not concentrated in a certain period, thus having little or 
no influence on the relative changes of multifractal properties. The minimum 
detected magnitude was 0.1 and the thus resulting data comprised 26 472 
events. The obtained epicentre distribution is shown in Fig. 7.1. 
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Fig. 7.1. Epicentral distri- 
bution of the catalogue se- 
lected for the search of pos- 
sible precursory fractal be- 
haviour 

7.2 Overall Propert ies  

The overall fractal properties of the earthquake fields were determined in 
analogy to the analysis of the landslide fields in Chapter 3 before looking at 
their temporal  variation. 

As mentioned in [Go196], the extreme nonlinear variability of seismic en- 
ergy and seismic moment poses severe problems for statistical analyses like 
the one employed to determine the multifractal spectra. The data possesses 
no central tendency any more which is required for the existence of statis- 
tical moments and together with the sparsity of the data  makes these fields 
inappropriate for analysis. Section 5.3 furthermore shows that  the errors re- 
sulting after the conversion of magnitude to seismic moment or energy are 
of far too big order. To allow an analysis of a measure describing earthquake 
"size" in addition to probability of occurrence (in analogy to landslide size 
and occurrence probability in Chapter 3) however, another measure may be 
employed. 

Following ~ r c o t t e  (1992), the rupture area A associated with each earth- 
quake was determined from the magnitudes m as follows. First the seismic 
moment M was determined from 
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log M = cm + d 

where c was taken to be 1.5 (cf. [KA75]) and d = 9.1 (cf. [HK79, KanT8]) 
(the total  energy in the seismic waves generated by the earthquake may be 
obtained for c = 1.44 and d = 5.24). Then A was obtained from 

M = a A  3/2 

(cf. [KA75]) where cr was assumed to be 3.27×106 (cf. [Tur92]). 
Aki (1981) has used the above equations in connection with the Gutenberg- 

Richter law 
log N ( m )  = - b i n  + a (7.1) 

where N ( m )  is the number of earthquakes with (surface) magnitude m = 
m ± 0.1m and a and b are constants, to establish a theoretical relation 
between the well-known "b-value" (the slope in the log N ( m )  versus ra plot) 
and the fractal dimension D of the epicentre distribution. He obtained the 
simple relation 

D = 2b. (7.2) 

The relation seems to hold approximately at first sight because the b-value 
varies between 0.8 and 1.2 for local as well as global areas (e.g. [Eve70]) and 
the (capacity) dimension of epicentre distributions varies roughly between 1.6 
and almost 2. A direct empirical verification of Eq. (7.2) failed in the case of 
seismicity in the Tohoku region, however, when Hirata (1989) found a nega- 
tive correlation between b and D. See also [Hoo93] for a criticism regarding 
the frequency-magnitude relation (7.1) as a scaling relation. More impor- 
tant  is the fact that  neither D alone, nor the b-value have shown consistent 
precursory quality which is why the b-value is not regarded any further. 

Unfortunately, multifractal analysis of the rupture area field (as in the 
case of Hokkaido landslide sizes in Chapter 3) still proved impossible due to 
very poor scaling behaviour. It  is not clear if this was caused by too large 
an error in the data  or by the limited number of data points (recall also 
that  the accuracy of results does not depend on the number of data points 
alone, but  also on the nature of the data itself; cf. the comparison between 
deterministic and random fractals in Chapter 3). The rupture area field is 
shown nevertheless in Fig. 7.2 together with the probability of occurrence 
field for comparison. Also the converted measure for earthquake size was 
used in a one dimensional analysis and an isotropy analysis below. 

It  should be pointed out that ,  when regarding the rupture size of earth- 
quakes, the events cannot be assumed to be point processes anymore. Indeed 
the events become intrinsically anisotropic in that  they have a certain lin- 
ear extent in a certain direction. If, as in Fig. 7.2, the rupture area field is 
regarded below a certain cell size, the representation becomes unphysical at 
least for those events or cells which support a cumulative rupture size greater 
than the area of the cell. For Fig. 7.2, this limit is 9 km 2 which is in fact sur- 
passed in several cases (the maximum urmormalised cumulative rupture area 
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was 21.10 km2). It is not immediately obvious how to deal with this problem 
in the case of a multifractal analysis and Hooge et al. (1994) simply defer the 
problem by saying that only very few events have rupture areas larger than 
their highest resolution cell size of 2 km 2 (they announce, however, future 
research involving Lie analysis which would include tensorial information). 

Figure 7.2 prominently displays the very different overall behaviours of 
earthquake location and size for the selected area. The big dominant cluster 
towards the NE of the area (cf. Fig. 7.1) possesses the highest probabilities for 
the occurrence of earthquakes (the highest peak represents 704 earthquakes 
in 9 km 2 when not normalised) while the large events are scattered over 
the whole area. The area of the dominant cluster might thus be regarded to 
continuously release seismic energy at a small scale while large events happen 
intermittently in the whole area. The temporal evolution that led to the fields 
regarded here is the object of research below. From the lower part of Fig. 7.2 it 
also becomes clear that even the smoother measure of earthquake rupture size 
(smooth in comparison to seismic energy or moment) is dominated by a few 
peaks. This is quite different from the properties of landslide fields as shown 
in Fig. 3.2 in Chapter 3. The latter might well explain the inapplicability of 
the multifractal analysis method employed here. 

7.2.1 Mul t i f rac ta l  Spec t rum 

As summarised in Chapter 3, the list of publications concerned with the 
multifractal analysis of earthquake catalogues (mainly the two-dimensional 
epicentre distribution), is rather short: 

Geilikman et.al (1990) point out that it is not sufficient to characterise 
the purely geometric properties of the spatial distribution of seismicity only 
(monofractal approach), but that the probabilities with which any given parts 
are visited must also be taken into account (multifractal approach). The au- 
thors analyse seismicity in the three seismic regions Pamir-Tyan Shah, Cau- 
casus and California, considering catalogues of as little as 1651 up to 8963 
events. The sizes of the areas were 100 × 100 km or smaller. Shown finally are 
the f (a )  - ~ curves and an interpretation according to the most and least 
intensive clustering and the number of such clusters is given, a,~n is found 
to be about 1.1 on average, amax lies at 4.2, the respective extremal values of 
f are 0.07 and 0.21. The regional variation in f(amin) and f(amax) is much 
greater than the variation in the extremal local scaling exponents. While s0 
tends to be about 2.0 for all regions, the overall shape of the multifractal 
spectra thus varies considerably from region to region. The conclusions of 
Geilikman et.al (1990) are that seismicity may and must be characterised 
by multifractal analysis and that further investigation into the use within 
earthquake prediction must be carried out. The difference of the muttifractal 
spectra from region to region is interesting to note because it does not agree 
well with the idea of earthquakes as a universal multifractal (cf. [Go196]) as 
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Fig. 7.2. Perspective three-dimensional views of the epicentre distribution (above) 
and the earthquake size distribution (below) in the area selected for analysis of 
possible precursory fractal behaviour. The fields were generated by calculating the 
normalised cumulative probabilities and sizes for 3 km by 3 km cells and thus 
represent the respective measures at that resolution 

put  forward by Hooge et at. (1994). Recall that  universality of the earth- 
quake process would mean independence of the seismic process of many of 
the geological details (cf. also [Fed88]). In fact, universality would probably 
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imply that observation of spatial and temporal clustering of earthquakes is 
not useful for earthquake prediction. 

Hirata and Imoto (1991) did a multifractal analysis of the hypocentre dis- 
tribution of micro-earthquakes in the Kanto region of Japan. They analysed a 
data set of 7013 events of m >=  2 in a region of approximately 180×220×60 
km in determining Dq for q > 0. Do~ was estimated to be about 1.7 while 
D1, the information dimension, was about 2.18, thus confirming the hetero- 
geneous character of the fractal distribution: The authors conclude that their 
preliminary incomplete result should be enhanced by determination of the 
f ( a )  - a spectrum and that such an approach would foster understanding of 
the fracture process in heterogeneous media. 

The paper by Hirabayashi et al. (1992) [H1-Y92] has been mentioned in 
several places already because it not only analyses epicentre distributions but 
also the distribution of hypocentres and seismic energy. The results are not to 
be repeated here but one of the main findings is that the distribution of seis- 
mic energy is much more heterogeneous than the distribution of occurrence 
probability (cf. Chapter 3 for similar findings for landslides). Furthermore, 
that paper is the only one considering the temporal variation of multifractal 
properties of the spatial distribution of seismicity (cf. Section 6). 

Finally, Hooge (1993) and Hooge et.al (1994) take a more theoretical 
approach to multifractality of earthquakes and present ideas concerning mul- 
tifractal phase transitions (c£ Section 6) which supposedly lead to self- 
organised criticality and (multi-)fractality in earthquakes. In this case, not 
only occurrence probabilities, but their generalisations (one of which is seis- 
mic energy) are analysed. Formalism, method and presentation of results does 
not follow the formalisms presented here and generally employed throughout 
all the other sources so that numerical comparisons are difficult. Main point 
of interest here, however, is the confirmation of multifractality, i.e. intermit- 
tency of the earthquake process. More detailed discussions of the results are 
given wherever applicable. 

Ep icen t re  Dis t r ibu t ion .  The overall multifractal properties of the data 
selected here are displayed in Fig. 7.3. One notices a very heterogeneous 
multifractal with a A a  even greater than for the distribution of landslide 
sizes as given in Chapter 3. Accordingly, the non-uniformity factors A and 
A' were 2.09 and 1.24, respectively. No multiscaling was apparent during 
determination of the slopes, the scaling region extending from 13.87 km to 
178.84 kin, i.e. almost up to the extent of the observation area. Following the 
line of argument in [Go196], one may say that the present result once more 
confirms the multifractality of the earthquake phenomenon. 

Tempora l  Dis t r ibu t ion .  Only Godano and Caruso (1995) have analysed 
the multifractal properties of the temporal distribution of earthquakes (not 
to be confused with the analysis of the temporal behaviour of spatial 
distribution--there, the only reference is [HIY92]). These authors confirm 
the multifractality of temporal clustering of earthquakes and point out that 
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Fig. 7.3. Spectrum of generalised dimensions and multifractal f ( a ) - a  curve for the 
epicentre distribution of the catalogue selected for analysis of possible precursory 
behaviour 

this implies tha t  the clustering cannot be regarded to be constant, thus mak- 
ing it impossible to model the distribution of earthquakes by a Poissonian 
process. For earthquakes on a Hawaiian island and in five different regions 
in Italy, the above authors find Dq curves with a varying degree of inho- 
mogeneity: the max imum D _ ~  is about  1.5, the minimum Doo is about  0.1. 
The authors conclude tha t  a continuous monitoring of multifractal properties 
could be a major  enhancement to earthquake prediction but  conduct no such 
research. 

In  the multifractal  analysis of the temporal  distribution of earthquakes in 
the selected area, a one dimensional da ta  set of cumulative times of occur- 
rences was generated first. Such a da ta  set is analogous to a Cantor set and 
requires much less calculation t ime than a field and also yields more accurate 
results. The results are displayed in Fig. 7.4. The l o g -  log plots were very 
convincing in tha t  they produced linear fits with a very small mean square 
error over a very wide range of cumulative t ime (the whole range was 0 to 
7 .421. . .  × 1014 secs, the scaling region went from 2.264 × 108 to 1.855 x 1012 
secs). The non-uniformity factors were A = 0.53=h0.01 and A r = 0.13±0.008. 
Interestingly, the Dq curve has a very gentle slope for q < 0, i.e. saturates 
quickly towards D _ ~ ,  while the convergence to D ~  is very steep. The lat ter  
implies tha t  the sparsely populated temporal  vicinities are less heterogeneous 
than  the intervals in which many  earthquakes occur. Thus results the leaning 
f(c~) - ~ curve with a large f (ama~) .  Such a multifractal spectrum indicates 
tha t  there are many  more sparsely populated intervals within the multifrac- 
tal  t han  there are der~sely populated ones. I t  will be interesting to observe 
the tempora l  fluctuation of this ratio during the evolution of seismicity. Note 
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that f (a0 )  is very close to 1, indicating that in general there are no times 
were no earthquakes can occur. 

~85 

975 

E7 

065 

0.6 

0.55 

5,~ ~ 

03 

i 

\ 

4 ~ 4 -2 2 4 5 8 

1j 

J 
I 
I 

I 

L' I 
I 

1.2 I 

0 

/ 
t 

~ a  

Fig. 7.4. Spectrum of generalised dimensions and multifractal/(a) - a curve for 
the temporal distribution of earthquakes selected for analysis of possible precursory 
behaviour 

7 .2 .2  H O T  A n a l y s i s  

Fig. 7.5 shows the results of a Hurst Oriented transform and the consequent 
Hurst exponents as a function of direction. One notices the rather "spiky" 
form of the rose plot which is the result of the sparsity of the data (this 
effect prevails in spite of the neglection of differences between occupied and 
void cells or better, results from this technique--but otherwise no meaningful 
results would be obtained at all). Despite the above mentioned drawback, the 
orientation of the majo r axis was found to be 73.45 ° and the ratio of the axes 
was 0.60, indicating a certain degree of anisotropy of the fractal dimension 
of the epicentre distribution. Indeed the fractal dimension varied between 
about 1.99 to about 1.67 with a mean value of 1 .84i0.12.  Theoretically, the 
latter value should agree with the result for Do of e.g. a box-counting analysis 
and with f (~0)-  Comparing Fig. 7.3, one finds such a rough agreement but, 
as pointed out earlier, Hurst analysis yields no accurate absolute results for 
D. Looking at Fig. 7.6 where the results for the earthquake rupture size 
field are given reveals the inapplicability of the HOT transform for sparse 
intermittent data: especially the HOT table shows that the determined ranges 
are dominated by a few Comparatively very large values; discontinuities in 
the individual Hurst plots for each row (i.e. direction) are therefore to be 
expected. Thus results the even more singular rose plot in Fig. 7.6 which must 



7.2 Overall Properties 79 

/ /  i 

~F 

Fig. 7.5. HOT table and rose plot of H for the distribution of epicentres 

be interpreted with care. The highest fractal dimension of about 1.79 occurs in 
a direction of 46.38 °, the lowest value of D is roughly 0.93. The average fractal 
dimension is 1.33±0.35, the degree of anisotropy is 0.5. Again, comparison 
between data sets of  different overall characteristics are not meaningful but 
one might conclude that the size field is more anisotropic than the epicentre 
distribution field. Also it possesses generally a lower fractal dimension. A 
comparison of these results with the anisotropic properties of  an aftershock 
sequence will be carried out in Section 8.3. 
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Fig. T.6. HOT table and rose plot of H for the distribution of rupture areas 
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A moving analysis of the directionality of the fractal earthquake fields (at 
least the epicentre distribution field) would certainly be interesting because 
tlle distribution of epicentres as well as earthquake size reflects the stress 
fields in the crust (cf. also [0U86]). The latter fields might undergo some re- 
orientation or re-distribution in the seismic cycle which might well show up 
in the directionality of the fractal fields regarded here. Due to computational 
limitations however, such an analysis has been postponed to consequent re- 
search. 

7.2.3 Conf igura t ion  En t ropy  

The configuration entropy, its implementation and its application to geo- 
physical fields as well as its interpretation has been discussed in Chapter 3 
and is applied here in a similar way. An entropy analysis of the data con- 
sidered here yielded the curve shown in Fig. 7.7. One notices a typical curve 
as expected for a multifractal of low lacunarity. The latter finding explains 
why the log - log plots used for the determination of Dq and f(a) showed 
smooth linear behaviour without any steps. The low value of r* at about 810 
m will be of interest when comparing the respective corresponding values in 
the moving analysis. As pointed out earlier, the value of H* is only of inter- 
est when comparing data sets of the same overall characteristics (i.e. same 
spatial extent and number of data points) and wilt gain significance in the 
analysis of temporal behaviour below. 
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7.3 Temporal  Variation of  Propert ies  

To detect possible precursory fractal behaviour, a record prior to the main 
shock as long as possible but also as quiet as possible is desirable. Not to miss 
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the possible influence of large earthquakes that  occurred in the vicinity of the 
selected area mentioned above, the earthquake history was recorded for the 
greater area 33.0 ° lat. N to 36.0 ° lat. N and 134.0 ° lon. E to 137.0 ° lon. E. Fig. 
7.8 is a magnitude versus time plot for all events with m > =  3 (726 events) 
from Jan. 1, t976 up to immediately before the Hyogo-ken Nanbu earthquake 
which reveals that  several earthquakes of a magnitude m of about 5 occurred 
in the interval. The largest earthquake in the greater area besides the Jan. 17 
mainshock had a magnitude of 5.6 and occurred on May 30, 1984. Table 7.1 
gives a listing of all earthquakes with m > =  4.5 contained in the greater area 
including the respective event and day number with respect to the selected 
catalogue 1. 

1976 1978 1980 1982 1984 1986 1988 1999 1992 1994 
Time 

Fig. 7.8. Magnitude 
(m >=  3.0) versus 
time diagram for the 
selected data set 

Several of the large events occur clustered due to foreshock as well as 
aftershock activity. Thus, one would not expect individual precursors but  
rather  precursory behaviour for each of the "cycles ''2. 

To further simplify the correlation between temporal behaviour of frac- 
tal  parameters and earthquake history in the selected area, Fig. 7.9 repeats 
Fig. 7.8 in that  it also shows magnitude but  this time plots it versus event 
number. The lower part  gives the daily frequency of earthquakes together 
with the temporal  location of earthquakes of m > =  4.5 (diamonds) and 
m > =  5.0 (crosses). The latter figure will be convenient for the discussion 
of the temporal  behaviour of fractal parameters below. Note that  Fig. 7.9 
shows the activity within the smaller selected area (except for the individu- 

1 If the event fell outside the area selected for numerical analysis, the numbers 
correspond to the closest event contained. This will simplify later correlation 
between temporal behaviour and event. 

2 Cycle not in the sense of a spectral peak but in the sense of times of increased 
activity~ i.e. intermittent behaviour. 
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Table 7.1. Listing of earthquakes of m >=  4.5 in 
possible precursory fractal behaviour 

Yr Mo Dd Dd# m # 
76 7 26 208 4.8 701 
76 11 11 316 4.6 1203 
77 3 5 430 4.7 1650 
77 8 6 583 4.6 2314 
78 6 20 901 4.6 3771 
79 10 16 t385 4.9 6185 
80 8 5 1679 4.6 7302 
80 9 11 1716 4.6 7440 
81 3 6 1892 4.7 8167 
83 1 26 2583 4.8 10557 
83 3 6 2622 5.0 10741 
84 5 5 3047 4.6 12309 
84 5 30 3073 5.6 12470 
84 5 30 3073 4.9 12472 
84 5 30 3073 5.0 12474 
84 6 25 3099 4.5 12635 
84 8 9 3144 4.8 12859 
85 4 27 3404 4.5 13762 

the area selected for analysis of 

Yr Mo Dd Dd# m # 
85 9 20 3551 4.8 14330 
85 10 3 3564 5.0 14373 
85 11 27 3619 5.0 14841 
87 5 28 4166 5.0 17395 
88 1 25 4408 4.6 19786 
89 2 19 4799 5.0 20099 
90 1 11 5125 4.9 21136 
90 9 29 5386 5.4 23319 
92 7 30 6056 5.3 23945 
92 10 17 6135 5.1 24139 
93. 3 14 6283 5.1 24436 
93 4 2 6302 4.9 24480 
94 5 8 6703 4.8 25358 
94 5 22 6717 4.9 25395 
94 5 28 6723 5.2 25408 
94 6 28 6754 4.6 25507 
94 10 16 6864 4.5 26046 
94 12 23 6932 4.6 26423 
95 1 17 last 6.9 last 

ally indicated events above a certain magnitude level) as this is what will be 
numerically analysed. 

7.3.1 T e m p o r a l  M u l t i f r a c t a l  

Because of the remaining uncertainties in the determination of multifractal 
spectra which require manual intervention mainly during evaluation of the 
slopes of the l o g -  log plots (this is despite the ideas for automatic simul- 
taneous detection of the scaling region as detailed in Section 3.4), a fully 
automatic procedure is questionable. A moving analysis on the other hand 
requires such an amount of spectra to be determined that a manual approach 
is not feasible either. In the analyses carried out in the next two sections, Dq 
for q < - 2  and thus the values of amaz and f(V~maz) must be regarded 
carefully. A '  was obtained in addition to A for the same reason. 

Due to previous experiences with small data sets, the window size was 
increased to 5000 events as compared to the 500 events used by HLrabayashi 
et aL (1992). The overlap was reduced to 2% (100 events) as compared to 
50% to enhance the temporal resolution of the resulting time series. The 
values determined for each window thus present integral fractal properties 
over a time of about 3 years with a At of roughly 25 days on average. The 
obtained values are plotted versus the event number and centred on the 
centre of each respective interval (e.g., the first point of any of the following 
curves, obtained by analysing events no. I to no. 5000 is plotted at event no. 
2500). For the latter reason alone, one cannot expect exactly corresponding 
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Fig. 7.9. Magnitude 
vs. event number 
(above) and daily fre- 
quency of earthquakes 
(below) with earth- 
quakes of m >=  4.5 
(diamonds) and 
m >=  5.0 (crosses) 
indicated for the area 
selected for analysis 
of precursory fractal 
behaviour 

locations of e.g. peaks in Dq and in seismic activity as shown in Fig. 7.9. 
Rather,  the interesting feature to look for will be (precursory) trends. Other 
combinations of window lengths and overlap might certainly be interesting 
in future analyses. 

Epicentre Distribution. Remember that  changes in araln and f(amin) re- 
flect changes in areas of high seismic activity in that  an increase of c~min 
means that  the most populated vicinities at a given time get more populated 
(the reverse is true for a decrease in C~mi,~) and that  an increase in f(amin) 
means an increase in the number of such areas (with local scaling amin) while 
a decrease indicates tha t  dense areas get less in munber. An analogous inter- 
pretat ion applies to OLma z and f(a,~a~), only that  the least densely populated 
vicinities (areas of lowest seismic activity) are characterised. 

The outcome of the moving analysis of the distribution of epicentres is 
shown in Figs. 7.10 to 7.13: 
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Fig. 7.10 shows the Dq curves for q = -2 ,  0, 1, 2 (from top to bottom),  i.e. 
the generalised dimension recommended for observation by Hirabayashi et 

al. (1992), the capacity dimension, the information dimension and finally the 
correlation dimension. This figure is shown first despite its lack of physical 
interpretation because the consequent time series are derived from this data  
(cf. [Go196]). At first glance it is confirmed that  the capacity dimension Do 
shows very little sensitivity to the evolution of the seismicity pattern.  Also 
D1 and D2 are rather smooth and show no apparent trends. With increasing 
order q however, variation increases as more and more emphasis is put  on 
densely populated subregions. The greatest sensitivity, however, can indeed 
be observed for D-2  as was shown by Hirabayashi et al. (1992). Contrary 
to the lat ter  authors, however, there is no clear correlation with large events 
or periods of enhanced activity. Rather there are several plateaus and spikes 
not clearly correlated with big events. Also there is no apparent persistence 
in the time series. It  thus confirmes what has been said in Section 6: the 
observation of a single generalised dimension is not a particularly suitable 
method to detect precursory behaviour. 
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Fig. 7.10. Temporal varia- 
tion of Dq for q = -2 ,  0,1, 2 
(from top to bottom) for 
the epicentre distribution se- 
lected for analysis of possible 
fractal precursory behaviour 

Fig. 7.11 is similar to Fig. 7.10 in that  it gives a,~in (solid) and ama~ 

(dashed), i.e. Doo and D-oo as obtained from the horizontal saturation 
regimes of the individual Dq curves, amln has been offset by +3.4 for clarity. 
Also indicated are the two largest events besides the final m = 6.9 earth- 
quake: the m = 5.6 event no. 12 470 on May 30, 1984 and the m = 5.4 
earthquake no. 23 319 on Sept. 29, 1990 (diamonds from the left). These val- 
ues of a have a physical meaning in that  they directly describe the scaling 
of the densest and sparsest earthquake clusters encountered throughout the 
whole catalogue. If C~mi n increases, it means that  the densest clusters get less 
dense at a given time, if a,~i~ decreases the densest of all clusters get even 
more populated. As for area,,  an increase (i.e. shift to the right) indicates that  
seismicity in the most inactive region decreases even more; if C~ma ~ decreases, 
the sparsest clusters get more active, ama,  is found to possess several abrupt 
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steps of great magnitude after which the curve returns to a slow trend quite 
similar to amin. Keeping the notorious unreliability of am~= in mind, it is 
not surprising that  some of these peaks do not correspond to the earthquake 
history as depicted in Fig. 7.9 and must probably be at t r ibuted to numerical 
error. Note however, the increasing trends before the two major earthquakes 
indicated: both  events take place at about the maxima of a~a=. This would 
mean, if generally true, that  seismicity in the sparsest regions gets sparser 
and sparser until a major event occurs and might agree with e.g. Haikun's 
(1993) observation of "energy concentration". After the event, seismicity in 
the sparsest regions increases rather rapidly. 

Regarding the numerically more reliable amin, one learns about the evo- 
lution of the areas of strongest seismic activity. The curve lacks the offset 
plateaus of a ~ =  and, as already mentioned, roughly follows the trend of 
ama=. Although the second maximum is not as pronounced as in am,~=, both  
major earthquakes also happen at the maxima. This behaviour would imply 
that  seismic activity in the most active regions also goes down before a main 
shock and recovers afterwards. As Do is rather constant, one might conclude 
that  the level of overall seismicity decreases before a big earthquake happens. 
The latter would not agree with the idea of energy concentration. 
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Fig. 7.11. Temporal vari- 
ation of a . ~  (solid) and 
am~= (dashed) for the epi- 
centre distribution selected 
for analysis of possible frae- 
tal precursory behaviour 

Further information is gained from Fig. 7.12, where f(am~n) (solid) and 
f(am,~=) (dashed)are shown. These curves show how many of the respec- 
tive subregions of densest and sparsest clustering, respectively, exist at every 
time. Again the curve associated with a,~a= is found to fluctuate violently 
in a seemingly random fashion. If at all, a decreasing trend before the two 
strongest events may be observed. It would mean that  the number of ex- 
tremely sparse clusters decreases before main shocks (while the sparsity of 
these clusters increases simultaneously). Possibly more interesting and signif- 
icant is the behaviour of f ( a ,~n ) :  a very clear minimum occurs during the 
m = 5.6 event. The trend towards this minimum commences several months 
before the event. A decrease in f(amin) signifies that  the number of extremely 
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active clusters of seismic activity goes down. After the large event no. 12 470, 
however, the number of highly active clusters assumes an almost constant 
level which does not change prior or during the second largest m = 5.4 event. 
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Fig. 7.12. Temporal vari- 
ation of f(am,n) (solid) 
and f(am~=) (dashed) for 
the epicentre distribution se- 
lected for analysis of possible 
fractal precursory behaviour 

The variation of Aa  is summarised in Fig. 7.13, where the non-uniformity 
factors A (solid) and A' (dashed) are displayed. A' has been offset by +0.5 
for clarity. It becomes obvious that  the non-uniformity factor is dominated 
here by ~min. The normalisation by s0 has almost no effect due to the small 
variability of Do. In this case, A and also the numerically more reliable A' 
yield no additional information at all. Except for the final increase in hetero- 
geneity before the m : 5.4 event, the signal becomes less meaningful as for 
the occurrence of strong earthquakes. Also because the variation in f is not 
included in A, the separate observation of the parameters discussed above 
seems a be t te r  approach for monitoring seismicity. Appendix B suggests how 
to possibly enhance the precursory quality of the above multifractal param- 
eters by a fuzzy cluster analysis prior to multifractal analysis. 
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Fig. 7.13. Temporal vari- 
ation of A (solid) and A I 
(dashed) for the epicen- 
tre distribution selected for 
analysis of possible fractal 
precursory behaviour 
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T e m p o r a l  D i s t r i b u t i o n .  The multifractal variation of the distribution of 
earthquakes in time is shown in Fig. 7.14 in a fashion similar to Fig. 7.10. 
Plot ted are D-e ,  Do, D1 and D2 from top to bottom. Contrary to the dis- 
tr ibution in space (see Fig. 7.10), Dq for q > 0 is most sensitive now. In fact, 
D-2  shows almost no variation at all. The strong variability of D2 indicates 
that  variation in the multifractal spectrum originates from changes within 
the strongly clustered intervals--strongly clustered intervals get more or less 
populated while sparsely populated intervals stay at the same low level of 
seismicity throughout the whole observation time of about 18 years. 

1 

0.9'a 

OJ 

O.SS 

O.IS 

0,75 

t ~T r 

II 

V 
, ~  e,, ,~,o ~ ~ -  

Fig. ?.14. Temporal varia- 
tion of Dq for q = -2 ,0 ,1 ,2  
(from top to bottom) for 
the temporal distribution 
of earthquakes selected for 
analysis of possible fractal 
precursory behaviour 

Accordingly, Fig. 7.15 only shows amin (top) and f(ami~) (bottom) (there 
was no significant variation in f(am~,) either). The variation of amin is sim- 
ilar to the one of D2, i.e. the correlation dimension. While several of the 
pronounced peaks correspond to seismic activity, such as the one at the indi- 
cated m = 5.6 earthquake, no long-term (precursory) behaviour is apparent. 
The aforementioned peak indicates that  the local scaling exponent of the 
densest temporal  clustering increases co-seismically. This was to be expected 
due to the very rapid succession of aftershocks and confirms the physical 
meaningfulness of C~mi n. f(C~rnin ) shows very small sensitivity in numerical 
range of small scale fluctuations but  also in the long-run--the number of ex- 
tremely dense temporal  clusters can be said to be constant throughout the 
whole observation time. 

Finally, Fig. 7.16 gives the non-uniformity factors A and A t which are 
merely a negative copy of amen due to the constance of a , ~  and do. They 
demonstrate,  however, that ,  e.g. during the m = 5.6 event, heterogeneity of 
the multifractal temporal  distribution increases during a major event. 

The temporal  variation of the multifractal temporal distribution of earth- 
quakes may be said to be much less significant with respect to the actually 
observed seismicity than the one of the distribution of epicentres. While the 
result of a multifractal analysis of one-dimensional data is numerically more 
reliable, it is not surprising that it also yields less information. As mentioned 
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Fig. 7.15. Temporal vari- 
ation of amen (top) and 
.f(am~,~) (bottom) for the 
temporal distribution of 
earthquakes selected for 
analysis of possible fractal 
precursory behaviour 

Fig. 7.16. Temporal varia- 
tion of A (top) and A' (bot- 
tom) for the temporal dis- 
tribution of earthquakes se- 
lected for analysis of possible 
fractal precursory behaviour 

earlier, an analysis of the five-dimensional complete earthquake-space would 
be best from the physical point of view but is numerically not feasible. 

7.3.2 Temporal Configuration Entropy 

Because data sets of the same number of events are compared during a moving 
analysis, the value of H* gains significance in addition to r*. Thus it was 
attempted to determine both the maximum of the configuration entropy and 
the optimum entropy length. 

The minimum window size was adopted from Section 7.3.1 although a 
smaller size might be feasible from the numerical point of view. Setting the 
overlap to 100 points still produced sufficient temporal resolution and meant 
216 independent configuration entropy analyses which took about 12 hours 
on a Sun workstation (using 2000 randomly selected reference points in ev- 
ery analysis). Thus it becomes clear again that computational limitations 
unfortunately have a large role to play in this work. 

Figure 7.17 gives the temporal variation of r* (above) and H* (below) 
with the two largest earthquakes besides the final event indicated by vertical 
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lines. At first sight it becomes obvious that  both  measures are sensitive to 
the evolution of seismicity--the obtained timeseries do not seem to fluctuate 
randomly but  rather  follow certain trends and possess a certain dynamics. 
This fact may be regarded as most encouraging because of the much higher 
accuracy and reliability of the configuration entropy analysis as compared to 
a multifractal analysis of small data  sets. While r*(t) shows discontinuities 
in the form of plateaus, H* (t) seems to be a differentiable process. An anal- 
ysis of the dynamical properties of H* (t) was a t tempted in Par t  II of this 
work but  the time series was found to be too short for meaningful analysis. 
When comparing the above two parameters further, they seem to possess an 
independent behaviour or rather a negative correlation. Roughly, when H* (t) 
undergoes a maximum, r* (t) has a minimum and vice versa. This would mean 
that  when disorder (or information) is at its maximum, the optimum entropy 
length, i.e. the resolution at which this disorder is best displayed, is small 
compared to more ordered seismicity. 
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Fig. 7.17. Results of 
a moving entropy anal- 
ysis: r* (t) (above) and 
H* (t) (below). Also in- 
dicated are the two 
largest earthquakes be- 
sides the final m = 6.9 
event 
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H* (t) has two dominant peaks which might well correspond to the two 
dominant occurrences of strong seismic activity encountered in the record. 
The range of fluctuation is numerically rather small and the average value 
agrees with the result in Section 7.2.3, taking the different number of data 
points into account (cf. Chapter 3). The first maximum lies at about event 
number 6000 and then the curve decays almost linearly until about event 
12 000. After that ,  a local maximum follows over roughly 2500 events before 
the entropy value steeply increases again until about event number 17400 
where the overall maximum of disorder is reached. The subsequent peak is 
reached after a short decaying period of about 2300 events around event 
19 700. Finally, another steep decline occurs until event 23 000 from where 
the disorder seems to assume an increasing trend again. 

As the size of earthquakes has no influence on the analysis, it is not obvious 
whether the changes are primarily induced by the occurrence of large events 
(with their associated seismicity of highly clustered aftershocks, see Chap- 
ter 8) or the occurrence of earthquake swarms without large events. Recall 
that  the number of events per analysis is kept constant, the spatio-temporal 
coupling of earthquakes is therefore eliminated by shrinking or expanding the 
individual intervals in time. When correlating H* (t) with the daily frequency 
of earthquakes, as given in Fig. 7.9, it becomes apparent that  active times 
roughly correspond to high disorder while the epicentre distribution of quiet 
intervals is more ordered. The absolute maximum of H* (t) corresponds to the 
maximum daily earthquake frequency associated with the m = 5.0 event no. 
17 395 on day 4166. One may thus conclude that  the earthquakes occurring 
during highly active periods as expressed by the peaks in the lower part of 
Fig. 7.9 possess a peculiar entropic behaviour as well. On the other hand, 
there in no minimum in H*(t) between the two largest activity peaks in Fig. 
7.9 and the final broad peak in H*(t) approximately centred on event no. 
19 700 has no counterpart in earthquake frequency at all. Trying to correlate 
details of H* (t) with the event magnitudes as displayed in the upper part of 
Fig. 7.9 however, gives an even less clear picture: although several spikes of 
the entropy value coincide wit~l~ larger earthquakes at the small scale, there 
is no apparent connection between the cyclic behaviour of H*(t) at the large 
scale and the magnitude history, i.e. no extremely large earthquakes occur at 
these large-scale peaks. 

Instead, the cyclic behaviour of H* (t) might possibly be regarded as pre- 
cursory for the two main events in the whole interval besides the Hyogo-ken 
Nanbu earthquake: the first cycle reaches its minimum before the m = 5.6 
event after decaying for about 4 years, the second cycle reaches its minimum 
very shortly before the m = 5.4 event no. 23319 on Sept. 29, 1990 after 
decaying for about 3 years. Note that  the latter event does not occur in the 
magnitude versus time or magnitude versus event number plots in Figs. 7.8 
and 7.9 because the earthquake occurred slightly outside of the selected area 
at 35.001 ° lat. N, 134.277 ° Ion. E. The fact that  its effect seems to show 
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nevertheless indicates that  the choice of area for an entropy analysis is not 
cr i t ical--an advantage over several other methods based on analysis of seis- 
micity patterns.  Although there are only two examples here, they are also 
quite convincing as there are no obvious other explanations for the decays in 
H* it). The latter possible precursor might also be associated with the final 
m = 6.9 earthquake but  a determination of H* (t) at finer resolution would 
be required to judge this. The evolution of the entropy value beyond the end 
of the current analysis would also shed some light on this. If it is true that  
H* (t) decays prior to major earthquakes, it would mean that  the degree of 
disorder decreases until a major release of seismic energy occurs. After the 
earthquake, seismicity goes back to a more disordered state until a new cycle 
begins. 

As mentioned above, r*(t) shows a roughly anti-cyclic behaviour with re- 
spect to H'it  ). While there are co-seismic peaks such as the ones at event 
nos. 14 373 and 14 841 (compare Figs. 7.17 and 7.9), the largest two events 
mentioned above are not connected with simultaneous peaks in r*(t). In- 
stead, r* (t) is still in its first broad peak when the m = 5.6 event occurs. 
The largest peak in Fig. 7.17 again has no counterpart in the magnitude 
history but  occurs immediately before the m = 5.4 event. The possible pre- 
cursory quality of r* (t) is more questionable than that  of H* (t) although the 
frequency statistics in Fig. 7.9 gives no explanation for the appearance of 
the largest peak in r*($). Should it be true that  r* increases before major 
eaxthquakes, it would mean that  the scale (cell size) at which the epicen- 
tre distribution displays its maximum information increases during that  time 
while it decreases afterwards. 
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Fig. 7.18. Two example epicentre distributions 
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Fig. 7.18 gives two examples of epicentre distributions from which the ab- 
solute minimum and absolute maximum respectively of H* (t) were obtained 
(shown are the intervals nos. 86 centred on event no. 11 100 and 142 centred 
on event no. 16700, cf. Fig. 7.17). Analogous distributions for r*(t) are shown 
in Fig. 7.19 (intervals nos. 32 centred on event no. 5700 and 203 centred on 
event no. 22800). The latter figures demonstrate the sensitivity of the config- 
uration entropy for changes in the seismicity pattern which are optically not 
really discernible. 
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Fig. 7.19. Two example epicentre distributions from which the minimal (left) and 
maximal (right) values of r* (t) were obtained 

To summarise the results of Chapter 7, it must first be noted that the 
originally intended goal of finding precursory behaviour for the Hyogo-ken 
Nanbu earthquake was not achieved. Instead, the temporal behaviour of the 
multifractal properties of seismicity has shown what might be precursory 
behaviour for the two other large earthquake events contained in the record. 
The failure to detect sensitivity to the final event might be attributed to 
two possible reasons. Firstly, the history of seismicity in the selected region 
must be regarded to be rather complex, possibly obscuring the signature of 
the Kobe earthquake. Secondly, the data set might not cover enough time 
before the latter event to be able to resolve a superposed long-term trend. 
The first reason could be clarified by conducting the above analyses for a less 
complex region, i.e. a record with a pronounced quiescence before a major 
earthquake. Analysis of several other catalogues should defimtely be carried 
out to confirm the shown sensitivity of the concerned fractal parameters to 
the seismic evolution. 



8. Fractal Propert ies  of Aftershocks 

Contrary to the search for earthquake precursors, it is of interest to determine 
the fractal properties of aftershocks as they designate a different stage in the 
seismic cycle or, in the light of Section 6, another "phase" or "state" of 
seismicity in a given region. 

In the following, several analyses of the aftershocks registered after the 
Hyogo-ken Nanbu earthquake (cf. Chapter 7) are carried out. The data, reg- 
istered by the seismic networks of Earthquake Research Institute (ERI), Uniw 
versity of Tokyo, Disaster Prevention Research Institute (DPRI), Kyoto Uni- 
versity and Faculty of Science, Kochi University, consists of the automatically 
determined hypocentres (at ERI), times of occurrence and magnitudes and 
was publicly available 1. The aforementioned dataset was preferred to a sim- 
ilar one compiled by DPRI  ~ because it contained more events and seemed 
more consistent 3. 

Figure 8.1 shows a map of the vicinity of the main shock with epicentres 
determined by ERI for the time of January 16, 1995, 00:00 JST (i.e. including 
foreshocks) to January 18, 1995, 18:00 JST. Also shown axe known fault-lines 
(see [Hir89b] for a fractal analysis of fault lines in Japan). 

From the raw data, a catalogue consisting of 4903 events was selected in 
the area of 34.1 ° lat. N to 35.1 ° lat. N and 134.6 ° lon .  E to 135.6 ° lon .  E. 
The resulting data  comprised events from Jan. 17, 05:53 to Mar. 31, 06:44 
with magnitudes ranging from 0.2 - 4.5 and depths down to 39.9 km. Deeper 
earthquakes were discarded because of their sparsity (only 46 events with a 
hypocentral  depths > 40 km occurred and must be regarded as faulty anyway) 
to maintain a relatively densely populated three-dimensional space. For the 
analyses including the magnitude values, events with unreasonable magnitude 
(e.g. 9.9 or negative values) were discarded, slightly negative depths were set 
to zero. Figure 8.2 shows the final data set of epicentres used for analyses, 
the coordinates transformed into km relative to the SE corner of the selected 
area. 

1 ftp-server f t p .  e r i  .u-tokyo. ac. jp 
2 available together with the ERI data 
3 Due to loss of instruments in the main shock, part of the data was gathered using 

the less accurate spare system. 



94 8. Fractal Properties of Aftershocks 

3 5 ° 0 0  ' 

3 4  ° 30 '  

34 ° 00' 
134 ° 30' ] 35 ° 00' 135 ° 30' ] 36 ° Off 

Fig. 8.1. Epicentre distribution in the vicinity of the Hyogo-ken Nanbu earthquake 
from Jan. 16, 00:00 JST to Jan. 18, 18:00 JST (Earthquake Research Institute~ 
University of Tokyo) 

Figure 8.3 gives perspective views of the hypocentre distributions at rota- 
tional angles of 30 ° and 120 ° respectively to get an impression of the depths 
distribution as well. 

A very preliminary "fractar '  analysis is shown in Fig. 8.4, where the 
number  of aftershocks per 12 hours is plot ted versus time. One can easily 
observe the validity of the Omori law mentioned in Chapter  4 ,  i.e. the scaling 
behaviour of the temporal  distribution of aftershocks. Further analysis of the 
temporal  scaling properties is carried out below. Figure 8.4 together with e.g. 
fig. 8.3 is a good example of the spatio-temporal  coupling of earthquakes as 
already addressed in Chapter  6. 
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Fig. 8.2. Epicentral after- 
shock distribution of the 
Hyogo-ken Nanbu earth- 
quake as used for analysis 
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Fig. 8.3. Perspective views of the hypocentral aftershock distribution of the Hyogo- 
ken Nanbu earthquake at 30 ° (left) and 120 ° (right) rotation around the z-axis 

8.1 Multifractal Properties 

S p a t i a l  D i s t r i b u t i o n .  A multifractal  analysis of the epicentre distribution 
respectively its probabil i ty density distribution was carried out in analogy to 
previous similar calculations in this work. The Dq and ] ( a )  - c~ curves are 
shown in Fig. 8.5. 

The error-bars indicate one s tandard deviation for the values of Dq which 
were directly determined. The values in between were obtained by cubic in- 
terpolat ion to enable the determination of a smooth f ( a )  - c~ curve. One 
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Fig. 8.4. Half- 
daily frequency of 
aftershocks of the 
Hyogo-ken Nanbu 
earthquake, showing 
the validity of the 
Omori law 

notices a surprisingly small error, indicating a good fit, i.e. smooth linear 
scaling behaviour within the scaling limits. Indeed the narrowest scaling re- 
gion (for q = - 8 )  was still as large as 4.73 km to 53.57 kin, which is sufficient 
to believe the fractal properties of the data. A was found to be 1.43±0.13 
while A ~ was 1.00 =t= 0.06. 

The log - log plots exhibited a single linear region between the horizontal 
regimes, meaning that  no multi-scaling behaviour was visible. The latter re- 
sult might seem surprising because the linear elongated structure of the fault 
zone might well produce a crossover point (cf. [HIY92]). Here, however, the 
linear dimension of the fault is of the order of the whole area of analysis and 
thus no multiscaling becomes apparent. 

alpha 

Fig. 8.5. Spectrum of generalised dimensions and multifractal f(~) - ~ curve for 
the epicentre distribution of aftershocks of the Hyogo-ken Nanbu earthquake 

The multifractal analysis of the hypocentre distribution, i.e. in three di- 
mensional space, yielded practically the same results except for worse scaling 
behaviour, showing the need for more data  points when increasing the "em- 
bedding dimension" and at the same time confirming that  no information is 
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lost when restricting the analysis of earthquake locations to a projection of 
the hypocentres to the two dimensional surface (cf. also Chapter 3). 

T e m p o r a l  D i s t r i b u t i o n .  Due to the geometrically increasing number of 
necessary data  points when increasing the "embedding dimension" (cf. Sec- 
tion 2.2.5), an analysis of space-time, i.e. with a fourth dimension time added 
to the three dimensional hypocentre distribution, is not feasible here (not to 
mention the complete "earthquake space", i.e. the five dimensional x, y, z, 
time and earthquake size space). Therefore a separate analysis of the tem- 
poral seismicity pattern has been carried out. Figure 8.6 shows a plot of 
inter-arrival times between successive aftershocks in the fashion of [GC95]. 
Two large values in the last third of the plot have been omitted for clarity. 
One notices a power-law like increase in the intervals, bringing to mind some 
kind of inverse Omori law. 
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Fig. 8.6. Inter- 
arrival times for the 
Hyogo-ken Nanbu 
aftershock data 

More instructive in the sense of fractal Cantor dusts (i.e. fractal distri- 
butions of points on a line) is Fig. 8.7, where the temporal distribution of 
aftershocks is shown in successive enlargements by a factor of 2. One expects 
the densest clustering to the left of every (sub)interval, decaying according 
to a power law to the right. The successive zooms, which always start with 
the first aftershock in the catalogue, show that  this seems to be true up to a 
certain level when the scaling breaks down: the distribution becomes sparse 
near the starting time as well. The latter effect might be due to an inher- 
ent lower scaling limit or, more probably, due to the missing of events below 
a certain temporal resolution by the seismometer network respectively the 
evaluation. 

The muttifractal spectrum together with the Dq curve is shown in Fig. 
8.8. Note that  the ](c~) - ~ curve is for a one dimensional distribution, thus 
A s  cannot be directly compared with the one of two dimensional distribu- 
tions. Both A (1.13i  0.14) and A' (0.43 • 0.05), differ distinctly from the 
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Fig. 8.7. One-dimensional "dusts" showing the temporal distribution of a~ershocks 
at successive enlargements by a factor of 2. Time always starts with the first a~er- 
shock contained in the catalogue 

monofractal value of zero. Thus one is lead to believe that  the temporal after- 
shock distribution obeys multifractal laws as well. The numerical range of the 
input data  (one dimensional occurrence times of the earthquakes as shown in 
Fig. 8.7) was 0 (time of first aftershock) to 6.310284x106 secs (time of last 
aftershock in catalogue). The scaling region in the log - log plots ranged from 
about  640 secs to 3.449555 x 106 secs, i.e. the scaling breaks down below about  
10 mins. The latter confirms the conclusions made from the examination of 
Fig. 8.7 above. 

12 

Fig. 8.8. Spectrum of generalised dimensions and multifractal f (a )  - a curve for 
the temporal distribution of aftershocks of the Hyogo-ken Nanbu earthquake 

Size D i s t r i b u t i o n .  Although a multifractal analysis of the earthquake size 
field (here: rupture areas) was again not found to be feasible, a one dimen- 
sional analysis of the size distribution was carried out in analogy to the 
previous section. Figure 8.9 gives the data used as input (actually the cumu- 
lative rupture area was used as input to have a one dimensional distribution 
on a line (a "dust")).  
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Fig. 8.9. Rupture 
area as a measure 
of earthquake size 
versus event number 
for the aftershocks of 
the Hyogo-ken Nanbu 
earthquake 

The results of multifractal  analysis are displayed in Fig.  8.10. For the 
cumulative rupture area measure, a very large scaling region of 1.61 to 59.75 
km 2 was obtained (the final cumulative value in the input data  was 74.99 
kin2). The non-uniformity factor Al resulted to be 1.18 =k 0.07~ while A ~ was 
0.48 4- 0.01, i.e. very skmilar to the result for the temporal  distribution. I t  thus 
seems tha t  the earthquake size distribution also constitutes a multifractal  
measure. 

Fig. 8.10. Spectrum of generalised dimensions and multifractal f (a )  - ~ curve for 
the distribution of rupture area of aftershocks of the Hyogo-ken Nanbu earthquake 

8.2 Configuration Entropy 

A configuration entropy analysis was carried out for the aftershock da ta  (epi- 
centre distribution) to confirm and complement the previously obtained re- 
sults. The result is given in Fig. 8.11. 
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Fig. 8.11. Configura- 
tion entropy curve for 
the Hyogo-ken Nanbu 
aftershock data 

One notices a single clear maximum at the optimal entropy length of r* 
1.9 kin, confirming a multifractal structure of low or no lacunarity. The latter 
was to be expected due to the absence of (periodic) voids. When comparing 
this result for r* with the one for the overall seismicity of the area analysed in 
Section 7.2.3, the value is found to be much higher. It is however, well within 
the limits of the moving results given in Fig. 7.17 as was to be expected 
because the data  analysed there also contains aftershocks. 

8 . 3  ( A n ) I s o t r o p i c  F r a c t a l  P r o p e r t i e s  

The results of a HOT analysis of the epicentre distribution and the distri- 
bution of cumulative rupture areas are shown in Figs. 8.12 and 8.13. Note 
that  these fields are not probabilities because they are not normalised. Nor- 
malisation was not necessary because we are not interested in the scaling of 
moments. The field of cumulative rupture areas was generated from the given 
magnitude values as described in Section 7.2. Rupture area as a measure of 
earthquake size was again preferred to seismic energy or moment due to the 
reasons given in Sections 7.2 and 5.3. 

Both analyses, i.e. of the distribution of epicentres ("location") as well 
as the one of rupture areas ("size"), show very similar results. Table 8.1 
summarises the results. Most apparent is the orientation of the major axis 
of the ellipse in the rose plot ("angle"), i.e. the direction of highest fractal 
dimension: it is about 47 ° and thus agrees with the orientation of the fault 
line (about 48 °, see Fig. 8.2) along which most of the aftershocks occurred. 
The fractal dimension in the direction of the fault line was about 1.85 for 
the epicentre distribution, while it was only about 1.04 in the perpendicular 
direction. The degree of anisotropy ("ratio") is very high at about 0.30 (recall 
that  the greater the deviation from 1, the stronger the anisotropy) as was to 
be expected. For the rupture area field, it is still very high at 0.36 but the 
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Fig. 8.12. HOT table and rose plot of H for the distribution of aftershock epicentres 
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Fig. 8.13. HOT table and rose plot of H for the distribution of aftershock rupture 
areas 

distribution of earthquake "size" is not as anisotrop as the distribution of 
epicentres. The aftershocks thus follow the linear elongated structure of the 
fault zone bet ter  in their location than in their size. 

8 . 4  O v e r a l l  a n d  A f t e r s h o c k  S e i s m i c i t y  

As already mentioned, the catalogue used in Chapter 7 contains "normal" 
distributed seismicity as well as aftershock activity while the data  analysed 
here consists of an aftershock sequence only. A comparison between the fractal 
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Table 8.1. Summary of the anisotropy analysis of the epicentre distribution and 
rupture size distribution 

Location Size 
Angle 46.61 47.61 
Ratio 0.30 0.36 

D ~ 1.04- 1.85 ~-.I.00- 1.88 

properties of the two sets, as far as meaningful with respect to the different 
numerical properties (number of data points etc.), will thus give an idea about 
the fractal differences between overall properties of seismicity and the special 
case of aftershocks. Such a comparison is of interest to further judge the 
discriminatory powers of fractal analysis. In the following, results of Section 
7.2 and the current chapter are compared. It will be interesting to see how 
and to what extent the known differences in the degree of clustering and in 
the temporal distribution (Omori taw) will be reflected. 

First, the difference between the configuration entropy analyses is found 
to be significant in that r*~,~lt = 0.81 km and r : f t e r s h o c k  ~--- 1.9 kin. The 
different values show that the two data sets display their maximmn of disor- 
der at quite different scales. When comparing Figs. 7.7 and 8.11 where the 
whole entropy curves are given, it can also be seen that the entropy value 
for aftershocks decays slower, here the entropy maximum at r* is thus less 
pronounced for aftershocks. 

Next, there may be noticed a great difference between the fractal 
anisotropies of spatial density as well as earthquake size distribution as de- 
termined by HOT analysis: despite the "spikyness" of the rose plots shown in 
e.g. Figs. 7.5 and 8.12 for overall and aftershock seismicity, respectively, the 
aftershock fields are correctly reported to possess much stronger anisotropy. 
The actual values are reported in Table 8.2. 

Most rewarding is maybe the comparison of the multifractal properties 
of both the temporal and epicentre distributions of the two seismicity states. 
Considering the one-dimensional temporal distributions first (c£ Figs. 7.4 and 
8.8), it can be seen that the multifractal spectrum of aftershocks is not only 
much less homogeneous but that the number of sparsely populated intervals 
in time has decreased dramatically--f(ama~) decreased to less than 0.2 as 
compared to greater than 0.8 for the overall seismicity. A less pronounced 
change may also be observed in f(amin) which increased from about 0.03 to 
almost 0.2. The number of most densely clustered intervals has thus decreased 
a little. The increase in heterogeneity of the fractal distribution of earthquakes 
in time is mainly due to a simultaneous increase in a , ,a , .  Thus not only the 
number of sparse time intervals is reduced (which was to be expected) but 
the degree of sparsity of the latter few intervals increases. The latter is not 
contradictory as there are extremely few sparse intervals as compared to 
overall seismicity. It is also noteworthy that a0 and f(a0) are not affected. 
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Significant changes also occur in the multifractal spectra of the epicentre 
distributions, i.e. the spatial density (see Figs. 7.3 and 8.5). From overall seis- 
micity to aftershock seismicity, the greatest change also occurs in f ( a m ~ ) :  it 
increases from about  0.5 to about 1.3, indicative of the increase in extremely 
sparse vicinities, i.e. areas of extremely low seismic activity. These sparse 
areas within the spatial aftershock distribution are much more densely pop- 
ulated than those of the overall seismicity as witnessed by the decrease in 
OLma ~ from about  4.8 to about 3.3. The decrease in heterogeneity is mainly 
due to the change in a , ~  as a,~i~ stays almost constant. A difference may 
also be noticed in the values of a0, which decreases. Most clusters therefore 
become more densely populated during aftershock activity, f ( a o )  decreases 
slightly from ~ 1.95 to ~ 1.8. As f (a0)  = Do, this denotes a decrease in the 
density with which the epicentres fill the two-dimensional plane. The latter 
was also to be expected (cf. Figs. 7.1 and 8.2). 

The transition from overall to aftershock seismicity may thus be charac- 
terised by an increase in spatial homogeneity with a simultaneous decrease in 
temporal  heterogeneity. Table 8.2 summarises some of the above mentioned 
differences. 

Table  8.2. Some significant differences between fractal parameters of overall and 
aftershock seismicity 

Entropy 
spatial 
r* [km] 

Anisotropy 
spatial size 

factor 
Overall 0.81 0.60 0.50 

Aftershock 1.90 0.30 0.36 

A 
2.09 
1.43 

Overall 
Aftershock 

Multifractal 
spatial 

4.8 0.5 0.53 
3.3 1.4 1.13 

temporal 

1.1 0.87 
1.6 0.12 

To conclude the comparison of overall seismicity and aftershock sequence, 
it may be said that  fractal parameters are useful to distinguish them. The 
latter again confirms the ability of fractal analysis to detect anomalous and 
therefore possibly precursory seismicity. 





Part II 

E a r t h q u a k e s  and  Chaos  





9. Chaos 

"Chaos" here always means low-dimensional deterministic chaos. Determin- 
istic chaos names the irregular behaviour of a nonlinear system whose tempo- 
ral evolution is completely determined (by mathematical equations). Almost 
identical initial conditions (or small perturbations during iteration) lead to 
exponentially diverging solutions. The latter is the reason for very limited 
predictability of chaotic systems--due to measurement error, even at the 
Heisenberg uncertainty level, it is impossible to predict the trajectory of even 
a mathematically completely known chaotic system for all times. Using clas- 
sical linear methods of time series analysis, most chaotic systems can in fact 
not be distinguished from "noise", i.e. random signals without underlying 
determinism. 

"Chaos" or nonlinear science has become a vast field of research, greatly 
surpassing fractal geometry. Most research in nonlinear science, however, 
deals with simulation and subsequent analysis of nonlinear models repre- 
sented by differential or difference equations, maps or cellular automata. 
Other fields comprise, e.g., the application of chaos in engineering (e.g. 
[Moo92]) or the control of chaos (e.g. [AFH94]). The number of publica- 
tions in such a variety of fields as biology, economics, sociology, medicine, 
geosciences, history, mathematics and naturally all fields of physics deMing 
with chaos has reached more than 10 000 since 1980. 

In geophysics, several papers including studies of the magnetosphere 
(e.g. [Robgl] which also includes a good introduction to delay-time em- 
bedding, [SVP93]) or, closely related, mantle convection ([Tur92] and ref- 
erences therein, [P J94]) and the earth's magnetic field may be found. Works 
directly related to earthquakes include the study of cellular automata (e.g. 
[OFC92, Nakg0, CJV92, MT91]) which are usually discrete slider block (stick- 
slip) models, the analysis of analytical sliding block models ([Tur92]) and 
general discussions of the question whether the earthquake process should be 
considered chaotic or not (e.g. [HT90], [Sch89] where the conference "Earth- 
quakes: chaotic or deterministic? 1'' is discussed). A review article by Carl- 
son et al. (1994) comprehensively discusses the ongoing research into the 
Burridge-Knopoff model of earthquake faults in the context of current seis- 

1 Asilomar, California, 12-15 February 1989; the title of the conference is unfortu- 
nate as deterministic chaos is usually meant when the term "chaos" is used 
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mology, including generalisations towards more realistic higher-dimensional 
models and implications of their chaotic behaviour for prediction. 

Cellular automata replace systems of coupled nonlinear differential equa- 
tions when the latter would be too complex to solve (analytically and/or 
numerically) and have led to the conclusion of chaoticity of earthquakes in 
some cases. For an overview and references see e.g. Main (1996) and Rundle et 
al. (1996), the latter especially for latest developments such as the Traveling 
Density Wave model for earthquakes. An important paper by Grassberger 
[Gra94], however, points out that the observed chaotic behaviour of discrete 
slider block cellular automata might well be due to numerical limitations 
or the wrong choice of boundary conditions. Also the analytical modelling 
of a slider block system as carried out by Turcotte et al. (1993) leaves the 
question of adequacy of the low-dimensional analogon of nature (only a lim- 
ited number of blocks, as low as two, is used in the simulations). Thus such 
models will never be able to prove or defy chaoticity of earthquakes. Indeed, 
also the limitation of (numerical) nonlinear analysis to low dimensionality 
might appear as a severe limitation in the case of the earthquake process 
which must be regarded as extremely complex due to its analogy to turbu- 
lence alone. In many cases in nature, however, the asymptotic behaviour of 
infinite-dimensional systems is effectively low dimensional (e.g. [Tso92] where 
it is demonstrated that  systems of partial differential equations which possess 
an infinite-dimensional phase space can settle on low-dimensional attractors; 
the latter is especially true where dissipation plays an important role--as 
in the case of earthquakes). The phase space of a dynamical system is a 
mathematical space with orthogonal coordinate directions, one direction for 
each of the variables necessary to specify the instantaneous state (phase) of 
the system. A trajectory in phase space is produced by plotting the systems 
evolution with time. A sufficiently long trajectory generates the phase space 
diagram which in the case of chaos forms a strange attractor. 

So far, observation of supposedly chaotic earthquake behaviour in the 
real world may only be regarded as evidence (see e.g. Huang and Turcotte 
(1990) for an example where actually observed chaoticity is claimed). Also the 
observation of fractal statistics of earthquakes which, beyond any doubt, can 
be seen as such evidence as will be detailed below (cf. also [Tur92]). Another 
interesting point is the question of chaotic mantle convection (as expressed 
by, e.g., magnetic field reversals) as a driving force in plate tectonics (see e.g. 

As pointed out by Meissner (1994), two sources of nonlinearity in the 
initiation and continuation of rupture processes are the build-up of criti- 
cal stresses and their propagation along inhomogeneous rupture zones, in- 
cluding the non-seismogenic lower crust. According to this author, the most 
important sources for a nonlinear build-up of critical stresses seem to be 
dilatancy processes, transfer of stress from nearby foreshocks, and possibly 
interactions with the lower crust. Inhomogeneities of dynamic friction, as- 
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perities, fault gouge and geometry all influence propagation of the rupture 
process. An important conclusion by Meissner is that the deterministic, i.e. 
non-probabilistic, prediction of earthquakes would require a dense network as 
well as short- and long-term monitoring of any deformation in the neighbour- 
hood of the suspected rupture area. A major argument towards the nonlinear 
build-up of critical stresses is the fact that large earthquakes show no corre- 
lation with the earth's tides ([Kno64, RSSS93]). Also the fractality of faults 
(e.g. [Hir89b]) at all scales, including the fractal distribution of gouge material 
itself ([Ble91]) introduce nonlinearity into the rupture process itself--another 
fact not reflected in slider block models. In conclusion, several arguments for 
nonlinearity or against linearity in the stress build-up and in the rupture 
process itself may be found. 

Nonlinearity is necessary but not sufficient for chaotic behaviour, however 
(e.g. [Ott93]). Therefore, only the proof of chaotic determinism in earthquake- 
related real world time series could really answer the question of chaoticity 
in earthquakes. While time series can be derived from earthquake catalogues 
(e.g. earthquake intervals, see below), interest here is also on two directly ob- 
served geophysical "earthquake time series": radon emission and strain. The 
latter two signals represent a choice of two typical parameters commonly 
thought to be signals related to crustal processes leading to earthquakes. Be- 
cause of that they are frequently monitored in experiments throughout the 
world to detect earthquake precursors. So far, success has been very limited 
(e.g. [Ge197]). The persisting problem with these and other geophysical field 
observations is the unambiguous detection of anomalies which could be safely 
regarded as precursors. Despite the inherent nonlinearity of the signals, de- 
tection of precursors is attempted by linear methods up to now. Detection of 
precursors by nonlinear means and a discussion of implications of the findings 
for chaoticity of the earthquake process are attempted in this part. Concepts 
and terms from nonlinear time series analysis will be introduced when needed. 

9.1 N o n l i n e a r  T i m e  S e r i e s  A n a l y s i s  

Nonlinear time series analysis is very much the object of current research and 
as such no general rules or procedures exist for the details. For the overall 
approach, however, the current consensus is roughly outlined in Fig. 9.1. More 
detailed explanation and description of the individual steps follows below as 
they are applied. It should be noted that further further methods not shown 
in Fig. 9.1 exist. Those methods, such as, e.g., nonlinear prediction in phase 
space, either complement or confirm the steps shown. See also Section 9.2.1. 

A central idea in reconstructing nonlinear dynamics from a scalar time se- 
ries is the one of delay time embedding (e.g. [Ott93]), to be briefly introduced 
here. Let the d-dimensional vector ~(t) be the state vector, i.e. the phase a 
dynamic system with d degrees of freedom is in at time t. In geophysical field 
observations, one doesn't know d, and even if one did, one could probably 
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Fig. 9.1. Flow diagram of nonlinear time series analysis strategy 
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not measure all of the components of ~ simultaneously. Instead, we measure 
one scalar function of the state vector, 

g(t) = 

a continuous time series such as strain (nobody would seriously assume that  
strain is a scalar, or, more important,  that the dynamics which underly the 
strain signal are one-dimensional). 

Thus, one must somehow try to reconstruct the full dynamics from g(t). In 
phase space, this means a reconstruction of the attractor,  the geometric object 
the dynamics are confined to (the at tractor is made up of the trajectories of 
the system). The at t ractor  may be a point, a cycle (for a periodic system) or 
a strange, i.e. fractal, object (chaos). That  it is indeed possible to reconstruct 
the at t ractor  from one scalar time series is surprising but has been shown by 
Takens (1980). Takens showed that  the at tractor  can be obtained as follows. 
Define the delay coordinate vector y = (y(1), y(2) , . . .  ,y(d)) by 

y(1) (~) = g(t) 
y(2)(t) = g ( t -  7) 
y(3) (t) = g(t - 2v) 

y(d)(t) = g ( t - - ( d - - 1 ) T )  

where v is an appropriate delay time (see below), y( t )  may then be re- 
garded as a function of ~(t),  y = H(~) .  If the number of delays d (or: the 
embedding dimension) is sufficiently large, y-space (the reconstructed attrac- 
tor) is qualitatively equivalent to the original phase space. A first idea about 
possible dynamics behind g(t) may be gained from simply examining the con- 
tinuous time trajectory in y by plotting e.g. g(t) versus g(t - 1). Such plots 
will be shown later on. 

Figure 9.2 explicitly demonstrates the above mentioned finding by Tak- 
ens (1980), and thus the method of delay-time embedding, to discover the 
dimensionality of a possible at tractor  from a single scalar time series. The 
central realisation is that  it is often possible to represent the state of a d- 
dimensional system by independent variables (coordinates) other than the 
"physical" state variables (which are a priori unknown here) as a function 
of time. If one assumes a deterministic system, i.e. different initial conditions 
lead to unique solutions, any trajectory of the d-dimensional system may also 
be specified by the coordinates of only one variable at d different times. In 
Fig. 9.2, the two-dimensional case is shown. The physical coordinates of the 
system are x and y, e.g. position and velocity of a particle moving in one 
dimension (a particle moving in three dimensions requires a six-dimensional 
phase space, three coordinates for position and three for velocity). The three 
curves a ,  f~ and "f represent three different trajectories in the phase plane; 
The system's state at time t is indicated by an asterisk, the state at time t ÷ r  
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is marked by "o". It becomes obvious that trajectory f~ may be equally se- 
lected (described) by specifying that it passes through Xd(t) and Xd(t+r)  (the 
delay coordinates) as it passes through the point xd(t) and yd(t); trajectories 
a and 7 have evolved somewhere else at time t + T. 
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Fig. 9.2. The Takens the- 
orem of delay-time embed- 
ding: Trajectory /~ may be 
equally well specified by say- 
ing that it passes through the 
state X d ( t ) ,  yd(t) or by saying 
that it passes through xd(t) 
and Xd(t + 7") 

Note that adding a third delay coordinate xd(t + 2r) would still specify 
the trajectory but that this would be redundant. Thus, in this case of two 
physical state variables, only two delay coordinates are required. As this is 
the case for any d-dimensional system, finding the number of necessary delay 
coordinates tells the number of physical state variables needed to model the 
system under analysis. Redundancy of adding additional delay coordinates 
can be detected by looking for saturation in a plot of e.g. the correlation 
dimension of the phase diagram (attractor) versus embedding dimension (see 
below). The value of the embedding dimension (number of orthogonal delay 
coordinate directions) at which D2 saturates is thus a lower estimate for the 
number of variables (and thus equations) needed to model the system. The 
upper limit of variables to describe the dynamics of a system evolving on 
a D-dimensional attractor is 2D n + i where D' is the next highest integer 
of D when D is fractional ([TakS0]). In practice, D' + 1 variables are often 
sufficient to spread the attractor out in phase space and make it single valued 
(as is required for a deterministic system). 

The fractal dimension of the attractor is a lower bound for the number 
of variables (number of e.g. coupled nonlinear differential equations) needed 
to model the process. It is thus of great interest to determine the fractal 
dimension of the assumed attractor of the dynamics of unknown natural 
systems to get an estimate for their dimeusionality. The latter is the first 
step in modelling the underlying dynamics of all observed geophysical time 
series. It also explains, why one-dimensional representations (i.e. plots of some 
quantity versus time) are inadequate to represent the dynamical behaviour of 
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the process observed and motivates the idea that possible precursors will not 
be visible in such a representation. Thus, even if observed geophysical signals 
do not stem from chaotic systems, they are certainly not one-dimensional and 
must be examined in higher dimensional space to unveil significant changes 
in behaviour or significant anomalies. 

9 .2  A n a l y s i s  o f  K n o w n  D y n a m i c s  

Before attempting to analyse geophysical field data, three examples of differ- 
ent classes of dynamics will be examined using the methods indicated above. 
This will make it possible to introduce the methods in more detail, show 
their advantages and shortcomings and contribute to the understanding of 
the aim of nonlinear time series analysis as conducted here. In particular, a 
non-trivial periodic system, an infinite-dimensional signal (Gaussian noise) 
and finally a classical example of low-dimensional chaos (the Lorenz system) 
will be examined. Throughout this section, the idea is to show to what con- 
clusions the analyses would lead if the dynamics of the signals were unknown. 
The latter reflects the situation when analysing geophysical field data. 

9.2 .1  Quasi-periodic Dynamics  

Figure 9.3 shows 2000 points of a seemingly random signal which in fact 
is simply the superposition of two incommensurate (non-integrally related) 
harmonic functions: y(t) = sin(t/2) + cos(gt/2) where g -- (v~ - 1)/2 is the 
inverse of the golden mean and 0 < t < 1999 (upper curve, offset by +4.0). 
This is a standard example given in many textbooks on chaos to show the 
effect of unveiling structure in phase space as opposed to the apparent ran- 
domness in the classical one-dimensional "time series plot". The lower curve 
is a randomised (shuffled) surrogate data set derived from the original data 
by simply shuffling the values randomly; thus the probability distribution is 
preserved, but the power spectrum and autocorrelation function are altered. 
The surrogate data set will be required for confirmation of results further 
below. For now it can serve for judgement by optical inspection whether the 
original data displays more structure than the randomised signal or not. 

Following the strategy outlined in Fig. 9.1 (step B), Fig. 9.4 gives the 
power spectrum of the original data (as also in the following, the logarithm of 
power normalised to unity is plotted versus frequency in units of the Nyquist 
frequency, i.e. 1~2At, see Section 9.3.3 for numerical details of how the spec- 
trum is obtained). 

The two frequency constituents are immediately recognised, the power 
spectrum is not broad ("noisy") and shows no power-law behaviour. The 
latter two properties would have made the data a candidate for chaos (see 
below). The trailing zig-zag curve towards higher frequencies is a spurious 
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Fig. 9.4. Power spectrum of 
quasi-periodic data 

response due to the high number of frequency intervals (128) used for analysis 
to achieve high resolution. 

The above finding already corresponds to step C in that  at this early 
stage simple structure is revealed (by the linear method of Fourier analy- 
sis). One might conclude to be dealing with a linear quasi-periodic system 
(the two narrow peaks are not obviously in an integer ratio) which may be 
modelled sufficiently by the superposition of harmonics. No further nonlinear 
analysis is required, as the possibility of chaos has been excluded already. 
The assumption of quasi-periodicity may be easily conRrmed by looking at 
the autocorrelation function which is given in Fig. 9.5: for (quasi-)periodic 
functions, the autocorrelation function obviously does not stay at zero and 
decays only very slowly, if at all, with T. 

To be able to demonstrate some of the further methods and to be able 
to compare with later results, Figs. 9.6 and 9.7 show a stereographic phase 
space plot of x(t) versus x ( t  - 1) (i.e. a plot of two delay time coordinates 
with delay time T = 1) and a return plot. The latter plots (also called return 
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Fig. 9.5. Autocorrelation 
function of quasi-periodic 
data 

maps) are often superior to simple phase space plots in distinguishing noise 
and chaos as they are a kind of cross-section of the phase plane and thus 
reduce the the dimension by one. The name return map stems from the fact 
that  instead of the values itself, recurrences of certain conditions are plotted 
versus each other. In Fig. 9.7, x(t) is plotted at positions where x~(t) = / 
(y-axis) versus the previous time where the condition was fulfilled (x-axis). 
Depending on ] ,  this procedure is more or less revealing. Here, f = 0.50. 

X('t)  

Fig. 9.6. Stereographic de- 
lay time plot of quasi- 
periodic data revealing a 
torus 

The phase space plot unveils that  the "dynamics" lie on the by now classi- 
cal two-torus; note the difference in information unveiled by one-dimensional 
scalar plots and phase space plots! The return map may easily be recognised 
to be a cross-section of the torus. Both plots additionally confirm the simple 
structure of the data  concerned. Fig. 9.8 demonstrates the effect of randomi- 
sation in phase space by embedding the shuffled data  shown in the lower part 
of Fig. 9.3" the structure has been completely lost. 
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Fig. 9.8. Phase space plot of 
shuffled quasi-periodic data: 
The structure seen in Fig. 9.6 
has been destroyed 

Final confirmation of the low-dimensionality of the data  comes from steps 
D and E in Fig. 9.1, in this case the delay embedding of the scalar data  in 
successively higher dimensions and the determination of D2 of the resulting 
phase portraits for each embedding dimension. Fig. 9.9 gives the resulting 
function D2 (d) where d is the embedding dimension. 

One sees a clear saturation at d ~ 3, the fractal dimension of the at t ractor  
is about  2.5. The error bar for D2 (see Sect. 9.3.3 for determination of the 
error in D2) includes a range of about 2 to 3, indicating that  the dynamics 
can probably be modelled by as few as 3 to 4 equations. Relying on the latter 
step alone would thus overestimate the complexity of the data  (which might 
be due to the extremely small number of data points used here). The outcome 
of step F is shown in Fig. 9.10, where D2(d) for the surrogate data  given in 
Figs. 9.3 and 9.8 is shown. 

As was to be expected, no saturation with d is present any more, the 
structure in the original da ta  has been destroyed. Note that  the error bars 
also increase dramatically, thus indicating poor scaling properties of the ran- 
domised data. Both observations confirm that  the original data  possessed real 
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deterministic structure, i.e. that the saturation of D2(d) was not spurious. 
Spurious saturation happens for example in the case of coloured noise (see 
also below) when saturation persists even after randomisation. 

Summarising the above results, the analyses would lead to the following 
conclusions: 

- The data is low-dimensional (D2(d), phase and return plots) 
- The data does not represent noise (D~(d) in conjunction with randomisa- 

tion, no broad power spectrum, phase and return plots) 
- The data is not chaotic (power spectrum, phase and return plots) 
- The data is quasi-periodic (phase space plot is a torus, no circle) 
- The data represents two superimposed incommensurate harmonics (power 

spectrum) 

~ r t h e r  support could be obtained from the probability distribution and 
related tests (see below). Final and most powerful confirmation could be 
achieved by actually modelling and predicting the data (this is usually done 
by devising the model, deleting several of the final points, making a prediction 
for these deleted points from the model and then comparing prediction and 
actual values). Here the model could be obtained from a more detailed Fourier 
analysis in which also the phases were kept. The latter is possible only because 
the signal does not stem from a nonlinear model. In the case of nonlinearity, 
nonlinear prediction has to be employed ("data-implicit modelling", c£ e.g. 
[KG95] and below). 

9 . 2 . 2  I n f i n i t e - d i m e n s i o n a l  D y n a m i c s  ( N o i s e )  

Fig. 9.11 shows 2000 random points with a Gaussian (normal) distribution 
with zero mean and a standard deviation of unity (cf. [P+92]). Depending 
on the quality of the random number generator 2, one would thus expect the 
total absence of determinism, i.e. an infinite-dimensional phase space. The 
data set scrutinised in this section thus represents the opposite extreme to 
the quasi-periodic example above. 

Figs. 9.12 and 9.13 give a phase space plot and return map, respectively, 
in analogy to the section above. Both plots reveal no structure in that they 
fill the plane rather homogeneously. One may conclude that the data does not 
stem from a small number of discrete modes, no low-dimensional determinism 
is discernible. 

The latter conclusion is confirmed by the probability distribution shown 
in Fig. 9.14 which is a simple Maxwellian curve (the normalised probability 
of occurrence of values is shown; see also below). Chaotic data would usually 
produce a fractal distribution, periodic data would possess sharp peaks. An- 
other probability-related analysis is the IFS-clumpiness test (cf. e.g. [GW88] 

The methods detailed in this chapter may in fact be utilised to detect shortcom- 
ings in algorithms for random numbers 
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Fig. 9.12. Stereographic 
phase space plot of Gaussian 
noise 

for iterative function systems, [SR95] and references therein for their applica- 
tion in the current context). The latter test produces uniformly distributed 
points in the plane for random data  while chaotic data  and coloured noise 
produce localised clumps. The result of such a test applied to the noise data 
here is given in Fig. 9.15. No structure is revealed either and the randomness 
of the data  is confirmed. 

The autocorrelation function in Fig. 9.16 drops to zero abruptly and re- 
mains there, also indicative of the absence of determinism (no correlation 
between successive values). The power spectrum (Fig. 9.17) is broad, no dom- 
inant periodic processes can be detected. In addition, it may be observed that  
the spectrum is flat, most probably excluding the possibility of chaos. In the 
case of flat, broad power spectra it is of interest to integrate the data  to possi- 
bly generate a random walk (Brownian process, cf. Chapter 5) and determine 
the Hurst  exponent of the process. Fig. 9.18 shows the resulting Hurst plot. 
The obtained value of H -- 0.498 is characteristic of Brownian motion where 
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Fig. 9.13. Return map of 
Gaussian noise 

Fig. 9.14. Probability his- 
togram of Gaussian noise 

no persistent trend exists in the data. Thus the data is confirmed to be white 
noise. 

Finally, the D2(d) calculation, given in Fig. 9.19, shows no tendency to 
saturate and the scaling properties are poor. Due to the definition of random 
data  (infinitely many degrees of freedom), D2(d) should be of the order of d 
for all values of d but  here only 2000 data  points are analysed which leads 
to an underestimation of D2. Taking the error bars into account, however, 
the latter requirement might well be fulfilled. If the data is random, further 
randomisation by shuffling should not alter the structure in phase space. This 
is confirmed in Fig. 9.20 which shows D2(d) for the shuffled random data. 
Indeed, the latter result is barely distinguishable from Fig. 9.19, thus con- 
firming the randomness of the system. No further analysis nor deterministic 
modelling of such a signal is possible (with the methods used here). 

To sum up the findings of this section one may say that  

- The data possesses no simple structure (all tests) 
- The data does not come from a small number of modes (power spectrum) 



9.2 Analysis of Known Dynamics 121 

!:i/(:(:::~ :i?: iii i:~:i :~:ii:: i: :~:iii ~I:: i f if( ~ 
~.:i'~! :! :"i: ,: .:.." .~.::: , , . - : : .  ::~-"~.: : i~= ' •: 

i".i..: :: .: i.::/:..::.:. :. :. :..: :ji:: i.-..: ?..~: :;:. ,..:::".:i:::.iii.: :../. 

Fig. 9.15. IFS-clumpiness test of 
Gaussian noise 

-1 i i 

0 £aa 1~{] 

Fig. 9.16. Autocorrelation 
function for Gaussian noise 

t r  D~mina~t F = .04687S 

Art !I 1 

.011.. --- 
Frequency 

Fig. 9.17. Power spectrum 
for Gaussian noise 



122 9. C h a o s  

~a. 188~ 

F i g .  9 . 1 8 .  H u r s t  p lo t  for  
i n t e g r a t e d  G a u s s i a n  no ise  
y ie ld ing  H ~ 0.5 

1() I ~ | 
....................................................................................................................... j ............. I 

DJ. ........ ~ i l ]  .............. ' ........ i ! ! i ............. ............ i ............. ............ 1 ~ ........... ............ I 

0 Eal~eddi~ D lmvnsion 10 
F i g .  9 . 1 9 .  D2(d) for  d = 1 
to  10 for G a u s s i a n  no ise  

Dimension 10 

F i g .  9 . 2 0 .  D2(d) for  d = 1 to  
10 for " r a n d o m i s e d  G a u s s i a n  
noise"  



9.2 Analysis of Known Dynamics 123 

- The probability distribution looks Gaussian 
- The integral of the data  is a Brownian motion, i.e. the data represents 

white noise 
- The autocorrelation function shows no correlation 
- D2 does not saturate 

Hence, one must assume that  the data  possesses no low-dimensional de- 
terminism at all, whether chaotic or not. Although the system might be deter- 
ministic in a high dimension, it essentially represents noise to the (numerical) 
methods of analysis and modelling available currently. The Hurst exponent 
of about 0.5 furthermore strongly suggests that  there is no determinism in 
higher dimension either. There is no way to model and thus predict such a 
system besides probabilistic methods. 

9.2.3 Low-dimensional Chaotic Dynamics  

The last data  set considered in this section was generated by integrating the 
now classical Lorenz system of three differential equations 

dX/dt  = 1 0 ( Y -  X)  

dY/dt  = 2 8 X - Y - X Z  

dZ/dt = X Y  - 8Z/3 

2000 data  points were obtained by using a sample interval of At = 0.05. The 
Lorenz at t ractor  is described in almost any book on chaos and is a simpli- 
fied model of a dissipative chaotic flow which was used by Lorenz (1963) to 
model atmospheric dynamics. Maybe the most comprehensive (mathemat- 
ical) t reatment of the Lorenz at tractor  may be found in Sparrow (1982). 
Turcotte (1992) gives a very detailed t reatment  including derivation of the 
equations in the context of mantle convection. 

The signal is shown in Fig. 9.21 (upper curve) together with its shuffled 
version (lower curve) which will be needed for verification of results later 
on. Although a very different appearance of the original data and its shuf- 
fled version may be noticed, it is not obvious how the apparent structure 
in the original data should be described--the data  seems neither completely 
random, nor periodic. Linear methods can indeed usually not distinguish 
between chaotic and random data. 

Following the procedure of the sections above and the strategy outlined 
in Fig. 9.1, Figs. 9.22 and 9.23 give a stereographic phase space plot and 
a re turn map for the data. Both plots immediately reveal a well defined 
structure in the data. As mentioned earlier, animated sequences can not be 
reproduced here, but  it should be pointed out that  watching the evolution of 
the t rajectory in phase space is an important  additional means to distinguish 
deterministic chaos from e.g. coloured noise; the ways in which the attractors 
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Fig. 9.21. A chaotic 
signal from the 
Lorenz system 
(above) and its shuf- 
fled version (below) 

are bnilt up differ significantly (cf. also [Rob91]). The return map is almost 
one-dimensional, implying that  the at tractor should have a fractal dimension 
of about 2. 

Fig. 9.22. Stereographic 
phase space plot of chaotic 
Lorenz data 

The probability distribution in Fig. 9.24 is no simple curve but also pos- 
sesses no sharp peaks as would be expected from a periodic system. Instead, 
the distribution is rather irregular, possibly fractal, indicative of a chaotic 
system. The IFS-clumpiness test shown in Fig. 9.25 clearly rules out random 
data  in that  the at t ractor  of the IFS is extremely localised. 

The power spectrum, displayed in Fig. 9.26, is broad and shows a very 
clear 1 / f  behaviour, i.e. a power-law relationship exists. Together with the 
absence of clear dominant frequencies, the power spectrum thus rules out 
the possibility of a quasi-periodic solution as dealt with in Section 9.2.1. A 
quasi-periodic solution would have been possible due to the assumed at t ractor  
dimension close to 2. 
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Finally again, D2 (d) was determined and is given in Fig. 9.27. One notices 
a prototypical saturation of D2 at ~ 2 which is in perfect agreement with 
the conclusions drawn from interpreting the return map in Fig. 9.23. Note 
also the excellent scaling properties as evidenced by the extremely small 
estimated error in D2. However, the latter result is worth nothing without 
verification by surrogate data. Fig. 9.28 thus gives D2(d) for the shuffled data. 
As can be seen immediately, the structure in phase space was real in that 
it gets destroyed by the randomisation. As also observed in Sect. 9.2.1, the 
uncertainty in D2 increases due to worsened scaling properties. 

The above findings may be summaxised as 

- The data possesses some non-triviai structure (signal itself, phase and re- 
turn plots) 

- The attractor should be about two-dimensional (return map) 
- There is evidence for chaoticity from the shape of the probability distribu- 

tion 
- Noise is also ruled out by the IFS-clumpiness test 
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- Further evidence for chaoticity comes from the power spectrum (broad, 
l / f ,  no dominant peaks), also ruling out quasi-periodicity 

- The data  possesses an at t ractor  of dimension of about two (D2(d)) 

The listed findings inevitably lead to the conclusion of low-dimensional 
chaotic dynamics which could most probably be modelled by three equations. 
Note that  the latter conclusion agrees very well with the known properties of 
the dynamics and that  the expected value for the Lorenz at t ractor  is about  
2.05. 
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9.3 A n a l y s i s  o f  E a r t h q u a k e  D a t a  

In this section, geophysical field observations thought to be related and pos- 
sibly describing the earthquake process or at least certain aspects of it, are 
analysed in the fashion of the previous section. The results obtained earlier 
will be helpful in the interpretation and classification of the results to follow. 

9.3.1 R a d o n  

Radon is the only radioactive gas emitted from the surface of the crust and 
the emission is thought to be predominantly governed by stress changes 
in the basement rock (e.g. [WNS88]). Changes of radon concentration in 
groundwater with time are considered as promising earthquake precursors 
(e.g. [Wak82]). 

The radon concentration time series used here was kindly made available 
by Dr. G. Igarashi of then Laboratory for Earthquake Chemistry at University 
of Tokyo. The original data comprised hourly values of the raw observed 
radon concentration, the temperature in the measuring chamber (see below), 
a calculated temperature response, a calculated radon concentration in the 
liquid phase and the resulting (raw - temperature response) time series. The 
radon gas concentration is measured by a scintillation detector system in a 
detection chamber. Since the emanation rate of radon is proportional to the 
temperature in the chamber, the latter has to be monitored and taken into 
account to obtain the actual concentration of radon in the groundwater (see 
[NW77] for a detailed description of the system). 

Tokyo University operates radon observation sites at several locations 
in Japan of which the site KSM in the eastern part of Fukushima Prefec- 
ture, Northeast Japan, has shown exceptional sensitivity to the occurrence 
of earthquakes ([IW90]). The geographical location of site KSM is shown in 
Fig. 9.29. Igarashi and Wakita (1990) also outline the statistical procedure 
used to reduce the raw- data to the "earthquake relevant" part by remov- 
ing the temperature effect and an "irregular" part. The latter already shows 
that smoothing (i.e. "noise"-reduction) is involved in the approach so that 
it is necessary to use the raw data for nonlinear analysis (recall the dimen- 
sion reducing effect of smoothing and that "noise" may indeed constitute the 
nonlinear dynamics we are interested in here). 

From the original data set, a subset of almost two years (14401 hourly 
values) from Nov. 18, 1985 onwards was selected so as not to include any 
gaps and be stationary (the measuring procedure was changed by installing 
an air conditioner to reduce the temperature effect at one stage). The yearly 
temperature effect is clearly visible in Fig. 9.30 where the selected data is 
shown. The harmonic constituents are confirmed by the power spectrum as 
given in Fig. 9.31 (linear-linear plot). 

As we are not interested in meteorological dynamics (which possess sim- 
ple periodic behaviour at the available scale), the harmonic trend has to be 
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removed prior to nonlinear analysis. Fig. 9.32 shows an at tempt to remove 
the slow trends by a sixth order polynomial least squares fit (the resulting 
polynomial coefficients are also shown in the figure). Despite the reasonable 
fit, dominant periodicity remained at smaller scales in the residual. The latter 
still dominated the phase space structure so that  another approach had to 
be taken. 

Fig. 9.33 shows the residual after all harmonic constituents have been re- 
moved by means of a maximum-entropy (or all poles) analysis (e.g. [P+92])-- 
this analysis is similar to a Fourier analysis but represents the data  in terms of 
a finite number of complex poles of discrete frequency. It has advantages over 
a F F T  when trying to extract sharp peaks from records with superimposed 
noise. As can be seen in Fig. 9.33, the residual is very small in amplitude (note 
the different scales of the y-axis) and of little variability. The latter essentially 
implies that  the data  could in principle be modelled to sufficient accuracy by 
the superposition of harmonics alone. Thus, the analysis as outlined in Fig. 
9.1 could end here (at step (C)) in principle. 

As it is unsatisfying to conclude that  the emission of radon gas as ob- 
served in the time series concerned here is a simple periodic process, some 
further analysis was performed on the above residual nevertheless. The power 
spectrum of the non-harmonic residual as given in Fig. 9.34 is broad and flat 
as was to be expected, indicative of white noise (cf. Section 9.2.2). Looking 
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at the IFS produced by the IFS clumpiness test in Fig. 9.35, this assumption 
is confirmed (cf. Section 9.2.2): the at tractor  of the IFS is homogeneously 
space filling, no structure is apparent. The autocorrelation function, given in 
Fig. 9.36, however, is surprising at first sight because it does not drop to zero 
abruptly and does not stay there. Instead, a clearly periodic behaviour is ob- 
served which can nevertheless only be at tr ibuted to the incomplete removal 
or the artificial introduction of periodicity by the all poles method. Hence, 
one would interpret the autocorrelation function as evidence for uncorrelated 
noise as well. 

To convincingly confirm the latter findings, a delay time embedding was 
a t tempted  as in Section 9.3.3 above. The resulting D2(d) function is displayed 
in Fig. 9.37. There is no apparent saturation of D2, even the scaling properties 
themselves are questionable for d > 6 as evidenced by the large error bars. 
Even if one would want to believe in a saturation of the at tractor dimension 
at about 7 this would imply essentially random data  in the case of the limited 
length of the time series regarded here (cf. [SR95]). The latter is at least true 
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for the current s tate of numerical modelling (the limit must be seen at about  
D~ = 5). 

A final a t t empt  to detect low-dimensional determinism was made by look- 
ing at  the radon fluctuation signal, similar to the fluctuation of earthquake 
inter-arrival t imes in Section 9.3.3. In Section 9.3.3, there was no choice but  
the fluctuation signal, but  here signals like the ones tried above (i.e. residuals) 
are preferable in principle because taking the numerical derivative empha- 
sises measurement  error. Only the result of a t t empted  delay-time embedding 
is given in Fig. 9.38 as the other results (phase space plot etc.) were rather  
similar to the ones of the detrended data. As can be seen, Fig. 9.38 may be 
regarded to be almost identical to Fig. 9.37: the at t ractors  of the detrended 
da ta  and the first derivative of the raw data  show no apparent  structure 
in embeddings of dimension up to 10. The embedding results confirm each 
other and thus also the maximum-entropy method as used for the removal of 
harmonic constituents of the data. 
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To summarise the analysis of radon data,  one may conclude that  the 
dynamics of radon emission as witnessed here (i.e. also at the t ime scale of 
about  two years) must be modelled by harmonic processes instead of low- 
dimensional nonlinear processes. The small non-harmonic residual cannot be 
regarded to be a low-dimensional nonlinear process either; it is either high- 
dimensional or uncorrelated noise. 

To list the above results concisely, it may be said tha t  

- The main constituent of the data  is harmonic (power spectrum of raw data,  
small residuum) 

- The residual is white noise (power spectrum of residual, IFS-test,  autocor- 
relation) 

- There is definitely no low-dimensional determinism in the non-harmonic 
residual ( D2( d) ) 

- The same is true for radon fluctuations (D2(d)) 
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9 . 3 . 2  S t r a i n  

In this section, strain data  as observed by an extensometer array will be 
analysed for determinism. The extensometer measurements commenced in 
1975 at the Yamasaki fault in Southwest Japan within the framework of the 
national project for earthquake prediction in Japan. Details of the project as 
carried out in the Yamasaki fault region and about the strain measurements 
may be found in [Wat91a, Wat91b]. 

Here, the aim is rather single-mindedly to perform a time series analysis 
in the light of possible nonlinear determinism instead of trying to correlate 
the strain signal with the occurrence of earthquakes (see [Watglb] for such 
an analysis). The data  used for analysis was kindly made available by Dr. 
Kunihiko Watanabe of DPRI. The left part  of Fig. 9.39 shows the location 
of the Yamasaki fault system which includes the Yasutomi fault, where the 
measurements were performed. The geometry of the extensometer vault is 
shown to the right. Also shown are the locations of extensometer sensors, 
denoted by numbers 1 through 12. 
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Fig. 9.39. Location and details of strain observation vault at Yamasaki fault (from 
~Vatanabe (1991)) 

The available data  comprised time series for the deformations between 
sensors 1-6 and the fixed end, between points 8-12 and the fixed end and be- 
tween sensors 6 and 8. Differential strains may thus be obtained by calculating 
the differences between appropriate sensors. The shaded elongated areas indi- 
cate fractured zones which may be regarded as "the fau l t " - - they  agree with 
the confirmed fault line as also observed at the surface (cf. [Wat91a]). Also 
in the light of the findings by Kagan (1992) mentioned in Section 4, a more 
detailed discussion of the term "fault" is appropriate here. As pointed out 
in [Wat91b], the Yasutomi fault can be characterised by a "fault zone" and 
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a "fractured zone". The fault zone may be defined as a belt of 100-200 m 
thickness with several fractured zones consisting of fractured rock and clay 
inside. The influence of such a complicated interface on stress accumulation, 
strain release and rupture behaviour in general and thus also on the signal 
discussed here is certainly very difficult to model. In the choice of data sets 
for nonlinear analysis it was simply assumed that  the extensometer signal 
across the "fault" might be particularly interesting as it can be considered 
to be especially sensitive (cf. K/impel (1993) and his introduction of "weak- 
intersecting-zones") and to in a sense describe the thickness of the fault. 
The differential strains between sensors 2 and 3 and 10 and 11 were thus 
calculated. 

The original da ta  consisted of hourly values for Jan. 1984 to Dec. 1985 
and daily values from Nov. 1975 to Dec. 1987. The differential strains were 
calculated for both  types of data to be able to check for sampling effects 
respectively short term and long term behaviour. The raw data  from the sen- 
sors is subjected to a low pass filter with a cut-off period of one minute at 
the site to remove noise caused by traffic on the expressway also indicated in 
Fig. 9.39. Hourly and daily data is not obtained by smoothing or averaging 
the data, but  by simply sampling values at appropriate intervals. Thus no 
further low pass filter has been applied which would effectively reduce the di- 
mensionality of the data  (see remarks on filtering in Section 9.3.3). Temporal 
accuracy of the data is 2 min, the detectability limit is about 10 -9 strain. 
The only additional pre-processing carried out here has been to remove artifi- 
cial disturbances. For the analysis, strain steps, which did cause a permanent 
offset, have been removed because they were too few to make feasible a res- 
olution of their dynamic behaviour. They would hence just have caused a 
translation of part  of the at t ractor  in the reconstructed phase space. Because 
of the pronounced seasonal variation, respectively a strong linear t rend in the 
data  (cf. also [Wat91a]), the strain fluctuation signal (i.e. the first numerical 
derivative) was used  (similar to Section 9.3.1, spectral and others methods 
yielded no significantly different results). The long-term features should be 
removed definitively because the data  sets are not long enough to resolve 
their possibly nonlinear dynamics. After preliminary numerical inspection it 
was decided to use the daily data from sensors 10/11 and the hourly data 
from sensors 2/3. The latter choice was also motivated by the goal to com- 
pare the signals originating from the two different tunnels of the observation 
vault and to be able to possibly resolve the dynamics at different scales and 
different temporal  resolutions. 

The resulting fluctuation time series are shown in Fig. 9.40 for the daily 
data  and Fig. 9.41 for the hourly data. The amplitude of strain fluctuation is 
similar for bo th  time series but the hourly record contains several large spikes 
(due to the occurrence of larger earthquakes, cf. [Wat91b]) which were missed 
when sampling the daily values (recall that  the daily values are not produced 
by averaging or the like but  simply by selecting values at 0:00 hours each 
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day). Thus no fundamental difference between the time series due to their 
numerical preprocessing are expected. Also no fundamental differences due 
to the different locations of the sensors are apparent at this stage. 
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Fig. 9.40. Daily 
strain fluctuation at 
the Yamasaki fault 
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Fig. 9.41. Hourly 
strain fluctuation at 
the Yamasaki fault 
for 1984 to 1985 

All the analyses mentioned in the previous two sections were carried out 
for the two sets but only a few are shown below. Due to the shape of the 
original data sets (i.e. before takAng the first derivative) being reminiscent 
of a random walk (they possessed pronounced slow trends which could be 
described as (transient) excursions from the mean),  first the Hurst exponents 
for the actually observed strains were calculated. H resulted to be 0.58 and 
0.60 for the hourly and daily data, respectively. The latter values are very 
close to Brownian motion,  i.e. the integral of  white no i se - - the  original data 
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possesses no pronounced long-time memory which seems to be rather  the 
exception than  the rule with geophysical da ta  (cf. Section 5.1). 

Phase space plots and return maps unveiled no discernible fractal struc- 
ture for bo th  sets so tha t  5zrther judgement had to be performed by numerics. 
Fig. 9.42 shows a delay-time embedding in three dimensions (x(t) vs. x ( t -  1) 
vs. x(t  - 2) with r = 1) to demonstrate  the structure-less phase space of the 
strain fluctuation for the daily data: the a t t rac tor  forms a dense ball without 
discernible (fractal) structure. 
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Fig. 9.42. Three- 
dimensional delay time 
embedding of daily strain 
fluctuations revealing no 
discernible structure 

Results for daily and hourly strain fluctuations were very similar so that  
in the following only the results for the hourly da ta  are given. The logarith- 
mic power spect rum in Fig. 9.43 is broad but  shows a dominant periodic 
consti tuent at  a frequency of about  0.16×1/2h. There is no power law decay 
or other s tructure which might be indicative of a chaotic data. 

Fig. 9.43. Logarithmic 
power spectrum of hourly 

--~ F ~ , ~  ,s strain fluctuations 
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While the histogram (probability is plotted versus the binned range in 
strain fluctuation) in Fig. 9.44 is not definitely typical for uncorrelated noise 
(or periodic data), the IFS-clumpiness test in Fig. 9.45 seems to indicate 
noise: the attractor of the IFS spreads uniformly over the whole area when 
compared to e.g. Fig. 9.25 (Lorenz Chaos). 
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Fig. 9.44. Logarithmic his- 
togram of hourly strain fluc- 
tuations 

Fig. 9.45. IFS-clumpiness test of 
hourly strain fluctuations 

The autocorrelation function displayed in Fig. 9.46 unveils the data to 
possess a somewhat higher degree of correlation than pure white noise (cf. Fig. 
9.16): the coefficient of correlation can be seen to decrease more slowly and 
vary with time, possibly indicative of the dominant periodicity as witnessed 
in Fig. 9.43 above. The latter situation is similar to the autocorrelation result 
of the non-harmonic radon residual and does not distinguish the strain data 
from noise. 
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Fig. 9.46. Autocorrelation 
function of hourly strain fluc- 
tuations 

The above results lead to the conclusion that one cannot expect to en- 
counter a saturation of the fractal dimension of the attractor at any embed- 
ding dimension. The latter is confirmed in Figs. 9.47 for the daily data and in 
Fig. 9.48 for the hourly time series: for the daily data, D2(10) has surpassed 
the value of 6, the hourly D2(10) is only a little lower at about 5.6. Despite 
the fact of an apparent trend towards saturation of the attractor dimension 
in both figures, the maximal values are so large that deterministic modelling 
is out of the question. Note also the poor scaling properties as evidenced by 
the indicated error bars. Finally, Fig. 9.49 underlines the latter conclusions of 
the data being essentially noise: the figure shows D2(d) for the hourly data 
after it had been scrambled in the time domain. The fact that this curve 
shows essentially the same behaviour as for the original data shows that the 
latter possessed definitely no determinism. 
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Fig. 9.47. D2(d) for embed- 
dings of daily strain fluctua- 
tions 

An advanced analysis of the strain data discussed in this section would 
be to consider e.g. the differential strains between all sensors simultaneously 
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Fig. 9.49. D2 (d) for embed- 
dings of scrambled hourly 
strain fluctuations 

(multivariate data).  The lat ter  approach would greatly enhance the informa- 
tion content in tha t  not only one scalar signal is used as input but ra ther  a 
strain field (cf. also [ABST93]), A further possible advantage would be the 
possibility of the automat ic  reduction of noise, as the noise components of 
the different sensors can be regarded to be independent (at least to a certain 
extent) and thus would lead to a mutual  cancellation. 

One may summarise the findings of nonlinear analysis for the strain data  
(for hourly as well as daily sets), as follows: 

- The da ta  shows very little persistence (H) 
- The da ta  possesses no structure (phase space plot) 
- The data  does not s tem from a well-defined small number of modes (power 

spectrum) 
- ~ r t h e r  evidence for noise comes from the IFS-clumpiness test and the 

probabil i ty histogram 
- The autocorrelation function also is indicative of noise 
- There is no structure in higher dimensions either (D2(d)) 
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9.3.3 Inter-arr iva l  T i m e s  

A "time" series directly derived from the occurrence of earthquakes is anal- 
ysed here. From the catalogue introduced in Chapter 7, a record of earthquake 
inter-arrival times, i.e. earthquake intervals, was constructed. Such a "time" 
series has the advantage of undoubtedly directly describing an aspect of the 
earthquake process. As will be discussed below, the latter is not necessarily 
true for geophysical time series obtained from field measurements. Obviously, 
the x-axis is not really time, but for convenience, it will be spoken of here 
as a time series. It makes no difference for analysis and interpretation (the 
simultaneous measurement of a signal at several different locations is equiv- 
alent to a scalar measurement for a prolonged time at only one location, cf. 
also [ABST93]). 

Following the approach outlined in Fig. 9.1, it was first made sure that  
none of the 27 951 values was due to artificial disturbance (e.g. gaps in the 
earthquake catalogue etc.). The resulting data obviously has a structure of 
impulses on a line, which is not feasible for viewing and analysis in phase space 
(a dense structure with rectangular boundaries will result). Hence, although 
no trend(s) or other obvious non-stationary behaviour was detectable, the 
signal was differentiated to give a signal describing the fluctuation of earth- 
quake intervals. The latter signal was used for all subsequent analyses; the 
first 15 000 values are shown in Fig. 9.50. 
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Fig. 9.50. First 
15000 values of the 
fluctuation of earth- 
quake inter-arrival 
times 

Next, step (C) involved the search for simple structure which would end 
the analysis if the data  could e.g. be sufficiently modelled by a superposition 
of harmonics (cf. Section 9.2.1) or a polynomial. In the latter case, also the 
phase space plot would reveal a simple topography like e.g. a (noisy) torus 
(also cf. Section 9.2.1). As this step includes some experimentation in the 
case of real-world data, like varying the delay time and angle of view in 
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phase space etc., it is difficult to reproduce the results on paper. The latter 
is especially true for animated sequences like stroboscopic sampling of phase 
space (cf. [SR95]). A few examples are nevertheless given in the figures to 
follow. 

Fig. 9.51 shows the power spectrum of the data, which should be broad 
(dynamics not representable by simple superposition of harmonics) and follow 
an exponential or power law not to exclude the possibility of low-dimensional 
deterministic chaos (the latter would appear as a straight line in a log-linear 
plot, cfi Section 9.2.3). The spectrum was determined by applying a non- 
overlapping Parzen window using a FFT  (cf. [P+92]). As can be seen, the 
power spectrum is broad but definitely doesn't represent 1/f-noise. Instead 
there seem to be two linear regions, one increasing with f and one rather 
flat. Although one may exclude the possibility of periodicity in the data  
according to this result, the trend of the power spectrum is puzzling. It might 
possibly represent coloured noise, i.e. correlated noise with a non-flat, non- 
trivial power spectrum. 
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In the case of flat power spectra, it is of interest to integrate the original 
data  and determine the Hurst exponent as described in Chapter 5 and carried 
out in Section 9.2.2 above. Recall that an exponent of about 0.5 would in- 
dicate uncorrelated white noise (i.e. Brownian motion, the integral of white 
noise), while H > 0.5 means persistence and H < 0.5 means anti-persistence 
(fBm). The result of a Hurst analysis of the inter-arrival times is given in Fig. 
9.52. The y-axis denotes root-mean-square displacement of the signal from its 
initial position using each data point as an initial condition (i.e. range), the 
y-axis is time. The slope thus gives H. The Hurst exponent was found to be 
0.73, i.e. in accordance with an overwhelming multitude of other geophysical 
phenomena (see Chapter 5). It should be noted that,  apart from the final di- 
vergence for large times, the plot follows the straight line exceptionally well. 
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Here it is sufficient to note that  the occurrence times of earthquakes possess 
a long time memory such that  current trends persist. 
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Fig. 9.52. Hurst plot of 
integrated earthquake inter- 
arrival times 

A look at the probability distribution and associated analyses might bring 
more clarity. Fig. 9.53 gives a simple histogram of the data. The data  was 
binned into 64 bins of equal widths and the weight of each bin, representing 
the probability of occurrence of the value denoted by the x-axis, was plotted. 
A non-fractal distribution is observed. However, the histogram is not neces- 
sarily Gaussian either; as also with chaotic systems with simple distribution 
of values, one can not conclude much from this result. 
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Fig. 9.53. Probability 
distribution of earthquake 
inter-arrival time fluctuation 

As can be seen from the IFS-clumpiness test displayed in Fig. 9.54, how- 
ever, the earthquake data  definitely can not be assumed to be random which 
confirms the result of H and agrees with the non-Pint shape of the power 
spectrum. 
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Fig. 9.54. IFS-clumpiness test for 
earthquake inter-arrival time fluctu- 
ation 

Related to the F F T  which was used above to obtain the power spectrum 
is the discrete wavelet transform (DWT, e.g. [P+92]). One of the main dif- 
ferences is tha t  the basis functions are not imposed as in the F F T  (sines and 
cosines) but  can be adjusted to the data. Also they are localised in space (un- 
like harmonic functions) and frequency (like harmonic functions). One may 
thus obtain information about the variability of data at specific scales. Fig. 
9.55 shows a DWT of the inter-arrival time fluctuation for a transform func- 
tion which is symmetric about  the position T where it is applied. The width 
AT  of the function is plotted on the y-axis, the x-axis represents position T. 
As can be seen, variation within the data occurs mainly on time scales of 1 to 
about 8 events. As there is no systematic variation with T, we have further 
evidence for the stationarity of the data (cf. [SR95]). 

Fig. 9.55. Symmetric 
wavelet transform of earth- 
quake inter-arrival time 
fluctuation 

Motivated by the findings so far, an a t tempt  was made to visualise a 
possible attractor.  For this, several embeddings and phase space plots were 



9.3 Analysis of Earthquake Data 145 

produced. Fig. 9.56 shows an embedding of the signal into a two-dimensional 
phase space. Each value x(t) was simply plotted versus the previous value 
x(t  - 1). The latter corresponds to a two-dimensional embedding with delay 
time V ---- i (cf. Section 9.2). Fig. 9.56 gives a stereographic projection in which 
one may indeed identify some "strange" structure: random data  produces a 
uniform shape distributed over the whole phase space (cf. Section 9.2.2) which 
is very different from what is observed here. 
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Fig. 9.56. Stereographic 
view of two-dimensional em- 
bedding of inter-arrival time 
fluctuation 

Encouraged by findings like the one in Fig. 9.56, return maps were also 
tried. In Fig. 9.57, x(t) is plotted at positions where x'(t) = f (y-axis) versus 
the previous time where the condition was fulfilled (x-axis). Here, f -- 0.55 
which yielded the best result. The object obtained this way seems to in- 
deed possess a fractal structure with a fractal dimension. Unlike in Section 
9.2.3 (Lorenz at tractor) ,  one can not easily judge the dimensionality of the 
attractor.  The latter will be achieved by determination of D2 below. 
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Fig. 9.57. A return map of 
earthquake inter-arrival time 
fluctuation 
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Before steps (D) and (E), i.e. the verification and characterisation of the 
strange attractor, one needs to guess the optimal delay time for the embed- 
ding in successively higher Euclidean dimensions (in Section 9.2, the delay 
time was always assumed to be one). Several methods exist to achieve this 
(e.g. [ABST93]), the simplest of which is based on the autocorrelation func- 
tion (e.g. [P+92]): the time T, where the coefficient of autocorrelation first 
reaches 1/e is usually said to be the correlation time. To disentangle the 
structure in embedding space, a delay time greater than the correlation time 
is obviously desirable (e.g. [Sch88]). Here, the correlation time was 0.426 as 
displayed in Fig. 9.58, hence a delay time of 1 should also be sufficient. For 
highly random data, there is no correlation and the correlation function will 
drop abruptly to zero, showing the small correlation time (cf. Section 9.2.2). 
Completely correlated data like a sine wave will have a correlation func- 
tion that varies with ~" but whose amplitude is constant (cf. Section 9.2.1). 
Chaotic data from natural systems may produce both behaviours, depending 
also on the interval at which the signal is sampled (a very high sampling 
rate produces several consecutive points of similar value). In this case, the 
autocorrelation function drops to zero relatively fast, then shows negative 
correlation and finally returns and stays at zero. As the possibility of white 
noise has been excluded above, the result does not contradict the assumption 
of low-dimensional chaos. 
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Fig. 9.58. Autocorrelation 
function for earthquake 
inter-arrival time fluctuation 

Using the thus obtained delay time of 1, step (D) was performed for em- 
bedding dimensions ranging from I to 10. For every dimension, an embedding 
with delay time 1 was performed and D2 for the resulting structure deter- 
mined. If there is really a low-dimensional attractor in the data, D2 must 
saturate at the nearby embedding dimension, i.e. further increase of d may 
not cite a further increase in D2. Hence, a plateau is expected in a 02 versus 
d plot. Simply speaking, the latter must be fulfilled because the dynamics of 
a deterministic system must unfold at a certain embedding dimension (the 



9.3 Analysis of Earthquake Data 147 

trajectories may not intersect anymore; the assumed system is deterministic, 
i.e. the systems state must be unambiguous), where addition of further de- 
grees of freedom does not add any additional information. So to say, if we 
observe the motion of a beetle in the plane, we learn nothing new if we plot 
its t rajectory in three or more dimensions instead of two (cf. also Section 
9.1). Obviously, however, all the precautions mentioned in Chapter 2.1 must 
be taken (i.e. sufficient linearity of the scaling region~ sufficient size of scal- 
ing range etc.). Also the mentioned limitations with respect to the needed 
number of data  points apply--recall  that  an increasing dimension requires 
geometrically more points. The error for D2 was estimated to be half the 
difference between maximal and minimal pointwise slope over a fixed scaling 
region. If this error remains small, the determination of D2 may be regarded 
to be successful. 

Fig. 9.59 gives the result of this kind of time consuming calculation. It 
is exciting to observe a very clear saturation at D2 ~ 3. The small error in 
D2 as designated by the error bars gives high confidence in the result. The 
latter outcome is exciting because almost all analyses of real world field data  
(and of most laboratory data) end at this point 3. Compare also Fig. 9.27 in 
Section 9.2.3 where D2(d) is given for the noise-free Lorenz system and note 
that  the error bars are only slightly larger despite the fact that  the data here 
represents un-filtered (un-smoothed) real-world data! 
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Fig. 9.59. D2(d) for embed- 
ding dimensions of I to 10 for 
earthquake inter-arrival time 
fluctuations 

A saturation at about  3 is one dimension higher than the classical Lorenz 
at tractor,  which, recall Section 9.2.3, can be modelled by 3 coupled nonlinear 
differential equations. One would thus expect that  the temporal occurrence 
of earthquakes could possibly be modelled by as few as four equations--in 

3 After analysing many earthquake related and other time series, including such 
which had been published as being chaotic, I asked Prof. C. Sprott([Spr93]), 
whether he knew a convincing example of numerically shown low dimensionality 
in real-world data and he said he knew none (see also Watts et al. (1994)) 
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other words, only four variables are needed: the process has only four degrees 
of freedom. Tttrcotte (1992) reviews the Lorenz model in view of thermal 
convection in the earth's mantle as the driving force of plate tectonics. Be- 
cause of plate tectonics being in turn the motor for earthquakes, one might 
be led to assume a deeper connection between the Lorenz model and the 
results obtained above. Should the result confirm chaotic mantle convection 
and the chaoticity of earthquakes? Could the occurrence of earthquakes really 
be modelled by such a small number of governing equations? 

Obviously, analysis of many more data  sets would be necessary to gain 
evidence for such a fact, but, more at hand, the saturation of D2 must be 
confirmed to be due to low dimensionM determinism first (step (F)). For that  
purpose, the method of surrogate data ([CE91, The91, TEL+92, KI92]) has 
been devised about six years ago: in this approach, the original data is either 
randomised in the time domain ("shuffled") or Fourier-transformed, phase- 
randomised and then re-transformed into the time domain. The first method 
is rather brutal  and only preserves the probability distribution (the power 
spectrum and the autocorrelation function are destroyed. This method has 
been employed throughout Section 9.2). The second method preserves the 
power spectrum and autocorrelation function and only alters the probability 
distribution. The important  fact, however, is that  both methods necessarily 
remove any determinism in the data: the at tractor  is destroyed (some kinds 
of coloured noise, however, can survive the phase randomisation). Hence, 
if the results of step (D) and (E) are still the same after randomisation, 
the supposed at tractor  was spurious, the data does not stem from a (low- 
dimensional) deterministic system and can not be modelled accordingly. 

Fig. 9.60 shows the first 15000 values of the phase-randomised data 
(above) and the shuffled data (below). The phase-randomised data appears 
smoothed which is not surprising as a finite number of harmonics can not 
accurately represent noisy or chaotic data. In fact, should the systems dy- 
namics be known to be appropriately representable by a Fourier expansion, 
the Fourier transform may be used to reduce the noise in the measurement 4. 
Should it be known that  the raw signal consists of a linear superposition of 
harmonics and chaotic data, the harmonics may of course be removed this 
way to obtain the actual signal of interest-- then,  characteristic of nonlinear 
time series analysis, the "noise" becomes the signal of interest and the lin- 
ear part  gets discarded. Simple examples of the latter situation are signals 
which have an annum trend due to seasonal temperature variation imposed 

4 The issue of noise reduction prior to nonlinear analysis has naturally received 
much attention. Besides the fact that dynamic noise (as opposed to additive 
measurement error noise) cannot be separated from the signal in principle; it is 
generally not a good idea to attempt to remove "noise" from signals of unknown 
systems--one might merely reduce the dimensionality of the system and thus 
get meaningless results in the end (cf. [TE93]). A priori noise reduction is hence 
not considered a valid option here and will not be discussed any further. 
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(see below) or signals influenced by the earth's tides. Here, such an attempt 
would merely reduce the dimensionality of the data. 

D 2000 4000 0000 8000 10000 12000 ]4000 
'Time' 

Fig. 9.60. Sur- 
rogate earthquake 
inter-arrival time 
fluctuation data sets: 
Phase randomised 
(above) and shuffled 
in the time domain 
(below) 

Finally, Figs. 9.61 and 9.62 give D2(d) for the randomised data sets. One 
notices a very clear difference with respect to Fig. 9.59 in that no real sat- 
uration of D2 with increasing embedding dimension may be observed any 
more--even the weaker phase randomisation already completely destroys the 
attractor. Usually, a repeated analysis of several random realisations is nec- 
essary to completely confirm the significance of the difference between the 
result of the original data and the random sets (by obtaining a range for 
D2 from the many random sets and checking whether the original result lies 
within that range) but here the difference is so great, that one may be confi- 
dent without such a test. One may thus exclude the possibility that the data 
is in fact coloured noise and we are led to believe that the temporal occur- 
rence of earthquakes might really follow low dimensional, possibly chaotic 
determinism. 

Before an attempt is made to characterise the degree of assumed chaos, 
and therefore the predictability horizon, it must still be asked whether the 
resulting attractor might not represent a limit cycle (some kind of periodic 
system) with superimposed noise. The uncertainty in the value of D~ includes 
the integral value of 3--an integer dimension would exclude the possibility 
of chaotic dynamics (attractor is not strange). In the latter case, the motion 
would occur on a 3-torus. That possibility, however, can be excluded by noting 
the broad power spectrum, the phase space plot and the return map and by 
realising that it is most unlikely that the occurrence of earthquakes should 
be a linear process. 

Additional confirmation might be obtained from the method of nonlinear 
prediction (e.g. [WBPP93]) which tests for noise versus chaos versus linear- 
ity by directly testing the predictability of the data (a chaotic system still 
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Fig. 9.61. D2(d) for embed- 
ding dimensions of 1 to 10 
for phase randomised earth- 
quake inter-arrival time fluc- 
tuations 

Fig. 9.62. D2(d) for embed- 
ding dimensions of 1 to 10 
for shuffled earthquake inter- 
arrb,~l time fluctuations 

possesses better predictability than noise, a linear system is completely pre- 
dictable for all times; cf. also Section 9.2.1). As will be seen in Section 9.3.4, 
however, a strict confirmation of chaos is not necessary to utilise the result 
in the context of detection of possible earthquake precursors. 

Naturally, the question arises how strong the chaoticity of the earthquake 
process might be. The Lyapunov exponent is a measure of the rate at which 
nearby trajectories of the attractor diverge (e.g. [EKRC86, SM88]). Chaotic 
systems ha"e at least one positive Lyapunov exponent. For periodic orbits, 
all Lyapunov exponents axe negative. In general, there are as many expo- 
nents as there are degrees of freedom, i.e. directions in phase space. For the 
inter-arrival data, only the largest exponent was calculated (cf. [WSSV85], 
calculation of the whole spectrum of exponents from small data sets is con- 
sidered to yield extremely unreliable results). It is given in units of bits per 
data sample (cf. Section 2.2.4, a value of ÷1  thus means that the separation 
of neighbouring orbits doubles on the average in the sampling time). The re- 
sulting value was 0.602±0.013 for the earthquake data. Several authors have 
used the numerical result of such a large positive exponent as proof for chaos 
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in the analysed data.Because the Lyapunov exponent describes the exponen- 
tial divergence of solutions for nearby initial conditions, i.e. the "chaoticity" 
of the data,  it is a measure for the predictability of the system. To be able 
to directly est imate the time over which meaningful predictions are possible 
however, the sum of all positive Lyapunov exponents has to be known. The 
predictabili ty horizon is roughly of the order of the inverse of the sum of 
positive Lyapunov exponents to the base e. Thus, here an estimate of the 
t ime over which a prediction of the occurrence t ime of earthquakes to follow 
is not possible (though one might obtain a crude estimate for a lower bound 
by only using the largest exponent). Sadovskii and Pisarenko (1993) discuss 
the predictability of earthquakes in the light of possible seismic process phase 
space reconstruction and point out that  the problem of how to reconstruct a 
seismicity a t t rac tor  (for predictions) has not yet been addressed. The value of 

0.6 given above would also gain increased significance if comparing different 
da ta  sets, possibly also moving in time. 

To sum up the results in the fashion of Section 9.2, one may say that  

- The da ta  is not (quasi-)periodic (autocorrelation, power spectrum) 
- The da ta  is not uncorrelated noise (power spectrum, H ,  IFS-test)  
- The da ta  is s ta t ionary (DWT) 
- The da ta  might possess a strange a t t ractor  (phase space plot, return map) 
- The da ta  is a good candidate for chaos (autocorrelation, power spectrum) 
- The system represents low-dimensional dynamics (D2 (d)) 
- The a t t rac tor  must be strange (phase space plot, return map in conjunction 

with D2 (d)) 

9.3.4 M o n i t o r i n g  S e i s m i c i t y  in P h a s e  S p a c e  

The results of Section 9.3.3 led to the idea of "phase space monitoring", 
i.e. the continuous observation of the a t t ractors  dimensionality with t ime 
to look for possible precursory behaviour. Such a precursor would manifest 
itself in a gradual or abrupt  change of a t t ractor  dimension, i.e. a change 
in complexity of the underlying dynamics which, in this case, govern the 
temporal  occurence of earthquakes. A change like this might be indicative 
of a phase transit ion (c£ Chapter  6). A change in a t t ractor  dimension is a 
physically significant occurence as opposed to the mere appearance of purely 
statistically determined "peaks" in scalar t ime series. For a summary  of this 
section see also Goltz (1997). 

The same earthquake catalogue data, as in Section 7.1, was used. Figure 
9.63 gives the location and the earthquake epicenters and magnitude in detail. 

Figure 9.64 shows the raw t ime series of earthquake intervals as directly 
derived from the catalogue (upper part)  as well as the first numerical deriva- 
tive (lower part;  refer to Section 9.3.3 for the motivation for taking the first 
derivative). Also shown in Fig. 9.67 is a delay t ime embedding of the same 
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Fig. 9.63. The data 
used for monitor- 
ing in phase space. 
Shown are epicen- 
ters and magnitudes 
(circle diameter) of 
all events contained 
in the catalogue 
analysed 

data  with 7- = 1 in two dimensions to give an idea of the embedding pro- 
cess. An embedding into two dimensions corresponds to the first step only 
when looking for a deterministic structure in phase space by testing for sat- 
uration in the fractal dimension of the phase space structure with increasing 
embedding dimension. 

To demonstrate the difference between earthquake data and synthetic 
data, Figs. 9.65 and 9.66 show the same information as Fig. 9.64 for Gaussian 
noise and Poisson noise. Recalling that  Poisson distributions are used to 
model events occuring independently in time (such as radioactive decay, see 
e.g. [P+92]) and are still used to model the occurrence of earthquakes in some 
contexts, special attention is paid to the comparison between the earthquake 
data  and the Poisson data. 

As has been pointed out earlier, a comparison between the scalar repre- 
sentations of the time series is not very profitable. Looking at the two dimen- 
sional embeddings in Figs. 9.67(earthquakes), 9.68(Gauss) and 9.69(Poisson) 
however, some significant differences become apparent already. The shapes of 
the at tractors differ clearly between the earthquake data  and the Gaussian 
noise. The probability density distribution (probability is shown in shades of 
gray and increases towards the center in @ach case) of the earthquake data 
and that  of the Poisson data  also disagree. The "spiky" shapes of earthquake 
and Poisson data result from the occurence of rare events in the sense of ex- 
tremely short respectively extremely long intervals between events followed 
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Fig. 9.64. Earthquake inter-arrival times and first derivative showing the fluctua- 
tion of lengths of time intervals between successive events 
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Fig. 9.65. Oaussian inter-arrival times and first derivative showing the fluctuation 
of lengths of time intervals between successive events 

by either extremely long, extremely short or average intervals (three spikes, 
embedded is not the time series of intervals but its first derivative). 

To clearly establish the apparent difference between these three time se- 
ries, respectively their underlying dynamics, the embeddings have of course 
to be carried out in successively higher dimensions. The result of this com- 
plete analysis is given in Fig. 9.70. Shown are, in the order of listing in the 
legend, the curves for 

a overall seismicity of the area of observation (cf. Fig. 9.59) 
b surrogate data  of the above (cf. 9.61) to exclude spuriousness 
c Kobe aftershocks 
d surrogate data  of aftershocks 
e Poisson data  
f Gauss data 
g Lorenz system (cf. 9.27) for comparison 
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Fig. 9.66. Poisson inter-arrival times and first derivative showing the fluctuation 
of lengths of time intervals between successive events 

Fig. 9.67. Two dimensional 
phase space embedding with 
v -- 1 of earthquake inter- 
arrival data 

The first two curves simply confirm the results of Section 9.3.3. Analysis 
of the aftershocks of the Kobe earthquake yields the remarkable finding that  
the aftershock sequence is also low-dimensional and more importantly, that  
the complexity of aftershock dynamics is higher than that  of overall seismic- 
ity. The latter indicates that  at tractor  dimension really is able to distinguish 
different phases of seismicity and might therefore be suitable for precursor 
detection. Analysis of the randomised aftershock sequence confirms the exis- 
tence of determinism in the original aftershock data. 

Another very important  result is that  there is absolutely no difference 
between Gauss, Poisson and the surrogate data  sets! Thus, what was already 
anticipated from inspecting the two dimensional embeddings above has been 
confirmed: the temporal  occurrence of earthquakes is not random and cannot 
be modelled by a Poisson sequence. 



9.3 Analysis of Earthquake Data 155 

Fig. 9.68. Two dimensional 
phase space embedding with 
r = 1 of Gauss data 

Fig. 9.69. Two dimensional 
phase space embedding with 
7 = 1 of Poisson data 

Because of the lack of an absolute proof of low dimensional chaos in earth- 
quake intervals, mainly due to the difficulties in determining D2 (cf. Chap- 
ters 2.1 and 3), the t e rm "complexity" is preferred to "at t ractor  dimension" 
in general in the following. Complexity is used in the sense of an effective 
degree of freedom or, in other words, regularity respectively irregularity of 
behaviour. Dimension is used in the sense of an effective dimension whose 
relative differences are significant. This convention seems appropriate  in the 
context of precursor detection as one is not trying to proof chaoticity or to 
actually model the process. The same approach has been taken by Lehnertz 
and Elger (1998) who look for nonlinear precursors of epileptic seizure in EEG 

recordings. They say tha t  " . . .  instead of using D~ f f  as an absolute measure 
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Fig. 9.70. Cor- 
relation versus 
embedding dimension 
for several time series 
(see text and legend 
in picture) 

to differentiate between periodic, chaotic, or stochastic dynamics one can re- 
gard D~ f f  as an operational definition and use the term 'dimension' in an 

informal sense". D~ f f  denotes a numerically determined correlation dimen- 
sion as opposed to a possibly existing absolute theoretical one. The authors 

e l f  further state that  they use D 2 as an operational measure of complexity of 
the EEG and find that  '% reduced dimensional complexity of brain activity, 
as soon as it is of sufficient size and duration, can be regarded a specific fea- 
ture defining states which proceed a seizure". Traditional linear methods are 
mentioned by the authors to produce much inferior precursors at the most. 

The above results for the earthquake data  are encouraging to t ry  a mov- 
ing analysis of complexity throughout the 19 years of the earthquake cata- 
logue used. In this a t tempt  of "monitoring in phase space" the embedding 
dimension for all temporal  windows has to be kept constant. Because of the 
saturation of D2 at about 3 for the overall seismicity and the value of about  
4 for the aftershock data, a constant embedding dimension of 4 was chosen. 
Furthermore, the window size was set to 2000 events and individual analy- 
ses were carried out with an overlap of 100 events each. The choice of the 
la t ter  parameters is somewhat arbitrary but  tries to balance high temporal  
resolution with the requirement of enough points for a safe determination of 
fractal dimension. The result is given in Fig. 9.71 together with an equivalent 
analysis of the Poisson series (upper curve). The temporal  unit was converted 
to days instead of event number to be able to directly judge the duration of 
effects. Distance between successively plotted momentaneous states of com- 
plexity are thus not equidistant. Values are plotted at the time the respective 
windows end. 

Starting with the Poisson series, one observes no significant fluctuations 
of complexity beyond the error bar 5. Instead, the dimension stays at about  

5 The error bars are estimated from half the difference between the minimum and 
maximum local slopes over the middle one quarter in the correlation sum in the 
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Fig. 9.71. Attractor 
dimension versus 
time in days for 
Poisson data (upper 
curve) and earth- 
quake data 

Fig. 9.72. Magni- 
tude versus time of 
the earthquake cata- 
logue analysed 

4, i.e. the a t t ractor  completely fills its embedding space, its states are homo- 
geneously spread out, the hallmark of noise. The result perfectly agrees with 
Fig. 9.70 when one reads off the complexity of a little below 4 for embed- 
ding dimension 4. The picture looks quite different for the earthquake data: 
very clear discontinuities m complexity occur with time. These jumps are of 
a magnitude much larger than the estimated error in the determination of 
D2. The dimension stays constant during several intervals of time (sometimes 
years!), occasionally showing a little variation or a weak trend, then jumps 
to a considerably higher or lower value. 

Figure 9.72 gives earthquake magnitude versus time for the same obser- 
vation interval, thus making possible a first a t tempt  of visual correlation 
between the behaviour of at t ractor  dimension and the occurence of large 
earthquakes. Taking only the three earthquakes with a magnitude greater 

l o g -  log plots of correlation sum versus sphere radii(cf. [SR95]) and are thus 
quite pessimistic. 
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than 5, one might be led to think that complexity increases before large 
events. This conclusion, however, seems to be contradicted by the fact that 
a sharp decrease happens before the Kobe event itself, which occurs at the 
very end of the regarded time interval. It is obvious that the relation between 
changes in attractor dimension and the occurence of large earthquakes needs 
clarification. Other ways than the one attempted here have probably to be 
found to correlate the two signals and establish the quality of complexity as 
a precursor. 

Geometrically, a higher fractal dimension indicates a more homogeneous 
distribution of points in embedding space while a lower correlation dimen- 
sion implies a higher degree of clustering. Stronger clustering in turn means 
prevalent occurrence of evenly spaced earthquakes in time, i.e. no big gradi- 
ents in earthquake inter-arrival times. A more homogeneous distribution of 
points in phase space means that a considerable number of irregularily spaced 
earthquakes occur. Incidentally, the parameter seismicity rate and temporal 
pattern has been shown by Shaw et al. (1992) to be the only promising 
precursor when trying to predict the occurence of large earthquakes during 
simulation with a Burridge-Knopoff model. 

The observed changes in complexity (attractor dimension) might be re- 
garded useful as an empirical approach within practical earthquake prediction 
research or might be interpreted to have fundamental theoretical implica- 
tions for earthquake dynamics. In the first case, the momentaneous effective 
dimensions are regarded as complexity and emphasis is on relative tempo- 
ral changes only. These changes might possibly possess precursory qualities 
(cf' [LE98]). In the second case, the occurence of, e.g., transitions from ex- 
tremely low attractor dimension (indicative of almost periodic behaviour) to 
high dimension (> 4; indicative of chaotic or random temporal occurence of 
earthquakes) might be regarded as phase transitions, the hallmark of critical 
point phenomena (cf. e.g. [Mai96]). The existence of periodic and irregular 
temporal windows in a specific seismically active region would imply that the 
degree of predictability itself changes with time. 

Obviously, further research is needed to confirm these findings. Foremost, 
the methods outlined have to be applied to additional earthquake catalogues 
of different regions, other parameters than inter-arrival times should be tried 
and the location of the analysed region should be varied within the catalogue 
coverage. An application to synthetic earthquake data produced by a time 
dependent load-transfer cellular automaton using a hierarchical load transfer 
rule (cf. [GMP98]) is currently under way. To make the approach more useful 
for earthquake prediction research is required into the correlation between 
changes in complexity and the occurence of large events. Finally, comple- 
mentary and more advanced methods of nonlinear time series analysis must 
be employed for further confirmation of the findings. 



A. A Modified Box-Counting Algorithm 

Although box-counting has several disadvantages, most of them are only en- 
countered in higher dimensions (e.g. [GWSP82, vdWS88]). In the following, 
a modified box-counting algorithm (Liebovitch and Toth (1989)) which has 
a major advantage over the Grassberger-Procaccia algorithm with respect to 
the determination of the appropriate scaling region is introduced. 

In its form modified by Sarraille and DiFalco [Sar92, Sar93], the algorithm 
simultaneously produces estimates of Do, D1 and D2, i.e. the first three gener- 
alised dimensions. The latter yields an additional criterion for the verification 

of results as Dn > D m  for n < m. 
As mentioned in Section 2.2.5, the most popular measure for the estima- 

tion of a fractal dimension is the correlation dimension D2 which is usually 
determined by sphere counting. In practice, the slope of log r versus log C(r) 
and thus D2 itself is usually not a constant but  varies with r. Excluding 
multiscaling, reasons for this behaviour are 

- finite size of the data set, which leads to too low a resolution for r -+ rma~ 
- noise for r --+ rmin (usually, noise will become effective in the counts at 

small r only) 
- underestimation of C(r) near the boundaries of the set 

The last i tem points out a general advantage of the box-counting al- 
gorithm as there are no boundary effects at all. This is due to the initial 
adjustment of the grid over the data. 

Due to the dependence of the slope on r, the correct scaling region must 
be selected manually for every data  set. If, for example in the case of a mov- 
ing analysis in time, D2 of the different time intervals is to be compared, 
the possibly different scaling regions must be taken into account - the fluc- 
tuations in D2 obtained from a blind moving analysis might be meaningless. 
This is also true for an analysis with increasing embedding dimension (see 
[HS93] for a suggestion to use a Durbin-Watson test to automatically detect 
"multiscaling"). 

The computing time of the unmodified Grassberger-Procaccia algorithm 
increases with the square of the number of data points, a box-assisted modi- 
fication by Theiler (1987) used in this work reduces the time to the order of 
N log N, where N is the number of data points. Because this amount of time 
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is frequently still too large, C(r) is usually only determined for a subset of 
points, the so-called reference points. This leads to further uncertainty in the 
result: in tests performed during this work, the estimate of 02  still depended 
on the particular choice of the randomly selected reference points even when 
the number of reference points was as high as 80% of the number of data  
points. Although in the analysed cases these variations were well within the 
conservative estimate of the error made when using all data points, the de- 
pendence of the result on the choice of the reference points (number as well 
as distribution) should be kept in mind. 

The original box-counting method requires too many data points in higher 
dimensions (roughly 10 d, where d is the expected dimension), too much com- 
puter memory and is too slow (obviously, no limitation to a subset of reference 
points is possible as all points of the set have to be counted). 

As the fractal dimension describes how many new pieces of a set are 
resolved as the resolution scale is increased ([Man83]), the fractal dimension 
can be estimated by comparing properties between any two scales (as the set 
is statistically self-similar), i.e. 

dlogN(r) logN(r~) logg(rj) 
D o =  d l o g l / r  - l o g l / r i  l o g l / r j  , i¢ j .  

In the practical modified box-counting algorithm, the coordinates of every 
point ~ in the d-dimensional set are rescaled to the range [0, 2 k - 1], where k 
depends on the integer representation of the respective compiler. Then the set 
is covered by a grid of d-dimensional cubes of edge sizes 2 m, 0 < m <_ k, the 
"boxes". Next the coordinates are coded binarily according to the box they 
lie in by a simple binary AND operation. To determine the actual number 
of points in the boxes of a particular size, the bits of the previously ordered 
points are scanned. A more detailed description of the modified box-counting 
algorithm may be found in [LT89]. 

When r is so small that  every point lies in a distinct box, i.e. N( r )  = N,  
the function N(r) has saturated and the maximum resolution possible with 
respect to the data  size is reached. These values of N(r ) ,  as well as values 
due to saturation because of the decreasing resolution, should not be used for 
the slope estimation. To ensure that  N(r) is not near saturation, Liebovitch 
and Toth (1989) exclude values of N(r) for N(r) <_ N/5. Likewise the values 
for m --- k, k - 1 are discarded. Thus in this case the method of fit is not 
determined from the shape of the log - log plot, but  from the properties of 
the set itself and is always the same. Therefore results are more comparable 
and the method seems suitable even for an automatic detection of changes 
in the fractal dimension like in the continuous observation of the fractal 
properties of seismicity distribution. The method was extended to arbitrary 
values of q in this work, but, especially for q < 0, the selection of the scaling 
region had to be performed by nonlinear optimisation (c£ Chapter 3). 

However, the danger of averaging over real multiscaling behaviour re- 
mains. In this work, the algorithm was therefore extended to include statisti- 
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cal output like the standard deviation of the slope, the correlation coefficient 
of the fitted line with the points in the scaling region and confidence limits 
obtained from a Students t-test. These values must be monitored carefully 
if the analysis is carried out using linear regression and performed blindly, 
i.e. without visual inspection of the log - log plot. More advanced checks are 
discussed by Gonzato et al. (1998). See also Section 3.4. 

Liebovitch and Toth (1989) found the accuracy of their algorithm to be 
equal or better than the Grassberger-Procaccia algorithm and reached ex- 
ecution times of up to about 36 times faster for 104 data points. Similar 
results were found during numerous tests and analyses throughout this work. 
At least for dimensions smaller than three, i.e. for example for the analysis 
of epicentre distributions, the modified box-counting algorithm seems prefer- 
ably to sphere counting. This is especially true for the automatic detection of 
changes in the first three generalised dimensions. In this work the algorithm 
has been extended for the determination of arbitrary Dq, i.e. q may be set 
freely. For q < 0 and q > 3, the slopes are determined by nonlinear optimisa- 
tion as described in Chapter 3 instead of the original linear approach outlined 
above. For low dimensional data the accuracy of the results frequently sur- 
passed the one of generalised sphere counting (see also [BvBS90] for efficient 
and accurate determination of generalised dimensions by box-counting). 





B. Fractal Cluster Analysis 

In a paper by Henderson et al. (1994), a fractal analysis of seismicity was 
carried out after an observation area in north-eastern Brazil had been sepa- 
rated into clusters of distinct seismicity by cluster analysis. The idea is that  
one should not average the possibly peculiar (fractal) properties of distinct 
seismogenic zones (cf. also [GC95]). These zones do not have to correlate with 
e.g. different branches of a fault system or, more generally, any distinct geo- 
logical features known a priori. Although a multifractal analysis disentangles 
a structure consisting of intertwined fractals of different scaling, it might still 
make sense to observe the temporal evolution of different zones separately. 
This is for example because of possible stress transfers between regions, lead- 
ing to a critical state in one region while another becomes uncritical. Thus a 
combined cluster and multifractal analysis seems rewarding (the analysis by 
Henderson et at. (1994) was monofractal). No such analysis was performed 
yet, but a consideration of the problem led to the following idea. 

The objective of cluster analysis is to separate data into distinct groups of 
objects. Basically, objects belonging to the same group should be as similar 
(close together) as possible, while objects in different groups should be as 
dissimilar (far apart) as possible. Cluster analysis establishes the groups, 
whereas discriminant analysis assigns objects to groups previously defined. 

In up to three dimensions, subjective classification by visual inspection is 
possible but not objective as no measure of the quality or ambiguity of the 
chosen clustering is obtainable. Automatic classification is an independent 
science discipline and often used in the context of artificial intelligence (AI), 
particularly in pattern recognition. 

A big variety of algorithms for cluster analysis exists (e.g. [KR90]) and 
many have been applied to seismicity patterns (e.g. [HMPT94]). Although the 
choice of the actual clustering algorithm depends on the data and purpose, 
several different algorithms might still be applicable to the same problem--as 
cluster analysis does not try to prove a preconceived hypothesis but is merely 
descriptive, the most "pleasing" method may be chosen. 

Clustering algorithms may be separated into parti t ioning and hierarchical 
methods. In the case of partitioning, the data (for example a set of n vectors) 
is separated into k distinctive clusters which do not overlap and whose number 
is necessarily < n. k must be estimated from the data (by visual inspection) 
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in advance or it can be determined automatically by trying a range of k and 
picking the parti t ion which best fits some numerical criterion. This method 
may be used to find an existing structure or to impose one onto the data. 

Hierarchical methods do not partit ion into k clusters, but their output  
consists of partitions from k = I to k = n in one run. During the step from 
k = l to k = l + 1, one of the l clusters splits up into two (divisive method) 
or two of the I + 1 clusters are combined to give l clusters (agglomerative 
method).  Divisive and agglomerative methods yield quite different results. 
The successively resulting sub-partitions are not necessarily sensible so that  
the hierarchical method cannot replace partitioning methods. The advantage 
of hierarchical methods lies in the speed of computation, their disadvantage 
is that  erroneous decisions cannot be corrected. They have been very success- 
fully applied in biology but in the case of earthquake clustering, partitioning 
methods seem more appropriate. 

Partit ioning methods are widely applied to find out whether two-dimen- 
sional distributions contain groups. The above mentioned applications to 
earthquakes use a partitioning around medoids: to obtain k clusters, k rep- 
resentative objects or seeds have to be chosen initially. Then all remaining 
objects are assigned to their nearest representative object. The optimal rep- 
resentative object, where the average distance to all other elements of that  
cluster is minimised, is called the medoid; if the square of the distances is 
used, it is called the centroid. This method produces spherical clusters, i.e. 
might miss elongated groups which occur in the case of earthquakes which 
frequently happen along elongated structures ("fault segments"). 

The method chosen here is fuzzy logic cluster analysis (e.g. [KR90, 
Miy90]). It is very different from other clustering methods and involves no 
seeds. The computations are comparatively complex and therefore time con- 
suming. Also the amount  of output data is bulky. However, the great ad- 
vantage is tha t  the method does not yield one single hard clustering but  
so-called membership coefficients for each object and cluster. Thus the out- 
put  consists of a K * n matrix, where every element denotes the probabifity 
of the respective object to belong to the respective cluster. 

In this work, the application of fuzzy cluster analysis to small earthquake 
data sets frequently yielded events with extremely small membership coeffi- 
cients. The latter indicates that  these events cannot be assigned to any well- 
defined seismogenic structure and should possibly be discarded completely 
in a fractat analysis. This might not only be physically significant, but  also 
prevents erroneous clusters which would emerge using any of the hard-cluster- 
methods. A combined fuzzy-cluster multifractal analysis seems rewarding as 
it might render clearer precursors as were obtained in Section 7.3.1 for exam- 
ple: without separation into clusters, the multifractal spectra possibly only 
yielded some average information which obscured more localised precursory 
behaviour. 
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