Evaluation of effect of sediment on aquatic ecosystems using decision tree forest and group method of data handling

Hamid Khakzad and Valery Elfimov

ABSTRACT

In this study, the performances of the decision tree forest and group method of data handling for evaluation scale of the severity (SEV) of ill effect for fishes were investigated. The independent variables were concentration of suspended sediment (SS), species, life stage, and duration of exposure. This study is based on 198 data of aquatic ecosystem quality over a wide range of sediment concentrations (1–500,000 mg SS/L) and durations of exposure (1–35,000 h). Results showed that exposure duration is the most important factor on SEV, and based on the results, this alternative approach is better than traditional regression models with a higher recognition rate, forecast accuracy, and strong practical value.

Key words | concentration of suspended sediment, decision tree forest, group method of data handling duration of exposure, scale of the severity

Hamid Khakzad (corresponding author) Valery Elfimov Division of Civil Engineering, Peoples' Friendship University of Russia, Moscow 1171982, Russia =-mail: khakzad hamid@vahoo.com

INTRODUCTION

The sudden release of large volumes of sediment may create serious problems downstream, such as channel aggradations and flooding, interference with water supply and cooling water intakes, as well as adverse impacts on fisheries and the environment (Morris 1995; Scheuerlein 1995).

MacDonald & Newcombe (1993) grouped effects of suspended sediment (SS) on fish into three categories: lethal, sublethal, and behavioral. These categories include the following:

- Lethal effects kill individual fish, alter populations, and decrease the capacity of fish to reproduce. They include sublethal and behavioral effects that give rise to reductions in population size.
- Sublethal effects include tissue injury or changes in the physiology of an organism. The effect is chronic and may lead to an eventual decline in population size.
- Behavioral effects are effects that result in any change in activity normally associated with a species in an

undisturbed environment. These changes may result in immediate death, or changes in population size, or death over time.

Newcombe & Jensen (1996) developed a risk index and presented six regression equations for management decisions that relate biological response to duration of exposure and SS concentration. The equations all have the form: $z = a + b(\ln(x)) + c(\ln(y))$, where z is severity of ill effect, x is duration of exposure (h), y is concentration of SS (mg SS/L), a is the intercept, and b and c are slope coefficients. However, the study provided primary available estimates of the onset of sublethal and lethal effects. They applied regression models as a method to estimate severity (SEV) and have difficulty in showing the important factors affecting SEV. In addition, it is likely that the assumptions that are made in a regression model may be violated in the case when the data of diseases or disorders are used in the model, because linear regression models need assumptions to be made, including assumptions about the linearity, normality, homoscedasticity of the data, etc. (Byeon 2014).

As mentioned above, the prediction of significant ill effect for fishes that is essentially an uncertain and random process is not easy to accomplish by using deterministic equations. Therefore, it is ideally suited to decision tree forest (DTF) and group method of data handling (GMDH) since they are primarily aimed at the recognition of a random pattern in a given set of input values. Decision tree forest and GMDH are helpful in predicting the value of the output of a system from its corresponding random inputs as the application of DTF and GMDH does not require knowledge of the underlying physical process as a precondition. In this study, DTF and GMDH were deployed to evaluate the impact of concentration of SS, species, life stage, and duration of exposure on a scale of the SEV of ill effect for fishes. This paper is prepared as follows. The next section describes the experimental setup and data set, followed by a section detailing DTF and GMDH, a section describing the results and statistical error analysis, and the final section provides a summary and conclusions.

MATERIAL

Data set and experimental setup

In this study, we provide information (198 data) about aquatic ecosystem quality over a wide range of sediment concentrations, durations of exposure species, life stage, and severity of ill effect for fishes (Table 1). Supporting data extracted from the review included taxonomic group, species of fish, natural history, life history phase, and sediment particle size range.

As previously (MacDonald & Newcombe 1993; Newcombe 1994) and in a nearly identical way, we scored qualitative response data along a semiquantitative ranking scale (Table 1). Superimposed on a 15-point scale (0–14) were four major classes of effect: (1) nil effect, (2) behavioral effects, (3) sublethal effects (a category that also includes effects such as short-term reduction in feeding success), and (4) lethal effects (direct mortality, or its paralethal surrogates-reduced growth, reduced ash density, habitat damage such as reduced porosity of spawning gravel, delayed hatching, and reduction in population size). When these various effects could be compared directly, pollution episodes associated with sublethal or lethal effects also degraded habitat and reduced population size, which is why these seemingly disparate ill effects are grouped together in the hierarchy. For events between the extremes of nil effect and 100% mortality, we assumed for modeling purposes that the severity-of-ill effects (SEV for 'severity') scale represents proportional differences in true effects (Table 2). In this study, we define dose as concentration of SS times duration of exposure; dose has the units mg SS h L^{-1} . Single decision tree (SDT), which is the basis of data presentation in this study, encompasses all combinations of sediment concentration (1-500,000 mg SS/L) and exposure duration (1-35,000 h). Except when it refers specifically to duration, we use 'exposure' broadly to include dose, particle size, and other potential contributors to stress on fishes. In most cases, data on particle shape and roughness and on water temperature were lacking.

METHOD

Decision tree forest

A DTF can be used to evaluate the sensitivity of parameters or parameter combinations. A DTF is an ensemble of SDTs whose predictions are combined to make the overall prediction for the forest (Figure 1). In DTF, a large number of independent trees are grown in parallel, and they do not interact until after all of them have been built (Kunwar *et al.* 2013). Bootstrap resampling method (Efron 1979) and aggregating are the basis of bagging which is incorporated in DTF.

Different training subsets are drawn at random with replacement from the training data set. Separate models are produced and used to predict the entire data from the aforesaid subsets. Then, various estimated models are aggregated by using the mean for regression problems or majority voting for classification problems. Theoretically,

Species	Life stage	Concentration (mg/L)	Exposure duration (h)	SEV	Fish response description	Reference
Adult salmonids an	nd rainbo	ow smelt				
Grayling (Arctic)	А	100.0	0.1	3	Fish avoided turbid water	Suchanek <i>et al</i> . (1984a, b)
Grayling (Arctic)	А	100.0	1.008	8	Fish had decreased resistance to environmental stresses	McLeay <i>et al.</i> (1984)
Grayling (Arctic)	А	100.0	1.008	9	Impaired feeding	McLeay et al. (1984)
Grayling (Arctic)	А	100.0	1.008	9	Reduced growth	McLeay et al. (1984)
Salmon	А	25.0	4	4	Feeding activity reduced	Phillips (1970)
Salmon	А	16.5	24	4	Feeding behavior apparently reduced	Townsend (1983); Ott (personal communication)
Salmon	А	1,650.0	240	7	Loss of habit at caused by excessive sediment transport	Coats et al. (1985)
Salmon	А	75.0	168	7	Reduced quality of rearing habitat	Slaney <i>et al</i> . (1977)
Salmon	А	210.0	24	10	Fish abandoned their traditional spawning habitat	Hamilton (1961)
Salmon (Atlantic)	А	2,500.0	24	10	Increased risk of predation	Gibson (1933)
Salmon (chinook)	А	650.0	168	5	No histological signs of damage to olfactory epithelium	Brannon <i>et al</i> . (1981)
Salmon (chinook)	А	350.0	0.17	7	Home water preference disrupted	Whitman <i>et al</i> . (1982)
Salmon (chinook)	А	650.0	168	7	Homing behavior normal, but fewer test fish returned	Whitman et al. (1982)
Salmon (chinook)	А	39,300.0	24	10	No mortality	Newcomb & Flagg (1983)
Salmon (chinook)	А	82,400.0	6	12	Mortality rate 60%	Newcomb & Flagg (1983)
Salmon (chinook)	А	207,000.0	1	14	Mortality rate I00%	Newcomb & Flagg (1983)
Salmon (Pacific)	А	525.0	588	10	No mortality (other end points not investigated)	Griffin (1938)
Salmon (sockeye)	А	500.0	96	8		Servizi & Martens (1987)
Salmon (sockeye)	А	1,500.0	96	8		Servizi & Martens (1987)
Salmon (sockeye)	А	39,300.0	24	10	No mortality	Newcomb & Flagg (1983)
Salmon (sockeye)	А	82,400.0	6	12	Mortality rate 60%	Newcomb & Flagg (1983)
Smell (rainbow)	А	3.5	168	7	Increased vulnerability to predation	Swenson (1978)
Stcelhcad	А	500.0	3	5	Signs of sublethal stress (VA)	Redding & Schreck (1982)
Steelhead	А	16,500.0	240	7	Loss of habitat caused by excessive sediment transport	Coats <i>et al</i> . (1985)
Steelhead	А	500.0	9	8	Blood cell count and blood chemistry change	Redding & Schreck (1982)
Trout	А	16.5	24	4	Feeding behavior apparently reduced	Townsend (1983); Ott (personal communication)
Trout	А	75.0	168	7	Reduced quality of rearing habitat	Slaney <i>et al</i> . (1977)
Trout	А	270.0	312	8	Gill tissue damaged	Herbert & Merkens (1961)

$\textbf{Table 1} \mid \textbf{Available data on the effects of suspended sediments on biota}$

Trout

Water Quality Research Journal of Canada | 50.2 | 2015

Table 1 | continued

Species	Life stage	Concentration (mg/L)	Exposure duration (h)	SEV	Fish response description	Reference	
Trout	А	525.0	588	10	No mortality (other end points not investigated)	Griffin (1938)	
Trout	А	300.0	720	12	Decrease in population size	Newcomb & Flagg (1983)	
Trout (brook)	А	4.5	168	3	Fish more active and less dependent on cover	Newcomb & Flagg (1983)	
Trout (brown)	А	18.0	720	10	Abundance reduced	Newcombe (1997)	
Trout (cutthroat)	А	35.0	2	4	Feeding ceased; fish sought cover	Cordone & Kelley (1961)	
Trout (lake)	А	35.0	168	3	Fish avoided turbid areas	Swenson (1978)	
Trout (rainbow)	А	66.0	1	3	Avoidance behavior manifested part of the time	Lawrence & Scherer (1974)	
Trout (rainbow)	А	665.0	1	3	Fish attracted to turbidity	Lawrence & Scherer (1974)	
Trout (rainbow)	А	100.0	0.1	3	Fish avoided turbid water (avoidance behavior)	Suchanek <i>et al</i> . (1984a, b)	
Trout (rainbow)	А	100.0	0.25	5	Rate of coughing increased (FSS)	Hughes (1975)	
Trout (rainbow)	А	250.0	0.25	5	Rate of coughing increased (FSS)	Hughes (1975)	
Trout (rainbow)	А	810.0	504	8	Gills of fish that survived had thickened epithelium	Herbert & Merkens (1961)	
Trout (rainbow)	А	17,500.0	168	8	Fish survived: gill epithelium proliferated and thickened	Slanina (1962)	
Trout (rainbow)	А	50.0	960	9	Rate of weight gain reduced (CWS)	Herbert & Richards (1963)	
Trout (rainbow)	А	50.0	960	9	Rate of weight gain reduced (WF)	Herbert & Richards (1963)	
Trout (rainbow)	А	810.0	504	10	Some fish died	Herbert & Merkens (1961)	
Trout (rainbow)	А	270.0	3,240	10	Survival rate reduced	Herbert & Merkens (1961)	
Trout (rainbow)	А	200.0	24	10	Test fish began to die on the first day (WF)	Herbert & Richards (1963)	
Trout (rainbow)	А	80,000.0	24	10	No mortality	Herbert & Richards (1963)	
Trout (rainbow)	А	18.0	720	10	Abundance reduced	Newcombe (1997)	
Trout (rainbow)	А	59.0	2,232	10	Habitat damage: reduced porosity of gravel	Slaney <i>et al</i> . (1977)	
Trout (rainbow)	А	4,250.0	588	12	Mortality rate 50% (CS)	Herbert & Wakeford (1962)	
Trout (rainbow)	А	49,838.0	96	12	Mortality rate 50% (DM)	Lawrence & Scherer (1974)	
Trout (sea)	А	210.0	24	10	Fish abandoned traditional spawning habitat	Hamilton (1961)	
Whitefish (lake)	А	16,613.0	96	12	Mortality rate 50% (DM)	Lawrence & Scherer (1974)	
Whitefish (mountain)	А	10,000.0	24.0	10	Fish died; silt-clogged gills juvenile salmonids	Langer (1980)	
Juvenile salmonids							
Grayling (Arctic)	U	100.0	756	7	Fish moved out of the test channel	McLeay et al. (1987)	
Grayling (Arctic)	U	1,000.0	1.008	8	Fish had frequent misstrikes while feeding	McLeay et al. (1987)	
Grayling (Arctic)	U	1,000.0	1.008	8	Fish responded very slowly to prey	McLeay <i>et al</i> . (1987)	

Species	Life stage	Concentration (mg/L)	Exposure duration (h)	SEV	Fish response description	Reference
Grayling (Arctic)	U	300.0	1.008	8	Rate of feeding reduced	McLeay et al. (1987)
Grayling (Arctic)	U	1,000.0	840	8	Rate of feeding reduced	McLeay et al. (1987)
Grayling (Arctic)	U	1,000.0	1.008	8	Fish failed to consume all prey	McLeay et al. (1987)
Grayling (Arctic)	U	300.0	840	8	Serious impairment of feeding behavior	McLeay et al. (1987)
Grayling (Arctic)	U	300.0	1.008	8	Respiration rate increased (FSS)	McLeay et al. (1987)
Grayling (Arctic)	U	300.0	1.008	8	Fish less tolerant of pentachlorophenol	McLeay et al. (1987)
Grayling (Arctic)	YY	3,810.0	144	8	Mucus and sediment accumulated in the gill lamellae	Simmons (1982)
Grayling (Arctic)	YY	3,810.0	144	8	Fish displayed many signs of poor condition	Simmons (1982)
Grayling (Arctic)	YY	1,250.0	48	8	Moderate damage to gill tissue	Simmons (1982)
Grayling (Arctic)	YY	1,388.0	96	8	Hyperplasia and hypertrophy of gill tissue	Simmons (1982)
Grayling (Arctic)	U	100.0	1.008	9	Growth rate reduced	McLeay <i>et al</i> . (1984)
Grayling (Arctic)	U	100.0	840	9	Fish responded less rapidly to drifting food	McLeay et al. (1987)
Grayling (Arctic)	U	300.0	1.008	9	Weight gain reduced	McLeay <i>et al</i> . (1987)
Grayling (Arctic)	U	300.0	756	10	Fish displaced from their habitat	McLeay et al. (1987)
Salmon (chinook)	S	943.0	72	8	Tolerance to stress reduced (VA)	Stober <i>et al</i> . (1981)
Salmon (chinook)	J	6.0	1,440	9	Growth rate reduced (LNFH)	Newcomb & Flagg (1983)
Salmon (coho)	U	240.0	24	6	Cough frequency increased more than five- fold	Servizi & Martens (1992)
Salmon (coho)	J	1,547.0	96	8	Gill damage	Noggle (1978)
Salmon (coho)	U	2,460.0	24	8	Fatigue of the cough reflex	Servizi & Martens (1992)
Salmon (coho)	U	3,000.0	48	8	High level sublethal stress: avoidance	Servizi & Martens (1992)
Salmon (coho)	J	102.0	336	9	Growth rate reduced (FC. BC)	Sigler <i>et al</i> . (1984)
Salmon (coho)	U	8,000.0	96.0	10	Mortality rate 1%	Servizi & Martens (1991)
Salmon (coho)	J	35,000.0	96	12	Mortality rate 50%	Noggle (1978)
Salmon (coho)	U	22,700.0	96	12	Mortality rate 50%	Servizi & Martens (1991)
Salmon (coho)	F*	8,100.0	96	12	Mortality rate 50%	Servizi & Martens (1991)
Salmon (coho)	PS	18,672.0	96	12	Mortality rate 50%	Stober <i>et al</i> . (1981)
Salmon (coho)	S	28,184.0	96	12	Mortality rate 50% (VA)	Stober <i>et al</i> . (1981)
Salmon (coho)	S	29,580.0	96	12	Mortality rate 50%	Stober <i>et al</i> . (1981)
Salmon (sockeye)	S	1,261.0	96	8	Body moisture content reduced	Servizi & Martens (1987)
Salmon (sockeye)	U	1,465.0	96	8	Hypertrophy and necrosis of gill tissue (CSS)	Servizi & Martens (1987)
Salmon (sockeye)	U	3,143.0	96	8	Hypertrophy and necrosis of gill tissue (FSS)	Servizi & Martens (1987)
Salmon (sockeye)	U	2,688.0	96	8	Hypertrophy and necrosis of gill tissue (MCSS)	Servizi & Martens (1987)
Salmon (sockeye)	U	2,100.0	96	10	No fish died (MFSS)	Servizi & Martens (1987)
Salmon (sockeye)	U	9,000.0	96	10	No mortality	Servizi & Martens (1987)

Species	Life stage	Concentration (mg/L)	Exposure duration (h)	SEV	Fish response description	Reference
Salmon (sockeye)	U	13,900.0	96.0	10	Mortality rate 10% (FSS)	Servizi & Martens (1987)
Salmon (sockeye)	U	9,850.0	96	10	Gill hyperplasia, hypertrophy, separation, necrosis (MFSS)	Servizi & Martens (1987)
Salmon (sockeye)	J	9,400.0	36	12	Mortality rate 50%	Newcomb & Flagg (1983)
Salmon (sockeye)	U	8,200.0	96	12	Mortality rate 50% (MFSS)	Servizi & Martens (1987)
Salmon (sockeye)	U	17,560.0	96	12	Mortality rate 50% (FSS)	Servizi & Martens (1987)
Salmon (sockeye)	U	23,900.0	96	14	Mortality rate 90% (FSS)	Servizi & Martens (1987)
Sieelhead	J	102.0	336	9	Growth rate reduced (FC. BC)	Sigler <i>et al</i> . (1984)
Trout (brook)	FF*	100.0	1,176.0	9	Test fish weighed 16% of controls (LNFH)	Sykora <i>et al</i> . (1972)
Trout (brook)	FF	50.0	1,848	9	Growth rates declined (LNFH)	Sykora <i>et al</i> . (1972)
Trout (rainbow)	J	4,887.0	384	8	Hyperplasia of gill tissue	Goldes (1983)
Trout (rainbow)	J	4,887.0	384	8	Parasitic infection of gill tissue	Goldes (1983)
Trout (rainbow)	J	171.0	96.0	8		Goldes (1983)
Trout (rainbow)	Y	7,433.0	672	11	Mortality rate 40% (CS)	Herbert & Wakeford (1962)
Salmonid eggs and	larvae					
Grayling (Arctic)	SF	25.0	24	10	Mortality rate 5.7%	Newcombe (1997)
Grayling (Arctic)	SF	22.5	48	10	Mortality rate 14.0%	Newcombe (1997)
Grayling (Arctic)	SF	65.0	24	10	Mortality rate 15.0%	Newcombe (1997)
Grayling (Arctic)	SF	21.7	72	10	Mortality rate 14.7%	Newcombe (1997)
Grayling (Arctic)	SF	20.0	96	10	Mortality rate 13.4%	Newcombe (1997)
Grayling (Arctic)	SF	142.5	48	11	Mortality rate 26%	Newcombe (1997)
Grayling (Arctic)	SF	185.0	72	12	Mortality rate 41.3%	Newcombe (1997)
Grayling (Arctic)	SF	230.0	96	12	Mortality rate 47%	Newcombe (1997)
Salmon (coho)	Е	157.0	1,728	14	Mortality rate 100% (controls, 16.2%)	Shaw & Maga (1943)
Steelhead	Е	37.0	1,488	12	Hatching success 42% (controls, 63%)	Newcombe (1997)
Trout (rainbow)	Е	6.6	1,152	11	Mortality rate 40%	Newcomb & Flagg (1983)
Troul (rainbow)	Е	57.0	1,488.0	12	Mortality rate 47% (controls, 32%)	Newcomb & Flagg (1983)
Trout (rainbow)	Е	120.0	384	13	Mortality rates 60-70% (controls, 38.6%)	Erman & Lignon (1988)
Trout (rainbow)	Е	20.8	1,152	13	Mortality rate 72%	Newcomb & Flagg (1983)
Troul (rainbow)	Е	46.6	1,152	14	Mortality rate 100%	Newcombe (1997)
Trout (rainbow)	Е	101.0	1,440	14	Mortality rate 98% (controls, 14.6%). Non- salmonid eggs and larvae (estuarine, group 4)	Turnpenny & Williams (1980)
Non-salmonid eggs	and larv	rae				
Bass (striped)	Е	800.0	24	9	Development rate slowed significantly	Morgan <i>et al</i> . (1983)
Bass (striped)	Е	100.0	24	9	Hatching delayed	Newcombe (1997)
Bass (striped)	L	1,000.0	68	11	Mortality rate 35% (controls, 16%)	Auld & Schubel (1978)
Bass (striped)	L	500.0	72	12	Mortality rate 42% (controls, 17%)	Auld & Schubel (1978)
Bass (striped)	L	485.0	24	12	Mortality rate 50%	Morgan <i>et al</i> . (1973)

Species	Life stage	Concentration (mg/L)	Exposure duration (h)	SEV	Fish response description	Reference	
Herring	L	10.0	3	3	Depth preference changed	Johnson & Wildish (1982)	
Herring (lake)	L	16.0	24	3	Depth preference changed	Swenson & Matson (1976)	
Hemng (Pacific)	L	2,000.0	2	4	Feeding rate reduced	Newcombe (1997)	
Herring (Pacific)	L	1,000.0	24	8	Mechanical damage to epidermis	Newcombe (1997)	
Perch (white)	Е	800.0	24	9	Egg development slowed significantly	Morgan <i>et al</i> . (1983)	
Perch (white)	Е	100.0	24	9	Hatching delayed	Newcombe (1997)	
Perch (white)	L	155.0	48	12	Mortality rate 50%	Morgan <i>et al</i> . (1973)	
Perch (white)	L	373.0	24	12	Mortality rate 50%	Morgan <i>et al</i> . (1973)	
Perch (white)	L	280.0	48	12	Mortality rate 50%	Morgan et al. (1973)	
Perch (yellow)	L	500.0	96	11	Mortality rate 37% (controls, 7%)	Auld & Schubel (1978)	
Perch (yellow)	L	1,000.0	96	11	Mortality rate 38% (controls, 7%)	Auld & Schubel (1978)	
Shad (American)	L	100.0	96	10	Mortality rate 18% (controls, 5%)	Auld & Schubel (1978)	
Shad (American)	L	500.0	96	11	Mortality rate 36% (controls, 4%)	Auld & Schubel (1978)	
Shad (American)	L	1,000.0	96	11	Mortality rate 34% (controls, 5%) (estuarine or riverine-estuarine, group 5). Adult non-salmonids	Auld & Schubel (1978)	
Adult non-salinoni	ds						
Anchovy (bay)	А	231.0	24	10	Mortality rate 10% (FE)	Sherk <i>et al</i> . (1975)	
Anchovy (bay)	А	471.0	24	12	Mortality rate 50% (FE)	Sherk <i>et al</i> . (1975)	
Bass (striped)	А	1,500.0	336	8	Hematocrit increased (FE)	Sherk <i>et al</i> . (1975)	
Bass (striped)	А	1,500.0	336	8	Plasma osmolality increased (FE)	Sherk <i>et al</i> . (1975)	
Cunner	А	28,000.0	24	12	Mortality rate 50% (20.0-25.0 °C)	Rogers (1969)	
Cunner	А	133,000.0	12	12	Mortality rate 50% (15 °C)	Rogers (1969)	
Cunner	А	100,000.0	24	12	Mortality rate 50% (15 °C)	Rogers (1969)	
Cunner	А	72,000.0	48	12	Monaliiy rale 50% (15 $^{\circ}$ C)	Rogers (1969)	
Fish	А	3,000.0	240	10	Fish died	Kemp (1949)	
Killifish (striped)	А	3,277.0	24	10	Mortality rate 10% (FE)	Sherk <i>et al</i> . (1975)	
Killifish (striped)	А	3,819.0	24	12	Mortality rate 50%	Sherk <i>et al</i> . (1975)	
Killifish (striped)	А	12,820.0	24	12	Mortality rate 50%	Sherk <i>et al</i> . (1975)	
Killifish (striped)	А	16,930.0	24	13	Mortality rate 90%	Sherk <i>et al</i> . (1975)	
Menhaden (Atlantic)	А	154.0	24	10	Mortality rate 10% (FE)	Sherk <i>et al.</i> (1975)	
Menhaden (Atlantic)	А	247.0	24	12	Mortality rate 50% (FE)	Sherk <i>et al.</i> (1975)	
Minnow (sheepshead)	А	100,000.0	24	14	Mortality rate 90% (19 $^{\circ}$ C)	Rogers (1969)	
Mummichog	А	2,447.0	24	10	Mortality rate 10% (FE)	Sherk <i>et al</i> . (1975)	
Mummichog	А	3,900.0	24	12	Mortality rate 50% (FE)	Sherk <i>et al</i> . (1975)	
Mummichog	А	6,217.0	24	14	Mortality rate 90%	Sherk <i>et al</i> . (1975)	
Perch (white)	А	985.0	24	12	Mortality rate 50%	Sherk <i>et al</i> . (1975)	

Species	Life stage	Concentration (mg/L)	Exposure duration (h)	SEV	Fish response description	Reference	
Perch (white)	А	3,181.0	24	14	Mortality rate 90% (FE)	Sherk <i>et al</i> . (1975)	
Rasbora (harlequin)	А	40,000.0	24	10	Fish died (BC)	Alabaster & Lloyd (1980)	
Rasbora (harlequin)	А	6,000.0	168	10	No mortality	Alabaster & Lloyd (1980)	
Silverside (Atlantic)	А	58.0	24	10	Mortality rate 10% (FE)	Sherk <i>et al</i> . (1975)	
Silverside (Atlantic)	А	250.0	24	12	Mortality rate 50% (FE)	Sherk <i>et al</i> . (1975)	
Silverside (Atlantic)	А	1,000.0	24	14	Mortality rate 90% (FE)	Sherk <i>et al</i> . (1975)	
Spot	А	114.0	48	10	Mortality rate 10% (FE)	Sherk <i>et al</i> . (1975)	
Spot	А	1,309.0	24	10	Mortality rate 10% (FE)	Sherk <i>et al</i> . (1975)	
Spot	А	6,875.0	24	10	Mortality rate 10%	Sherk <i>et al</i> . (1975)	
Spot	А	189.0	48	12	Mortality rate 50% (FE)	Sherk <i>et al</i> . (1975)	
Spot	А	2,034.0	24	12	Mortality rate 50%	Sherk <i>et al</i> . (1975)	
Spot	А	8,800.0	24	12	Mortality rate 50%	Sherk <i>et al</i> . (1975)	
Spot	А	11,263.0	24	14	Mortality rate 90%	Sherk <i>et al</i> . (1975)	
Stickleback (fourspine)	А	100.0	24	10	Mortality rate <1% (IA)	Rogers (1969)	
Stickleback (fourspine)	А	10,000.0	24	10	No mortality (KS; 10–12 $^{\circ}$ C)	Rogers (1969)	
Stickleback (fourspine)	А	300.0	24	12	Mortality rate \sim 50% (IA)	Rogers (1969)	
Stickleback (fourspine)	А	18,000.0	24	12	Mortality rate 50% (15.0–16.0 $^{\circ}C)$	Rogers (1969)	
Stickleback (fourspine)	А	53,000.0	24	12	Mortality rate 50% (10–12 $^\circ \mathrm{C})$	Rogers (1969)	
Stickleback (fourspine)	А	330,000.0	24	12	Mortality rate 50% (9.0–9.5 $^\circ \text{C})$	Rogers (1969)	
Stickleback (fourspine)	А	500.0	24	14	Mortality rate 100%	Rogers (1969)	
Stickleback (threespine)	А	28,000.0	96	10	No mortality in test designed to identify lethal threshold	LeGore & DesVoigne (1973)	
Toadlish (oyster)	А	14,600.0	72	8	Fish largely unaffected, but developed latent ill effects	Neumann <i>et al</i> . (1975)	
Toadlish (oyster)	А	11,090.0	72	9	Latent ill effects manifested in subsequent test at low SS (freshwater, group 6)	Neumann <i>et al.</i> (1975)	
Bass (largemouth)	А	62.5	720	9	Weight gain reduced $\sim 50\%$	Buck (1956)	
Bass (largemouth)	А	144.5	720	9	Growth retarded	Buck (1956)	
Bluegill	А	144.5	720	9	Growth retarded	Buck (1956)	
Bluegill	А	62.5	720	9	Weight gain reduced $\sim 50\%$	Buck (1956)	
Bluegill	А	144.5	720	12	Fish unable to reproduce	Buck (1956)	

Species	Life stage	Concentration (mg/L)	Exposure duration (h)	SEV	Fish response description	Reference
Carp (common)	А	25,000.0	336	10	Some mortality (MC)	Wallen (1951)
Fish	А	120.0	384	10	Density of fish reduced	Erman & Lignon (1988)
Fish	А	620.0	48	10	Fish kills downstream from sediment source	Hesse & Newcomb (1982)
Fish	А	900.0	720	12	Fish absent or markedly reduced in abundance	Herbert & Richards (1963)
Fish (warmwater)	А	100,000.0	252	10	Some fish died: most survived	Wallen (1951)
Fish (warmwater)	А	22.0	8,760	12	Fish populations destroyed	Newcombe (1997)
Goldfish	А	25,000.0	336	10	Some mortality (MC)	Wallen (1951)
Sunlish (redear)	А	62.5	720	9	Weight gain reduced ~50% compared to controls	Buck (1956)
Sunfish (redear)	А	144.5	720	9	Growth retarded	Buck (1956)

A = adult; E = egg; EE = eyed egg; F = fry; F* = swim-up fry; FF = young fry (<30 weeks old); FF* = older fry (>30 weeks old); J = juvenile; L = larva; PS = presmolt; S = smolt; SF = sac fry; U = underyearling; Y = approximate yearling; YY = young of the year. As abbreviated here. VFSS = very fine; FSS = fine; MFSS = medium to fine; MCSS = medium to coarse; CSS = coarse. Usual 'sediments' used: BC = bentonite clay; CS = calcium sulfate; CWS = coal washery solids; DE = dtatomaceous earth; DM = drilling mud (non-toxic); FC = fire clay; FE = Fuller's earth; IA = incinerator ash; KC = kaolin clay; KS = Kingston silt; LNFH = lime-neutralized ferric hydroxide; MC = montmorillonite clay; VA = volcanic ash; WF = wood fibers, NTU = nephelometric turbidity units.

in bagging, first a bootstrapped sample is constructed as (Erdal & Karakurt 2013)

$$D_i^* = (Y_i^*, X_i^*) \tag{1}$$

where D_i^* is a bootstrapped sample according to the empirical distribution of the pairs $D_i = (X_i, Y_i)$, where (i = 1, 2, ...; n). Second, the bootstrapped predictor is estimated by the plug-in principle

$$C_n^*(x) = h_n(D_i^*, \dots, D_n^*)(x)$$
 (2)

where $C_n(x) = h_n(D_1, ..., D_n)(x)$ and h_n is the *n*th hypothesis. Finally, the bagged predictor is

$$C_{\rm nB}(x) = E * [D_n * (x)]$$
 (3)

Bagging can reduce variance when combined with the base learner generation with a good performance. The DTFs gaining strength from bagging technique use the out of bag data rows for model validation. This provides an independent test set without requiring a separate data set or holding back rows from the tree construction. The stochastic element in DTF algorithm makes it highly resistant to over-fitting. Statistical measures such as the coefficient of variation, the normalized mean square error (NMSE), the correlation between actual and predicted, root mean squared error (RMSE), and mean squared error were employed for qualitative evaluation of the models.

Group method of data handling

Group method of data handling is an evolutionary computation technique, which has a series of operations such as seeding, rearing, crossbreeding, and selection and rejection of seeds correspond to determination of the input variables, structure and parameters of the model, and selection of model by principle of termination (Ivahnenko 1971). In fact, the GMDH network is a very flexible algorithm, and it can be hybridized by using evolutionary and iterative algorithms such as genetic algorithm, genetic programming, particle swarm optimization, and back propagations. The previous researches established that hybridizations were successful in finding solutions of problems in different fields of engineering. By means of GMDH algorithm, a model can be represented as a set of neurons in which different pairs of them in each layer are connected through quadratic polynomials and thus produce new neurons in

 Table 2
 Scale of the severity of ill effects in fishes exposed to excess suspended sediment

Severity index	Description of effect
	Nil effect
0	No behavioral effect
	Behavioral effects
1	Alarm reaction
2	Abandonment of cover
3	Avoidance response
	Sublethal effects
4	Short-term reduction in feeding rate; short-term reduction in feeding success
5	Minor physiological stress; increase in rate of coughing; increased respiration rate
6	Moderate physiological stress
7	Moderate habitat degradation; impaired homing
8	Indications of major physiological stress; long-term reduction in feeding rate; long-term reduction in feeding success; poor condition
	Lethal and paralethal effects
9	Reduced growth rate; delayed hatching; reduced fish density
10	0-20% mortality; increased predation; moderate to severe habitat degradation
11	>20-40% mortality
12	>40–60% mortality
13	>60–80% mortality
14	>80–100% mortality

D₁ D₂ D_m D₁ D₂ D_m D_m D_m D_m D_m D_m

Figure 1 | Conceptual diagram of DTF.

the next layer. Such representation can be used in modeling to map inputs to outputs. The formal definition of system identification problem is to find a function \hat{f} that can be used to approximate instead of actual function f, in order to predict the output \hat{y} for a given input vector $X = (x_1, x_2, ..., x_n)$ as close as possible to its actual output y. Therefore, given n observation of multi-input single-output data pairs so that

$$y_i = f(x_{i1}, x_{i2}, x_{i3}, \dots, x_{in})$$
 $(i = 1, 2, \dots, M)$ (4)

It is now possible to train a GMDH network to predict the output values \hat{y}_i for any given input vector $X = (x_{i1}, x_{i2}, \dots, x_{in})$ that is

$$\hat{y}_i = f(x_{i1}, x_{i2}, x_{i3}, \dots, x_{in}) \quad (i = 1, 2, \dots, M)$$
 (5)

The problem is now to determine a GMDH network so that the square of difference between the actual output and the predicted one is minimized, that is,

$$\sum_{i=1}^{M} \left[\hat{f}(x_{i1}, x_{i2}, x_{i3}, \dots, x_{in}) - y_i \right]^2 \to \min$$
(6)

General connection between inputs and output variables can be expressed by a complicated discrete form of the Volterra function, a series in the form of

$$y = a_0 + \sum_{i=1}^n a_i x_i + \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j + \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n a_{ijk} x_i x_j x_k$$
(7)

which is known as the Kolmogorov–Gabor polynomial (Farlow 1984). The polynomial order of PDs is the same in each layer of the network. In this scenario, the order of the polynomial of each neuron is maintained across the entire network. For example, assume that the polynomials of the neurons located at the first layer are those of the second order (quadratic)

$$\hat{y} = G(x_i, x_i) = a_0 + a_1 x_i + a_2 x_i + a_3 x_i x_i + a_4 x_i^2 + a_5 x_i^2$$
 (8)

Here, all polynomials of the neurons of each layer of the network are the same, and the design of the network is based on the same procedure. The second-order polynomial is the fundamental structure of the GMDH network that has been proposed by Ivahnenko. Generally, different types of polynomial such as bilinear, quadratic, triquadratic, and third order are used to design self-organized systems. The use of triquadratic and third-order polynomials can generate more complicated networks in comparison with quadratic polynomials. Bilinear polynomials produce lower complicated structures in comparison with quadratic polynomials. A quadratic polynomial has six weighting coefficients that have generated good results in engineering problems. Based on the previous investigations, the selection of polynomials could depend on minimum error of objective function and complexity of polynomial type. In this study, quadratic polynomial was utilized for modeling of scour depth around different types of bridge piers. The weighting coefficients in Equation (7) were calculated using regression techniques so that the difference between actual output y and the calculated one \hat{y} for each pair of x_i ; x_i as input variables was minimized. In this way, the weighting coefficients of quadratic function G_i were obtained to optimally fit the output in the whole set of input-output data pairs, that is,

$$E = \frac{\sum_{i=1}^{M} (y_i - G_i())^2}{M} \to \min$$
(9)

RESULTS AND DISCUSSION

In this section of the study, DTF and GMDH were developed to evaluate the effect of sediment on aquatic ecosystems, and results were compared against linear regression models. In the first step, DTF was used to assess the relative importance of variables on SEV. Here is an outline of the algorithm used to construct a DTF: (1) take a random sample of N observations from the data set with replacement (this is called 'bagging'); (2) using the rows selected in step 1, construct a decision tree. Build the tree to the maximum size and do not prune it; (3) repeat steps 1 and 2 a large number of times, constructing a forest of trees; (4) to 'score' a row, run the row through each tree in the forest and record the Table 3 | Relative importance of variables on SEV

Exposure duration (h)	100
Concentration (mg/L)	62.5
Life stage	25.4
Group	10.7

predicted value (i.e., terminal node) that the row ends up in (just as you would score using a single-tree model). For a classification analysis, use the predicted categories for each tree as 'votes' for the best category and use the category with the most votes as the predicted category for the row.

As can be seen (Table 3), exposure duration is the most important factor on SEV. Statistical measures, such as the NMSE, the correlation between actual and predicted, RMSE, and mean absolute percentage error were employed for qualitative evaluation of the models (Table 4).

In the second step, the steps discussed in the section 'Group method of data handling' are used to design a GMDH model to predict the SEV. In this section, the GMDH network was improved using back propagation algorithm. This method included the two main steps. First, the weighting coefficients of quadratic polynomial were determined using least square method from input layer to output layer in the form of a forward path. Second, weighting coefficients were updated using back propagation algorithm in a backward path. Again, this mechanism could be continued until the error of training network (E) was minimized. Two sets of input data are used during the training process: (1) the primary training data and (2) the control data which are used to stop the building process when over-fitting occurs. The control data typically have about 20% as many rows as the training data. Two hidden

Table 4 | Results of error statistics calculated SEV

Correlation between actual and predicted	0.8290
RMSE (root mean squared error)	1.7626
MAPE (mean absolute percentage error)	19.6784
NMSE (normalized mean square error)	0.31823

layers were considered for each model. To genetically design such networks, a population of 10 individuals with a crossover probability of 0.7, mutation probability of 0.07, and 600 generations was used; it appeared that no further improvement could be achieved for such a population size. Equations (10)–(14) and Figures 2–6 show the results from this method to predict the SEV. We also performed *t*-tests and *p*-tests to test whether the difference between

Figure 2 Results of GMDH for adult salmonids and rainbow smelt.

Figure 3 Results of GMDH for juvenile salmonids.

Water Quality Research Journal of Canada | 50.2 | 2015

actual data and results obtained by GMDH are statistically significant or not (Table 5).

SEV (for adult salmonids and rainbow smelt)

= Log concentration (mg/L) $\times -0.8697$

+ Log concentration (mg/L)

- \times Log exposure duration (h) $\times~0.4377$
- + Log exposure duration (h) \times 3.886

MAE = 0.3781 RMSE = 0.4465 R2 = 0.9883

SEV (for juvenile salmonids)

(10)

 $= 15.28 + Log \text{ concentration } (mg/L) \times -2.415$

+ Log concentration (mg/L)

- \times Log exposure duration (h)
- $\times 0.0543 + Log concentration^{2}(mg/L) \times 0.2024$

Figure 6 | Results of GMDH for adult non-salmonids.

 Table 5
 The t-test and p-test values for each group

Group	t-test	p-test	df	The result at p < 0.05
Adult salmonids and rainbow smelt	0.1058	0.9158	106	Not significant
Juvenile salmonids	0.0701	0.9442	98	Not significant
Salmonid eggs and larvae	1.30×10^{-5}	0.9999	30	Not significant
Juvenile salmonids	5.00×10^{-6}	0.9999	36	Not significant
Adult non-salinonids	9.00×10^{-6}	0.9999	112	Not significant

+ Log exposure duration (h)

$$\times -0.6366 + \text{Log exposure duration}^2(h) \times 0.0442$$
 (11)

2

$$MAE = 0.7787 RMSE = 0.9875 R2 = 0.8214$$

SEV (for salmonid eggs and larvae)

$$= 4.665 + \text{Log concentration } (\text{mg/L}) \times 0.7655$$
(12)
+ Log exposure duration $(h) \times 0.7376$

$$MAE = 0.4412 RMSE = 0.5634 R2 = 0.9246$$

SEV (for juvenile salmonids) = $-12.81 + \text{Log concentration } (\text{mg/L}) \times 9.677$

+ Log concentration (mg/L) × Log exposure duration (h)

$$\times 0.4975 + \text{Log concentration}^2 (\text{mg/L}) \times -1.006$$

+ Log exposure duration (*h*) × -2.402 (13)

 $MAE = 0.6866 \ RMSE = 0.7934 \ R2 = 0.9620$

SEV (for adult nonsalinonids)

 $= 15.94 + \text{Log concentration}^{-1} (\text{mg/L}) \times -108.1$ + Log concentration (mg/L) × Log exposure duration (h) × -0.0694 + Log concentration^{-1}(mg/L) × Log exposure duration (h) × 8.871 + Log concentration^{-1}(mg/L) × Log exposure duration^{-1} (h) × 195.7 (14)

MAE = 0.9787 RMSE = 1.273 R2 = 0.6398

Finally, when the analysis of the prediction model for SEV was completed, the performance results were compared with those obtained using traditional equations. Correlation coefficient (R^2) is the commonly used prediction error indicators in the testing stage. The regression

equations and correlation between actual and predicted values are (Newcombe 1997)

$$SEV = 1.0642 + 0.6068(\ln (x)) + 0.7384(\ln (y)), R^{2}$$

= 0.6009; for juvenile and adult salmonids (15)

$$SEV = 1.6814 + 0.4769(\ln (x)) + 0.7565(\ln (y)), R^{2}$$

= 0.6173; for adult salmonids (16)

$$SEV = 0.7262 + 0.7034(\ln(x)) + 0.7144(\ln(y)), R^{2}$$

= 0.5984; for juvenile salmonids (17)

$$SEV = 3.7466 + 1.0946(\ln (x)) + 0.3117(\ln (y)), R^{2}$$

= 0.5516; for eggs and larvae (18)

$$SEV = 4.0815 + 0.7126(\ln (x)) + 0.2829(\ln (y)), R^{2}$$

= 0.6998; for adult freshwater nosalmonids (19)

where *x* is mg/L and *y* is hours. Correlation between actual and predicted was employed for qualitative evaluation of the models. It can be seen that when the results generated by GMDH were compared with traditional regression models, the GMDH was more accurate with higher recognition rate with minimal errors and forecast accuracy and strong practical value in predicting the SEV (correlation between actual and predicted for GMDH method = 0.8673 and correlation between actual and predicted for traditional regression (from Equations (15)–(19) = 0.6160 on average).

SUMMARY AND CONCLUSIONS

In this study, DTF and GMDH were used successfully for prediction of SEV based on concentration of SS and duration of exposure on fishes. Decision tree forest employed for evaluation the relative importance of variables on SEV. The results show that exposure duration is the most important parameter on SEV. Group method of data handling network was designed by trial-and-error method featuring back propagation algorithm, and minimum error of each network was met. Group method of data handling proposed five equations for evaluation of SVE. Results showed that combinations of iterative and evolutionary algorithms with the GMDH network provided better prediction of SEV than traditional equations.

REFERENCES

- Alabaster, J. S. & Lloyd, R. 1980 Finely divided solids. In: Water Quality Criteria for Freshwater Fish. Butterworths, London, pp. 1–20.
- Auld, B. & Schubel, L. 1978 Effects of Short Term Exposure to Suspended Sediments on the Behaviour of Juvenile Coho Salmon. Master's Thesis, University of British Columbia, Vancouver, Canada.
- Brannon, E. L., Whitman, R. P. & Quinn, T. P. 1981 Report on the influence of suspended volcanic ash on the homing behavior of adult chinook salmon (Oncorhynchux tshawyischa). Final Report to Washington State University. Washington Water Research Center, Pullman, WA.
- Buck, D. H. 1956 Effects of turbidity on fish and fishing. *Trans. N. Am. Wildl. Conf.* **21**, 249–261.
- Byeon, H. 2014 The risk factors of laryngeal pathology in Korean adults using a decision tree model. J. Voice 4, 004–010.
- Coats, R., Collins, L., Florsheim, J. & Kaufman, D. 1985 Channel change, sediment transport, and fish habitat in a coastal stream: effects of an extreme event. *Environ. Manage.* 9, 35–48.
- Cordone, A. J. & Kelley, D. W. 1961 The influences of inorganic sediment on the aquatic life of streams. *Calif. Fish Game* 47, 189–223.
- Efron, B. 1979 Bootstrap methods: another look at the jackknife. *Ann. Stat.* 7, 1–26.
- Erdal, H. I. & Karakurt, O. 2013 Advancing monthly stream flow prediction accuracy of CART models using ensemble learning paradigms. J. Hydrol. 477, 119–128.
- Erman, D. C. & Lignon, F. K. 1988 Effects of discharge fluctuation and the addition of fine sediment on stream fish and macroinvertebrates below a water-filtration facility. *Environ. Manage.* 12, 85–97.
- Farlow, S. J. ed. 1984 *Self-organizing Method in Modeling: GMDH Type Algorithm.* Marcel Dekker Inc., New York.
- Gibson, A. M. 1933 Construction and Operation of a Tidal Model of the Severn Estuary. His Majesty's Stationery Office, London.
- Goldes, S. A. 1983 Histological and Ultrastructural Effects of the Inert Clay Kaolin on the Gills of Rainbow Trout (Salmo gairdneri Richardson). *Master's Thesis*, University of Guelph, Guelph, Ontario.
- Griffin, L. E. 1938 Experiments on the tolerance of young trout and salmon for suspended sediment in water. Oregon Department of Geology and Mineral Industries Bulletin 10 (Appendix B), 28–31.

- Hamilton, J. D. 1961 The effect of sand-pit washings on a stream fauna. Int. Vereinigung Theor. Angew. Limnol. Verh. 14, 435–439.
- Herbert, D. M. W. & Merkens, J. C. 1961 The effect of suspended mineral solids on the survival of trout. *Int. J. Air Water Pollut.* 5, 46–55.
- Herbert, D. W. M. & Richards, J. M. 1963 The growth and survival of fish in some suspensions of solids of industrial origin. *Int. J. Air Water Pollut.* 7, 297–302.
- Herbert, D. W. M. & Wakeford, A. C. 1962 The effect of calcium sulphate on the survival of rainbow trout. *Water Waste Treat*. 8, 608–609.
- Hesse, L. W. & Newcomb, B. A. 1982 Effects of flushing Spencer Hydro on water quality, fish, and insect fauna in the Niobrara River, Nebraska. N. Am. J. Fish. Manage. 2, 45–52.
- Hughes, G. M. 1975 Coughing in the rainbow trout (Salmo gairdneri) and the influence of pollutants. Rev. Suisse Zool. 82, 47–64.
- Ivahnenko, A. G. 1971 Polynomial theory of complex systems. *IEEE Trans. Syst. Man Cyber.* **1**, 364–378.
- Johnson, D. D. & Wildish, D. J. 1982 Effect of suspended sediment on feeding by larval herring (Clupea harengus harengus L.). Bull. Environ. Cont. Toxicol. 29, 261–267.
- Kemp, H. A. 1949 Soil pollution in the Potomac River basin. *Am. Water Works Assoc. J.* **41**, 792–796.
- Kunwar, P. S., Shikha, G. & Premanjali, R. 2073 Identifying pollution sources and predicting urban air quality using ensemble learning methods. *Atmos. Environ.* 80, 426–437.
- Langer, O. E. 1980 Effects of sedimentation on salmonid stream life. In: *Report of the Technical Workshop on Suspended Solids and the Aquatic Environment* (K. Weagle, ed.). Department of Indian Affairs and Northern Development, Contract Ott–80:1–21, Whitehorse, Yukon Territory.
- Lawrence, M. & Scherer, E. 1974 Behavioral responses of whitefish and rainbow trout to drilling fluids. Canada Fisheries and Marine Service Technical Report 502, 47.
- LeGore, R. S. & DesVoigne, D. M. 1973 Absence of acute effects on three-spine sticklebacks (*Gasterosteus aculeaius*) and coho salmon (*Oncorhynchits kisutch*) exposed to resuspended harbour sediment contaminants. J. Fish. Res. Board Can. 30, 1240–1242.
- MacDonald, D. D. & Newcombe, C. P. 1993 Utility of the stress index for predicting suspended sediment effects: response to comment. N. Am. J.Fish. Manage. 13, 873–876.
- McLeay, D. J., Ennis, G. L., Birtwell, I. K. & Hartman, G. F. 1984 Effects on Arctic grayling (Thymallus arcticus) of prolonged exposure to Yukon placer mining sediment: laboratory study. Canadian Technical Report of Fisheries and Aquatic Sciences 1241.
- McLeay, D. J., Birtwell, I. K., Hartman, G. F. & Ennis, G. L. 1987 Responses of Arctic grayling (*Thymallus arcticus*) to acute and prolonged exposure to Yukon placer mining sediment. *Can. J. Fish. Aquat. Sci.* 44, 658–673.
- Morgan II., R. P., Rasin Jr., J. V. & Noe, L. A. 1973 Effects of suspended sediments on the development of eggs and larvae of striped bass and white perch, appendix 11. Final Report to

U.S. Army Corps of Engineers. Contract DACW61-71-C0062, Philadelphia.

- Morgan II., R. P., Rasin Jr., J. R. & Noe, L. A. 1983 Sediment effects on eggs and larvae of striped bass and white perch. *Trans. Am. Fish. Soc.* **112**, 220–224.
- Morris, G. L. 1995 Reservoirs and the sustainable development of water resources. Sediment Management and Erosion Control on Water Resources Projects. *Fifteenth Annual USCOLD Lecture Series*, San Francisco, California, May 15–19, pp. 17–28.
- Neumann, D. A., O'Connor, J. M., Sherk, J. A. & Wood, K. V. 1975 Respiratory and hemalological responses of oyster toad fish (Opsanus tau) to suspended solids. *Trans. Am. Fish. Assoc.* 104, 775–781.
- Newcomb, T. W. & Flagg, T. A. 1983 Some effects of Mt. St. Helens ash on juvenile salmon smolts. *Mar. Fish. Rev.* 45 (2), 8–12.
- Newcombe, C. P. 1994 Suspended Sediment in Aquatic Ecosystems: Ill Effects as a Function of Concentration and Duration of Exposure. British Columbia Ministry of Environment. Lands and Parks, Habitat Protection Branch, Victoria.
- Newcombe, C. P. 1997 Channel Suspended Sediment and Fisheries: A Concise Guide (page-at-a-glance format).
 Resource Stewardship Branch, Ministry of Environment, Lands and Parks, Victoria, British Columbia, 37.
- Newcombe, C. P. & Jensen, J. O. T. 1996 Channel suspended sediment and fisheries: a synthesis for quantitative assessment of risk and impact. N. Am. J. Fish. Manage. 16, 693–727.
- Noggle, C. C. 1978 Behavioral, Physiological and Lethal Effects of Suspended Sediment on Juvenile Salmonids. *Master's Thesis*, University of Washington, Seattle.
- Phillips, R. W. 1970 Effects of sediment on the gravel environment and rish production. In: *Proceedings of the Symposium on Forest Land Use and Stream Environment*. Oregon State University, Continuing Education Publications, Corvallis, Oregon, pp. 64–74.
- Redding, J. M. & Schreck, C. B. 1982 Mount St. Helens ash causes sublethal stress responses in stechhead trout. In: *Ml. St. Helens: Effects on Water Resources*. Washington State University, Washington Water Research Center, Report 41, Pullman, Washington, pp. 300–307.
- Rogers, B. A. 1969 Tolerance Levels of four Species of Estuarine Fishes to Suspended Mineral Solids. *Master's Thesis*, University of Rhode Island, Kingston.
- Scheuerlein, H. 1995 Downstream effects of dam construction and reservoir operation. Sixth International Symposium on River Sedimentation, Management of Sediment: Philosophy, Aims, and Techniques, New Delhi, 7–11 November, Balkema, Rotterdam, pp. 1101–1108.
- Servizi, J. A. & Martens, D. W. 1987 Some effects of suspended Fraser River sediments on sockeye salmon (*Oncorhynchus nerka*). *Can. Spec. Publ. Fish. Aquat. Sci.* 96, 254–264.
- Servizi, J. A. & Martens, D. W. 1991 Effect of temperature, season, and fish size on acute lethality of suspended sediments to coho salmon (*Oncorhynchus kisutch*). *Can. J. Fish. Aquat. Sci.* 48, 493–497.

Servizi, J. A. & Martens, D. W. 1992 Sublethal responses of coho salmon (Oncorhynchus kisutch) to suspended sediments. Can. J. Fish. Aquat. Sci. 49, 1389–1395.

- Shaw, P. A. & Maga, J. A. 1943 The effect of mining silt on yield of fry from salmon spawning beds. *Calif. Fish Game* 29, 29–41.
- Sherk, J. A., O'Connor, J. M. & Neumann, D. A. 1975 Effects of suspended and deposited sediments on estuarine environments. In: *Estuarine Research 2* (L. E. Cronin, ed.). Academic Press, New York, pp. 541–558.
- Sigler, J. W., Bjornn, T. C. & Everest, F. H. 1984 Effects of chronic turbidity on density and growth of steelheads and coho salmon. *Trans. Am. Fish. Soc.* 113, 142–150.
- Simmons, R. C. 1982 Effects of Placer Mining on Arctic Grayling of Interior Alaska. *Master's Thesis*, University of Alaska, Fairbanks.
- Slaney, P. A., Halsey, T. G. & Tautz, A. F. 1977 Effects of forest harvesting practices on spawning habitat of stream salmonids in the Centennial Creek watershed, British Columbia. Fisheries Management Report 73, British Columbia Ministry of Recreation and Conservation, Fish and Wildlife Branch, Victoria.
- Slanina, K. 1962 Beitrag ziir Wirkung mineralischer Suspensionen auf Fische. *Wasser Abwasser* **1962**, 186–194.
- Stober, Q. J., Ross, B. D., Melby, C. L., Dinnel, P. A., Jagielo, T. & Salo, E. O. 1981 Effects of suspended volcanic sediment on coho and chinook salmon in the Toutle and Cowlitz rivers. Technical Completion Report FRI-UW-8124, University of Washington, Fisheries Research Institute, Seattle.
- Suchanek, P. M., Marshall, R. P., Hale, S. S. & Schmidt, D. C. 1984a Juvenile salmon rearing suitability criteria. Alaska

Department of Fish and Game. Susitna Hydro Aquatic Studies, 1984 Report 2, Part 3, Anchorage.

- Suchanek, P. M., Sundet, R. L. & Wenger, M. N. 1984b Resident fish habitat studies. Alaska Department of Fish and Game. Susitna Hydro Aquatic Studies, 1984 Report 2, Part 6. Anchorage.
- Swenson, W. A. 1978 Influence of Turbidity on Fish Abundance in Western Lake Superior. U. S. Environmental Protection Agency, National Environmental Research Center. Ecological Research Series EPA 600/3-78-067.
- Swenson, W. A. & Matson, M. L. 1976 Influence of turbidity on survival, growth, and distribution of larval lake herring (*Coregonus artedii*). *Trans. Am. Fish. Soc.* **105**, 541–545.
- Sykora, J. L., Smith, E. J. & Synak, M. 1972 Effect of limeneutralized iron hydroxide suspensions on juvenile brook trout (Salvelinus fontinalis Mitchill). *Water Res.* 6, 935–950.
- Townsend, A. H. 1983 Sport Fishing-placer Mining: Chatanika River. Memorandum to Director B. Baker. Habitat Division, Alaska Department of Fish and Game, February 2, 1983, Juneau.
- Turnpenny, A. W. H. & Williams, R. 1980 Effects of sedimentation on the gravels of an industrial river system. J. Fish Biol. 17, 681–693.
- Wallen, E. I. 1951 The Direct Effect of Turbidity on Fishes. Oklahoma Agricultural and Mechanical College. Arts and Sciences Studies, Biological Series 48(2).
- Whitman, R. P., Quinn, T. P. & Brannon, E. L. 1982 Influence of suspended volcanic ash on homing behavior of adult chinook salmon. *Trans. Am. Fish. Soc.* 111, 63–69.

First received 2 June 2014; accepted in revised form 29 September 2014. Available online 17 October 2014

Copyright of Water Quality Research Journal of Canada (IWA Publishing) is the property of IWA Publishing and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.