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LAVALLÉE, D. (427) Institute for Crustal Studies, University of California, Santa

Barbara, California, USA
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PREFACE
Seismic waves generated by earthquakes have been interpreted to provide us informa-
tion about the Earth’s structure across a variety of scales. As a scientific activity of the
Commission on Seismological Observation and Interpretation of the IASPEI, focusing
on the seismic wave scattering in the Earth from heterogeneities having various types and
scales, we organized a task group on “Scattering and Heterogeneity of the Earth.” As the
first product of this task group, Wu and Maupin (2007) edited a book entitled “Advances
in Wave Propagation in Heterogeneous Earth” as the 48th volume of “Advances in
Geophysics” (Series Editor, R. Dmowska). That volume mainly contains introductions to
and basic review of modeling methods for elastic waves in laterally heterogeneous
structures that are most commonly used in contemporary seismology.
For short-period seismic waves (e.g., those having periods less than 1 s), scattering due

to randomly distributed small-scale heterogeneities in the Earth significantly changes the
envelope of seismograms with increasing travel distance and excites coda waves. Models
of propagation through deterministic structures such as those with horizontally uniform
velocity layers used in traditional seismology cannot explain these phenomena.
In addition to the invention of the velocity tomography, the study of coda waves in the
heterogeneous lithosphere started by Aki (1969) marked a new era in short-period
seismology. The former reveals the existence of three-dimensional deterministic hetero-
geneity from onset readings; the latter reveals the existence of small-scale random
heterogeneity. The two approaches are complementary for the construction of a unified
image of the real Earth; however, here we mainly focus on the latter subject, seismic
wave scattering by random small-scale heterogeneity in the Earth.
This book is edited as the second product of the task group. Topics covered are recent

developments in wave theory and observation including: weak localization of seismic
waves, synthesis of short-period seismic wave envelopes, laboratory investigations of
ultrasonic wave propagation in rock samples, coda wave analysis for mapping medium
heterogeneity and for monitoring temporal variation of physical properties in the crust,
radiation of short-period seismic waves from an earthquake fault, and borehole measure-
ments of Earth properties on a range of scales. Various types of forward modeling and
inversion schemes are introduced.
As a compelling description of the value of the study of the field of seismic wave

scattering in the heterogeneous Earth, we refer to words of late professor Keiiti Aki in a
letter he wrote to Dr. V.I. Kelis-Borok in 2003 from his lecture note (Aki, 2003), “. . . To
a geodynamicist, the earth’s property is smoothly varying within bodies bounded by
large-scale interfaces. Most seismologists also belong to this ‘smooth earth club,’
because once you start with an initial model of smooth earth your data usually do not
require the addition of small-scale heterogeneity to your initial model. As summarized
well in a recent book by Sato and Fehler (1998), the acceptance of coda waves in the data
set is needed for the acceptance of small-scale seismic heterogeneity of the lithosphere.
There are an increasing number of seismologists who accept it, forming the ‘rough earth
club.’ I believe that you are also a member of the rough earth club, judging from the
emphasis on the hierarchical heterogeneity of the lithosphere . . .”
xvii



xviii PREFACE
This book starts with theoretical approaches for modeling wave propagation and
scattering in randomly inhomogeneous media. Chapter 1 (Margerin) reviews recent
theoretical developments on the weak localization of coda waves: the amplitude of
coherent back-scattered waves in the vicinity of the source is larger than what predicted
from the classical radiative transfer theory. For cases where the wavelength is shorter than
the scale of medium inhomogeneity, the WKBJ approximation is used in Chapter 2
(Zheng and Wu) to arrive at a new stochastic theory for the coherence function of log
amplitude and phase for waves passing through random media with a depth-dependent
background velocity structure. As a statistical extension of the phase screen method for
the parabolic wave equation, the Markov approximation is known to be an effective
method to predict wave envelopes in randommedia for high-frequency waves. Chapter 3
(Sato and Korn) reviews an extension of that approximation for scalar waves to vector
waves. The newly developed theory reliably predicts envelope broadening and the
excitation of the orthogonal component of motion (the transverse component for
P-waves) with increasing travel distance. The validity of the approach is tested by
comparison with sets of wave traces generated by finite differences. Chapter 4 (Kaslilar
et al.) discusses the travel time statistics of acoustic waves in random media based on
geometrical optics. They develop a method to estimate the statistical parameters char-
acterizing the random media from travel-time fluctuations of reflected and refracted
waves. Chapter 5 (Müller et al.) presents a theory for attenuation and dispersion of
compressional seismic waves in inhomogeneous, fluid-saturated porous media in the
framework of wave propagation in continuous random media. The statistical smoothing
method treats both intrinsic attenuation due to wave-induced flow and scattering attenu-
ation as the redistribution of wave energy in space and time in a unified manner.
The following two chapters treat practical modeling of seismic wave propagation

through the heterogeneous Earth. Chapter 6 (Shearer and Earle) focuses on the envelopes
of teleseismic P waves traveling through the heterogeneous mantle. Envelopes calculated
by using a statistical synthesis based on the Born scattering amplitudes for random elastic
media are fitted to the observed stacked P wave envelopes. Chapter 7 (Furumura and
Kennett) presents a scattering slab model for the Pacific plate and the Philippine Sea
plate beneath Japan that explains the observed efficient wave-guide for high-frequency
seismic waves in this region. The heterogeneous component of their slab model consists
of an anisotropic random velocity fluctuation with a longer correlation distance in the
plate down-dip direction and a much shorter correlation distance across the plate
thickness. Precise numerical simulations well explain the frequency selective wave
propagation effect.
The following two chapters treat laboratory experiment and scaling issues in borehole

surveys. Chapter 8 (Nishizawa and Fukushima) presents laboratory experiments of
ultrasonic wave propagation through heterogeneous rock samples by using a laser
Doppler vibrometer. Variations in travel times, fluctuations of amplitude, phase, and
particle-motion, as well as envelope formation are examined with respect to the statisti-
cal properties of random heterogeneities of rock in the range of millimeters. Chapter 9
(Cheng) reviews the latest technologies in down-hole seismic measurements: acoustic
logging, cross well seismic and vertical seismic profiling. They cover a frequency range
from about 10 kHz down to about 10 Hz, and can investigate heterogeneity in the Earth
from a scale of 10 s of centimeters to 100 s of meters. This chapter contains a discussion
of the scale over which the various methods can resolve heterogeneity.
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The following chapters treat various types of observations and analyses of coda waves.
Chapter 10 (Yoshimoto and Jin) presents the general characteristics of coda waves of
local earthquakes and theoretical models based on the radiative transfer theory.
This chapter discusses the nonuniform distribution of coda energy in tectonically active
regions. The measurement of coda attenuation is focused especially as a useful tool
for monitoring the temporal change in physical parameters in the curst. Chapter 11
(Nishigami and Matsumoto) presents the inversion of coda wave envelopes of local
earthquakes for the spatial distribution of scattering strength in the crust. The idea is
based of the assumption that the lapse-time dependent residual of individual coda
envelope from a smooth master curve reflects the spatial variation of scattering strength.
Applying this method to data retrieved in the San Andreas Fault system, they show a
good correlation between sub-parallel active faults and relatively stronger scattering
zones in the crust. This chapter also has a discussion about slant stacking of seismic
array waveform data for the energy evaluation under the assumption of a single scattering
model. Chapter 12 (Phillips et al.) develops a calibration technique to estimate the source
spectra from the spectra of Lg and Sn coda waves of local earthquakes. Applying these
techniques to records registered at stations across central and eastern Asia, they deter-
mine the regional variation of coda attenuation and apparent stress of earthquakes.
Chapter 13 (Del Pezzo) reviews scattering studies in various volcanic regimes. In
some cases, the frequency dependence of coda attenuation in volcanoes is found to be
less than that measured in nonvolcanic areas. According to the multiple lapse time
window analysis of the data, scattering loss dominates over intrinsic loss with increasing
frequency because of strong heterogeneity in volcanoes. Different from the above
envelope analyses, Chapter 14 (Poupinet et al.) focuses on the phase information of
coda waves and presents a cross-correlation (-spectrum) moving window technique of
coda waves of local earthquake doublets for monitoring the temporal change in
the velocity structure of the crust. This technique is tested by earthquake doublet
seismograms registered by a digital seismic network with a high time precision.
This chapter also presents a technique that creates “virtual doublets” from the correlation
of long seismic noise sequences.
The last two chapters treat earthquake strong motions and source models. Chapter 15

(Nakahara) presents a seismogram envelope inversion for short-period seismic energy
radiation from an earthquake fault. The basic idea is to use the envelope Green function
derived from the multiple isotropic scattering model for short period S-waves to invert
for the spatial variation in radiation from a fault. This chapter compiles the characteristics
of short-period seismic energy radiation from moderate to large earthquakes. Chapter 16
(Lavallée) presents an earthquake source model based on the assumption that the slip
distribution obeys a Lévy law. This model predicts that the sum of these amplitudes
observed at a given distance from the sources will also be distributed according to a
Lévy law.
The text is written for graduate students, scientists, and engineers of geophysics,

physics, acoustics, civil engineering, environmental sciences, geology, and planetary
sciences. A glossary of special terms relevant to the study of scattering of waves in
random media is placed at the end of this book. For further understanding, there are
monographs that treat medium heterogeneity and wave scattering as follows:
Chandrasekhar (1960) is a classic text for radiative transfer theory in scattering media.
Ishimaru (1978) and Rytov et al. (1987) offer advanced mathematical tools for the study
of wave propagation in random media and a link between wave theory and the radiative
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transfer theory. Shapiro and Hubral (1999) puts special focus on wave propagation
through stratified random media focusing on 1D problems. Goff and Holliger (2002)
summarizes observations of crustal heterogeneity. Sato and Fehler (1998) reviews
seismological observation facts and mathematical models of scattering phenomena
especially focusing on short period seismic waves and small-scale heterogeneity.
We thank the following scientists for their careful reviews of different chapters: Joe

Andrews, Nirenda Biswas, Daniel Burns, Arthur C.H. Cheng, Vernon F. Cormier,
Edoardo Del Pezzo, Karl Ellefsen, William L. Ellsworth, Alexander A. Gusev, David
Higdon, Lianjie Huang, Ludek Klimes, Michael Korn, Yury A. Kravtsov, Ludovic
Margerin, Gary Mavko, Steve McNutt, Tobias Müller, Takeshi Nishimura, Masakazu
Ohtake, Lenya Rhyzik, Steve Roecker, Tatsuhiko Saito, Sergei Shapiro, Roel Snieder,
Anna Tramelli, Kasper Van Wijk, Ulrich Wegler, Kazuo Yoshimoto, and Yuehua Zeng.
We thank the IASPEI, in particular the ex-president E. Robert Engdahl, the Secretary-

General, Peter Suhadolc, the chairman of the Commission on Seismological Observation
and Interpretation, Dmitry Storchak, and the current president, Zhongliang Wu for their
support during this book project.
This book also owes a lot to Renata Dmowska, the editor of the series “Advances in

Geophysics.” We thank her for her continuous encouragement and help for the editing
work.

Haruo Sato and Michael C. Fehler
June 7, 2008
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ADVANCES IN GEOPHYSICS, VOL. 50, CHAPTER 1
COHERENT BACK-SCATTERING AND WEAK
LOCALIZATION OF SEISMIC WAVES

Ludovic Margerin
Abstract

I present a review of the weak localization effect in seismology. To understand this multiple

scattering phenomenon, I begin with an intuitive approach illustrated by experiments performed

in the laboratory. The importance of reciprocity and interference in scattering media is emphasized.

I then consider the role of source mechanism, again starting with experimental evidence. Important

theoretical results for elastic waves are summarized, that take into account the full vectorial

character of elastic waves. Applications to the characterization of heterogeneous elastic media

are discussed.

Key Words: Multiple scattering, interference, reciprocity, elastic waves. � 2008 Elsevier Inc.
1. Introduction

In strongly scattering media, the propagation of multiply-scattered waves is best
described by considering the transport of the energy. An elastic scattering medium is
an inhomogeneous medium where the wavespeed and the density vary laterally. It can
also contain embedded obstacles such as cracks or cavities. Upon propagation, an
incoming plane wave with well-defined wavevector k will transfer energy to all possible
space directions, a phenomenon known as scattering. The energy transport approach has
been developed by astrophysicists at the beginning of the twentieth century and has given
birth to the theory of radiative transfer (Chandrasekhar, 1960; Apresyan and Kravtov,
1996). Phenomenologically, the transfer equation for acoustic, electromagnetic, and
elastic waves can be derived from a detailed local balance of energy that neglects the
possible interference between wave packets (see, e.g., Sato, 1994; Sato and Fehler, 1998;
and Margerin, 2005, for seismic applications). This important assumption is justified by
the fact that the phase of the wave is randomized by the scattering events. Thus at a given
point, the field can be written as a sum of random phasors and on average, intensities can
be added, rather than amplitudes. This seemingly convincing argument can actually be
shown to be wrong and one of the goals of this paper will be to put forward the role of
interferences in scattering media in specific cases. To begin with, we present the results
of an experiment of ultrasound propagation in a granular material, which can be defined
as a material containing many individual solid particles with arbitrary sizes. An array of
128 acoustic transducers has been placed at the surface of a box with lateral dimensions
0.15 m� 0.15 m� 0.15 m containing commercial sand for aquariums. The sand does not
have a well-defined granulometry but the typical size of a grain is �2 mm. The central
transducer emits a short pulse in the 1�1.5MHz frequency range and thewaves are recorded
1 # 2008 Elsevier Inc. All rights reserved.
ISSN: 0065-2687

DOI: 10.1016/S0065-2687(08)00001-0



2 MARGERIN
by the whole array. The wavespeed of the dominant ballistic pulse is about 1000 m/s,
which gives a dominant wavelength of �0.8 mm, which is of the same order as
the size of one transducer of the array (�0.55 mm). The logarithm of the energy of
the wavefield along the array after time averaging over four cycles is shown in
Fig. 1, as a function of distance from the center of the array in millimeters
(horizontal axis) and time in microseconds (vertical axis).
In this figure, one can identify direct waves that propagate along the array and decay

exponentially with distance because of the energy losses due to scattering. They are
followed by a diffuse coda, which can be thought of as the result of the random walk of
the energy in the scattering medium. As a rule of thumb, the multiple scattering halo
grows like

ffiffiffiffiffi
Dt

p
, whereD = ul*/3 is the diffusion constant of the waves in the medium and

u is the wave velocity. The transport mean free path l* (see, e.g., Sheng, 1995, for a
rigorous definition) represents the typical step length of the random walk of the energy in
the scattering medium and is much larger than the wavelength. In the case of sand
samples, the transport mean free path is roughly 10 times larger than the wavelength.
According to diffusion theory (Akkermans and Montambaux, 2005), at fixed time t = t0,
the energy distribution in the scattering medium is approximately proportional to
e�3r2=ð4ut0l�Þ, where r is the distance from the source. Therefore, at fixed time, the energy
in the diffuse halo is expected to vary significantly on the scale of l*. Yet, at the center of
Fig. 1, the reader will notice a clear, but highly localized increase of intensity. This is not
Weak
localization

Ballistic
waves

Diffuse
halo

10

20

30

40

50

60

70

80

90

100

110

T
im

e 
(m

ic
ro

se
c)

−40 −20 0
Distance (mm)

20 40−60 60

Lo
g 

(e
ne

rg
y)

−11

−10

−9

−8

−7

−6

−5

−4

−12

−3

FIG. 1. Energy of the wavefield recorded at the surface of a granular material as a function of

time. A short pulse with a central frequency of 1.2 MHz is shot at the central transducer. Direct

waves propagating along the array rapidly attenuate. They are followed by coda waves that form a

diffuse halo in the medium. Note the sharp increase of intensity at the center of the array, where

energy was initially released. Experiment performed at the Laboratoire Ondes et Acoustique, Paris,

by R. Hennino and A. Derode.



3COHERENT BACK-SCATTERING AND WEAK LOCALIZATION
an artifact. In this particular experiment, the typical width of the zone of enhanced
intensity is roughly equal to the size of one transducer. Other experiments, to be described
later, have demonstrated that the zone of enhancement actually coincides with the central
wavelength of the waves, which is the clear signature of an interference effect that takes
place around the source in the multiple scattering medium: this is known as weak
localization. In the next section, I provide a simple explanation for this observation.
2. Weak Localization Effect: A Heuristic View

In what follows, I represent a scalar partial wave as a complex number c = Aeif, where
A and f are real numbers denoting the amplitude and phase, respectively. Each partial
wave follows an arbitrarily complicated scattering path from source to receiver in the
medium. At a given point, the measured field u is a superposition of a large number of
partial waves that have propagated along different scattering paths
u ¼
X
j

Aje
ifj ; ð1Þ
where Aj and fj are random and uncorrelated because of the multiple scattering events,
and j can be understood as a “label” for the different paths. The representation (1) is
strictly valid for point scatterers and will suffice for the present purposes. Typical
examples of scattering paths are shown in Fig. 2.
In Eq. (1), I now pair direct and reciprocal scattering paths as shown in Fig. 2. The

direct and reciprocal paths are characterized by the fact that the same scatterers are
visited, but the sequences of scattering events are opposite. To illustrate this definition, in
Fig. 2, the sequence S, A, B, C, D, R (solid line) and S, D, C, B, A, R (dashed line)
represent the direct and reciprocal paths, respectively. One obtains
u ¼
X
j0

cd
j0 þ cr

j0

� �
; ð2Þ
where c denotes the complex partial waves, the superscripts d and r stand for “direct”
and “reciprocal,” and a new label j0 has been introduced to emphasize the new represen-
tation of the field. The intensity I is proportional to |u|2 and reads
I ¼
X
j0;k0

cd
j0 þ cr

j0

� �
cd
k0 þ cr

k0
� �

; ð3Þ
where the overbar denotes complex conjugation. In Eq. (3), it is reasonable to assume
that the waves visiting different scatterers will have random phase differences and after
averaging over scatterer positions will have no contribution. Thus, we can restrict the
summation to the case j0 ¼ k0 to obtain
I ¼
X
j0

cd
j0

��� ���2 þ cr
j0

��� ���2� 	
þ
X
j0
ðcd

j0c
r
j0 þ cd

j0c
r
j0 Þ: ð4Þ
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4 MARGERIN
The first sum in Eq. (4) represents the usual incoherent contribution to the measured
intensity, which can be calculated with radiative transfer theory (see Wegler et al., 2006
for recent applications). The second sum can be interpreted as the interference term
between the direct and reciprocal paths in the scattering medium. In a reciprocal medium,
that is, a medium where the reciprocity principle is verified, the amplitude and phase of
the direct and reciprocal wave paths are exactly the same, that is, Ad

j ¼ Ar
j and fd

j ¼ fr
j ,

provided that source and receiver are located at the same place. Therefore, the total
intensity which includes the interference term is exactly double of the classical incoher-
ent term. This is the interference term which causes the intensity to be higher in the
experiment shown in Fig. 1. Reciprocity is a general property of wave equations such as
the acoustic and elastic wave equation. In a simple scalar case, it means that the response
measured at r2 due to a source at r1 is the same as the response measured at r1 due to a
source at r2. This remarkable property can be broken when an external field acts on the
system. An interesting seismic example of broken reciprocity is the effect of the Coriolis
force on the seismic wave motion at long period where the effect of the rotation of the
Earth is important. A generalized reciprocity relation can still be given upon exchange of
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source and receiver, which involves the inversion of the instantaneous rotation vector of
the Earth (see Dahlen and Tromp, 1998, for a thorough discussion).
Although it had been theoretically predicted in several pioneering papers published

around 1970 (Watson, 1969; de Wolf, 1971; Barabanenkov, 1973), it is only in the mid-
eighties that the role of interference in multiple scattering has been appreciated with the
discovery of the coherent backscattering of light (Kuga and Ishimaru, 1984; van Albada
and Lagendijk, 1985; Wolf and Maret, 1985; Kaveh et al., 1986). Later the coherent
backscattering effect has been predicted and observed for acoustic and elastic waves in
both stationary and dynamic experiments (Bayer and Niederdrank, 1993; Sakai et al.,
1997; Tourin et al., 1997; de Rosny et al., 2000). Today, coherent backscattering or weak
localization is still a very active topic of research. The coherent backscattering for
moving scatterers has been studied by Snieder (2006) and Lesaffre et al. (2006).
Derode et al. (2005) have used the coherent backscattering effect to measure the
heterogeneity of human bones. Aubry and Derode (2007) have devised an ingenious
technique to measure lateral variations of the diffusion constant of strongly scattering
media based upon the separation of the incoherent and coherent intensities.
Note that the term “coherent backscattering” refers to the intensity enhancement

observed in a small cone of direction in the far-field of a disordered sample for plane
wave sources with fixed incident direction k̂. Although the basic physics of coherent
backscattering and weak localization are identical, the latter term indicates that the loops
of interference occur inside the disordered sample, and should therefore be preferred to
describe the seismic experiments. These interference loops result in a deviation from the
diffusive behavior (Haney and Snieder, 2003). When the wavelength is of the same order
as the mean free path, the interference effects can completely block the transport of
energy away from the source, a phenomenon known as strong localization (see, e.g.,
Sheng, 1995; Akkermans and Montambaux, 2005). Weak localization is therefore a basic
phenomenon to explain the transition from the diffuse to the localized propagation
regime. Note that there exists a number of other mechanisms of intensity enhancement.
One of the most famous is the “opposition effect” in astrophysics, which manifests itself
as an increase of the reflectance of celestial bodies such as the Moon when the light of the
Sun reflected from the regolith is observed close to the backscattering direction. Hapke
et al. (1993) have shown that the opposition effect is partly explained by the coherent
backscattering of light. I refer the interested reader to the paper by Barabanenkov et al.
(1991) for an extensive review of backscattering enhancement phenomena in optics. In
particular, these authors discuss the case of backscattering enhancement by several
deterministic scatterers which can also be of interest in seismology. Let me finally
point out that weak localization is only one manifestation of the role of the phase in
the seismic coda (see Campillo, 2006, for a review).
I have shown with a very simple argument that interference effects have to be

incorporated in the usual transport theory, but for the moment, it has not been explained
why the enhancement due to interference is so highly localized. In Fig. 2, I schematically
represent the more usual case where source and detection are not collocated. In that case
there is a phase shift between the two wavepaths which is acquired during the propaga-
tion from the source to the first scattering event and from the last scattering event to the
receiver. Clearly, if the distance between source and detection is “large enough,” the
phase shift will fluctuate randomly from one configuration of the scatterers to the other.
Therefore, the interference term is expected to vanish upon averaging when source and
receiver are sufficiently far apart. One of the goals of the paper is to demonstrate and
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illustrate the fact that the enhancement zone is actually narrow and about the size of the
wavelength. A final comment on the role of multiple scattering is in order. It is clear that
the representation of the wavefield [Eq. (3)] makes sense only if one can pair the direct
and reciprocal propagation paths. If there is a single scattering event, there is only one
possible path from source to receiver and therefore no interference is possible. This basic
observation proves that weak localization is indeed a genuine multiple scattering effect.
In what follows, I pursue the experimental approach of weak localization by considering
the role of the source mechanism.
3. The Role of Source Mechanism and Wavefield Polarization

Because of their vectorial nature, the weak localization of elastic waves cannot be fully
explained by the simple intuitive approach presented above. As will be shown shortly,
the reciprocity principle of elastic waves in its full extent has to be obeyed in order to
preserve the factor of 2 enhancement at the source position. This subtle effect is first
examined through a laboratory experiment with ultrasound.
3.1. Effect of Source Mechanism

The most common seismic sources, that is, explosions and earthquakes are combina-
tions of dipoles and/or couples of forces. We must therefore consider more complex
sources than simple isotropic point sources. In the case of earthquakes, the radiation is
strongly anisotropic and the radiation pattern displays nodal planes with reversal of the
polarity of first motions. de Rosny et al. (2001) have studied the weak localization of
elastic waves propagating in a chaotic reverberant cavity. The nature of the disorder is
different from the scattering medium, but until a time known as the Heisenberg time, the
mechanisms of enhancement are similar and can be based on an intuitive ray description.
Beyond theHeisenberg time, the eigenmodes of the systemcanbe resolved and the statistical
properties of the eigenfunctions lead to an enhancement of intensity by a factor 3
around the source, as demonstrated experimentally and theoretically by Weaver
and Burkhardt (1994) and Weaver and Lobkis (2000). This result is valid in chaotic
cavities only. Using an interferometer, de Rosny et al. (2001) have recorded the
vertical motions of Lamb waves generated by vertical monopole and dipole sources
in a thin (0.5 mm thickness) chaotic plate of total area 2335 mm2, with the shape of
a quarter stadium. The dominant frequency of the signal is 1.0 MHz and the typical
wavelength is �2.5 mm. After time averaging between lapse time t = 200 ms and
t = 500 ms, they have measured the intensity patterns shown in Fig. 3. The
beginning of the signal is excluded in order to avoid the first reflection on the
boundary of the plate and the choice of the end of the time window is dictated by
the signal to noise ratio. The distribution of energy is perfectly homogeneous in the
plate, except in a small area centered around the source where, in the case of a
monopole, it is the double of the background intensity. An important result of this
study is the confirmation of the typical wavelength size of the zone of intensity
enhancement, which shows that weak localization is a near-field effect. In the 3-D
case, the increase of intensity would occur inside a sphere centered at the source.
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FIG. 3. Enhanced backscattering of elastic waves in a 2-D chaotic cavity. The central frequency is

1 MHz and the dominant wavelength is 2.5 mm. The integrated intensity between lapse time

t = 200 ms and t = 5 ms is represented as a function of position around the source. Left: Monopolar

source. Right: Dipolar source. In the dipolar case, the enhancement disappears on the line going

through the source and perpendicular to the dipole axis. Along the dipole, the intensity enhancement

presents two maxima located about half a wavelength away from the source. Reprinted figure with

permission from de Rosny et al. (2001). Copyright (2001) by the American Physical Society.
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In addition, Fig. 3 (right) highlights the importance of the source mechanism. In the
dipolar case, there are actually two zones of enhancement with an enhancement factor
of about 1.6, separated by a line of zero enhancement. To understand this puzzling
observation, one must consider the full reciprocity principle for elastic waves. In the
present experiment, there is a lack of symmetry between the dipolar source and the
monopolar detection. To restore reciprocity one would like to measure not the field
itself, but its directional derivative along the dipole axis. When this operation is
performed and intensity is redefined as the square of the partial derivative, de
Rosny et al. (2001) have demonstrated both experimentally and theoretically that the
factor of 2 enhancement at the source is restored. Being motivated by this result,
I now give an asymptotic but rigorous theory of weak localization for vector waves.
3.2. Review of Multiple Scattering Formalism

To obtain a satisfactory theory of weak localization, one needs to develop a transport
theory of the energy that keeps track of all polarization indices at both source and
receiver. As shown by Weaver (1990), the necessary information is contained in the
fourth rank coherence tensor Gij! kl of the elastic wavefield defined as
Gij!kl t; r1; r2 ! r3; r4ð Þ ¼ 

Ga

ki t; r3; r1ð ÞGa
lj t; r4; r2ð Þ�; ð5Þ
where Ga
kiðt; r3; r1Þ is the element of the Green matrix corresponding to a point force

applied at r1 in direction i, and measured displacements in direction k at r3. The
superscript a is introduced to label the realizations of the random medium. To each a
there corresponds exactly one medium of the statistical ensemble. t denotes the time
elapsed since energy has been released by sources with a common origin time. Note that
in the analysis that follows, the signal is assumed to be band-pass filtered in a narrow
frequency band with central angular frequency o. In order to simplify notation, all tensor
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quantities are assumed to depend implicitly on o. The tensor Gij!kl (t, r1, r2!r3, r4)
describes the transfer of the displacement correlation function from source (displacement
indices i, j and positions r1, r2) to receiver (displacement indices k, l and positions r3, r4).
The brackets denote an average over a, that is, over an ensemble of random media with
prescribed statistics. In what follows we assume that the property of statistical homoge-
neity holds, in which case the ensemble-averaged Green tensor depends on the difference
of the position vectors of the source and detector only
hGa
ki t; r3; r1ð Þi ¼ Gki t; r3 � r1ð Þ; ð6Þ
where for notational simplicity Gki (without superscript) denotes the ensemble averaged
Green tensor.
The complete evolution of the tensor Gij!kl is described by the Bethe-Salpeter

equation which contains all correlations among all possible scattering paths in the
medium (Sheng, 1995). This is far too detailed for the present purposes, and one usually
contents oneself with the approximate calculation of two terms: the classical contribu-
tion—also termed “diffuson”—and the interference term between reciprocal paths—also
termed “cooperon”—(see Akkermans and Montambaux, 2005, for the origin of this
terminology). In the radiative transfer equation, information on source is usually
integrated out and the cooperon term is neglected (see Margerin, 2005, for details).
Apresyan and Kravtov (1996) have suggested a modification of the radiative transfer
equation, which includes contribution of the cooperon and thereby is able to describe
coherent phenomena such as weak localization. The cooperon and diffuson contributions
are conveniently represented by Feynman diagrams which are both computationally
efficient and physically meaningful. Typical diagrams are shown in Fig. 4. In the ladder
diagrams, the Green function (upper line) and its complex conjugate (lower line) visit the
same scatterers in the same order. In the crossed diagrams, first introduced for multiple
scattering of classical waves in the pioneering papers of Barabanenkov (1973, 1975), the
upper line is unchanged but in the lower line the sequence of scattering is reversed. The
ladder and crossed diagrams correspond to the classical (incoherent) and interference
(coherent) contributions, respectively. To make the link with the elementary treatment
given in Section I, the reader can think of the ladder diagrams alone, as the result of
summing the intensities of the direct path (solid line in Fig. 2) and reciprocal path
(dashed line in Fig. 2). The ladder and crossed diagrams altogether are the result of
first summing and then squaring the fields of the direct and reciprocal paths.
Below, I give a long-time asymptotic formula for the ladder term. To calculate the

crossed term, one can make use of the following reciprocity argument: the field produced
by a force in direction k at r2 and recorded in direction l at r4 after scattering at A, B,
C, D, . . . is equal to the field produced by a force in direction l at r4 and recorded in
direction k at r2 after scattering at . . ., D, C, B, A. This is equivalent to saying that every
crossed diagram can be turned into a ladder diagram after suitable exchange of the
polarization indices, and positions on the lower line. We now decompose the tensor
Gij!kl into the fundamental diffuson and cooperon contributions and write
!kl t; r1; r2 ! r3; r4ð Þ ¼ Lij!kl t; r1; r2 ! r3; r4ð Þ þ Cij!kl t; r1; r2 ! r3; r4ð Þ: ð7Þ
Gij

The previous discussion implies the following fundamental reciprocity relation between
Cij!kl and Lij!kl
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Cij!kl t; r1; r2 ! r3; r4ð Þ ¼ Lil!kj t; r1; r4 ! r3; r2ð Þ: ð8Þ
As above, I draw the attention of the reader to the fact that relation (8) is true in multiple
scattering only. Fortunately, in nonabsorbing media, the single scattering contribution
vanishes exponentially (see, e.g., Sato and Fehler, 1998) while, at large lapse time, the
ladder contribution can be shown to be the solution of a diffusion equation
(Barabanenkov and Ozrin, 1991, 1995; Sheng, 1995; Akkermans and Montambaux,
2005) and therefore decays only algebraically. In the presence of absorption, both the
single scattering and ladder contribution exhibit an algebro-exponential decay but the
single scattering term still vanishes faster because it suffers from scattering losses. These
facts have been illustrated in papers by Gusev and Abubakirov (1987), Hoshiba (1991),
and Zeng et al. (1991), where solutions of the single scattering and full multiple
scattering problem are presented. Therefore, relation (8) applies after one mean free
time, which is the average time between two scattering events. In addition, from Eq. (8),
one can easily infer that when source and detection coincide r1 ¼ r2 ¼ r3 ¼ r4, and the
polarization of source and detection are identical i ¼ j ¼ k ¼ l, the interference term
equals exactly the diffuson term. Our next task is to provide a general formula to predict
the exact shape of the weak localization effect in the long time limit. This requires an
asymptotic solution of the Bethe-Salpeter equation, which is presented in what follows.
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3.3. Theoretical Results for Acoustic and Elastic Waves

The Bethe-Salpeter equation is an exact equation for the full coherence tensor of the
wavefield. The complete solution of this equation seems out of reach in general, but
asymptotic solutions for the diffuson contribution in the long time limit have been
presented by Barabanenkov and Ozrin (1991, 1995), which can be applied to classical
scalar and vectorial linear waves, independent of the underlying equation of motion. In
the theoretical approach, one considers a narrowly band-passed signal with central period
T which is much smaller than the typical duration of the coda. This is known in the
literature as the slowly varying envelope approximation (Sheng, 1995). The results of
Barabanenkov and Ozrin are valid in this limit and I refer the interested reader to the
original publications for further technical details. Asymptotically t ! 1, the ladder or
diffuson or classical contribution takes the form
Lij!kl t; r1; r2 ! r3; r4ð Þ ¼ e�t=ta

Dtð Þ3=2
ImGij r1 � r2ð ÞImGlk r4 � r3ð Þ; ð9Þ
where Im denotes the imaginary part of a complex number, D is the diffusion constant of
the waves in the random medium, and ta denotes a phenomenological absorption term.
Note that in the last equation, the tensor Gij stands for the spatial part of the ensemble-
averaged elastic Green tensor at angular frequency o ¼ 2p/T.
Because of the underlying assumption of statistical homogeneity, the tensor Gij

depends on the separation vector between source and station only and is an implicit
function of o. The tensor Gij!kl depends on both central frequency of the waves, and
lapse time in the coda. Equation (9) is valid in the slowly varying envelope approxima-
tion. The reader is referred to Sheng (1995) and Apresyan and Kravtov (1996) for more
mathematical details. According to Eq. (8), the cooperon term reads
Cij!kl t; r1; r2 ! r3; r4ð Þ ¼ e�t=ta

Dtð Þ3=2
ImGil r1 � r4ð ÞImGjk r2 � r3ð Þ: ð10Þ
Let us investigate some consequences of Eq. (10) for a given source station configura-
tion: r1¼ r2, r3¼ r4. To illustrate the fact that interference effects are important only in a
region of the size of one wavelength around the source, we consider the scalar case and
introduce the enhancement factor defined as the total intensity normalized by the
diffuson contribution: E ¼ 1 þ C/L. For scalar waves in 3-D, the enhancement profile
E is given by
E ¼ 1þ sin krð Þ
kr

� 	2

; ð11Þ
where k ¼ o/c is the central wavenumber of the scalar waves with velocity c and r is the
source receiver distance. For scalar waves in 2-D, the corresponding formula is
E ¼ 1þ J0 krð Þ2 ð12Þ
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where J0 denotes the Bessel function of the first kind of order 0. These results are valid in
the long lapse time limit and when the mean free path is much larger than the wavelength,
which is the most common situation in practice. When scattering is extremely strong, the
wavelength can be of the order of the mean free path, and strong localization can set in, a
regime which is very difficult to reach (Akkermans and Montambaux, 2005). The
cardinal sine and Bessel function in Eqs. (11) and (12) are proportional to the imaginary
part of the Green function of the Helmoltz equation in 2-D and 3-D, respectively.
Equation (11) has been verified by numerical simulations (Margerin et al., 2001),
while Eq. (12) has been checked experimentally by de Rosny et al. (2000) (see also
the left part of Fig. 3). It is important to note that the enhancement profile is independent
from absorption. This is not surprising since absorption does not affect the reciprocity
principle. This is often illustrated by the following sentence (van Tiggelen and Maynard,
1997): “If you can see me, I can see you!” that applies even in the fog. This independence
of the weak localization effect on absorption is used later in the paper to give estimates of
the scattering properties of heterogeneous media.
I now explore theoretically the role of the source mechanism. As an example, I will

give a simple formula that explains all the features of the experiments described in Fig. 3
with a dipole source. The radiation of the dipole is obtained by taking the directional
partial derivative of the Green function with respect to source coordinates. For a dipole
source along the x axis of the coordinate system, the coherence function G of the scalar
field is given by
G t; r1; r2 ! r3; r4ð Þ ¼ h@x1Ga t; r3; r1ð Þ@x2Ga t; r4; r2ð Þi: ð13Þ
Because the operation of taking derivatives is linear, the @x1 and @x2 symbols can be taken
outside of the ensemble average brackets. For the diffuson and cooperon contributions,
one obtains respectively
L ¼ e�t=ta

ðDtÞ3=2
ImGð0Þ@x1@x2 ImGðr2 � r1Þjr2¼r1

ð14Þ

C ¼ e�t=ta

ðDtÞ3=2
@x1 ImGðr1 � r4Þjr4¼r3

@x2 ImGðr3 � r2Þjr2¼r1
: ð15Þ
In the 2-D case, after some algebra, one obtains the following enhancement pattern for
the dipole source
E ¼ 1þ ðJ1 krð Þcos yÞð Þ2; ð16Þ
where J1 denotes the Bessel function of the first kind of order 1. This theoretical
prediction matches the observations of Fig. 3 (left) very closely.

The calculation of the weak localization effect has thus been illustrated in simple
cases. The calculations in the full elastic case with arbitrary moment tensor sources have
been performed by van Tiggelen et al. (2001). The principle is the same as above but the
calculations are much more tedious. To illustrate the effect of broken symmetry between
source and receiver, I show in Fig. 5 the calculation of the weak localization profile for
explosion and dislocation sources in an infinite elastic medium. As usual, an explosion
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and a seismic dislocation will be represented by three mutually orthogonal dipole of
forces, and by a double couple of forces, both with zero net applied linear and angular
momentum, respectively. The enhancement profiles in Fig. 5 are calculated in the plane
perpendicular to the axis of the double couple. In this plane, there exist two perpendicular
directions, termed seismic axes, with respect to which the moment tensor is diagonal. For
the simple dislocation source, the seismic axes define the direction of maximum radia-
tion of P waves and make an angle 45� with the applied forces. Note that the direction of
application of the forces also coincide with the maximum radiation of S waves. Figure 5
demonstrates that the backscattering enhancement can be totally destroyed if the opera-
tions carried out at the source and at the detection are different. For instance, the
enhancement of kinetic energy due to a dislocation is typically less than 10% and
vanishes exactly at the source position. The angular dependence of the enhancement
profile in the plane containing the double couple is illustrated in Fig. 5c and d. It is
seen that the enhancement is slightly higher along the direction of maximum radiation of
S waves. Although I shall not prove it, it is always possible to recover the factor 2
enhancement by measuring the appropriate quantity. For the case of a dipole source, one
needs to measure the derivative of the field along the dipole axis. This of course
complicates the experimental setup but it can be done in practice (see, e.g., Hennino
et al., 2001). For an explosion, one needs to evaluate the divergence of the wavefield
(i.e., the compressional energy of the waves), which is even more demanding. Although
this seems discouraging, I present below some experiments with seismic waves that
demonstrate the potential usefulness of weak localization.
4. Geophysical Applications

At this point, I would like to convince the reader that the weak localization effect is not
only a theoretical or mathematical curiosity but a useful interference effect which can be
used to probe the medium properties when multiple scattering hampers the detection of
ballistic waves. I give two examples of applications of weak localization: the first one
illustrates the measurement of elastic properties of a concrete slab (Larose et al., 2006); the
second one reports themeasurement of themean free path in a volcano (Larose et al., 2004).
4.1. Measurement of the Dispersion Relation of Surface Waves

Let me first consider an application at a scale which is intermediate between the
laboratory and the field. An array of vertical accelerometers with typical bandwidth 0.1–
5 kHz has been set up on a steel reinforced concrete slab. Upon propagation, waves
undergo strong multiple scattering and reflections. In the time domain, the ballistic
signals are difficult to separate from the multiple reflections on the sides of the slab and
FIG. 5 Enhancement profiles as a function of the distance from the source, in units of the shear

wavelength, for an infinite Poissonian medium. (a) The enhancement of the potential energy for an

explosion (solid) and a dislocation (dashed). (b) Enhancement profile for the kinetic energy near an

explosion. (c) and (d) Enhancement profiles for the kinetic energy between (at an angle 45� to) and
along the seismic axes of a dislocation source. The term “cone” shown on top of each plot refers to

the zone of intensity enhancement around the source. Reprinted figure with permission from van

Tiggelen et al. (2001). Copyright (2001) by the American Institute of Physics.
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are also rapidly attenuating. In such a situation, an alternative to classical signal processing
techniques is welcome. The elastic waves are generated by an approximately vertical
hammer strike, thus ensuring that source and detection verify the general reciprocity
condition previously discussed. In the frequency range of interest (from 500 to 1500 Hz),
the elastic energy is transported through the slab by the fundamental antisymmetric Lamb
mode, which is known to be strongly dispersive. The phase speed of the fundamental Lamb
mode at 1 kHz is�1000m/s. The geometry of the experiment can thus be considered quasi
2-D and the shape of the weak localization can be accurately predicted using the theoretical
expression (12). I refer the reader to Larose et al. (2006) for further details.
To illustrate the practical measurement of the weak localization effect, I show in Fig. 6

(top) a schematic view of the spatial distribution of the field intensity at a given instant of
time. The upper plot in Fig. 6 is not the outcome of the experiment but serves as an
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FIG. 6. (Top) Schematic snapshot of random spatial intensity fluctuations measured in the coda.

One can imagine that the typical side length is �2 m. The weak localization effect is hidden in this

speckle pattern. (Bottom) Reprinted figure with permission from Larose et al. (2006).

Copyright (2006) by the American Physical Society: Typical profile of intensity enhancement

around the source obtained after averaging over a large number of speckle patterns.



15COHERENT BACK-SCATTERING AND WEAK LOCALIZATION
illustration of the experimental process involved in the measurement of the weak
localization effect. This complex interference pattern shows rapid spatial fluctuations
and is known in optics as a speckle pattern. In the speckle, the maxima can be viewed as
random constructive interferences between multiply-scattered waves that mask the weak
localization spot (at the center of Fig. 6 (top)). At another time instant, the speckle pattern
will have completely changed, except for the deterministic constructive interference
between reciprocal waves around the source. By averaging speckle patterns over suffi-
ciently long time windows, one suppresses unwanted fluctuations thus revealing the
weak localization intensity pattern as shown in Fig. 6 (bottom). In the present example,
the averaging is performed in a lapse time window ranging from 10 to 100 ms. This
simple procedure makes the link between averaging in theory and in practice. The reader
will notice that the enhancement factor is lower than 2 in this experiment. Presumably,
this is caused by the application of a force with a significant horizontal component, thus
breaking the symmetry between source and detection. Despite the imperfection of the
reconstruction, it is still possible to determine with reasonable accuracy the width of the
weak localization zone as a function of frequency using the theoretical relation (12), thus
providing the dispersion of the fundamental antisymmetric Lamb mode. In Fig. 7, the
results of the dispersion measurements are plotted together with a theoretical fit. Indeed,
the phase velocity c of the fundamental Lamb mode obeys the following rather compli-
cated dispersion relation (see, e.g., Royer and Dieulesaint, 2000)
FIG.
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where f is the frequency, h is the slab thickness, and a and b denote the P and S wave
speeds, respectively. In the present experiment, h is known and the values of the
wavespeeds can be adjusted to fit the experimental data. This technique agrees with
independent measurements to within a few percents, which is highly satisfactory.
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4.2. Measurement of the Diffusion Constant in Strongly Scattering Media

Recent active experiments have shown the extreme character of the propagation in
volcanic regions (see, e.g., Wegler and Lühr, 2001; Wegler, 2004). In the short period
band, it is hardly possible and even sometimes impossible to extract the coherent ballistic
waves from the complex recorded waveform. In such extreme cases, a meaningful
measurement of the medium heterogeneity is the diffusion constant of the waves.
However, in practice, its measurement can be affected by a number of factors, such as
anelastic dissipation or local boundary conditions (see Friedrich and Wegler, 2005 for
details). As demonstrated above, absorption does not influence the measurement of the
weak localization effect. Unfortunately, the weak localization intensity profile does not
depend on the scattering properties of the medium and therefore does not offer direct
access to the scattering properties of the medium. However, we know that weak locali-
zation is a multiple scattering process which sets in only after the single scattering
intensity has become negligible. Such a time dependence has been confirmed in a
numerical study by Margerin et al. (2001), which concludes that after a time of the
order of the mean free time, the weak localization pattern is measurable. This has also
been verified experimentally by Larose et al. (2004). They measured the weak localiza-
tion effect on a volcano in the 10–20 Hz frequency band and found that there exists a
characteristic rise time of the intensity enhancement. Their result is shown in Fig. 8. In
the case of the Puy des Goules, one can infer a mean free time of the order of 1 s which
gives a mean free path of a few hundred meters. Note that in their experiment, the width
of the weak localization depends in a nonlinear way on frequency. This is explained by
the fact that according to the equipartition principle (Weaver, 1990; Hennino et al.,
2001), the energy at the surface is largely dominated by the fundamental mode Rayleigh
wave, whose dispersion is caused by the complex layering at the surface. Although the
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observation of weak localization on a volcano requires active sources, it is free of the
effect of absorption and therefore offers direct access to the scattering properties of the
medium.
5. Conclusion

In this paper, I have given a brief introduction to the weak localization effect in
seismology. I have summarized general formulas that enable the calculation of the weak
localization effect for a wide range of practical cases. The fundamental role of reciprocity
between source and detection has been emphasized and illustrated with experimental
results. In practice, the control of the source mechanism is crucial. The simplest solution
is to measure the vertical displacements generated by vertical forces. Applications to the
characterization of scattering or bulk elastic properties have been presented. In particu-
lar, I have shown that the emergence time of weak localization yields an estimate of the
scattering mean free path, independent of absorption effects. Thus, weak localization
combined with other measurements such as time and space dependence of the coda could
be used to discriminate anelastic and scattering attenuation.
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Abstract

An extended theory on the coherence function of log amplitude and phase for waves passing

through random media is developed for a depth-dependent background medium using the WKBJ-

approximated Green’s function, the Rytov approximation, and the stochastic theory of the random

velocity field. The new theory overcomes the limitation of the existing theory that can only deal

with constant background media. Our extended coherence functions depend jointly on the angle

separation between two incident plane waves and the spatial lag between receivers. The theory is

verified through numerical simulations using the iasp91 background velocity model with two layers

of random media. The current theory has the potential to be used to invert for the depth-dependent

spectrum of heterogeneities in the Earth.

KEY WORDS: Transmission fluctuation, coherence function, random media, heterogeneity spec-

trum, Phase, amplitude, WKBJ, Rytov � 2008 Elsevier Inc.

1. Introduction

The statistical approach, complementary to the deterministic method such as seismic
tomography, is indispensable in probing the small-scale inhomogeneities in the Earth
using scattered seismic waves. Its characterization of heterogeneities using statistical
parameters has yielded many important physical constraints and interpretations for the
lithosphere to the core-mantle boundary region, and led to key implications regarding the
Earth’s compositional constituents, thermal state, dynamic mixing, and others.
In 1970s, many attempts (Capon, 1974; Capon and Berteussen, 1974; Berteussen,

1975; Berteussen et al., 1975, 1977) had been made to infer the spatial spectrum of
the velocity heterogeneity using observed fluctuations of the logarithmic amplitude
(logA) and the phase f across a seismic array since the pioneering work by Aki
(1973). Aki essentially employed the Chernov theory (Chernov, 1960) to study the
transverse coherence function (TCF) using the data from the Large Aperture Seismic
Array (LASA), Montana. He found that a 60-km random layer in the lithosphere
with ~10 km scale length for the heterogeneities and 4% root-mean-square (rms)
P-wave velocity fluctuation could explain the data. The Chernov theory (1960)
studies wave propagation in a single layer of stationary random velocity heterogene-
ities with a Gaussian correlation function and with a constant background velocity
21 # 2008 Elsevier Inc. All rights reserved.
ISSN: 0065-2687

DOI: 10.1016/S0065-2687(08)00002-2



22 ZHENG AND WU
and as such, the TCF has a nice closed mathematical form. By the word stationary,
we mean the spatially translational invariance of the statistic (e.g., correlation
function). The TCF for random media of general spectral type can be found in
Tatarskii (1971) and Ishimaru (1978) and it does not possess a simple analytical
expression in general. It is interesting to note that this stochastic approach predated
the deterministic tomography method (Aki and Lee, 1976; Aki et al., 1976, 1977).
The heterogeneity spectrum of the Earth is fractal based on well-logging data (Wu

et al., 1994b; Jones et al., 1997; Goff and Holliger, 1999) and it may not be Gaussian.
Capon and Berteussen (1974) found that the Chernov theory was not applicable to
fluctuations of logA and phase data under the Norwegian Seismic Array (NORSAR);
however, they attributed this to the validity of the Born approximation at high frequen-
cies involved in the theory. The Earth’s large-scale structures are largely stratified in
depth and the herteogeneity spectrum can be slowly varying with depth. Flatté and Wu
(1988) introduced a new kind of coherence function, called the angular coherence
function (ACF), to resolve the depth-dependent spectra under the NORSAR. A two-
layer model with power-law type medium was favored over a one-layer stationary
Gaussian medium. Wu and Flatté (1990) also formulated the joint transverse and angular
coherence function (JTACF) in which both the spatial lag between two seismic stations
and the angular separation between two plane waves were taken into account. Their
formulation was based on wave perturbation theory and assumed the Rytov and the
parabolic approximations for the wave equation. Chen and Aki (1991) independently
obtained the same JTACF result using the Born approximation. Parametric (Flatté et al.,
1991a) and nonparametric (Wu and Xie, 1991) inversions have been carried out to
process real data or to study the depth resolution in the spectral inversion. Wu and Xie
(1991) called such inversion “stochastic tomography” and they found that the JTACF has
the best depth resolution, that the ACF has limited depth resolution close to the surface,
and that the TCF has no depth resolution at all. To invert for the spectrum of a single-
layer stationary random heterogeneity, Zheng et al. (2007) proposed a new scheme using
only the TCF data for logA and phase, in which a Fourier transform was established
between the heterogeneity spectrum and the combination of the logA and phase TCF
data. There was some concern on the discrepancy on the phase coherence function
between the theory and the numerical simulation (Line et al., 1998a; Hong et al.,
2005). However, recent investigation has shown that this discrepancy was caused by
the incorrect phase picking method used in the numerical and field experiments. Appli-
cation of the correct phase measuring method has resulted in excellent agreement
between numerical tests and the theory (Zheng and Wu, 2005). The coherence function
formation using combined data from arrays with different apertures was investigated by
Flatté et al. (1991b) and Flatté and Xie (1992). The theory of transmission fluctuation
was also applied to seismic reflection data to obtain heterogeneities in the upper crust
(Line et al., 1998b). The theory of JTACF has been applied to the NORSAR data
(Wu et al., 1994a) and the Southern California Seismic Network data (Liu et al., 1994;
Wu et al., 1995). For earlier reviews on the subject, see Wu (2002) and Sato et al. (2002).
Besides the coherence function study, many other seismological methods have been

devised to characterize the small-scale heterogeneities. The seismic coda envelope
analysis (Sato and Fehler, 1998) has been widely used to investigate the scattering
strength in the Earth. Through studying the radiated power carried by precursors to the
PKIKP phase (Cleary and Haddon, 1972), the spectrum for P-wave volumetric scatters in
the D00 region, or for the core-mantle boundary topographical relief (Bataille and Flatté,
1988; Bataille et al., 1990), or for the whole mantle (Hedlin et al., 1997) and mid-mantle
(Hedlin and Shearer, 2002) has been constrained.
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Despite significant progress that has been made using the coherence function to
characterize the Earth’s small-scale heterogeneities, all these theoretical treatment of
the problem is based on wave propagation in a homogeneous background medium. This
is inadequate for the real Earth, which has a depth-dependent velocity profile to first
order. In this chapter, we show how we can generalize the theory of coherence functions
(logA and phase f) to arbitrary random medium superimposed on general depth-
dependent background medium. This generalized theory can be directly utilized for the
real Earth.
2. Acoustic Waves in Stratified Media and WKBJ Green Function

The linearized wave equation for pressure in the frequency domain is
r▽� 1

r
▽p

� �
þ o2

c2
p ¼ 0: ð1Þ
Let o be the angular frequency, p ¼ p x; y; z;oð Þ the pressure field, and ▽ the spatial
gradient operator. Define z as depth variable. r and c are density and wave propagation
speed, respectively. For a stratified medium, c ¼ c zð Þ; r ¼ r zð Þ, the 2-D Fourier trans-
form can be performed to Eq. (1) with respect to spatial coordinates, x and y, to obtain
k2z zð Þpþ @2p

@z2
� r�1 @r

@z

@p

@z
¼ 0; ð2Þ
where kz is the vertical wave number defined as
kz zð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c2
zð Þ � k2x � k2y

r
: ð3Þ
kx and ky are horizontal wave numbers corresponding to x and y, respectively. The plus
sign in Eq. (3) corresponds to the downgoing wave and the minus sign the upgoing wave.
We use the same symbol p to denote the pressure before and after the Fourier transform
and this should not cause confusion. Plugging the trial solution in the form of
p ¼ A zð Þexp if zð Þ½ � into Eq. (2) and the real part is
k2z Aþ A00 � f
02
A

� �
� r�1 @r

@z
A0 ¼ 0; ð4Þ
and the imaginary part reads
2f0A0 þ Af00 � r�1 @r
@z

Af0 ¼ 0: ð5Þ
The prime represents the partial derivative with respect to depth z. If the amplitude is
slowly varying with depth, we can use the WKBJ approximation (i.e., get rid of all terms
that involve derivatives of A) in Eq. (4) and it reduces to
k2z � f
02 ¼ 0 ) f0 ¼ kz: ð6Þ
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Therefore, the phase function is solved as
f zð Þ ¼
ðz
zs

kz z
0ð Þdz0; ð7Þ
where zs is a reference depth, commonly taken as the source depth. The validity of the
WKBJ approximation is assured if the wavelength is shorter than the characteristic scale
of the background velocity model. The WBKJ also implies energy conservation for
the transmitted wave, which means that no reflected waves are produced (Wu and Cao,
2005). Substituting Eq. (6) in Eq. (5), we have
2
d ln A

dz
þ d ln kz

dz
� d ln r

dz
¼ 0; ð8Þ
Rearranging Eq. (8), we get
d ln A ¼ d ln

ffiffiffiffiffiffiffiffiffiffi
r zð Þ
kz zð Þ

s
; ð9Þ
So the solution for the amplitude in Eq. (9) is
A zð Þ ¼ C

ffiffiffiffiffiffiffiffiffiffi
r zð Þ
kz zð Þ

s
; ð10Þ
where C is a constant. The final solution to Eq. (2) is
p kx; ky; z;o
� � ¼ C

ffiffiffiffiffiffiffiffiffiffi
r zð Þ
kz zð Þ

s
exp i

ðz
zs

kz z
0ð Þdz0

	 

: ð11Þ
Once we have obtained Eq. (11), the solution for Eq. (1) is just the inverse Fourier
transform
p x; y; z;oð Þ ¼ 2pð Þ�2

ðþ1

�1

ðþ1

�1
p kx; ky; z;o
� �

exp i kxxþ kyy
� �� �

dkxdky: ð12Þ
Next, let us investigate the solution for a point source. Under this case, the Eq. (1) has an
additional source term
r▽� 1

r
▽p

� �
þ o2

c2
p ¼ �d x� xsð Þd y� ysð Þd z� zsð Þ: ð13Þ
xs; ys and zs are source position coordinates. For simplicity, the source is placed at the
origin. In the homogeneous case, the solution in frequency domain is
p x; y; z;oð Þ ¼ 1

4pr
exp

ior
c

� �
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
: ð14Þ
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When a receiver is sufficiently close to the source, the solution (12) should coincide with
(14). In order to compare both solutions in the wave number domain, we first expand the
point source solution (14) into plane wave components using the Weyl integral (e.g., Aki
and Richards, 2002 p. 190). The coefficient to component kx; ky

� �
is 1=2ikz zsð Þ and the

corresponding coefficient in Eq. (12) is C=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r zsð Þ=kz zsð Þp

. Clearly, these two should be
equal. Thus, this constant C is
C ¼ 1

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r zsð Þkz zsð Þp : ð15Þ
Therefore, the complete Green’s function for both 3-D and 2-D cases can be obtained.
Let us rewrite the Green’s function in 3-D case
G x; y; z;oð Þ ¼ 2pð Þ�2

ðþ1

�1

ðþ1

�1

1

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kz zsð Þkz zð Þp

ffiffiffiffiffiffiffiffiffiffi
r zð Þ
r zsð Þ

s

exp i kxxþ kyyþ
ðz
zs

kz z0ð Þdz0
	 
 �

dkx dky: ð16Þ
In 2-D case, just drop all terms pertaining to ky and the inverse Fourier transform constant
is 2pð Þ�1

. Also remember that the 2-D Fourier transform becomes a 1-D transform.
3. Rytov Solution to the Wave Equation in a
Heterogeneous Medium

For convenience, we rewrite the monochromatic wave equation
r▽� r�1▽p
� �þ o2

c2
p ¼ 0: ð17Þ

lution for the pressure wavefield is sought in the form of
The so
p ¼ p0e
c: ð18Þ

!0� � !0� �

c ¼ c x ;o is the complex phase and p0 ¼ p0 o; x is the background incident
wavefield. In what follows we suppress the explicit dependence on o for the wavefield
for simplicity in notation. Assuming no lateral density perturbation and substituting (18)
into (17), we have
r▽�▽r�1 þ k2
� �

p0cð Þ ¼ �2k2gp0 � p0▽c�▽c; ð19Þ
2 2

� �

where g ¼ c0=c � 1 =2 � �dc=c0 is the scattering potential, dc ¼ c� c0. The back-
ground wave number k is defined as k ¼ o=c0 z0ð Þ. The Rytov approximation assumes
▽cð Þ2 << 2k2g. The right-hand side of Eq. (19) is a spatially distributed source term. The
complex phase can be solved as
c x
!� �

¼ 2

p0 x!ð Þ
ð
V

k2 x
!0ð ÞG x

!
; x
!0;o

� �
g x

!0ð Þp0 x
!0ð Þd3x!0: ð20Þ

Eq. (20), it can be seen that contributions of scattering potentials g at different
From
locations to the complex phase are independent from each other. However, this linear
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relationship is to the complex phase, not to the field itself, which is different from the
Born approximation. Note that this complex phase is naturally “unwrapped.” It can be
directly used to obtain the phase velocity. We see that the Rytov approximation is a
single-scattering approximation in terms of complex phase. A local Rytov approximation
has been developed (Huang et al., 1999) to calculate wavefields, in which case the
multiple forward scattering is included.
4. Complex Phase c Due to a Plane Wave Incidence

To obtain the complex phase at depth z, we can rewrite Eq. (20) in an explicit form
c

cðx!Þ ¼ 2

p0ðx!Þ
ðL
z

k2ðz0Þdz0
ð ð

Gðx!T � x!0
T; z; z

0;oÞgðx!0
T; z

0Þ

� p0ðx!0Þd2x!0
T; ð21Þ

� �

where x! ¼ x!T; z is the receiver location and x!0 ¼ x!0

T; z
0ð Þ is the location for the

heterogeneity. In the case of an upgoing plane wave (negative vertical wave number),
incidence with ray parameter q!,
p0 x!0ð Þ
p0 x!ð Þ ¼

ffiffiffiffiffiffiffiffiffiffi
r z0ð Þ
r zð Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kz q; zð Þ
kz q; z0ð Þ

s
exp ioq

!� x!0
T � x

!
T

� �� i

ðz0
z

kz q; sð Þds
" #

; ð22Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

where q ¼ q!j j and kz q!; zð Þ ¼ o 1=c2 zð Þ � q2. We always choose a nonnegative o � 0
because of the complex conjugate symmetry p o; x!ð Þ ¼ p	 �o; x!ð Þ. Substituting Eqs. (16)
and (22) into Eq. (21) and recognizing that it represents a convolution, we can easily put
down the complex phase in the wave number domain:
ðq!; x!Þ ¼ 2ð2pÞ�2

ðL
z

dz0
ð ð

k

k2ðz0Þ
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kzðk! þo q!; z0Þkzðk! þ o q!; zÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kzðq; zÞ
kzðq; z0Þ

s

� exp

(
i

ðL
z

½kzðk!þo q
!
; z00Þ � kzðq; z00Þ�dz00 þ i k!� x!gdnÞðk!; z0Þ; ð23Þ
where k! is the horizontal wave number of the heterogeneity spectrum and dn k!; z0ð Þ is the
Fourier-Stieltjes spectral density (Yaglom, 1962). Such a spectral representation is very
technical and it seems harmless to replace dn k!; z0ð Þ by n k!; z0ð Þd2k!, where n k!; z0ð Þ is the
Fourier spectrum of the velocity perturbation field g x!T; z

0� �
in the transverse plane at

depth z0. If one wants to pursue the mathematical exactness of the Green function (16), all
wave numbers should be integrated, including both propagating (real kz) and evanescent
components (imaginary kz). However, the evanescent components are not used in our
case. For high-frequency wave propagation in random media, most scattered energy is
in forward direction within an angle that spans ~1/(ka), with a being the scale length of
the heterogeneity. The forward direction is understood as the incoming direction of the
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incident wave. If we consider high-frequency wave propagation, Eq. (23) can be
simplified as
FIG.

bound

connec

betwee
c q
!
; x
!� �

� 2pð Þ�2

ðL
0

dz0
ðð

k

k2 z0ð Þ
ikz q; z0ð Þ e

ik! � x! þi
Ð z0

0
kz k! þo q

!
;zð Þ�kz q;zð Þ½ �dz

dn k!; z0
� �

;

ð24Þ

where L is the depth of the lower boundary of the heterogeneous layer and receivers

are placed at zero depth (Fig. 1). Here we define
D k!; z0
� �

¼ 1

o

ðz0
0

kz k!þ o q
!
; z

� �
� kz q; zð Þ

h i
dz: ð25Þ
Under the forward scattering approximation (ka > 1, k is the wave number and a is the
characteristic scale length of the heterogeneity), only wave numbers around q! are
integrated. We can expand the D function [Eq. (25)] around k! ¼ 0 using the Taylor
expansion,
D k!; z0
� �

� � k!� r! q
!
; z0

� � 1

o
þ y k!; q!;o; z0

� �
þ :::: ð26Þ
r! q!; z0ð Þ is the transverse vector between the piercing points at depths 0 and z0 for a ray
incidence from below with slowness vector q!. The quadratic term of k is
y k!; q!;o; z0
� �

¼ � 1

2

I1 q; z0ð Þk2
o2

� 1

2

I2 q; z0ð Þ k! � q!ð Þ2
o2

; ð27Þ
where ð 0
I1 q; z0ð Þ ¼
z

0

c�2 zð Þ � q2
� ��1=2

dz; ð28Þ
and
0
X1

X2

Ray1 Ray2
r1(x) r2(x)

Plane waves

L

Z

X

x

1. Schematic geometry used in the theoretical derivation. The heterogeneous layer is

ed between depth 0 and L. Seismic receivers (triangles) are placed on depth zero. Ray 1

ts to station x1
! and it has the same slowness as plane wave 1. r1

!ðxÞ is the transverse distance
n ray 1 at depth x to station x1

!. Similar meaning applies to ray 2 and r2
!ðxÞ.
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I2 q; z0ð Þ ¼
ðz0
0

c�2 zð Þ � q2
� ��3=2

dz: ð29Þ
Obviously, we have I1; I2 > 0. The following replacement
k!� q!� �2

! k2q2 ð30Þ
in (27) will result in a more rapidly oscillatory eioy with respect to k. We can use the
approximated phase [Eq. (26)] with replacement of Eq. (30) in (24).

Before we proceed further, let us introduce a t function
t p; z0ð Þ ¼
ðz0
0

B z; pð Þdz; ð31Þ
where the vertical slowness at depth z is
B z; pð Þ ¼ c�2 zð Þ � p2
� �1=2

: ð32Þ
This function has all the kinematic information we want (Buland and Chapman, 1983).
For example, the horizontal distance traveled by a ray with ray parameter q from depth z0

to depth zero is t0p p¼q ¼ �@t=@p p¼q

���� . The second-order derivative of t with respect to
p contains information on the geometrical spreading of the wave front. The t function is
the Legendre transform of the travel time function. So the travel time can be easily
computed using this function. Using (30) in (27), we obtain
yðk!; q!;o; z0Þ ¼ 1

2
t0pp

����
p¼q

k2

o2
: ð33Þ
The subscript “ 0pp ” denotes second-order derivative with respect to the argument p, that
is, t0pp ¼ @2t=@p2. The derivative of y with respect to depth is
@y k!; q!;o; z0ð Þ
@z0

¼ 1

2
B0pp

k2

o2
: ð34Þ
The complex phase (24) can be expressed as
c q
!
; x
!� �

� � 2pð Þ�2

ðL
0

ia q; z0ð Þdz0
ðð
k
eioy�ik! � r! þik! � x!dn k!; z0

� �
; ð35Þ
where
a q; z0ð Þ ¼ k2 z0ð Þ
kz q; z0ð Þ : ð36Þ
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5. Coherence Function Between Two Plane Waves

Considering two plane waves with slowness vectors, q!1 and q!2, we can express the
corresponding complex phases c1 and c2 at depth zero as:
c1 ¼ c q
!
1; x

!
1

� � � � 2pð Þ�2

ðL
0

ia1 z0ð Þdz0
ðð

k
eioy1 z0ð Þ�ik!

1�r!1
z0ð Þþik!

1�x!1dn k!1; z
0� �
;

ð37Þ
and
c2 ¼ c q
!
2; x

!
2

� � � � 2pð Þ�2

ðL
0

ia2 z00ð Þdz00
ðð

k
eioy2 z00ð Þ�ik!2�r!2 z00ð Þþik!2�x!2dn k!2; z

00� �
:

ð38Þ

The symbols are
a1 z0ð Þ ¼ a q1; z
0ð Þ; a2 z00ð Þ ¼ a q2; z

00ð Þ; ð39Þ

y1 z0ð Þ ¼ y k!1; q
!
1;o; z

0� � ¼ 1

2
t0ppjp¼q1

k21
o2

; ð40Þ

y2 z00ð Þ ¼ y k!2; q
!
2;o; z

00� � ¼ 1

2
t0ppjp¼q2

k22
o2

; ð41Þ
and
r
!
1 z0ð Þ ¼ r

!
q
!
1; z

0� �
; r

!
2 z00ð Þ ¼ r

!
q
!
2; z

00� �
: ð42Þ
The coherence function between c1 and c2 is
hc1c
	
2i ¼ 2pð Þ�4

ðL
0

ðL
0

a1 z0ð Þa2 z00ð Þdz0dz00

�
ðð

k!
2

ðð
k!
1

eio y1 z0ð Þ�y2 z00ð Þ½ �þik!
2� r

!
2
z00ð Þ�x

!
2½ ��ik!

1� r
!
1
z0ð Þ�x

!
1½ �

� �
dn k!1; z

0� �
dn	 k!2; z

00� ��
; ð43Þ
where h�i is the ensemble average from multiple realizations of the random medium. For
a brief introduction on random variables and random function, and several useful
correlation functions and their spectral representations, see Appendix. It can be shown
that in the 3-D case (Tatarskii, 1971) that
�
dn k!1; z

0� �
dn	 k!2; z

00� �� ¼ 2pð Þ2W k!1; z
0; z00

� �
d k!1 � k!2
� �

d2k!1 d2k!2: ð44Þ
2

In the 2-D case, we need replace 2pð Þ by 2p at the right-hand side of Eq. (44). In view of
the simple substitution of dn by nd2k! in Section 4, we see that W k!1; z

0; z00
� �

is the



30 ZHENG AND WU
correlation function of the two spectral fields n k!1; z
0� �
and n k!1; z

00� �
at depths z0 and z00,

respectively. Applying the coordinate transformation
� ¼ z0 � z00; x ¼ z0 þ z00

2
ð45Þ
in (43) and if the correlation function of the heterogeneity is slowly varying with depth,
we can approximate W as
W k
!
; z0; z00

� �
� W x; k

!
; �

� �
: ð46Þ
Equation (43) can be simplified as
hc1c
	
2i ¼ 2pð Þ�2

ðL
0

ðL
0

a1 xþ �

2

� �
a2 x� �

2

� �
dx d�

�
ðð
k!
eio½y1ðxþ

�
2
Þ�y2ðx��

2
Þ�þi k! �½r!2ðx��

2
Þ�x!

2
��i k! �½r!1ðxþ�

2
Þ�x!

1
�Wðx; k!; �Þd2 k!

ð47Þ

Because the correlation function W decreases rapidly with the vertical separation dis-
tance �j j, we can extend the integration limit of � from �1 to þ1 without introducing
much error. We also make following approximations:
a1 xþ �

2

� �
� a1 xð Þ; a2 x� �

2

� �
� a2 xð Þ; ð48Þ

r
!
1 xþ �

2

� �
� r

!
1 xð Þ; r

!
2 x� �

2

� �
� r

!
2 xð Þ: ð49Þ
Using Eqs. (48) and (49) in (47), we obtain
hc1c
	
2i ¼ ð2pÞ�2

ðL
0

dx
ðþ1

�1
a1ðxÞa2ðxÞd�

�
ðð

k!
eio½y1ðxþð�=2ÞÞ�y2ðx�ð�=2ÞÞ�þik! �½r!2ðxÞ�x!

2
��i k! �½r!1ðxÞ�x!

1
�Wðx; k!; �Þd2 k! :

ð50Þ

The integral value (50) is nonnegligible only when �j j is small, so we can have the
following expansion
y1 xþ �

2

� �
� y2 x� �

2

� �
� y1 xð Þ � y2 xð Þ þ y�1 þ y�2

2
�; ð51Þ
where � �

y�1 ¼ @y1 zð Þ

@z

���
z¼x

; y�2 ¼ @y2 zð Þ
@z

���
z¼x

: ð52Þ
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Taking into account Eq. (51), Eq. (50) can be written as
hc
hc1c
	
2i ¼ 2pð Þ�2

ðL
0

a1 xð Þa2 xð Þdx
ðð

k!
d2 k! eio y1 xð Þ�y2 xð Þ½ �þik!� r

!
2 xð Þ�x

!
2½ ��i k! r

!
1 xð Þ�x

!
1½ �

�
ðþ1

�1
d�ei o=2ð Þ y�1þy�2ð Þ�W x; k!; �

� �
: ð53Þ
The depth-dependent power spectrum P and correlation functionW are Fourier transform
pairs, which can be shown as
W x; k!; �
� �

¼ 1

2p

ðþ1

�1
P x; k!; kz
� �

eikz�dkz: ð54Þ
Combination of Eqs. (53) and (54) yields
1c
	
2i � ð2pÞ�2

ðL
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dxa1ðxÞa2ðxÞ
ððð
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ð55Þ
We can also derive
hc1c2i � � 2pð Þ�2

ðL
0

dxa1 xð Þa2 xð Þ
ððð

k!
d2 k! eik

! � r
!
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3
5: ð56Þ
The Log amplitude u and phase f can be expressed by the complex phase
u ¼ cþ c	

2
and f ¼ c� c	

2i
: ð57Þ
Using this relation to the two plane waves, 1 and 2, we have log A coherence function
hu1u2i ¼ 1

2
Rehc1c

	
2i þ

1

2
Rehc1c2i; ð58Þ
and the phase coherence function
hf1f2i ¼
1

2
Rehc1c

	
2i �

1

2
Rehc1c2i: ð59Þ
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We can also form the logA-phase coherence function
hu1f2i ¼
1

2
Imhc1c2i �

1

2
Imhc1c

	
2i: ð60Þ

q!, the two plane waves coming from same direction, we obtain TCFs and they
If q!1 ¼ 2

depend only on the spatial lag x!1 � x!2. Note that these waves are not necessarily vertical
incidences as in the Chernov theory. If x!1 ¼ x!2, the ACFs are obtained for plane waves,
q!1 and q!2. Because the background velocity profile is depth dependent, these ACFs
depend on q!1 and q!2 independently, not necessarily the difference q!1 � q!2. The most
general case is JTACF, x!1 6¼ x!2; q

!
1 6¼ q!2.

For 3-D isotropic heterogeneous media, the coherence functions can be simplified
using the following identity (Abramowitz and Stegun, 1965)
2pJ0 kRð Þ ¼
ð2p
0

e�ikRcosada; ð61Þ
where J0 is the 0th order Bessel function. Therefore, we arrive at
hc1c
	
2i � 2pð Þ�1

ðL
0

dxa1 xð Þa2 xð Þ �
ð1
0

kdkJ0 kR xð Þ½ �eio y1 xð Þ�y2 xð Þ½ �

� P x; k;
o _y1 þ _y2
� �

2

2
4

3
5; ð62Þ

! ! ! !� �

where R xð Þ ¼ r2 xð Þ � x2 � r1 xð Þ þ x1

� � has an obvious meaning, the transverse distance
between two rays at depth x, with slownesses q!1 and q!2, respectively (see Fig. 1).
Likewise,
hc1c2i � � 2pð Þ�1

ðL
0

dxa1 xð Þa2 xð Þ �
ð1
0
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2
4

3
5: ð63Þ
For 2-D case, Eqs. (55) and (56) are
hc1c
	
2i � 2pð Þ�1
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dxa1 xð Þa2 xð Þ
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k
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5; ð64Þ
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dxa1 xð Þa2 xð Þ
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k
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3
5: ð65Þ
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6. Coherence Functions Using Delta-Correlated Assumption

The delta-correlated assumption between two depths is often invoked to simplify
computation for wave propagation in stochastic media (Tatarskii, 1971; Ishimaru, 1978;
Wu and Flatté, 1990)
hu1u2
�
dn k!1; z

0� �
dn	 k!2; z

00� �� ¼ 2pð ÞmW k!1; z
0; z00

� �
d k!1 � k!2
� �

d z0 � z00ð Þdk!1dk!2; ð66Þ
in which m ¼ 1 for 2-D case and m ¼ 2 for 3-D case. Under this assumption, the vertical
wave number of the power spectrum P is zero, thus Eqs. (55) and (56) reduce to
hc1c
	
2i � ð2pÞ�2

ðL
0

dxa1ðxÞa2ðxÞ
ðð

k!
d2 k! eik½r2ðxÞ�x2��ik½r1ðxÞ�x1�

� eio½y1ðxÞ�y2ðxÞ�Pðx; k!; 0Þ; ð67Þ
and
hc1c2i � � ð2pÞ�2

ðL
0

dxa1ðxÞa2ðxÞ
ðð

k!
d2 k! eik½r2ðxÞ�x2��ik½r1ðxÞ�x1�

� eio½y1ðxÞþy2ðxÞ�Pðx; k!; 0Þ: ð68Þ
Various coherence functions according to Eqs. (58)–(60) can be formed as the following:
i � ð2pÞ�2

ðL
0

dxa1ðxÞa2ðxÞ

�
ðð

k!
ei k

! �½r!2ðxÞ�x
!
2
��ik! �½r!1ðxÞ�x

!
1
� sin½oy1ðxÞ� sin½oy2ðxÞ�Pðx; k!; 0Þd2 k!;

ð69Þ

hf1f2i � ð2pÞ�2
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ðð

k!
ei k
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ðxÞ�x!

2
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ðxÞ�x!
1
� cos½oy1ðxÞ�cos½oy2ðxÞ�Pðx; k!; 0Þd2 k!;

ð70Þ

hu1f2i � � ð2pÞ�2

ðL
0

dxa1ðxÞa2ðxÞ

�
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k!
eik

! �½r!2
ðxÞ�x

!
2
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ðxÞ�x
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1
� sin½oy1ðxÞ�cos½oy2ðxÞ�Pðx; k!; 0Þd2 k! :
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Using identity (61), we can explicitly obtain three types of coherence functions in 3-D:
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2i � ð2pÞ�1

ðL
0

dxa1ðxÞa2ðxÞ
ð1
0

J0½kRðxÞ�sin½oy1ðxÞ�sin½oy2ðxÞ�Pðx; k!; 0Þkdk
ð72Þ

2i � ð2pÞ�1

ðL
0

dxa1ðxÞa2ðxÞ
ð1
0

J0½kRðxÞ�cos½oy1ðxÞ�cos½oy2ðxÞ�Pðx; k!; 0Þkdk
ð73Þ

i � �ð2pÞ�1

ðL
0

dxa1ðxÞa2ðxÞ
ð1
0

J0½kRðxÞ�sin½oy1ðxÞ�cos½oy2ðxÞ�Pðx; k!; 0Þkdk:
ð74Þ
7. Coherence Functions in a Constant Background Medium

To compare our results with those in Wu and Flatté (1990), we assume that the
background velocity model is homogeneous and the incident angle is small. Under these
conditions, the t function can be approximated as
t x; pð Þ ¼
ðx
0

c�2 � p2
� �1=2

dz � c�1 1� 1

2
p2c2

� �
x: ð75Þ
Phase functions y1 and y2 can be explicitly solved
oy1 ¼ � 1

2
cx

k2

o
¼ � x

2k
k2: ð76Þ
The amplitudes can be approximated as
a1 xð Þa2 xð Þ � k2: ð77Þ

Substituting Eqs. (75)–(77) into Eqs. (72)–(74), the generalized results in this chapter
reduce to those contained in Wu and Flatté (1990) for a homogeneous background
medium.
8. Numerical Examples

To demonstrate the validity of the theory proposed in this chapter, we compared the
coherence functions from numerical simulations and theoretical predictions. We con-
structed a 2-D random model (Fig. 2a) with a background velocity profile same as the
iasp91 model (Fig. 2b; Kennett and Engdahl, 1991). Two random layers are super-
imposed on the background model. The top layer is from 0 to 120 km in depth and it
has a Gussian correlation function with correlation length 10 km in both horizontal and
vertical directions, and rms 1% of the background velocity for those random velocity
perturbations. The bottom layer extending from 120 to 310 km depth also has a Gaussian
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background velocity model (solid line) and a vertical velocity profile (dash line) at location X ¼
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correlation function with correlation length 20 km in both directions and rms 1% of the
background velocity. For both layers, we constrain the velocity perturbations not
exceeding �3% of the background velocity. Below 310 km depth, the medium is
homogeneous and has no random perturbations and the velocity is same as the one at
the 310 km depth. We used a full-wave finite difference code (Xie, 1988) to simulate the
acoustic plane wave propagation in the random medium. The spectral amplitude and
phase fluctuations at a given frequency are extracted from the waveforms recorded at the
surface (Zheng and Wu, 2005). Then coherence functions are formed using those
fluctuations and averaged over an ensemble of 100 different stochastic model realiza-
tions. The logA (Fig. 3) and phase (Fig. 4) coherence functions at 0.5 Hz from the
numerical simulations are well predicted by our formula for four different incidence
geometries between two plane waves. The incidence angle is measured at the surface for
consistency. The logA coherence functions in Fig. 3 are sensitive to the angular separa-
tion between two incident plane waves. However, phase coherence functions are rela-
tively simple (Fig. 4) in shape. Another salient feature is that the maximum amplitude of
the coherence function (for both logA and phase) is decreasing with increasing angular
separation between the two plane waves, which is expected. It is also interesting to notice
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that there are several velocity discontinuities in the iasp91 background model and this
seems to pose difficulty to using the WKBJ Green’s function as discontinuities can
produce reflected waves. However, because we are using plane wave incidence, those
discontinuities affect all receivers in a similar fashion and such effect is removed during
coherence function formation.
9. Validity of the Delta-Correlated Assumption

In Section 6, we see that the delta-correlated assumption significantly simplifies the
mathematical derivation of the coherence functions. This assumption is equivalent to
certain conditions under which the result of the coherence function is same to that
obtained as if the medium is delta-correlated along the depth direction. The condition
is easily found to be k2�=2k 
 1 in view of Eqs. (53) and (76) for a homogeneous
background medium. We assume that L is the smallest correlation length at which
W x; k!; �ð Þ is only slightly different from zero. We also assume that P x; kð Þ~0 if
k > km ¼ 2p=‘0, with ‘0 being the inner scale of the random medium. Therefore, if
condition lL 
 ‘0 is satisfied, the delta-correlated assumption will hold. Here l is the
wavelength. Of course, we generally further require ‘0 < L. To assess the error
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introduced by this assumption, we need numerical verification for a given randommodel.
For a homogeneous background medium, Zheng et al. (2007) numerically found that
the delta-correlated assumption will cause little error if the layer thickness of the
random medium is large for short wave propagation. Using the model presented in
Fig. 2, we computed coherence functions with (Section 6) and without (Section 5) the
delta-correlated assumption and we found the results are basically the same. The delta-
correlated assumption will not significantly simplify the coherence function calculation.
However, it does provide convenience for us to invert for the depth-dependent random
spectrum. With the delta-correlated assumption, we can specify the unknowns easily
without concerning the vertical wave number in the spectrum P.
10. Discussions and Conclusions

Theory of the coherence function for both log A and phase in a depth-dependent
background velocity model is important to draw correct inference on the randommedium
property. In the past, coherence functions have been theorized in the context of using a
constant background medium, thus a simple Green’s function. In this chapter, the natural
spectral representation of the Green’s function in the wave number domain allows us to
extend the previous theory to a scenario where the backgroundmedium is depth-dependent.
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The agreement between the numerical simulation and the theoretical prediction shows
the correctness of the theory and the potential to apply the theory to real seismic data. We
formulated the coherence function both in 3-D case and in 2-D case, with and without the
delta-correlated assumption. The delta-correlation does not lead to discernable differ-
ences for the model we used to do the simulation. However, with the delta-correlated
assumption, the parameterization for the inverse problem can be easier.
The previous theory on the coherence function C for the log A or for the phase depends

on the spatial lag between stations, and the angle separation between the two plane
waves, C ¼ C x

!
2 � x

!
1; q

!
2 � q

!
1

� �
. However, this is valid only when the slowness vectors

of the two plane waves are close, that is q
!
1 � q

!
2. This condition cannot always be true

and it also limits the depth resolution of the coherence function, resulting the spectral
smearing along the depth direction. Our current theory is capable of dealing with much
larger angular separation between the two plane waves and the mathematical formulation
for the coherence function depends on q

!
1 and q

!
2 individually, and it takes a function form

of C ¼ C x
!
2 � x

!
1; q

!
2; q

!
1

� �
.
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Appendix: Random Variables, Random Functions

The concept of random variables (RVs) occupied a central role in stochastic analysis.
Excellent books on this topic are by Papoulis (1965) and Yaglom (1962). Here we give a
brief overview of this concept. In probability theory, the outcomes of experiments
conducted under identical condition form a set, denoted by O ¼ z1; z2; � � �f g. O0 can be
denumerable or not. If we associate each event zi a numerical value v zið Þ, the statistic like
the mean hv zið Þi and the variance can be computed. The values of v can be either discrete
or continuous. Quite often, people have suppressed the explicit dependence of v on the
experiment and its possible outcomes zi 0s. This simplified notation frequently caused
confusion. A random function is just a collection of RVs typically varying with time or
location, f x

!� �
. If we choose one element from the event set O at each location x

!
, we

obtain a realization. We can produce many realizations and calculate the statistic (most
interestingly the coherence function to us) using the ensemble average.
The spectral theory of the random field involves stochastic Fourier–Stieltjes integral

theory to overcome some theoretical problems, like the absolute integrability of the
random functions. In practice, this is not a serious problem if we assume that the random
medium has spatial periodicity. Usually the correlation function is used to characterize a
random medium. We assume that the mean of the ensemble is zero. If the mean is not
vanishing, we can first subtract the mean. The correlation function B r

!
1; r

!
2

� �
is defined as
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B r
!
1 � r

!
2

� � ¼ h f r
!
1

� �
f r

!
2

� �i. Symbol h�i is used to denote the ensemble average. By
stationary random medium we mean that the statistic does not change by a translation d

!
,

for example, Bðr!1; r!2Þ ¼ Bðr!1 þ d
!
; r
!
2 þ d

!Þ. If the correlation function only depends on
the Euclid distance between r

!
1 and r

!
2, the medium is called isotropic, that is,

B r
!
1; r

!
2

� � ¼ Bðjx!1 � x
!
2jÞ. To obtain the isotropic spectrum P kð Þ, we use a Fourier

transform of the correlation function, that is, P kð Þ ¼ Ð
B rð Þe�ikrdr. In numerical studies,

it is practical to produce realizations of random media of certain correlation function and
this can be done in the spectral domain (Shapiro and Kneib, 1993). We first assign the
spectral amplitude at each wave number then generate random phases in range �p; p½ �.
Of course, the complex conjugate symmetry has to be used if a real random medium
is desired. We list two most common correlation functions and their spectra. The
Gaussian correlation function reads B rð Þ ¼ e2exp �r2=r20

� �
. e2 is the perturbation

strength and r0 is the correlation length. Its Fourier transform in N dimension is
P kð Þ ¼ e2rN0 p

N=2exp �k2r20=4
� �

. The exponential correlation function can be expressed
as B rð Þ ¼ e2e� r=r0j j. Its Fourier transforms are P kð Þ ¼ 2e2r0= 1þ k2r20

� �
in the 1-D case

and P kð Þ ¼ 8p3e2r30= 1þ k2r20
� �2

in 3-D case. These results can be easily generalized to
anisotropic cases, in which the correlation lengths in different directions (with correla-
tion lengths, r0x; r0y, and r0z, in x, y, and z directions, respectively) can be different,
r0x 6¼ r0y 6¼ r0z. The simplest way is to do the following replacement, k2 � k2x þ k2y þ k2z ;
r20 � r0xr0y in 2-D and r30 � r0xr0yr0z in 3-D case.
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SYNTHESIS OF VECTOR-WAVE ENVELOPES
IN RANDOM ELASTIC MEDIA ON THE BASIS

OF THE MARKOV APPROXIMATION

Haruo Sato1 and Michael Korn
Abstract

High-frequency seismograms of earthquakes are complex mainly caused by scattering due to the

lithospheric inhomogeneity. Disregarding phase information, seismologists have often focused on

the characteristics of seismogram envelopes. The delay time of the maximum amplitude arrival

from the onset and the apparent duration time are good measures of scattering caused by random

velocity inhomogeneities. There is a stochastic method to directly simulate wave envelopes in

random media. The Markov approximation for the parabolic equation is known to be powerful for

the direct synthesis of scalar wave envelopes when the wavelength is shorter than the correlation

length of random media. It leads to the master equation for the two-frequency mutual coherence

function (TFMCF) of waves, of which the Fourier transform gives the time trace of the wave

intensity. It well predicts the peak delay and the broadening of wave envelopes with increasing

travel distance for an impulsive source. In this chapter, we extend this approximation to vector

waves in random elastic media. When the medium inhomogeneity is weak and the wavelength is

shorter than the correlation distance, P- and S-waves can be separately treated by using potentials

since conversion scattering between them is weak. Applying the Markov approximation to the

TFMCF of potential field, we are able to synthesize vector-wave envelopes. Vector-wave envel-

opes are analytically derived for plane wavelet incidence onto random media and for wavelet

radiation from a point source in random media characterized by a Gaussian autocorrelation

function. For P-waves, this approximation predicts not only the peak delay and envelope broaden-

ing in the longitudinal component but also the excitation of wave amplitude in the transverse

component due to ray bending. The ratio of the mean square (MS) fractional velocity fluctuation to

the correlation distance e2=a is the key parameter characterizing these vector-wave envelopes. The

relation between the time integral of the transverse-component MS amplitude against travel

distance gives this ratio. S-wave envelopes can be synthesized with an analogous mathematical

approach. For the same randomness, the envelope broadening of S-wavelet is larger than that of

P-wavelet by a factor of the ratio of their wave velocities. The validity of the direct envelope

synthesis with the Markov approximation is confirmed by a comparison with vector-wave envel-

opes calculated from finite difference simulations in two dimensions. The direct syntheses of

vector-wave envelopes developed here could serve for the mathematical interpretation of observed

seismograms in terms of lithospheric inhomogeneity.
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1. Introduction

1.1. Markov Approximation for the Wave Envelope Synthesis

Recorded seismograms of earthquakes are complex reflecting the lithospheric inho-
mogeneity. Various types of inversion methods have been developed for the quantitative
description of the lithospheric structure such as ray-based velocity tomography using
first arrival-time readings, reflection survey using array records from artificial explosion
sources, and receiver function analysis using PS conversion phases of teleseismic waves
at velocity boundaries. The target of these methods is to deterministically estimate
the inhomogeneous structure. There are different approaches to describe the lithospheric
inhomogeneity statistically. Envelope analysis is known as one of the best methods for
that purpose. It is useful for the analysis of complex seismograms especially at frequen-
cies above 1 Hz. Disregarding complex phases and focusing on stable envelopes of band-
pass filtered traces, we are able to estimate statistically the spectral structure of random
inhomogeneity of the lithosphere. There have been rapid developments in the envelope
synthesis in random media since the pioneering work on the coda envelope modeling by
Aki (1969) [see a review by Sato and Fehler (1998)].
Analyzing S seismograms of microearthquakes in Japan at frequencies higher than

1 Hz, Sato (1989) found that the envelope width and the peak arrival delay from the onset
increase as the travel distance increases. He interpreted this phenomena caused by
scattering due to distributed velocity inhomogeneities. If the wavelength is much shorter
than the characteristic scale of medium inhomogeneity, we may use the parabolic
approximation to solve the wave equation, which means the dominance of scattering in
a small cone around the forward direction. There is a simple deterministic way known as
the phase screen method to solve the parabolic wave equation (e.g., Jensen et al., 1994).
The Markov approximation is a stochastic extension of the phase screen method for the
direct synthesis of wave envelopes in random media. It derives the stochastic master
equation for the two-frequency mutual coherence function (TFMCF), of which the
Fourier transform gives the mean square (MS) of band-pass filtered trace. There were
simulations of MS envelopes of scalar waves for specific cases (e.g., Shishov, 1974;
Sreenivasiah et al., 1976). This approximation successfully derives broadened envelopes
with travel distance increasing: the characteristic time of envelope is proportional to the
product of the MS fractional fluctuation of velocity and the square of travel distance over
the correlation distance and the average velocity for the case of Gaussian autocorrelation
function (ACF).
Sato (1989) used the solution of the Markov approximation for explaining the peak

delay and the envelope broadening of observed S-seismograms of regional earthquakes.
Since then, there have been attempts to derive envelopes in random media characterized
by a von Kármán-type ACF for representing more realistic inhomogeneity (e.g., Lambert
and Rickett, 1999; Saito et al., 2002). The validity of the Markov approximation was
confirmed by a comparison with numerically simulated scalar wave envelopes in 2-D
random media (Fehler et al., 2000). Using the Markov approximation as a propagator in
the radiative transfer theory (RTT), Saito et al. (2003) and Sato et al. (2004) proposed
models explaining not only the early envelope but also the whole envelope from the onset
to coda for the case of von Kármán-type random media in two dimensions (Sato and
Fehler, 2007).
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1.2. Analyses of Seismogram Envelopes

1.2.1. Regional and Local Earthquake Seismograms

Applying theMarkov approximation solution for the Gaussian ACF to the travel distance
dependence of the peak delay and envelope width of band-pass filtered S-seismograms
of local small earthquakes in Kanto, Japan in the frequency range from 2 to 16 Hz,
Scherbaum and Sato (1991) simultaneously estimated attenuation factor and the ratio
e2=a � 0:00054 km�1. Using the first-order RTT with the Born scattering amplitudes to
coda excitation and scattering attenuationofS-waves, Sato (1984) estimated the lithospheric
inhomogeneity as e2 ¼ 0:01 and a ¼ 2 km for an exponential ACF. The inhomogeneity
estimated from coda is larger than that estimated from envelope broadening.
Analyzing the frequency dependence of S-seismogram envelopes of microearthquakes

observed in northern Honshu, Japan, Saito et al. (2002) found that a von Kármán-type ACF
having rich short-wavelength spectrum is preferable to a Gaussian ACF. Gusev and
Abubakirov (1996) studied how nonisotropic scattering affects the envelope based on the
RTT. Petukhin and Gusev (2003) averaged seismogram envelopes of small earthquakes
recorded in Kamchatka and compared the shapes with those calculated for various types of
random media. They concluded that random media whose short-wavelength inhomogene-
ity power spectrum decreases as wave number to the power of –3.5 to –4 are appropriate.
Obara and Sato (1995) found regional differences of S-wave envelope characteristics

of microearthquakes observed in Kanto and Tokai, Japan, where the Pacific plate
subducts from east to west beneath the Japan arc and the volcanic front runs from
north to south: peak delay from the onset and envelope broadening are weak and
frequency independent in the fore-arc side of the volcanic front; however, they are
large and frequency dependent in the back-arc side. Precisely examining S-wave seis-
mograms in northern Japan, Takahashi et al. (2007) recently found that the peak delay
depends on the ray path: peak delays observed in the back-arc side of the volcanic front
are larger for rays that propagate beneath Quaternary volcanoes; however, peak delays
for rays that propagate between them are as short as those observed in the fore-arc side
(see Fig. 1). These observations suggest that the structure beneath Quaternary volcanoes
is characterized not only by low velocity and large intrinsic absorption revealed from
tomography analysis but also by strong inhomogeneity.

1.2.2. Teleseismic Waves

Aki (1973) first focused on the correlation between the log-amplitude and phase of
teleseismic P-waves for measuring the lithospheric inhomogeneity. Applying the theo-
retical correlation predicted from the parabolic equation solution to array records of
teleseismic P-waves of 0.6 Hz at LASA, Montana, arriving from near vertical incidence,
he estimated a ¼ 10 km and e2 ¼ 0:0016 with thickness 60 km. Analyzing travel-time
fluctuations of teleseismic P-waves of dominant frequency near 1 Hz observed in southern
California, Powell andMeltzer (1984) inferred that a¼ 25 kmwith e2 ¼ 0:001 to depths of
at least 119 km. Analyzing array data obtained at NORSAR by using angular correlation
functions, Flatté and Wu (1988) suggested that the von Kármán type ACF is more
appropriate than the Gaussian ACF. They proposed a model for lithospheric and astheno-
spheric inhomogeneities that consists of two overlapping layers, where small-scale inho-
mogeneities dominate near the surface compared with the deeper portions.
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Examining the long propagation distance P-wave signals from an explosion recorded
at the NORSAR array, McLaughlin and Anderson (1987) found that 5 Hz band signals
arrive later than those in the 1 Hz band. Analyzing differences in frequency-dependent
intensities of the mean wave and the fluctuation part of teleseismic P-waves observed in
Massif Central, France, Ritter et al. (1998) explained observed wave field fluctuations in
the frequency range 0.3-3 Hz by scattering of the teleseismic P-wave front at elastic
inhomogeneities in the lithosphere: 70 km in thickness with e2 � 0:0009� 0:005 and
a � 1� 16 km.
Analyzing teleseismic P records in the world by using the extended energy flux model

(Korn, 1990), Korn (1993) found relatively weak scattering on stable continental areas
and strong scattering at plate boundaries. Applying the energy-flux model and the
teleseismic fluctuation wave field method to interpret the teleseismic P coda observed
in northern and central Europe, Hock et al. (2004) estimated lithospheric heterogeneity
beneath the receivers. Figure 2 shows the geographical locations of the studied
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geological subregions and obtained values of scattering attenuation. It appears that there
are clear differences in scattering attenuation between regions both in size and in
frequency dependence, reflecting a spatial variation of the scattering properties of the
lithosphere on regional scales. The largest scattering Q�1 was found in the northern
German basin (NB) (0.01 at the peak frequency about 1 Hz) and the smallest scattering
Q�1 in the Baltic shield (BS) (0.0022 at the peak frequency about 4 Hz). In most cases, an
exponential ACF as well as a Gaussian ACF fit the data equally well except for the
Frankonian Jura (FJ) where only a Gaussian ACF can fit the Q�1 values. For the
frequency range from 0.5 to 5 Hz, a of 1–7 km and e2 � 0:0009� 0:005 are obtained.

Nishimura et al. (2002) analyzed the transverse amplitude of teleseismic P-wave to
evaluate lateral heterogeneity in the lithosphere in western Pacific region and showed
that strong inhomogeneity is present in and around the tectonically active regions.
Figure 3a shows stacked envelopes of teleseismic P-waves registered at station PMG
of IRIS as an example. Kubanza et al. (2006) systematically characterize the medium
inhomogeneity of the lithosphere by analyzing the relative partition of energy to the
transverse component of teleseismic P-waves in short periods from 0.5 Hz to 4 Hz. They
found significant regional differences in lateral heterogeneity of the lithosphere as shown
in Fig. 3b, where small transverse amplitudes are observed at stations on stable con-
tinents, whereas seismically active regions such as island arcs or collision zones are
indicated by large transverse amplitudes. These spatial changes are consistent with the
tectonic settings of each station; however, large transverse amplitudes are also observed
in regions of very low seismicity, as well as at regions where no seismic activity is
recognized, which may indicate the existence of medium heterogeneity in the lithosphere
that has been formed in ancient times.
Envelopes simulated by using the RTT with the Born scattering amplitudes were used in

the analyses of precursors of PKP by Margerin and Nolet (2003) They suggested that the
whole mantle scattering may be significant even though e2 is as small as 10�6 � 6� 10�6,
contrary to previous suggestions thatmantle scattering occurs primarily in the vicinity of the
D00 layer. Analyzing stacked envelopes of teleseismic P-waves and subsequent modeling
using a Monte Carlo simulation, Shearer and Earle (2004) pointed out the importance
of scattering due to lowermantle inhomogeneity (e2 � 3� 10�5 and a¼ 8 km) even though
it is smaller than that in the upper mantle (e2 � 0:001 and a¼ 4 km).

Table 1 enumerates statistical parameters of the lithospheric inhomogeneity reported
in the world; however, there are large differences between different measurements.
1.3. Objectives

Seismogram envelopes of both regional and distant earthquakes have been extensively
analyzed for the study of lithospheric inhomogeneity. Recent observations show the
importance of envelope analysis of vector component seismograms; however, there have
been few theoretical approaches for the simulation of vector-wave envelopes. The
Markov approximation has been known as a powerful stochastic method to directly
simulate wave envelopes in random media. Although it is only applicable to envelopes
around the direct phase for the short-wavelength case, it has an advantage over RTT:
numerical calculations are easy since the master equation is parabolic, and there are
analytic solutions for some specific cases. But most of synthetic methods were not for
vector waves but for scalar waves.
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In this chapter, summarizing our recent works (Korn and Sato, 2005; Sato, 2006, 2007;
Sato and Korn, 2007), we introduce mathematical formulation of vector-wave envelope
synthesis based on the Markov approximation for the case that random media are
characterized by a Gaussian ACF. Wave propagation characteristics are case sensitive;
therefore, we first introduce the formulation for the plane wavelet incidence to random
media in Section 2, and then that for the wavelet radiation from a point source in random
media in Section 3. The validity of this approximation is confirmed by through compari-
son with finite difference (FD) numerical simulations in 2-D case. In Section 4, we
discuss a comparison with the RTT employing the Born approximation scattering
coefficients, a possible extension to random media having more realistic ACFs, and
possible developments in the future. In Section 5, we summarize the findings.



TABLE 1. Statistical parameters of the lithospheric random inhomogeneity measured in the world

Area Thickness [km] e2 að km�1Þ e2/a (km�1) f (Hz) Model (Reference)

Average – 0.01 2 0.005 1–20 RTTþBorn approximation for local S

coda (Sato, 1984)

Kanto, Japan – – – 0.00054 2–16 Markov approximation for local S

envelope (Scherbaum and Sato, 1991)

Tohoku, Japan – – – e2:2=a ¼ 0.00027 2–32 Markov approximation (von Kármán

type k¼0.6) for local S envelope

(Saito et al., 2002)
Montana, USA 60 0.0016 10 0.00016 0.6 Amplitude phase correlation for

teleseismic P (Aki, 1973)

California, USA 119 0.001 25 0.00004 1 Amplitude phase correlation of

teleseismic P (Powell and Meltzer,

1984)

Massif C., France 70 0.0009–0.005 1–16 – 0.3–3 Amplitude fluctuation of teleseismic P

(Ritter et al., 1998)
Europe – 0.0009–0.005 1–7 – 0.5–5 Energy flux model for teleseismic P

(Hock et al., 2004)
Average 100 – – 0.0002–0.0008 0.5–4 Markov approximation for the ratio of

transverse amplitude of teleseismic P

(Kubanza et al., 2007)
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2. Vector-Wave Envelopes for the Plane Wavelet Incidence

2.1. Three-Dimensional Random Elastic Media

We first introduce the vector-wave envelope synthesis for the incidence of a plane
wavelet to random media in three dimensions on the basis of the Markov approximation
(Sato, 2006).

2.1.1. Wave Equations for Potentials in Inhomogeneous Media

In a locally isotropic inhomogeneous elastic medium displacement vector u is gov-
erned by
rüi ¼ lul;l
� �

;i
þ m ui; j þ uj;i

� �� �
j
; ð1Þ
where r xð Þ, l xð Þ, and m xð Þ are mass density and Lamé elastic coefficients. When these
parameters have small fluctuations around their average values and the wavelength is
much smaller than the characteristic scale a of medium inhomogeneity, we may neglect
all the spatial derivatives of the medium parameters. The displacement vector is written
as u ¼ ▽fþ▽� B by using scalar potential f and vector potential B. Since there is
little conversion scattering between P- and S-wave modes in this case, each potential is
independently governed by a wave equation:
Df� 1

a xð Þ2 f
.. ¼ 0 and DB� 1

b xð Þ2 B
.. ¼ 0; ð2Þ
where a xð Þ and b xð Þ are P- and S-wave velocities, respectively.

2.1.2. Plane P-Wavelet

We imagine a 3-D elastic medium that is divided into two regions: the P-wave velocity
is constant a ¼ V0 for z < 0 and a xð Þ ¼ V0 1þ x xð Þð Þ for z > 0, where x xð Þ is a frac-
tional fluctuation around the average velocity V0. We study the vertical incidence of a
plane P-wavelet from the homogeneous medium to the inhomogeneous medium, where
the amplitude of the incident wavelet is uniform in the transverse plane (x� y plane),
orthogonal to the ray direction in the z-axis as schematically illustrated in Fig. 4.

When the fractional fluctuation is small ( xj j << 1), the wave equation for the scalar
potential is written as
Df� 1

V0
2
f
..þ 2

V0
2
x xð Þf.. ¼ 0: ð3Þ
Scalar potential is written as
f x⊥; z; tð Þ ¼ 1

2p

ð1
�1

doeik0z�iot U x⊥; z;oð Þ
ik0

; ð4Þ
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where o is angular frequency, k0 ¼ o=V0 is wave number, and x⊥ ¼ x; yð Þ is transverse
coordinate. Since the variation of U for an increment in the z-direction is small because
ak0 � 1, field U is governed by the parabolic wave equation:
2ik0@zU þ D⊥U � 2k20x xð ÞU ¼ 0; ð5Þ
where D⊥ � @2
x þ @2

y is a transverse Laplacian. Waves just after the direct arrival are
mostly composed of waves scattered in a small angle around the forward direction, which
are well described by the parabolic wave equation.

2.1.3. Ensemble of Random Media

Wefirst imagine anensemble of randommedia x xð Þf g,where small fractional fluctuation
x xð Þ is assumed to be a statistically random function of space coordinate x, and hx xð Þi ¼ 0,
where angular brackets mean the average over the ensemble. The statistical measure of
randomness is quantitatively described by ACF, R xð Þ � hx x0ð Þx x0 þ xð Þi, which is char-
acterized by a correlation distance a and an MS fractional fluctuation e2 � hR x ¼ 0ð Þi.
The randomness is supposed to be statistically homogeneous and isotropic, which means
that ACF is a function of lag distance xj j only.

2.1.4. Stochastic Master Equation for the TFMCF

We define the TFMCF as correlation of U between two different locations on the
transverse plane at distance z and two angular frequencies (e.g., Ishimaru, 1978),
G2 x⊥c; x⊥d; z;oc;odð Þ � U x0⊥; z;o
0� �
U x00⊥; z;o

00� ��� �
; ð6Þ
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where x⊥c ¼ x0⊥ þ x00⊥
� �

=2 and x⊥d ¼ x0⊥ � x00⊥ are center of mass and difference trans-
verse coordinates, and oc ¼ o0 þ o00ð Þ=2 and od ¼ o0 � o00 are center and difference
angular frequencies, respectively. For the incidence of a plane wavelet to the z-direction,
we may expect that waves have statistically uniform amplitude in the transverse plane
since the randomness is homogeneous. That is, TFMCF is independent of x⊥c and
becomes a function of r⊥d � x⊥dj j only because of isotropy. In the following text, x⊥c

is dropped from the arguments of TFMCF.
If the phase fluctuation for an increment a is small, there exists an intermediate scale of

increment Dz, which is larger than a but smaller than the scale of variation of U. Using
causality and neglecting backscattering, we can derive the master equation for the
TFMCF. For the case of quasi-monochromatic waves odj j << jocj, the stochastic master
equation for TFMCF is given by
@zG2 þ i
kd
2k2c

D⊥dG2 þ k2c A 0ð Þ � A r⊥dð Þ½ 	G2 þ k2d
2
A 0ð ÞG2 ¼ 0; ð7Þ
where kc ¼ oc=V0 and kd ¼ od=V0. The third and fourth terms represent the interaction
with the medium inhomogeneity. Function A is the longitudinal integral of ACF along
the z-axis:
A r⊥ð Þ �
ð1
�1

dzR x⊥; zð Þ; ð8Þ
where r⊥ � jx⊥j. At a long travel distance, the dominant contribution of incoherent
diffracted waves is strongly controlled by A at a short offset in the transverse plane,
r⊥d 
 a (see Lee and Jokipii, 1975a; Ishimaru, 1978).

This approximation is called the Markov approximation. Precise derivation of Eq. (7)
is shown in Lee and Jokipii (1975a) and an alternative derivation by using functional
differentiation is given by Rytov et al. (1987) and Ishimaru (1978). In addition to the
applicability condition of the parabolic approximation, ak0 � 1, an additional condition
for the Markov approximation is that the MS phase fluctuation over a correlation distance
is small, A 0ð Þk20a 
 1, which is e2a2k20 
 1 for the case of Gaussian ACF (e.g., Shishov,
1974; Rytov et al. 1987, p. 110).
TFMCF G2 can be factorized into two terms as
G2 ¼ e�A 0ð Þk2
d
z=2

0G2 ¼ w~ðz;odÞ0G2; ð9Þ� �� �

where w~ z;odð Þ ¼ exp �A 0ð Þo2

dz= 2V2
0 . Then Eq. (7) is written as the master equation

for 0G2 as
@z 0G2 þ i
kd
2k2c

D⊥d 0G2 þ k2c A 0ð Þ � A r⊥dð Þ½ 	0G2 ¼ 0: ð10Þ
We solve this differential equation under the following initial condition:
G2 x⊥d; z ¼ 0;oc;odð Þ¼0G2 x⊥d; z ¼ 0;oc;odð Þ ¼ 1: ð11Þ
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2.1.5. Intensity Spectral Densities

The ensemble average of the square of displacement vector component ui gives the
intensity of ith vector component Ii. For the case of P-waves, the x-component intensity is
given by
IPx ðx⊥; z; tÞ � hjuxðx⊥; z; tÞj2i ¼ h@x0fðx0⊥; z; tÞ@x00fðx00⊥; z; tÞ�ix0¼x00

¼ 1

2p

ð1
�1

do0eik
0
0z�io0t 1

2p

ð1
�1

do00e�ik
00
0
zþio00t 1

k00k
00
0

h@x0U0@x0U
00�ix0¼x00

� 	

¼ 1

2p

ð1
�1

docI
_P
x ðz; t;ocÞ; ð12Þ

� � � �

where representations U0 and U00 mean that their arguments are x0⊥;o

0 and x00⊥;o
00 ,

respectively. In the second line, the integrand in the angular brackets gives the definition
of the intensity spectral density (ISD) I

_P
x z; t;ocð Þ, where the transverse coordinate is

dropped from the argument because of homogeneity. MS envelope of band-pass filtered
trace at central angular frequency oc with frequency bandwidth Df is given by

I
_P
x z; t;ocð ÞDf . Putting @x0 ¼ @xd and @x00 ¼ �@xd since G2 is practically independent

of the center of mass coordinate and using 1= k00k
00
0

� � � 1=k2c , we may write the

x-component ISD as
I
_P
x z; t;ocð Þ ¼ 1

2p

ð1
�1

dode
�iod t�z=V0ð Þ � 1

k2c
@xd

2G2 x⊥d; z;oc;odð Þ
� 	

x⊥d¼0

: ð13Þ
Taking the same procedure, we have the y-component ISD with replacing x by y.
Because of the isotropy of TFMCF in the transverse plane, we have
I
_P
x z; t;ocð Þ ¼ I

_P
y z; t;ocð Þ. The z-component ISD is given by
I
_P
z z; t;ocð Þ ¼ 1

2p

ð1
�1

dode
�iod t�z=V0ð Þ U0 þ @zU

0

ik00

0
@

1
A U

00� � @zU
00�

ik000

0
@

1
A* +

¼ 1

2p

ð1
�1

dode
�iod t�z=V0ð Þ 1þ D⊥d

k2c

0
@

1
AG2 x⊥d; z;oc;odð Þ

2
4

3
5
x⊥d¼0

; ð14Þ

0
where the leading term @zU � i=2k0ð ÞD⊥U of the parabolic Eq. (5) is used, and D⊥ ¼
D00
⊥ ¼ D2

⊥d and 1=k
02
0 þ 1=k

002
0 � 2=k2c are used. We also assume to neglect a product

D0
⊥U

0
D

0
⊥U

00�:
Here we define the reference ISD as
I
_R

z; t;ocð Þ ¼ 1

2p

ð1
�1

dode
�iod t�z=V0ð ÞG2 x⊥d ¼ 0; z;oc;odð Þ; ð15Þ
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which is literally the ISD of scalar potential (see Sato and Fehler, 1998). By using
Eqs. (13) and (15), we may write Eq. (14) as
I
_P
z z; t;ocð Þ ¼ I

_R
z; t;ocð Þ � I

_P
x z; t;ocð Þ � I

_P
y z; t;ocð Þ

¼ I
_R

z; t;ocð Þ � 2I
_P
x z; t;ocð Þ: ð16Þ
That is, the longitudinal-component ISD can be represented by using the reference ISD
and the transverse-component ISD.
The initial condition [Eq. (11)] for TFMCF leads to
I
_P
x z; t;ocð Þ ¼ I

_P
y z; t;ocð Þ ¼ 0 and I

_P
z z; t;ocð Þ ¼ d t� z

V0


 �
at z ¼ 0; ð17Þ
which mean that the z-component incident plane P-wavelet is a d function pulse.
2.1.6. Wandering Effect

The Fourier transform of the factor w~ in Eq. (9) with respect to od gives a Gaussian
distribution in the time domain:
w z; t� z

V0


 �
� 1

2p

ð1
�1

dod w~ z;odð Þe�iod t� z=V0ð Þð Þ

¼ V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pA 0ð Þzp e�

V2
0

2A 0ð Þz t� z=V0ð Þð Þ2 ; ð18Þ

Ð1

where �1 dtw z; t� z=V0ð Þ ¼ 1 since w~ od ¼ 0ð Þ ¼ 1 and w z; t� z=V0ð Þ ! d tð Þ as
z ! 0. This function does not mean the broadening of individual wave packets but it
shows the wandering effect of the travel time fluctuations of different rays at a travel
distance z (Lee and Jokipii, 1975b).
Referring to Eq. (15), we define the Fourier transform of 0G2 as
I
_R

0 z; t;ocð Þ ¼ 1

2p

ð1
�1

dode
�iod t� z=V0ð Þð Þ

0G2 x⊥d ¼ 0; z;oc;odð Þ; ð19Þ
_R
which is the reference ISDwithoutwandering effect. The convolution of I 0 andwgives the

reference ISD for the incidence of a unit impulsive plane P-wavelet: I
_R ¼ I

_R
0 � w. In the

following, ISDswith subscript “zero”mean ISDswithout wandering effect as I
_P
x0, I

_P
y0, and

I
_P
z0. Convolution with the wandering term gives ISD as I

_P
x ¼ I

_P
x0 � w, I

_P
y ¼ I

_P
y0 � w,

and I
_P
z ¼ I

_P
z0 � w. For practical comparison with the ensemble averaged intensity calcu-

lated from numerical simulations, it is necessary to convolve ISD with the source power

time function i for a given angular frequency as I
_P
x � i, I

_P
y � i, and I

_P
z � i.
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2.1.7. Angular Spectrum

Taking the Fourier transform of TFMCF in the transverse plane, we get the angular
spectrum
G
^

2ðk⊥; z;oc;odÞ ¼
ð1
�1

dx⊥de
�ik⊥x⊥dG2ðx⊥d; z;oc;odÞ; ð20Þ
which means the distribution of ray directions. Taking the Fourier transform of the
angular spectrum with respect to od, we get the angular spectrum in time domain,
I
_Aðk⊥; z;oc; tÞ ¼ 1

2p

ð1
�1

dode
�iodðt�z=V0ÞG

^

2ðk⊥; z;oc;odÞ: ð21Þ
^ 2 _A 2
The initial condition [Eq. (11)] leads to G2 ¼ 2pð Þ d k⊥ð Þ and I ¼ 2pð Þ d k⊥ð Þ
d t� z=V0ð Þ, which mean that all the rays are parallel to the z-direction, k⊥ ¼ 0 at the
incidence.

2.1.8. Gaussian ACF

A Gaussian ACF is selected to characterize random media for our study:
R xð Þ ¼ e2e�r2=a2 ; ð22Þ

where r � xj j. The longitudinal integral [Eq. (8)] for small transverse distances is
A r⊥dð Þ � ffiffiffi
p

p
e2a 1� r2⊥d

a2


 �
for r⊥d 
 a: ð23Þ
Master equation for TFMCF: The master equation (10) is explicitly given by
@z 0G2 þ i
kd
2k2c

D⊥d 0G2 þ k2c
ffiffiffi
p

p
e2r2⊥d

a
0G2 ¼ 0; ð24Þ
where we define the characteristic time
tM ¼
ffiffiffi
p

p
e2z2

2V0a
ð25Þ
and a parameter
s0 ¼ 2ei p=4ð Þ ffiffiffiffiffiffiffiffiffiffi
tMod

p
: ð26Þ
The characteristic time is independent of central frequency. Sreenivasiah et al. (1976)
solved the differential equation [Eq. (24)] for the initial condition [Eq. (11)]. The solution
of Eq. (24) [see Eq. (A.5) in Appendix] is written as



57SYNTHESIS OF VECTOR-WAVE ENVELOPES
0G2 x⊥d; z;oc;odð Þ ¼ 1

cos s0
e� tan s0=s0ð Þ 2V0k

2
c tMð Þ=zð Þ x2

d
þy2

dð Þ

¼ 1

cos s0
e� tan s0=s0ð Þ x2

d
þy2

dð Þ=a2⊥ð Þ; ð27Þ
where
a⊥ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z

2V0tMk2c

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
affiffiffi

p
p

e2zk2c

r
ð28Þ
is the coherence radius.

ISDs of P-wavelet: The reference ISD without wandering effect [Eq. (19)] is analyti-
cally solved as follows:
I
_R
0 z; t;ocð Þ ¼ 1

2p

ð1
�1

dode
�iod t� z=V0ð Þð Þ 1

cos s0

¼ 1

2p

ð1
�1

dode
�iod t� z=V0ð Þð Þ p

X1
k¼0

�1ð Þk 2k þ 1ð Þ
p2 k þ 1=2ð Þð Þ2 � 4itMod

" #

¼ p
4tM

X1
k¼0

�1ð Þk 2k þ 1ð Þe�ðp2=ð4tMÞÞ kþ 1=2ð Þð Þ2 t� z=V0ð Þð ÞH t� z

V0


 �

¼ 1

tM

p
8
#

0
1 0; e� p2=4ð Þ t�z=V0ð Þ=tMð Þ
 �

H t� z

V0


 �
; ð29Þ

0

where function#1 v; qð Þ � @v#1 v; qð Þ is the derivative of the elliptic theta function of the first
kind #1 with respect to v, where #1 v; qð Þ � 2

P1
n¼0 �1ð Þnq nþ1=2ð Þ2 sin 2nþ 1ð Þv½ 	 (e.g.,

Weisstein, 2005). Williamson (1972) derived the same representation as Eq. (29) based on
the stochastic ray path method. A solid curve in Fig. 5 shows the plot of I

_R
0 against reduced

time normalizedby the characteristic time. Function I
_R
0 has a broadened envelopewith a long

tail, where the maximum peak is numerically about 0:46=tM at t� z=V0ð Þ=tM � 0:67. The
peak values of I

_R
0 decay according to the inverse square of travel distance.

Substituting Eq. (27) into Eq. (20), we have the angular spectrum as
0G
^

2 k⊥; z;oc;odð Þ ¼ pa2⊥s0
sin s0

e�s0=tan s0 a2⊥k
2
⊥ð Þ=4ð Þ: ð30Þ

_A

Angular spectrum in time domain I 0 k⊥; z;oc; tð Þ is numerically calculated by using

FFT. Figure 6 shows angular spectra I
_A
0 at different reduced times. The angular spectrum

has a peak around k⊥ ¼ 0 just after the direct arrival; however, the spectrum is flattened
out with reduced time increasing. That is, the distribution of ray directions spreads over a
wide angle with reduced time increasing.
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Replacing G2 with 0G2 in Eq. (13) and substituting the solution [Eq. (27)] into them,
we have transverse-component ISDs without wandering effect as
I
_P
x0 z; t;ocð Þ ¼ I

_P
y0 z; t;ocð Þ ¼ 4V0tM

z

1

2p

ð1
�1

dode
�iod t� z=V0ð Þð Þ tan s0

s0 cos s0

¼ 4V0tM
z

1

2p

ð1
�1

dode
�iod t� z=V0ð Þð Þ 1

i2tM

@

@od

1

cos s0


 �

¼ V0tM
z

2
t� z=V0ð Þð Þ

tM
I
_R
0 z; t;ocð Þ; ð31Þ

Ð � � Ð

since uF uð Þ ¼ 2pð Þ�1 1

�1 dode
�iodu �i@od

F~ odð Þ for F uð Þ � 2pð Þ�1 1
�1 dode

�iodu

F~ odð Þ. A broken curve in Fig. 5 shows the plot of t� z=V0ð Þ=tMð ÞI_R0 against normalized

reduced time. The broken curve has numerically the maximum peak of about 0:47=tM at

t� z=V0ð Þ=tM � 1:63, which is much later than the peak delay of I
_R
0 .

Putting Eq. (31) into Eq. (16), we have an explicit representation of the z-component
ISD without wandering effect as
I
_P
z0 z; t;ocð Þ ¼ 1� 4

V0

z
t� z

V0


 �� 	
I
_R
0 z; t;ocð Þ: ð32Þ
The calculated longitudinal (z)-component ISD becomes negative for lapse times as
larger than t > 1:25 z=V0ð Þ, which means the breakdown of this approximation. The
applicable range for the reduced time 0 < t� z=V0 < z= 4V0ð Þ is the additional condition
of this approximation especially for vector-wave envelopes. The reduction of the appli-
cable reduced time range may come from the neglect of the product of second derivative
terms in Eq. (14).
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Figure 7 shows plot of I
_P
x0 and I

_P
y0 (broken line), I

_P
z0 (solid line), and I

_R
0 (chained line)

against normalized reduced time at a distance of V0tM=z ¼ 0:05. When e2z=a << 1, the

peak height of I
_P
z0 is approximately equal to I

_R
0 , which decays according to the inverse

square of travel distance, and the peak ratio of transverse component to longitudinal

component is proportional to e2z=a. As reduced time increases, transverse-component

ISD exceeds the longitudinal-component ISD, I
_P
0x > I

_P
0z for t� z=V0 > z= 6V0ð Þ, where

large incident angle rays dominate over small incident angle rays as shown in Fig. 6.
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We note that the wandering term (18) with (23) is Gaussian as
FIG

effect

impuls

with e
w z; t� z

V0


 �
¼ V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
ffiffiffi
p

p
e2az

p e� V2
0
= 2

ffiffi
p

p
e2azð Þð Þ t� z=V0ð Þð Þ2 ; ð33Þ
where the time width of the wandering effect is proportional to the square root of travel
distance.

Characteristics of P-wave envelopes: We take the following values typically represent-
ing thick inhomogeneous lithosphere: the average velocities a0 ¼ 7:8 km=s and b0 ¼
4:5 km=s a0=b0 ¼ 1:73ð Þ and the random inhomogeneity characterized by e ¼ 0:05 and
a ¼ 8 km, that is, the ratio e2=a � 0:00031 km�1. Figure 8 shows ISDs without wander-
ing effect (black curves) and those with wandering effect (gray curves) at 100 km
distance for the incidence of an impulsive plane P-wavelet. Scattering produces envelope
broadening of a large peak in the longitudinal component and a small peak in the
transverse component; however, the wandering effect causes a collapse of the sharp
peak of I

_P
z0 but causes little change in the small peak with slow variation of I

_P
x0. The

maximum peak of the transverse component appears later than the maximum peak arrival
of the longitudinal component.
In Fig. 9a, the upper panel shows ISD time traces at four travel distances for the

incidence of an impulsive plane P-wavelet. The upper panel of Fig. 9b enlarges ISD time
traces of the transverse component. Envelope broadening becomes apparent as travel
distance increases. The wandering effect is stronger at longer travel distances; however,
apparent contribution to the envelope broadening is stronger at shorter distances since
ISDs without wandering effect have sharper peaks at shorter distances. The wandering
effect makes little change in envelopes of the transverse component.
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The time integral of the transverse-component ISD without wandering effect is
ð1
z=V0

I
_P
x0 z; t;ocð Þdt ¼

ð1
z=V0

I
_P
y0 z; t;ocð Þdt ¼ 4V0tM

z
¼ 2

ffiffiffi
p

p
e2

a
z ð34Þ
since lim
od!0

tan s0= s0 cos s0ð Þ ¼ 1. The time integral of ISD with wandering effect has the

same value. That is, the time integral of MS envelope of the transverse-component

displacement linearly increases with travel distance increasing. The peak values of I
_P
x0

and I
_P
y 0 decay according to the inverse of lapse time as shown by a thin broken curve in

the upper panel of Fig. 9b since the envelope width increases with the square of travel
distance. The time integral of the longitudinal-component displacement is
ð1
z=v0

I
_P
z0 z; t;ocð Þdt ¼ 1� 8V0tM

z
¼ 1� 4

ffiffiffi
p

p
e2

a
z ð35Þ

Ð1 _R

since z=V I 0 z; t;ocð Þdt ¼ 1 because lim

od!0
1=cos s0 ¼ 1. When e2z=a << 1, the second

term is negligible, therefore, we may roughly say that the peak intensity of the
z-component decreases with the inverse square of travel distance as plotted by thin
broken curve in the upper panel of Fig. 9a.

Analysis of observed teleseismic P-wave envelopes: Analyzing teleseismic P-waves
registered by IRIS stations in the world, Kubanza et al. (2007) measured the ratio of the
peak intensity of transverse component to the peak value of the total intensity at three
frequency bands: 0.040 at 0.5–1 Hz, 0.087 at 1–2 Hz, and 0.141 at 2–4 Hz. Assuming the
thickness of the inhomogeneous lithosphere to be 100 km and applying the above
theoretical prediction for a Gaussian ACF, they estimate e2=a to be 2.23 � 10�4 km�1

at 0.5�1 Hz, 4.86 � 10�4 km�1 at 1–2 Hz, and 7.81 � 10�4 km�1 at 2–4 Hz. Assuming
a ¼ 5 km for all frequency bands, they estimate e as small as 2–4% for the lithosphere
beneath stable continents; however, stations on Japan and collision zones of Indian
and Eurasian continents show large e of 5–10%. We should note that the increase of
envelope broadening with increasing frequency has some contradiction to the frequency
independence predicted from Gaussian ACF.

2.1.9. Plane S-Wavelet

Parabolic wave equation: Three components of vector potential of S-wave are indepen-
dent of each other as written by Eq. (2). If vector potential has y-component only,
displacement vector u ¼ (�@zBy,0,@x,By). That is, the displacement vector is always in
the x� z plane; however, the ray vector is not confined in the x� z plane. If we write the
y-component of vector potential By ¼ f and the S-wave velocity as b xð Þ ¼ V0 1þð x xð ÞÞ,
where V0 is the average S-wave velocity and x is fractional fluctuation, vector potential
y-component f satisfies the inhomogeneous wave Eq. (3). We study S-wave propagation
through a random medium spreading over a half space (z > 0) for the vertical incidence
of a plane S-wavelet having a polarization to the x-axis from a homogeneous medium
(z < 0). When the wavelength is supposed to be smaller than a, field U satisfies the
parabolic wave Eq. (5) if we write f as a superposition of plane waves as Eq. (4).
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Intensity spectral densities: Taking the same procedure for P-waves, we can derive
intensities and ISDs for S-waves. In this case, the y-component ISD is always zero,
I
_S
x z;ð
I
_S
y z; t;ocð Þ ¼ 0: ð36Þ
The z-component ISD is
I
_S
z z; t;ocð Þ ¼ 1

2p

ð1
�1

dode
�iod t� z=V0ð Þð Þ � @2

xd

k2c
G2 x⊥d; z;oc;odð Þ

" #
x⊥d¼0

ð37Þ
and the x-component ISD is
t;ocÞ ¼ 1

2p

ð1
�1

dode
�iod t� z=V0ð Þð Þ 1þ D⊥d

k2c

0
@

1
AG2 x⊥d; z;oc;odð Þ

2
4

3
5
x⊥d¼0

¼ I
_R

z; t;ocð Þ � 2I
_S
z z; t;ocð Þ; ð38Þ
where the relation @2
xd
G2 ¼ @2

yd
G2 is used. Replacing V0 with the average S-wave velocity

in Eqs. (15) and (19), we have the reference ISDs for S-wave. In the case of quasi-
monochromatic waves, TFMCF G2 is factorized into 0G2 and w~: Taking the same
procedure as for P-waves, we solve the master equation (10) with the initial condition
(11), which means the incidence of an impulsive plane S-wavelet polarized to the
x-direction propagating to the z-direction:
I
_S
x z; t;ocð Þ ¼ d t� z

V0


 �
and I

_S
y z; t;ocð Þ ¼ I

_S
z z; t;ocð Þ ¼ 0 at z¼ 0: ð39Þ
Gaussian ACF: For the case of random media characterized by a Gaussian ACF
[Eq. (22)], substituting the solution [Eq. (27)] into Eqs. (37) and (38), we obtain the
z-component ISD without wandering effect as
I
_S
z0 z; t;ocð Þ ¼ V0tM

z
2
t� z=V0ð Þ

tM
I
_R
0 z; t;ocð Þ ð40Þ
and the x-component ISD without wandering effect as
I
_S
x0 z; t;ocð Þ ¼ 1� V0tM

z

4 t� z=V0ð Þ
tM

� 	
I
_R
0 z; t;ocð Þ: ð41Þ
_S
At large lapse times as t > 5=4ð Þ z=V0ð Þ, I x0 becomes negative, which means the
breakdown of the approximation.
The lower panel of Fig. 9a shows ISDs for the incidence of an impulsive plane

S-wavelet polarized to the x-direction. The lower panel of Fig. 9b enlarges ISD traces
of the z-component. Peak delay and envelope broadening are seen in both components;
however, the peak delay of the z-component is larger than that of the x-component and
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the peak value of z-component is smaller than that of x-component at each travel
distance. For the same fractional fluctuation for both P- and S-wave velocities, the
envelope width of S-wave is 1.73 times larger than that of P-waves since the characteris-
tic time is proportional to the reciprocal of the average velocity of the wave type.
The time integral of the longitudinal-component ISD linearly increases with travel

distance and the linear coefficient is the ratio of the MS fractional fluctuation to the
correlation distance since
ð1
z=V0

I
_S
z0 z; t;ocð Þdt ¼ 4V0tM

z
¼ 2

ffiffiffi
p

p
e2

a
z: ð42Þ
The time integral of transverse-component ISD without wandering effect is
ð1
z=V0

I
_S
x0 z; t;ocð Þdt ¼ 1� 8V0tM

z
¼ 1� 4

ffiffiffi
p

p
e2

a
z: ð43Þ
2.2. Two-Dimensional Random Elastic Media

In order to examine the validity of the Markov approximation, we compare the
envelopes directly simulated with envelopes numerically simulated based on the FD
simulations in two dimensions according to Korn and Sato (2005).

2.2.1. Wave Envelopes for a Gaussian ACF

Elastic media in 2-D space (x� z space) is divided into two: a half space of z < 0 is
homogenous and another half space of z > 0 is randomly inhomogeneous. For the
vertical incidence of a plane P-wavelet from the homogeneous medium, scalar potential
in the inhomogeneous space is written by using a superposition of plane waves [Eq. (4)].
We define the TFMCF of field U at distance z as G2 xd; z;oc;odð Þ � hU x

0
; z;o

0� �
U x

00
; z;o

00� ��i. For the case of Gaussian ACF in 2-D R xð Þ ¼ e2exp � x2 þ z2ð Þ=a2½ 	,
replacing D⊥d with @2

xd
and r⊥d with xd in Eq. (24), we have the master equation for

TFMCF as
@z 0G2 þ i
kd
2k2c

@2
xd 0G2 þ k2c

ffiffiffi
p

p
e2a

xd
a

 �2
0G2 ¼ 0: ð44Þ
The solution (A.10) for the initial condition (11) is given by
0G2 xd; z;oc;odð Þ ¼ e� tans0=s0ð Þ 2V0k
2
c tMð Þ=zð Þx2dffiffiffiffiffiffiffiffiffiffiffi

coss0
p w ð45Þ
according to Korn and Sato (2005). Substituting it into Eq. (19), we have the reference
ISD without wandering effect as
I
_R
0 z; t;ocð Þ ¼ 1

2p

ð1
�1

dod

1ffiffiffiffiffiffiffiffiffiffiffi
coss0

p e�iod t� z=V0ð Þð Þ: ð46Þ
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Different from the 3-D case, this function has to be evaluated numerically, where we
take the branch so that the integrand is a continuous function of od. The x-component
ISD without wandering effect is given by Eq. (13) as
FIG.

to 2-D
I
_P
x0 z; t;ocð Þ ¼ 4V0tM

z

1

2p

ð1
�1

dode
�iod t� z=V0ð Þð Þ tan s0ð Þ

s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos s0ð Þp

¼ 4V0

z

1

2p

ð1
�1

dode
�iod t� z=V0ð Þð Þ @

i@od

1ffiffiffiffiffiffiffiffiffiffiffi
cos s0

p

¼ 4V0

z
t� z

V0


 �
I
_R
0 z; t;ocð Þ ð47Þ
and then the z-component ISD without wandering effect is given by the residual
[Eq. (16)] as
I
_P
z0 z; t;ocð Þ � I

_R
0 z; t;ocð Þ � I

_P
x0 z; t;ocð Þ

¼ 1� 4V0tM
z

t� z=V0ð Þð Þ
tM


 �
I
_R
0 z; t;ocð Þ: ð48Þ
Figure 10 shows plots of I
_P
x0 (light gray curve), I

_P
z0 (black curve), and I

_R
0 (dark gray

curve) against reduced time at a distance 4V0tM=z ¼ 0:177. The peak height of I
_P
x0 is small

compared with that of I
_P
z 0. The partition of energy into two components depends on the

lapse time: I
_P
z 0 � I

_R
0 � I

_P
x 0 around the peak arrival when e2z=a 
 1; however, I

_P
x0 > I

_P
z0

at reduced times larger than about 3tM in this case. The time integral of ISD depends on
travel distance:
ð1

z=V0

I
_P
x0 z; t;ocð Þdt ¼ 4V0tM

z
¼ 2

ffiffiffi
p

p
e2

a
z ð49Þ
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and
 ð1
z=V0

I
_P
z0 z; t;ocð Þdt ¼ 1� 4V0tM

z
¼ 1� 2

ffiffiffi
p

p
e2

a
z: ð50Þ
For the incidence of a plane S-wavelet, exchanging xwith z in Eqs. (46)–(48), we have
S-wave ISDs, I

_R
0 , I

_S
z0, and I

_S
x0, respectively.

2.2.2. Comparison with Numerically Simulated Envelopes

FD simulations: For the computation of theoretical waveforms of vector waves in
various realizations of 2-D randommedia, a standard FD technique in space-time domain
is employed. We use a scheme where the equations for particle velocities and stresses in
an isotropic inhomogeneous elastic medium are solved on a staggered grid (Levander,
1988). The accuracy is second-order in time and fourth-order in space.

The size of the rectangular model is 300 km by 250 km, where average P- and
S-velocities are chosen as a0 ¼ 6 km=s and b0 ¼ 3:46 km=s. The average mass density
is 2800 kg/m3 and the fractional fluctuation ofmass density is chosen as 0:8x xð Þ according
to Birch’s law (e.g., Sato and Fehler, 1998). The medium is homogeneous for
�50 km < z < 0. Between z ¼ 0 and 200 km, random fractional velocity fluctuation
x xð Þ is characterized by a Gaussian ACF with a ¼ 5 km and e ¼ 0.05. Periodic boundary
conditions are used at x ¼ 0 and 300 km and absorbing boundary conditions at z ¼ �50
and 200 km. Absorbing boundary conditions are based on the paraxial approximation of
the wave equation representing only the outgoing part of the wave field (Reynolds, 1978).
A plane P- or S-wavelet propagating parallel to the grid in the z-direction is initialized

at z ¼ 0. The pulse shape of the plane wavelet is given by
h tð Þ ¼ sin
Npt
T

� N

N þ 2


 �
sin

N þ 2ð Þpt
T

0 � t � T; ð51Þ
where T is the duration of the wavelet and N is a parameter indicating the number of
maxima and minima of the wavelet. Here, we choose N ¼ 2 and T ¼ 0.5 s, which gives a
wavelet of nearly sinusoidal shape with dominant frequency of 2 Hz and band-limited
spectrum of half-width between 0.8 and 4.1 Hz. The dominant wavelength is smaller than
the correlation distance, which ensures the validity of the parabolic approximation.
Elastic waves are recorded at three line arrays parallel to the initial wave front at z ¼
50, 100, and 150 km. Each line array consists of 200 receivers at 1 km intervals between
x ¼ 50 and 250 km. The spatial discretization in the FD scheme is 0.1 km and the
temporal discretization is 8 ms, slightly below the stability limit of the numerical scheme.
This choice ensures that the numerical errors remain small. In a homogeneous medium
with the mean velocities, the phase velocity error introduced by grid dispersion would be
0.04% at the dominant frequency and 0.15% at the upper half width frequency.
Figure 11 shows examples of waveforms after traveling 100 km through a random

medium for P-wavelet incidence and S-wavelet incidence. Distortions of pulse shapes
and fluctuations of travel times and amplitudes along the direct wave front are clearly
visible, as well as excitation of secondary arrivals after the primary wave resulting in an
effective broadening of the wave front. For P (S)-wavelet incidence, there is significant
energy arriving on the transverse (longitudinal) component. This indicates that the wave
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front gets strongly distorted by the inhomogeneity of the medium and the propagation
direction locally deviates from the straight ray paths. On the other hand, only very little
energy arrives before the S-wave front in the case of plane S-wave incidence. This
indicates that conversion scattering from S to P is extremely weak. In the same way, the
lack of energy at longer lapse times for P-wave incidence suggests that both conversion
scattering and large-angle scattering are small. In general, the most effective scattering
mechanism for the case studies here is scattering of the same wave type into the near
forward direction.
The single-component traces of 200 receivers are first squared and then averaged to

obtain single-component MS envelope. Additionally, the MS envelopes obtained from
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10 different realizations of the random medium were again averaged to get the ensemble
averaged MS envelope. In Fig. 12, gray curves show MS envelopes numerically
simulated by the FD method (FD envelopes). Envelope broadening and peak amplitude
decay with increasing propagation distance are obvious. For P-wavelet incidence, the
ratio of transverse to longitudinal-component envelopes increases with time after the first
arrival. A few seconds after the peak, transverse-component energy becomes larger than
longitudinal-component energy irrespective of travel distance (see traces at 150 km
distance in Fig. 12a). The opposite feature is observed for S-wavelet incidence.
Even after stacking 2000 single traces, the standard deviation is still large around the
peak amplitude, but is small at later times. This indicates that peak amplitudes only are
not a stable measure to be used in envelope interpretation. It is better to use the whole
envelope shape for interpretation.

Comparison of Markov and FD envelopes: In Fig. 12, fine black curves are MS
envelopes theoretically predicted by the Markov approximation (Markov envelopes),
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where we used the convolution of the ISD with wandering effect and the MS trace of the
incident wavelet i. The peak value of FD envelope is a little larger than the smooth peak
of Markov envelopes at each distance; however, the whole envelope shapes well coincide
with each other. The Markov envelope well explains the delay of peak arrival from the
onset and the envelope broadening of each component at each travel distance for both of
P- and S-wavelet incidence.
In Fig. 13, we plot the time integral of squared amplitude against travel distance for the

incidence of a 2-Hz plane wavelet. Black and gray circles are calculated from FD
simulations and a broken line is the theoretical prediction [Eq. (49)] by the Markov
approximation. Good coincidence between FD simulations and the Markov approxima-
tion suggests that the partition of energy to the transverse component for P-wavelet
incidence and that to the longitudinal component for S-wavelet incidence are good
measure of the medium inhomogeneity.
3. Vector-Wave Envelopes for the Radiation from a Point Source

3.1. Three-Dimensional Random Elastic Media

Here we introduce the Markov approximation for waves radiated from a point source
in 3-D random media since there is a difference in geometrical spreading between
spherical waves and plane waves (Sato, 2007). We study the propagation of elastic
vector waves radiated impulsively from a point source through a weakly inhomogeneous
elastic medium in 3-D infinite space (see Fig. 14). When the wavelength is much smaller
than the correlation distance a of medium inhomogeneity ak0 >> 1, there is little
conversion scattering between P- and S-waves, which can be treated separately in the
same way as for the case of plane waves.
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3.1.1. Spherically Outgoing P-Wavelet

For isotropic radiation of P-wavelet from a point source at the origin, scalar potential is
written as a superposition of spherically outgoing harmonic waves as
f ¼ 1

2p

ð1
�1

f~e�iotdo ¼ 1

2p

ð1
�1

U y; ’; r;oð Þ
ik0r

eik0r�iotdo; ð52Þ
where r is a distance from the source, angles y and ’ are measured from the z-axis and
x-axis, respectively. Neglecting the second derivative with respect to radius, we have the
parabolic equation for field U as
2ik0@rU þ D⊥U � 2k20x xð ÞU ¼ 0: ð53Þ
In the vicinity of the z axis ( yj j << 1), transverse coordinates are x � ry cos ’ and
y � ry sin ’, and transverse Laplacian
D⊥ � @2
x þ @2

y � r�2@2
y þ r�2y�1@y þ r�2y�2@2

’:
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3.1.2. Stochastic Master Equation for TFMCF

Taking the same procedure for the plane wave case, we define the TFMCF of U
between two different locations and different angular frequencies at o

0
and o

00
on the

transverse plane at a distance r in the vicinity of the z-axis as
I
_P
x

G2 x⊥c; x⊥d; r;oc;odð Þ � U x
0
⊥; r;o

0
 �

U x
00
⊥; r;o

00
 ��D E

: ð54Þ
TFMCF is independent of x⊥c and practically becomes a function of r⊥d � x⊥dj j ¼
ryd because of the isotropic source radiation and homogeneity and isotropy of random-
ness. In the case of quasi-monochromatic waves odj j << jocj, using causality and
neglecting back scattering, we derive the same master equation (7) for TFMCF. Repla-
cing z with r in the decomposition [Eq. (9)], where w~ r;odð Þ ¼ exp �A 0ð Þo2

dr= 2V2
0

� �� �
,

we have the master equation for 0G2 as
@r 0G2 þ i
kd
2k2c

D⊥d 0G2 þ k2c A 0ð Þ � A r⊥dð Þ½ 	0G2 ¼ 0: ð55Þ
ffiffiffiffiffiffip� �
Scalar potential in the angular frequency domain f~� eik0r= ik0 4pr , where
U ¼ 1=

ffiffiffiffiffiffi
4p

p
, leads to isotropic displacement vector components as u~ r � eik0r=ffiffiffiffiffiffiffiffi

4pr
p

; u~y ¼ 0; and u~’ ¼ 0. Therefore, we put the initial condition for isotropic P-wave
radiation as
0G2 x⊥d; r ¼ 0;oc;odð Þ ¼ 1

4p
: ð56Þ
3.1.3. ISDs

Taking the same procedure as for plane wave case, we derive three component ISDs,
where Cartesian coordinates are used for vector calculation for small transverse distances
around the z-axis. The x-component ISD is
r; t;ocð Þ¼ 1

2pr2

ð1
�1

dode
�iod t�r=V0ð Þw~ r;odð Þ � 1

k2c
@2
xd 0

G2 x⊥d;r;oc;odð Þ
� 	

x⊥d¼0

;

ð57Þ

where a factor r�2 represents geometrical spreading and the spatial derivative of this
factor is neglected. The x- and y-component ISDs are identical because of the isotropy of
TFMCF in the transverse plane, I

_P
y r; t;ocð Þ ¼ I

_P
x r; t;ocð Þ.

Here we define the reference ISD for spherical waves as
I
_R

r; t;ocð Þ � 1

2pr2

ð1
�1

dode
�iod t� r=V0ð Þð Þ w~ r;odð Þ 0G2 x⊥d ¼ 0; r;oc;odð Þ: ð58Þ
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Reference ISD without wandering effect is obtained by taking w~¼ 1 in Eq. (58). For
the derivation of the longitudinal (z)-component ISD, taking the same procedure as for
plane waves, we have
I
_P
z r; t;ocð Þ ¼ 1

2pr2

ð1
�1

dode
�iod t�r=V0ð Þ w~ r;odð Þ

1þ D⊥d

k2c


 �
0G2 x⊥d; r;oc;odð Þ

� 	
x⊥d¼0

¼ I
_R

z; t;ocð Þ � 2I
_P
x z; t;ocð Þ: ð59Þ
The initial condition [Eq. (56)] practically gives ISDs as
I
_P
x ¼ I

_P
y ¼ 0 and I

_P
z ¼ I

_R ¼ 1

4pr2
d t� r

V0


 �
as r ! 0 along the z� axis ð60Þ
that mean isotropic radiation of an impulsive P-wavelet with unit intensity from a point
source at the origin.

3.1.4. Gaussian ACF

ISDs of P-wavelet: When 3-D random media are statistically characterized by a
Gaussian ACF [Eq. (22)], we have the following differential equation from Eq. (55):
@r 0G2 þ i
kd

2k2cr
2

@2

@y2d
þ 1

yd

@

@yd

 !
0G2 þ

ffiffiffi
p

p
e2k2c
a

r2y2d 0G2 ¼ 0 ð61Þ
since 0G2 is axial symmetric with respect to yd ¼ 0. According to Shishov (1974),
solving Eq. (61) with the initial condition [Eq. (56)], we have the analytical solution
[Eq. (A.15)] as
0G2 x⊥d; r;oc;odð Þ ¼ 1

4p
s0

sin s0
e� 1=s2

0
� cot s0ð Þ=s0ð Þ½ 	 2V0k

2
c tM=rð Þr2⊥d ; ð62Þ

ffiffiffip
2 2
where r⊥d ¼ ryd, the characteristic time tM ¼ pe r = 2V0að Þ, and a parameter s0 ¼

2eip=4
ffiffiffiffiffiffiffiffiffiffi
tMod

p
are given by replacing z with r in Eqs. (25) and (26). Substituting Eq. (62)

into Eq. (58) with w~ ¼ 1, we get ISD without wandering effect as
I
_R
0 r; t;ocð Þ ¼ 1

2pr2

ð1
�1

dode
�iod t� r=V0ð Þð Þ 1

4p
s0

sins0

¼ 1

4pr2
1

2p

ð1
�1

dode
�iod t� r=V0ð Þð Þ 1þ

X1
k¼1

�1ð Þk 2s20
s20 � p2k2

0
@

1
A

¼ p
2r2

X1
k¼1

�1ð Þkþ1k2
1

2p

ð1
�1

dod

e�iod t� r=V0ð Þð Þ

p2k2 � 4itMod

2
4

3
5

¼ 1

4pr2
H t� r

V0

0
@

1
A p2

2tM

X1
k¼1

�1ð Þkþ1k2e� p2k2=ð4tMÞð Þ t� r=V0ð Þð Þ

¼ 1

4pr2
H t� r

V0

0
@

1
A p2

16tM
#

00
4e

�ðp2=4Þ t�r=V0ð Þ=tMð Þ

; ð63Þ
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where we take 1þ 2
P1

k¼1 �1ð Þk ¼ 1� 2þ 2� 2 . . . ¼ 0. In the last line, #
00
4 qð Þ �

@2
u#4 u; qð Þ u¼0 ¼ 8

P1
n¼1 �1ð Þnþ1n2qn

2
��� , where #4 u; qð Þ ¼ 1þ 2

P1
n¼1 �1ð Þnqn2 cos 2nu

is the elliptic theta function of the fourth kind (e.g., Weisstein, 2005). Taking the inverse
Fourier transform of Eq. (63) atod ¼ 0, we have

Ð1
�1 4pr2I

_R
0 dt ¼ 1, which is satisfied by

the expression using #
00
4. In Fig. 15 a black curve shows I

_R
0 for spherical wavelet given by

Eq. (63) against reduced time t� r=V0. The maximum peak value is numerically about

1:48= 4pr2tMð Þ at reduced time about 0.367tM. It shows a broadened envelope having a
delayed peak and a smoothly decaying tail. For comparison, reference ISD for plane
wave [Eq. (29)] is shown by a gray curve. Two curves are normalized to satisfy that the
time integral is equal to one. Broadening of a spherically outgoing wavelet envelope is
smaller than that of a plane wavelet because of the convex curvature of the wave front.
Then, we calculate the transverse-component (x-component) ISD without wandering

effect. Substituting Eq. (62) into Eq. (57) with w~ ¼ 1, we have
FIG.

(black
I
_P
x0 r; t;ocð Þ ¼ I

_P
y0 r; t;ocð Þ

¼ 1

r2
V0

pr
1

2p

ð1
�1

dode
�iod t� r=V0ð Þð Þ tM

sin s0

1

s0
� cot s0

0
@

1
A

2
4

3
5

¼ 2V0

r

1

2pr2

ð1
�1

dode
�iod t� r=V0ð Þð Þ 1

i

@

@od

s0
4p sin s0

0
@

1
A

2
4

3
5

¼ V0tM
r

2
t� r=V0ð Þð Þ

tM
I
_R
0 r; t;ocð Þ: ð64Þ
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Putting Eqs. (63) and (64) into Eq. (59), we get an explicit representation of the
longitudinal-component ISD without wandering effect as
FIG.

radiati

media

e ¼ 0:
I
_P
z0 r; t;ocð Þ ¼ 1� 4

V0

r
t� r

V0


 �� 	
I
_R
0 r; t;ocð Þ: ð65Þ
The calculated longitudinal-component ISD becomes negative for large lapse time as
t > 1:25 r=V0ð Þ, which means the breakdown of this approximation. The applicable range
for the reduced time 0 < t� r=V0 < r= 4V0ð Þ is the additional condition of this approxima-
tion especially for vector-wave envelopes, which is the same as the case of plane wavelet.

Characteristics of spherically outgoing P-wave envelopes: As an example, Fig. 16
shows simulated P-wave ISDs against lapse time at a travel distance of 200 km, where
random media are characterized by V0 ¼ 6 km=s, e ¼ 0:05, and a ¼ 5 km: I

_R
0 (fine black

solid curve), I
_P
z0 (gray solid curve), I

_P
z (black solid curve), I

_P
x0 (gray broken curve), and I

_P
x

(black broken curve). The P-wave onset time for the average velocity medium is 33.3 s as
shown by a fine vertical line. We note that the y-component trace is the same as the x-

component trace. The characteristic time is about 3.0 s in this case, the peak height of I
_R
0 is

numerically about 1:48= 4pr2tMð Þ � 0:133V0a= e2r4ð Þ and the peak delay is about

0:367tM ¼ 0:325e2r2= V0að Þ. The peak height of I
_P
x0 is about 1:30V0tM=rð Þ= 4pr2tMð Þ �

0:104V0=r
3 independent of randomness; however, the peak delay is about

0:536tM � 0:475e2r2= V0að Þ, which depends on randomness. We may roughly approxi-

mate the peak height of I
_P
z0 as the peak difference 1:48� 2:60ð V0tM=rÞ= 4pr2tMð Þ �
10
�10−7
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0:133V0a= e2r4ð Þ � 0:208V0=r
3 neglecting their peak arrival times. When e2r=a << 1, the

peak height of I
_P
z 0 approximately decays according to the minus fourth power of travel

distance and the peak ratio of transverse component to longitudinal component is propor-

tional to e2r=a. All the components have broadened traces; however, the peak height of the
transverse component is smaller than that of the longitudinal component and the peak delay
of the transverse component is larger than that of the longitudinal component. As lapse time

increases, the transverse-component ISD exceeds the longitudinal-component ISD: I
_P
x0 >

I
_P
z0 for t� r0=V0 > r0= 6V0ð Þ. At 200 km, it happens at lapse times larger than 38.9 s.

In Fig. 17 a, the first row shows ISDs at four travel distances: I
_P
z0 (gray solid curve), I

_P
z

(black solid curve), I
_P
x0 and I

_P
y0 (gray broken curve), and I

_P
x and I

_P
y (black broken curve).

The second row shows those traces normalized by the maximum peak value of I
_P
z . These

traces clearly show increased envelope broadening with increasing travel distance. At
large travel distances, the envelope broadening due to scattering dominates over the
wandering effect. The ratio of the transverse- to the longitudinal-component amplitude
relatively grows up with increasing travel distance even though randomness is small.
Using the inverse Fourier transform of Eq. (64) at od ¼ 0, we have
ð1

r=V0

I
_P
x0 r; t;ocð Þdt ¼

ð1
r=V0

I
_P
y0 r; t;ocð Þdt ¼ 1

4pr2
4V0tM
3r

¼ e2

6
ffiffiffi
p

p
ar

ð66Þ
since lim
od!0

1=s0 � cot s0ð Þ=sins0 ¼ 1=3. The time integral of MS envelope of the trans-

verse component is proportional to the inverse of travel distance. UsingÐ1
�1 4pr2I

_R
0 dt ¼ 1, we have
ð1
r=V0

I
_P
z0 r; t;ocð Þdt ¼ 1

4pr2
1� 8

3

V0tM
r


 �
¼ 1

4pr2
1� 4

ffiffiffi
p

p
e2r

3a


 �
: ð67Þ

_P

The time integral of I z0 is almost proportional to the inverse square of travel distance

whereas the second term is small. Chained curves in Fig. 17 approximately show peak
decay curves of I

_P
z0 and I

_P
x0: the former decreases with the minus fourth power of travel

distance (lapse time) since the second power due to the envelope broadening and the
second power due to geometrical decay; the latter decreases with the minus third power
of travel distance (lapse time) since the first power due to the envelope broadening and
the minus second power due to geometrical decay.

3.1.5. Spherically Outgoing S-Wavelet

Intensity spectral densities: Taking the same procedure as for plane S-waves, we
formulate the envelope synthesis of S-wavelet radiated from a point source in random
media in three dimensions in the case that the S-wave velocity b xð Þ ¼ V0 1þ x xð Þð Þ has
a small fractional fluctuation x xð Þ around the average S-wave velocity V0 and the
wavelength is much smaller than the correlation distance a of medium inhomogeneity.
When we choose vector potential having only y-component, the displacement vector has
polarization in the x-z plane. For isotropic radiation of the y-component S-wave potential
f from a point source located at the origin, f can be written as a superposition of
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FIG. 17. MS envelopes at four travel distances for wavelet radiation from a point source in 3-D
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without wandering effect are shown. Chained curves show asymptotic peak decay curves. (a) ISD
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longitudinal component. (b) ISD traces and normalized ISD traces for S-waves with polarization in

the x-z plane. Normalization uses the maximum peak value of the x-component (Sato, 2007).
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spherical outgoing harmonic waves as Eq. (52). Field U is governed by the parabolic
equation (53) around small transverse distance from the z-axis since the wavelength is
shorter than the correlation distance ak0 >> 1.

By using Cartesian coordinates in a small region around the z-axis at a long distance
from the source, we calculate ISDs by using the TFMCF of field U. The y-component
ISD is always zero,
I
_S
y r; t;ocð Þ ¼ 0 ð68Þ
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and the longitudinal (z)-component ISD is
I
_

I
_S
y ¼
S
z r; t;ocð Þ ¼ 1

2pr2

ð1
�1

dode
�iod t�r=V0ð Þ w~ r;odð Þ � @2

xd

k2c
0G2 x⊥d; r;oc;odð Þ

" #
x⊥d¼0

:

ð69Þ
_R
By using the reference ISD I defined by Eq. (58), we have the x-component ISD as
I
_S
x r; t;ocð Þ ¼ 1

2pr2

ð1
�1

dode
�iod t� r=V0ð Þð Þ w~ r;odð Þ

� 1þ D⊥d

k2c


 �
0G2 x⊥d; r;oc;odð Þ

� 	
x⊥d¼0

¼ I
_R

r; t;ocð Þ � 2I
_S
z r; t;ocð Þ; ð70Þ
where @2
xd 0

G2 ¼ @2
yd 0

G2 is used because of the isotropy of TFMCF in the transverse plane.

When U ¼ �1=
ffiffiffiffiffiffi
4p

p
in Eq. (52), then the y-component vector potential in the angular

frequency domain f~� �eik0r= ik0
ffiffiffiffiffiffi
4p

p
r

� �
is isotropic; however, the corresponding dis-

placement vector components are u~x � z=rð Þeik0r= ffiffiffiffiffiffi
4p

p
r; u~y ¼ 0, and u~z � � x=rð Þeik0r=ffiffiffiffiffiffi

4p
p

r, which is axially symmetric around the y-axis. That is, the initial condition
[Eq. (56)] means the axially symmetric radiation of an S-wavelet with the polarization
perpendicular to the y-axis. We may take the polarization of S-wavelet in the x-direction
at the origin since we study wave propagation along the z-axis. The corresponding initial
ISDs are written by
I
_S
z ¼ 0 and I

_S
x ¼ I

_R ¼ 1

4pr2
d t� r

V0


 �
as r! 0 along the z-direction: ð71Þ
Characteristics of S-wave envelopes for Gaussian ACF: For the case of Gaussian ACF,
using the explicit representation of the reference ISD without wandering effect
[Eq. (63)], we have S-wave ISD of each component without wandering effect as
I
_S
z0 r; t;ocð Þ ¼ 2V0

r
t� r

V0


 �
I
_R
0 r; t;ocð Þ ð72Þ
and
I
_S
x0 r; t;ocð Þ ¼ 1� 4

V0

r
t� r

V0


 �� 	
I
_R
0 r; t;ocð Þ: ð73Þ
That is, by replacing the P-wave average velocity with S-wave average velocity in the
definition of characteristic time, the longitudinal (z) and x-component S-wave ISDs are
given by the transverse and longitudinal-component P-wave ISDs, respectively.
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In Fig. 17b, the fist row shows ISD traces at four travel distances for radiation of
S-wavelet from a point source: I

_S
z0 (gray solid curve), I

_S
z (black solid curve), I

_S
x0 (gray

broken curve), and I
_S
x (black broken curve), where the random media are characterized

by the average S-wave velocity of 3:46 km=s and Gaussian ACF with e ¼ 0:05 and
a ¼ 5 km. The second row shows those normalized by the maximum peak value of I

_S
x .

Envelope broadening becomes apparent with travel distance increasing, where the
envelope width is 1.73 times larger than that of P-wavelet at each travel distance.
Chained curves approximately show peak decay curves of I

_S
x0 and I

_S
z0. The second row

shows that the ratio of the longitudinal- to the transverse-component amplitude grows
with travel distance.
So far it is difficult to synthesize envelopes for nonisotropic radiation from a point

shear dislocation source; however, it might be helpful for understanding seismograms of
microearthquakes to simulate envelopes in random media for simultaneous isotropic
radiation of P- and S-wavelets from a point source. In Fig. 18, we plot � square root of
ISDs at four travel distances, where the S- to P-wave radiation energy ratio WS=WP is
chosen as that of a point shear dislocation source, 23.4 and the random media are the
same as used in Fig. 17. RMS envelopes are normalized by the maximum peak value of
S-wave envelope in the x-component at each travel distance. For S-waves, the appear-
ance of scattered waves having long duration is prominent not only in the transverse
component but also in the longitudinal component at large travel distances. P coda has
long duration in each of three components at large travel distances. These features of
theoretical RMS envelopes in three components qualitatively explain the characteristics
of observed seismograms at high frequencies.
3.2. Two-Dimensional Random Elastic Media

We examine the validity of the Markov approximation for P-wavelet radiation from a
point source by a comparison with the FD simulation in two dimensions (Sato and Korn,
2007).

3.2.1. Wave Envelopes for a Gaussian ACF

For P-waves radiated from a point source at the origin, a cylindrical solution of
the homogeneous equation is H0 k0rð Þ, which has an asymptotic solution
r�1=2 exp ik0r � otð Þ in the far field (r >> 1=k0). At a long distance from the point
source, we may write scalar potential for outgoing P-wavelet in inhomogeneous media as
a sum of harmonic cylindrical waves of angular frequency o in polar coordinate r; yð Þ as
f ¼ 1

2p

ð1
�1

do
U y; r;oð Þ
ik0

ffiffi
r

p ei k0r�otð Þ: ð74Þ
Substituting Eq. (74) into Eq. (3), we obtain the parabolic wave equation for U as
2ik0@rU þ @2
yU

r2
� 2k20xU ¼ 0: ð75Þ
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The TFMCF is defined as the correlation of field U between two locations y
0
and y

00

within a small distance on the transverse line at a distance r at different angular frequencies

o
0
ando

00
,G2 yd; r;oc;odð Þ � U y

0
; r;o

0
 �

U y
00
; r;o

00
 ��D E

, where difference angle yd ¼
y
0� y

00
[Eq. (22)].When randommedia in two dimensions are statistically characterized by a

Gaussian ACF R xð Þ ¼ e2 exp � x2 þ z2ð Þ=a2½ 	, for quasi-monochromatic waves, we derive
the master equation for 0G2 by using the Markov approximation as
@r 0G2 þ i
kd

2k2cr
2
@2
yd 0G2 þ

ffiffiffi
p

p
e2k2cr

2y2d
a

0G2 ¼ 0 ð76Þ
for small difference angle ydj j << 1. Solving Eq. (76) with the initial condition
0G2 yc; yd; r ¼ 0;oc;odð Þ ¼ 1

2p
ð77Þ
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according to Fehler et al. (2000), we have the analytical solution (A.20) as
0G2 yd; r;oc;odð Þ ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffi
s0

sin s0

r
e� 1=s20ð Þ� cot s0=s0ð Þ½ 	 2V0k

2
c tMð Þ=rð Þr2⊥d ; ð78Þ
where r⊥d ¼ ryd.
Taking the same procedure as for 3-D case, we define the reference ISD without

wandering effect in two dimensions as
I
_R
0 r; t;ocð Þ ¼ 1

2pr
1

2p

ð1
�1

dod

ffiffiffiffiffiffiffiffiffiffiffi
s0

sin s0

r
e�iod t� r=V0ð Þð Þ: ð79Þ
The angular-component ISD without wandering effect is given by
I
_P
y0 r; t;ocð Þ � 1

2pr

ð1
�1

dod � 1

k2cr
2
@2
yd 0G2 yc; yd; r;oc;odð Þ

� 	
yd¼0

e�iod t�r=V0ð Þ

¼ 1

2pr
4V0tM

r

1

2p

ð1
�1

dode
�iod t� r=V0ð Þð Þ 1� s0 cot s0

s20

ffiffiffiffiffiffiffiffiffiffiffi
s0

sin s0

r

¼ 4V0

r

1

2pr
1

2p

ð1
�1

dode
�iod t� r=V0ð Þð Þ @

i@od

ffiffiffiffiffiffiffiffiffiffiffi
s0

sin s0

r

¼ 4V0tM
r

t� r=V0ð Þð Þ
tM

I
_R
0 r; t;ocð Þ: ð80Þ
where tM and s0 are the same as those in 3-D case. Using the leading term
@rU � i@2

y U= 2k0r
2ð Þ in Eq. (75), we have the radial component ISD without wandering

effect as
I
_P
r0 r; t;ocð Þ ¼ 1

2pr

ð1
�1

dod 1þ 1

r2k2c
@2
yd


 �
0G2 yc; yd; r;oc;odð Þ

� 	
yd¼0

e�iod t�r=V0ð Þ

¼ I
_R
0 r; t;ocð Þ � I

_P
y0 r; t;ocð Þ

¼ 1� 4V0

r
t� r

V0


 �� 	
I
_R
0 r; t;ocð Þ: ð81Þ
The initial condition [Eq. (77)] represents an isotropic radiation of P-wavelet given by a d
function for the source power time function:
I
_R
0 r; t;ocð Þ ¼ I

_P
r0 r; t;ocð Þ ¼ 1

2pr
d t� r

V0


 �
and I

_P
y0 r; t;ocð Þ ¼ 0 as r ! 0:

ð82Þ

We can numerically evaluate the reference ISD without wandering effect [Eq. (79)] by
using an FFT. In Fig. 19 we plot I

_R
0 by a gray curve against reduced time t� r=V0.
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It takes the maximum value about 3.15/ 2prtMð Þ at reduced time about 0.12tM. The peak
height of I

_R
0 is proportional to the inverse cube of travel distance since the characteristic

time is proportional to the square of distance. A black curve shows t� r=V0ð Þð ÞI_R0=tM
that has the maximum value about 0:49= 2prtMð Þ at reduced time about 0.21tM, which is
nearly twice the peak delay of I

_R
0 . It means that I

_P
y0 has the maximum value about

0:31V0=r
2. The peak height of I

_P
0r is nearly proportional to the inverse square of travel

distance as I
_R
0 when the peak height of I

_P
y0 is negligible. We note that the time integral of

I
_P
y0 is independent of travel distance as
ð1

r=V0

dtI
_P
y0 ¼ e2= 3

ffiffiffi
p

p
a

� � ð83Þ
Ð1 _R
since r=V0
dtI 0 ¼ 1= 2prð Þ.

For the case of isotropic radiation of an S-wavelet from a point source in 2-D random

media, replacing P with S and substituting the average S-wave velocity into V0, I
_P
r and I

_P
y

represent the angular and radial component ISDs I
_S
y and I

_S
r , respectively.

3.2.2. Comparison of Markov and FD Envelopes

The envelopes directly simulated by using the Markov approximation are compared
with FD simulations of P-wave traces. The practical scheme is the same as mentioned in
Section 2.2.2. The size of the model is 450 km by 450 km, where absorbing boundary
conditions are implemented. In the following simulation, we put e ¼ 0.05 and a ¼ 5 km.
Average P- and S-wave velocities and mass density are 6 km=s, 3:46 km=s, and 2800
kg=m3, respectively. The fractional fluctuation of density is chosen as 0:8x xð Þ according
to Birch’fs law.
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The far-field pulse shape of the outgoing P-wavelet in a homogenous medium radiated
isotropically from a source located at the center is given by the convolution ur ¼ g2h,
where g2 r; tð Þ is the 2-D Green function, and the source time function h tð Þ is given by
Eq. (51) with N ¼ 2 and T ¼ 0.5 s for a 2 Hz wavelet. Around the source, a homogeneous
space of 1 km width is introduced to ensure pure isotropic P-wavelet radiation, where the

source time function is scaled to satisfy
Ð T
0
2pr ur 2dt ¼ 1

���� near the source. The wave

field is recorded at four circular arrays at r ¼ 50, 100, 150, and 200 km. Each circular
array consists of 72 receivers at 5 intervals. The spatial discretization in the FD scheme
is 0.1 km and the temporal discretization is 6 ms. Simulated wave traces are transferred
into radial and angular component traces.
Figure 20 shows examples of FD waveforms after traveling 150 km through one realiza-

tion of random medium. Strong distortions of pulse shape and travel time fluctuations are
clearly seen. P-wave is followed by scattered waves in radial-component traces and
scattered waves also appear on angular-component traces. At each travel distance, averag-
ing the square of wave traces over 72 receivers along the circular array in 5 realizations of
randommedia, smoothingwith time constant 0.5 s, and taking the square root, we obtain the
ensemble-averaged trace. Gray curves in Fig. 21 show RMS traces at four travel distances
calculated from FD simulations (FD envelopes). These traces clearly show that the peak
delay and the time width of envelope increase with travel distance increasing in both radial
and angular components. Wave trains in the angular component are a clear evidence of
scattering caused by random inhomogeneity. At each travel distance, the peak amplitude of
the angular component is smaller than that of the radial component; however, the former
amplitude decreasesmore slowly than that of the later amplitude. The peak delay of angular
component is a little larger than that of radial component at each distance.
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FIG. 20. Examples of FD simulation traces on a circular array at a distance of 150 km in a 2-D

random medium for the isotropic radiation of a 2 Hz P-wavelet from the center. Only every second

trace is plotted. Random elastic media are characterized by Gaussian ACF with e ¼ 0.05 and a ¼ 5

km, where the average P- and S-wave velocities and mass density are 6 km=s, 3:46 km=s, and 2800
kg=m3, respectively (Sato and Korn, 2007).
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Using ISDs with wandering effect calculated by the Markov approximation, we perform

the convolution with the source time function’s square of the 2 Hz P-wavelet I
_P
y0�w�i and

I
_P
r0�w�i, and taking square root, we obtain RMS envelopes (Markov envelopes), where we

practically put i tð Þ ¼ 2prjur 2
�� of the FD simulation near the source. In Fig. 21, RMS

Markov envelopes are plotted by black curves together with FD envelopes in gray curves.
We find that the Markov envelope well explains the peak height, the delay of the peak
arrival from the onset, and the envelope broadening of FD envelope in each component at
each travel distance. We find a small discrepancy between them as the reduced time
increases at each travel distance since FD envelopes contain large-angle scattering and
conversion scattering that the Markov approximation neglected. Except for the coda
portion, FD envelopes are quantitatively well explained by Markov envelopes. We con-
firmed the constancy of the time integral of the MS amplitude of the angular component
independent of travel distances with a relative error less than 4%.
4. Discussions

4.1. RTT with the Born Approximation Scattering Coefficients

We have limited ourselves to the case that wavelength is shorter than correlation
distance that leads to little conversion scattering between P- and S-waves and little
large-angle scattering since the basic equation is parabolic. The Markov approximation
cannot be used for modeling the later parts of coda behind the primary arrival of P- or
S-waves, where multiple large-angle scattering dominate. Therefore, it is worthwhile to
compare the Markov approximation with other approaches to the envelope simulation
problem.
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A convenient way to describe the single scattering interaction of a wave field with
random medium fluctuations is the Born approximation. One problem with the Born
approximation is that it does not conserve energy and that it breaks down for the case of
strong forward scattering. This problem was partly overcome by the introduction of the
travel time-corrected Born approximation (Sato, 1984) that excludes the near forward
scattered energy by the introduction of a minimum scattering (cutoff) angle. Within this
concept, energy scattered at small angles around the forward direction is not counted as
energy loss of the primary wave front but only contributes to its travel time fluctuations.
This concept, however, is somewhat heuristic and the size of the cutoff angle has been a
matter of dispute for a long time (Frenje and Juhlin, 2000). There is a theoretical
approach by Kawahara (2002), who determined the cutoff angle on the basis of the
Kramers–Krönig relation.

A more rigorous approach is the RTT (e.g., Rytov et al.,1987; Ryzhik et al., 1996;
Margerin, 2005). The RTT describes energy transport through a scattering medium
neglecting phase information, and is, in principle, capable of modeling both short and
long lapse time coda. Thus, it is more general than the Markov approximation. It works
well if the typical scale length of inhomogeneities and the wavelength are of comparable
size and fluctuations are moderate. For the special case of isotropic scattering, there
exists an analytical solution to the radiative transfer equations (e.g., Zeng et al., 1991;
Paaschens, 1997). For more complex cases, they are usually solved by Monte Carlo
methods (e.g., Hoshiba, 1994; Gusev and Abubakirov, 1996). However, with the isotro-
pic scattering assumption, only the coda formation but not the envelope broadening and
peak delay can be satisfactorily modeled. Nonisotropic scattering can be included by
using Born scattering coefficients at the expense of extra computing time. Comparing the
Markov approximation and the RTT with the Born scattering coefficient to FD simula-
tions of the full wave equation in two dimensions, Wegler et al. (2006) find a good
correspondence of the RTT to the Markov approximation for the case of multiple forward
scattering. Przybilla et al. (2006) presented a Monte Carlo scheme for the solution of the
coupled elastic transport equations, in which individual scattering events in a continu-
ously fluctuating random medium are described by the angular-dependent Born scatter-
ing coefficients. The simulated envelopes in two dimensions have been compared to
envelopes from full wave field FD simulations, much in the same way as was done in this
chapter. Their general result is that the Monte Carlo solution yields accurate envelope
shapes not only for the late coda but also for the time range of the initial P- and S-wave
arrivals, that is forward and small-angle scattering. In the strong forward scattering
regime, ak0 >> 1, broadening by travel time fluctuations of individual ray paths through
the random medium is not explained within RTT, but can be taken into account by
convolving the RTT envelopes with the wandering effect in the same way as it was done
here with the ISDs of the Markov approximation.
Therefore, the Monte Carlo solution of RTT with angular-dependent Born scattering

coefficients offers a unified approach to modeling MS envelope shapes in randommedia.
However, it needs considerable computing resources. This is especially true for strong
forward scattering, where many scattering interactions have to be computed to advance
the energy particles along essentially straight ray paths. For ak0 >> 1, the large comput-
ing times of RTT may even become prohibitive. Therefore, in all cases where we have
strong forward scattering and/or we are not interested in the later parts of the coda, the
Markov approximation has the advantage of a very fast and efficient envelope simulation
method.
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4.2. Realistic ACFs for Random Media

The theoretically predicted envelopes are independent of frequency since a Gaussian
ACF is used for characterizing random media for mathematical simplicity. In real data,
the broadening of S-seismogram envelope depends on frequency in some areas (Obara
and Sato, 1995) and the peak ratio of the transverse to longitudinal envelopes of
teleseismic P-waves increases with frequency (Kubanza et al., 2007). For representing
realistic inhomogeneity of the lithosphere, a power-law spectrum is more appropriate
than a Gaussian spectrum (e.g., Goff and Holliger, 2000; Shiomi et al., 1997). As shown
in the case of scalar waves (Saito et al., 2002), we will be able to derive vector-wave
envelopes having strong frequency dependence if we use a von Kármán-type ACF, which
has a power-law spectrum as the asymptote at large wave numbers. It will be useful
especially for the study of S-wave envelopes observed in the back-arc side of the
volcanic front in Japan, where the envelope broadening is larger in higher frequencies
(Obara and Sato, 1995; Takahashi et al., 2007). Even for the case of a von Kármán-type
ACF, it is basically possible to simulate vector-wave envelopes by numerically integrat-
ing the master equation for TFMCF. When the PSDF is rich in short wavelengths,
however, it is necessary to compare with FD simulations since the contribution of
large-angle scattering and conversion scattering between P- and S-waves becomes larger.
The mathematical formulation is restricted to specific initial conditions; however, the

plane wave formulation is applicable to teleseismic P-wave envelopes and the spherical
wavelet formulation is useful for the study of seismograms of explosions. There remains
an important subject to formulate envelope synthesis of vector waves for nonisotropic
radiation from a point shear dislocation source.
We may put a focus on the anisotropic characteristics of random inhomogeneity.

Examining the lithological map of a typical exposure of the lower continental crust,
Holliger and Levander (1992) found anisotropy of correlation distance with the aspect
ratio of 3–5. Wu et al. (1994) reported a difference in correlation distances in vertical and
horizontal from the analysis of the well-log data of KTB holes. Deep seismic soundings
of the crust as well as geological observations often reveal the existence of elongated or
preferentially oriented scattering structures. Furumura and Kennett (2005) proposed a
random-medium oceanic slab as an efficient waveguide, where the correlation distance
in thickness is shorter than that along the length of the subducting plate. They numeri-
cally showed frequency-selective propagation characteristics with a faster low-frequency
phase followed by large high-frequency signals with very long coda. Saito (2006) studied
the envelope broadening of scalar waves in 2-D random media characterized by an
anisotropic ACF by using the Markov approximation. It predicts that envelopes increase
in duration more rapidly in the horizontal propagation than in the vertical propagation
when the media are characterized by long horizontal and short vertical correlation
distances. Margerin (2006) directly simulated envelopes in anisotropic random media
by solving the Bethe-Salpeter equation in the diffusion regime. He showed that simulated
coda envelope decays are strongly controlled by eigenvalues of the diffusion tensor
calculated from the anisotropic ACF. These simulations suggest that observed seismo-
gram envelopes could be strongly controlled not only by travel distance but also by ray
directions relative to the principal axes of anisotropic inhomogeneity. It is very necessary
to simulate vector envelopes from the onset to coda in anisotropic random elastic media.
The envelope simulation method here developed assumed the homogeneity of random-

ness; however, the randomness varies from place to place as shown in the Japan arc in
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relation with Quaternary volcanoes. It is important to develop an envelope simulation
method in the case that the statistical parameters are not spatially uniform. Recently, Saito
et al. (2008) studied scalar wave propagation through two-layer random media in two
dimensions characterized by weak and strong inhomogeneities on the basis of theMarkov
approximation. They confirmed the coincidence of the synthesized envelopes with envel-
opes calculated from FD simulations. It will be also necessary for us to develop envelope
synthesis in random media with smoothly varying background velocity.
5. Summary

Observed high-frequency seismograms of local earthquakes are complex; however, it
is known that their amplitude envelopes vary regionally and systematically, reflecting
seismotectonic settings. It is useful to characterize the band-pass filtered seismogram of
each vector component by its peak amplitude, peak delay from the onset, and apparent
envelope width in relation to the travel distance and the ray path. As mathematical basis
of the vector-wave envelope analysis for structure studies, we present a stochastic
method considering an ensemble of random elastic media. We have introduced the
Markov approximation method for the direct simulation of vector-wave envelopes for
the case that the fractional fluctuation velocity is small and the wavelength is shorter than
the correlation distance of random media characterized by a Gaussian ACF. Then, P- and
S-waves are treated separately by using potentials since there is little conversion scatter-
ing between them. The Markov approximation leads to the stochastic master equation for
the TFMCF of potential field, from which by use of the Fourier transform we are able to
synthesize vector-wave envelope traces in time domain. We have shown the mathemati-
cal formulations for a plane wavelet incidence case and a point source radiation case in
two and three dimensions. In the case of Gaussian ACF, TFMCF is analytically solved,
and vector-wave envelopes in time domain are analytically expressed by using elliptic
theta functions especially in three dimensions. The characteristics of resultant vector-
wave envelopes are frequency independent. In addition to the applicability condition for
the parabolic approximation ak0 >> 1 and that for the Markov approximation
a2k20e

2 << 1, there is an additional positive condition of all vector component intensities
that the reduced time is shorter than the quarter of the travel time. The validity of the
direct envelope synthesis with the Markov approximation is confirmed by a comparison
with vector-wave envelopes calculated from FD simulations in 2-D random media with
a ¼ 5 km and e up to 0.05 for a 2 Hz wavelet.
For P-wave, this approximation predicts not only the peak delay and the envelope

broadening with a smoothly decaying tail in the longitudinal component but also the
excitation of wave amplitude with a longer tail in the transverse component. Main
mechanism is successive ray bending processes caused by random velocity fluctuations.
The maximum peak of the transverse component is smaller than that of the longitudinal
component; however, the peak delay time from the onset of the transverse component is
longer than that of the longitudinal component. The decay of the maximum peak of the
transverse component with travel distance increasing is weaker than that of the longitudi-
nal component, that is the relative partition of energy into the transverse component
becomes larger as travel distance increasing. The ratio of the MS fractional velocity
fluctuation to the correlation distance is the key parameter characterizing the envelope
broadening and the partition of energy into the transverse component. For plane wave
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case, the time integral of theMS amplitude of the transverse component linearly increases
with travel distance increasing, where the linear coefficient gives this ratio. For spherical
wave case, the time integral of the MS amplitude of the transverse component is inversely
proportional to the travel distance, where the coefficient gives this ratio.
Characteristics of polarized S-wave envelopes are also studied. The maximum peak of

the longitudinal component is smaller than that of the transverse component in the
original polarization; however, the peak delay time from the onset of the longitudinal
component is longer than that of the transverse component, where there is no excitation
of amplitude in the direction normal to the global ray direction and the original polariza-
tion even though ray bending is possible in any direction. For the same randomness, the
envelope broadening of S-wavelet is larger than that of P-wavelet by a factor of the ratio
of their average velocities.
Developing the Markov approximation for random media having more realistic

spectrum and background velocities, the stochastic direct syntheses of vector envelopes
will serve for the mathematical interpretation of high-frequency seismograms in terms of
lithospheric inhomogeneity.
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Appendix: Analytic Solutions of the Stochastic Master
Equations for TFMCF

When randommedia are characterized by the average velocityV0 and theGaussianACF
with RMS fractional fluctuation e and correlation distance a, the stochastic master
equation for TFMCF based on the Markov approximation can be analytically solved.
In the following text, we briefly showhow to solve differential equations in different cases.
Plane Wave in Three Dimensions

Forwave propagation through randommedia spreading over a 3-D half space (z > 0), we
solve the following differential equation under the initial condition 0G2 r⊥d; z ¼ 0ð Þ ¼ 1:
@z 0G2 þ i
kd
2k2c

D⊥d 0G2 þ k2c
ffiffiffi
p

p
e2r2⊥d

a
0G2 ¼ 0; ðA:1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where D⊥d is a transverse Laplacian and r⊥d � x2d þ y2d is a transverse distance.

Normalizing the z-coordinate by the receiver distance Z as t ¼ z=Z, and scaling the
transverse distance by using the coherent radius a⊥ as w � r⊥d=a⊥ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
p

e2k2cZ=a
p

r⊥d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0k2c tM=Z
� �q

r⊥d, we have
@t 0G2 þ itMod @2
w þ w�1@w

 �
0G2 þ w20G2 ¼ 0; ðA:2Þ



88 SATO AND KORN
where the characteristic time tM ¼ ffiffiffi
p

p
e2Z2= 2V0að Þ and the initial condition is

0G2 w; t ¼ 0ð Þ ¼ 1. Assuming the solution having the form 0G2 w; tð Þ ¼ ev tð Þw2=w tð Þ, we
write Eq. (A.1) as
dv

dt
þ s20v

2 þ 1


 �
w2 þ ðs20v�

1

w

dw

dt
Þ ¼ 0; ðA:3Þ

ffiffiffiffiffiffiffiffiffiffip

where parameter s0 ¼ 2epi=4 tMod. Each term in parentheses must be zero regardless
of w. Using the initial condition v t ¼ 0ð Þ ¼ 0, we have n tð Þ ¼ �tan s0t=s0 as the solution
of v

0 þ s20v
2 þ 1 ¼ 0. For the initial condition w t ¼ 0ð Þ ¼ 1, we have w tð Þ ¼ cos s0t as

the solution of s20n� w
0
=w ¼ 0. Thus, we obtain
0G2 w; t ¼ 1ð Þ ¼ e� tan s0=s0ð Þw2

cos s0
: ðA:4Þ
By using the original coordinates, we have TFMCF at distance Z as
0G2 r⊥d; Zð Þ ¼ 1

cos s0
e� tan s0=s0ð Þ 2V0k

2
c tMð Þ=zð Þ x2

d
þy2

dð Þ: ðA:5Þ
It was originally solved by Sreenivasiah et al. (1976).
Plane Wave in Two Dimensions

For wave propagation through random media spreading over a 2-D half space (z > 0),
we solve the following differential equation under the initial condition

0G2 x⊥d; z ¼ 0ð Þ ¼ 1:
@z 0G2 þ i
kd
2k2c

@2
xd 0G2 þ k2c

ffiffiffi
p

p
e2a

xd
a

 �2
0G2 ¼ 0: ðA:6Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

Taking the same scaling as was done for the 3-D case, t ¼ z=Z and w ¼ 2V0k2c tM=Zxd,
we have the master equation in nondimensional form as
@t 0G2 þ itMod@
2
w 0G2 þ w2 0G2 ¼ 0: ðA:7Þ

2

Assuming the solution having the form 0G2 w; tð Þ ¼ ev tð Þw =o tð Þ, we write Eq. (A.6) as
dn
dt

þ s20v
2 þ 1


 �
w2 þ s20

2
v� 1

w

dw

dt


 �
¼ 0: ðA:8Þ
In order to satisfy Eq. (A.8) for any w, each quantity in parentheses should be zero. The
solution of n

0 þ s20v
2 þ 1 ¼ 0 satisfying the initial condition v t ¼ 0ð Þ ¼ 0 is

v tð Þ ¼ �tan s0tð Þ=s0. The solution of s20=2
� �

v� w
0
=w ¼ 0 satisfying the initial condition

w t ¼ 0ð Þ ¼ 1 is w tð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos s0tð Þp

. Then, we have
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0G2 w; t ¼ 1ð Þ ¼ e� tan s0=s0ð Þw2ffiffiffiffiffiffiffiffiffiffiffi
cos s0

p : ðA:9Þ
By using the original coordinates, we have TFMCF at distance Z as
0G2 x⊥d; Zð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
cos s0

p e� tan s0=s0ð Þ 2V0k
2
c tMð Þ=zð Þx2d : ðA:10Þ
It was solved by Korn and Sato (2005).
Spherical Wave in Three Dimensions

For spherical wave isotropically radiated from a point source at the origin in 3-D
random media, we solve the following differential equation:
@r 0G2 þ i
kd
2k2c

1

r2
@2

@y2d
þ 1

yd

@

@yd

 !
0G2 þ

ffiffiffi
p

p
e2k2cr

2

a
y2d 0G2 ¼ 0; ðA:11Þ
under the initial condition 0G2 yd; r ¼ 0ð Þ ¼ 1= 4pð Þ. Normalizing the radial distance r by
the receiver distance r0 as t ¼ r=r0 and scale the transverse distance as
w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
p

e2k2cr0=a
p

r0yd, we have
@

@t 0G2 þ itMod

1

t2
@2

@w2
þ 1

w
@

@w


 �
0G2 þ t2w2 0G2 ¼ 0; ðA:12Þ
ffiffiffip
where the characteristic time tM ¼ pe2r20= 2V0að Þ and the initial condition is

0G2 w; t ¼ 0ð Þ ¼ 1=4p. Assuming the solution having the form 0G2 w; tð Þ ¼ ev tð Þw2=w tð Þ,
we write the master equation as
2n
t
þ v

0 þ s20n
2 þ 1


 �
t2w2 þ s20n�

w
0

w


 �
¼ 0: ðA:13Þ

0

Each term in brackets must be zero regardless of w. Solving 2n=tþ n þ s20n

2 þ 1 ¼ 0
under the initial condition v 0ð Þ ¼ 0, we have the solution v ¼ cot s0tð Þ=s0 � 1= s20t

� �
.

The solution of s20n� w
0
=w ¼ 0 is w tð Þ ¼ 4p sin s0tð Þ=s0t for the initial condition

w 0ð Þ ¼ 1. Thus, we obtain
0G2 w; t ¼ 1ð Þ ¼ 1

4p
s0

sin s0
e� 1=s2

0ð Þ� cot s0=s0ð Þ½ 	w2 : ðA:14Þ
By using the original coordinates, we have TFMCF at distance r0 as
0G2 r⊥d; r0ð Þ ¼ 1

4p
s0

sin s0
e� 1=s2

0ð Þ� cot s0=s0ð Þ½ 	ðð2V0k
2
c tMÞ=r0Þr2⊥d ; ðA:15Þ
where r⊥d ¼ r0yd. It was first solved by Shishov (1974).
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Cylindrical Wave in Two Dimensions

For cylindrical wave isotropically radiated from a point source at the origin in 2-D
random media, we solve the following differential equation:
@r 0G2 þ i
kd

2k2cr
2
@2
yd 0G2 þ

ffiffiffi
p

p
e2k2cr

2y2d
a

0G2 ¼ 0; ðA:16Þ
under the initial condition 0G2 yd; r ¼ 0ð Þ ¼ 1= 2pð Þ. Normalizing the radial distance r by
the receiver distance r0 as t ¼ r=r0 and scale the transverse distance as
w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

p
e2k2cr0=a

p
r0yd, we have
@

@t 0G2 þ itMod

1

t2
@2

@w2 0G2 þ t2w20G2 ¼ 0; ðA:17Þ
where the initial condition is 0G2 w; t ¼ 0ð Þ ¼ 1= 2pð Þ. Assuming the solution having the
form 0G2 w; tð Þ ¼ ev tð Þw2=w tð Þ, we write the master equation as
2n
t
þ v0 þ s20n

2 þ 1


 �
t2w2 þ s20

2
n� w

0

w


 �
¼ 0: ðA:18Þ
Each term in brackets must be zero regardless of w. The solution of 2n=tþ n0 þ s20n
2 þ 1 ¼

0 for the initial condition v 0ð Þ ¼ 0, we have v ¼ cot s0tð Þ=s0 � 1= s20t
� �

. The solution of
s20=2
� �

n� w0=w ¼ 0 is w tð Þ ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin s0t=s0t

p
: for the initial condition w 0ð Þ ¼ 1. Thus,

we obtain
0G2 w; tð Þ ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffi
s0

sin s0

r
e� 1=s2

0ð Þ� cot s0=s0ð Þ½ 	w2 ðA:19Þ
By using the original coordinates, we have TFMCF at distance r0 as
0G2 r⊥d; r0ð Þ ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffi
s0

sin s0

r
e� 1=s20ð Þ� cot s0=s0ð Þ½ 	 2V0k

2
c tMð Þ=r0ð Þr2⊥d ; ðA:20Þ
where r⊥d ¼ ryd. It was solved by Fehler et al. (2000).
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GEOMETRICAL OPTICS OF ACOUSTIC
MEDIA WITH ANISOMETRIC RANDOM
HETEROGENEITIES: TRAVEL-TIME
STATISTICS OF REFLECTED AND

REFRACTED WAVES

Ayse Kaslilar,1 Yury A. Kravtsov and Serge A. Shapiro
Abstract

When deterministic methods become insufficient to resolve the complexity of a medium, statistical

investigation becomes necessary. This helps to characterize the medium by its statistical parameters

such as mean value, standard deviation, correlation function, and correlation distance. In this

chapter, we develop a formalism based on geometrical optics (GO), which allows us to estimate

the statistical parameters (the standard deviation and the inhomogeneity scale lengths in vertical

and horizontal directions) from travel-time fluctuations of reflected and refracted seismic waves.

We consider a three-dimensional random elastic medium with quasi-homogeneous statistics and

anisometric (statistically anisotropic) inhomogeneities. We derive the covariance and the variance

functions which are fundamental to estimate the statistical parameters. For the reflection geometry,

we reconfirm the double passage effect (DPE) of the travel-time variance quadruplicating at zero

offsets. For the refraction geometry, we observe a closely related but a new phenomenon—

the reduction of travel-time variance at large offsets, which has not yet been described before.

We propose a procedure for estimating the statistical parameters of the medium from travel-time

fluctuations of refracted waves. The procedure is illustrated by the numerical simulations of the

random refractive medium.

Key Words: Random media, geometrical optics, travel-time fluctuations, double passage effect,

nonisometric random media, reflected and refracted waves. � 2008 Elsevier Inc.

1. Introduction

The geometrical optics (GO) method is the most popular approach used in global and
exploration seismology to determine the velocity field from both active and passive
seismic data. For estimating the velocity field of the large-scale geological structures, the
travel-time tomography and velocity analysis methods are sufficient. When information
on small-scale structures is necessary, as in the case of reservoir characterization, the
statistical parameters of the medium such as the mean value, the standard deviation, the
covariance function, and the correlation lengths in different directions might be helpful
to obtain more information on the velocity structure. This information can be provided
by considering the wave propagation in random media.
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In 1960s, the main applications of wave propagation in random media were related
with the atmospheric wave propagation (optics, radio, and radar) and underwater sound
propagation. The related theory was developed by Chernov (1960), Tatarskii (1961,
1967, 1971), Ishimaru (1978, 1997), and Rytov et al. (1989a,b) and was widely used
in these fields. Random media concept in seismology appeared first around 1970s by
Aki (1969) and by Aki and Chouet (1975) with their work on coda waves from local
earthquakes. Following these pioneering works, wave propagation in random media
became an important topic in seismology and was examined by many scientists. The
developments over a few last decades in the field of seismic wave propagation and
scattering in randomly inhomogeneous earth structure were given in Sato and Fehler
(1998). Scattering, transmission, and reflection of elastic waves in randomly layered
media have been investigated by Shapiro and Hubral (1998). Also, detailed information
on ray perturbation theory for inhomogeneous media can be found in publications by
Snieder and Sambridge (1992) and by Kravtsov (2005).
In a randomly inhomogeneous media, the fluctuations of the medium parameters

affect the travel-time and amplitudes of the seismic waves. In such a medium, the
perturbation theory can be used to estimate the statistical parameters of the medium
from the travel-time information. The relation between the travel-time fluctuations and
medium fluctuations has been investigated by Müller et al. (1992), Witte et al. (1996),
and statistical inverse problems for estimating the statistical parameters of the medium
has been studied by Roth (1997), Touati et al. (1999), Iooss et al. (2000), Kravtsov et al.
(2003), and Kravtsov et al. (2005). Non-GO (based on Rytov Approximation) consider-
ation of primary (ballistic) wave travel-time fluctuation and attenuation has been exam-
ined by Shapiro and Kneib (1993), Shapiro et al. (1996), and Müller et al. (2002).
In this chapter, the GO method is used to estimate the statistical properties of the

medium by considering both reflection and refraction geometries. The ray trajectories for
both geometries are illustrated in Fig. 1a and b. In the case of reflecting geometry
(Fig. 1a), the seismic signal emitted by the source reflects from an interface I, and then
returns to the Earth’s surface. For refraction geometry, the seismic wave does not
experience reflection and arrive to the surface due to regular refraction in the rocks
(Fig. 1b). In both cases, the problem is to estimate the statistical parameters of the rocks
S
x

z

I

(a) (b)

SR R

FIG. 1. The geometry of the reflected (a) and refracted (b) rays. S is the wave source, R is the

receiver, and I is the reflecting interface.
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from the observed time series. By refracted waves, we indicate the turning (or diving)
type of refracted waves and exclude the head waves.
The chapter is organized as follows. General information on GO method as applied to

seismic wave propagation in random media is given in Section 2. In Sections 3 and 4, the
travel-time fluctuations are analyzed and the fundamental equations for estimating the
medium statistical parameters are derived for reflected and refracted waves, respectively.
In Section 5, a numerical simulation is performed in a random refractive medium and the
estimation procedures of the medium statistical parameters are explained. Finally the
conclusions are given in Section 6.
It should be noted that this chapter essentially uses materials from our recent publica-

tions Kravtsov et al. (2003) and Kravtsov et al. (2005).
2. Basic Elements of the GO Method

2.1. Basic Equations of the GO

The GO is an efficient method widely used in exploration seismology to solve the
wave propagation problem both in homogeneous and inhomogeneous media. GO deals
with the rays, which are perpendicular to the wave fronts. In this chapter, wave propaga-
tion in random media is considered and the main subject of interest is the statistical
properties of the ray trajectories, their travel-times, and amplitudes. In what follows, we
shall discuss mainly the statistics of travel-time fluctuations.
Let us consider the wave propagation in a time-independent, acoustic, isotropic, and

nondispersive medium. The medium is characterized by the refractive index n rð Þ, which
is the ratio of the reference velocity v0 to the wave velocity v rð Þ at a given location,
n rð Þ ¼ v0=v rð Þ. The zeroth-order approximation of the GO represents the wave-field
u r; tð Þ in the form (Kravtsov and Orlov 1990; Born and Wolf 1999; Červenỳ 2001):
u r; tð Þ ¼ A rð Þ f t� c rð Þ
v0

� �
: ð1Þ
Here f is an initial wave-form of the emitted seismic pulse, A rð Þ is the amplitude of the
leading term of the Debye expansion, and c rð Þ is the “optical path” or “eikonal,” which
satisfies the eikonal equation
j▽cðrÞj2 ¼ n2ðrÞ: ð2Þ

In the framework of GO, the travel-time t from the source to the observation point is
given by
t ¼ c rð Þ
v0

: ð3Þ
It follows from Eq. (2) that eikonal c rð Þ can be obtained by integrating the refractive
index over the ray
c rð Þ ¼
ð
n rð Þds: ð4Þ
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Here ds is the differential elementary arc length along the ray and r ¼ r sð Þ is the ray
trajectory, which obeys the following ray equations:
dr

ds
¼ k;

dk

ds
¼ ▽⊥n rð Þ � ▽n rð Þ � k k▽n rð Þð Þ: ð5Þ
In Eq. (5), k ¼ ▽c
n

is a unit vector, tangent to the ray and ▽⊥n rð Þ is the transverse

component of▽n rð Þ ¼ grad n rð Þ. According to Eqs. (3) and (4), the travel-time can also
be presented by an integral along the ray as
t ¼ 1

v0

ð
n rð Þds ¼

ð
ds

v rð Þ ¼
ð
m rð Þds; ð6Þ
where m rð Þ ¼ 1=v rð Þ is the wave slowness. Eq. (3) explains how to apply the known
results obtained earlier for eikonal variations in the random media by Chernov (1960),
Tatarskii (1961, 1967, 1971), Ishimaru (1978, 1997), and Rytov et al. (1989b) for the
analysis of the travel-time fluctuations.
Following perturbation theory, let us represent the refractive index n rð Þ in the random

medium as a sum of the mean value n
��

rð Þ and the random part n~ rð Þ as follows

n rð Þ ¼ n

―
rð Þ þ n~ rð Þ: ð7Þ

verage value of the random part n~ rð Þ is assumed to be zero hn~ rð Þi ¼ 0 since an
The a
ensemble of random media is considered, and variance of n~ rð Þ is considered to be much
smaller in comparison with the background part
s2n � Var n~ rð Þ½ � ¼ hn~2i � n
― 2: ð8Þ
Theoretically an ensemble (independentmedium realizations) average of a quantity requires
infinite number of realizations. Therefore in reality what we can obtain is the statistical
average based on the finite number of realizations. Practically each realization corresponds
to source and receiver groups, for example, common-shot gathers of a multichannel seismic
survey,warranting statistical independence of thewave fields and statistical homogeneity of
fluctuations of the medium parameters. Here and hereafter the statistical averaging is
denoted by angular bracketsh:::i, or by upper bar ð:::Þ. All other values of interest such as
ray trajectory r, eikonal c, slowness m rð Þ, velocity v rð Þ, and travel-time t can also be
presented in the form similar to Eq. (7) and by inequalities similar to Eq. (8).
Substituting n rð Þ ¼ n

��
rð Þ þ n~ rð Þ and c ¼ c�� þ~c into eikonal equation (Eq. 2) and

taking into account Eq. (8), one can arrive at the well-known first-order approximation
for the eikonal (Chernov, 1960; Tatarskii, 1961, 1967, 1971; Ishimaru, 1978, 1997;
Rytov et al., 1989b; Kravtsov and Orlov, 1990; Kravtsov 2005),
~c ¼
ð
n~ rð Þd s― : ð9Þ

~
Correspondingly the first-order travel-time variation t is
~t ¼
~c
v0

¼ 1

v0

ð
n~ rð Þd s

― ¼
ð
~m rð Þd s― : ð10Þ
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Eqs. (9) and (10) imply the integration of the refractive index fluctuation over the
unperturbed ray. This fact was discussed also by Farra and Madariaga (1987), Snieder
and Sambridge (1992), and Witte et al. (1996). For brevity the upper bar over the regular
ray trajectory r

��
and the arc length s

��
will be omitted hereafter.
2.2. Model of Quasi-Homogeneous Fluctuations of Medium Parameters

Model of quasi-homogeneous fluctuations (QHF) of refractive index fluctuations,
suggested by Rytov et al. (1989a,b), deals with covariance function of the form
FIG.

d sþð Þ,
Cn r1;r2ð Þ � hn~ r1ð Þ n~ r2ð Þi ¼ s2n rþð ÞK r1 � r2; rþð Þ: ð11Þ
Here rþ ¼ r1 þ r2ð Þ=2 is the center of gravity of the position vectors r1 and r2 (Fig. 2), K
is a normalized correlation function (correlation coefficient) which is equal to unit at
r1 � r2 ¼ 0 : K 0;rþð Þ ¼ 1, and tends to zero, when r1 � r2j j exceeds a characteristic
(correlation) length lc.
In the framework of the QHF model, the correlation coefficient K as well as the

variance s2n may slowly depend on the center of gravity vector rþ. Corresponding
characteristic scale l+ is supposed to be much larger than the correlation length
lc, lþ � lc. The QHF model admits the description of both isotropic and anisometric
(statistically anisotropic) fluctuations, which may have different correlation lengths lx, ly
and lz in x, y, and z directions, respectively. Moreover, the ratio lx:ly:lz as well as the
spatial orientation of the main symmetry axes of the covariance function might slowly
change. For statistically homogeneous fluctuations characteristic scale l+ tends to infin-
ity, so that covariance function (Eq. 11) becomes independent on center of gravity
vector r+. The model of QHF was applied to seismic problems by Kravtsov et al.
(2003, 2005).
s1

s2

r1(s1)

r2(s2)

d(s+)

k (s+)s−

2. Representation of the difference of the ray trajectories r1 � r2 in terms of transverse,

and longitudinal, k sþð Þs� components (reprinted from Kravtsov et al., 2005).
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2.3. Travel-Time Covariance Function in a Medium with Anisometric Fluctuations

According to Eq. (10), covariance function for travel-time fluctuations ~t can be
expressed through the covariance function of medium fluctuations in a following way:
Ct R1;R2ð Þ ¼ h~t R1ð Þ~t R2ð Þi ¼ 1

v20

ðS R1ð Þ

0

ds1

ðS R2ð Þ

0

ds2Cn r1 s1ð Þ; r2 s2ð Þ½ �: ð12Þ
Here R1 and R2 are the locations of the observation points (receivers), S R1ð Þ and S R2ð Þ
are the total arc lengths of the rays arriving to these receivers. The current arc lengths of
the rays are given by s1 and s2 (Fig. 2). First, let us consider the travel-time fluctuations in
conditions of refractive geometry, when regular refraction plays a significant role.
Fluctuations in conditions of reflecting geometry will be studied in Section 3.
Let us introduce new variables s� ¼ s1 � s2 and sþ ¼ s1 þ s2ð Þ=2 in Eq. (12) and

expand the trajectories r1 s1ð Þ and r2 s2ð Þ (Fig. 2) into power series in difference variable
s�. Taking into account the zeroth- and first-order terms in r1 s1ð Þ � r2 s2ð Þ and the
zeroth-order term in rþ ¼ r1 þ r2ð Þ=2 ¼ rþ sþð Þ the difference term r1 � r2 in
Eq. (12) becomes
r1 s1ð Þ � r2 s2ð Þ ffi k sþð Þs� þ d sþð Þ: ð13Þ

Here k sþð Þ ¼ drþ=ds is a unit vector tangent to the median ray r ¼ r sþð Þ, while the
terms k sþð Þs� and d sþð Þ are the longitudinal and transverse distances between points
r1 s1ð Þ and r2 s2ð Þ of adjacent rays, respectively (Fig. 2). Using identity ds1ds2 ¼ ds�dsþ,
Eq. (12) can be written as follows
Ct R1;R2ð Þ ¼ 2

v20

ðS<
0

s2n rþ sþð Þ½ �dsþ
ð1
0

ds� K k sþð Þs� þ d sþð Þ; rþ sþð Þ½ �: ð14Þ
Here the upper limit of integration over s_ is extended to infinity since K goes to zero at

large distances, r1 � r2j j � lc. Besides,
Ð1

�1
ds� is transformed into 2

Ð1
0

ds� and the least

value S< ¼ min S R1ð Þ; S R2ð Þ½ � is taken as the upper limit of integration over s+. This is
commonly accepted in the ray theory of wave propagation through random media
(Chernov, 1960; Tatarskii 1961, 1967, 1971; Ishimaru, 1978, 1997; Rytov et al., 1989b).
When the observation points coincide, R1 ¼ R2 ¼ R, then d ¼ 0 and the internal

integral in Eq. (14) becomes
leff k; sþð Þ ¼
ð1
0

K k sþð Þs�; rþ sþð Þ½ �ds�: ð15Þ
Here leff k; sþð Þ denotes an effective correlation length in direction k sþð Þ ¼ drþ=ds at
the point rþ sþð Þ. In the case of anisometric randomly inhomogeneous medium, the
effective correlation length leff can be calculated by using a normalized correlation
function K Drð Þ ¼ b g Drð Þ½ � of anisometric argument (Iooss, 1998)
g Drð Þ ¼ Dx
lx

� �2

þ Dy
ly

� �2

þ Dz
lz

� �2
" #1=2

: ð16Þ
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Here b gð Þ stands as a symbol for a model correlation function such as Gaussian, b gð Þ ¼
exp �g2ð Þ or exponential, b gð Þ ¼ exp �gð Þ.

In the case, when the random medium is statistically homogeneous in a horizontal
plane (x, y), one can replace lx and ly with a horizontal characteristic scale lh, which
typically is larger than vertical scale lz, lh � lz:
g Drð Þ ¼ Dxð Þ2 þ Dyð Þ2
l2h

þ Dzð Þ2
l2z

" #1=2

: ð17Þ
Then for a ray, incident on a horizontal plane at an angle y, between the ray and vertical
axis z, one has
leff ¼ G
sin y
lh

� �2

þ cos y
lz

� �2
" #�1=2

; ð18Þ

ffiffiffip

where G ¼ 1 for exponential correlation function b gð Þ ¼ exp �gð Þ and G ¼ p=2 for
Gaussian correlation function b gð Þ ¼ exp �g2ð Þ. According to Eq. (18), leff takes a value
Glz for a vertical ray, that is for y ¼ 0, and value Glh for a horizontal ray, that is for
y ¼ p=2.
In the case R1 ¼ R2 ¼ R, the covariance expression (Eq. 14) becomes the travel-time

variance
s2t ¼ Ct Rð Þ ¼ 2

v20

ðS<
0

s2n rþ sþð Þ½ �leff sþð Þdsþ: ð19Þ
Note that for an isotropic medium, where all the characteristic scales lx, ly, and lz are
equal to each other, lx¼ ly¼ lz¼ lc and the correlation coefficient does not depend on the
ray direction, an effective correlation length leff is equal to the isotropic characteristic
scale lc:
leff sþð Þ ¼
ð1
0

K s�; rþ sþð Þ½ �ds� ¼ Glc sþð Þ: ð20Þ
2.4. Boundary of GO Applicability

For the validity of the GO method, the inhomogeneity characteristic length lc should
be much greater than the typical wavelength l of the seismic wave,
lc � l; ð21Þ

and the cross-section af of the Fresnel volume surrounding the ray should be smaller as
compared with the transverse scale l? of the inhomogeneities (Kravtsov and Orlov, 1990;
Born and Wolf, 1999)
af 	
ffiffiffiffiffiffi
Ll

p
< l⊥: ð22Þ



102 KASLILAR ET AL.
The former is the necessary condition and the latter is the sufficient condition for the
applicability of the GOmethod. Here L stands for the typical distance between the source
and the receiver.
According to Eq. (22), the largest distance for GO applicability is of the order of
Lmax 
 l2⊥
l
: ð23Þ
At larger distances, diffraction phenomena should be taken into account. Some diffrac-
tion phenomena for seismic waves in random elastic media have been considered by
Shapiro et al. (1996), Tong et al. (1998), Marquering et al. (1999), Nolet and Dahlen
(2000), Spetzler and Snieder (2001), and Baig et al. (2003). In these papers, they
compare the results of their relations by the GO-based results and discuss the limits of
the GO method. The most important diffraction phenomenon, arising beyond limiting
distance Eq. (23), is the phenomenon of strong fluctuations, which result from random
caustics and random foci forming (Rytov et al., 1989b).
However, as it follows from the more powerful methods than GO method, the method

of smooth perturbations by Rytov or the method of parabolic equation (Rytov et al.,
1989b), some results of GO approximation preserve their applicability even far beyond
the distance Eq. (23). It concerns first of all the eikonal variance, which at larger
distances acquires a constant multiplier, a value comparable with unit, but preserves its
dependence on distance. One can hope therefore that the same is true for travel-time
variance Eq. (19). We accept this hypothesis in what follows, though we understand the
necessity of its validation by numerical simulation on the basis of the full wave equation.
It is worth to notice that beyond the area of the validity of GO the diffraction results
should be used for fitting the empirical data. As it was shown by Roth (1997), the
parameters, inverted on the basis of diffraction theory, may noticeably differ from the
results reconstructed in the frame of GO approach.
3. Travel-Time Fluctuations in Reflection Geometry

3.1. Reflection Geometry

In this section, the travel-time fluctuations will be examined for the reflection geome-
try, when one layered heterogeneous overburden is placed over a horizontal interface,
located at a depth D (Fig. 3a and b). From the following relations of the medium
parameters
v ¼ v�þ~v; n ¼ n�þ n~; m ¼ m�þ~m; n ¼ v0=v ¼ v0m; ð24Þ
one can derive
n�¼ v0= v�¼ v0 m�; n~¼ v0~m ¼ �v0~v= v�
2; s2n ¼ s2vv

2
0= v�

4 ¼ v20s
2
m: ð25Þ
Supposing that refraction is weak enough in the layer of depth D, one may accept the
mean value v� as the reference velocity v0, v� 	 v0, so that the relations in Eq. (25)
becomes as follows,
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FIG. 3. Geometry of double passage effect (DPE): (a) receiver R is placed close to the source S;

(b) receiver R is separated from the source.
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n�¼ 1; n~¼ �~v=v0 ¼ v0~m; s2n ¼ s2v=v
2
0 ¼ v20s

2
m: ð26Þ
In the presence of the interface I the unperturbed ray trajectory r sð Þ can be composed of
down- and up-going parts represented as
r sð Þ ¼ rd sd;Rð Þ; 0 < sd < Sd Rð Þ;
ru su;Rð Þ; 0 < su < Su Rð Þ:

�
ð27Þ
Here “d” and “u” stands for “down” and “up,” respectively. The parameters are the same
as they are given in Fig. 3a and b. In case of weak refraction, both descending and
ascending parts of the rays look like straight lines [see Eqs. (34) and (35) below] and the
total travel-time fluctuations can be obtained as
~t Rð Þ ¼ ~td Rð Þ þ ~tu Rð Þ; ð28Þ
where
~td Rð Þ ¼ 1

v0

ðSd Rð Þ

0

n~ rd sdð Þ½ �dsd; ð28aÞ
and
~tu Rð Þ ¼ 1

v0

ðSu Rð Þ

0

n~ ru suð Þ½ �dsu: ð28bÞ
In the next section, these parameters are used in the derivation of the covariance and the
variance of travel-time fluctuation for the case of reflection geometry.
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3.2. Travel-Time Covariance Function for Small Offsets

In Section 2.2, the general form of the covariance function for a QHF model was given
by Eq. (14). In this section, Eq. (14) will be modified for the reflection geometry.

In reflection case, the covariance of the travel-time can be calculated as
Cddð
Ct R1;R2ð Þ ¼ h~t R1ð Þ;~t R2ð Þi ¼ h ~td R1ð Þ þ ~tu R1ð Þ½ � ~td R2ð Þ þ ~tu R2ð Þ½ �i
¼ Cdd R1;R2ð Þ þ Cdu R1;R2ð Þ þ Cud R1;R2ð Þ þ Cuu R1;R2ð Þ: ð29Þ
As an example the explicit form of Cdd is given as follows,
Cdd R1;R2ð Þ ¼ 1

v20

ðSd R1ð Þ

0

ds1d

ðSd R2ð Þ

0

ds2dCn rd s1d;R1ð Þ; rd s2d;R2ð Þ½ �; ð30Þ
or in terms of correlation coefficient as
R1;R2Þ¼ 1

v20

ðSd R1ð Þ

0

ds1d

ðSd R2ð Þ

0

ds2ds2n rddþð ÞK rd s1d;R1ð Þ�rd s2d;R2ð Þ;rddþ½ �; ð31Þ
where s2n is refractive index, K is the correlation coefficient, and the parameter rddþ in
Eq. (31) is defined as
rddþ ¼ rd s1d;R1ð Þ þ rd s2d;R2ð Þ½ �=2: ð32Þ

It is assumed that horizontal vectors R1 and R2 are small in comparison with the depth
D of the interface, R1;2

�� �� � D, so that the slightly curved rays might be approximated as
straight lines (Fig. 4). In this case, the ray lengths Sd R1ð Þ and Su R2ð Þ are practically
identical. Since R1;2

�� ��=D � 1, the ray length can be calculated as
S R1;2

	 
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ R1;2=2

	 
2q
	 D 1þ R2

1;2=8D
2

� �
	 D; ð33Þ
denoting that Sd R1ð Þ and Su R2ð Þ differ from depth D only in the second-order term of
R1;2

�� ��=D. In this case, the ray trajectories for down- and up-going waves are given as
rdj sd;Rj

	 
 ¼ sdkdj Rj

	 

; 0 < sd < D; ð34Þ

ruj su;Rj

	 
 ¼ Dkdj Rj

	 
þ sukuj Rj

	 

; 0 < su < D; ð35Þ
where unit vectors tangent to the rays have the following form:
kdj ffi Rj

2D
þ iz; kuj ffi Rj

2D
� iz: ð36Þ
Here iz is the unit vector in the z direction and j ¼ 1, 2.
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FIG. 4. Geometry for two up- and down-going ray trajectories in 3D space.
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For simplicity, considering the statistically homogeneous fluctuations, when correla-
tion function K does not depend on sþ and s2n ¼ constant, Eq. (29) can be expressed in
the following form:
Ct R1;R2ð Þ ¼ 2s2n
v20

ðD
0

dz

ð1
0

ds�
X

p¼ d;uf g

X
q¼ d;uf g

K izs� þ dpq zð Þ �8<
:

9=
;; ð37Þ
where integral over variables sdþ and suþ were transformed into integral along vertical
axis z with upper limit of integration z 	 D.

In the equation above, d ¼ R1 � R2 is the difference vector between observation
points and dpq zð Þ represent the horizontal distance (Fig. 4) between the rays in the
plane z ¼ const. Two down-going and two up-going rays intersect this z ¼ const plane

at the points Rd
j ¼ Rj

z

2D
;Ru

j ¼ Rj 1� z

2D

� �
, where j ¼ 1, 2.

Corresponding vectors, connecting these points are
ddd ¼ Rd
1 � Rd

2 ¼ d
z

2D
; ð38aÞ

duu ¼ Ru
1 � Ru

2 ¼ d 1� z

2D

� �
; ð38bÞ

ddu ¼ Rd
1 � Ru

2 ¼ R1

z

2D
� R2 1� z

2D

� �
¼ R1 þ R2ð Þ z

2D
� R2

¼ �R2 þ d

2
þ R2

� �
z

D
; ð38cÞ

dud ¼ Ru
1 � Rd

2 ¼ R1 1� z

2D

� �
� R2

z

2D
¼ R1 � R1 þ R2ð Þ z

2D

¼ R1 þ d

2
� R1

� �
z

D
: ð38dÞ
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The covariance function given in Eq. (37) describes the acoustic waves in randomly
inhomogeneous media which are reflected from a horizontal interface. The covariance
function for midpoint and two-sources-two-receivers geometries, as well as for tilted
interfaces, was analyzed by Kravtsov et al. (2003).
The travel-time variance can be obtained from the covariance function as the receiver

positions coincide, R1 ¼ R2 ¼ R. In this case, the parameters d; ddd and duu in Eq. (37)
vanish and the parameters ddu; dud become
ddu zð Þ ¼ �dud zð Þ ¼ R 1� z=Dð Þ: ð39Þ

Consequently the variance is obtained as
s2t Rð Þ ¼ Ct R;Rð Þ ¼ 4

v20

ðD
0

dzs2n izzð Þ
ð1
0

ds�fK½izs�; izz�

þ K½izs� þ Rð1� z=DÞ; izz�g, ð40Þ
which is used to estimate the medium fluctuations and the horizontal scale of the
inhomogeneities from the experimental data.
3.3. Double Passage Effect

The double passage effect (DPE) occurs when the travel-time ismeasured at zero offset,
R¼ 0, that is, source and receiver are at the same location (Fig. 3a).At zero offset, thewave
passes twice through the same randomly inhomogeneous medium. Therefore the fluctua-
tions of the travel-times for down- and up-going waves are equal, ~td 0ð Þ ¼ ~tu 0ð Þ, and the
total travel-time is ~t 0ð Þ ¼ ~td 0ð Þ þ ~tu 0ð Þ ¼ 2~td 0ð Þ. For zero offset, the variance is
var ~t R ¼ 0ð Þ½ � ¼ 8

v20

ðD
0

dzs2n izzð Þ
ð1
0

ds� K izs�; izzð Þ: ð41Þ

tatistically homogeneous fluctuations, travel-time variance can be written in a
For s
shorter form as
var t R ¼ 0ð Þ½ � ¼ 8

v20
Ds2nlz; ð42Þ
where
lz ¼
ð1
0

ds� K izs�ð Þ: ð43Þ

1) denotes that the variance of the total travel-time is four times larger than the
Eq. (4
variance of the one way travel-time
var ~t 0ð Þ½ � ¼ 4 var ~td 0ð Þ½ �: ð44Þ
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The comparison of the travel-time variance at zero (Fig. 3a) and larger offsets (Fig. 3b)
can be helpful for estimating the characteristic horizontal length of the inhomogeneities.
This idea was suggested by Touati (1996), analyzed by Iooss (1998), Iooss et al. (2000),
and generalized by Kravtsov et al. (2003).
At sufficiently large offsets jRj ¼ R � lh, the down- and up-going waves pass through

different mediums and therefore the cross-product of ~tdðRÞ and ~tuðRÞ on average is close
to zero and the variance is two times larger than the variance of the one way travel-time at
large offsets,
var ~t 0ð Þ½ � ffi 2 var ~td Rj j � lhð Þ½ �: ð45Þ

For the case when R < lh the second cross-covariance term in Eq. (40), which is actually
2Cdu Rð Þ, is comparable with the first one, that is, with 2Cdd 0ð Þ. In an opposite situation,
R > lh, the cross-covariance term K izs� þ R 1� z=Dð Þ½ � in Eq. (40) becomes small
enough, because this term is formed by a thick layer D > z > zc, where zc is estimated
from R 1� zc=Dð Þ � lh. As a result, relative thickness of the mentioned layer will be
D� zcð Þ=D 
 lh=R � 1 and
Cdu Rð Þ 
 Cdd Rð Þ lh
R
� Cdd Rð Þ: ð46Þ
Thus, at R > lh and R1;2 � D only auto-covariance remains significant,
Ct Rð Þ ffi Cdd Rð Þ þ Cuu Rð Þ; ð47Þ
whereas contribution of DPE becomes negligible.
4. Travel-Time Fluctuations in Refraction Geometry

4.1. Refracting Medium with a Constant Velocity Gradient

In this section, the travel-time fluctuations of diving-type refracted rays will be
examined in a stratified medium with a velocity, linearly increasing with depth.
The mean velocity model is written as
v� zð Þ ¼ v0 þ kz ¼ v0 1þ z=Hð Þ; ð48Þ
where v0 is the wave velocity near the surface, k is the constant velocity
gradient, and H ¼ v0=k is the depth, where velocity becomes twice as large as compared
with v0.

For the description of the velocity fluctuations, ~v, it is convenient to introduce the
auxiliary dimensionless random field ~x, which has a mean value of zero and sufficiently
small variance s2x � 1. By considering ~v being proportional to the random field ~x and to
the mean velocity v� zð Þ, the velocity fluctuations can be presented as
~v ¼ v� zð Þ~x: ð49Þ
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For statistically homogeneous fluctuations, the variance of the auxiliary random field ~x is
a constant value, s2x ¼ const. According to Eq. (49), the random part n~of the refractive
index and its variance s2n take the following form
n~¼ � v0~x
v� zð Þ ¼ � n� zð Þ~x; ð50Þ

s2n ¼ n� zð Þ½ �2s2x: ð51Þ
Unlike the model, accepted for analysis of the reflection geometry, in this case the
variance of the refractive index s2n depends on the depth z.
In a medium with a mean velocity, linearly increasing with depth, the ray paths are of

the curvilinear form. It is assumed that the ray is traveling in the x–z plane and the angle
of incidence y0 is counted from the vertical z axis. In this case, the ray trajectory satisfies
the equation
dz

dx
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 zð Þ � sin2 y0

q
sin y0

¼ cot y; ð52Þ
where y is the current angle of incidence. According to Eq. (48), the mean value of the
refractive index equals to
n� zð Þ ¼ v0
v zð Þ ¼

1

1þ z=H
: ð53Þ
Inserting Eq. (53) into Eq. (52), one can find the ray trajectory as
z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ 2xH cot y0 � x2

p
� H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ xX � x2

p
� H > 0; ð54Þ
where X ¼ 2H cot y0 denotes the final point of the ray.
In refraction geometry, there is no necessity to distinguish the down- and up-going

branches of the ray, so that travel-time fluctuations might be calculated by direct use of
Eq. (10).
4.2. Travel-Time Variance along a Curvilinear Ray

Inserting the right-hand side of Eq. (51) into Eq. (14), we obtain the covariance of
travel-times as
Ct R1;R2ð Þ ¼ 2

v20

ðS<
0

n� zð Þ½ �2s2xdsþ
ð1
0

ds� K k sþð Þs� þ d sþð Þ½ �; ð55Þ
which relates the travel-time fluctuations to the fluctuations of the medium parameters in
a refraction geometry. The variance of the travel-time fluctuations can be obtained from
Eq. (55) under condition R1 ¼ R2 ¼ R as
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s2t ¼ var ~t Rð Þ½ � ¼ 2s2x
v20

ðS Rð Þ

0

n� zð Þ½ �2dsþ leff k; sþð Þ: ð56Þ
It is more convenient to transform the variables in Eq. (56) from the ray coordinates to
Cartesian ones. In this case, elementary arc length dsþ becomes
dsþ ¼ dx

sin y
: ð57Þ
In turn the refractive index n� zð Þ can be rewritten as
n� z xð Þ½ � ¼ v0
v� zð Þ ¼

1

1þ z

H

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a xð Þ

H2

r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e g� eð Þp ; ð58Þ
where a xð Þ ¼ xX � x2, e ¼ x=H, and g ¼ X=H. By introducing the inhomogeneity scale
length ratio r ¼ lz=lx (Kravtsov et al., 2005), the effective correlation length can be
expressed as
leff ¼ Glz rsin yð Þ2 þ cos yð Þ2
h i�1=2

: ð59Þ
Expressing the angle y and other variables through the new variables we can show that
sin y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � �2

p
=B; cos y ¼ ��=B; n�¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � �2

p
ð60Þ
where
B ¼ B gð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g

2

� �2
r

; � ¼ e� g
2
¼ x� X=2

H
: ð61Þ
By using the new variables the travel-time variance can be expressed as
s2t ¼ GJ r; gð Þ; ð62Þ
where
G ¼ 2Gs2xlzH=v
2
0; ð62aÞ
and
J r; gð Þ ¼ B2

ðg=2
�g=2

d�

B2 � �2ð Þ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 B2 � �2ð Þ þ �2

p : ð62bÞ
Eq. (62) is the fundamental equation for estimating the statistical parameters (s2xlz and r)
of the random refractive medium.
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curve), respectively. (b) corresponds to the three basic models: (1) s2v ¼ v� zð Þ½ �2s2x, (continuous
curve); (2) s2v ¼ v20s

2
x ¼ const, (dashed curve); and (3) s2v ¼ v� zð Þ½ �4s2x=v20, (dotted curve). All three

curves are calculated for the inhomogeneity scale length ratio r ¼ 0:1 (reprinted from Kravtsov

et al., 2005).
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4.3. Dependence of Travel-Time Variance on Offset

Following Kravtsov et al. (2005), let us consider the travel-time variance s2t depen-
dence on distance X for different models of regular refraction. According to Eq. (62b),
travel-time variance s2t is proportional to integral J r; gð Þ. Let the refractive index
variance decrease with depth as given by Eq. (51). Fig. 5a presents the dependence of
the integral (Eq. 62b) on normalized offset g ¼ X=H for different scale length ratios r ¼
lz=lx : r ¼ 0:1; r ¼ 1 and r ¼ 10. In the case, when inhomogeneities are strongly
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flattened in the horizontal plane (r ¼ 0:1), the integral J r; gð Þ first increases propor-
tionally to the normalized distance g, J r; gð Þ 	 g=r (continuous curve on Fig. 5a).
At g ¼ 1:9 the integral J r; gð Þ reaches its maximum value Jmax 	 4:57 and then tends
to an asymptotic value J1 ¼ 2 at g ! 1:

The decrease of the travel-time variance at large distances looks quite unusual: themore
the distance, the less the travel-time variance. In fact, this is new physical phenomenon in
the theory of wave propagation in random media, which has not been observed or
discussed before either in acoustics or in adjacent studies in optics and radio physics.
There are two factors which could explain this unusual behavior of the travel-time
variance: the rapid decrease of the refractive index variance with depth according to
Eq. (51) and the strong elongation of the flattened inhomogeneities in the horizontal
direction. The decrease of travel-time variance with offset and with decreasing fluctua-
tions of the refractive index in the case of laminated heterogeneities is similar to the
Double Passage Effect in the reflection geometry. This decrease is absent if the medium
heterogeneities are isometric because the ray propagate down and up in essentially
different media. The medium is quickly getting less correlated with increasing offset.
However, if the medium is quasi layered, then approximately the same medium will be
crossed by both down- and up-going branches of the ray. Also the medium heterogeneity
starts to become uncorrelated with increasing offset. Of course, the existence of the
phenomenon is due to interplay between the lateral medium correlation and fluctuation
decrease with the depth. Thus, for some situations we do not observe any DPE-like effect,
however for some situations it can be well observed in the refraction wave geometry as
well as in the reflection wave geometry.
When the inhomogeneity scale lengths in horizontal and vertical directions are iden-

tical, r ¼ 1:0 (isometric inhomogeneities), the integral J r; gð Þ increases when g � 2r
and tends to an asymptotic value J1 ¼ 2 when g ! 1 (Fig. 5a, dashed curve). When
r ¼ 10 (vertically elongated inhomogeneities), the travel-time variance increases regu-
larly (Fig. 5a, dotted curve). As g ! 1, the integral approaches to asymptotic value
J1 ¼ 2 (not shown in the figure). One can see from Fig. 5a that for isometric and
vertically elongated inhomogeneities the travel-time variance does not show any
decrease with distance, though at g ! 1 in all three cases the integral J r; gð Þ tends to
a common asymptotic value J1 ¼ 2.
When the velocity variance is a constant value,
s2v ¼ v20s
2
x ¼ const; ð63Þ
the refractive index variance s2n ¼ n� zð Þ½ �4s2x decreases with depth faster than the previous
model given in Eq. (51). For the model given in Eq. (63) the travel-time variance s2t is
proportional to the integral
J1 r; gð Þ ¼ B2

ðg=2
�g=2

d�

B2 � �2ð Þ5=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 B2 � �2ð Þ þ �2

p : ð64Þ
The graph of the integral, given in Fig. 5b by dashed curve, shows the faster decrease in
comparisonwith the integral J r; gð Þ of Eq. (62b) (continuous curve in Fig. 5b). On the other
hand, in the case of a constant refractive index variance, as it is in the reflection geometry,
s2n ¼ s2x ¼ const; ð65Þ
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the velocity variance increases with depth: s2v ¼ v� zð Þ½ �4s2n=v20 ¼ v� zð Þ½ �4s2x=v20. Therefore,
the corresponding integral
J2 r; gð Þ ¼ B2

ðg=2
�g=2

d�

B2 � �2ð Þ1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 B2 � �2ð Þ þ �2

p ð66Þ
increases with distance, as shown by the dotted curve in Fig. 5b. Such a behavior is
characteristic for all random media studied before.

Thus, examination of travel-time variance for random medium with different proper-
ties promises to be a valuable source of information to relate the observed travel-times to
the real media.
4.4. Inverse Problem Solution for Refraction Geometry

This section concerns with the estimation of the medium parameters from the travel-
time fluctuations. When dealing with real seismic data, the travel-time fluctuations are
calculated as the difference between the observed and the theoretical travel-times. Here
we assume that the travel-time fluctuations are in hand and we explain the estimation
procedure of the statistical parameters.
To estimate the inhomogeneity scale lengths and the standard deviation of the medium,

first the variance of the travel-time fluctuations are calculated and an inversion procedure
is employed between the theoretical equation of variance (Eq. 62) and the calculated
variance. For this purpose, the Levenberg–Marquard iterative inversion method is used
(Press et al., 2001), and the unknown medium quantities r and s2xlz are estimated.

The next step is the calculation of the parameters s2x, lz; lx; and ly separately. Eq. (55) is
the basic formula for this purpose. To estimate the longitudinal and the transverse
correlation scales, the observation points R1 and R2 should be separated in the longitudi-
nal, X, direction asR1 ¼ X; 0; 0ð Þ,R2 ¼ X þ DX; 0; 0ð Þ and in the transverse, Y, direction
as R1 ¼ X; 0; 0ð Þ, R2 ¼ X;DY; 0ð Þ respectively (Fig. 6a and b).

First we show the estimation of the longitudinal correlation scale. In this case, the

distance between the rays is d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2z þ d2x

q
¼ DZj jsin y, where DZj j is the vertical

distance between the neighboring rays, arriving to the points X and X þ DX:
DZ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ x X þ DXð Þ � x2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ xX � x2

p
: ð67Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
When xDX � H2, the distanceDZ xð Þ as well as sin y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ xX � x2

p
= H2 þ X=2ð Þ2

can be expanded into the Taylor series. Keeping only linear term in DX for distance
between the rays one has
d xð Þ ¼ xDX

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ X=2ð Þ2

q : ð68Þ
For a Gaussian correlation function, the inner integral in Eq. (55) can be transformed to
the following form by using a similar way given in Kravtsov et al. (2003):
ð

Kn ks� þ dð Þds� ¼ leff exp � d2

l2d

� �
: ð69Þ
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FIG. 6. Longitudinal (a) and transverse (b) location of observation points R1 and R2 (reprinted

from Kravtsov et al., 2005).
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Here the effective correlation length leff is given by Eq. (59) and the characteristic
transverse length ld is introduced by
ld ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lz sin yð Þ2 þ lx cos yð Þ2

q
¼ lz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2yþ cos y=rð Þ2

q
: ð70Þ
As a result the longitudinal covariance function takes the following form
Ct X;X þ DXð Þ ¼ 2Gs2xlzH

v20

ðX
0

n�2d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsin yð Þ2 þ cos2 y

q exp � xDXð Þ2
4H2 þ X2ð Þl2d

" #
: ð71Þ
Using the variables in Eq. (60), Eq. (71) can be rewritten as
Ct X;X þ DXð Þ ¼ GP r; g;Lð Þ; ð72Þ
where G is defined by Eq. (62a) and P is
P r; g;Lð Þ ¼ B

ðg=2
�g=2

exp �Qð Þd�
B2 � �2ð Þ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 B2 � �2ð Þ þ �2
p : ð73Þ
The parameter Q in Eq. (73) is given by
Q ¼ � þ g
2

	 
2
L2

B2 r2 B2 � �2ð Þ þ �2½ � ; ð74Þ
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with L ¼ DX
lx
. For a given normalized distance g, the dimensionless longitudinal correla-

tion radius Lc ¼ DXc=lx and then lx can be determined from the following equation:
FIG.

fluctua
P r; g;Lcð Þ ¼ 1

2
P r; g; 0ð Þ ¼ 1

2
J r; gð Þ: ð75Þ

L is the particular value of L which satisfies Eq. (75) and DX is the particular
Here c c

longitudinal correlation radius. Inserting the estimated longitudinal scale length lx in r
provides the estimation of the vertical scale lz and subsequently the estimation of the
standard deviation sx from s2xlz. The estimation procedure of the longitudinal correlation
scale is shown by a flowchart in Fig. 7.

To estimate the transverse correlation scale, we recall the observation points
R1 ¼ X; 0; 0ð Þ and R2 ¼ X;DY; 0ð Þ given in Fig. 6b. In this case, the distances between
the rays in x and z directions are equal to zero, dz ¼ dx ¼ 0, while dy is proportional to x by
dy ¼ xDY=X. We consider Dr ¼ ks� þ dy and write Eq. (17) in the following form
g ¼ kx
lx

� �2

þ kz
lz

� �2
" #

s2� þ DYð Þ
ly

x

X

� �2( )1=2

ð76Þ
and derive the transverse travel time covariance Ct X; 0; 0;X;DY; 0ð Þ in analogy with
Eq. (71) as follows
Ct X; 0; 0;X;DY; 0ð Þ ¼ 2Gs2xlzH

v20

ðX
0

n�2d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsin yð Þ2 þ cos2 y

q exp � xDYð Þ2
X2l2y

" #
: ð77Þ
(σt
2)obs = DJ (r,g )theo 

Ct (X,X + ΔXc )obs = DP (�,�,Lc )theo

(ΔXc)obs = lx(ΔXc /lx )theo

lx

=lz rlx

=

�ξ
2lz 

(�ξ
2lz )/lz�ξ

� = lz / lxand 

7. The flowchart for estimating the statistical parameters of the medium from travel-time

tions under longitudinal separation of the observation points like at Fig. 6a.
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Instead of longitudinal correlation factor exp � xDXð Þ2= 4H2 þ X2ð Þl2d
h i

, which enters in

Eq. (71), Eq. (77) contains new factor exp � xDYð Þ2=X2l2y

h i
, which describes the decrease of

the correlation along transverse direction. It follows from Eq. (77) that the particular
transverse correlation scale DYc is comparable with the horizontal correlation scale ly 	
lx ¼ lh and might be determined from the equation Ct X; 0; 0;X;DYc; 0ð Þ ¼ 1=2ð Þs2t ¼
1=2ð ÞCt X; 0; 0;X; 0; 0ð Þ. Similar properties have been derived earlier for spherical and
cylindrical waves in statistically homogeneous random media (Rytov et al., 1989b).
5. Results of Numerical Simulations

To demonstrate the efficiency of the estimation procedure described above, a numeri-
cal simulation was performed for the refraction geometry. A simple ray tracing method
was used for a 2D random medium. The model of the random inhomogeneities con-
stituted from 1024 grid points in z direction and from 2048 grid points in x direction,
respectively. The grid spacing was chosen 10 m in both directions. The inhomogeneity
characteristic lengths were selected as lz ¼ 50 m and lx ¼ 500 m, so that the ratio
r ¼ lz=lx was equal to r ¼ 0:1.

The background and the random parts of the wave velocity were calculated as given in
Eqs. (48) and (49). The near-surface velocity v0 and the velocity gradient k were consid-
ered as v0 ¼ 2000 ms�1 and k ¼ 0:8 s�1, respectively, which gives H ¼ v0=k ¼ 2:5 km.
The auxiliary random field x rð Þ, used in numerical simulations, was supposed to have

a Gaussian statistics and anisometric Gaussian covariance function of the form
Cx Drð Þ ¼ s2x exp � Dx
lx

� �2

þ Dz
lz

� �2
" #( )

: ð78Þ
The random field x rð Þ with such a covariance function was generated first in the wave
number domain and then its spatial representation was obtained by employing an inverse
Fourier transform (Frankel and Clayton, 1986). In total, 100 realizations of the random
refractive medium were generated in this way.
The travel-time fluctuations were calculated directly by using the basic GO relation

given in Eq. (10). The travel-time fluctuations were expressed in the following
convenient form:
~t X; 0ð Þ ¼ 1

v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ X

2

� �2
s ðX

0

n~ x; z xð Þ½ �dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ xX � x2

p : ð79Þ
The refractive index fluctuations were calculated at each grid point and then the rays
were traced by using Eq. (54). Linear interpolation was performed in all cases, when the
ray trajectory did not match the grid points (Fig. 8). One hundred travel-time fluctuations
were obtained for 100 available medium realizations, and 10 of them are shown in Fig. 9.
The next step was to calculate the travel-time variance by using the following

expression
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es, when ray trajectories did not match the grid points.
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s2t Xð Þ �
num

¼ 1

N

XN
i¼1

h
~tiðXÞ

i2
; N ¼ 100: ð80Þ
The result of the calculation is shown by the thin curve in Fig. 10 as a function of the
normalized distance g. The nonmonotonic variations of the numerical variance
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s2t Xð Þ �
num

are due to a limited number of realizations. By employing an inversion
procedure between the numerical variance Eqs. (80) and (62) (thick curve in Fig. 10),

the medium statistical parameters are estimated as s2xlz
� �

num
¼ 0:005 and

rnum ¼ lz=lx ¼ 0:12.
Finally the longitudinal correlation radius DXc was estimated from the following

equation
Ct X;X þ DXcð Þnum � 1

N

XN
i¼1

~ti Xð Þ~ti X þ DXcð Þ ¼ 1

2
s2t Xð Þ �

num
: ð81Þ
The correlation radius DXc, calculated from Eq. (81), are shown by thick curve in Fig. 11.
Simultaneously the rootsLc of the Eq. (75) were calculated for each observation point.

Then a fitting procedure was employed between the theoretical curve DXc½ �theo ¼ lxLc

(thin curve in Fig. 11) and the numerical curve DXc½ �num, thick curve in the same figure.
As a result, the horizontal correlation length lx was estimated as lxð Þnum ¼ 450m, which
is a good approximation to the model parameter lx ¼ 500m.

Usingtheestimatedvaluesofr; lx ands2xlz, themediumstatisticalparametersareestimated
as follows: lz ¼ rlx ¼ 0:12 448 ¼ 54m, sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:005=lz

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:005=54

p ffi 0:01. Esti-
mated parameters s2xlz, r; sx; lz, and lx are given in Table 1 together with their actual
values, chosen for the simulated random elastic medium. Generally, the inverted
parameters are in a good agreement with the actual ones.
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TABLE 1. Model and estimated statistical parameters from travel-time

fluctuations of refracted waves (reprinted from Kravtsov et al., 2005)

Model parameters Estimated parameters

s2xlz (m) 0.005 0.005

r 0.1 0.12

sx 0.01 0.01

lz (m) 50 54

lx (m) 500 448
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6. Discussion and Conclusion

In this chapter, the travel-time fluctuations are examined in a three-dimensional
randomly inhomogeneous and anisometric media for both reflected and refracted seismic
waves. It is shown that on the basis of travel-time fluctuations it is possible to estimate
the medium statistical parameters such as the standard deviation of the velocity fluctua-
tions and the inhomogeneity scale lengths in vertical and horizontal directions. Besides,
a new phenomenon is revealed, concerning the travel-time fluctuations in a stratified
refractive random medium: it is shown that the travel-time variance can decrease with
offset in a random medium, containing horizontally elongated inhomogeneities.
This phenomenon has not been observed before either in acoustics and optics or in
radio wave propagation.
The suggested method has been applied to a field seismic data where the properties of

the medium were well known by geological observations (Kaslilar et al., 2006).
The seismic data were collected along a tunnel wall. The study area was located in the
Leventina gneiss complex, which was a part of the Penninic gneiss zone. The zone
constitutes from high-grade metamorphic rocks and includes strongly foliated mineral
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bands like quartz, feldspar, or biotite mica. A high-velocity gradient is obtained around
the tunnel wall, which is usually observed in near-surface studies (van Vossen et al.,
2005; Wilson and Pavlis, 2000). To estimate the statistical parameters of the medium, the
travel-time variance of the real data was calculated from the measured travel-times of
10 shot-receiver group, where each shot-receiver group corresponds to a medium reali-
zation. A noticeable deviation between the travel-time variance of the theoretical and real
data was observed. This deviation might be ascribed to both insufficiency of the GO
method and the limited number of available medium realizations. In spite of this
noticeable deviation between the real and theoretical travel-time variances, the statistical
parameters were estimated. The obtained results were comparable with the geological
observations, however the method needs to be verified by modeling the full wave
propagation to understand the applicability and limits of the method for real Earth
structures.
For applicability of the method sufficient number of independent source–receiver

pairs (medium realizations) are needed. Besides, the characteristic lengths of inhomo-
geneities should be larger than the wavelength and the width of the first Fresnel zone.
When these conditions are not met, the results of GO are still in agreement with the
diffraction theory, based on the Rytov’s method (Rytov et al., 1989a,b). However
detailed numerical analysis, based on the comparison of the GO travel-times with the
wave theoretical travel-times is required. The effect of velocity shift and its effect on the
estimated parameters (Roth, 1997; Saito, 2006; Samuelides, 1998; Shapiro et al., 1996)
need detailed investigation to understand the limits of our method. To obtain more
accurate results, one should use the methods which take into account diffraction
phenomena, and thus leading to frequency dependences of the phenomenon
considered here.
In this chapter, we have concentrated on the simplest—Gaussian—model of autocor-

relation function, which is characterized in fact by four parameters: variance hn~2i and
three correlation lengths lx,y,z. It is obvious that the real auto-correlation function of
geological structures differs from Gaussian one. However because of its simplicity the
Gaussian auto correlation function (ACF) was used in many works on seismic scattering,
for example, by Flatté and Wu (1988), Sato and Fehler (1998), Baig et al. (2003),
Petukhin and Gusev (2003), and Saito (2006). Recently, Przybilla (2007) has shown
that the Gaussian ACF describes heterogeneities of volcanic regions satisfactorily.
Presented geometrical theory can be modified also for different correlation functions

(Klimeš, 2002), for example, for power law type correlation function, which depends on
several additional unknown medium parameters. However, extraction of these additional
parameters from available travel-time statistics might be accompanied with great techni-
cal difficulties. In these conditions, a four parameter Gaussian correlation function
presents a kind of practical compromise between multiparameter correlation functions
and experimental possibilities.
Information on the statistical parameters, obtained by the statistical methods, is quite

important to understand the uncertainties in seismic images. The estimated parameters
can be used in seismic inversion as statistical a priori models of velocity field. They can
be helpful for understanding the seismic attenuation mechanisms, for estimation of the
intensity of the heterogeneities in a studied medium and for obtaining valuable informa-
tion about the dominant scales of the inhomogeneities. Therefore the estimation of the
statistical parameters from seismic reflection and refraction data represents an important
task to better understand the Earth’s internal structure.
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Abstract

Attenuation and dispersion of compressional seismic waves in inhomogeneous, fluid-saturated

porous media are modeled in the framework of wave propagation in continuous random media.

Two dominant attenuation mechanisms are analyzed in detail. First, attenuation due to wave-

induced flow, an intrinsic attenuation mechanism where a passing seismic wave introduces

localized movements of the viscous fluid which are accompanied by internal friction. Second,

attenuation due to scattering, the so-called apparent attenuation where ordinary elastic scattering is

responsible for a redistribution of wavefield energy in space and time. Despite the fact that both

attenuation mechanisms have a quite different physical nature, the theory of wave propagation in

random media provides a unified framework to model these effects in a consistent manner.

In particular, it is shown that the method of statistical smoothing can be applied not only to energy

conserving systems (elastic scattering) but also to energy absorbing systems (conversion scattering

into diffusion waves). Explicit expressions for attenuation and dispersion for relevant correlation

models are presented, and the asymptotic frequency scaling at low- and high frequencies of both

attenuation mechanisms are compared and contrasted.

Key Words: Seismic Attenuation, random media, poroelasticity, scattering, wave-induced flow,

perturbation theory, Biot’s slow wave, self-averaging. � 2008 Elsevier Inc.
1. Introduction

Elastic wave propagation in heterogeneous structures is always accompanied by
attenuation and dispersion. It is widely accepted that attenuation is a combination of
intrinsic attenuation (absorption) and scattering attenuation (Aki and Chouet, 1975).
A key issue in rock characterization is to quantify the magnitude and frequency depen-
dence of these attenuation mechanisms. Closely related is the problem of extracting this
information from the recorded wavefield originated by artificial or natural “seismic”
sources. In this chapter, we focus on the modeling of the effects of an intrinsic attenuation
mechanism, namely, the effect of wave-induced flow, and scattering attenuation in
random porous, fluid-saturated media.
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FIG. 1. The mechanism of wave-induced flow. During the compression cycle of a wave, there

will be fluid flow from elastically soft inhomogeneities into the background (shown here; the flow

direction is indicated by arrows) and flow from the background into elastically stiff inhomogene-

ities. During the extension cycle of the wave, the fluid flow becomes reversed.
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One major cause of elastic wave attenuation in porous fluid-saturated media is viscous
dissipation due to the flow of the pore fluid induced by the passing wave. Wave-induced
fluid flow occurs as a passing wave creates local pressure gradients within the fluid phase
and the resulting fluid flow is accompanied by viscous friction until the pore pressure is
equilibrated (this phenomenon is schematically depicted in Fig. 1). The fluid flow can
take place on various length scales, for example, from compliant fractures into the equant
pores, the so-called squirt flow (Mavko and Nur, 1975; Jones, 1986), or between
mesoscopic heterogeneities like fluid patches in partially saturated rocks (White et al.,
1975; Murphy, 1982). Theoretical studies of the elastic wave attenuation due to wave-
induced flow go back to the 1970s. In such studies, wave propagation in inhomogeneous
porous medium is usually analyzed using Biot’s equations of poroelasticity with spatially
varying coefficients (Biot, 1962). The first models of attenuation, due to wave-induced
flow, considered flow caused by a regular assemblage of inhomogeneities of ideal
shape such as two concentric spheres or flat slabs (White et al., 1975). A general theory
of wave propagation in heterogeneous porous media using a double-porosity approach
was recently developed by Pride et al. (2004). A comparative review of a number of
models of wave propagation in heterogeneous porous media has been given by Toms
et al. (2006).

In real Earth materials, heterogeneities are spatially distributed in a random fashion.
The effect of wave-induced flow can be interpreted as conversion scattering from
propagating wave modes into the Biot’s slow wave mode. At sufficiently low-
frequencies, Biot’s slow wave is a fluid diffusion wave. Therefore, the theory of wave
scattering in random media (e.g., Ishimaru, 1978) applied to Biot’s equations of poro-
elasticity can be used to study the propagation characteristics of seismic waves in
inhomogeneous porous media. Gurevich and Lopatnikov (1995) used the so-called
Bourret approximation to quantify attenuation and dispersion of P waves in randomly
layered 1-D poroelastic media. Gelinsky et al. (1998) developed a perturbation theory
approach based on the Rytov representation of wavefields in 1-D random media
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illuminating the interplay between elastic scattering and dissipation. For 3-D randomly
inhomogeneous porous media, Müller and Gurevich (2005a,b) analyzed the conversion
scattering problem using the first-order statistical smoothing approximation and obtained
an effective wave number of the coherent field, which accounts for the effect of wave-
induced flow. This is different from the usual application of the method of smoothing to
energy conserving wave systems, where an apparent dissipation (so-called scattering
attenuation) results from the energy transfer from the coherent component of the wave-
field into the incoherent component.
Another, so-called “apparent” attenuation mechanism in heterogeneous (porous)

media is scattering. Because of elastic scattering by the inhomogeneities, the wavefield
becomes distorted and wavefield energy is transferred from the primary signal to the
coda. Generally, the wavefield can be described as a sum of coherent and incoherent
wavefields. Which part of the wavefield is actually measured in experiments depends on
the size of the receiver used. In geophysical applications, the receivers are typically small
compared with the wavelength and the size of inhomogeneities, so that the incoherent
field will not be averaged out and both parts of the wavefield are present in seismograms.
That is, for point-like receivers no aperture averaging, which reduces the fluctuations,
takes place. Therefore, there may occur a discrepancy between the recorded wavefield
and the coherent wavefield (or equivalently mean field) as shown by Wu (1982a,b) and
Sato (1982). Formalisms that take into account these shortcomings and that try to
improve the statistical averaging procedure and adopt it for seismology are based on
heuristic assumptions like the travel-time-corrected formalism (see for an overview Sato
and Fehler, 1998). There is, however, a lack of first principles, that is, wave-equation-
based descriptions of scattering attenuation, which go beyond the mean field theory and
that are valid for seismograms recorded in single realizations of random media.
Estimates of scattering attenuation in single realizations of 2-D and 3-D random

media are obtained by Müller and Shapiro (2001) and Müller et al. (2002) by extending
the generalized O’Doherty–Anstey (ODA) formalism of randomly layered 1-D media
(Shapiro andHubral, 1999). It is a dynamic-equivalentmedium approach that is applicable
to a broad range of frequencies and uses combinations of perturbation approximations
including the method of statistical smoothing and the Rytov approximation.
This chapter is organized as follows. In Section 2, we briefly review typical properties

of heterogeneities in the Earth reported in literature and introduce the basic random
medium descriptors used in the sequel. Then, in Section 3, we present a theory for wave
attenuation and dispersion due to wave-induced flow in poroelastic media based on a
variant of the method of statistical smoothing. Section 3 is the largest section containing
the introduction of wave propagation in poroelastic media, a fairly detailed account of the
method of statistical smoothing, and analysis of attenuation and dispersion due to wave-
induced flow. In Section 4, a similar formalism is developed for scattering attenuation.
We outline the principles of the generalized ODA formalism describing seismic primary
wavefields in a single realization of random media. The method of statistical smoothing
(describing the coherent part of the wavefield) is combined with the Rytov approxima-
tion to obtain expressions for attenuation and dispersion that are applicable over a broad
frequency range. Whereas in Sections 3 and 4 the attenuation mechanisms are treated
separately, in Section 5 we present results for 1-D poroelastic random media, where the
interplay of both attenuation mechanisms can be analyzed in explicit manner again using
the generalized ODA formalism. The chapter closes with some concluding remarks
(Section 6).
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2. Meso- and Macroscopic Heterogeneity in the Earth and
Its Description as a Random Medium

Large parts of the Earth’s crust in general and hydrocarbon bearing reservoirs, in
particular, have a very complex structure including multiscale heterogeneities. This
becomes evident from geological surveys, measurements in vertical and horizontal bore-
holes, and seismic-wavefield analysis (Wu and Flatté, 1990;Mukerji et al., 1995; Sato and
Fehler, 1998). Reported scales of heterogeneity range from centimeter up to several
kilometers (Murphy et al., 1984; Holliger and Levander, 1992; Wu et al., 1994). Labora-
tory measurements of rocks reveal that even on the microscopic scale there are hetero-
geneities due to varying grain sizes and fluid flow channels (Bourbié et al., 1987). An
example of centimeter-scale heterogeneities in a porous rock sample is shown in Fig. 2.
Anyattempt todescribe complexgeological structures by deterministicmodels fails in the

sense that the interaction between seismicwavefields and the heterogeneities is not correctly
reproduced. In such cases, the concept of random media characterizing the heterogeneities
by their statistical moments and their spatial correlations is more suitable. Typical wave-
lengths in seismology are of the order of hundreds ofmeters up to a few kilometers (Aki and
Richards, 1980). The travel distance can be some hundreds of kilometers. In exploration
seismology, the probing pulses have dominant wavelengths of several tens of meters,
traveling a few kilometers through the heterogeneous crust (Levander and Gibson, 1991).
Altogether, three relevant length scales come into play: the wavelength l of the probing
wave, the characteristic size of heterogeneities a, and the total travel distance L of the wave
in the heterogeneous structure. In general, one can expectmax l; af g � L. Since there is a
huge range of heterogeneity scales, we specify the relevant length scales in the context of the
present work. Throughout this chapter, we assume that a ismuch larger than a typical length
scale of the pore space apore. We refer tomesoscopic heterogeneity if
apore � a � l: ð1Þ
This relation is typically applicable in situations where the effect of wave-induce flow
occurs, and these scales are illustrated in Fig. 3. In general, however, there are also
macroscopic heterogeneities such that
apore � a ≶ l: ð2Þ
The latter relation is of particular importance for the analysis of scattering attenuation.
For instance, if l � a diffraction effects need to be accounted for.
In randomly inhomogeneous media, all medium parameters can be presented as

random fields X(r). To be more specific, we assume that each of these parameters is
the sum of a constant background value, �X and a fluctuating part, ~X rð Þ, so that
X ¼ �X þ ~X ¼ �X 1þ eXð Þ; ð3Þ

where eX ¼ ~X= �X denotes the relative fluctuations. The average over the ensemble of the
realizations (denoted by h�i) of eX is assumed to be zero: heXi ¼ 0. The spatial
autocorrelation function of two random fields is defined as
BXX drð Þ ¼ heX rþ drð ÞeX rð Þi; ð4Þ
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FIG. 2. Experimental evidence of mesoscopic heterogeneities observed during injecting gas into a

fully water-saturated limestone sample. The upper left plot shows a 2-D cut through the initially

water-saturated rock sample (the sample has a diameter of 5 cm).Gas is injected into the sample at the

lower left-hand side of the sample (visualized by black color). During the course of the experiment,

the gas phase assumes a complex spatial distribution that evolves with time (from left to right starting

from the first row). This experiment illustrates that the two different fluid phases within the porous

rock form clusters of mesoscopic sizes. Courtesy Lincoln Patterson, CSIRO (2003).
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where the dependence of B on the difference vector dr only is a consequence of the
assumption of statistically homogeneous random fields (Rytov et al., 1989), which we
use throughout this chapter. The variance of the random process eX will be denoted as
BXX 0ð Þ ¼ he2Xi ¼ s2XX. In statistically isotropic random media, the fluctuation spectrum
F(k) and the correlation function B(r) are related through the 3-D Hankel transform
B rð Þ ¼ 4p
r

ð1
0

kF kð Þsin krð Þdk: ð5Þ
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seismic frequencies is on the centimeter scale and is called mesoscopic.
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Note that Eq. (5) implies that the integral over the fluctuation spectrum is finite ifB(0), that
is, the variance is finite. As is typical for statistical wave problems, in the following, we
assume that the constant part �X and statistical properties of the fluctuations eX are known.

Ideally, the correlation function should be inferred from experimental data such as
X-ray images of rock samples. In many circumstances, the true correlation behavior can
be well approximated by simple functions such as an exponential function or combina-
tions of them. A review of frequently used correlation functions in random media is
provided by Klimes (2002). In this chapter, we will make use of the following corre-
lation models. The inhomogeneities are said to be exponentially correlated if variance-
normalized B(r) is of the form
B rð Þ ¼ exp �½ jrj=a�: ð6Þ

Here a denotes the correlation length, that is, a characteristic length scale associated with
the inhomogeneities. More precisely, the correlation length a is the length scale at which
B(r) assumes the value e�1. The Gaussian correlation model is defined as
B rð Þ ¼ exp �r2=a2
� �

: ð7Þ
Another widely used correlation model is the von Kármán function
B rð Þ ¼ 21�nG�1 nð Þ r

a

� �n
Kn r=að Þ; ð8Þ
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where Kn is the modified Bessel function of the third kind (MacDonald function) and G
denotes the Gamma function. The von Kármán correlation function involves an addi-
tional parameter, the so-called Hurst coefficient n, which is assumed to be 0< n� 1. For
instance, crustal heterogeneities are best explained using a von Kármán autocorrelation
function with a standard deviation of the velocity fluctuations on the order 3–6% as
discussed in more detail by Sato and Fehler (1998) and Goff and Holliger (2003). For the
case n ¼ 1/2 the von Kármán function is identical to the exponential correlation function
(Eq. 6). Its fluctuation spectrum is given by
FðkÞ ¼ a3Gðnþ 3=2Þ
p3=2GðnÞð1þ k2a2Þnþ3=2

: ð9Þ
Figure 4 shows the correlation functions used throughout this chapter.
3. Attenuation and Dispersion of Seismic Waves due to
Wave-Induced Flow

3.1. Biot’s Equations of Dynamic Poroelasticity and Associated
Green’s Functions

Biot’s equations (Biot, 1962) of dynamic poroelasticity provide a general framework
for modeling elastic wave propagation through fluid-saturated porous media. One essen-
tial feature of Biot’s theory is the prediction of a second compressional wave (the Biot
slow wave). At frequencies much lower than the so-called characteristic Biot frequency
oc ¼ f�
k0rf

: ð10Þ
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(where f is the porosity, k the permeability, � the fluid viscosity, and rf the fluid mass
density), this slow P wave is a diffusion wave (Bourbié et al., 1987). For most fluid-
saturated rocks, oc is of the order of 10 kHz or larger. In the following, we restrict our
analysis to the frequency range o � oc. Then, the modulus of the wave number of the
slow P wave, kps, is much larger than that of the propagating (fast) P wave. Therefore, the
wave number ratio is a small number:
kp
�� ��
kps
�� ��� 1: ð11Þ
We will frequently make use of this relation. Using index notation—summation over
repeated indices is assumed and partial derivatives are denoted as i or @i— we can write
the equations of motion in the frequency domain (the time-harmonic dependency
exp(–iot) is omitted):
ro2ui þ rfo
2wi þ tij; j ¼ 0 ð12Þ

rfo
2ui þ qo2wi � pi ¼ 0; ð13Þ
where tij is the total stress tensor, p the fluid pressure, ui and wi the components of the
solid and relative fluid displacement vectors, respectively. The relative fluid displace-
ment is defined as wi ¼ f(Ui – ui), where Ui is the fluid displacement. The densities of
the solid and fluid phase are denoted by rg and rf so that the bulk density is given by
r ¼ frf þ (1 – f) rg. The parameter q is defined as q ¼ i�/(ok0). We note that this
definition of q is a consequence of the low-frequency assumption (Eq. 11).

To obtain a closed system of wave equations in the displacements ui and wi, we
complement the equations of motion with the stress–strain relations for an isotropic
poroelastic medium (Biot, 1962):
tij ¼ G ui; j þ uj;i � 2dijuj; j
� �þ dij Huj; j þ Cwj; j

� � ð14Þ
p ¼ �Cuj; j �Mwj; j: ð15Þ
Here G is the porous-material shear modulus, and H is the undrained, low-frequency
P-wave modulus given by Gassmann’s equation (Gassmann, 1951):
H ¼ Pd þ a2M; ð16Þ

where
M ¼ a� fð Þ=Kg þ f=Kf ��1:
h

ð17Þ
In Eqs. (16)–(17)Pd¼Kdþ 4/3m is the P-wavemodulus of the drained frame, a¼ 1 –Kd/Kg

is the Biot–Willis coefficient, C ¼ aM, and Kg, Kd, and Kf denote the bulk moduli of the
solid phase, the drained frame, and the fluid phase, respectively. The different moduli
characterizing a homogeneous poroelastic composite are illustrated schematically in Fig. 5.
Symbol dij is Kronecker’s delta (the identity tensor).
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It is expedient to write the above system of coupled wave equations in matrix form:
L
1ð Þ
ik L

2ð Þ
ik

L
3ð Þ
ik L

4ð Þ
ik

" #
� uk
wk

� �
¼ 0; ð18Þ
where we defined the linear differential operators as follows:
L
1ð Þ
ik ¼ ro2dik þ @jG djk@i þ dik@j � 2dij@k

� �þ @iH@k ð19Þ
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L
2ð Þ
ik ¼ rfo

2dik þ @iC@k ð20Þ

L
3ð Þ
ik ¼ L

2ð Þ
ik ð21Þ

L
4ð Þ
ik ¼ qo2dik þ @iM@k: ð22Þ
In the presence of point sources, Eq. (18) has a nonzero right-hand side that can be
written as
� F0
i dðri � r0iÞ

f 0i dðri � r0iÞ

" #
; ð23Þ
where F0
k and f 0k represent constant forces applied to the bulk and fluid phase, respec-

tively, and d ri � r
0
i

	 

denotes the Dirac delta function. The response of system (Eq. 18) to

point sources of the form (Eq. 23) can be formulated as
ui

wi

� �
¼ GF

ik Gf
ik

Gf
ik GW

ik

" #
� F 0

k

f 0k

" #
; ð24Þ

f

where GF

ik, Gik, and Gw
ik denote the Green’s tensors. Thus, the point source response of

system (Eq. 18) in an isotropic unbounded medium is described by three Green’s tensors.
The wavefields observed at position r due to arbitrary point sources Fi and fi, applied at
position r0, can be expressed by a convolution equation of the form
ui rð Þ
wi rð Þ
� �

¼
ð
V0
d3r0 GF

ik r� r0ð Þ Gf
ik r� r0ð Þ

Gf
ik r� r0ð Þ Gw

ik r� r0ð Þ

" #
� Fk r0ð Þ

fk r0ð Þ
� �

: ð25Þ
The complete set of Green’s tensors for a homogeneous and isotropic poroelastic
continuum was derived by Pride and Haartsen (1996). At low frequencies, that is, if
kp
�� ��=jkpsj � 1, these tensors read
GF
ij r� r0ð Þ ¼ 1

4pro2
k2s dij þ @i@j
� � eiksR

R
� @i@j

eikpR

R

0
@

1
A

� C2

H2

1

4pqo2
@i@j

eikpsR

R

ð26Þ

Gf
ij r� r0ð Þ ¼ C

H

1

4pqo2
@i@j

eikpsR

R
; ð27Þ

Gw
ij r� r0ð Þ ¼ � 1

4pqo2
@i@j

eikpsR

R
; ð28Þ
where R¼ |r – r0|. In homogeneous and isotropic media the Green’s tensors depend only
on R. In the low-frequency version of Biot’s equations, the wave numbers of fast P-, S-,
and slow P waves are defined as
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kp ¼ o

ffiffiffiffi
r
H

r
ks ¼ o

ffiffiffiffi
r
G

r
kps ¼

ffiffiffiffiffiffiffiffi
io�
k0N

r
¼ o

ffiffiffiffi
q

N

r
; ð29Þ
where N ¼ MPd/H. Note that the first three terms of GF
ij are formally identical to the

elastodynamic Green’s tensor (Gubernatis et al., 1977b). In the elastic limit (Kd ! Kg,
a! 0 and f! 0, k0 ! 0), the set of Green’s tensors [(Eq. 26)–(Eq. 28)] reduces to the
single elastodynamic Green’s tensor (see, e.g., Hudson, 1980):
Gelast
ij r� r0ð Þ ¼ 1

4pro2
k2s dij þ @i@j
� � eiksR

R
� @i@j

eikpR

R

� 
; ð30Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

where the P-wave number is now given by kp ¼ o r= Kd þ 4=3Gð Þ.
Based on Eq. (25), we now derive a wavefield representation in a randomly inhomo-

geneous medium.
3.2. The Basic Poroelastic Scattering Equation

Using the decomposition (Eq. 3), the differential operators Lik can be also decomposed
as (Karal and Keller, 1964)
Lik ¼ �Lik þ ~Lik; ð31Þ

where the perturbing operator ~Lik satisfies h~Liki ¼ 0. Substitution of Eq. (31) into matrix
Eq. (18) yields
�L
1ð Þ
ik

�L
2ð Þ
ik

�L
2ð Þ
ik

�L
4ð Þ
ik

" #
� uk
wk

� �
¼ � ~L

1ð Þ
ik

~L
2ð Þ
ik

~L
2ð Þ
ik

~L
4ð Þ
ik

" #
� uk
wk

� �
: ð32Þ
In the most general case, the perturbing operators ~Lik contain fluctuations of
all poroelastic moduli and densities. The right-hand side of Eq. (32) can be thought of
as a source term in the homogeneous system (Eq. 18) due to the presence of inhomo-
geneities (so-called secondary sources). Thus, Eq. (32) can be understood as an inhomo-
geneous equation with constant coefficients, whose formal solution can be written by
substituting the source term into Eq. (25):
ui
wi

� �
¼ u0i

w0
i

� �
þ
ð
V

dV
GF

ij G f
ij

G f
ij Gw

ij

" #
�

~L
1ð Þ
jk

~L
2ð Þ
jk

~L
2ð Þ
jk

~L
4ð Þ
jk

" #
� uk
wk

� �
: ð33Þ
Equation (33) is the basic poroelastic scattering equation. The total wavefields ui and
wi are composed of wavefields propagating in the homogeneous background medium, u0i
and w0

i , and scattered wavefields (the second term). By definition, u0i and w0
i satisfy the

homogeneous Eq. (18). The scattered wavefields are represented by volume integrals
whose kernels involve the Green’s tensors and the secondary sources. The scattered
wavefields vanish if there are no fluctuations in the medium parameters. The integration
volume encompasses the inhomogeneous part of the medium. According to Eq. (25),
the wavefields can be represented as a convolution of Green’s tensors with the
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source function. Let us denote Green’s tensors for the homogeneous background
medium by 0GF; f ;w

ik and for the inhomogeneous medium by GF; f ;w
ik . Substituting these

wavefield representations into Eq. (33), we obtain an equation for the Green’s tensors of
the inhomogeneous medium:
GF
im Gf

im

Gf
im Gw

im

" #
¼

0GF
im

00Gf
im

0Gf
im

0Gw
im

" #
þ

þÐ dV 0GF
ij

0G f
ij

0G f
ij

0Gw
ij

" #
�

~L
1ð Þ
jk

~L
2ð Þ
jk

~L
2ð Þ
jk

~L
4ð Þ
jk

" #
� GF

km G f
km

G f
km Gw

km

" #
:

ð34Þ
To simplify the equations that follow, we introduce a shorthand notation. The latter
equation can be symbolically rewritten as
G ¼ G0 þ
ð
G0~LG; ð35Þ
where G, G0, and ~L represent matrices, whose elements are tensors of rank two.
3.3. First-Order Statistical Smoothing Approximation

We will now analyze Eq. (35) using a statistical approach. Since the matrix of
perturbing operators ~L in Eq. (35) contains fluctuating medium parameters, the resulting
matrix of Green’s tensors also contains randomly fluctuating elements. Because individ-
ual realizations of the random wavefields are never known, it is natural to analyze the
statistical moments of G. Solving Eq. (35) by iteration, we obtain the scattering series:
G ¼ G0 þ
ð
G0~LG0 þ

ð ð
G0~LG0 þ

ð ð ð
. . . : ð36Þ
Averaging this equation by the ensemble of realizations and regrouping the scattering
terms yields
�G ¼ G0 þ
ð ð

G0Q�G; ð37Þ
where �G ¼ hGi is the matrix of mean Green’s tensors, and Q is the matrix operator
defined as
Q ¼ Q
1ð Þ
ik Q

2ð Þ
ik

Q
3ð Þ
ik Q

4ð Þ
ik

" #

¼
*
L~G0L~þ

ð
~LG0~LG0~Lþ

ð
. . .

+
:

ð38Þ
Operator Q given by Eq. (38) corresponds to the kernel-of-mass operator in the
acoustic formulation (Rytov et al., 1989). The linear integral equation in �G [Eq. (37)]
is the poroelastic analog of the Dyson equation. It is not possible to obtain an exact
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solution of Eq. (37). A first-order statistical smoothing consists in the first-order trunca-
tion of the infinite series expression for the operator Q. Then, we obtain the following
approximation for the mean Green’s tensor:
~G ¼ G0 þ
ð ð

G0

�
~LG0~L

�
�G ð39Þ

¼ G0 þ
ð ð

G0QB �G: ð40Þ
The truncation of the series (Eq. 38) implies that the first-order statistical smoothing is
valid when eXj j � 1, that is, when the absolute value of the relative fluctuations of X is a
small parameter. Note also that the elements of matrix operator QB only contain terms
involving the second statistical moment of the fluctuating parts of the ~Lik’s, that is, they
are of the order O(e2). Higher-order correlations are neglected within the accuracy of the
first-order statistical smoothing approximation.
Since Eq. (40) contains a double volume convolution, it is expedient to work with its

spatial Fourier transform:
�g ¼ g0 þ 8p3
	 
2

g0q�g; ð41Þ
where �g, g0, and q denote the spatial Fourier transforms of �G, G0, and QB, respectively.
Carrying out the necessary matrix multiplications in Eq. (41), we find that this system splits
up into two pairs of coupled equations. Since we are only interested in the characteristics of
the fast P wave, which are exclusively contained in the Green’s tensor �gF [see also Eqs. (24)
and (26)], we analyze only those two equations that involve �gFik. We obtain
�gF ¼ gF þ 8p3
	 
2

g Fq 1ð Þ�gF þ g Fq 2ð Þ�g f þ g f q 3ð Þ�gF þ g f q 4ð Þ�g f
h i

ð42Þ

�gf ¼ g f þ 8p3
	 
2

g f q 1ð Þ�g F þ g f q 2ð Þ�g f þ gwq 3ð Þ�gF þ gwq 4ð Þ�g f
h i

; ð43Þ
where we omitted subscripts for brevity. The quantities g without upper bar denote the
background space Green’s tensors. Since all quantities q(i) (i ¼ 1, . . ., 4) are of the order
O(e2), �g f is also of the order O(e2). Inserting the expression for �gf [Eq. (43)] into Eq. (42)
and neglecting terms of higher order than O(e2) we obtain
�gF ¼ g F þ 8p3
	 
2

g Fq 1ð Þ�gF þ g Fq 2ð Þg f þ g f q 3ð Þ�gF þ g f q 4ð Þg f
h i

: ð44Þ
Equation (44) is an implicit equation for the mean Green’s tensor �gF. Because of its
tensorial character, an explicit solution for �gF is still difficult to construct. Note,
however, that we are not interested in mean Green’s tensor itself but only in a mean
wave number of the P wave (for brevity denoted as wave number in the following)
contained in �gF.

3.4. Effective Fast Wave Number Accounting for Conversion Scattering into
Slow P Waves

To extract an effective wave number from Eq. (44), we have to introduce further
simplifications. Because of the assumption of small fluctuations in the medium parameters
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e � 1ð Þ, we can assume that mean Green’s tensor �gFik Kð Þ is of the same functional form as
a background Green’s tensor gF

ik Kð Þ given by the spatial Fourier transform of Eq. (26),
however, involving some effective wave number. Further, we consider an incoming, plane
P wave propagating in x3-direction (i.e., only the displacement component u3 is nonzero).
The resulting coherent P wave in the inhomogeneous medium will also propagate in

x3-direction [if condition (1) is fulfilled]. Therefore, only the tensor components i¼ j¼ 3
of gF

ij need to be analyzed. Noting that in this case the Green’s tensor gF
ik Kð Þ yields the

largest contribution for the spatial wave number K ¼ kp, we can approximate the spatial
Fourier transform of the full Green’s tensor (Eq. 26) by
gF
33 �

�1

8p3ro2
1þ K2

k2p � K2

 !
: ð45Þ
We assume that the mean Green’s tensor component is given by
�g F
33 �

�1

8p3�ro2
1þ K2

�k
2

p � K2

 !
; ð46Þ
where �kp is the yet unknown effective wave number. Substituting Eqs. (45) for gF and
Eq. (46) for �gF into Eq. (44), we obtain after algebraic manipulations
�kp � kp 1þ 4p3

ro2
q

1ð Þ
33

� 
: ð47Þ

ið Þ

Here, we neglected terms that contain combinations of the tensor components q33.

This introduces no additional inaccuracy because higher-order correlations are neglected
within the accuracy of the first-order statistical smoothing O(e2).
The remaining problem is the evaluation of q

1ð Þ
33 in Eq. (47), or equivalently, of Q

1ð Þ
33 in

space domain. In explicit form, from the first term in the expansion of Q as given by
Eq. (38) we obtain
Q
1ð Þ
ik r0 � r

00	 
 ¼ �~L
1ð Þ
ij r0ð ÞGF

jl r0 � r
00	 

~L
1ð Þ
lk r

00	 

þ 2~L

1ð Þ
ij r0ð ÞGf

jl r
0 � r

00	 

~L
2ð Þ
lk r

00	 

þ ~L

2ð Þ
ij r0ð ÞGw

jl r0 � r
00	 

~L
2ð Þ
lk r

00	 
�
; ð48Þ

for statistically homogeneous random media both Qik and Gik depend only on the
where
difference vector r0 – r00. It is interesting to note that in the elastic limit, only the first term
of Q

1ð Þ
ik is nonzero. In the poroelastic case, we have to analyze all three terms. Equation

(48) involves the perturbing operators ~L
1ð Þ
ij and ~L

2ð Þ
ij (but not ~L

4ð Þ
ij ). Let us now specify the

perturbing operators resulting for a particular case where the density fluctuations are
neglected [it can be shown that incorporation of density fluctuations yields a correction to
the background wave number (the second term in Eq. (47)] which scales with o3,
whereas the other fluctuations result in ao2 scaling. Then from Eqs. (19)–(20), we obtain
~L
1ð Þ
ik ¼ @k ~G@i þ @jdik ~G@j � 2@i ~G@k þ @i ~H@k ð49Þ
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~L
2ð Þ
ik ¼ @i ~C@k: ð50Þ

1ð Þ

The computation of the three Qik terms in Eq. (48) in the wave number domain using

the perturbing operators [Eqs. (49)–(50)] results into
q
1ð Þ
33 ¼ qHH þ qHG þ qHC þ qGG þ qGC þ qCC; ð51Þ
where
qHH ¼ 1

8p3
k2p

H2

Pd

BHH 0ð Þ þ C2

N
k2ps

ð1
0

rBHH rð Þexp ikpsr
� �

dr

� 
ð52Þ

qHG ¼ � 1

3p3
k2p

GH

Pd

BHG 0ð Þ þ a2MG

Pd

k2ps

ð1
0

rBPM rð Þexp ikpsr
� �

dr

� 
ð53Þ

qHC ¼ � 1

4p3
C2

N
k2p BHC 0ð Þ þ k2ps

ð1
0

rBHC rð Þexp ikpsr
� �

dr

� 
ð54Þ

qGG ¼ 1

15p3
G

NH2
k2p

 
4C2Gþ 4 NHGþ N H2
� �

BGG 0ð Þ

þ 4C2Gk2ps

ð1
0

rBGGðrÞexp½ikpsr�dr
!

ð55Þ

qGC ¼ 1

3p3
a2MG

Pd

k2p BGC 0ð Þ þ k2ps

ð1
0

rBGC rð Þexp ikpsr
� �

dr

� 
ð56Þ

qCC ¼ � 1

8p3
C2

N
k2p BCC 0ð Þ þ k2ps

ð1
0

rBCC rð Þexp ikpsr
� �

dr

� 
: ð57Þ
Here, BHH, BHC, BHG, BGG, BGC, and BCC denote the (cross-) correlation functions of the
random fields ~H, ~G, and ~C defined by Eq. (4). The upper bar denoting the background
properties is omitted.
We will now assume that all correlation functions are of the same functional form and

only differ by theirs variances, that is, BXY ¼ s2XYB rð Þ with B(0) ¼ 1 and B (1) ¼ 0.
Substituting then expressions (52)–(57) into Eq. (47), we obtain the final result for the
effective wave number of the fast P wave
�kp ¼ kp 1þ D2 þ D1k
2
ps

ð1
0

rB rð Þexp ikpsr
� �

dr

� 
; ð58Þ
with the dimensionless coefficients
D1 ¼ a2M
2Pd

s2HH � 2s2HC þ s2CC þ 32

15

G2

H2
s2GG � 8

3

G

H
s2HG þ 8

3

G

H
s2GC

� 
ð59Þ

¼ a2M
2Pd

�
eH � 4

3

G

H
eG � eC

� 2�
þ 16

45

G2

H2
s2GG

 !
ð60Þ
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D2 ¼ D1 þ 1

2
s2HH � 4

3

G

H
s2HG þ 4G

H
þ 1

� 
4

15

G

H
s2GG: ð61Þ
The structure of the effective wave number can be explained as follows. Because of
the presence of random inhomogeneities, there are two terms added to the background
wave number kp. The first term, D2, is frequency independent and consists in a weighted
sum of the variances of the random fields ~H, ~G, and ~C. The second term is frequency
dependent and contains an integral over the correlation function multiplied by a weighted
sum of the variances, D1. It is important to note that the expression for �kP describes only
the process of conversion scattering from fast into slow P waves. The contribution of
purely elastic scattering is left out. The corresponding result would include additional
terms involving the correlation functions BHH, BGG, and BHG which describe the elastic
scattering (P to P and S waves) and produces the typical Rayleigh frequency dependence
for scattering attenuation as analyzed in the next section. Therefore, analysis of the
properties of �kp gives insight into the relationship between the properties of elastic waves
and wave-induced flow.
The corresponding 1-D effective wave number can be obtained by the following

procedure. We consider the limiting situation:

(a) To degenerate the 3-D random medium into a 1-D random medium, we stretch the
correlation lengths perpendicular to the direction of wave propagation, a⊥, to
infinity so that the correlation function becomes only a function of z with parame-
ter ak, that is, the correlation length parallel to the direction of wave propagation.
Obviously, if the wave propagates mainly in z direction we can also write the
spatial wave vector as K � (0, 0, kp)

T.
(b) Since in such a 1-D random medium there are only two directions of wave

propagation (�z), we can use the small-angle approximation (Rytov et al.,
1989) (or Fresnel approximation) of the propagator-like term exp ikpsR

� �	 

=R:
exp ikpsR
� �
R

� exp ikpsz
� �
z

exp
ikpsr

2
t

2z

� �
; ð62Þ
where rt denotes the absolute value of the transverse coordinate vector rt ¼ (x, y)T.
Steps (a) and (b) are illustrated in Fig. 6. The detailed derivation of the 1-D wave

number from the 3-D wave number can be found in Müller and Gurevich (2005a) and
coincides with the earlier reported results of Gurevich and Lopatnikov (1995) and
Gelinsky et al. (1998).
3.5. Attenuation and Dispersion due to Wave-Induced Flow

Equation (58) for the effective wave number enables us to derive expressions for the
attenuation and dispersion due to the presence of mesoscopic inhomogeneities.
By definition, the real part of �kp yields the phase velocity
v oð Þ ¼ o=R �kp
� � ¼ v0 1� D2 þ 2D1

�k
2
ð1
0

rB rð Þexp ��kr½ �sin �krð Þdr
� �

; ð63Þ
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FIG. 6. From 3-D point source to 1-D line source results.
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where v0 is the constant background P-wave velocity defined as v0 ¼
ffiffiffiffiffiffiffiffiffi
H=r

p
(r is the

bulk density) and �k denotes the real part of the wave number of the slow P-wave kps
�k oð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2k0N
o

r
: ð64Þ
The imaginary part of the wave number yields the attenuation coefficient g and the
reciprocal quality factor Q�1, which for low-loss media can be written as
Q�1 ¼ 2g=R �kp
� � ¼ 2J �kp

� �
=R �kp
� �

: ð65Þ
Then, from Eq. (58) we find
Q�1 oð Þ ¼ 4D1
�k
2
ð1
0

rB rð Þexp ��kr½ �cos �krð Þdr: ð66Þ
From Eqs. (63) and (66), the meaning of the coefficients [Eqs. (60)–(61)] becomes clear.
The attenuationQ�1 and the frequency-dependent part of v are proportional to D1. Thus D1

is the measure of the magnitude of attenuation and velocity dispersion, that is, the dynamic
effects. In contrast, D2 produces a frequency-independent velocity shift in Eq. (63).

To gain further insight into the general properties of the results for attenuation and
velocity dispersion, it is useful to express the Eqs. (63) and (66) in terms of the
fluctuation spectrum (power spectrum), that is, the spatial Fourier transform of the
correlation function. Substituting Eq. (5) into Eqs. (63) and (66), changing the order of
integration and integrating over r we obtain
v oð Þ ¼ v0 1� D2 þ 16pD1

ð1
0

�k
4k2

4�k
4 þ k4

F kð Þdk
" #

; ð67Þ
and
Q�1 oð Þ ¼ 16pD1

ð1
0

�k
2k4

4�k
4 þ k4

F kð Þdk: ð68Þ
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From Eq. (68), we observe that the dynamic behavior of attenuation is controlled by the
integrand, that is, by the product of fluctuation spectrum F(k) and the function
Y k; �kð Þ ¼
�k
2k4

4�k
4 þ k4

: ð69Þ
The functionY k; �kð Þ acts like a filter and controls which part of the fluctuation spectrum
yields a relevant contribution to attenuation. A similar filter function can be deduced
from Eq. (67). In analogy to the acoustic scattering problem (Ishimaru, 1978), we refer to
Y as the spectral filter function. Analyzing the productFY in terms of the dimensionless,
spatial wave number ka (a is the characteristic length scale of the inhomogeneities), we
identify three different regimes for different values of �ka.
If �ka � 1 then Y ka; �kað Þ behaves like �ka and, therefore, the product FY and hence

the attenuation becomes small. Since �k is inversely proportional to the diffusion wave-
length ld ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0N=o�

p
, this case corresponds to the relaxed or low-frequency regime

where the induced pore pressure is equilibrated during one wave cycle. In the opposite
case, if �ka 	 1 then Y ka; �kað Þ � kað Þ4=ð�kaÞ2. This means that the contribution of F at
small spatial wave numbers is suppressed, but its contribution at large wave numbers is
amplified. However, since F(k) becomes very small for large k, the product of F and Y
becomes small again. In other words, in the high-frequency (unrelaxed) regime only the
behavior of F at large �ka is important.
There is an intermediate regime with �ka � 1 where FY (and Q�1) attains its maxi-

mum. Since in our approximation attenuation, due to wave-induced flow and the process
of conversion scattering from fast into slow P waves are equivalent, maximum attenua-
tion is observed at the “resonance” condition ld ¼ a. The interplay between F and Y is
illustrated in Fig. 7.
We now give explicit results forQ�1 and v for several correlation functions of practical

interest. The choice of a single correlation function B(r) implies that the correlation
length is the same for the three random functions H(r), G(r), and C(r). Substituting the
exponential correlation function (Eq. 6) into Eqs. (63) and (66) we find
Q�1 oð Þ ¼ D1

4ða�kÞ2ð2�kaþ 1Þ
ð1þ 2�kaþ 2�k

2
a2Þ2

; ð70Þ
and
v oð Þ ¼ v0 1þ D1

4ða�kÞ3ð1þ �kaÞ
ð1þ 2�kaþ 2�k

2
a2Þ2

� D2

" #
: ð71Þ
For the Gaussian correlation function we obtain
Q�1ðoÞ ¼ 2D1ða�kÞ2 1�
ffiffiffi
p

p
4

Xzþ
z¼z�

a�kz exp½ða�kzÞ2=4� erfc a�kz=2½ �
" #

; ð72Þ

vðoÞ ¼ v0 1þ D1ða�kÞ2
ffiffiffi
p

p
4

Xzþ
z¼z�

a�kz
 exp½ða�kzÞ2=4� erfc a�kz=2½ � � D2

" #
; ð73Þ
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FIG. 7. The spectral filterY as a function of dimensionless spatial wave number ka for varying �ka.
The general behavior of the fluctuation spectrum F is also shown (circles). Elastic wave attenuation
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where zþ ¼ 1 þ i, z– ¼ 1 – i, z* denotes complex conjugation, and erfc is the complemen-
tary error function. Finally, for the von Kármán correlation function (Eq. 9) we obtain
Q�1ðoÞ ¼ c1D1

"
c23F2 1;

1

2
þ n
2
; 1þ n

2
;
1

4
;
3

4
;�4ða�kÞ4

0
@

1
A

� 1

2
G nþ 3

2

0
@

1
Að2nþ 3ÞB

�
3

4
� n
2
cos

3

4
þ n
2

0
@

1
AA

2
4

3
5

þG nþ 5

2

0
@

1
AB

�
5

4
� n
2

2ða�kÞ2cos½c3A� þ sin½c3A�
n o#

; ð74Þ

vðoÞ ¼ v0

"
1� D2 � c1

2
D1

 
� 4c2ð1þ nÞða�kÞ23F2 1; 1þ n

2
;
3

2
þ n
2
;
3

4
;
5

4
;�4ða�kÞ4

0
@

1
A

þ 1

2
G nþ 1

2

0
@

1
A 2nþ 3ð Þc3B

�
3

4
� n
2
cos

3

4
þ n
2

0
@

1
AA

2
4

3
5

þG nþ 3

2

0
@

1
A 3

2
þ n

0
@

1
AB

�
5

4
� n
2

2ða�kÞ2cos½c3A� þ sin½c3A�
n o!#

; ð75Þ
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where we used c1 ¼ 16
ffiffiffi
p

p
a�kð Þ3= G nð Þ 2nþ 3ð Þð Þ, c2 ¼ G nþ 1ð Þ 2nþ 3ð Þ= 2

ffiffiffi
p

p
a�kð Þ,

c3 ¼ 1=4þ n=2ð Þ; A ¼ 2arctan 2a2 �k
2

� �
, and B ¼ 1þ 4ða�kÞ4. 3F2 is the generalized

hypergeometric function.
Let us consider various scenarios how mesoscopic inhomogeneities can affect attenu-

ation and dispersion of P waves. In all numerical examples, we assume that the back-
ground material is a porous sandstone with parameters specified in Table 1. In the first
example, we assume that the correlation function is of exponential type (Eq. 6) with
varying correlation length a. Further, we assume that there are fluctuations of all
bulk moduli and the shear modulus specified through their variances: s2KdKd

¼ 0:12,
s2KgKg

¼ 0:02, s2GG ¼ 0:1, and s2Kf Kf
¼ 0:14. The fluctuations of Kd, Kg, and G

are fully correlated so that the coefficient of correlation for two different random
fields R ¼ s2XY=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2XXs

2
YY

p
is equal to one. In our case, the cross-variances become

s2KdKg
¼ 0:049, s2KdG

¼ 0:110, and s2GKg
¼ 0:048. The fluctuations of porous-material

parameters and fluid bulk modulus are uncorrelated. Using these variances, we compute
the variances of the poroelastic parameters H, C, and G: s2HH ¼ 0:051, s2CC ¼ 0:081,
s2HG ¼ 0:098, s2HC ¼ 0:025, and s2GC ¼ 0:098. The frequency dependence of attenuation
and phase velocity for this model according to Eqs. (70) and (71) is shown in Fig. 8. The
frequency is normalized by Biot’s critical frequency fc ¼ 100 kHz. From Fig. 8, we can
observe that even weak fluctuations of the bulk moduli can produce significant attenua-
tion of the fast P wave Q�1 ≳ 0:01ð Þ.

Next, we consider the influence of the cross-correlations of the fluctuations. Obvi-
ously, if there is an inhomogeneity with low-P-wave modulus but relatively high fluid
bulk modulus (that is, negatively correlated fluctuations in Kd and Kf), we expect an
increased wave-induced fluid flow during the compression cycle of the wave. This means
that both the dispersion and attenuation characteristics should be more pronounced than
in the case of uncorrelated fluctuations. Such a behavior can be observed in Fig. 9, where
TABLE 1. Parameters of the background solid and fluid

phases used for the computation of the numerical examples

Porous material

Kg (GPa) 40

Kd (GPa) 4.5

G (GPa) 9

rg
kg
m3

	 

2650

f 0.17

k0 (mD) 250

Pore fluid

Kf (GPa) 2.17

� (Pa s) 0.001

rf
kg
m3

	 

1000

Poroelastic parameters

Pd (GPa) 16.5

a 0.89

M (GPa) 10.4

H (GPa) 24.7

N (GPa) 6.9

oB (kHz) 680
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P-wave velocity and attenuation are computed for the above sandstone model with
s2KdKd

¼ 0:10, s2KgKg
¼ 0:02, s2GG ¼ 0:08, and s2Kf Kf

¼ 0:16. The fluctuations of Kd,
Kg, and G are positively correlated. The fluctuations of the fluid bulk modulus and
those of all other fluctuating parameters are either positively (coefficient of correlation R
¼ 1) or negatively (R ¼ �1) correlated. The case of uncorrelated fluctuations (R ¼ 0)
between Kf and all other moduli is also displayed in Fig. 9. We note that such scenarios
may produce a significant amount of P-wave attenuation (0.01 < Q�1 < 0.1) even if the
relative fluctuations in the medium parameters are small.
To demonstrate the influence of the correlation function on the frequency dependence

of attenuation and velocity dispersion in Fig. 10, we show Q�1 and P-wave velocity for
exponential, Gaussian, and von Kármán correlation function. Note that all curves are
generated using the same medium parameters (those from Fig. 8). The resulting differ-
ences in magnitude and frequency dependence of attenuation are only due to the use of a
different correlation model [see Eqs. (6)–(8)]. Largest attenuation is obtained for the
Gaussian correlation model. Whereas at low frequencies the frequency dependence is the
same for all correlation models, one can observe that at high frequencies different
asymptotes are obtained. Only the Gaussian correlation model is symmetric about its
maximum. The variability of both attenuation and velocity dispersion for different
correlation models indicates the importance of the geometrical shape of mesoscopic
inhomogeneities for the wave-induced flow.
3.6. Asymptotic Behavior at Low and High Frequencies

At low frequencies, we can assume B(r)� B(0) and replace the exponential in Eq. (58)
by 1 because B(r) will vanish before the exponential term changes noticeably from
its value at small arguments. Obviously, an asymptote exists only if the resulting

expression
Ð1
0
rB rð Þdr has a finite positive value. This is the case for a large class of

correlation functions. Then the attenuation coefficient g scales like g / o2 or, in terms
of the quality factor,
Q�1 / o: ð76Þ

It is important to note that the same low-frequency behavior is reported for 1-D and

3-D periodic structures (Norris, 1993; Johnson, 2001; Pride et al., 2004). In contrast, in
1-D random media the following asymptotic scaling is found (see also Section 5):
Q�1
1D / ffiffiffiffi

o
p

: ð77Þ
The implications of these scalings for 1-D and 3-D disorder are discussed by Müller
and Gurevich (2004). Moreover, the physical origin of this different scaling is elucidated
by Müller and Rothert (2006).
At high frequencies only the behavior of B(r) at small arguments is important.

Assuming that the correlation function can be expanded in power series around the origin
Bðr=aÞ ¼ 1� r=aþ Oððr=aÞ2Þ; ð78Þ
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we can evaluate the integral in Eq. (58) and obtain
Q�1 / 1ffiffiffiffi
o

p : ð79Þ
The same asymptote has been found in 1-D/3-D periodic and 1-D random structures.
It is, however, important to note that the scaling (Eq. 79) is not universal for any kind of
disorder (see also Fig. 4). For example, the Gaussian correlation function (Eq. 7) at high
frequencies yields the proportionality Q�1 / 1/o, a much faster decrease of attenuation
with frequency as compared to Eq. (79). The reason for this discrepancy is that the
Gaussian correlation function behaves differently at small argument. Instead of Eq. (78),
we have BGauss(r/a)¼ 1þO(r2/a2) which means that on small scale r � a the medium is
almost homogeneous. As a consequence, at high frequencies the passing wave will create
less fluid flow as compared with a medium characterized by Eq. (78) and, therefore, the
decrease of Q�1 with frequency is stronger.
We now analyze the asymptotic behavior of phase velocity in the cases of low- and

high frequencies. In both cases, the phase velocity has a finite limit. The physical
situation, however, is different for these two limits: in the low-frequency limit, there is
enough time during the wave cycle to equilibrate the induced pore pressure. We refer to
this relaxed limit (Mavko and Jizba, 1991) as “quasi-static” and denote the corresponding
phase velocity as vqs. In the high-frequency limit, there is no time to develop a wave-
induced fluid flow. This situation is called no-flow (unrelaxed) limit, and we denote the
phase velocity as vnf. From Fig. (2), it can be observed that
vnf � vqs: ð80Þ
Physically, this relation can be explained by the additional stiffening of the porous frame
in the no-flow limit.
From Eq. (63), it is straightforward to deduce vqs. The low-frequency limit is obtained

by neglecting the third term in Eq. (63) and obtain
vqs ¼ v0 1� D2ð Þ: ð81Þ
To determine the no-flow velocity, we need to compute the limit o!1 in Eq. (63).
Since in the limit o!1 only the value of B at zero correlation lag yields a contribution
[see Eq. (78)] we can replace B(r) by B(0) ¼ 1. Thus, the third term in Eq. (63) gives
2D1
�k
2
ð1
0

r exp ��kr½ �sin �krð Þdr ¼ D1; ð82Þ
so that
vnf ¼ v0 1þ D1 � D2ð Þ: ð83Þ

From Eqs. (81) and (83), it follows that the relative magnitude of the dispersion effect is
vnf � vqs
v0

¼ D1 ð84Þ
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with D1 defined in Eq. (60). It is interesting to note that the limiting velocities do not
depend either on the correlation function or on the transport properties of the porous
material. In other words, vqs and vnf are independent of the geometry of the
inhomogeneities.
4. Attenuation of Seismic Waves in Random Porous Media
due to Scattering

4.1. The Generalized ODA Formalism

In the previous section, we showed how attenuation and dispersion due to wave-
induced flow in a poroelastic medium can be treated using the method of statistical
smoothing. The same method can in principle be used to model attenuation and disper-
sion due to scattering. However, since statistical smoothing describes signatures of the
ensemble-averaged field, its application to the evaluation of scattering attenuation in
heterogeneous media including macroscopic heterogeneity is limited (Sato, 1982;
Wu, 1982a,b). Instead, a wavefield approximation valid in single realizations of the
random medium (Shapiro and Hubral, 1999; Müller and Shapiro, 2001; Müller et al.,
2002) should be employed.

The problem of multiple scattering and pulse propagation in randomly layered media
has been studied in great mathematical detail ( Papanicolaou, 1971; Burridge et al., 1988;
Asch et al., 1991). For the case of elastic waves propagating in 1-D random media,
Shapiro and Hubral (1999) characterized the transmitted wavefield with the help of an
approach similar to a second-order Rytov approximation and showed that the scattering
attenuation coefficient and phase increment are self-averaged quantities. This wavefield
description is known as the generalized ODA theory. It accounts for back- and forward
multiple scattering contributions to the primary wavefield. There are also results general-
izing the ODA theory for so-called locally layered media, that is, media with a 1-D
microstructure but with a 3-D heterogeneous macroscopic (on a scale much larger than
the wavelength) background (Solna and Papanicolaou, 2000). Only slightly more
recently, Müller and Shapiro (2001) and Müller et al. (2002) adopted the strategy of
the generalized ODA theory to 2-D and 3-D random media resulting into quantification
of scattering attenuation and dispersion of the ballistic wavefield (so-called seismic
primaries) in a broad frequency range (accounting for back- and forward scattering)
and to describe pulse propagation in single realizations of random media.
To outline the principle ideas of the generalized ODA formalism, we concentrate on

the analysis of a scalar wavefield u. Let us consider a time-harmonic plane wave
propagating in a random medium and describe the wavefield inside the random medium
with help of the Rytov transformation, using the complex exponent C ¼ w þ if, where
the real part w represents the fluctuations of the logarithm of the amplitude (so-called
log–amplitude fluctuations) and the imaginary part f represents phase fluctuations.
Omitting the time dependence exp(–iot), we write
~u o; rð Þ ¼ u0 o; rð Þew o;rð Þþif o;rð Þ; ð85Þ

where u0 ¼ A0 exp(if0) is the wavefield in the homogeneous reference medium (zero
fluctuations) with the amplitude A0 ¼ 1 and the unwrapped phase f0. To be more
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specific, we assume that the initially plane wave propagates vertically along the z axis.
Equation (85) can then be written as
~u o; z0 ¼ L; r⊥ð Þ ¼ eiK o; L; r⊥ð ÞL; ð86Þ

where L is the travel distance and r⊥ denotes the transverse coordinates relative to the
z axis and we introduced the complex wave number
K o; L; r⊥ð Þ ¼ f o; L; r⊥ð Þ
L

þ f0 o; Lð Þ
L

� 
� i

w o; L; r⊥ð Þ
L

ð87Þ

¼ ’ o; L; r⊥ð Þ þ ig o; L; r⊥ð Þ; ð88Þ

with real functions f and g denoting the phase increment and attenuation coefficient,
respectively.
An essential feature of the ODA approach is its ability to describe the wavefield in a

single realization of the random medium. That is to say, it is an approximation of
nonaveraged wavefields. This is possible due to the use of self-averaged wavefield
attributes. The latter are quantities that assume their ensemble-averaged values when
propagating in an infinitely long single realization of the randommedium. Hence, we use
the following wavefield approximation in all space dimensions:
~u o; L; r⊥ð Þ � ei h’iþihgið ÞL ð89Þ

Note that Eq. (89) is aimed to describe the ballistic wavefield in single realizations of
random media. Its left-hand side is not subjected to statistical averaging. The right-hand
side contains, however, the ensemble-averaged wavefield attributes hfi and hgi. To keep
Eq. (89) physically meaningful, we require self-averaging of the quantities g and f. It can
be shown that the attenuation coefficient and the phase increment are self-averaged
quantities in the sense that they are Gaussian random variables and their relative
fluctuations decrease with increasing travel distances. However, the weak-wavefield-
fluctuation regime permits only finite travel distances. Therefore, we expect that only a
partial self-averaging can be observed. The self-averaging property of these wavefield
attributes can be numerically demonstrated (Fig. 11). In the following, we consider
the approximations and properties of the wavefield attributes hgi and hfi leading to
estimates of scattering attenuation and dispersion.
4.2. Effective Wave Number in 3-D Random Media

Simple approximations for the wavefield attributes hwi and hfi in the weak-wavefield-
fluctuation regime are obtained by the following procedure. First, we note that thewavefield
can be separated into a coherent and fluctuating (incoherent) part: u ¼ hui þ uf
where hui denotes the ensemble-averaged wavefield. A measure of the wavefield
fluctuations is the ratio
e ¼ uf
hui
����

����; ð90Þ
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and the statistical average he2i ¼ It
Ic
� 1, where It ¼ hjuj2i is the total intensity and Ic ¼

jhuij2 is the coherent intensity. Then, the range of weak fluctuation is defined by
strong

attenua

standa

same n

decrea
he2i � 1 ð91Þ

and means that the coherent intensity is of the order of the total intensity. In terms of the
medium parameters, the latter inequality corresponds to
s2n kað Þ2L=a < 1; ð92Þ
where s2n denotes the variance of the medium parameter fluctuations. As shown in
Shapiro and Kneib (1993) and Shapiro et al. (1996), the averaged fluctuations of log–
amplitude and phase due to the presence of inhomogeneities in 2-D and 3-D random
media can be described within the weak-wavefield-fluctuation regime [i.e., in the
regime, where Eqs. (91) and (92) are satisfied]
hwi ¼ �s2ww þ O e3
	 


; ð93Þ

hfi ¼ fc � f0 � s2wf þ O e3
	 


: ð94Þ
It is important to note that the derivation of Eq. (93) is based on the assumption that
the total intensity remains constant and reflects the property of energy conservation
within the parabolic approximation (Rytov et al., 1989). Conversely, to derive Eq. (94)
no assumption for It has to be made. Thus, in Eq. (93) the backscattering is neglected but
it is still present in Eq. (94). The log-amplitude variance s2ww and the log-amplitude phase
cross-variance s2wf in Eqs. (93)–(94) can be calculated with help of the 2-D and 3-D
Rytov approximation (Ishimaru, 1978). The coherent phase fc follows from the method
of statistical smoothing.
Simple expressions for the quantities s2ww; s

2
wf and fc are known (Ishimaru, 1978).

The results in 3-D media are
s2ww ¼ 2p2k2L
ð1
0

dkk 1� sin k2L=kð Þ
k2L=k

� 
F3D kð Þ ð95Þ

s2wf ¼ 4p2k3
ð1
0

dkk
sin2 k2L=2kð Þ

k2

� 
F3D kð Þ ð96Þ

s2ff ¼ 2p2k2L
ð1
0

dkk 1þ sin k2L=kð Þ
k2L=k

� 
F3D kð Þ: ð97Þ
The terms in brackets are the so-called spectral filter functions or Fresnel filters (since
they act on the fluctuation spectra like filters). For the 2-D case, the results can be
decrease of sa=haifor L > 950 m is caused by numerical problems in determining the

tion coefficient when the wavefield fluctuations become strong. Bottom: The relative

rd deviations of the travel time fluctuations st=htias a function of travel distance for the

umerical experiments. The decrease of st=htiwith travel distance can be interpreted as a

se of the relative phase increment fluctuations ’� h’ið Þ=h’isince ’ ¼ ot.
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obtained by skipping k in the integral over dk, dividing by p and using the 2-D
fluctuation spectra. Explicit expressions for the coherent phase are obtained with help
of the method of statistical smoothing. The result in 3-D media is
fc � f0 ¼ pk2L
ð1
0

dkk ln
2k þ k
2k � k

� 2

F3D kð Þ; ð98Þ
whereas in 2-D media one obtains
fc � f0 ¼ 4pk3L
ð1
2k

dk
F2D kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 4k2

p : ð99Þ
Stipulating that the wavefield attributes must satisfy a causality condition, we can
extend the range of applicability of Eqs. (93)–(94) using of the Kramers–Kronig relations.
For a comprehensive review of this topic we refer to (Weaver and Pao, 1981; Beltzer,
1989). The Kramers–Kronig equations allow one to reconstruct the attenuation from the
dispersion behavior and vice versa since both quantities are related by a pair of Hilbert
transforms. To this end it is sufficient to derive a Kramers–Kronig relationship for the
complex wave number K(o) of the plane wave response. It is expedient to use the
formulation of the Kramers–Kronig relationship of Weaver and Pao in (Weaver and Pao,
1981) corresponding to twice-subtracted dispersion relations [see their Eqs. (71) and (72)]:
’ o0ð Þ ¼ Bo0 þ 2o0

p

ð1
0

g oð Þ � g o0ð Þ
o2 � o02 doþ ’ 0ð Þ ð100Þ

g o0ð Þ ¼ �2o02

p

ð1
0

’ oð Þ
o

� ’ðo0Þ
o0

� �
do

o2 � o02 þ g 0ð Þ; ð101Þ
where B ¼ limo ! 1g(o)/o.
In the following, we derive the scattering attenuation coefficient hgi by applying

Eq. (101) to the phase increment hfi ¼ hfi/L with hfi taken from Eq. (94). Let’s
begin with the �s2wf part of the phase increment which is in 3-D random media given by
Eq. (96). Inserting Eq. (96) into Eq. (101) we get, after integration,
gR o0ð Þ ¼ 2p2
o02

u20

ð1
0

dkkF kð Þ 1� sin k2Lu0=o0ð Þ
k2Lu0=o0

� �
ð102Þ

¼ sww2
L

; ð103Þ
which corresponds to the log-amplitude variance in the Rytov approximation [see Eq. (95)].
Thus, the contributions resulting from the Rytov approximation in Eqs. (93)–(94) satisfy the
Kramers–Kronig relationship (Eq. 101).

Now the question arises, what happens with the fc part of Eq. (94) when subjected
to the Kramers–Kronig relation (Eq. 101)? We show that this results in an additional
term gB. To do so, we note that the phase increment resulting from the method of
smoothing [see Eq. (98)] can be written [for instance, the real part of equation 4.59 in
Rytov et al. (1989)]
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as
’c o0ð Þ ¼ fc o0ð Þ=L
¼ o

u0
þ o02

u20

ð1
0

dr sin 2o0=u0rð ÞB rð Þ: ð104Þ
Inserting Eq. (104) into Eq. (101) and performing the integrations we obtain
gBðo0Þ ¼ 2
o02

v20

ð1
0

B rð Þsin2ðo0=crÞdr � o02

v20

ð1
0

B rð Þdr: ð105Þ
Since correlation function and fluctuation spectrum are related by Eq. (5) we obtain
gB oð Þ ¼ 2p2
o2

v20

ð2o=v0
0

dkF kð Þk� 2p2
o2

v20

ð1
0

dkF kð Þk

¼ � 2p2k2
ð1
2k

dkF kð Þk: ð106Þ
n o
That means that we derived two pairs of wavefield attributes, s2ww;�s2wf and

gBL;fc � f0f g, each of them related by Eq. (101). Therefore, with help of the
Kramers–Kronig relations we obtained the following logarithmic wavefield attributes
in 2-D as well as 3-D random media:
hwi ¼ � gR þ gBð ÞL ¼ �s2ww � gBLþ O e3
	 


; ð107Þ

hfi ¼ fc � f0 � s2wf þ Oðe3Þ: ð108Þ
Thus, accepting the existence of the Kramers–Kronig relations as a physical constraint,
we arrived at Eqs. (107) and (108). The hybrid character of Eqs. (107) and (108)
concerning the combination of Rytov approximation and the method of statistical
smoothing extends the wavefield approximation (Eq. 89) in a sense that now at least a
part of the backscattering is taken into account. But accounting for backscattering means
also that the wavelength can exceed the size of inhomogeneities. Therefore, we can
expect Eq. (107) to be valid in a broader frequency range than Eq. (93). We used the 3-D
wavefield attributes in Eqs. (102)–(106). We note that Eqs. (106)–(108) are valid for 2-D
random media if we divide in Eq. (106) the expression inside the integral over k by pk
and use the 2-D fluctuation spectrum and use the corresponding 2-D approximations for
the quantities in Eqs. (107)–(108).
It is known that the scattering of seismic waves in media with a large characteristic

size of heterogeneity compared with the wavelength is confined within small angles
around the forward direction. This means the conversion between P- and S waves in
elastic media can be neglected. In fact, following Ishimaru (1978) it is not difficult to
show that the complex exponentC¼ wþ if in elastic random media is exactly the same
as in acoustic random media. Therefore, under the assumptions of weak-wavefield
fluctuations and l < a, the propagation of elastic waves shows the same behavior as
acoustic waves and approximations [Eqs. (107)–(108)] are valid. In the regime l � a,
however, the coherent phase differs in acoustic and (poro)elastic media. Gold et al.
(2000) applied the method of statistical smoothing in elastic random media to compute
the coherent wave number in 2-D and 3-D random media. The real part of these wave
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numbers multiplied by the travel distance defines the coherent phase. In 3-D random
media the results are:
fP
c ¼
 kpLR

( 
1� 1

r0o2

ð1
�1

d2re�ikpz
h
o4BrrG33 � k2pBllGjl;jl � 4k2pBmmG33;33

þ 4io2kpBrmG33;3 þ 2iro2kpBlrGm3;m � 4k2pBlmG3m;3m

i!�1=2)
: ð109Þ
Gij means the 3-D elastodynamic Green’s function (Eq. 30). The subscripts l and m
denote the Lamé parameters. Therefore, the results obtained for acoustic waves can also
be applied with slight modification to elastic media. That is, in elastic media Eqs. (89),
(93), and (94) can be used exactly as in the acoustic case with the only difference: instead
of Eqs. (99) and (98) for fc Eq. (109) must be used.

To summarize, analytic expression for the phase and the attenuation coefficients of a
plane wave in the weak-wavefield-fluctuation regime are derived by linking the Rytov
approximation with the method of statistical smoothing using the Kramers–Kronig
relations. The resulting expressions have practically no restriction in the frequency
domain. We note that this approach is not based on a rigorous mathematical treatment
but rather a combination of perturbation approximations guided by physical arguments.
Numerical experiments yield quite good support for this approach (details can be found
in Müller et al., 2002).
4.3. Scattering Attenuation and Asymptotic Behavior

The derived logarithmic wave field attributes enable us to analyze the frequency
behavior of the scattering attenuation coefficient in a broad frequency range.
The attenuation coefficient in 3D is given by
g3D ¼ gR oð Þ þ gB oð Þ

¼ 2p2k2
Ð1
0

dkkF3D kð Þ 1� sin k2L=kð Þ
k2L=k

2
4

3
5� 2p2k2

Ð1
2k dkkF3D kð Þ

¼ 2p2k2
Ð1
0

dkkF3D kð Þ # k� 2kð Þ � sin k2L=kð Þ
k2L=k

2
4

3
5; ð110Þ
and analogously in 2-D random media
g2D ¼ 2pk2
ð1
0

dkF2D kð Þ # k� 2kð Þ � sin k2L=kð Þ
k2L=k

� �
; ð111Þ
where # is the Heaviside step function. The structure of the attenuation coefficient is
similar to that found in the previous section and involves an integral over the fluctuation
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spectrum multiplied by the so-called Fresnel filter. This product is shown in Fig. 12. The
frequency dependence of the reciprocal quality factor Q�1 ¼ 2g/k is shown in Fig. 13.
The lower part of Fig. 13 depicts Q�1 as a function of ka in a 3-D Gaussian-correlated

random medium for various L/a. The upper part of Fig. 13 shows the reciprocal quality
factor for waves propagating in 2-D, 3-D exponentially and Gaussian-correlated random
media according to Eqs. (110)–(111). In the same figure, Q�1 for 1-D random media is
displayed. We used the corresponding expressions of the ODA theory of Shapiro and
Hubral (1999) (their formulas 4.18). All curves are normalized by

ffiffiffi
p

p
s2n. Whereas in 1D

the attenuation is independent of the parameter L/a, in 2D and 3D we observe a
dependence in L/a. In Gaussian random media the maximum attenuation occurs roughly
at
g3D
omax � v0L

a2
ð112Þ
which corresponds to the so-called Fresnel length. Note that in 2D and 3D, attenuation
in Gaussian random media is slightly larger than in exponentially correlated ones for
ka < 1. This relation becomes reversed for ka > 1.
In the low-frequency limit (ka ! 0), we can approximate the spectral filter function

1� sin k2L=kð Þð Þ= k2L=kð Þ in Eq. (95) by 1. Then Eq. (110) can be rewritten as
¼ 2p2k2
ð1
0

dk kF3D kð Þ � 2p2k2
ð1
2k

dk kF3D kð Þ ¼ 2p2k2
ð2k
0

dk kF3D kð Þ: ð113Þ
low

Equation (113) coincides with the mean field attenuation coefficient as derived by
various authors (e.g., Rytov et al., 1989). Inserting, for example, the fluctuation spectrum

for 3-D exponential media F3D kð Þ ¼ s2na
3

p2 1þ k2a2ð Þ2, we get
g3Dlow ¼ 4s2n
k2a3

1þ 4k2a2
� 4s2na

3k4; ð114Þ
yielding the expected Rayleigh frequency dependency odþ1, where d denotes the spatial
dimension.
In general, the high-frequency behavior of the attenuation coefficient depends on the

used fluctuation spectrum. In the case of Gaussian-correlated fluctuations, the high-
frequency limit of a is obtained as follows. Applying a Taylor expansion of the spectral
filter function in Eq. (95) for small argument L/k (or equivalently D � 1) yields
1� sin k2L=kð Þ
k2L=k

� 
¼ 1

6

k2L
k

� 2

þ O
k2L
k

� 4
 !

: ð115Þ
This results in the frequency-independent equation:
g3Dhigh ¼
p2

3
L3
ð1
0

dkk5F3D kð Þ: ð116Þ
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This corresponds to the log–amplitude variance divided by the travel distance in the
geometrical optics limit.
5. The Interplay Between Attenuation Due Interlayer
Flow and Scattering

5.1. 1-D Poroelastic Random Media

In the preceding sections, we analyzed the two attenuation mechanisms under consid-
eration separately and assumed the validity of the superposition principle. In the case of
randomly layered media, it is possible to analyze the combined effects of wave-induced
flow and scattering within a single theoretical framework: the poroelastic extension of
the generalized ODA formalism. In 1-D random media, the wave-induced flow degen-
erates to the so-called interlayer flow.

The total-frequency-range results for the attenuation coefficient and the vertical-phase
increment of the P wave have been found by Gelinsky et al. (1998). The further analysis
will be concentrated on the attenuation of the P wave. The reciprocal quality factorQ�1 is
(Shapiro and Müller, 1999)
FIG.

black

travel

compo

behavi
Q�1 ¼ a2ND1

H
Fflow xflowð Þ þ N2D2

M2
Fscat xscatð Þ; ð117Þ
where the notation of the poroelastic parameters is the same as in Section 3. The
quantities D1,2 are measures of heterogeneity of the medium. There are two different
linear combinations of the normalized variances and covariances of the poroelastic
parameters:
D1 ¼ eP � eM � 2
P� a2M

P
ea

� 2
* +

;D2 ¼ s2HH: ð118Þ
The factors before the functions F do not contain any dynamic information. Accord-
ingly, they do not contain any information about the permeability. The dynamic depen-
dence of the attenuation is contained in the quantities Fflow (x) and Fscat (x). These are
positive functions of the following form:
Fflow xflowð Þ ¼ ffiffiffi
2

p
xflow

Ð1
0

dzB zð Þexp �zxflowð Þcos zxflow þ p=4ð Þ
Fscat xscatð Þ ¼ 1

2
x0scat

ð1
0

dzB zð Þcos 2zxscatð Þ; ð119Þ
12. Behavior of the Fresnel filter, the term in brackets of Eq. (110) (denoted by the thin

curve), as a function of the normalized wave number ka. For large frequencies and small

distances (small wave parameter D), the Fresnel filter excludes only the low wave number

nents of the fluctuation spectrum F (ka) indicated by the grey curve (top). The opposite

or can be observed for low frequencies and large travel distances (large D) (bottom).
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where z¼ z/a. Their arguments depend on frequency: xflow ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oa2r=2N

p
; xscat ¼ oa/v0,

where v0 ¼
ffiffiffiffiffiffiffiffiffi
H=r

p
is the P-wave velocity in the Gassmann limit. Here, r ¼ �/k0.

The second term in Eq. (117) describes the elastic scattering.
The values of D1 and D2 in Eq. (117) are usually of the order of 0.01–0.1. Under the

assumptions Kf � Kg, f � 1 and accepting that fluctuations of the Kg are smaller than
the fluctuations of other parameters, the following rough approximation is obtained:
D1 � h eP � eKf
þ ef

	 
2i: ð120Þ
This relation shows the role of cross-correlations between the fluctuations. For
instance, if the fluctuations of the skeleton elastic moduli and the fluctuations of the
bulk modulus of the pore fluid are anticorrelated, then a maximum interlayer-flow
contribution in the attenuation of the P wave will be observed. Such a situation is possible
in partially saturated reservoirs. In realistic situations, the low-frequency range attenua-
tion due to the interlayer flow can be of the order of n � 100 in terms of the Q factor.
The contribution of the elastic scattering is also of the same order. In extreme cases (of
partial gas saturation) the resulting Q can reach the order of n � 10.
We also compare the result for the attenuation with those obtained in the 3-D case.

For the same sandstone model as above, we compute the interlayer-flow contribution of
Q�1 [the first term in Eq. (117)] for the case that only parameter Kf exhibits fluctuations
with s2Kf

¼ 0:2 and a ¼ 10 cm (Fig. 14). It can be observed that the magnitude of
attenuation in 1-D and 3-D random media is of the same order. However, note that the
attenuation in 3D is slightly larger. Maximal attenuation in the 3-D case is observed at
o3D
max ¼ 2k0N=a2�; ð121Þ
whereas in the 1-D case at
o1D
max ¼ k0N=a2�: ð122Þ
Thus, maximum of attenuation in 3D occurs at a frequency twice as large as compared
with the 1-D case. In our example, this difference has important implications for the
observability of the attenuation mechanism. For typical seismic frequencies (10–100 Hz),
the attenuation due to wave-induced fluid flow is larger in 3-D inhomogeneous structures
(this is indicated by the arrow in Fig. 14). It can be also observed that the low- and high-
frequency velocities coincide for the two cases. This is, however, a consequence of the
constant shear modulus in this example. Numerical validation of the proposed model can
be found in Gelinsky et al. (1998). Using a poroelastic reflectivity code attenuation and
dispersion are computed in a broad frequency range. The numerical results show good
agreement with the theoretical predictions (Fig. 15).
5.2. Asymptotic Scaling of Attenuation

The frequency and permeability dependencies of the attenuation are defined by
functions Fflow(x) and Fscat(x). Therefore, they are controlled by the correlation proper-
ties of the medium heterogeneities (i.e., by the disorder of rock structures).
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Let us now consider the general case of randomly heterogeneous media. In this case,
the correlation between any two points decreases with an increasing distance between
them. Therefore, the function B(z) is a rapidly decreasing function for z > 1. Taking this
into account and considering the limit xflow ! 0 one obtains
Fflow xflowð Þ � xflow

ð1
0

dzF zð Þ;Fscat xscatð Þ � 1

2
xscat

ð1
0

dzF zð Þ: ð123Þ
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Therefore, we observe that in any medium with disorder, in the low-frequency range
the Q�1 contribution of the interlayer flow is proportional to xflow, that is, to o1/2.
The contribution of the elastic scattering is proportional to o. Thus, the interlayer-
flow-associated attenuation coefficient is proportional to o3/2. This frequency depen-
dence is analogous to the Rayleigh-scattering frequency dependence, and it is universal
for all poroelastic media with disorder. Moreover, the low-frequency-range attenuation
coefficient is proportional to k�1=2

0 . There is no universal behavior in the case of
xflow 	 1, where the frequency dependence of the interlayer-flow attenuation is
controlled by the statistics of the heterogeneities.
Substituting the von Kármán correlation function (Eq. 8) into Eq. (119) we obtain
Fflow xflowð Þ ¼ 2v�1=2vG vþ 1=2ð Þz
"

1þ 2ix2flow
	 
�2v�1

4 P
�1=2�v
�1=2þv ~zð Þ

� i 1� 2ix2flow
	 
�2v�1

4 P
�1=2�v
�1=2þv zð Þ

#
ð124Þ

Fscat xscatð Þ ¼ ffiffiffi
p

p
G nþ 1=2ð ÞG�1 nð Þxscat 1þ x2scat

	 
�1=2�n
; ð125Þ

�1=2�n

where the function P�1=2þn is the associated Legendre function of the first kind,
z ¼ xflow þ ixflow, and ~z its complex conjugated. To derive the first result, the tables of
integrals (Prudnikov et al., 1988, p. 349, eq. 2.16.6.3) has been used.
The high-frequency limit (xflow, scat!1) can now be obtained by an asymptotic expan-

sion.Therefore, the relation for largeargumentsof theLegendre function isused (Gradshteyn
and Ryzhik, 1980, p. 1011, eq. 8.776) and provides the following proportionalities:
Fflow / x�2n
flow; Fscat / x�2n

scat : ð126Þ
In spite of their similarity, these relations result in different frequency dependencies
of the fluid-flow and scattering contributions to the attenuation:
Q�1
flow / o�n; Q�1

scat / o�2n: ð127Þ
In addition, the permeability dependence is
Q�1
flow / kn: ð128Þ
As a particular example, we consider the case n ¼ 1/2. Then the correlation function
assumes the exponential form B(z) ¼ exp(–z) and the functions F are
Fflow xflowð Þ ¼ xflow
1þ 2xflow þ 2x2flow

; Fscat xscatð Þ ¼ xscat=2

1þ 4x2scat
: ð129Þ
This example shows that functions Fflow (x) and Fscat (x) are positive functions with
magnitudes of the order O(1). These functions reach their maxima at x ¼ O(1). There-
fore, the permeability controls the location of the maximum of the interlayer-flow part in
the frequency range. This maximum is reached at frequencies of the order O(2Nk/a2�).
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In realistic situations, if a is in the range of 10�2 – 10 m the maximum of the Q�1

factor of the interlayer-flow attenuation can be reached at any frequency lower than
103 Hz. Therefore, this attenuation will be significant at least in a part of the seismic
frequency range.
6. Concluding Remarks

The models proposed in this chapter provide expressions for frequency-dependent
attenuation and dispersion in 3-D randomly inhomogeneous porous media accounting for
the effect of wave-induced fluid flow and scattering. Our results are based on perturba-
tion theory and, therefore, are restricted to weak-contrast media. However, we think that
this approximate solution reveals the exact solution’s essential dependence on frequency
and medium parameters. In our approach, the dynamic characteristics depend on the
correlation properties of the medium fluctuations. Closed-form expressions for Q�1(o)
and v(o) are obtained for several correlation functions. In this chapter, we focused the
analysis on wave propagation in statistically isotropic random media. However, the
results can be probably generalized to the case of statistically anisotropic random
media. An advantage of the statistical approach is its flexibility to handle complex
geometrical distributions of the inhomogeneities. Only the spatial correlation of the
fluctuations needs to be known to compute the dynamic wavefield attributes.
We analyzed the properties of the coherent wave propagating in poroelastic random

media. Neglecting the ordinary elastic scattering, we only accounted for conversion
scattering from fast P into Biot’s slow P wave. This process of conversion scattering is
equivalent to the mechanism of pore pressure relaxation due to wave-induced perturba-
tions. Thus, our results describe the relationship between the dynamic properties of the
coherent wavefield and the mechanism of wave-induced fluid flow. In particular, we
have derived an explicit expression for the effective wave number of the fast compres-
sional wave [Eq. (58)] by applying a first-order statistical smoothing of Biot’s equations
of poroelasticity with randomly varying coefficients. Attenuation and dispersion depend
on linear combinations of the spatial correlations of the fluctuating poroelastic para-
meters. The observed frequency dependence is typical for a relaxation phenomenon.
The low- and high-frequency asymptotes of the attenuation coefficient of a plane
compressional wave in 1D and 3D are analyzed. The low-frequency behavior of attenu-
ation is found to be Q�1 / o in 3D and Q�1 / ffiffiffiffi

o
p

in 1D, whereas at high frequencies
Q�1 / o�1=2 in all space dimensions. It is interesting to note that these asymptotes
coincide with those predicted by the periodicity-based approaches (Johnson, 2001; Pride
et al., 2004). Consequently, in 3-D space the observed frequency dependency of attenu-
ation due to fluid flow has universal character independent of the type of disorder
(periodic or random). This result is somewhat unexpected if we remember that in 1-D
space the attenuation asymptotes are different for periodic and random structures.
Several modeling choices of the approach including the effect of cross-correlations
between fluid and solid phase properties are demonstrated.
To account properly for scattering attenuation in general random (porous) media, we

extended the generalized ODA formalism to 2-D and 3-D random media. Using the fact
that the attenuation coefficient and phase increment are self-averaged quantities, we
derive approximations for their ensemble-averaged counterparts. In particular, we use a
combination of the method of statistical smoothing and the Rytov approximation to
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obtain expressions for attenuation and dispersion that is valid in the entire frequency
range. At low-frequencies attenuation scales according to the Rayleigh dependence
Q�1 / oD, where D denotes the spatial dimension. At high frequencies, we recover
the geometrical optic limit.
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OBSERVING AND MODELING ELASTIC
SCATTERING IN THE DEEP EARTH

Peter M. Shearer and Paul S. Earle
Abstract

Seismic scattering in the deep Earth below the mantle transition zone is observed from precursors and

codas to a number of body-wave arrivals, including P, Pdiff, PKP, PKiKP, PKKP, and P0P0.
Envelope-stacking methods applied to large teleseismic databases are useful for resolving the

globally averaged time and amplitude dependence of these arrivals. Stacks of P coda near 1 Hz

from shallow earthquakes exhibit significant variations among different source and receiver locations,

indicating lateral variations in scattering strength. At least some deep-mantle, core-mantle boundary,

and inner-core scattering is indicated by the observations, but the strength and scale length of the

random velocity heterogeneity required to explain the data are not yet firmly established.Monte Carlo

seismic “particle” algorithms, based on numerical evaluation of radiative transfer theory with Born

scattering amplitudes for random elastic heterogeneity, provide a powerful tool for computer model-

ing of scattering in the whole Earth because they preserve energy and can handle multiple scattering

through depth-varying heterogeneity models. Efficient implementation of these algorithms can be

achieved by precomputing ray tracing tables and discretized scattering probability functions.

Key Words: Seismic scattering, coda waves, Monte Carlo algorithms, deep Earth

heterogeneity � 2008 Elsevier Inc.

1. Introduction

Observing and modeling seismic scattering in the mantle and core is important
because of the constraints these studies provide on small-scale heterogeneity. However,
investigating seismic scattering in the deep Earth is challenging because strong litho-
spheric scattering can mask scattered arrivals from deeper in the mantle. By correctly
identifying the scattering origin of PKP precursors, Cleary and Haddon (1972) found the
first definitive evidence for deep-Earth scattering. PKP precursors have an unusual ray
geometry that provides a unique window into scattering within the lowermost mantle and
at the core-mantle boundary (CMB). Early modeling of PKP precursors focused on the
(CMB) region as their likely source and used single-scattering theory applied to random
media models to provide a first-order fit to precursor amplitudes (e.g., Haddon and
Cleary, 1974; Doornbos, 1978; Bataille and Flatté, 1988). However, more recent work
(Hedlin et al., 1997; Cormier, 1999; Margerin and Nolet, 2003a,b) showed that the
scattering must extend at least 600 km into the mantle above the core, and it seems
likely that some amount of scattering is present throughout the mantle.
In addition to PKP precursors, there are a number of other seismic observations that

suggest deep scattering, including Pdiff coda (Bataille et al., 1990; Tono and Yomogida,
1996; Bataille and Lund, 1996; Earle and Shearer, 2001). PKKP precursors (Chang and
Cleary, 1978, 1981; Doornbos, 1980; Earle and Shearer, 1997), and PKiKP coda (Vidale
and Earle, 2000; Vidale et al., 2000; Poupinet and Kennett, 2004; Koper et al., 2004). In
principle, the coda of deep-turning P and S waves is sensitive to lower-mantle scattering,
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but it is tricky to separate this scattering from the much stronger scattering that occurs in
the shallow mantle and crust. Nonetheless, several recent studies have found evidence in
these phases for a deep-scattering contribution (Cormier, 2000; Lee et al., 2003; Shearer
and Earle, 2004).
All of these results are valuable because they provide estimates on the strength of

heterogeneity in the deep mantle and inner core at scale lengths (e.g., �10 km) much
smaller than those that can be imaged using tomographic methods. These velocity
anomalies are almost certainly compositional in origin because small-scale thermal
perturbations would quickly diffuse away, and thus they provide insight regarding the
degree of mixing in mantle convection models. It is therefore important to further
develop seismic observations to resolve additional details regarding the heterogeneity,
including its strength, scale length, and depth dependence.
Accurate modeling of the seismic observations requires a more complete theory than

methods based on the Born approximation, which do not conserve energy and ignore the
effects of multiple scattering. For example, Margerin and Nolet (2003a,b) found that
Born theory is accurate for whole-mantle scattering models only when the deep-velocity
heterogeneity is less than 0.5%. Finite difference/element methods can handle velocity
models of arbitrary complexity but are not yet numerically feasible for global scattering
problems at high frequencies (1 Hz). Faster algorithms are possible through use of the
parabolic and Markov approximations (e.g., Sato and Fehler, 2006), but three-
dimensional global calculations remain difficult. Here, we focus on Monte Carlo meth-
ods based on radiative transfer theory that simulate the random walk of millions of
seismic energy “particles.” Although these methods discard phase information, they are a
powerful and practical approach to modeling whole-Earth, high-frequency scattering.
We begin by describing the processing and stacking methods that are suited for global

seismic observations and then present some specifics regarding how the Monte Carlo
method can be efficiently implemented. Results from the Shearer and Earle (2004)
analysis of P coda will be highlighted, but we describe our algorithms in more detail
and present some new results concerning lateral variability in teleseismic P coda.
2. Data Stacking

Waveform stacking has several advantages over analysis of individual seismograms:

1. It generally increases the signal-to-noise ratio, making it possible to identify and
characterize weak seismic arrivals that are hard to resolve on single records.

2. It reduces the volume of data to be modeled to a more manageable level. For
example, the information in thousands of global seismograms can be reduced to a
single time-versus-epicentral-distance image of the average wave field.

3. It can provide a spatially averaged measure of the wave field that is less biased than
results from small numbers of seismograms. By processing all of the data, it
reduces the selection bias problem that may affect studies that focus on the most
visible or anomalous phases in individual records.

Conventional seismogram-stacking methods do not work well for imaging scattered
seismic arrivals because coda waves are generally incoherent among the different
recording stations, especially at the high frequencies where the scattered wave field is
typically observed. In other words, the timing of the peaks and troughs in the
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seismograms varies randomly among the records. Small-scale arrays are an important
exception to this and have provided valuable constraints on the slowness and back-
azimuth of scattered arrivals. However, our focus in this chapter concerns the use of
single stations that are too far apart for standard array processing techniques to work. In
this case, it is necessary to develop stacking methods that work for incoherent data.
One approach is to discard the phase information in the seismograms and consider

only their energy content as defined by their envelope functions. This method has been
used successfully to image PKP and PKKP precursors (Hedlin et al., 1997; Earle and
Shearer, 1997; Shearer et al., 1998), Pdiff coda (Earle and Shearer, 2001), and P coda
(Shearer and Earle, 2004).
Figure 1 illustrates the envelope-function stacking technique applied to P and its coda

(Shearer and Earle, 2004). Before stacking, we manually review the data and remove
seismograms with dropouts, data glitches, or contaminating arrivals from aftershocks or
local earthquakes. Once the data are cleaned, they are processed and stacked using the
following steps shown in Fig. 1:
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FIG. 1. Illustration of the different processing steps in the envelope-stacking technique. Starting

with each original broadband trace (a) band-pass filtering is applied, (b) the envelope function is

computed, (c) the power in the preevent noise is removed. The processed traces are then stacked (d).

Notice the large variability seen in the individual seismograms compared to the smooth stacked trace at

the bottom.
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(a) The traces are band-pass filtered between 0.5 Hz and 2.5 Hz. This frequency band
falls in a low noise region of the spectrum and provides the greatest sensitivity to
deep-Earth structure with scale length of about 10 km.

(b) The envelope function (e.g., Kanasewich, 1981) is calculated for each
seismogram.

(c) We assume that the noise and signal are uncorrelated so that, upon averaging, their
energies will sum. Thus, to account for varying noise levels between traces, the
envelope functions are squared and the average noise in a time window preceding
the reference phase (in this example the P wave) is subtracted from the entire trace.
Then, the square root of the noise corrected trace is taken. The squared envelope is
used because the recorded signal is the square root of the sum of the squared noise
plus the squared signal.

(d) The final stack is made by normalizing the traces to their maximum amplitudes,
aligning them on the reference phase arrival time, and averaging all traces in a
target distance window as a function of time.

We stack the traces in amplitude rather than power because we have found that this
produces slightly more robust results than power stacks. However, in practice the
differences between amplitude and power stacks are usually fairly small.
2.1. Shallow- Versus Deep-Earthquake Teleseismic P Coda

Results of this stacking method applied to teleseismic P coda are plotted in Fig. 2
(originally in Shearer and Earle, 2004), which compares stacks for over 7500 records from
shallow earthquakes (depth � 50 km) and 650 records from deep earthquakes
(depth � 400 km). Data are taken from vertical- component seismograms from MW ¼ 6
to 7 events in the IRIS FARM archive from 1990 to 1999. The stacked envelopes are
binned at 5� distance intervals and 2-s time intervals. This figure shows the striking
difference in teleseismic coda strength between shallow and deep earthquakes. The
shallow-event coda is much stronger and longer-lasting than the deep-event coda. At
50 s following the P arrival, it is 2–5 times larger in amplitude (4–25 times larger in
energy). This difference indicates that teleseismic P coda from shallow events is dominated
by near-source scattering above 600-km depth. Note that both stacks should have equal
coda contributions from near-receiver scattering, but the energy difference between the
shallow and the deep coda is much more than a factor of two. However, as discussed in
Shearer and Earle (2004), this does not necessarily imply lateral variations in scattering
strength with stronger scattering in active earthquake areas. In fact, with Monte Carlo
modeling, it is possible to achieve a reasonable fit to both the shallow- and deep-earthquake
coda amplitudes with a single model in which scattering strength varies only with depth.
2.2. Regional Variations in Teleseismic P Coda Amplitude

The Shearer and Earle (2004) teleseismic P coda study considered only spherically
averaged coda amplitudes. Here, we analyze data from this study in more detail to identify
variations in coda levels among different source regions and station locations. Fig 3
illustrates such a difference between twoAsian stations as seen in coda stacks of 120 quakes
recorded at YAK and 163 quakes recorded by AAK (all quake depths are less than 50 km).
Station AAK has consistently higher P coda amplitudes than station YAK.
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FIG. 2. A comparison between the shallow-event, envelope-function stack (dashed), and the

deep-event stack (solid line). Time is relative to P and the stacks have been scaled to the same

P-wave maximum amplitude. Note the much more extended coda from the shallow events.

Figure taken from Shearer and Earle (2004).
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To characterize these variations systematically, we measure the average ratio of the P
coda amplitude to the P amplitude at source-receiver distances between 60� and 95� (the
observed ratio changes little over this distance interval). The P amplitude is measured as
the average absolute value in the demeaned trace in a 40-s window starting at the
predicted P arrival time. The coda amplitude is measured similarly in a 60-s window
starting 60 s after the P arrival time. To account for possible biasing effects related to the
specific subset of events recorded by each station, we assume that the logarithm of this
relative coda level, c, for the ith source and the jth receiver can be approximated as the
sum of a source term, q, and a receiver term, r,
log cij
� � ¼ log qið Þ þ log rj

� �
: ð1Þ
This equation does not have a direct physical basis; it is an empirical approach to test how
much of the variation in the coda amplitudes can be explained with a simple decomposi-
tion into source- and receiver-side contributions. Because we have many receivers for
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each source and many sources for each receiver, this is an over-determined problem,
which we solve using a robust, iterative least squares approach. To remove the non-
uniqueness in this equation (a constant could be added to the log q terms and subtracted
from the log r terms), we constrain the average log r to be zero.
Fig. 4 plots the resulting individual source and receiver terms q and r. Before plotting,

we scale the receiver terms to have the same median value as the source terms. Symbol
size is proportional to the log deviation from the median amplitude ratio of 0.432. Plus
symbols have relatively high coda levels and diamonds have relatively low coda levels.
Because results can be quite variable for small numbers of traces, we only include terms
constrained by at least 10 traces. Overall, the quake coda levels have about twice the
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variability of the station coda levels. The median variations in quake coda levels are
about �16% while the median variations in station coda levels are about �8%. This is
consistent with near-source rather than near-receiver scattering being the dominant
contributor to teleseismic P coda, as is also implied by the differences in the shallow-
and deep-earthquake stacks plotted in Fig. 2. The relatively sharp changes in coda levels
that can be seen in these plots over short distance intervals also indicates that the bulk of
the coda originates from near-surface scattering, rather than from deeper in the mantle.
Both the quake and the station terms exhibit some degree of spatial coherence.

Stronger coda is seen from events in central Asia, the Kurils and South America and
weaker coda is observed in Japan, western North America, and the southwest Pacific.
The station terms are less coherent but generally have weaker coda in northeast Asia,
parts of Africa, and North America outside of California. There is little, if any, spatial
correlation between the source and the receiver terms. This may indicate that the near-
source and near-receiver scattering processes are different (i.e., more S-to-P near the
source, more P-to-P near the stations), or could reflect strong variations in heterogeneity
very close to earthquake source regions that do not always extend far enough to produce
correlated variations in coda strength for teleseismic arrivals at nearby seismic stations.
Our station term results have only limited correlation with the scattering Q (QSc)

estimates at 1 Hz of Korn (1990, 1993) from P coda for 9 stations in Australia and around
the Pacific. We observe stronger than average P coda for stations GUMO and TATO,
which have lower than average QSc at 1 Hz in Korn (1993). In contrast, we also observe
relatively strong P coda for NWAO and weak P coda for AFI, opposite to Korn’s results.
Because of differences between our simple station term inversion method and the energy
flux modeling approach of Korn (1990, 1993), it is not clear how well correlated results
should be between the methods.
3. Monte Carlo Methods

Monte Carlo methods have been used in physics since the 1950s to model radiation
transport by using a computer to simulate the random scattering of large numbers of
individual particles [see Dupree and Fraley (2002) for a recent introduction to many of
these techniques]. The Monte Carlo approach uses computer-generated random numbers
to sample the different possible variables in a problem. For example, neutron scattering
can be simulated by tracking the behavior of individual neutrons, radiated in random
directions from a source and scattered in random directions during their propagation, thus
in effect simulating the results of an actual experiment. In general, the accuracy of the
solution grows with the number of particle trajectories that are computed and thus Monte
Carlo methods have become increasingly useful as faster computers have become
available. Typically, the algorithms converge such that the variance of the results
decreases as 1=

ffiffiffi
n

p
, where n is the number of particles.

The concept of seismic “particles” may not seem useful upon initial consideration
because there is no wave-particle duality for seismic waves, as exists for electromagnetic
waves. However, if one is willing to consider energy transport alone and discard phase
information in seismic records, then a particle-based, Monte Carlo approach can be very
valuable. It is particularly suited to studying scattering at high frequencies, where the
waveforms are incoherent and typical modeling efforts consider only the envelope
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function. It bridges the gap between Born theory for weak scattering and computationally
intensive finite difference/element calculations for complicated models.
3.1. Seismology Applications

The first use of the Monte Carlo approach in seismology was by Gusev and
Abubakirov (1987) who modeled acoustic wave scattering in a uniform whole space
using particles randomly radiated from an isotropic source. They assumed a constant
probability of scattering per unit volume, resulting in an exponential distribution of path
lengths. They did not explicitly include intrinsic attenuation but noted that it could easily
be modeled in the constant Q case by multiplying the energy of each particle by e–2pft/Q.
They considered both isotropic scattering and forward scattering with a Gaussian angle
distribution and showed that their results agree with the diffusion model at large lapse
times, but that only the forward scattering model produces realistic pulse broadening and
coda envelopes at short distances. Abubakirov and Gusev (1990) presented a more
detailed account of the Monte Carlo technique and used a forward scattering model to
compute master curves describing the relationships between the mean free path and both
pulse broadening and the intensity ratio of the direct and the scattered waves. Applying
these results to S-coda observations in Kamchatka, they obtained S-wave mean free paths
of 100–150 km over a 1.5–6 Hz frequency range. Gusev and Abubakirov (1996)
expanded their Monte Carlo method to include scattering angles predicted by specific
models of random velocity heterogeneity, including Gaussian and power-law media, and
argued that a power-law exponent of 3.5–4 is in qualitative agreement with the features
of observed S-wave envelopes.
Hoshiba (1991) used a Monte Carlo method to model isotropic S-wave scattering in a

uniform whole space, and demonstrated that the results agree with Born theory for weak
scattering and with the radiative transfer theory of Wu (1985) and the diffusion model for
strong scattering. Hoshiba (1994, 1997) extended his method to include depth-dependent
scattering strength, layered velocity models, and intrinsic attenuation. He simulated SH-
wave reflection and transmission coefficients at layer interfaces as probabilities of
reflection or transmission, which is a practical way to handle the energy partitioning at
interfaces without the complexities of generating additional particles.
Margerin et al. (1998) modeled isotropic S-wave scattering using a Monte Carlo

method for a layer over half-space model (i.e., the crust and the upper mantle) and
included both surface and crust-mantle boundary (Moho) reflected/transmitted phases,
using probabilities to handle reflection and transmission coefficients, but did not model S
polarity, phase conversions, and intrinsic attenuation. Margerin et al. (2000) extended
their method to fully elastic waves, including S polarity and phase conversions, and
modeled scattering off randomly distributed spherical inclusions within a uniform whole
space. They explored the dependence of their results of the relative size of the spheres
compared to the seismic wavelengths. Margerin and Nolet (2003a,b) applied a Monte
Carlo method to model PKP precursors with whole Earth P-to-P scattering in the mantle.
They showed that their results were in good agreement with geometrical ray theory for
the main PKP arrivals and that the scattered arrivals agreed with Born theory for weak
random velocity heterogeneity.
Bal and Moscoso (2000) included S-wave polarizations in Monte Carlo simulations of

randomly heterogeneous lithosphere and showed that S waves can become depolarized
after multiple scattering. Yoshimoto (2000) used a finite difference ray tracing method to
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implement a Monte Carlo method for a complex velocity profile for the lithosphere and
found that ray bending caused by velocity gradients and the Moho can have large effects
on the shape of the S coda envelope.
Wegler et al. (2006) and Przybilla et al. (2006) performed a series of tests of Monte

Carlo simulations based on radiative transfer theory, for both acoustic and fully elastic P-
and S scattering, and compared their results to those predicted by various analytical
solutions in 3D and finite difference solutions to the full wave equation in 3D. In general,
they found good agreement between the Monte Carlo approach and other methods,
except in the case of extreme velocity perturbations, such as can occur in volcano
seismology.
Although all of these methods work by computing trajectories for a large number of

particles, they differ in some important details. A fundamental distinction can be made
between two different approaches: (1) algorithms that simply count the number of
particles that hit different cells in the model (e.g., Gusev and Abubakirov, 1987, 1996;
Yoshimoto, 2000; Shearer and Earle, 2004) and (2) those that compute the probability of
particles at a series of discrete receivers (e.g., Hoshiba, 1991, 1994, 1997; Margerin et al.,
1998, 2000). The former provide the energy density at every point in the model and thus
can be termed global methods in contrast to the local nature of the calculations in (2).
Although for some models there are computational advantages to (2), the simplicity and
flexibility of (1) have made it a more popular choice, given the speed and storage
capabilities of modern computers.
3.2. Monte Carlo Implementation

The theoretical basis for the Monte Carlo approach is provided by radiative transfer
theory (e.g., Wu, 1985; Sato, 1995; Ryshik et al., 1996; Bal and Moscoso, 2000;
Margerin, 2005). We will not review this theory here. Instead, we will focus on the
practical aspects of writing a computer program to perform seismic Monte Carlo
calculations in an efficient manner for radially symmetric Earth models. As an example,
we will give details of the global elastic algorithm of Shearer and Earle (2004).

The fundamental principle involved is that each seismic “particle” represents an
energy packet and that our treatment of the particles (i.e., propagation, reflection/
transmission, phase conversions, and scattering) should be designed to conserve energy
in a logically consistent manner. We will use geometrical ray theory to compute particle
trajectories. A nice aspect of the particle approach is that geometrical spreading terms are
not required because the energy reduction with distance is naturally included as the
decrease in particle density as the particles spread out from the source. The energy
partitioning that occurs at interfaces or scattering points is handled not by splitting the
energy into different particles but by assigning appropriate probabilities to the changes in
particle directions and using computer-generated random numbers to sample these
probability distributions. Thus, we track only one particle at a time, making the code
straightforward to parallelize and run on multiple processors, if desired.
The output of a Monte Carlo simulation will typically appear noisy at first (i.e.,

producing spiky and irregular envelopes) when only a small number of particles are
computed, but will become increasingly smooth as more particles are included in the
calculation. The number of particles required to give adequate results will vary, depend-
ing upon the details of the model, the portion of the output wave field that is of greatest
interest, and how much resolution in time and space is desired.
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3.3. The Monte Carlo Source

Despite the fact that earthquake radiation patterns are not uniform, most Monte Carlo
simulations assume isotropic radiation from the source. This can be justified for two
reasons: (1) At high frequencies, observed P and S amplitudes show considerable scatter
compared to that predicted by double-couple sources (e.g., Nakamura et al., 1999;
Hardebeck and Shearer, 2003) presumably caused by strong crustal and near-surface
focusing and scattering effects. Thus, details of the radiation pattern tend to be lost during
high-frequency wave propagation. (2) Results are often averaged over many earthquakes
and stations at different azimuths from the source. This will lessen the bias caused for
individual ray paths by neglecting radiation pattern effects. However, it is important to
recognize that some bias may still be present. For example, if most earthquakes in a
region are strike-slip, the expected P-wave fraction of energy radiated in the near-vertical
direction is much less than that predicted by assuming an isotropic source. This bias
cannot be removed by averaging over azimuth. Isotropic average radiation will only
occur for a truly random distribution of focal mechanisms, which is unlikely to be the
case for real Earth observations.
If the background Earth model is radially symmetric, then the expected average energy

observed on Earth’s surface from an isotropic source will vary only as a function of
distance. It thus makes sense to combine the energy from all of the particles hitting the
surface at a particular distance (regardless of azimuth) to compute the average predicted
wave field. It follows that because of the symmetry of the problem and the randomness of
individual scattering events, it is only necessary to shoot the particles at a single azimuth
from the source. In this case, however, the number or the energy of the particles must be
weighted as sin y, where y is the takeoff angle from the vertical, to account for the greater
number of particles expected at more horizontal takeoff angles for a spherically isotropic
source.
For efficiency it is usually desirable for ray tracing and other information to be

computed and stored at certain discrete values, in which case the sampling will be
limited to these values. It is not necessary for the takeoff angle sampling to be uniform,
provided suitable weights are assigned to the particles. This technique is termed event
biasing in the Monte Carlo literature. For example, the rays could be evenly sampled in
ray parameter rather than angle or proportionally more rays could be fired at steeper
angles for better sampling of core phases compared to crustal phases. Both upgoing and
downgoing rays from the source should be included unless the source is assumed to be
exactly at the surface. In Shearer and Earle (2004), we spray rays evenly spaced in 10,000
values of ray parameter (from p ¼ 0 to p ¼ 1/c, where c is the P or S velocity at the
source), and set the energy of the ith particle proportional to (yi – yi–1) sin yi, where the
takeoff angle yi ¼ sin–1(cpi). Note that c dp¼ cos y dy, yi – yi–1� dyi, and thus (yi – yi–1)
sin yi is proportional to tan y when dp is constant.

For S waves, it is simplest to assume random polarizations for the particles leaving the
source, again making the assumption that radiation pattern differences will tend to
average out when results are combined from many different sources and receivers. In
addition, multiple scattering will at some point remove the information about the original
source polarization. In complete modeling of both P and S waves, an S-to-P total initial
energy scaling factor, q ¼ ES

i =E
P
i , must be assumed. This can be done by radiating q

times more S particles or by radiating equal numbers of P and S particles but assigning q
times more energy to the S particles. The latter approach is more efficient for resolving
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both P and S phases. Theoretical results for a double-couple source suggest that q¼ 23.4
for a Poisson solid (e.g., Sato, 1984) and this factor was used by Shearer and Earle (2004).
However, this assumes that the S and P corner frequencies are identical and earthquake
source studies indicate that the P-wave corner frequency is typically higher than the
S-wave corner frequency, with observations ranging from q ¼ 9 to 14 (Boatwright and
Fletcher, 1984; Abercrombie, 1995; Prieto et al., 2004). These values are for total radiated
energy integrated over the entire frequency band and are not necessarily appropriate at the
single fixed frequency used in each Monte Carlo calculation. The question of the relative
sizes of P and S radiation from earthquakes is an active area of research towhich scattering
studies may be able to contribute by better separation of intrinsic attenuation, scattering
attenuation, and source effects in observed earthquake spectra.
Because the number of radiated particles will vary depending upon how long the

program is kept running, it is simplest to initially consider only relative energy at the
source and perform the normalization to absolute energy at a later stage. This may be
accomplished by keeping track of the total initial energy of the radiated particles and
multiplying the observed energy by the ratio of the desired radiated energy to the total
initial particle energy. In many applications, only the relative time versus distance
behavior of the wave field is important, in which case the calibration to absolute
amplitude is not required.
3.4. Particle Trajectories

Most seismic applications of the Monte Carlo approach have assumed acoustic or
elastic body-wave propagation and used ray theory to track the particle trajectories. For
simple whole-space or homogeneous layer models, the ray paths are straight lines.
However, for more realistic models containing velocity gradients the ray paths are
curved. To save computer time when computing results for millions of particles, it is
advantageous in this case to precompute ray tracing results (time and distance) at discrete
values of ray parameter, p, and depth in the model. The Shearer and Earle (2004)
algorithm computed dt and dx values within 10-km-thick layers in the model for
10,000 values of p, saving the results in separate arrays for P and S waves. Another
array records whether the ray passes through, reflects off, or turns (changes direction)
within each layer. Of course, a specific velocity versus depth model must be assumed.
Standard models such as PREM (Dziewonski and Anderson, 1981) and IASP91
(Kennett, 1991) predict body-wave travel times that generally agree within a few
seconds, but differences in the velocity gradients among the models can produce
significant differences in ray theoretical amplitudes.
Modeling of S-wave polarizations is complicated by the fact that the polarization will

rotate along curved ray paths. In radiative transfer theory, S-wave polarizations can be
handled using the Stokes parameters and this is the approach described in Margerin et al.
(2000) and Bal and Moscoso (2000). Shearer and Earle (2004) adopt the simpler scheme
of assigning S polarity as an angle in a local SV versus SH coordinate system, an angle
that will remain constant along curved ray paths in radially symmetric models, although
it will of course change following reflection/transmission or scattering events. This
approach is more limited than the Stokes method because it assumes that the S polariza-
tion is always linear, whereas phase shifts between the SV and SH components can occur
for some reflections at interfaces. Thus, the Shearer and Earle (2004) algorithm should be
considered only approximate for S polarizations.
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Figure 5 shows some examples of particle trajectories. Here, the model is discretized at
depth intervals of △z. Consider the simple case of ray path ABC, which does not
experience any scattering. The ray is radiated downward from the source at a specific
ray parameter. The program marches downward through the layers, adding the precom-
puted time and distance increments for each ray segment. In layer 3, the ray experiences a
turning point and its vertical direction changes. The program then goes up through the
layers and continues to accumulate time and distance increments. The direction changes
again when the ray reflects off the free surface at B.
The free surface is important because it is normally where we output results of Monte

Carlo simulations to compare with observations. For isotropic sources and Earth models
that are radially symmetric in their bulk properties (i.e., excluding random small-scale
perturbations), the observed wave field is a function of time and epicentral distance only.
It is therefore convenient to discretize the output into small bins in a time versus distance
array (the distance increment △x is shown in Fig. 5), into which the accumulated energy
from each arriving seismic particle is summed. At this point, separate results can be
saved for P- and S energy (derived from the wave type) as well as the vertical, radial, and
tangental components (derived from the local ray angle, wave type, and S polarization).
Later, these energies are normalized by the surface area in each bin (e.g., to account for
the greater surface area between 90� and 91� from the source compared to between 10�

and 11� from the source). In fully elastic calculations, P-to-S and S-to-P conversions
occur at the free surface and must be included in the modeling (see Section 3.4.1 below).
Following its reflection at point B, the ray again travels downward until it turns and

reflects again at surface point C, where the ray energy is added to a different part of the
time–distance array. The calculation for each particle continues until a maximum time
limit is reached, at which point the algorithm starts over with a new particle from the
source.

3.4.1. Interfaces

All standard Earth models contain significant velocity changes at the surface, the
Moho, the CMB, and the inner-core boundary (ICB) and minor velocity jumps near 410-
and 660-km depth. Thus, it is important for Monte Carlo simulations to correctly model



180 SHEARER AND EARLE
the reflection and the transmission behavior at interfaces. As described in Hoshiba (1997)
and Margerin and Nolet (2003a), this is handled by computing energy-normalized
reflection and transmission coefficients and converting them into probabilities that are
used to pick (based on a computer-generated random number) the wave type (P or S),
direction (up or down), and polarization (in the case of S waves) for a single particle that
leaves the interface. In this way the energy partitioning at each interface is modeled
stochastically as the average response of thousands of individual particles. Because these
are spherical interfaces, Snell’s law is obeyed and the ray parameter does not change.
In Fig. 5, there are two interfaces, one at the free surface and one between layers 4 and

5, where the velocity jumps discontinuously. For program efficiency, the reflection and
the transmission coefficients are precomputed for all of the discrete values of ray
parameter used to calculate the ray paths. Assuming the ray path ABC represents a P
wave, there is some energy converted to SV upon each free surface reflection. Thus, there
was a random chance that the particle might have changed to an S wave (with the
probability determined by the energy normalized reflection coefficient), but in this
example we assume that it did not. Ray path AD hits interface 2 and is reflected.
However, note that other particles traveling along the exact same path may be transmitted
though the interface. Whether a particle is reflected or transmitted will depend upon the
value of a random number generated by the computer whenever the particle hits an
interface.
The interface energy partitioning described above will result in the majority of

particles going into the seismic phases with the largest reflection and transmission
coefficients and thus into the highest energy parts of the wave field. This may not always
be desirable if a target phase of interest is of relatively low amplitude because of a small
reflection coefficient along its ray path, in which case most of the particles are “wasted”
and comparatively few particles will illuminate the phase. Examples of such phases
include PcP, PKiKP, and PKKP along much of their travel time curves. To improve the
performance of Monte Carlo algorithms in these cases, the appropriate reflection coeffi-
cients can be artificially increased, provided that the energy of the reflected particles is
decreased and the energy of transmitted particles is increased, such that average energy
over many particles is preserved even if energy conservation is violated for individual
particles. This is an example of a particle biasing technique, which is a common approach
in many Monte Carlo analyses in physics, although to our knowledge it has not yet been
applied in seismology.

3.4.2. Scattering Events

Scattering strength may be described either in terms of the probability of scattering as
the particle passes through a given volume or as the mean free path between scattering
events. The scattering coefficient, g, is defined as the scattering power per unit volume
per unit solid angle (e.g., Sato, 1977) and has units of reciprocal length. The total
scattering coefficient, g0, is defined as the average of g over all directions and can also
be expressed as
g0 ¼ ‘�1; ð2Þ

where ‘ is the mean free path. In general, these parameters will vary with depth in the
Earth for physically based random heterogeneity models because they are dependent on
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the seismic wave number k. Thus, one approach would be to test for a scattering event by
generating random numbers at short intervals along the ray path. This is the best method
in some respects because it can accurately handle depth-dependent scattering of arbitrary
complexity and is straightforward to code. However, it requires generation of a large
number of random numbers along the ray paths. Thus, it is more efficient to approximate
the scattering probability as constant within large depth intervals, in which case the path
length r to a scattering event is given by an exponentially distributed random number
with mean value ‘P or ‘S for P waves and S waves, respectively. Thus, individual values
of r for P and S waves are computed as
rP ¼ �‘Pln x
rS ¼ �‘Sln x; ð3Þ
where x is a random number between 0 and 1. This is the approach taken byMargerin and
Nolet (2003a,b) and Shearer and Earle (2004) and is accurate assuming that the mean free
path is much larger than the ray path segments in the model.
Note that the depths separating the intervals of different scattering probabilities need

not coincide with the velocity interfaces in the model. Whenever a particle enters a layer
with a different scattering probability, a random number determines the ray path length to
the next scattering event. As the computer tracks the ensuing particle trajectory, if the
accumulated path length within the layer exceeds this number, then a scattering event
occurs. If the particle leaves the layer and enters a layer with a different scattering
probability, then a new random number is generated for the new layer.
Consider ray AEFGHIJKL in Fig. 5. In this case, there is a uniform scattering

probability in layers 1–3 and a different scattering probability in layers 4–7. When
the ray leaves the source, a random number determines the path length to the next
scattering point according to Eq. (3) and the mean free path in the top scattering zone.
For this example, this length exceeds the distance AE and the particle is not scattered.
At point E, a new random path length is computed from the mean free path for the
lower scattering zone. This path length is exceeded by the downgoing ray somewhere
in layer 6 and a scattering event occurs at point G (for coding simplicity, scattering
events are forced to occur at boundaries between layers). The random orientation of the
scattered ray is then computed (see Section 3.5), which in general will involve a change
in ray parameter, ray vertical direction (upgoing or downgoing), ray azimuth and may
also involve a change in wave type (P or S). A new path length to the next scattering
event is computed for the scattered ray. The particle is reflected at H and another
scattering event occurs at I. The scattered particle is then transmitted at J and leaves the
lower scattering zone at K, at which point a path length is computed for the distance to
the next scattering event in the upper scattering zone. The particle hits the free surface
at L and the energy of the particle is added to the appropriate bin in the time versus
distance array.
3.5. Scattering Angles

Once a scattered event occurs, the next step is to assign a new particle trajectory, and in
the case of fully elastic simulations to assign the new wave type (P or S) and S-wave
polarization. The simplest approach is to assume that the scattering is isotropic, that is,
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the probability is equal in all directions. However, Gusev and Abubakirov (1987) and
Abubakirov and Gusev (1990) showed that this approach does not lead to realistic early
coda and pulse broadening of the direct arrival. To fit most seismic observations, some
form of anisotropic scattering is required with more scattering in the forward direction.
This can be achieved with empirical scattering functions, such as the Gaussian function
analyzed by Gusev and Abubakirov. However, this approach does not provide a
connection to the physical properties of the velocity and density perturbations that
are causing the scattering.
Thus, most recent Monte Carlo simulations in seismology compute scattering probabil-

ities based on a physical model of the scattering medium, which is generally done using
Born scattering coefficients for random heterogeneity models. Although Born theory is for
single scattering, it can be used to model multiple scattering when the distance between
scattering events is much longer than the seismic wavelength and the scale length of the
random heterogeneity, which is generally the case for elastic scattering in the Earth.
The required conditions can be expressed as (e.g., Wegler et al., 2006)
‘ 	 l=2p ð4Þ

and
‘ 	 a; ð5Þ

where ‘ is the mean free path, l is the seismic wavelength, and a is the heterogeneity
correlation distance. Comparisons to finite difference calculations have confirmed the
validity of Born theory to compute scattering probability in radiative transfer theory
(Wegler et al., 2006), except in cases of extreme scattering from very heterogeneous
media (such as may occur in volcano seismology). For the P coda simulations described
here, the smallest mean free path is 82 km, which is much longer than the wavelength of
mantle P waves at 1 Hz and the 8-km correlation length of the random heterogeneity
models.
We now summarize the Born results that are necessary to implement a fully elastic

Monte Carlo method that includes P-to-S and S-to-P scattering, using the appropriate
results from Sato and Fehler (1998; hereafter referred to as S&F; see also Wu, 1985, and
Wu and Aki, 1985a,b, for more details on Born theory in seismology). The simplest
equations are obtained when the P velocity a and S velocity b are assumed to have the
same fractional velocity fluctuations (S&F, 4.47):
x xð Þ ¼ da xð Þ
a0

¼ db xð Þ
b0

; ð6Þ
where a0 and b0 are the mean P and S velocities of the medium. We further assume that
the fractional density fluctuations are proportional to the velocity variations (S&F, 4.48):
dr xð Þ
r0

¼ nx xð Þ; ð7Þ
where n is the density/velocity fluctuation scaling factor.
The basic scattering patterns are given by (S&F, 4.50)
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where XPP
r is the radial component of P-to-P scattering, XPS

c is the c component of P-to-S
scattering, and so on. The angles c and z are defined as in Fig. 6 and the velocity ratio
g0 ¼ a0/b0.

Assuming a random media model, the scattered power per unit volume is given by the
scattering coefficients for the various types of scattering (P to P, P to S, etc.) (S&F, 4.52):
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where l ¼ o/b0 is the S wave number for angular frequency o, P is the power spectral
density function (PSDF) for the random media model (see S&F, pp. 14–17). A popular
choice for P is the exponential autocorrelation function, in which case we have
(S&F, 2.10)
P mð Þ ¼ 8pe2a3

1þ a2m2ð Þ2 ; ð10Þ
where a is the correlation distance, e is the root mean square (RMS) fractional fluctuation
(e2 ¼ hx(x)2i), and m is the wave number [i.e., the argument of the P functions in Eq. (9)
above]. For example,
P 2l sin
c
2

� �
¼ 8pe2a3

1þ 4a2l2 sin2 c
2

� �2
: ð11Þ
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The PSDF defines the strength of the heterogeneity as a function of its scale length and
controls how the amplitude of the scattering varies with seismic wavelength. Observa-
tions at a single frequency, such as the P coda results presented in this chapter, mainly
constrain the heterogeneity at scale lengths near the seismic wavelength and cannot
determine the PSDF very completely. Analysis of broadband data and consideration of
scattered arrival amplitudes as a function of frequency will be necessary to make
quantitative estimates of the PSDF.
The total scattering coefficients, gPP0 , and so on, are given by the averages of these

coefficients over the unit sphere. The mean free path ‘ for a ray between scattering events
is given by the reciprocals of these coefficients:
‘P ¼ 1

gPP0 þ gPS0

‘S ¼ 1

gSP0 þ gSS0
ð12Þ
and these values are used to assign path lengths using randomnumbers as described above.
When a scattering event occurs, a second random number is used to decide whether the
scatteredwave is P or S, according to the relative sizes of gPP0 and gPS0 for an incident Pwave
or gSP0 and gSS0 for an incident S wave. A third random number (see below) is then used to
determine the scattering angle (c and z) and the S polarization (if required). The particle
then travels along its new ray direction until the next scattering event.
Despite the apparent complexity of the scattering equations, there are only three free

parameters used to describe this model: the RMS fractional fluctuation e, the correlation
distance a, and the velocity density scaling factor n. Of course, a more general PSDF than
the exponential model would require more parameters. Larger values of n will generally
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increase the amount of backward scattering. Shearer and Earle (2004) use n ¼ 0.8, an
estimate for the lithosphere obtained using Birch’s law (S&F p. 101). Simpler equations
can be obtained for the case of velocity perturbations alone or for purely acoustic waves.
The random heterogeneity described by Eq. (11) is isotropic so that the scattering
properties do not depend upon the angle of the incident wave. However, anisotropic
PSDFs may be important in some regions of the Earth, in which case more free
parameters will be required to define the model, which may also affect the relative
strength of forward versus backscattering (e.g., Hong and Wu, 2005).
An efficient way to implement these scattering kernels in a computer program is to

precompute the scattered power and S-wave polarizations at a series of small intervals of
solid angle. The probability of scattering at each discrete angle is then given by its
relative power and a single random number can be used to assign the scattered ray path.
For example, consider the scattering pattern plotted in Fig. 7 [the S-to-P coefficient gSP in
Eq. (9), computed for g0 ¼

ffiffiffi
3

p
; n ¼ 0:8; b0 ¼ 6=

ffiffiffi
3

p
km=s;o ¼ 2p; e ¼ 0:01, and a ¼

1 km], which is plotted at 6� increments in c and z. Assign a unique cell number to each
of the n cells in the scattering surface and save the normalized scattering probabilities in a
one-dimensional array, P, of dimension n. Define a second array, S, with the cumulative
probabilities in P, that is, S(1)¼ P(1), S(iþ 1)¼ S(i)þ P(iþ 1), S(n)¼ 1. The scattered
ray angle is then defined by the smallest value of S that is larger than a computed random
number between 0 and 1.
This approach has the computational advantage that the scattering probability arrays are

computed only once and then angles are obtained for individual scattering events during
the Monte Carlo simulation from a single random number, without the need to recompute
any of the terms in Eq. (9). The accuracy of this approach depends upon how finely the
scattering angles are sampled. Shearer and Earle (2004) used an angle spacing of 1.8�. If
desired, additional random numbers can be used to add a small amount of scatter to the ray
angle so that the scattered ray angles are not restricted to the exact angles of the pre-
computed cells. The final step is to convert from the ray-based coordinate system used to
define the scattering angles (i.e., as plotted in Fig. 7) to the absolute ray parameters needed
to continue propagating the particle in the model. These include the ray azimuth (degrees
from north), the ray parameter (approximated as the closest ray parameter in the precom-
puted table), and the ray vertical direction (upgoing or downgoing).
The scattering depends on the wave number, which is a function both of the wave

frequency and the local background seismic velocity. Thus, Monte Carlo calculations
that include scattering must be performed for a specific frequency. In addition, Earth’s
changing velocity with depth results in scattering kernels that vary continuously with
depth. For the most accurate whole-Earth calculations, the kernels could be computed
and stored at 10-km depth intervals. But this would require random numbers to be
generated every 10 km along each ray path, greatly slowing the code. Thus, for practical
purposes, it is useful to approximate the scattering properties, including the mean free
path, as constant within fairly coarse depth intervals. Margerin and Nolet (2003a) assume
that the mean free path is constant within the entire mantle. Shearer and Earle (2004) use
four mantle layers, separated at depths of 200, 600, and 1700 km.
3.6. Intrinsic Attenuation

Energy converted to heat or crystal dislocations during wave propagation is termed
intrinsic attenuation (as opposed to scattering attenuation in which some energy in the main
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pulse is scattered into other seismic waves). Intrinsic attenuation defined by a quality factor
Q will reduce the wave energy by e–ot/Q, where o ¼ 2pf is the angular frequency and t is
the travel time along the ray. For global Earth models, Q varies strongly with depth so this
correction is most easily performed in Monte Carlo methods by accumulating a value
of t� ¼ R

dt=Q along each particle. The energy at any desired point (such as when the
particle hits the surface) is then computed using the reduction factor e–ot*.
For fully elastic calculations, both P- and S-wave attenuation must be defined. The

PREM Earth model (Dziewonski and Anderson, 1981) contains depth-dependent values
for both bulk and shear attenuation, kQ and mQ, from which can be computed P and S
factors, aQ and bQ. However, the PREM values are accurate only at frequencies below
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about 0.2 Hz because of the frequency dependence of Q at higher frequencies (e.g.,
Sipkin and Jordan, 1979; Lundquist and Cormier, 1980; Anderson and Given, 1982;
Der et al., 1986; Warren and Shearer, 2000). At 1 Hz, there is much less attenuation than
predicted by the PREM model. Warren and Shearer (2000) analyzed high-frequency P
and PP spectra and proposed a frequency-dependent mantle P-attenuation model that is
generally consistent with prior work. At 1 Hz, aQ ¼ 227 from 0- to 220-km depth and
aQ ¼ 1383 from 220 km to the CMB. Corresponding S attenuation can be computed
using bQ ¼ (4/9)aQ, a commonly used approximation that assumes a Poisson solid and
that all attenuation is in shear. The outer core is generally assumed to have zero attenua-
tion, but the inner core is observed to be strongly attenuating (e.g., Bhattacharyya et al.,
1993; Yu and Wen, 2006), with aQ values varying between about 200 and 600 and some
evidence of depth dependence.
It is likely thatmost high-frequency estimates ofQderived from teleseismic bodywaves

contain amixture of both intrinsic and scattering attenuation. Thus, these published values
are only useful as a starting point for intrinsicQ in whole-Earth Monte Carlo simulations;
the true intrinsic Q values are likely to be higher once scattering effects are included.
Shearer and Earle (2004) found this to be the case in their Monte Carlo modeling of
teleseismic P amplitudes and coda at 1 Hz, for which they obtained aQ¼ 450 from 0 km to
200 km and aQ¼ 2500 between 200 km and the CMB, values significantly higher than the
Warren and Shearer (2000) Q values derived from P and PP spectra.
4. Fit to Teleseismic P Coda

Figure 8 shows the fit achieved to stacks of teleseismic P coda at 1 Hz by Shearer and
Earle (2004) using their Monte Carlo method. The bottom plots show stacks of P coda
amplitudes (obtained using the method described in Section 2) relative to the maximum
P-wave amplitude for both shallow and deep earthquakes. These plots discard absolute P
amplitude information, which is shown separately in the top plots. P amplitude versus
distance is particularly sensitive to the intrinsic attenuation in the mantle. To model these
observations, Shearer and Earle (2004) found that most scattering occurs in the litho-
sphere and upper mantle, but that a small amount of lower-mantle scattering was also
required. Their preferred exponential autocorrelation random heterogeneity model
contained 4% RMS velocity heterogeneity at 4-km scale length from the surface to
200 km depth, 3% heterogeneity at 4-km scale between 200 km and 600 km, and 0.5%
heterogeneity at 8-km scale length between 600 km and the CMB. They assumed equal
and correlated P and S fractional velocity perturbations and a density/velocity scaling
ratio of 0.8. Intrinsic attenuation was aQI ¼ 450 above 200 km and aQI ¼ 2500 below
200 km, with bQI ¼ (4/9) aQI (an approximation that assumes all the attenuation is
in shear). This model produced a reasonable overall fit, for both the shallow- and
deep-event observations, of the amplitude decay with epicentral distance of the peak P
amplitude and the P coda amplitude and duration (see Fig. 8). These numbers imply that
at 1 Hz, the total attenuation is dominated by scattering in the upper mantle and by
intrinsic energy loss in the lower mantle.
To show the sensitivity of coda amplitudes to changes in the strength of the heteroge-

neity, Fig. 9 plots Monte Carlo predictions for a model with 30% less RMS heterogeneity
(at all mantle depths) and a model with 30% more RMS heterogeneity. The resulting
mean free paths in the upper 200 km are 82 km, 140 km, and 283 km for the three
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models. As expected, the coda amplitudes are very sensitive to the strength of the
heterogeneity. At distances betwen 40 and 100 degrees, the differences in coda level
are difficult to see at times later than about 150 s. However, at closer distances the
differences persist to much longer times.
All of the P-coda observations and modeling presented here are for the vertical

component. However, it is also possible to constrain mantle heterogeneity and scattering
by studying the transverse component of teleseismic P coda (Nishimura et al., 2002;
Kubanza et al., 2006). Our Monte Carlo code computes and saves all three components
of output, but we have not yet analyzed the transverse component results.
5. Conclusions

Envelope-stacking methods and Monte Carlo modeling provide a powerful set of tools
for analyzing whole-Earth scattering. Detailed applications of these approaches to a
variety of seismic phases have only begun, but promise to provide reliable constraints
on the average strength of small-scale heterogeneity as a function of depth in the mantle
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and inner core and the relative strength of intrinsic and scattering attenuation mechan-
isms. In addition to their value in resolving details of Earth structure, these results should
help in making better estimates of earthquake source spectra, including the relative sizes
of P and S corner frequencies, high-frequency spectral decay rates, and the ratio of
radiated S energy to radiated P energy. Whole-Earth scattering studies and Monte Carlo
simulations will become increasingly practical as global seismic data become more
readily available and computer speeds continue to improve. In addition, it is clear that
significant lateral variations in scattering strength exist in many regions, as can be seen in
simple comparisons of teleseismic P coda levels among different stations and sources.
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A SCATTERING WAVEGUIDE IN THE
HETEROGENEOUS SUBDUCTING PLATE

Takashi Furumura and Brian L.N. Kennett
Abstract

The subducting plate is an efficient waveguide for high-frequency seismic waves. Such effects are

often observed in Japan as anomalously large ground acceleration and distorted pattern of seismic

intensity extending along the eastern seaboard of the Pacific Ocean from deep earthquakes in the

Pacific plate, and Kyushu to Shikoku region from deep events in the Philippine Sea plate.

Seismograms in these high intensity zones show low-frequency ( f < 0.25 Hz) onset for both

P and S waves, followed by large, high-frequency ( f > 2 Hz) later arrivals with a very long coda.

Such observations are not explained by a traditional plate model comprising just high wave speed

and low attenuation material in the slab.

A new plate model that can produce such guided high-frequency waves is characterized by

multiple forward scattering of seismic waves due to small-scale heterogeneities within the plate.

The preferred model requires anisotropic heterogeneity of elongated properties in the subduction

slab with longer correlation distance (10 km) in the plate downdip direction and much shorter

correlation distance (0.5 km) across the plate thickness. The standard deviation of P- and S-wave

velocities and density from average is 3%. Such a quasi-laminated structure in the plate, which is

equivalent to random distribution of anisotropic heterogeneities of elongated properties in parallel

to the plate surface, can guide high-frequency signals with wavelengths shorter than the correlation

distances along the plate. In contrasts, low-frequency signals with longer wavelength are not

affected by the small scale heterogeneities and travel through the heterogeneous plate as a

forerunner of the scattering signals.

The high wave speed property of the plate and a strong velocity gradient from the center to the

outer part of the plate due to the thermal regime allows low-frequency ( f ¼ 0.3–0.5 Hz) seismic

waves to escape into the surrounding, low wave-speed mantle by refraction of seismic waves.

The net result is a frequency-dependent waveguide in the subducting plate with efficient guiding of

high-frequency ( f > 2 Hz) signals by multiple forward scattering and loss of intermediate

frequency ( f ¼ 0.3–0.5 Hz) signals due to internal velocity gradients. Very low frequency signals

( f < 0.15 Hz) with wavelength larger than the plate thickness are not significantly affected by the

presence of the plate.

We demonstrate the presence of the frequency selective wave propagation effect from compar-

isons of observations from deep earthquakes that occurred recently in the Philippine Sea plate and in

the Pacific plate. A good representation of the behavior of scattering waveguide is provided by 2D

finite-difference calculations for seismic waves using heterogeneous slab models. The results of the

simulations demonstrate that the frequency dependency of the models is quite sensitive to the

thickness of the plate, and also depends on the scale lengths of heterogeneity distribution in the plate.

KEY WORDS: Seismic intensity, numerical simulation, scattering, subducting plate, waveguide.
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1. Introduction

Large number of earthquakes occurs in the area around Japan due to the simultaneous
subduction of the Pacific plate in northern Japan and the Philippine Sea plate in
western Japan (Fig. 1). Since the subducting plate acts as an efficient waveguide of
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high-frequency signals anomalously large ground motions are often produced in the
fore-arc of northern Japan from intermediate to deep earthquakes occurring in the Pacific
plate, and a similar effect occurs in western Japan from the earthquakes in the Philippine
Sea plate. Sometimes the deep earthquakes are not felt near the epicenter, but many
people are surprised by large intensities occurring in an area several hundred kilometers
away from the epicenter.
Such observations of anomalously large ground motions and distorted intensity pat-

terns for intraplate earthquakes in Japan have been recognized since modern seismic
observations were started in Japan in the early 1900s (e.g. Hasegawa, 1918; Ishikawa,
1926a,b), but no satisfactory explanation for the cause of such anomalous intensity was
made for over 30 years.
Utsu (1966) was the first to give an explanation. He proposed that the attenuation

structure of the subduction zone in northern Japan, with a high Q and high wavespeed
(high-V) dipping plate descending through a low-Q and low wavespeed (low-V) upper
mantle, is the main reason for efficient propagation in the plate and so gives strong
seismic signals on the fore-arc side of the subduction zone. Since then the high-V and
high-Q models have been widely accepted as the expression of the subducting plate, and
as a reason for the presence of high-frequency seismic waves.
Another important feature of the ground motions associated by intra-plate events are

that a very long duration of high-frequency ( f > 2 Hz) ground shaking are observed in
the area of larger intensity. Such long duration and intense shaking is why people felt
strong shocks from deep intra-plate earthquakes, but this type of behavior is not
explained by the traditional subduction zone model comprising just a high-V and
high-Q plate.
Several studies have considered the waveguide effect of high-frequency signals in the

thin, low velocity zone of former oceanic crust at the top of the plate as an explanation of
the time separation of low frequency arrivals from higher frequency waves, with appar-
ent dispersion (e.g. Abers, 2000; Abers et al., 2003; Martin et al., 2003). The low velocity
waveguide effect for deep (h> 200–500 km) Pacific plate earthquakes would be difficult
to sustain, since the former oceanic crust is unlikely able to survive much beyond a depth
of about 110 km without a transformation to a higher velocity eclogite. Moreover, even if
the low velocity zone extended to greater depth it is still difficult to reproduce the
observed large amplitudes and long duration of high frequency waves with trapped
signals traveling within a thin low-Q region.
Furumura and Kennett (2005) proposed an alternative explanation of the waveguide

effect for high-frequency signals in the Pacific plate by assuming strong heterogeneities
in the plate. With the aid of 2D and 3D finite-difference method (FDM) simulations of
seismic wave propagation they demonstrated that multiple forward scattering of high-
frequency signals in the heterogeneous plate is the main cause of the guiding of high-
frequency signals with very long coda. They used anisotropic heterogeneity model of von
Karmann type function with a correlation length of about 10 km in downdip direction,
and much shorter correlation length of about 0.5 km across the thickness, and a standard
deviation of wave speed fluctuation from the average background model of 2%.
This model proves to be very suitable to describe the observed characteristics of the
broadband waveforms for the Pacific plate subduction zone.
The aim of this study is to review the scattering waveguide effect in the heterogeneous

subduction plate through comparison between observations from dense seismic arrays of
the F-net broadband and the K-NET and KiK-net strong motion instruments across Japan
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for two recent earthquakes; the first occurred on 12 June 2006 in the subducting
Philippine Sea plate at depth of h ¼ 146 km below western Oita prefecture (M6.2),
southwestern Japan (hereafter we call the PHS event) and the second on 16 January 2007
in the Pacific plate at depth of h ¼ 175 km beneath the Izu Peninsula (M5.8), central
Japan (hereafter the PAC event). The frequency-dependent propagation properties of the
P and S waves in heterogeneous plate is demonstrated by finite-difference method
(FDM) simulation of seismic waves using different classes of plate structure and internal
heterogeneities in the subducting plate. Through comparisons between the observations
and the computer simulations for the two events, we will examine the similarity and
dissimilarity in the heterogeneous structure in the Philippine Sea plate and the Pacific
plate, through such parameters as the scale length of internal heterogeneities within the
plate and the thickness of heterogeneities that characterize the guiding properties of the
high-frequency signals.
2. Anomalous Intensity Patterns from Two Deep Events in the
Subducted Philippine Sea Plate and in the Subducted

Pacific Plate

Figure 2 illustrates the distribution of peak ground acceleration (PGA) for the PHS and
PAC events.
The seismic intensity scale, which was originally defined by the strength of felt

shaking and the damage rate of low-rise buildings, is very sensitive to higher-frequency
signals in the 0.5–2 Hz range. Thus, the anomalous pattern of intensities from intermedi-
ate and deep events is more pronounced when we map PGA rather than the peak ground
velocity or the displacement. Thus, we illustrate distributions of PGA contours in Fig. 2
using the records of 3-component K-NET and KiK-net accelerograms (squares and
triangles in Fig. 2).
The PGA pattern from the PHS event shows a substantial northeast-southwest elonga-

tion of isoseismic contours with the largest PGA (>150 cm/s/s) values at the stations in
the Shikoku and Chugoku regions over 100–200 km away from the epicenter. The area of
larger PGA (>50 cm/s/s) occurs on the fore-arc side of the volcanic front (dashed line in
Figs. 1 and 2), and the PGA contours appear to be correlated with the configuration of the
isodepth contours of the Philippine Sea plate (Yamazaki and Ooida, 1985). The attenua-
tion of PGA on the back-arc side, behind the volcanic front, is very dramatic in the
Kyushu and Chugoku areas. At similar epicentral distances, the PGA value in the area of
raised intensity is more than 10 times larger than that behind the volcanic front.
A similar observation of an anomalous pattern of the PGA distribution is found in

northern Japan associated with the PAC event as is shown in Fig. 2b. There is a
significant extension of PGA contours in the northeast direction along the strike of
subducting Pacific plate with largest PGA (>20 cm/s/s) occurring in the southern
Tohoku region more than 100–200 km away from the epicenter. The extension of PGA
contours along the subducting Pacific plate is more striking than for the Philippine Sea
plate event, and the area where the strong motion instruments were triggered extends
more than 700 km from the epicenter along the eastern seaboard of the Pacific Ocean.
In contrast, only very small PGA is observed at the stations to the west of the volcanic
front even at the vicinity of the epicenter.
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Figure 3 displays radial-component broadband records of ground velocity from the
PHS event along a profile from Kyushu to the Chubu region (A–A0 in Fig. 1), and from
the PAC event along a profile from the Chubu to Tohoku regions crossing the volcanic
front (B–B0, Fig. 1). The seismic traces are multiplied by the epicentral distance to
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roughly compensate the geometrical spreading of P and S body waves. The contrast in
the appearance of the waveforms across the volcanic front is very striking, especially for
S waves. A very large and high-frequency ( f > 1–2 Hz) P- and S-wave signal with very
long coda is observed at fore-arc stations as the wave traveling along the plate, but the
attenuation of high-frequency signals is very significant in the records from back-arc
stations, especially for S waves.
2.1. Separation of Low-Frequency Precursors and High-Frequency Coda

An interesting feature in the waveforms from deeper subduction zone earthquakes
that cause large shocks for stations in the fore-arc region is that the seismograms show a
low-frequency ( f < 0.25 Hz) P-and S-wave onset followed by delayed high-frequency
( f> 2 Hz) signals with a long coda (e.g., see Fig. 7 in Furumura and Kennett, 2005). This
pattern seems to be a common characteristics of the waveform from major inslab earth-
quakes such as those occurring in the Cocos plate of Nicaragua (Abers et al., 2003) and
the Nazca plate at the Chili-Peru subduction zone (e.g., Martin et al., 2003).

Figure 4 illustrates the three-component broadband waveforms at WTR for the PHS
event (Fig. 4a) and at KSN from the PAC event (Fig. 4b). Both stations lie in the fore-arc
for the different seduction zones. The long-period P wave precursor from these events is
very clearly recognized in the radial and vertical motions with an offset of about 2 s prior
to the high frequency arrivals. There is no clear precursor in tangential motion. The
precursor therefore represents the direct propagation of P waves from the source to the
station. The following high-frequency waves are sustained for a very long time with large
amplitude, which is quite similar for all three components. This character suggests strong
internal scattering of high-frequency signals due to heterogeneities in the plate. There is
also large P-wave energy on the transverse component in the higher frequency part,
indicating a complicated pattern of wave propagation along the heterogeneous plate.
The scattering and guiding effects for the high-frequency signals along the plate are

very striking in the records from the Pacific plate event, but are not so much clear for the
Philippine Sea plate. The difference may indicate stronger heterogeneities in the Pacific
plate.
2.2. Frequency Selective Propagation Properties in the Subducting Plate

The contrast in the high-frequency content of the waveforms across the volcanic front
of the Philippine Sea plate and of the Pacific plate are examined by taking the spectral
ratio of broadband records between fore-arc and back-arc stations at comparable epicen-
tral distances. Since the F-net stations are all placed in hard rock sites, we expect that
local site amplification effects at each station can be ignored.
Figure 5a illustrates the spectral ratio of the S wave for a 24.6 s time window at the

fore-arc stations NSK and TSA relative to the back-arc stations STM and SBR respec-
tively for the PHS event. Figure 5b is a similar spectral ratio for the PAC event between
the fore-arc stations ASI and ONS and the back-arc stations KNM and TGA respectively.
For the PAC event (Fig. 5a), both sets of spectral ratios show a smooth rise from about

0.15–30 as the frequency increases from 0.3 to 1 Hz, and then the rate of increase
diminishes in the higher frequency band (due to the loss of higher-frequency signals at
back-arc stations). The lower values in the spectral ratio (<1) in the low-frequency band
below about 0.15 Hz arise from the radiation pattern of the S waves.
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The guiding of high-frequency signals within the subducting Philippine Sea plate from
source to fore-arc stations is clearly confirmed by Fig. 5a for frequencies above about
0.3 Hz. We have strongly frequency-dependent anelastic attenuation (Q) properties, with
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an increase in Q values in the slab relative to that in the wedge mantle with increasing
frequency above 0.3 Hz.
The significant drop in the spectral ratio around 0.3 Hz for the PHS event indicates that

the seismic waves in this frequency band are dramatically attenuated whilst traveling up
the Philippine Sea plate. The results demonstrate a complicated, frequency selective,
waveguide property for the subducting plate due to strong scattering of high-frequency
signals with wavelengths shorter than the heterogeneities in the plate. They also indicate
escape of seismic waves from the plate in the lower frequency band. The low-frequency
signals with wavelengths longer than the dominant scale of heterogeneities cannot be
captured by such small-scale heterogeneities in the plate and thus easily escapes from the
high-V plate to the surrounding low-V mantle.
Such a defocusing effect from the subducting plate in the low-frequency band is not so

clearly observed for the PAC event (Fig. 5b). In this case there is an almost linear
increase in the guiding properties of the high-frequency signals over a wide frequency
range above 0.5 Hz, and no clear drop in the spectral ratio can be found in the low-
frequency band below 0.5 Hz.
The difference in the frequency selective properties for the guiding of seismic signals

in the Philippine Sea plate compared with the Pacific plate are likely to be related to the
specific characteristics of each plate, such as plate thickness and the shape and scale
lengths of heterogeneities in the plate.
3. 2D FDM Modeling of Scattering Wavefield

We illustrate that the guiding of high-frequency signals is produced by heterogeneities
in the plate leading to the time separation of low- and high-frequency signals, by FDM
simulation of high-frequency seismic waves in 2D heterogeneous structures.
The 2D model covers a region of 204.8 km � 204.8 km, which is discretized with a

uniform grid interval of 0.1 km. The seismic wavefield is calculated explicitly by solving
the equation of motions and the constitutive equations using a 16th-order staggered-grid
FDM in space and 2nd-order scheme in time (Furumura and Chen, 2004).
The simulation model has P- and S-wave velocity of VP ¼ 8 km/s, VS ¼ 4.6 km/s, and

density of r ¼ 2.6 t/m3. Frequency independent intrinsic anelastic properties for P- and
S-wave with QP ¼ 2400 and QS ¼ 1200 are introduced in the FDM simulation using the
memory variable technique of Robertsson et al. (1994). An absorbing boundary of Cerjan
et al. (1985) is applied to the 20-grid points surrounding the model in order to reduce
artificial reflections from model boundaries. An explosive line source with a pulse width
of 10 Hz is introduced in the model, which radiates P wave isotropically.
The first simulation (Fig. 6a) employs a randommedia with an isotropic distribution of

random fluctuation in the average P- and S-wave velocities and density following a von
Karmann distribution function with a correlation distance of a ¼ 3 km, Hurst number of
n ¼ 0.5, and a standard deviation of fluctuation from average background model of s ¼
4%. The stochastic fluctuations of elastic parameters were first produced in the wave
number domain by applying a wave number filter to a sequence of random numbers,
following the procedure of Frankel (1989), and then the result is transformed back into
the physical domain using a Fast Fourier Transform.
Snapshots of seismic wave propagation at times T ¼ 8 and 16 s from source initiation

are illustrated in Fig. 6a. The scattering of seismic wavefield produced by the presence of
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small-scale heterogeneities in the model is evident; the P wavespeed is distorted, and a
strong coda is developed behind the wavefront. Such behavior resembles the patterns that
are seen in the actual seismic waves observed at fore-arc stations, with an incoherent
pattern of P and S phases between even close stations and an associated large coda.
However, the simulation results for isotropic distribution of random heterogeneity model
cannot explain the separation of the low-and high-frequency components of the initial
P wave which is another important feature of the observations for intraplate earthquakes.
The second simulation assumes an elongated heterogeneity with a longer correlation

distance of ax ¼ 10 km in x direction and much shorter correlation distance of
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ay ¼ 0.5 km in y direction, retaining the areal scale of heterogeneity at ax � ay ¼ 5 km2

with a standard deviation of fluctuations s ¼ 4%.
A similar style of quasi-lamina structure in the lithosphere has been considered for

the interpretation of the result of a long-range refraction experiment in the former
Soviet Union using nuclear sources (e.g., Morozova et al., 1999) and also in modeling
the oceanic crust of the subducting Nazca plate based on array observations of natural
earthquakes (Buske et al., 2002; Patizig et al., 2002). These observational data and
corresponding computer simulations demonstrate that high-frequency Pn and Sn signals
with long tails observed in continental structure can be produced by horizontally elon-
gated heterogeneities in the crust or uppermost mantle (e.g., Morozova et al., 1999;
Tittgemeyer et al., 1999, 2000; Ryberg et al., 2000; Nielsen et al., 2003; Nielsen and
Thybo, 2003).
Figure 6b shows an example of such quasi-laminated structure that produces a strong

waveguide effect for high-frequency waves. The enhanced forward scattering within the
quasi-lamina structure arises from successive post-critical reflections at the surfaces of
the lamellae. In the snapshot of the later time frame (16 s), we find a strong concentration
of P-wave energy as the wave traveling in the direction parallel to the lamellae and
associated coherent P-to-S reflections in the shape of a laid “V”. The two features
together form a characteristic shape like a sliced mushroom. Thus, the seismic waves
can travel longer distances in the direction parallel to the lamellae with only limited loss
compared with the homogeneous structure and the heterogeneous model with isotropic
heterogeneities as Fig. 6a.
The low-frequency precursor to the main P wavefront propagating parallel to the

lamellae is clearly seen in the snapshot for the later time frame (T ¼ 16 s). Multiple
post-critical reflections of seismic waves in the quasi-lamina structure modify the
effective wave speed for high-frequency signals, but low-frequency waves with wave-
length much longer than the correlation distance (ay¼ 0.5 km in normal to the scatterers)
can easily travel through such small heterogeneities at faster propagation speed.
Such generation of the low-frequency forerunner is explained as an inhomogeneous
wave (Ikelle et al., 1993) or as a tunneling wave (Fuchs and Schulz, 1976) traveling in
quasi-lamina structure.
We have also examined the development of the long-period precursors in the wave-

front of the P wave using different classes of heterogeneity models with varying standard
deviation of fluctuation, s ¼ 2%, 4%, 6%, and 8% (Fig. 7), while retaining the same
correlation length for the heterogeneities as in the previous model (Fig. 6b).
The results of the simulations demonstrate that larger velocity fluctuations with an

enhanced velocity contrast across the flat interfaces of the lamellae can easily produce
post-critical reflections with a smaller incident angle, and can trap high-frequency energy
within the quasi-lamina structure by multiple forward scattering (Fig. 7b and c). The low
frequency precursors in front of the trapped high-frequency signals are largely concen-
trated within the critical angle defined by the contrast for the low-to-high wave speed at
the interface of lamellae. For a typical velocity contrast of (1�s)/(1þs), the critical
angles calculated by ic¼ sin�1((1�s)/(1þs)) are ic¼ 73.8o, 67.4o, 62.5o, and 57.4o for the
case of velocity fluctuations of s ¼ 2%, 4%, 6%, and 8% respectively (Fig. 7).
Figure 7d compares synthetic seismograms of radial and transverse components

for the common source (open circle) to receiver (separation 150 km; solid square)
configuration for different fluctuations of s ¼ 2%, 4%, 6%, and 8%. The concentration
of large seismic signals following the long-period P precursor produced by the stochastic
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waveguide effect of the quasi-lamina structure is clearly demonstrated in this simulation.
As the random fluctuation in elastic parameter increases, the relative amplitude of the
low-frequency P wave and the duration of the coda increase very dramatically. With a
large fluctuation in random heterogeneity (6–8%) the amplitude of the coda in tangential
motion is almost as large as that for the P wave in radial motion. Thus, the strong
concentration of P wave energy in the tangential motion from the in-slab earthquakes
observed in Fig. 3 indicates the existence of strong heterogeneities in the plate.
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4. 2D FDM Modeling of Slab Guided Waves

We now present 2D simulations of seismic wave propagation from in-slab earthquakes
to illustrate the stochastic waveguide effect of the subducting heterogeneous plate.
The 2D model is taken along a profile cutting across Kyushu to Kanto region through

the hypocenter of the PHS event which is nearly perpendicular to the subducting
Philippine Sea plate (line A–A0 in Fig. 1). The physical parameters for the crust and
upper mantle structure for western Japan are based on the ak135 reference Earth model
(Kennett et al., 1995). The shape of upper boundary of the Philippine Sea plate is based
on the model of Yamazaki and Ooida (1985). The 2D numerical model covers a region of
720 km horizontally and 307 km in depth, which is discretized into 12,000 by 5120 grid
points with a uniform grid interval of 0.06 km.
The simulation employs a double-couple line source with a 45� reverse fault mechanism

which is placed at the depth of h ¼ 160 and 5 km below the plate surface. The source
radiates seismic P and Swaveswith amaximum frequency of 16 Hz.We conducted parallel
FDMsimulations using 16 nodes of the Earth Simulatorwhich requiredCPU time of 65min
to simulate 240 s seismic wave propagation with 160,000 time steps in the computations.
4.1. Base Model: High-Q and High-V Subduction Zone

The first simulation employs a simple plate model with the geometry illustrated in
Fig. 8, assuming a uniform velocity increase (þ3%) in the descending plate relative to
the ak135 reference Earth model, while lowered (�5%) P- and S-wave velocities are
assigned to the wedge mantle. We consider the thermal regime of the subducting zone
with increasing temperature from the interior to the exterior of the plate. Such thermal
effects in the plate can be approximated by 2% larger velocity and density at the center of
the plate with a decrease to normal values toward either side of the plate, using a cosine
function as shown in Fig. 8.
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High-Q values are assigned for P and S waves in the subducting plate (QP ¼ 2400,
QS ¼ 1200) and somewhat smaller values for the oceanic crust (QP ¼ 400, QS ¼ 200).
Stronger attenuation (QP ¼ 120, QS ¼ 60) is placed in the uppermost mantle above the
plate on the back-arc side of the subduction zone, compared with that for the surrounding
mantle (QP ¼ 400, QS ¼ 200).

The results of the FDM simulation as snapshots of seismic wavefield at T¼ 15, 36, and
66 s from the earthquake initiation are shown in Fig. 9a together with the waveforms of



210 FURUMURA AND KENNETT
radial component velocity ground motion. The synthetic seismograms are obtained by
convolution with a triangular slip-velocity function assuming a rise time of T ¼ 0.6 s for
a M6 in-slab event.
At T ¼ 15 s, the P and S waves radiated from the 160 km deep source in the plate

shows a clear and nearly spherical wavefront traveling upward in the subducting plate
and through the surrounding mantle. The high-Q and high-V plate brings about very large
seismic signals traveling upward within the plate compared with the overlying low-Q and
low-V wedge mantle.
As the Pwave enters the low-Voceanic crust, trappedPwaveswith larger energy are built

up due to the superposition of multiple reflections in the thinner low-V layer (T ¼ 15 s).
The P-to-SV wave conversion is striking at the top of the oceanic crust, and reduces the
energy in the trapped P wave signals in the oceanic crust.
The record section of synthesized ground motions demonstrates a remarkable contrast

in the shape of waveform as the volcanic front is crossed at distance of about 40 km.
The waveforms at stations on the fore-arc side show large amplitude of P and S waves
with dominantly higher-frequency signals. The synthetic seismograms at back-arc
stations show very simple P and S pulses with a dramatic loss of high-frequency signals
for waves traveling through the low-Q and low-V mantle wedges. These features are
consistent with the observed broadband records (Fig. 3).
However, the guiding of high-frequency seismic signals within the plate is not strong

enough in this simple model without heterogeneous plate structure. Moreover, the snapshot
at T¼ 15 and 36 s show some refraction of seismic waves from plate interior to the low-V
mantle outside, which gradually attenuates the seismic waves traveling in the plate.
The strong velocity gradient in the plate, caused by the thermal regime, causes

significant defocusing of seismic signals from the plate center towards the surrounding
mantle, resulting in very weak P- and S-wave signals at stations near the volcanic front
and on the fore-arc side of the subduction zone.
The results of these computer simulations demonstrate that the traditional plate model

comprised of just a high-Q and high-V plate structure cannot trap sufficient high-
frequency seismic energy within the plate. Furthermore, the simulated waveforms
shown in Fig. 9a seem to be too simple to explain the complex properties of the observed
waveforms in the broadband records at fore-arc stations (Fig. 3), which are characterized
by a very long duration of high-frequency coda.
4.2. Heterogeneous Plate Model: Isotropic Heterogeneities in the Plate

Furumura and Kennett (2005) proposed that multiple scattering of seismic wave due to
heterogeneities in the plate is the main cause of large amplitude and long-duration of
high-frequency P and S waves associated by in-slab zone earthquakes.
The heterogeneous plate model assumes a random media with an isotropic random

fluctuation in P- and S-wave velocity and density following a von Karmann distribution
function with a correlation distance of a¼ 2.2 km in all direction, Hurst number of n¼ 0.5
and a standard deviation of fluctuations of s ¼ 3%. This random heterogeneity is imposed
on the whole plate including the oceanic crust and mantle. The scale of heterogeneities are
selected to produce strong seismic scattering for P waves for frequencies over f > 2 Hz,
with average wave speed in the oceanic mantle of about VP ¼ 8 km/s and corresponding
slownesses for P and S waves of 1.6 s/km and 2.7 s/km, respectively.
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As is shown in Fig. 9b the high-frequency seismic wavefield is changed produced by
introducing isotropic small-scale heterogeneity in the plate, especially for stations on the
fore-arc side. The distortion of the P wavefront traveling though the heterogeneous plate
is clearly seen in the snapshots as a result of multiple scattering of P and S waves in the
heterogeneous plate. The scattering wavefield is mainly composed of the P and S
multiple reflections, and P-to-SV and SV-to-P conversions are very weak in this model.
The heterogeneous plate model leads to a significant improvement in the duration of

high-frequency P- and S-wave coda in the waveforms at fore-arc stations. However, the
scattering of P and S waves isotropically within the plate largely dissipates seismic
energy into the surroundingmantle, as is clearly seen in the snapshots at T¼ 15 and 36 s in
Fig. 9b. The result is relatively weak P and S wavefronts traveling upward in the plate as
compared with the homogeneous plate model of Fig. 9a. Thus, the model of internal
isotropic heterogeneities in the plate produces large and long duration of P- and S-wave
coda by multiple scattering, but is insufficient to keep high-frequency seismic signal
within the plate.
4.3. Anisotropic Heterogeneities in the Plate

Following the study of Furumura and Kennett (2005), we improve the heterogeneous
plate model by introducing a stochastic distribution of anisotropic correlation properties for
the random heterogeneities in the plate. We elongate the correlation distance; ax ¼ 10 km
in the downdip direction, and much shorter correlation distance of az ¼ 0.5 km in the
direction of thickness. The heterogeneity is placed in the whole plate through the oceanic
crust and the oceanicmantle. Such a quasi-laminated structure produces a strongwaveguide
effect on high-frequency seismic signals with enhanced forward multiple P- and S-wave
scattering within the plate by wide-angle reflections. This leads to a large concentration of
seismic energy in the center of the plate and thus the seismicwaves travel in the high-Vplate
with less attenuation than the previous model with isotropic correlations (Fig. 9b).
The synthetic seismograms for this model with anisotropic correlations show very large
P- and S-wave codawith a long duration similar to those seen in the broadbandwaveformof
fore-arc stations (Fig. 3).

Figure 10a shows the results of FDM simulation. The scattering wavefield produced
by the quasi-lamina in the plate shows a strong P-to-SV conversion following the P wave
front, which is much stronger than for the earlier models with a homogeneous plate and
with isotropic scatters within the plate (Fig. 9a and b). Such P-to-SV conversion
associated with multiple P-wave reflections at the lamina interface removes some energy
from the trapped P-wave signals within the plate, and so the trapped P-wave energy
gradually leaks into the surrounding mantle by SV conversions.
For the S wave, some SV-to-P conversions associated with multiple SV-wave reflec-

tions at the interface of lamellae arise near the source region. However, such conversions
to P waves disappear as the distance from the source increases, and the multiple post-
critical S-wave reflections between lamellae begin to trap S-wave energy within the
plate. Thus, the heterogeneous plate with a quasi-laminated plate structure acts as a
perfect waveguide for S wave, but it is not so efficient for P wave. The trapped S-wave
signal propagating upward in the plate is clearly seen in the snapshots in Fig. 10a.
This leads to a very large and long tail for the S-wave coda in fore-arc sites.
A weak separation of a low-frequency precursor and following high-frequency later

coda is found in the records at distant stations but the results of computer simulation
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using the present 2D subduction zone model is not as clear as the observations for
Philippine Sea plate event (Fig. 3a) and as compared with the observations and
corresponding simulations for the Pacific plate subduction zone event in northern
Japan (Furumura and Kennett, 2005, Fig. 13). The present simulation model for the
subduction zone structure in Kyushu could reproduce main feather in the broadband
waveform with large and long coda in the fore-arc side stations and significant drop of
high-frequency signals in the back-arc stations. However, in order for improving the
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match between simulation and observed seismograms in terms of the separation of low-
frequency precursor with high-frequency later code, we may need future effort to
constructing proper 2D model by projection of actual 3D heterogeneous structure in
the subducting zone.
4.4. Effect of Plate Thickness

The Philippine Sea plate descending belowwestern Japan is young (30Ma) and relatively
thin (about 35–45 km), and the guiding effect of high-frequency waves within the plate
tends to less effective as compared with the old (120 Ma) and thicker Pacific plate (about
80–120 km) descending below northern Japan. Moreover, the enhanced internal velocity
gradient in the thinner Philippine Sea plate caused by the thermal regime, as shown in Fig. 8,
tends to cause strong refraction of seismic waves towards the mantle outside.
We examine the effect of plate thickness on the guiding of high-frequency S-wave

signals using a thicker (H¼ 85 km) plate model. The new plate model with a thick quasi-
laminated structure leads to a strong bundle of S-wave coda trapped in the heterogeneous
plate (Fig. 10b, T¼ 36 s) as compared with the thin plate model (Fig. 10a). The result is a
very large S-wave with long coda traveling to fore-arc stations as we observed in the
broadband seismograms for the PAC event occurring in the subducting Pacific plate
(Fig. 3b). These computer simulations demonstrate clearly that the trapping properties of
the high-frequency seismic waves in the heterogeneous plate are very sensitive to the
shape of heterogeneities and the thickness of the waveguide.
The separation of low- and high-frequency signals in the initial P wave is slightly

improved in the present simulation of thick plate model but it is still not so clear as clear
as observations for the PAC event (see Figs. 3b and 4b). This may because the bending
structure of the Pacific plate near the trench in Kanto region does not match to the present
model for the Philippine Sea plate subduction zone in Kyushu. Note that the separation of
low- to high-frequency signals in the initial P wave is very sensitive to the source and
receiver configurations with the bending structure of the subducting plate. Our previous
simulation of Furumura and Kennett (2005) for the model of the Pacific plate using the
same elastic properties and heterogeneity distributions as the present simulation model
but different configuration of the subduction zone structure demonstrated the low-
frequency precursors very clearly.
As we have seen in the previous set of simulations (Figs. 6 and 7) the low-frequency

P-wave precursor appears in a limited area of P wavefront. The detection of this phase
may depend on the bending structure of the subducting plate and the geometry of source
and receiver locations.
In order to clarify the effect of plate thickness on the guiding of high-frequency

S waves within the plate, we evaluate the Fourier spectral ratio of S waves at a fore-arc
station at distance D ¼ 100 km, and a back arc station at the same epicentral distance
(D ¼ �100 km). Figure 11a compares Fourier spectral ratio of the S wave for different
plate thickness of H ¼ 35, 50, and 85 km.
The simulated S waves guided by the thick (D ¼ 85 km) plate shows a gentle drop in

the spectral ratio in lower-frequency band of about 0.2 Hz. This means that the plate is an
efficient waveguide for higher-frequency signals above 0.2 Hz. The high-frequency
seismic signals with wavelengths shorter than the correlation length of the heterogeneity
are easily trapped in the quasi-laminated plate due to multiple post-critical S wave
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reflections within the plate, but very low-frequency signals with longer wavelength are
not sensitive to the internal structure of the plate.
A trough in the spectral ratio at frequencies between 0.15 and 0.5 Hz for the different

plate thickness models arises from the anti-waveguide effect of the High-V plate with a
large internal velocity gradient induced by the thermal regime. The simulation results
demonstrate that the peak frequency for the anti-waveguide effect of the plate moves
gradually to lower frequencies from 0.5 to 0.2 Hz as the thickness of the plate increases
from H ¼ 35 to 85 km.
When comparing the simulation results with observation, the spectral ratio of S waves

for the PHS event (Fig. 4a) roughly corresponds to the characteristics for the plate
thickness of H ¼ 50 km. The case of the PAC event (Fig. 4b) roughly correlates with
the simulation result for thick (H ¼ 85 km) plate model, inconsistent to the thick Pacific
plate descending below Kanto region.
4.5. Effect of Heterogeneity Scale in the Plate

In the simulations with varying plate thickness we have so far fixed the scale of
random heterogeneity in the plate; correlation distance of ax ¼ 10 km in the plate
downdip direction and az ¼ 0.5 km in the direction of thickness. However, the
frequency-selective propagation characteristics in the subducting plate are also influ-
enced by the distribution properties of the heterogeneities within the plate.
We have conducted a set of additional simulation experiments to examine how the

correlation scales of the randomness in the plate modify the propagation of high-
frequency waves by multiple internal scattering within the plate. We consider three
stochastic random media with varying correlation distances of nonisotropic heterogene-
ities with an elongated correlation distances in the plate downdip direction (ax) and in the
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plate thickness direction (az); (a) ax/az ¼ 5 km/0.25 km, (b) ax/az ¼ 20 km/1 km, and
(c) ax/az ¼ 40 km/2 km. All models have the same aspect ratio of 20 and a standard
deviation from the background of s ¼ 3%.

The Fourier spectral radio of S waveforms in the fore-arc relative to that for the back-
arc station at same epicentral distance (D ¼ �100 km) are compared in Fig. 11b.
Simulation results demonstrate that shift of the minimum frequency of S waves, that
can be trapped within the plate, varies with changes in heterogeneity scale.
As we can see from Fig. 11b, there is strong tradeoff between the plate thickness and

the heterogeneity scale on the frequency-dependent waveguide properties of the sub-
ducting plate wave. The present configurations provide a reasonable representation of the
observed behavior, but it is difficult to pin down the heterogeneity distribution closely
from limited observational waveform data.
5. Discussion and Conclusion

Since the extensive studies of Utsu (1966, 1967, 1969) and Utsu and Okada (1968),
it has been recognized that the anomalous patterns of seismic intensity from in-slab
earthquakes are caused by the guiding of high-frequency waves though the high-Q and
high-V plate. However, a simple plate model comprising just a high-Q and high-V plate
does not explain the frequency-dependent propagation characteristics of observed seis-
mic waves and the long coda following the P- and S-waves. In particular, the high-V
property of the plate tends to shed waves from the plate because strong internal velocity
gradient refract seismic energy to the mantle outside. Such anti-waveguide effects are
more significant for the thin Philippine Sea plate than for the thick Pacific plate.
To solve the difficulties of past models, Furumura and Kennett (2005) proposed a

new heterogeneous, quasi-laminated plate model, which is described by a non-isotropic
heterogeneity in the plate structure. This heterogeneity generates trapped high-
frequency ( f > 2 Hz) waves that propagate along the plate due to multiple forward
scattering within the plate. Low-frequency ( f < 0.25 Hz) waves, with longer wave
length can easily tunnel through the lamella features without affecting small scale
heterogeneities or as the inhomogeneous waves with the incidence angle larger than
the critical angle or as the tunneling waves (Fuchs and Schulz, 1976). The result is a
separation of a low-frequency precursor and following high-frequency later signals with
a long coda.
Such a non-isotropic heterogeneity structure in the subducting plate appears to be an

intrinsic property of the oceanic lithosphere. Such heterogeneity may most likely be
produced at the mid-ocean ridge with injection and underplating as the lithosphere is
formed, and as the oceanic plate travel from the ridge to the subduction zone.
The trapping effect of the high-frequency signals for the thin (H ¼ 35 km) Philippine

Sea plate is somewhat weaker than for the thick (H ¼ 85 km) Pacific plate, and this
may be the reason for the less clear pattern of stretched intensity contours along the
subducting Philippine Sea plate in western Japan compared with the clear pattern of
anomalous intensity along the Pacific coast from the Pacific plate events in northern
Japan.
Numerical 2D simulations of seismic P and S waves for the heterogeneous quasi-

lamina plate structure demonstrate clearly how such frequency-dependent properties can
arise, and how they bring about strong dependence on the velocity gradient in the plate,
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the thickness of the plate heterogeneities, and the character of the heterogeneity distri-
bution in the plate.
The present simulations are for a 2D model assuming that the source and structure are

invariant in the out-of-plane direction, and thus they can account only for the scattering
effects in the in-plane motion. The exclusion of out-of-plane scattering that will occur
in the actual full 3D scattering situation may underestimate the amplitude and duration of
P- and S-wave coda. We can reproduce the main features of the observed seismic
wavefield in the present 2D modeling using suitable stochastic random heterogeneities
in the plate, but before reaching firm conclusions we may need to improve the under-
standing of the nature of actual 3D heterogeneous wavefield. The further study should
include analysis of dense seismic array data, and corresponding high-resolution 3D
simulations with the aid of high-performance computing technologies.
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LABORATORY EXPERIMENTS OF SEISMIC
WAVE PROPAGATION IN RANDOM

HETEROGENEOUS MEDIA

Osamu Nishizawa and Yo Fukushima
Abstract

Subsurface structures contain small-scale random heterogeneities which generate scattered waves.

Considerable fluctuations appear in seismic waveform when heterogeneity scales are comparable

or a little smaller than the dominant seismic wavelengths. Waveform fluctuation by scattering can

be examined in laboratory experiments by using random heterogeneous materials as scale models.

A laser Doppler vibrometer is used to accurately record waveforms propagating through a model

specimen. By taking advantages of laboratory experiments, one can reveal some quantitative

relationships between wave fluctuations and the intensity or the characteristic scale length of

random heterogeneity. Variations in travel times, fluctuations of amplitude, phase, and particle-

motion, as well as envelope formation are examined with respect to the statistical properties of

random heterogeneities. The variations can be characterized in terms of the scale-invariant values,

ka and kL, the wavelength-normalized values for the characteristic scale length of heterogeneity

and the wave travel distance, respectively. On the basis of experimental results, we obtain the

boundary between equivalent homogeneous media approach and scattering random media

approach. The two different approaches come from two different properties of the same medium

in wave propagation problems, depending on the values of ka and kL. The boundary is critical in

seismic imaging techniques, because strong scattered waves degrade the seismic signals used for

imaging and deteriorate the image quality.

Key Words: Laser Doppler vibrometer, scattering, scale-model experiment, seismic waves in

random media, equivalent homogeneous media � 2008 Elsevier Inc.
1. Introduction

Laboratory scale-model experiments have been conducted to study seismic wave
propagation in random heterogeneous media. Wave frequencies of laboratory experi-
ments are mostly from 0.1 MHz to 1 MHz. Piezoelectric transducers are commonly used
to study elastic waves as both sources and receivers. However, when piezoelectric
transducers are used as receivers, they have the following limitations for accurate
waveform recording (Nishizawa et al., 1998):

1. Their frequency response is non-flat.
2. The size of the transducer is comparable to the wavelength.
3. Wave field becomes complicated because of a surface topographic change due to

the attached transducers.
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The first problem can be solved by employing calibrated transducers, but the second
and the third problems are inherent to piezoelectric transducers. For example, waves with
P-wave velocities in the 3–7 km/s range (a typical range for laboratory model specimens)
correspond to the wavelength 3–70 mm for 0.1–1 MHz frequency range, which are
comparable to the size of the transducer. In this situation, the transducer response is an
average response over the surface area of the transducer. The phase differences between
two points in short distances less than a transducer size cannot be detected. The third
limitation is associated with perturbation of wave field including the scattered/diffracted
waves produced by topographic bumps of sample surface that are resulted from attached
transducers. The second and third limitations are serious because they disable to detect
accurate vibrations produced by elastic waves. Because of those reasons, piezoelectric
transducers are not optimally suited for laboratory scale-model experiments (Nishizawa
et al., 1997; Scales and Malcolm, 2003).

The laser Doppler vibrometer (abbreviated as LDV) is an easy-to-use high-precision
vibration sensor that overcomes the limitations of the piezoelectric transducers
(Yamamoto et al., 1992; Nishizawa et al., 1997; Scales and van Wijk, 1999). LDV
irradiates the surface of an object with a laser beam. Elastic wave vibrations are detected
as Doppler shifts in laser frequency ( fD) in the reflected beam. The particle velocity V of
the beam-reflecting object is given by (Nishizawa et al., 1997, 1998):
fD ¼ 2V

lL
; ð1Þ
where lL is the laser wavelength (633 nm for He–Ne laser). The laser-beam irradiation
area is less than 50 mm in diameter, which assures the response area much smaller than
the elastic wavelength. Scale-model experiments offer a promising approach to study
seismic wave propagation in heterogeneous media, by using LDV as a wave sensor.
In this study, we focus on irregularly shaped heterogeneities, not the heterogeneities

made up of layers or blocks. Irregularly shaped structures are found almost everywhere in
the earth’s interior as shown by the three-dimensional images revealed by seismic
methods. Those images are mostly large-scale heterogeneity of which characteristic
scale lengths are larger than the seismic wavelengths used for surveys. However, well-
log surveys reveal that subsurface structures contain irregularly shaped small-scale
heterogeneities (Shiomi et al., 1997; Goff and Holliger, 1999, 2003; Wu et al., 1994)
that are below the resolution limits associated with the seismic wavelength.
In the following sections, “random media” refers to materials with irregularly shaped

structures of which characteristic scale lengths extend from long wavelengths to short
wavelengths compared to the seismic wavelength. The terms “small-scale” and “large-
scale” are defined by the relationship of seismic wavelength to the characteristic length
of heterogeneity through which waves propagate. Scale-invariant values should be used
when interpreting experimental results and applying the results to the real scale problems
of field observations.
We present experimental studies of elastic wave propagation in random media. Wave

fluctuations in random media are shown by the wavelength-normalized relationships
between the characteristic parameters of random medium and the travel distance.
We begin with a technique for characterizing randommedia and an illustration of LDV

system for waveform measurements. We then present observations that show how
random heterogeneities affect travel-time fluctuations, amplitude and phase fluctuations,
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distortions in shear-wave particle velocity, and wave envelope formations. We also show
effects of cracks on wave fluctuations. Crack effects become more pronounced when
rocks contain oriented cracks. In the final section of the chapter, we suggest the idea for
applying laboratory results to seismic data analyses.
2. Laboratory Experiments

2.1. Statistical Description of Heterogeneity

Rocks are typical and easily available random media consisting of random mixtures of
irregularly shaped mineral grains. We first present a method to determine the randomness
parameters of rock specimens. The randomness parameters allow us to obtain quantita-
tive relationships between waveform fluctuations and random heterogeneities, on the
basis of laboratory scale-model experiments (Nishizawa et al., 1997; Scales and
Malcolm, 2003).

Figure 1 shows a three-value image of mineral distribution in granite converted from a
surface photo image. Thewhite, gray, and black colors represent feldspar, quartz, and biotite
grains, respectively. Assigning seismic velocity (the P-wave velocity, VP) of mineral for
each color, we obtain one-dimensional seismic velocity distributions along traverses across
the sample. Because biotite shows strong velocity anisotropy (Aleksandrov and Ryzhova,
1961), we give directional variations of seismic velocity in biotite by assuming a random
lattice orientation. One-dimensional fractional velocity fluctuations are then obtained
by subtracting each averaged velocity along the traverse. Spectra of the twenty
different traverse lines are calculated by the fractional velocity fluctuations, and the
averaged spectra and auto-correlation functions are obtained (Fig. 2). Figure 2(a)–(c),
(a0)–(c0), (a00)–(c00) shows, respectively, the image, the spectra, and the auto-correlation
Ternary image (tree-valued image)

Velocity anisotropy (biotite)

33 mm

Biotite

Quartz

Feldspar

Velocity profile (fluctuation)

FIG. 1. Mineral grain distribution in the Oshima granite as a three-valued surface image.

Velocity fluctuation is obtained by assigning velocity for each mineral by incorporating velocity

anisotropy in biotite (Spetzler et al., 2002).
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functions of the fractional velocity fluctuations for the (a) Westerly, (b) Oshima, and (c)
Inada granites.
The averaged auto-correlation is fitted to the exponential function with respect to the

one-dimensional distance x:
CðxÞ ¼ e2exp � jxj
a

� �
; ð2Þ

e is the root mean square (RMS) of the fractional velocity fluctuation and a is the
where
correlation length. We characterize the randomness of three granites by two parameters:
e and a.
We may have to characterize the heterogeneity associated with cracks because the

rocks contain very thin cracks. However, most of the cracks in intact crystalline rock
samples are inter-grain or intra-grain cracks having very small apertures (10–2 mm to
several 10th-mm) and similar lengths as the grain sizes (Simmons et al., 1975; Wong
et al., 1989; Sano et al., 1992). We cannot detect cracks from the surface image because
crack apertures are too small to be imaged. We therefore consider that the cracks in
granite will not affect estimation of the characteristic scale length of heterogeneity, but
may cause a slight increase of the fluctuation intensity e2.
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The role of cracks ismore pronounced in the shearwave. Thiswill be discussed later in the
context of the three-component vibrationmeasurementsmade in theOshimagranite. Cracks
in the Oshima granite have a preferred orientation (Subsections 4.3 and 4.4). In the
discussion about P-wave fluctuations, we assume that the random media is isotropic or
nearly isotropic, and the medium can be characterized by a and e. The three granites can be
differentiated only by the parameters a since there is only a little variation in e. Thus, the
differences observed inwave fields in the three granites can be attributed to differences in a.
Most of subsurface structures are primarily approximated by layered structures.

Layered structure is also quite common for sedimentary and metamorphic rocks which
exhibit planar microstructures such as bedding in sedimentary rocks and foliation in
metamorphic rocks. It is therefore reasonable to consider different values of a and e in the
horizontal and the vertical directions for modeling subsurface structures (Kravtsov et al.,
2003; Saito, 2006a,b). However, for simplification, we consider only the isotropic case
where a and e are equal for all directions. Later in the Subsections 4.3 and 4.4, we focus
on the effects of oriented cracks in the Oshima granite where the cracks behave as
oriented discontinuous scatterers embedded into an isotropic random medium.
2.2. Wave Fields in Random Media

Figure 3 shows an experimental setup. A one- or two-cycle sine-wave pulse is
produced by a wave synthesizer and is fed to a piezoelectric transducer after power
amplification. A wave-recording system captures transmitted wave before the onset,
triggered by a pulse from the synthesizer. A laser beam is irradiated on the opposite side
of the transducer’s surface to measure the surface vibration.
The LDV generates high-frequency electronic circuit noise, which masks the elastic

waves in ultrasonic frequency range, 0.1–1MHz.When waveforms are perfectly reproduc-
ible, the electronic noise is reduced by waveform stacking. We repeat measurements
about 1000–2000 times and stack waveforms to improve signal-to-noise ratio (Nishizawa
et al., 1997).

Vibrations are measured through an optical lens unit which is used for both beam
irradiation and detection. Measured surface vibration is the vertical component in the
normal irradiation. An autoregressive (AR) reflection sheet (Fig. 4) attached to the
surface reflects the beam parallel to the incident direction. This enables to obtain wave-
forms in the three orthogonal directions by irradiating laser beam in more than three
directions. As will be shown later, we obtain three-component waveforms (Nishizawa
et al., 1998; Fukushima et al., 2003).

Figure 5 (b) and (c) illustrates snapshots of wave fields in the three-granite rocks. The
measured vibration is vertical to the surface. Samples are square prisms 300 mm � 300
mm on a side. These surfaces are referred to as the major surfaces. For all the specimens,
the distances between the major surfaces range 90–100 mm [Fig. 5(a)]. The early part of
the wave measured near the center of a major surface is free from diffracted waves
generated from edges and vertices of the sample since the traveling distances of such
diffracted waves are much larger than the distances of transmitted direct P and S waves
and the twice reflected P waves (denoted as PP0P00, hereinafter). This allows an assump-
tion that the waveform variations in the transmitted and reflected waves are due to the
fluctuations caused by random heterogeneity in the specimens.
Waves are generated by a piezoelectric transducer attached at the center of one of the

major surfaces. Waves are observed at 2 mm intervals within a 50 mm � 50 mm lattice
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FIG. 3. (a) A schematic illustration of LDV used for measuring transmitted waveforms.
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50 mm in diameter. When the laser beam passing through a glass sphere, the directions of the
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on the opposite surface of the transducer. One of the corners (O) of the 50 mm � 50 mm
observation area is located at the intersection of the elongated axis of the disk-shaped
transducer with another major surface. A disk-shaped transducer with a thickness-
dilation mode produces axially symmetric energy radiation patterns for the radial and
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the transverse (in the plane including the axis) vibrations as shown in Fig. 6. After arrival
of the transmitted P wave at the corner O that is the first arrival point of the transmitted
wave, wave spreads in a concentric manner from the point O.

Wave fluctuation is recognized as collapse of the concentric waveform. Waveform
collapsing is most pronounced in the Inada granite, followed by the Oshima granite and
then the Westerly granite that shows a concentric circle pattern. The order is associated
with the correlation length of the random heterogeneity a [Fig. 5(b)–(d)]. The wave front
is more poorly resolved with increasing of a.
Waveform fluctuation can be studied by comparing waveforms that propagate along

identical ray paths but different locations in a random medium. In this case, waveforms
are expected to be identical if the medium is homogeneous, but the waveforms may
fluctuate if the medium contains random heterogeneity. One of the simplest cases is to
use a source having an axially symmetric radiation pattern and observe waveforms by a
circular array of which center is located on the symmetric axis.
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Figure 7(a) illustrates a transducer and a circular array located on a specimen.
Figure 7(b) illustrates a sectional view of ray paths in a homogeneous medium for the
direct P and S waves and the reflected P wave (PP0P00). The source–receiver geometry
assures an identical waveform between receivers for an axially symmetric source if the
medium is homogeneous. To compare waveforms in rocks with the waveform in a
homogeneous medium, we first observed waveforms in steel, which is shown in Fig. 8.
The circular array in steel and rocks has a radius of 10 mm. One hundred eighty
waveforms were observed at two degree intervals. Waves show high coherence between
each observation point: P, S, and PP0P00 are very clear. Then the waveforms can be used
as a control data set for comparing the waveforms in rocks. Slight variations in wave-
forms represent the perturbations associated with the beam positioning error and elec-
tronic circuit noise. Figure 9 shows circular-array waveforms in the three granites.
Considerable variations in waveforms are apparent. Coherence diminishes as the corre-
lation distance a increases. In the following analysis, we use the waveforms presented in
Fig. 9 in addition to other circular-array observations.
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3. Scale-Invariant Expression

Wave frequencies in laboratory experiments are much higher than those in field
seismic surveys. Laboratory results are interpreted in terms of scale-invariant values
that allow one to extrapolate the high-frequency laboratory observations to the low
frequency observations encountered in field seismic explorations or earthquakes. Aki
and Richards (1980) classified the approaches to wave propagation in random media
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as shown in Fig. 10. The classification was made by using the scale-invariant values
kL and ka which are the wave propagation distance (L) and the correlation length of
heterogeneity (a) multiplied by the wave number k. k is expressed as 2p/l by using
the wavelength l, or as 2pf/c by using the velocity c and frequency f of seismic
wave.
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Subsurface heterogeneities could be modeled by considering different a values in
horizontal and vertical directions. In such a case, wave fluctuations are affected by both
a values in the vertical and horizontal directions. The diagram cannot be simply extended
by changing ka values for each direction. For example, the wave propagating along the
horizontal direction, which have a larger a value, strongly interact with the vertical
heterogeneity having a smaller a value (Saito, 2006a). Interactions between wave and
heterogeneity are therefore very complicated in a medium having different a values in
different directions. This brings much more difficulties for classifying the wave propa-
gations in a ka–kL relationship. Here, we restrict our discussion to isotropic cases where
a is equal in all directions. We separate crack effects and consider that cracks are
embedded in an isotropic random medium with preferred crack orientations. Cracks
are considered to be discrete scatterers that become effective in high frequency.
The horizontal axis kL is associated with the number of chances of interaction between

the propagating wave and scatterers. This is expressed as the number of cycles along the
propagation path. The vertical axis corresponds to the sensitivity of interaction between
the propagating wave and scatterers. Scattering intensity also affects the location of
classification boundaries.
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When ka is small, the bulk elastic properties of the medium are deemed to be equal to
those of an equivalent homogeneous material (hereafter denoted as EHM). In this area,
the static theory of elasticity is applicable for calculating bulk elastic constants. Most of
the inclusion and crack models implicitly assume this condition (Eshelby, 1957;
Budiansky and O’Connell, 1976; Nishizawa, 1982).
On the other hand, for large ka values, there is an area of geometrical optics where the

ray theoretical approach is appropriate. In this region, the scale length of heterogeneity in
the medium is much larger than the wavelength. Heterogeneities are regarded as a
composite of homogeneous materials separated by sharp boundaries across which the
velocity varies. Wave propagation is illustrated by ray paths on the basis of Snell’s law.
Curved ray paths are also used for continuous velocity variations.
Between the above two extreme regions, there is a region referred to as an area of

scattering random medium (SRM). Theoretical approaches face difficulties for treating
wave propagation of this intervening region. A number of approaches have been devel-
oped to extend from the upper (ray theory) or the lower (EHM) regions into this area.
Modified ray theories are applicable for the cases close to the upper region (Müller et al.,
1992; Roth et al., 1993). Some scattering theories are used for the cases close to the lower
region (Sato and Fehler, 1998). In the SRM area around kL ¼ 10–1000, numerical
simulations (Frankel and Clayton, 1986) have to be used. Müller et al. (2002) studied
in the area ka � 1.5–20 and kL � 3.5–120. Most of the numerical simulations are
applicable to the large ka area. Attempts to study wave fluctuation from EHM to the
middle of SRM are very limited.
In the region ka ¼ 0.1–10, there are two negative-gradient boundaries between the

areas EHM and SRM: �1 for ka � 1 and �1/3 for ka � 1, which are labeled as (a) and
(b), respectively. The boundary between EHM and SRM moves upward or downward
with decreasing or increasing values of e2, respectively. Aki and Richards (1980)
assumed the intensity of the crustal heterogeneity, e2 ¼ 0.001. The boundaries for the
large and small ka values are from calculations on the basis of the plane-wave Born
approximation by assuming scattering energy loss of 10% (Aki and Richards, 1980).
Laboratory scale-model experiments generally cover the shaded area in Fig. 10. For

conducting different ka experiments, there are two simple alternatives: using the same
wave frequency for different random media having different a but identical e2, or using
the same random medium but with varying wave frequency. In the kL–ka plane, the
former results in changes of ka for constant kL, while the latter results in changes of both
kL and ka along a line with unit gradient. Both examples are presented in the following
sections.
4. Waveform Analysis

For describing wave fluctuation in random media, we investigated the followings
analysis: (1) travel-time fluctuations, (2) cross spectra of waves between different
observation points, (3) three-component waveforms, and (4) wave envelope formation.
P-wave travel-time fluctuations for 180 points of the circular array in the three granites

and steel are statistically investigated. Travel-time variations in random media are often
referred to as the time shift (or the velocity shift) which is a decrease of travel time
(an increase of velocity) with increasing frequency (Roth et al., 1993; Mukerji et al.,
1995; Shapiro et al., 1996). Time shift is usually examined by numerical simulations for
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the ka values corresponding to the area around the boundary between SRM and ray
theory in Fig. 10. The present experiments cover the area which crossing the boundary
between EHM and SRM: ka � 0.04–1.0 and kL � 60–200.

Cross spectra was calculated between wave pairs observed in a circular array. The
cross spectra indicate similarity between waves. Dissimilarity of wave is detected and
characterized by statistically investigating the cross spectra of wave pairs observed by a
circular array.
Perturbations of three-component particle velocities from the expected polarization of

shear wave indicate scattering effects of random media on shear wave. Distortions in
the S-wave polarization in the Oshima granite are closely related to a preferred orientation
of cracks.
The total envelope formation was examined similarly to the approaches common in the

analysis of field seismograms (Sato, 1984; Obara and Sato, 1995; Sato and Fehler, 1998).
Shear-wave envelopes are examined in the Oshima granite and gabbro to compare the
effects from characteristics of random heterogeneity and a preferred orientation of cracks.
4.1. Travel-Time Fluctuation

Sivaji et al. (2002) investigated P-wave travel times in steel and the three granites.
They measured the P-wave onsets of 180 waveforms observed in a circular array (Figs. 8
and 9). The onset time determination is based on the AR model and the Akaike’s
information criterion (AIC), which determines the onset time as a separating point of
different time-series AR models (Takanami and Kitagawa, 1988). Figure 11 (a)–(d)
shows P-wave travel-time distributions for the granite and steel samples.
The width of the travel-time distribution in steel is interpreted as the uncertainties

involved in waveform detection (beam-positioning errors and the electronic noise). The
wider travel-time distributions of granites reflect the effects from random heterogeneities
in rocks. Figure 12 shows the standard deviation of travel-time fluctuation (sT) in the
three granites and steel. Increase of the standard deviation (sT) corresponds to the
increase of correlation length a for the P-wave fractional velocity fluctuation, which
are 0.22 (Westerly), 0.46 (Oshima), and 0.92 (Inada). sT gradually increases with
increasing of ka. The slope of ka–sT relationship increases when ka > 0.3. This suggests
that strong scattering appear above this value, which is expected from the strong
irregularity in the wave field seen in Fig. 5. Spetzler et al. (2002) examined the difference
between the measured travel times in random media and the travel times calculated from
the average velocity values of random media. They compared the results of laboratory
model experiments, numerical simulations, and the two theoretical predictions: scatter-
ing theory and ray theory. The experiments and numerical simulations suggest that the
travel-time fluctuations in P wave through random media are in fairly good agreement
with those predicted by scattering theory.
4.2. Cross Spectra Between Waves

Nishizawa and Kitagawa (2007) performed a statistical analysis of the cross spectra
between waveform pairs of circular-array observations in Westerly granite. Source
signals are the single-or double-cycle sine-wave pulses of 0.25, 0.5, 1, and 2 MHz.
Dominant frequency of the observed waves changes depending on the source-signal
frequencies. Time-series data are picked out from 180 waveform by using a 6-ms time
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window at the same time point of waveform data. From the windowed wave data set, we
prepare 180 data sets consisting of pairs of partial waves of which observation points are
equally spaced on the circular array. Cross spectra are calculated for those wave pairs by
employing the multivariate AR model (Kitagawa and Gersch, 1996). By moving the time
window along the time axis of waveform, or by changing the interspacing between
observation-point pairs, we obtain variations of cross spectra with respect to the time
in waveform or the spatial distance in a random medium, respectively.
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The cross spectrum of two waves is expressed by a matrix pij( f ), where f is the
frequency and the suffixes (i, j¼ 1, 2) indicate the first and second points that are equally
spaced on the array, respectively. A non-diagonal element p12( f ) or p21( f ) represents the
mutual relationship between the wave pair. Since the notation “first” and “second” is
arbitrary, we use only p12( f ) for describing cross spectrum between two waves. p12( f )
is expressed by the amplitude a12( f ) and the phase f12( f ) as
p12 fð Þ ¼ a12 fð Þexp if12 fð Þ½ �; ð3Þ

a12 fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℜ p12 fð Þf gð Þ2 þ J p12 fð Þf gð Þ2

q
; ð4Þ

f12 fð Þ ¼ arctan
J p12 fð Þf g
ℜ p12 fð Þf g

� �
; ð5Þ
where ℜ 	f g and J 	f g denote the real and imaginary parts of the term in braces,
respectively.
Figure 13 (a), (b), and (c) shows the cross-spectral amplitude a12 (left) and the phase

f12 (right) for the wave pairs in PP
0P00. One hundred eighty spectra are plotted to see the

spectral distribution. Figure 13(a), 1–4 shows the spectra for different source-signal
frequencies with a fixed interspacing denoted by the number 7, which is the number
of array-point intervals between observation-point pairs. Figure 13(b) 1–3 shows the
spectra for different interspacing numbers, 1, 3, and 5. Figure 13(c) shows the cross
spectra of waves in steel with the interspacing number 7 and the source frequency
0.5 MHz.
Amplitude spectra have peaks near the frequency of source signal. The distributions of

amplitude spectra show no characteristic changes with respect to the frequency and the
interspacing. Actually phase difference can take any values, but we obtain phase values
within (�p, p) because of the cyclic character of phase. Phase spectra show symmetrical
distributions around 0 rad. The distribution patterns of phase spectra are similar for the all
source frequencies and they change with increasing the frequency.
Since the cross-spectral phase indicates phase differences between wave pairs in

frequency domain, the distribution width of phase spectra is associated with probability
distribution of the phase difference between waves. The narrow distribution of phase
spectra in steel up to 1MHz indicates high correlation between waveforms. This suggests
that the waveforms are identical for all the wave traveling paths in steel. Spectra in steel
show a small increase of the phase variation in high frequencies, which is associated with
the errors of observation system. Beam positioning is sensitive to phase estimation in
higher frequencies because observed phase in wave is sensitive to the location of
observation point when wavelength becomes shorter. Differences in spectra between
Westerly granite and steel represent fluctuation of waves in random heterogeneous
media, particularly wider distributions of phase spectra in Fig. 13(a) and (b) compared
to the distribution in Fig. 13(c).
Phase spectra of Westerly granite show a gradual broadenings of distribution width

with increasing frequency up to around 0.5–1 MHz, and then the width increases suddenly
in the frequency region 0.5–1 MHz for all source frequencies (Fig. 13 (b)-1 B, (b)-2 B, (b)-
3 B, and (b)-4 B). The sudden increase of the distribution width is observed for all
the phase spectra. Figure 13(b)-1 B, (b)-2 B, and (b)-3 B shows changes of phase spectra
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with respect to the interspacing between observation points. In Fig. 13(b)-1 B,
the distribution width shows narrow distribution in low frequencies below 0.5 MHz
and increases at around 1 MHz. This suggests that waves become incoherent at high
frequency even for the closest wave travel paths. The distribution width in
low frequencies increase gradually with increasing interspacing. This suggests that
phase coherency is gradually lost with increasing the observation distance. Loss of
coherency with respect to the distance or frequency has been discussed in Nishizawa
and Kitagawa (2007).

The distribution width is marked by the 67%-data area which spans from the median
value of distribution to each 60th data point of positive and negative sides. The 67%-data
area is shown in Fig. 14 for the phase spectra of 0.5 and 1 MHz. When the distribution is
Gaussian, the 67% region roughly identical to the region inside twice the standard
deviation (2s), which includes about 68% of the total data. Since we calculated the
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phase value within (�p, p), we consider a wrapped Gaussian distribution which is
defined in the range (�p, p) (Nishizawa and Kitagawa, 2007) by folding both tails of
Gaussian distribution into (�p, p). We then use the width of the 67%-data area as an
index indicating loss of coherency between waves.
Figure 14(a) and (b) shows the changes of the width of the 67% region with respect to

the waveform lapse time for the frequency bands 0.5 MHz and 1 MHz, which is
calculated from the 1-MHz source-signal waveform data (Nishizawa and Kitagawa,
2007). The width of the 67% region increases after the P-wave onset. The increase of
width just after the P-wave onset is due to the scattered waves induced during propaga-
tion. At the arrival of PP0P00 (54–62 ms), the 67% width for 0.5-MHz band becomes
narrow, whereas this width for 1-MHz band is unchanged. The 67% width in 1-MHz
band becomes close to (�2p/3, 2p/3) at the lapse time around 35 ms. This shows that the
phase differences between waves take random values between (�p, p) (Nishizawa and
Kitagawa, 2007) and waves are completely incoherent. In this case, the distribution
becomes the uniform distribution between (�p, p). The area inside the dashed lines in
Fig. 14 is the 67% region for the uniform distribution between (�p, p). If the tick marks
are located near these lines, it suggests that waves are completely incoherent.
4.3. Shear-Wave Particle Velocities

As illustrated in Fig. 4, an AR reflection sheet reflects a laser beam along the incident
path. The three-dimensional particle velocity can be obtained from waveforms in three
independent directions. We measured vibrations in two mutually orthogonal plane
perpendicular to the surface with an incident angle 
45� off the surface normal. The
measurement reproduces a three-component particle velocity with a vertical-component
redundancy.
Figure 15 shows examples of S-wave particle velocities following the onset of the

direct S-wave in steel, gabbro, and for the three orientations of Oshima granite. The
source is a disk-shaped shear transducer that generates primarily a vibration parallel to
x-axis with accompanying a weak radial vibration (Tang et al., 1994). Each observation
point is located at the intersection of the disk axis and the sample surface opposite the
source. The parameters of heterogeneity (a and e for the S-wave fractional velocity
fluctuation) in the Oshima granite and gabbro are given by (0.39 mm, 0.17) and (0.84
mm, 0.081), respectively. Gabbro has a large a but a small e, whereas the Oshima granite
has a small a but a large e. The wave number k for the S wave is calculated from the
velocity values listed in Table 1.
Since the Oshima granite contains oriented cracks inside quartz grains, it shows distinct

velocity anisotropy (Sano et al., 1992). Most of crack planes are aligned parallel to a plane
which is referred to as the rift plane. Three-componentwaveformsweremeasured for three
combinations of the S-wave polarization direction and the rift-plane direction as shown in
Fig. 15. Those are referred to as OS1 (polarization k rift) and (propagation k rift); OS2
(polarization? rift) and (propagation k rift); andOS3 (polarization k rift) and (propagation
? rift), where k and ? denote parallel and perpendicular, respectively. The frequency
shown in the figure represents the frequency of source signal.
In steel, the observed particle velocities retain the source polarization with a slight

expansion along the y component at 1 MHz. As mentioned previously, the expansion is
associated with inaccuracy in phase detection at high frequencies. In gabbro, particle
velocities retain source polarization at 0.25 and 0.5 MHz but are appreciably distorted at
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FIG. 15. Examples of S-wave particle velocities observed in steel, gabbro and Oshima granite at

source frequencies 0.25, 0.5, and 1 MHz. Observations in the Oshima granite include three different

cases in terms of the directions of propagation and S-wave polarization with respect to the rift

(crack) plane. The S-wave source is a disk type shear vibration parallel to the surface (Fukushima

et al., 2003).

TABLE 1. Velocities of P (cP) and S (cs) waves, and fluctuation parameters a and e for the P and S
waves, a (P), e (P), and a (S), e (S), respectively

Sample cP (km/s) cS (km/s) a (P) (mm) e (P) a (S) (mm) e (S)

Westerly granite 4.78 2.84 0.22 0.085 – –

Oshima granite 4.81 2.56–3.0 0.46 0.093 0.39 0.170

Inada granite 3.78 2.53 0.92 0.079 – –

Gabbro (Tamura) 4.78 2.84 – – 0.84 0.081
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1 MHz. Particle velocities in the Oshima granite show appreciable variations. Shear-
wave polarization is evident in OS1 at 0.25 and 0.5 MHz with a little disturbance.
Appreciable distortion appears at OS2 and OS3 at 0.25 Hz and 0.5 MHz. Polarizations
at 1 MHz are generally missing or misleading for OS1, OS2, and OS3.
Three-component full waveforms observed in steel and the Oshima granite are shown

in Fig. 16 (Fukushima et al., 2003). The polarization and propagation directions are x and
z, respectively. In steel, signals are very weak in the y and z directions. Only the signals of
x component show shear wave at arrival times of S and reflected S waves for 0.25 and 0.5
MHz, with weak disturbance at 1 MHz. Weak signals in the z component at the time of P
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arrival and later arrivals are considered to be due to the emission of radial component
from a shear source (Tang et al., 1994). Such weak vibrations can be negligible since
wave fluctuations in randommedia are much lager than the emitted radial waves from the
shear source.
In the Oshima granite, the x-component shear wave is strongly depolarized in all

frequencies and orientations. Signal intensities are comparable to or even larger than the
x component in both y and z directions at the time around the S arrival. The z-component
signals prior to the S-wave arrivalmay be due to the S toPmode-converted scatteredwaves
propagating in the forward direction. The depolarization intensity suggests strength of
scattering, which increases with increasing of frequency. Energy partition into three
components changes with increasing frequency. Particularly the energy partition in OS3
is characterized by larger amplitudes and long duration in the z component which is
parallel to propagation direction. This suggests strong interaction between shear wave
and cracks when crack planes are perpendicular to the S-wave propagation direction.
4.4. Waveform Envelope

Fukushima et al. (2003) studied envelope formation by using an eight-point circular
array and a shear-wave source. The array spreading angle is 7� with respect to the axis of
transducer. Actually, the radiation from the disk-shaped shear-mode transducer is not
axially symmetric (Tang et al., 1994). However, the radiation energy is regarded as
axially symmetric for this small spreading angle. Including the array center as the ninth
observation point of the array, all the observation points are deemed equivalent.
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Figure 17 shows RMS envelopes of the x component over the nine observation points
for each source frequency. Samples are the same as those of the previous section: steel,
gabbro, OS1, OS2, and OS3. Since Oshima granite shows velocity anisotropy generated
from micro cracks (Sano et al., 1992), the values of k for the P and S waves in OS1, OS2,
and OS3 show slight differences (Fukushima et al., 2003). However, the associated ka-
value differences are not so large as to be considered for interpreting observed
waveforms.
The half-amplitude duration from the onset of the S-wave envelope, tq (Fig. 17), is often

used as a measure of envelope broadening (Sato, 1989; Obara and Sato, 1995). To compare
experimental wave envelopes, Fukushima et al. (2003) normalized the values of tq by that
observed in steel. The normalized value is denoted as �tq. Figure 18 shows the change of �tq
with respect to ka. The change in �tq includes the effects from scale-invariant parameters ka
and kL. When frequency increases, the value of �tq increases, especially in OS3 where the S
wave propagates perpendicular to the most of crack planes. The large value of �tq in the
Oshima granite is primarily due to the large fluctuation intensity of S-wave velocity in the
Oshima granite (e in Table 1) and secondary due to the cracks.
The effects of oriented cracks on envelope are much pronounced in higher frequency,

especially for the waves traveling perpendicular to the crack plane. This suggests strong
scattering intensity for waves propagating perpendicular to the crack plane. Thus, a very
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small-scale heterogeneity produced by cracks has a strong effect on scattering at higher
frequencies. Envelope formation is explained in connection with the diffraction from
cracks and crack clusters in the next section, where intra-granular cracks have an
important role.
5. Key Features of Wave Fluctuation in Random Media

5.1. Masking Signal Waves by Small-Scale Heterogeneities

Figure 19 summarizes the ka–kL relationship found in the present experimental
studies. ka is obtained from the velocity values cP and cS in Table 1. kL is calculated
from the distances between major surfaces of the sample block d � 90–100 mm. The
sample thickness d corresponds to the characteristic length of the sample-scale heteroge-
neity which consists of a strong acoustic impedance contrast between rock and air at the
sample surfaces. During propagation, the wave reflects at the distances about d and 2d,
which correspond to the sample-scale heterogeneity. PP0P00 is regarded as the wave
produced by the sample-scale heterogeneity that is characterized by the scale length
about d. The traveling distance of PP0P00 is a little larger than 3d. The ka–kL relationship
of PP0P00 for the sample-scale heterogeneity is shown by a wavy hatched zone located in
the area of ray theory. The zone represents the frequency range from 0.125 MHz to
2 MHz.
The behavior of reflected wave, PP0P00, can be basically described by geometrical

optics. However, waves are fluctuated by the small-scale heterogeneity in a rock sample.
We can easily detect the reflected wave PP0P00 when the sample is homogeneous or
regarded as EHM. However, PP0P00 is masked by scattered waves when scattered waves
from the small-scale heterogeneity are very strong, especially, for the case of SRM. It is
hard to find PP0P00 wave in the Oshima and Inada granites (Fig. 9). Thus, the present
experiments represent a typical case of how the wave signals from the sample-scale
(large-scale) heterogeneity are fluctuated by the grain-scale (small-scale) random het-
erogeneity during propagation.



ka

1000

100

10

1

0.1

0.01

S
ca

le
-in

va
ria

nt
 c

or
re

la
tio

n 
le

ng
th

a ~ d
Diffraction

a ~ d

a = L

2 MHz

Three-granite experiments

l = a 0.5 MHz

2 MHz

0.125 MHz

0.25 MHz

Gabbro S
Oshima OS3 S

Experiments with
frequency change

Small e2

Large e2

SRM

EHM

Westerly PP�P��

Scale-invariant distance kL

1 10 100 1000 10,000

0.125 – 2 MHz
a ~ d, L = 3d

Ray theory

0.125 MHz

P 0.5 MHz

A & R conjecture
1 MHz

0.5 MHz

PP�P��

PP�P��

FIG. 19. Interpretation of experimental results on the ka–kL plane. The reflected waves from the

sample surfaces can be treated by ray theory as shown in the wavy shaded area. Those waves are

masked by scattered waves when scattering from the small-scale random heterogeneity is strong.

Intensity of the scattered wave can be estimated from the ka–kL relationship for the small ka region.
Present experimental results reveal the boundary between SRM and EHM regions.
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Masking of signal waves may occur occasionally in field seismic observations and
reduce the reliability of seismic signals produced from the large-scale heterogeneity. It is
important to determine the location of the boundary between EHM and SRM in seismic
data processing because the boundary illustrates how the masking effect on signal waves
appears in heterogeneous media. In the following, we discuss the location of this
boundary.
5.2. Boundary Between EHM and SRM

Since the sample blocks have almost the same thickness between the major surfaces
(90–100 mm), each geometrical path length of P and PP0P00 is similar for all sample
blocks. In addition to this, velocities of the three granites are almost same. If frequencies
of propagating waves are equal, those yield almost the same kL value for each P and
PP0P00 ray path. ka and kL values in the three-granite experiments are plotted as open
circles on the narrow vertical hatched bands at the values of kL � 65 and 195, labeled as
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“three-granite experiments” in Fig. 19. The two vertical lines represent the waves P and
PP0P00 and are labeled as “P-0.5 MHz” and “PP0P00-0.5 MHz,” whose travel distances are
about d and 3d, respectively. ka value increases from the Westerly (bottom), then the
Oshima, and the Inada (top) samples. The onset of P wave (wave front) is clear in the
Westerly and Oshima granites (Fig. 9). However, for the Inada granite, the onset of
P wave is much less distinct and the distribution width of the estimated P-wave arrival
times increases (Figs. 11 and 12). Clear signals of the reflected PP0P00 wave are observed
in the Westerly granite, but they are indiscernible in the Oshima and Inada granites,
masked by the random wave trains. We consider that those differences represent a
transition from EHM to SRM, and locate the EHM/SRM boundary as an outlined
white band with a negative slope in Fig. 19.

Experiments by using the same sample but variable frequencies (0.125 MHz–2 MHz)
yield a line with unit slope as shown by black dashed lines in Fig. 19. The line labeled as
“Westerly PP0P00” represents PP0P00 wave in the Westerly granite. This line extends from
(kL, ka) � (40, 0.04) to (kL, ka) � (700, 0.6), crossing the EHM/SRM boundary of the
Aki and Richards’ conjecture (labeled as “A & R conjecture”). Wave frequencies are
shown on the line. The cross phase spectra in Fig. 13 show the sudden increases of phase
distribution width in the frequency range 0.5–1 MHz. This may be regarded as the EHM/
SRM transition. Since the transition appears between 0.5 MHz and 1 MHz, the boundary
is located between these frequencies as shown by a negative-slope shaded line. The slope
of the line is assumed to be same as that of Aki and Richards’ conjecture.
Other two black dashed lines labeled as “gabbro S” and “Oshima OS3 S” represent the

shear-wave experiments in gabbro and the Oshima granite of OS3 orientation. The ka and
kL values for different frequencies are indicated by thin dashed lines that connect each
frequency value on the line “Westerly PP0P00.” Shear-wave depolarization, three-
component waveforms, and envelope broadening in the Oshima granite suggest the
location of the EHM/SRM boundary at around 0.5 MHz, which is almost close to the
boundary obtained from the constant-frequency experiments (white band). The S-wave
envelope broadening in gabbro is small compared to those in the Oshima granite. This
may suggest larger ka values for the boundary. The variation of the boundary location
between gabbro and the Oshima granite is resulted from the smaller e2 of gabbro than that
of the Oshima granite (0.0064 and 0.029, respectively; Table 1). However, strong
fluctuations in the Oshima granite are not solely explained by the difference of e2.
In addition to this difference, effects from cracks may result in strong fluctuation in
the Oshima granite as will be shown in the next section. We must note that the boundary
determined by S wave in the Oshima granite may reflect crack effects on scattering as
well as the effects from the heterogeneity associated with mineral distribution in rock.
5.3. Diffraction of Scattered Waves

Diffraction approaches are mostly applied for plane waves (Sato and Fehler, 1998) and
extended to point-source waves by Spetzler and Snieder (2001). Diffraction is effective
when ka values are in the range 1–10, which are larger than those obtained from the rock
microstructures (Figs. 1 and 2). The observed heterogeneity in the granite rock samples
are in the range ka ¼ 0.04–1, which lies below the area of diffraction approach (Fig. 10).
However, the apparent envelope broadening indicated by �tq in Fig. 17 may suggest
diffraction from the heterogeneity lager than that given by the rock microstructure.
RMS envelopes observed for all three orientations of the Oshima granite show increases
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of �tq with ka approaching 1. �tq values are strongly affected by crack orientations. These
may suggest that diffraction is associated with cracks, which somehow generate a large-
scale heterogeneity.
In our model, cracks behave as discrete scatterers which are embedded in an isotropic

heterogeneous medium. The intensity of heterogeneity due to discrete scatterers is
controlled by the effective scattering cross sections of scatterers and clusters of scatterer.
The distributions of crack and crack-cluster control the scale length of heterogeneity. In
the Oshima granite, intra-granular cracks are dominant (Sano et al., 1992), and they exist
inside quartz grains. Each crack size is comparable to each grain size. This implies that
the crack distribution in the Oshima granite is controlled by quartz grain distribution. The
heterogeneity due to the fractional velocity fluctuation in the Oshima granite is primarily
controlled by the size and distribution of biotite because biotite produces strong velocity
contrast because of its anisotropy. Meanwhile, the heterogeneity caused by cracks is
strongly related to the size and spatial distribution of quartz grain.
As shown in Fig. 1, grain size of quartz is mostly larger than that of biotite. This

suggests that the crack distribution has a larger scale length compared to the microstruc-
ture in the Oshima granite. The cracks inside quartz grain will make up clusters. If crack
clusters further make large-scale clusters, crack clusters will result in a hierarchical
structure known as a fractal (Mandelbrot, 1982). Then crack clusters produce large-
scale heterogeneity of which scale length is larger than that given by the microstructure
in the Oshima granite.
The effective scattering cross section given by cracks or crack clusters depends on the

wavelength and the vibration mode of propagating wave. If waves are strongly scattered
by cracks, the scattered waves from cracks and crack clusters will be dominant in the
transmitted wave. Transmitted waves will show diffraction associated with the crack
clusters if the distributions of cracks and crack clusters produce large-scale heterogeneity.
The envelope broadening of S-wave in the Oshima granite may be explained by diffraction
caused by crack clusters. The effect of cracks is one possibility for explaining the large �tq
values in the Oshima granite at 1 MHz. Further investigations will be needed for better
understanding of crack effects on scattering.
6. Conclusions

6.1. Validity of Equivalent Homogeneous Medium Assumption

Subsurface structures are often modeled as combinations of regularly/irregularly
shaped homogeneous materials, or gradual and continuous velocity variations. These
models implicitly assume that each small-scale heterogeneity in each material is much
smaller than the characteristic scale length of subsurface structure (target heterogeneity).
Each small-scale heterogeneity is treated by the EHM approach. The whole waveform is
explained by the target heterogeneity on the basis of ray theory. This approach faces a
problem when some of the materials contain heterogeneities of which sizes are in the
SRM area. In such a case, considerable fluctuations appear in waveforms and degrade
quality of the seismic signals produced from the target heterogeneity.
If we assume that the subsurface E values are almost same, EHM/SRM boundary is

controlled by ka and kL. The resolution of the target heterogeneity mainly depends on the
seismic wavelength (frequency). To reduce the effects from scattered waves and then
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to apply the EHM approach, long-wavelength seismic waves are required. There is
generally a limitation in the use of high-frequency seismic waves for subsurface
explorations.
6.2. Random Media Effect on Seismic Data Processing

We have shown that wave fluctuation in random media is primarily characterized by
frequency dependence of phase fluctuation between waves. Phase fluctuation is more
pronounced when a medium behaves as SRM by increases of ka, kL, and e2. The shift
from EHM to SRM occurs when phase fluctuations of seismic waves appear randomly
between –p and p. Waveform stacking for signal enhancement assumes that noise
components are incoherent. Incoherent character of “noise” is often mixed up with
wave fluctuation, but not the same (Scales and Snieder, 1998). We must distinguish
the two cases: stacking of waves along the same traveling path for repeated measure-
ments and stacking of waves along different traveling paths to enhance signals from the
target heterogeneity. For the first case, elimination of the time-series random noise is
expected, but for the second case, the noise to be eliminated is the fluctuation due to the
random heterogeneity around the traveling paths.
The second case is of our present concern. As shown in the previous sections, wave

fluctuations are primarily characterized by the frequency-dependent character of phase
fluctuations. When waves fluctuate due to small-scale heterogeneities, enhancement of
signal waves by heterogeneities such as geologic discontinuities is expected only for low
frequency components because high-frequency signals show almost random phase fluc-
tuation, which balances out the expected signals by stacking. Thus, the reconstructed
images reveal only the presence of larger heterogeneity even for denser observation
networks.
6.3. Role of Laboratory Experiments for Studying Seismic Wave Propagation

We apply state of the art technology to experimentally investigate seismic wave
propagation in random media. Numerical simulation is more popular than laboratory
scale experiments for studying seismic wave propagation in random media. However, at
present, numerical simulations for three-dimensional small-scale random heterogeneous
media require huge computer resources and are not readily available. Laboratory studies
have an advantage over numerical simulations that they can easily explore the three-
dimensional behavior of wave propagation. Most of the numerical simulations are the
approaches from the large ka values, larger than 1, whereas laboratory experiments cover
the ka values less than 1. Laboratory experiments and numerical simulations are the two
different approaches that are complementary to each other in terms of heterogeneity scale
(ka value). Use of LDV as a waveform detector is a key of experimental studies since it
allows us to accurately observe waveforms in a very small area which enables to detect
wave fluctuations by scattering from the small-scale heterogeneity.
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MEASUREMENTS OF THE EARTH AT THE
SCALE OF LOGS, CROSSWELLS, AND VSPS
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Abstract

This chapter will review the measurement physics and geometry of three different types of down-

hole seismic measurements: acoustic logging, crosswell seismic, and vertical seismic profiling.

These measurements cover a frequency range from about 15 kHz down to about 10 Hz, and can

investigate heterogeneity in the earth from a scale of tens of centimeters to hundreds of meters.

Moreover, because of the different geometries involved, the volume of earth being investigated and

the information obtained are quite different for each method. This chapter will review the latest

technologies in downhole measurements and what we can obtain from the data, and how we can

potentially integrate these measurements into a consistent earth model.

Key Words: borehole, acoustic logging, crosswell seismic survey, vertical seismic profiling,

VSP. � 2008 Elsevier Inc.

1. Introduction

Borehole measurements provide us with direct information of the properties of the
earth’s interior. As such, they complement the measurements we make on the earth’s
surface, and provide the “ground truth” at specific locations. However, borehole seismic
methods measure the earth at a different scale and with a different wave frequency than
earthquake seismology and active surface seismic reflectionmethods. In order to integrate
these measurements with earthquake and surface reflection measurements, it is important
to understand the size and volume of the earth that thesemethods investigate. In this paper,
we will discuss the vertical and horizontal resolution of each of these measurements.
In this paper, we will discuss three commonly used borehole seismic and acoustic

methods and the volume of the earth they sample. These are all active source methods.
The main distinguishing feature between the three is the location of the source.
The methods are acoustic logging, crosswell seismic survey, and vertical seismic
profiling (VSP). Acoustic logging employs a tool that has both the sources and receivers
on it, separated by around 3–4 m. It investigates the property of the earth immediately
surrounding the borehole. Crosswell seismic survey uses an active seismic source in one
borehole and a string of receivers in another borehole usually separated by less than
500 m. It measures the earth formation between the two boreholes. VSP uses a surface
seismic source and a downhole receiver string. The source can be located directly on top
of the borehole, or at a distance as far as several kilometers away. In all these applica-
tions, the depth of the borehole can range up to 5 km or more. Schematic figures of the
three measurement techniques are shown in Fig. 1a–c.

There is also a passive borehole seismic measurement. It involves deploying one or
more receiver strings down one or more boreholes and monitoring micro-seismic events
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induced from the production of the reservoir (usually but not limited to petroleum
extraction) or from hydraulically induced fracturing of the formation. The scale of
such a measurement depends on the size of the event. This technique is similar to
earthquake location. This paper will only deal with measurement methods using active
sources and will not discuss passive borehole monitoring.
2. Acoustic Logging

Acoustic logs measure the properties of the earth immediately surrounding a borehole.
An acoustic logging tool has sources and receivers embedded in a metal housing. The
measurement is made by lowering the tool in a fluid-filled borehole and setting off an
acoustic source (usually a pressure pulse) and measuring the refracted compressional
head wave arrival at two receivers set at different distances away from the source.
The formation compressional wave slowness (or the inverse of velocity) is simply
given by the difference in arrival times divided by the separation between the two
receivers. The resolution of such a measurement is simply given by the receiver spacing,
which is typically 2 ft, or 0.6 m. (Fig. 2).
Modern acoustic logging is much more complex than the simple straightforward

measurement described above. Modern acoustic logging tools generate different wave
modes in the borehole, and use advanced signal processing algorithms to obtain informa-
tion about the formation. A typical modern acoustic logging tool will have one or more
monopole (or axi-symmetric) sources and a pair of orthogonally aligned dipole sources.
The monopole sources generate a simple axi-symmetric pressure pulse in the borehole. The
dipole source generates a directional displacement pulse in the borehole fluid. The tools
have an array of receivers, typically eight levels (different distances from the sources), with
each level having 4 receivers distributed around the circumference of the tool, positioned at
about 3–4 m away from the source. The exact distance varies with different logging
contractor. An example of a modern acoustic logging tool is shown in Fig. 3.
Time
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T

FIG. 2. Traditional measure of formation velocity from acoustic log: v ¼ (R2�R1)/△t. From
Tang and Cheng (2004).
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FIG. 3. Example of a modern acoustic logging tool, the WaveSonicTM from Halliburton (cour-

tesy Halliburton Energy Services).
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In order to understand the volume of investigation of acoustic logging measurements,
we need to understand the physics of logging. We will start with monopole logging.
Monopole logging is a direct extension of the traditional acoustic logging, with a
pressure source generated in the borehole, and the resulting wavefield picked up by
pressure sensitive receivers.
There are two types of waves generated in the borehole and detected by the receivers.

One type is the compressional and shear head waves refracted along the surface of the
borehole. The other type is the guided waves. There are two guided waves, the pseudo-
Rayleigh wave and the Stoneley wave. The pseudo-Rayleigh is a properly guided wave
that exists because of the borehole, while the Stoneley is an interface wave that exists
because of the fluid-solid borehole interface. The head waves and the guided waves
sample the formation in different manners. A monopole source generates compressional
and shear head waves for compressional and shear wave slownesses. Certain applica-
tions, such as permeability estimation and fracture detection, utilize the Stoneley wave.
2.1. Dipole Logging

In monopole logging, we rely on the refracted head waves to determine the compres-
sional and shear wave velocity of the formation around the borehole. However, in “soft”
or “slow” formations, where the shear wave velocity is lower than the compressional
wave velocity of the borehole fluid, there is no refracted shear head wave. Zemanek et al.
(1984) introduced shear wave logging in a “slow” formation by means of the dipole
logging tool. The dipole source generates a directional displacement in the borehole
fluid. This excites a flexural wave mode in the borehole/formation system. The flexural
wave is dispersive, but it travels at the formation shear wave velocity at the low
frequency limit (usually around 2–4 kHz for nominal borehole radius and formation
properties). The flexural wave is related to the guided wave modes in the borehole, and is
not a head wave. This flexural wave is detected with receivers sensitive to the directional
displacement in the fluid. In modern logging tools, this is achieved by the subtraction of
the waveforms received by pressure transducers located on opposite side of the tool body.
Since the flexural wave is a guided wave, we should bear that in mind when considering
the depth of investigation of the shear wave velocity measurement from a dipole tool.
It will be different from a refracted shear head wave from a monopole tool.
2.2. Modern Array Processing

How well and at what scale we can sample the formation is related intimately with the
methodology we use to process the received waveforms. In the past, the formation
slowness is determined simply by dividing the arrival time differences at two receivers
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by the distance separating them. With the advance of modern tools, we use array
processing to determine the formation slownesses, including those for both head and
interface waves.
The basic methodology in modern acoustic logging processing is the semblance cross-

correlation, in the slowness-arrival time domain (Kimball and Marzetta, 1986). The basic
algorithm involves calculating the coherence of the waveform in a window with a
specific moveout across the receiver array. An example is given in Fig. 4. This process
is repeated for a range of slownesses and arrival times, and plotted in the slowness-arrival
time space. Peaks in the semblance coherence values are identified as arrivals.
For the semblance cross-correlation method, we are estimating the velocity of the

formation over the length of the receiver array. In most modern tools, that array is made
up of 8 receivers separated 15 cm (6 in.) from each other, giving an effective array length
of 1.05 m (or 3.5 ft). However, we can improve on this resolution by using a particular
property of the modern acoustic logging practice, namely, the data is acquired at constant
depth intervals. In particular, the acoustic data is acquired at intervals of 0.3 m (6 in),
corresponding to the distance between receivers.
Using successive shots and different combinations of the receivers of the array, we can

estimate the velocity of the formation over a smaller interval than that of the full array.
An example of such combinations is given in Fig. 5, (from Tang and Cheng, 2004). The
resulting sub-arrays can be combined to obtain a high resolution estimate of the forma-
tion velocities (Hsu and Chang, 1987; Zhang et al., 2000). An example of the improve-
ment in vertical resolution by the use of sub-arrays is shown in Fig. 6 (from Tang and
Cheng, 2004).
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FIG. 4. Illustration of semblance coherence processing to determine formation slowness (inverse

of velocity) from acoustic logs (from Tang and Cheng, 2004).
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FIG. 5. Illustration of the use of sub-arrays in resolution refinement for acoustic logs (from Tang

and Cheng, 2004).

FIG. 6. An example of the enhancement of resolution using different aperture sub-arrays for

acoustic logs (from Tang and Cheng, 2004). Panels for different length scales represent results from

using differing sub-arrays as shown in Fig. 5.
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2.3. Depth of Investigation

As discussed earlier, the depth of investigation of the acoustic logging tool is a
complicated issue. There are two distinct approaches to answer this question. One is to
consider the head waves, and the other the guided waves. These two approaches give
different answers to the depth of investigation of modern acoustic logs.
Let’s first consider the head waves. In a homogeneous formation, the depth of investiga-

tion is infinite. In a heterogeneous formation, the depth of investigation depends on the
velocity variation away from the borehole. If the velocity is increasing away from the
borehole, then the depth of investigation can be estimated using classical ray bending theory
(Hornby, 1993; Zeroug et al., 2006). For a formation with a velocity decreasing away from
the borehole, the situation ismore complex. Since the fastest velocity is next to the borehole,
the headwave energy is confined to a cylinder around the borehole. An estimate of the depth
of investigation in such cases is that it will be approximately equal to the half wavelength of
the head wave. For a P head wave at 8 kHz traveling in a formation with a velocity of
4.5 km/s (typical sandstone), the corresponding wavelength is about 0.5 m.
However, things are a bit more complicated than that. Since we are dealing with wave

propagation with a wavelength on the order of the scale of the heterogeneities, ray
theoretical approaches are not applicable. One way to test the sensitivity of the head
waves to velocity variations around the borehole is to generate synthetic waveforms
(Cheng and Toksöz, 1981; Tubman et al., 1984) and then analyze them using the standard
semblance cross-correlation approach (Kimball and Marzetta, 1986). Figure 7 shows the
schematic of such a synthetic formation. From the bottom to the top, the formation consists
of progressively deeper changes in velocity away from the borehole into the formation.
Figures 8a and b shows the results from semblance analysis for a “damaged” formation,
where the near borehole velocities are lower than the unchanged formation, and those from
an “invaded” formation, where the near borehole velocities are higher. The center
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FIG. 7. Synthetic model used to study the depth of investigation of acoustic logging tools.

The velocities increase or decrease away from the borehole as a percentage of the velocity of the

undisturbed formation. The borehole radius is 4 in.
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frequency is 8 kHz. The panels in Fig. 8 show the peaks in semblance values corresponding
to the P, S, and Stoneley wave arrivals.
From Fig. 8a, we see that using semblance we can barely detect the decrease in near

borehole P wave velocity even at a “damaged” zone depth of 12 in. (0.3 m) into the
formation. The changes are not detectable in the S wave velocity. From Fig. 8b, we can
see that, we cannot detect any changes in the measured velocities until the “invaded”
zone is greater than 6 in. (0.15 m, the top three depths). This is somewhat consistent with
our estimates presented above.
The depths of investigation for the guided waves (flexural and Stoneley) are still more

complex. Because of the geometry of the borehole, the depth of investigation is not a
simple analysis of the wavelength of the guided wave, as it is in the case of earthquake
surface waves. An example in Tubman et al. (1984) clearly shows that the Stoneley wave
“sees” mostly the casing in a cased well and not changes in the formation. Our analysis
above shows similar results when the near borehole velocity is higher than the formation.
For the case with slower “damaged” zone, the Stoneley wave appears to feel the effect
even when the zone is only 3 in (0.125 m) deep.
The changes in near borehole velocities can be estimated using high resolution

velocity dispersion analysis of the guided wave (Araya et al., 2003) followed by model
based inversion. Because of the complex interaction between the borehole and the
propagation waves, simple analysis based on ray theoretical approaches may not always
give the right answer. For the purposes of this review, it is sufficient to say that the depth
of investigation of the modern acoustic logging tool usually does not go more than one
wavelength of the propagating wave, and is usually of the order of 0.5 m.
3. Crosswell Seismic Survey

For crosswell seismic surveys, the situation is much different from the acoustic
logging case. Here the source is placed in one well, with the receiver string in another
well. There is no “standard” crosswell configuration, as there is in acoustic logging. Thus
the resolution of a crosswell seismic survey depends somewhat on the exact geometry
used.
There are two main “products” of a crosswell survey: a seismic velocity tomogram,

and a reflection image. Both primarily use the body wave (usually the P wave, but one
can also use the S wave) arrivals from the source in one well to the receivers in the other
well. The scale of the measurement is typically in the hundreds of meters to less than a
kilometer between the wells. The vertical extent is usually about the same dimension as
the horizontal well separation, but these scales are changeable depending on the objec-
tive of the experiment.
There are two commercially available sources for crosswell surveys: the piezoelectric

source from Z-Seis (www.z-seis.com), and the orbital vibrator (Cole, 1997) from Oyo
Geospace (www.oyogeospace.com). The piezoelectric source is a swept-frequency type
source, going from about 100 Hz up to 4 kHz. The orbital vibrator is also a sweeping
type source, but the upper frequency is limited to around 400Hz. Z-Seis uses a hydrophone
string as a receiver string. The receivers are located nominally at 3 m (10 ft) intervals.
Oyo Geospace uses a wall-locking 3-component receiver string, with variable spacing.
A typical receiver separation for the Oyo Geospace string is 3 m (10 ft). This corresponds
to the lower frequency content of the orbital vibration signal.

http://www.z-seis.com
http://www.oyogeospace.com
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3.1. Resolution of a Crosswell Seismic Survey

We shall discuss the resolution of a crosswell seismic survey in two parts: the first part
relates to the velocity tomogram, and the second part relates to the reflection imaging.
For the velocity tomogram, the geometry of the survey plays an important part in

determining the resolution of the resulting image. The tomogram is reconstructed from
the first arrival travel times from the source to the receiver array. The travel (or ray) paths
are primarily horizontal or sub-horizontal, limiting the resolution in the horizontal
direction. The reconstruction of such a tomogram is in general an ill-posed inverse
problem, and various regularization techniques are used to obtain a stable velocity
image. One of the more common techniques is the use of Tikhonov regularization,
with smoothing parameters much larger in the horizontal versus the vertical direction
(as much as 10 or 100 to 1, Matarese and Rodi, 1991; Matarese et al., 1992). It follows
that the ratio of the horizontal to vertical resolution of the tomogram will be constrained
by the ratio of the regularization parameters.
In the vertical direction, we can generally take the resolution to be the separation

between the receivers, assuming that we have a band-limited signal and adequate
digitization. For the Z-Seis equipment, the receiver separation and thus the vertical
resolution is 3 m (10 ft), for the velocity tomograms. Z-Seis uses a different approach
to address the ill-posed nature of the reconstruction. They use a cubic equation to
describe the horizontal velocity variation (Washbourne and Rector, 1998; Washbourne
2600
(a)

3000

D
ep

th
 (

m
)

3500
0 870

Distance between wells (m)

FIG. 9. continued.



2600

(b)

3000

3500
0 870

Distance between wells (m)

D
ep

th
 (

m
)

FIG. 9. (a) Tomographic velocity image from crosswell seismic survey (Courtesy of Gang Yu
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(shallower and deeper) than the velocity image. This is because both up- and down-going reflec-

tions are used.
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et al., 2002). As a result, the horizontal resolution of their tomogram is usually around
one-quarter of the horizontal distance between the wells, of the order of 50–100 m.
An example of the vertical and horizontal tomographic velocity image resolution is shown
in Fig. 9a (see figure caption for details). It is clear that in such an image the vertical
velocity variations are much better resolved than the horizontal velocity variations.
For the reflection image, the considerations are a bit different. Themost commonly used

algorithm is the CDP (also known as VSP-CDP) transform, which transforms the seismic
reflection signals in time into waveforms in space by the use of a specific velocity model
(Lazaratos et al., 1995). Other commonly used method for reflection imaging is the pre-
stack Kirchhoff depth migration (Qin and Schuster, 1993; Byun et al., 2002). Either way,
themethods used are adopted from standard seismic reflection techniques, and the vertical
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resolution is generally taken to be about one quarter of the wavelength. In the case of the
crosswell seismic survey, assuming a high center frequency of 500 Hz, and an average
formation velocity of 4 km/s, the best vertical resolution we can get is about 2 m, on the
order of the receiver separation. The reflection image corresponding to the tomographic
image shown in Fig. 9a is shown in Fig. 9b. A comparison of the resolutions of a surface
seismic survey and a crosswell reflection image is shown in Fig. 10.
For the horizontal resolution of a reflection image, the issue is a little more complex.

In general, we can potentially get a better horizontal resolution than the velocity
tomogram because of the many source-receiver combinations and the number of reflec-
tion points in the image. The resolution is the best in the middle between the two wells,
and degrades rapidly toward either side. The actual resolution depends on the source-
receiver pattern as well as the formation geology. A way to estimate the horizontal reso-
lution is to do ray tracing from the source to the reflection horizon and then to the
receiver. Separation between adjacent reflection points provides an estimate to the hor-
izontal resolution in each particular case. In addition the Fresnel zone of the wave at the
reflecting horizon sometimes needs to be considered as well.
It is important to point out, when discussing horizontal resolution of crosswell images,

that very seldom an individual change in a reflector position will lead to a distinct interpre-
tation of the underlying geology. Usually coherent groups of reflections across a number of
traces make up interpretable events. Thus the horizontal resolutions are more related to the
proper positioning of such events, rather than a small perturbation in a noisy background.
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There are other methods for imaging crosswell seismic data. The two best known are
diffraction tomography (Wu and Toksöz, 1987; Lo et al., 1988; Huang et al., 1992), and
full waveform inversion (Song and Williamson, 1995; Song et al., 1995; Pratt, 1999;
Pratt and Shipp, 1999). However, because of the complexity of the techniques involved,
these are not currently applied routinely in commercial applications. I refer the interested
reader to the above references for more information.
4. Vertical Seismic Profiling

For VSP, we have the lowest resolution of the three methods discussed here. VSPs use
seismic sources on the surface of the earth. As a result, the frequency content of the signals
is much lower than acoustic logs and crosswell seismic surveys. The frequency content is
usually up to a factor of 2 higher than standard seismic reflection signal because of the fact
that the receivers are located in a borehole and thus we are looking at one way rather than
two-way propagation through the earth. Typical VSP signals are of the order of 10–100 Hz,
about an order of magnitude less than a typical crosswell seismic signal.
The receivers used in VSPs are usually 3-component clamped geophones. The distance

between the receivers is variable, but is usually set at 7.5 or 15 m (25 or 50 ft). A standard
VSP product is the velocity profile along the borehole. The vertical resolution of the
measurement is given by the receiver separation. This measurement is usually acquired
using a seismic source next to the borehole, commonly known as a zero-offset VSP.
The main product from a zero-offset VSP is a velocity log (Fig. 11). This is commonly

generated by taking the travel time difference between the first arrival picks of the direct
arriving P waves at two adjacent receivers. S wave picks are also possible (even in a zero-
offset VSP there are some S waves since the source is never truly zero offset) by properly
rotating the three components of the receiver string. These velocities can be somewhat
refined by the use of formation top locations picked from well logs, and by formal
inversion algorithms (Stewart, 1984; Wyatt and Wyatt, 1981; Salo and Schuster, 1989),
but the general vertical resolution is limited by the receiver separations.
In many cases, a simpler measurement is taken. Its aim is to measure the travel time to

specific target depths rather than the more detailed velocity structure along the borehole.
It will use a much large receiver spacing (as large as 100 m or more), and it is known as
a check shot survey. It is important to know whether the survey is a check shot survey or a
zero-offset VSP.
Another product from a zero-offset VSP is the corridor stack. It is generated by isolating

the reflectedwavefield observed at each receiver, correct it to equivalent twoway travel time
from the surface to the receiver and back to the surface, and then stacked. It is then equivalent
to a zero offset surface seismic trace, and used to directly compare with the surface seismic
section to identifymajor reflection horizons. Hardage (2000) gives a detailed description of
the process. Since it is a reflection trace, the resolution of the corridor stack is similar to a
seismic trace, and is limited to about one quarter of the dominant wavelength of the trace.
In most geology, that is usually larger than the receiver separation of 15 m.
The horizontal depth of investigation of zero-offset VSP is usually taken to be about

one Fresnel zone or wavelength away from the borehole. Namely, the velocity deter-
mined from the VSP is taken to be the average of the velocities of the heterogeneities of
the order of one wavelength surrounding the borehole. Reflections in the corridor stack
are also assumed to come from this zone.



2000 3000

Velocity survey

4000

500

1000

1500

2000

2000

2000

1500

D
ep

th
 m

1000

500

3000

Velocity m/s

4000

FIG. 11. An example of the velocity log generated from the P wave first arrival in a zero-offset

VSP. The separation between the geophones is 15 m.

260 ARTHUR C.H. CHENG
There are also offset VSPs, where the sources are placed a distance away from the well
head, and more complex variations such as a walk-away VSP, where the sources are
sequentially placed further and further away in a line; and 3D VSP, where the sources are
placed around the borehole in a 2D grid. In all cases, because of the restriction of the
placement of source and receivers, it is not routine to obtain an estimate of the velocity
structure away from the borehole. In a walkaway VSP, the volume of the earth sampled
by the first arrival travel time measurements is an area bounded by the borehole, the
deepest receiver, and the farthest source. In general it is a triangular area. In a 3D VSP,
the volume is a cone shape similarly defined. In both cases there are very few areas
within the triangle/cone that is sampled by more than a very few ray paths (see Fig. 1c).
Furthermore, these ray paths are all concentrated in a very narrow range of incidence
angles. Under such conditions, we have a very ill-posed problem for tomographic
inversion for the velocity structure away from the borehole, worse than the crosswell
case. The general result from such a velocity analysis is a smooth velocity structure away
from the borehole, in the direction of the source. Thus we have very poor velocity
resolution away from the borehole, even with walkaway and 3D VSPs.
A routine product of the offset, walkaway, and 3D VSP is the reflection image. These

are obtained using either a CDP transform or a pre-stack migration algorithm (Dillon and
Thomson, 1984; Dillon, 1988), similar to imaging of crosswell seismic surveys.
An example of a VSP-CDP image is shown in Fig. 12. As discussed before, these are
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standard seismic techniques, and the vertical resolution is about one quarter of the
wavelength of the signal, which in this case will be around 20–30 m, depending on the
geology and source signature. The horizontal resolution will be dependent on the source
locations and the depth of the reflector relative to the receiver position. This horizontal
resolution relates only to the resulting image, and not to the velocity variations. Discus-
sions in the previous section regarding the horizontal resolution of the crosswell reflec-
tion image apply in a similar way to VSP images. For a more detailed discussion of VSP
acquisition and processing, the interested reader is referred to Hardage (2000); Hinds
et al. (1996); and Hinds and Kuzmiski (2001).
5. Discussions and Summary

The three different borehole measurement techniques described in this paper measure
the earth at very different scales, ranging from the 0.15-m scale of the acoustic logs to the
hundred-meter scale of VSPs. In addition, the measurements have the highest resolution
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along the borehole, in the vertical direction (most of these measurements are made in
borehole that are vertical or near vertical). Because of the measurement geometries, the
horizontal resolutions are in general much poorer than the vertical resolution.
Another question that is still not totally resolved is that how to relate these measure-

ments to one another. It is well known that integrated travel times from acoustic logs and
VSPs do not in general agree with each other (Stewart et al., 1984). The same statement
can be generalized to crosswell measurements also. The differences have been attributed
to a number of factors, including interbed multiples and intrinsic attenuation and
frequency dispersion. The simple matter is that because of the differences in the
acquisition geometry and frequency content, these measurements sample different
volumes of the sub-surface. Unless the sub-surface is truly homogeneous and isotropic,
the results from the three types of measurements will be different, and can be used to
build a more realistic image of the earth.
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Cheng, C.H., Toksöz, M.N. (1981). Elastic wave propagation in a fluid-filled borehole and

synthetic acoustic logs. Geophysics 46, 1042–1053.
Cole, J.H. (1997). The orbital vibrator, a new tool for characterizing interwell reservoir space. The

Leading Edge 16, 281–283.
Dillon, P.B. (1988). Vertical seismic profile migration using the Kirchhoff integral. Geophysics 53,

786–799.

Dillon, P.B., Thomson, R.C. (1984). Offset-source vertical-seismic-profile (VSP) surveys and their

image reconstruction. Geophys. Prospect. 32, 790–811.
Hardage, B.A. (2000). Vertical seismic profiling. In Handbook of Geophysical Exploration,

(K. Helbig, S. Treitel, Eds.), vol. 14, p. 352. Pergamon.

Hinds, R.C., Kuzmiski, R.D. (2001). VSP for the interpreter/processor for 2001 and beyond. Part 1.

Recorder 26, 84–95.
Hinds, R.C., Anderson, N.L., Kuzmiski, R.D. (1996). VSP interpretive processing. Theory and

practice. Open File Publications No. 3, Society of Exploration Geophysicists .
Hornby, B.E. (1993). Tomographic reconstruction of near-borehole slowness using refracted

borehole sonic arrivals. Geophysics 58, 1726–1783.
Hsu, K., Chang, S.K. (1987). Multiple-shot processing of array sonic waveforms. Geophysics 52,

1376–1390.



263MEASUREMENT OF THE EARTH USING BOREHOLE METHODS
Huang, L.J., Wu, R.S., Araujo, F.V. (1992). Multifrequency backscattering tomography: Extension

to the case of vertically varying background. 62nd Annual International Meeting, SEG,

Expanded Abstracts, pp. 766–769.

Kimball, C.V., Marzetta, T.L. (1986). Semblance processing of borehole acoustic array data.

Geophysics 49, 274–281.
Lazaratos, S.K., Harris, J.M., Rector, J.W., van Schaack, M. (1995). High-resolution crosswell

imaging of a West Texas carbonate reservoir: Part 4: Reflection imaging. Geophysics 60,
702–711.
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CODA ENERGY DISTRIBUTION
AND ATTENUATION

Kazuo Yoshimoto and Anshu Jin
Abstract

Coda waves in local and/or regional seismograms consist of scattered waves caused by randomly

distributed small-scale heterogeneities in the lithosphere. Observations and analysis of coda waves

have grown up into a well-developed branch of seismology since the pioneer observations by Aki in

late 1960s. Under the assumption of uniform distribution of isotropic scatterers, coda energy should

be uniformly distributed in space at large lapse times. This has been confirmed, observationally, in

areas where the lateral variation of seismic structure is small and smooth. This characteristic of

coda waves has been utilized to investigate earthquake source, attenuation of direct P- and S-waves,

and receiver site amplification by means of the coda normalization method. The coda Q�1 (Q�1
C ) is

a parameter that characterizes the temporal decay rate of observed coda energy. Numerous studies,

worldwide, on Q�1
C revealed the following observational facts: (1) Q�1

C decreases with frequency

for > 1 Hz, (2) Q�1
C , in general, lies between direct S-wave Q�1

S and intrinsic absorption Q�1
int , and

(3) Q�1
C is correlated with tectonic activity spatially and temporally. With the development of the

seismic observation system, recent studies using data from dense seismic networks revealed that

coda energy is not uniformly distributed in tectonically active regions, and the non-uniformity

increases with increasing frequency. The spatial correlation between Quaternary volcanoes and

high heat flux suggests that the thermal structure (or intrinsic absorption structure) of the crust and/

or the uppermost mantle characterizes the regional variation of coda energy in high frequencies.

KEY WORDS: Coda Q�1 ðQ�1
C Þ, Coda Waves, High-frequency Seismic Waves, Heterogeneity,

Intrinsic Absorption, Scattering Attenuation. � 2008 Elsevier Inc.

1. Introduction

One of the most striking features of short period seismograms of local earthquakes is the
regular manner in which the amplitude in the tail of a seismogram decays long after the
direct P and S, and other direct phases. Aki (1969) was the first to highlight such continuous
wavetrains in local seismograms and named this phenomenon “(seismic) coda waves,” a
term that has been used in seismology ever since to describe the tail portion of local and
regional seismograms. He observed that the coda waves have a common decay curve,
independent of the location of the source and recording station, and the event’s magnitude
within a seismic region, although it varies from region to region.
Aki (1969) proposed a phenomenological model of coda excitation, which is called a

“single back-scattering model.” This model explains coda waves as back scattered
seismic waves by the small-scale heterogeneities randomly and uniformly distributed
in the propagation medium. Coda energy density, Eij fð jtÞ, from a local earthquake j and
recorded at the station i can be best described by
Eij fð jtÞ ¼ Wj fð ÞRi fð ÞC fð jtÞ t > 2tS; ð1Þ
265 # 2008 Elsevier Inc. All rights reserved.
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where f is the frequency and t is the lapse time measured from the origin time of the
source. tS is the travel time of S-waves from the source to the station. Wj fð Þ is the total
energy at frequency f radiated from the source, and Ri fð Þ is the amplification factor at
the recording site. The term C fð jtÞ is common to all sources and recording sites in a
given seismic region. Equation (1) was first recognized by Aki (1969) by investigating
the aftershocks of the Parkfield Earthquake, 1966 and the empirical condition, whereby
Eq. (1) holds for t > 2tS, emerged following extensive study of coda waves in central
Asia by Rautian and Khalturin (1978).
The first attempt to predict the explicit form of E fð jtÞ for a mathematical model of

earthquake source and earth medium was made by Aki and Chouet (1975), with a model
based on the following assumptions:

� Both primary and scattered waves are S-waves.
� The scattering is isotropic and multiple scatterings are neglected. (Since the scatter-
ing is considered to be a weak process, the Born approximation is applicable.)

� Scatterers are distributed randomly with uniform density.
� The background elastic medium is uniform and unbounded.

The first assumption has been validated, based on the theoretical prediction that the S to
P conversion scattering due to small-scale heterogeneities is an order of magnitude
smaller than the P to S scattering (Knopoff and Hudson, 1964, 1967; Aki, 1992).
Zeng (1993) showed that the above difference in conversion scattering between P to S
and S to P leads to the dominance of S-waves in the coda. This assumption is also
supported by various observations, such as common site amplification (Tsujiura, 1978)
and common attenuation (Aki, 1980b; Sarker and Abers, 1998) between S-waves and
coda waves.
Under the simplification by co-locating source and receiver, and adopting the form for

the propagating term
C fð jtÞ / exp �2pftQ�1
C

� �
=t2: ð2Þ
Aki and Chouet (1975) and Aki (1981) adopted the following expression:
E fð jtÞ ¼ Wg pð ÞH tð Þ
2pV2

St
2

exp �2pftQ�1
C

� �
; ð3Þ
where H tð Þ is a step function, and VS is the average S-wave velocity. g yð Þ is the
directional scattering coefficient that is defined as 4p times the fractional loss of energy
by scattering per unit travel distance of primary waves in per unit solid angle in radiation
direction y measured from the direction of primary wave propagation. It is called the
“back-scattering” when y ¼ p. Parameter Q�1

C is called coda Q�1, which characterizes
the temporal decay rate of observed coda energy density. By means of a 2D finite
difference method, Jannaud et al. (1991) confirmed that the coda power spectrum is
proportional to the back-scattering coefficient, g pð Þ, as predicted by Eq. (3) for random
media with small fluctuations of wave velocity.
Based on the single isotropic scattering approximation, Sato (1977) derived the

equation in the case of the co-locating assumption being invalid. The mean energy
density of the scattered waves, recorded at a distance r from the source, can then be
expressed as



E r; fð

267CODA ENERGY DISTRIBUTION AND ATTENUATION
E r; fð jtÞ ¼ Wg0
4pr2

K
t

tS

� �
exp �2pftQ�1

C

� �
; ð4Þ
where
K
t

tS

� �
� tS

t
ln
tþ tS
t� tS

for t > tS:
The total scattering coefficient g0 that characterizes a scattering power per unit volume
of the heterogeneous medium is defined as the average of the directional scattering
coefficient over a solid angle O :
g0 � 1

4p

þ
gðyÞdO ¼ l�1 ¼ Q�1

scatk; ð5Þ
where l is the mean free path (l=VS is the mean free time), defined as a reciprocal of the
total scattering coefficient and it is another important parameter describing the charac-
teristics of a randomly heterogeneous medium. Q�1

scat is the reciprocal of the quality factor
for the scattering attenuation of incident waves with wavenumber k.
Peng (1989) calculated the spatial auto-correlation function of Q�1

C in southern
California and found that “the coherence distance,” defined as the distance at which the
auto-correlation first comes to zero, is 135 km for the lapse time window 30–60 s, 90 and
45 km for lapse time window 20–45 and 15–30 s, respectively. The above coherence
distances are close to the S-wave travel distance for the middle lapse time corresponding
to each of the above three time windows. This observation, indicating that the later time
window gives the slower decay in the autocorrelation, offers strong support for the
assumption that coda waves in these lapse time windows are primarily composed of
S-to-S back scattering waves (see Aki, 1995). In other words, the Q�1

C measured from a
time window represents the seismic attenuation property of the lithosphere, averaged over
an ellipsoidal volume, with the source and receiver as the foci and the radius as VSt=2.

Approaches have been developed for modeling coda excitation, including multiple
scattering, for instance, numerical experiments by Frankel and Clayton (1986), Frankel
and Wennerberg (1987), and Hoshiba (1991), and theoretical studies by Wu (1985),
Shang and Gao (1988), and Gao and Aki (1996). Zeng et al. (1991) derived an integral
equation that expresses the energy density of seismic waves at a given location r and
lapse time t due to an impulsive point source located at the origin:
jtÞ ¼ We� g0VSþ2pfQ�1
intð Þt

4pVSjrj2
d t� jrj

VS

0
@

1
Aþ

ð1
�1

ð1
�1

ð1
�1

ð1
�1

g0Eðr0; f jt0Þ

� e�ðg0VSþ2pfQ�1
int
Þ t�t0ð Þ

4p r� r0j j2 d t� t0 � r� r0j j
VS

0
@

1
Adt0 dr0

; ð6Þ
where d tð Þ is the Dirac delta function andQ�1
int is the reciprocal of the quality factor of the

intrinsic absorption. The first term on the right side represents the propagation of direct
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wave energy from the source to the receiver, while the second term is the sum of
scattered energy from all possible scatterers located at r0 . This integral equation can be
solved in the integral transform domain (see Zeng et al., 1991). In Eq. (6), the total
scattering attenuation coefficient and intrinsic absorption coefficient are explicitly spe-
cified, and all multiple scatterings are included, although, the background medium
remains uniform and unbounded and scattering is assumed to be isotropic. Equation
(6) is a function of distance and time, unlike Eq. (3) in which coda energy depends on
time only.
Due to the extraordinary separability, as shown in Eq. (1), of the source, path and site

effects in coda waves, coda analyses have been applied for studies on earthquake sources
(e.g., Aki and Chouet, 1975; Su et al., 1991; Mayeda and Walter, 1996; Morasca et al.,
2005); recording site (e.g., Phillips and Aki, 1986; Su and Aki, 1995; Takahashi et al.,
2005). However, the most extensive application of this equation is in the study of the
heterogeneity and/or seismic attenuation characteristics of the lithosphere.
To date, most of our knowledge concerning the small-scale heterogeneity of the

lithosphere comes from studies of coda waves. Without recognizing the coda waves,
the enormous difficulty in deciphering numerous factors affecting primary waves has
prevented us from even recognizing the existence of small-scale heterogeneity related to
the structure of the wave propagation medium. For example, the single scattering model
has been used in the analysis to estimate the total scattering coefficient of the lithosphere.
Figure 1 shows that the estimations of g0 vary roughly between 10�3 and 10�1 km�1,
taking an average of about 10�2 km�1. In addition, due to the simplicity of Eqs. (3) and
(4), the measurements of Q�1

C , its geographical variation over a large region as well as its
temporal variation over a long time period can be studied relatively easily (e.g., Herraiz
and Espinosa, 1987; Sato and Fehler, 1998). On the other hand, inversion schemes have
been developed to generate images of a three-dimensional distribution of scatterers by
comparing the coda envelopes between those observed to that predicted by a given model
(e.g., Revenaugh, 1995; Nishigami, 2000; Asano and Hasegawa, 2004).
This paper intends to emphasize a review of the observed characteristics of the spatial

distribution and temporal decay of coda energy.
2. Coda Energy Distribution and Measurement on QP,S
�1 using

Local Seismograms

2.1. Uniformity of Coda Energy Distribution

As discussed above, the scattered waves recorded at large lapse times traversed a wide
volume of the lithosphere, where the scattering process averages the elastic properties
over the sampled volume. Thus, the coda amplitudes observed in a local area are
independent from the source-receiver locations.
From the analysis of S-coda waves recorded by a local seismic array, Tsujiura (1978)

found good agreement in the amplification factors of S-coda waves and direct S-waves.
This result, based on the observed data analysis, suggested that the energy of the S-coda
waves is distributed uniformly in the lithosphere beneath the seismic array deployed.
Further evidence supporting this interpretation is given by the stable determination of
earthquake magnitude from the S-coda duration, irrespective of the source-receiver
location (e.g., Tsumura, 1967).
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FIG. 1. Total scattering coefficient g0 of the lithosphere in the world: Sato (1978) in Kanto,
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ern Greece; Akinci et al. (1995) in southern Spain; Gusev and Abubakirov (1997) in Kamchatka;

Adams and Abercrombie (1998) in southern California; Ugalde et al. (1998) in northeastern

Venezuela; Gusev and Abubakirov (1999) in Kamchatka; Akinci and Eyidoğan (2000) in eastern

Turkey; Bianco et al. (2002) in southern Apennines, Italy; Lacombe et al. (2003) in central France;
Lee et al. (2003) in central Asia; Dutta et al. (2004) in south-central Alaska; Goutbeek et al. (2004)
in southern Netherlands; Vargas et al. (2004) in northwestern Colombia; Bianco et al. (2005) in
northeastern Italy; Giampiccolo et al. (2006) in southeastern Sicily, Italy; Sens-Schönfelder and

Wegler (2006) in Germany.
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The multiple scattering models have been developed to interpret the characteristics of
observed coda energy distribution (e.g., Zeng et al., 1991). It is mathematically verified
that the solution of the multiple isotropic scattering models converge to diffusion model
at large lapse times. Unlike the field observations, however, these models predict a
concentration of energy around the source. Such contradiction between the observations
and the theoretical prediction is mainly due to the assumption of isotropic scattering.
Using radiative transfer theory, Sato (1995) developed a multiple nonisotropic scattering
model, and demonstrated that the uniform energy distribution around the source at large
lapse times can be explained when the scattering is much stronger in the forward
direction. All these scattering models assume the source radiation to be isotropic,
however, the nonspherical radiation of actual earthquake source may cause the nonuni-
form spatial distribution of scattered energy. Based on the radiative transfer theory, Sato
et al. (1997) demonstrated that the predicted nonuniform distribution of coda energy
would be smeared out by the multiple scattering processes with increasing lapse time.
Their result shows that the coda energy distribution from a point shear-dislocation
source converges to that for a spherical radiation source, asymptotically, when the
lapse time exceeds twice the travel time of the direct S-waves. Their results, again,
support the validity of the Eq. (1).
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One of the difficulties in data analyses in seismology is to separate the effects of the
source, path, and site. The uniform distribution of coda energy within a region for lapse
times after sufficient time offers a reliable tool to overcome such difficulty. Eq. (1) has
evolved into a technique called “the coda normalization method,” which has been
applied to study earthquake sources, propagation path property and site amplification
as summarized by Sato and Fehler (1998). The coda normalization method for measuring
the direct S-wave attenuation with travel distance was initially proposed by Aki (1980a),
and later extended by Yoshimoto et al. (1993) to measure the attenuation of the direct
P-waves with travel distance.
This method was designed to normalize source spectral amplitude, using coda spectra

at some fixed lapse time to measure the reciprocal of the quality factors of P-wave and
S-wave (Q�1

P and Q�1
S , respectively), using single station data. The coda normalization

method is free from the site effect correction and does not require any assumption
concerning source spectral shape (except for the source spectral ratio of P-wave and
S-wave inQ�1

P estimation). The following equations are applied to a data set that consists
of a number of earthquakes with variable hypocentral distribution and a variety of fault
plane solutions:
ln
AP f ; rð Þr
AC f ; tCð Þ

� �
r�Dr

¼ � pf
VP

Q�1
P fð Þr þ const fð Þ ð7Þ
� �

ln
AS f ; rð Þr
AC f ; tCð Þ r�Dr

¼ � pf
VS

Q�1
S fð Þr þ const fð Þ; ð8Þ
where VP is the velocity of P wave. AP f ; rð Þ and AS f ; rð Þ is the spectral amplitude of the
direct P- and S-waves at hypocentral distance r, respectively. AC f ; tCð Þ is the spectral
amplitude of S-coda waves at a lapse time tC, where tC > 2tS. The operator hir�Dr
denotes the average within a small hypocentral distance range of r � Dr. Q�1

P fð Þ and/
or Q�1

S fð Þ can be estimated from a linear regression of hln ½A P;S f ; rð Þ=AC f ; tCð Þ�ir�Dr
versus r, using the least-squares method. As summarized by Sato and Fehler (1998), the
coda normalization method has been frequently used to estimate Q�1

P and Q�1
S values of

various regions in the world (e.g., Chung and Sato, 2001).
Figure 2 shows the results of Q�1

S measurements from various regions of the world.
Despite significant regional variations, it is clear that Q�1

S decreases with increasing
frequency at frequencies 1–10 Hz and the Q�1

S curve of several high frequency resolution
studies exhibits a bend around 5 Hz, implying a significant change in the decreasing rate.
The decreasing rate is weak at high frequencies. This characteristic is distinct in the result
of Kinoshita and Ohike (2002) (No. 9 in this figure), based on strong motion data analysis
carried out in Kanto, Japan. Interestingly, Yoshimoto et al. (1998) applied the coda
normalization method to the borehole recordings of local earthquakes in central Japan
and found that the Q�1

S tends to become nearly constant for frequencies above 25 Hz
(No. 8). Using local earthquake seismograms recorded at a deep borehole (> 2 km in
depth) in California, Adams and Abercrombie (1998) also found that Q�1

S decreases with
frequency very weakly between 10 and 100 Hz (No. 6b).
On the other hand, we know that Q�1

S is very low for long period shear waves from the
global measurements on surface waves (see Mitchell and Romanowicz, 1998 for a
review on Q�1 of the Earth). Thus, Aki (1980a) suggested that there should be a peak
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of Q�1
S at a frequency range of around 0.5–1 Hz. Clear evidence for such a peak at a

frequency of around 0.8 Hz was first reported by Kinoshita and Ohike (2002) (originally
Kinoshita, 1994), via the spectral inversion analysis of strong motion borehole seismo-
grams. The Q�1 of Lg waves in Columbia determined by Ojeda and Ottemöller (2002)
(No. 10 in Fig. 2) also shows a peak at around 1 Hz.

For a medium in which both intrinsic absorption and scattering attenuation occur, the
total attenuationQ�1

S can be written asQ�1
S ¼ Q�1

int þ Q�1
scat (e.g., Dainty, 1981). In order to

clarify the contribution of the intrinsic and scattering losses, studies have been carried out
in various regions of the world by using “the Multiple Lapse Time Window Analysis
(MLTWA)” (Felher et al., 1992; Mayeda et al., 1992; Hoshiba, 1993; Hoshiba et al.,
1991; Jin et al., 1994). Figure 3 compiles the frequency dependence of S-wave attenua-
tion, the contribution from intrinsic absorption and scattering attenuation measured in
various seismic regions by different investigations. As shown in Fig. 3b, the seismic
albedoB0, defined as the ratio of the scattering attenuation to the total attenuation, takes 1/
2 at about 3 Hz, indicating that the contributions of the intrinsic absorption and scattering
attenuation are almost comparable at this frequency. Moreover, this ratio decreases with
increasing frequency showing that the intrinsic absorption dominates scattering attenua-
tion in frequencies above 3 Hz, approximately. This change in the dominant attenuation
mechanism is caused by the difference in frequency dependence of Q�1

int and Q�1
scat : both

parameters decrease with increasing frequency, however, the decreasing rate is weaker for
the former. These results are consistent with the bend of Q�1

S curve at around 3 Hz
observed by Kinoshita and Ohike (2002).
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2.2. Nonuniform Coda Energy Distribution in Tectonically Active Regions

It is important to note that the coda normalization method is based on empirical
evidence observed in local seismic networks. The agreement between the results
obtained from this method and the regional array analyses supports the uniform coda
energy distribution, at least within local areas.
Traditionally, coda wave analysis was firstly performed at a single station, and then its

spatial variation was studied, combining the single-station results obtained at different
stations (e.g., Mayeda et al., 1991). However, this procedure does not take advantage of
the spatial smoothness inherent to the coda amplitude as a diffusive process. By using
coda waves of the volcano-tectonic events to trace the magma movement in the volcano
Piton de la Fournaise in La Reunion, Aki and Ferrazzini (2000) revised the procedure by
first studying the spatial distribution of coda wave characteristics for a single event,
recorded at different stations of a dense array, and then synthesizing results from many
events. They used the coda energy in a fixed later lapse time window to normalize the
coda energy for a fixed earlier lapse time window for each station. Aki and Ferrazzini
(2000) found that the coda energy at a frequency band of 1–4 Hz peaked at the summit
area, which they attributed to slow waves trapped in the fluid–solid 2-phase system of the
magma body. Such coda energy concentration phenomena have also been observed in the
Hida region, central Japan for frequency band 1–2 Hz, related to active volcanoes, by Jin
and Ando (1998) and at Merapi volcano, Indonesia by Friedrich and Wegler (2005).
However, the physical explanation remains open.
Yoshimoto et al. (2006) analyzed the seismograms of a local event of magnitude 6.4,

recorded via the high density seismic network (Hi-net) in the Tohoku region, Japan,
where the volcanic front is running from north to south. They found a significant lateral
variation of coda energy, for frequencies above 1 Hz, across the volcanic front from east
(forearc) to west (backarc) (Fig. 4). As shown in Fig. 4b, the coda energy at frequencies
16–32 Hz is uniformly distributed in the forearc, whereas an exponential decrease with
horizontal offset from the volcanic front is found in the backarc. They interpreted this
observation as indicating that the intrinsic absorption in the backarc is significantly
greater compared to those in the forearc.
By introducing a diffusion–absorption model that consists of two welded half-spaces

with the same diffusivity but different absorption strength (Fig. 5), they evaluated the
spatial variation of energy density from the following equations:
@E x; tð Þ
@t

¼ D
@2E x; tð Þ

@x2
� qE x; tð Þ ð9Þ
0 0

@E x; tð Þ

@t
¼ D

@2E x; tð Þ
@x2

� q
0
E

0
x; tð Þ; ð10Þ
where E and E
0
are the energy density in the left and right half-spaces, respectively.

Parameters q and q
0
characterize the intrinsic absorption in the left and right half-spaces,

respectively. ParameterD is the diffusivity, and x is the distance from the boundary of the
two half-spaces. Applying initial and boundary conditions to Eqs. (9) and (10), they
demonstrated that the energy density in the strong absorptive half-space at large lapse
times can be characterized as
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where Q�1
int is the intrinsic absorption parameter of the strong absorptive half-space.

Equation (11) indicates that the energy density in the strong absorptive medium
decreases, exponentially, to the weak absorptive medium with increasing distance
from the boundary. This corresponds to the observation shown in Fig. 4b. AssumingD ¼
133 km2=s (g0 ¼ 0:01 km�1 and VS ¼ 4:0 km=s ), Yoshimoto et al. (2006) estimated
the intrinsic absorption parameter of the lithosphere in the backarc of the Tohoku
region, Japan and found Q�1

int 	 2� 10�3 for f ¼ 10 Hz. This value is about twice
of those reported from previous studies for the forearc (e.g., Hoshiba, 1993), indicating
that the S-wave attenuation in the backarc is significantly stronger than that in the
forearc.
To investigate the characteristics of coda energy distribution over a greater region, in

this article, we newly analyzed the data from 18 local events (Fig. 6) recorded by the Hi-
net, which consists of about 800 borehole stations with average station spacing of 20 km
distributed almost uniformly over Japan. To avoid possible contamination from
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aftershocks, we selected earthquakes with very few aftershocks, of which the hypocentral
parameters are listed in Table. 1. Nonuniform hypocentral distribution should not result
in serious problems because any assumptions on coda wave distribution are not adopted
and coda energy measurement is carried out at large lapse times. The velocity seismo-
grams from about 700 borehole seismometers were used to measure the squared ampli-
tudes of S-coda waves at lapse times at least 1.5 times after the S-wave travel time. In the
analysis, a coda energy factor (/ Ri fð ÞCi fð jtÞ) was introduced as an observational
parameter to characterize the lateral variation of coda energy. We assumed that Ci fð jtÞ
in Eq. (1) depends on the local absorption strength of S waves around station i. The coda
energy factor can be estimated by an ordinary inversion algorithm employed in the
analyses of site amplification (e.g., Phillips and Aki, 1986). We also considered that
the contribution of the site amplification factor Ri fð Þ on the lateral variation of the coda
energy factor is relatively small and random, because all the seismograms are recorded at
borehole stations.
Figure 7a shows a regional variation of the coda energy factor for a frequency band of

16–32 Hz, revealing that the coda energy is not uniformly distributed throughout Japan at
this frequency band. In general, in the northeastern part of the Honshu island (Tohoku
and Kanto regions), the coda energy level is higher and uniform in the forearc, and lower
and nonuniform in the backarc, respectively. It is worth noting that the area in which the
coda normalization method had been successfully applied for Q�1

P and/or Q�1
S estimation

(Aki, 1980a,b; Yoshimoto et al., 1993) is restricted in the forearc side, where coda energy
is distributed uniformly in space. This is probably why Takahashi et al. (2005) restricted
theirQ�1

S estimation in the forearc of the Tohoku and Kanto regions by applying the coda
normalization method.
TABLE. 1 Event source parameters for earthquakes used for the study of coda energy distribution

(after the Japan Meteorological Agency)

No. Time

Latitude

(�N)
Longitude

(�E)
Depth

(km) Magnitude

1 2000/10/31, 01:42:52.98 34.2987 136.3215 38.7 5.7

2 2001/03/26, 05:40:53.47 34.1172 132.7092 45.9 5.2

3 2001/12/02, 22:01:55.25 39.3983 141.2632 121.5 6.4

4 2002/11/04, 13:36:00.02 32.4127 131.8695 35.2 5.9

5 2003/05/12, 00:57:06.08 35.8688 140.0857 46.9 5.3

6 2003/05/18, 03:23:25.10 35.8672 137.5958 7.2 4.7

7 2003/09/26, 06:08:01.84 41.7098 143.6915 21.4 7.1

8 2003/11/15, 03:43:51.64 36.4325 141.1652 48.4 5.8

9 2004/09/05, 19:07:07.50 33.0332 136.7977 37.6 7.1

10 2004/09/05, 23:57:16.81 33.1375 137.1413 43.5 7.4

11 2004/10/06, 23:40:40.16 35.9888 140.0898 66.0 5.7

12 2004/11/04, 03:13:21.19 33.0775 130.5438 14.2 4.2

13 2004/11/09, 04:15:59.73 37.3540 138.9993 0.0 5.0

14 2004/11/29, 03:32:14.53 42.9460 145.2755 48.2 7.1

15 2004/12/06, 23:15:11.81 42.8477 145.3428 45.8 6.9

16 2005/02/16, 04:46:36.13 36.0385 139.8888 46.2 5.3

17 2005/03/21, 23:59:21.95 33.7853 130.1008 12.0 4.8

18 2005/04/10, 20:34:37.87 33.6685 130.2822 4.7 5.0
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Figure 7a indicates that the observed coda energy level is low, systematically, in areas
where the Quaternary volcanoes exist, such as central Hokkaido, western Tohoku,
Hokuriku, in and around the Izu peninsula, and southwestern Kyushu. The spatial
variation in the coda energy factor increases with increasing frequency, with the variation
in magnitude reaching up to 40 dB across the volcanic front at a frequency band of 16–32
Hz. As shown in Fig. 7b, the estimated Q�1

int using a diffusion–absorption model
(Yoshimoto et al., 2006) is in the order of 10�3 for regions where the coda energy
level is systematically low. The spatial correlation between the Quaternary volcanoes
and the high heat-flux suggests that the thermal structure (or intrinsic absorption struc-
ture) of the crust and the uppermost mantle characterizes the regional variation of coda
energy in high frequencies.
3. Temporal Decay Rate of Coda Energy: QC
�1

While Eq. (3) or (4) is valid for a single frequency f , Q�1
C is estimated, typically, from

octave-width bandpass-filtered seismograms from plots of the logarithm of E fð jtÞ versus
lapse time t within a given lapse time window. The long-standing puzzle among those
who studied Q�1

C is the significant variation and strong erratic behavior (e.g., Aster et al.,
1996) from event to event at a single station within a short time period. Ouyang and Aki
(1994) conducted an intensive investigation, focusing on both earthquakes and quarry
blasts having detonated in the eastern Mojave California. They found that the variation in
Q�1

C measurements does not appear to decrease by the use of the blast sources compared
with that measured from earthquakes. The inherent large fluctuation of every single
measurement can only be stabilized by averaging over many events. Many investigations
(e.g., Jin and Aki, 1988, 1993; Peng, 1989; Su and Aki, 1990) have found that the average
value of Q�1

C stabilizes when the number of single measurements reaches 10–20. Using
clustered earthquakes with similar waveforms recorded by the U.S. Geological Survey
Parkfield Dense Seismograph Array, Hellweg et al. (1995) investigated the stability of
Q�1

C , and suggested that, to obtain a stable Q�1
C value, the observations should include

array averaged measurements from a single lapse time, regardless of the source location.
In this section, we shall summarize the characteristics of Q�1

C observed by numerous
studies worldwide.
3.1. Lapse-Time Dependence

Observationally,Q�1
C decreases with increasing lapse time, and takes almost a constant

value after a certain lapse time (Hatzidimitriou, 1993; Hellweg et al., 1995; Kanao and
Ito, 1990; Kosuga, 1992; Su et al., 1991). However, based on the multiple scattering
models in unbounded uniform scattering media, the theoretical investigation predicts an
opposite temporal variation: namely, at early lapse times Q�1

C should increase with
increasing lapse time (Hoshiba, 1991; Wennerberg, 1993). Wennerberg (1993) suggested
that the observed decreases in Q�1

C is due to the decrease of the intrinsic absorption with
depth in the lithosphere.
Using the lapse time dependence of Q�1

C at earlier lapse times, Gagnepain-Beyneix
(1987) estimated the depth variation of Q�1

S of the lithosphere beneath the western
Pyrenean range, using local earthquake analyses. To interpret the apparent coda-wave
attenuation estimated from local Kamchatka earthquakes, Gusev (1995a) proposed a
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model in which the scattering coefficient decayed with depth by an inverse-power-law.
However, apparently, the early S-coda may be contaminated by the P-coda waves and
also affected by the source radiation pattern (Sato, 1984).
As an example, Fig. 8 shows the results ofQ�1

C by Kosuga (1992) based on the analysis
of aftershocks of the 1984 Western Nagano Prefecture Earthquakes of magnitude 6.8 in
Japan. He used the data recorded at hypocentral distances of less than 23 km. Lapse time
windows from 1.5 tS to a series of tmax were used in his analysis over a wide frequency
range of 1–64 Hz. As shown in the figure, the estimated value varies with both lapse time
and frequency. With increasing lapse timeQ�1

C decreases for lapse times of less than 10 s,
then approaches a constant value at a lapse time of about 24 s, at least. There seems to be
a tendency for higher frequencies to require an earlier lapse time forQ�1

C to reach a stable
value, implying a fast approach to the diffusion regime where multiple scattering is
dominant. In other words, the characteristic lapse time for Q�1

C to become a constant
value is both frequency and location dependent.
On the other hand, Q�1

C at large lapse times are measured globally as a local structural
parameter to characterize the spatial average of the seismic attenuation of the lithosphere.
3.2. Frequency Dependence

For a frequency range of 1–10 Hz, Q�1
C can be expressed as Q�1

C ¼ Q�1
0 f=f0ð Þ�g

,
where Q�1

0 is the value of Q�1
C at a reference frequency f0, usually taken as 1 Hz. The

power g ranges from 0.5 to 1 among different regions, as summarized by Sato and Fehler
(1998). It has been reported that tectonically active regions are generally characterized
by high values of Q�1

0 and strong frequency dependence (e.g., Singh and Herrmann,
1983; Mitchell, 1995). Mitchell (1995) compiled the results from Lg coda attenuation
measurements in the world and reported values of Q�1

0 ¼ 1/400–1/150 and g¼ 0.3–1 for
tectonically active regions, such as western North America, western South America, and
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FIG. 8. Q�1
C versus the end lapse time of the data window (tmax) measured from the earthquake

origin time. (Reproduced from Kosuga, 1992.)
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the Himalaya. In addition to the regional variations, local variations inQ�1
0 and g in terms

of the site geology were reported from the coda analysis of local network data (e.g., Steck
et al., 1989). Meanwhile, a recent coda study in northwestern Colombia by Vargas et al.
(2004) reported a clear correlation between Q�1

0 and g, indicating a strong frequency
dependence of Q�1

C in the region where the value of Q�1
0 is large.

There are many observations that report the decrease in observed g with increasing
lapse time, or the length of time window used for Q�1

C estimation (e.g., Gupta et al.,
2006). Thus, it is important to minimize the effect of lapse time variation on Q�1

C (not
only g but also Q�1

0 ) when we compare the results from different observations. Figure 9
shows the frequency dependencies of Q�1

C that have been reported by the analyses of
coda waves of local earthquakes (epicentral distances less than 100 km) at large lapse
times (> 60 s, except for the measurements for earthquakes with very small hypocentral
distances such as Kosuga, 1992 and Giampiccolo et al., 2004) in the world. Selection of
the similarQ�1

C studies in conditions of data and measurements reduces the scatter of plot
points, for example, as compared to Fig. 3.13 of Sato and Fehler (1998). Figure 9
indicates that, for the observational condition specified above, in average, Q�1

C is about
10�2 at 1 Hz and decreases to about 10�3 at 10 Hz.

Interestingly, the frequency dependence tends to diminish for frequencies above 10 Hz
or so, compared to that at lower frequencies. This tendency is similar to that observed for
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FIG. 9. Reported values of Q�1
C for the lithosphere in the world. 1: Ibáñez et al. (1990) in the
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Koyna region, India; 7: Bianco et al. (2002) in the Southern Apennine zone, Italy; 8: Giampiccolo

et al. (2004) in southeastern Sicily, Italy; 9: Gupta et al. (2006) in the Kachchh Basin, India;

10: Tuvè et al. (2006) in the Straits of Messina area, Italy.
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Q�1
S , as summarized in the previous section. Based on seismic-frequency laboratory

measurements using crustal and upper mantle rocks, Gribb and Cooper (1998) and Lu
and Jackson (1998) had reported that the strain energy dissipation Q�1 is generally low
and shows very weak frequency dependence at temperatures below a certain threshold:
e.g., about 400 �C for Cape Sorell quartzite. These laboratory measurements may support
the interpretation that Q�1

C at frequencies exceeding 10 Hz is characterized mainly by
intrinsic absorption in the lithosphere.
The physical mechanism of Q�1

C has long been debated. Within the context of the
single scattering theory, Q�1

C is an attenuation parameter for average S-wave attenuation
including both intrinsic absorption and scattering loss. On the other hand, numerical
experiments by Frankel and Clayton (1986), laboratory experiments by Matsunami
(1991), and theoretical studies including multiple scattering effects (e.g., Shang and
Gao, 1988) concluded that Q�1

C measured from the time window later than the mean free
time should correspond only to intrinsic absorption, and should not include the effect of
scattering loss. The debate concerning this issue was summarized by Aki (1991). Later,
Jin et al. (1994) compiled the results from several areas/regions around the earth using
MLTWA and found that in general, Q�1

C lies between Q�1
S and Q�1

int . However, the
domination varies with region and frequency.
Several studies (e.g., Gao and Aki, 1996; Yomogida et al., 1997) have suggested that

the leakage of seismic energy from the scattering layer into the non-scattering deeper
layers might cause a bias of the Q�1

C observed. More recently, by applying the radiative
transfer theory to a lithosphere model that consists of a scattering crust over a homoge-
neous mantle, Margerin et al., (1999) suggested that the effect of the leakage of the
scattered S-wave energy from the scattering crust on Q�1

C is not strong at frequencies
exceeding 10 Hz. This result implies that Q�1

C at frequencies exceeding 10 Hz is
dominated by intrinsic absorption. Matsunami and Nakamura (2004) reported consistent
observation that the intrinsic absorption becomes predominat above 4 Hz on the basis of
an envelope analysis of shallow crustal earthquakes in Wakayama, southwestern Japan.
In spite of these recent studies, for a more complete understanding of Q�1

C for the whole
seismic frequency band, we need more realistic models, including three-dimensional
variation of scattering strength and intrinsic absorption, and worldwide field studies.
3.3. Geographic Variation

Results from numerous studies on Q�1
C over the last two decades (e.g., Singh and

Herrmann, 1983; Jin and Aki, 1988; Hoshiba, 1993; Mitchell et al., 1997; Baqer and
Mitchell, 1998) show that Q�1

C varies systematically with the tectonic activity. The
differences on Q�1

C between tectonic active and stable regions can be as large as more
than an order of magnitude as summarized by Sato and Fehler (1998) and byMitchell and
Cong (1998). For example, in high frequencies ( f>> 1 Hz), large Q�1

C have been
observed around active volcanoes, implying strong intrinsic absorption due to high
temperature volcanic medium (e.g., Matsumoto and Hasegawa, 1989; O’Doherty et al.,
1997; Wu et al., 2006). In this section, as examples for lower frequencies, we shall
review several studies concerning the spatial distribution of Q�1

C at 1 Hz in the world.
Singh and Herrmann (1983) are the first to have constructed a Q�1

0 map over the
continental United States, although the spatial resolution of their map was rather poor,
since they had to use distant earthquakes for some stations. Figure 10 shows the 2D
image of Lg coda Q�1

0 over the continental United States constructed by Baqer and
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Mitchell (1998). Clearly, California has the highest Q�1
0 and the northeast US has the

lowest, indicating that Q�1
0 reflects the current seismicity better than other geophysical

parameters, such as low Pn and Sn velocity and/or a thin lithosphere lid. For example, the
area with the lowest Sn velocity and the thinnest lithosphere is probably the Basin and
Range, but this is not the most seismically active area of California. However, Q�1

0 is
higher in California than in the Basin and Range. The relatively high Q�1

0 region is also
found in the southeast area along the Gulf coast, where there is no current seismicity but a
so-called “growth fault” exists, generated by sedimentation in the Gulf of Mexico
(Martin, 1978; Davis, 1984). Studies on coda waves in Alaska (Biswas and Aki, 1984;
Steensma and Biswas, 1988; Dutta et al., 2004) revealed that Q�1

0 and the frequency
dependence of Q�1

C are similar to those in California, while both regions have compara-
ble high seismicity. Such observation suggests thatQ�1

C at low frequencies, of say 1–5 Hz,
may be indicating the degree of fracture in the lithosphere rather than the tectonic activity
originating in the asthenosphere (Jin and Aki, 1989).
Jin and Aki (1988) constructed a map of Q�1

0 for mainland China with a spatial
resolution of 150–200 km by using earthquakes at short distances from each station
(Fig. 11). The variation in Q�1

0 at individual stations, as estimated from the time window
for 2tS to 100 s, is smooth enough to draw contours of equal Q�1

0 . This contour map and
the epicenters of major earthquakes with M > 7 show a strong spatial correlation. For
example, seismically active regions, such as Tibet, western Yunnan, and North China,
correspond to high Q�1

0 regions, while stable regions, such as the Ordos plateau, middle-
eastern China, and the desert in Southern Xinjiang have very low Q�1

0 . The difference
between the peak and lowest Q�1

0 values amounts to a factor of more than a factor 20. In
this figure, two different symbols are used to distinguish earthquakes occurring before
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1700 from those having occurred after 1700. There has been a migration of epicenters
from west to east over the past 300 years in North China, and theQ�1

0 value for the region
active before 1700 is about twice as high as that for the region currently active. Jin and
Aki (1988) suggested that the high Q�1

0 region might also have migrated, together with
the high seismicity, citing the high Q�1

0 values estimated by Chen and Nuttli (1984),
based on the intensity maps for previous major earthquakes in the region. Since the other
geophysical conditions of the lithosphere cannot migrate several hundred kilometers
during a few hundred years, Jin and Aki (1988) again find that Q�1

0 is most likely
presenting a fracture condition in the lithosphere related to seismicity.
The high local seismicity, together with the high quality seismograms recorded by the

Hi-net, offers an opportunity to study the spatial distribution of Q�1
C in Japan at unprece-

dented high resolution. Jin and Aki (2005) measured Q�1
C at different frequency bands by

using seismograms recorded at 582 Hi-net stations for earthquakes located within 30 km
from each station. Figure 12 shows their Q�1

C map for frequency band 1–2 Hz (referred to
hereafter as Q�1

0 ). Figure 12 shows a significant spatial variation of Q�1
0 within Japan, up

to a factor of 3. The high Q�1
0 regions are correlated with the currently high seismic

activity. However, the most conspicuous high Q�1
0 zone is a narrow belt from Niigata

running in a south-westerly direction towards Biwa lake along the Japan Sea coast, where
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the GPS data reveals a high crustal deformation rate (Sagiya et al., 2000). The high
deformation rate zone has been named as the Niigata-Kobe Tectonic Zone (NKTZ) by
Sagiya et al. (2000). The observed difference in deformation rates between the NKTZ and
its surrounding is almost one order of magnitude. To produce such a significant regional
difference in deformation rate an anomalous stress concentration is required within the
NKTZ, unless there is strong lateral variation in the stiffness/viscosity in the region. Iio
et al. (2002, 2004) proposed a model that attributed the concentrated deformation to the
low viscosity in weak zones existing in the lower crust of the lithosphere. The spatial
coincidence observed by Jin and Aki (2005) may imply that Q�1

0 strongly reflects the
plate-driving loading from the ductile part of the lithosphere.
3.4. Temporal Variation

Numerous studies revealed that the temporal correlation between Q�1
C and seismicity

is not as simple as the spatial correlation described above (see Sato, 1988, for a critical
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review of early works on temporal changes in Q�1
C ). In a number of cases (Gusev and

Lemzikov, 1984; Novelo-Casanova et al., 1985; Jin and Aki, 1986; Sato, 1986; Faulkner,
1988; Su and Aki, 1990), Q�1

C showed a peak during a period of 1–3 years before the
occurrence of a major earthquake. For example, Tsukuda (1988) found in the epicentral
area of the 1983 Misasa earthquake that a period of high Q�1

C from 1977 to 1980
corresponds to a low rate of seismicity (quiescence). Meanwhile, the period of the high
Q�1

C before the Tangshan earthquake from 1973 to 1976, as observed by Jin and Aki
(1986), also coincides with the period of quiescence in the epicentral area of the
mainshock.
Gusev (1995b) investigated temporal changes in the relative amplitude levels of

backscattered shear waves from local earthquakes in Kamchatka (DKC in Fig. 13). He
analyzed 24 years data from 1967 to 1990 and found two significant anomalies in the
coda magnitude residuals (the deviation of coda magnitude at a station from network
average magnitude): (1) proceeding to twoM8 class earthquakes, a negative deviation of
3 years duration was observed at a station (KBG) within 100 km of the epicenters and (2)
an anomaly with the same sign but 1.5 years duration was detected at a station (APH) in
advance of a major fissure volcanic eruption located 70 km from the station. To
investigate the temporal change in the scattering properties of the volcano, Grêt et al.
(2005) applied a coda wave interferometry to reproducible seismic events recorded at
Mount Erebus Volcano, Antarctica, and found a temporal variation of coda wave
coherency, suggesting changes in the near-summit magma/conduit system.
On the other hand, such a characteristic pattern preceding some earthquakes is lacking

before others, and sometimes a similar pattern was not followed by a major earthquake.
For example, in order to minimize the possible effects from hypocentral parameters on
Q�1

C measurements, Beroza et al. (1995) analyzed earthquake doublets that span the
preseismic, coseismic, and postseismic intervals to search temporal changes of coda
attenuation in the vicinity of the Loma Prieta earthquake and found no significant
difference of Q�1

C among those three time periods.
The controversial observations on Q�1

C behavior related to the occurrence of major
earthquakes lead to the conclusion thatQ�1

C cannot be recognized as a reliable earthquake
precursor (Wyss, 1991). However, this judgment concerning the reliability of the Q�1

C

precursor was based on the preconception that the physical system governing
the precursor phenomena should be stationary in time.
Several convincing cases have been made for the temporal correlation between Q�1

C

and b-value. The result was initially puzzling because the correlation was negative in
some cases (e.g., Aki, 1985; Jin and Aki, 1986; Robinson, 1987) and positive in others
(e.g., Tsukuda, 1988; Jin and Aki, 1989).
Jin and Aki (1989, 1993) studied the temporal variation of Q�1

C , using more than 50
years of records in southern and central California. Again, they found no certain pattern
between Q�1

C variation and the occurrence of major earthquakes. To characterize seismic
activity in a seismic region, instead of using the b-value, Jin and Aki (1989) defined
a new index as the partial number of earthquakes with magnitude ofMi 
 M 
 Mi þ 0:5.
In their study, the numbers were counted for Mi ¼ 3.0, 3.5, 4.0, and 4.5, individually,
using the ANSS catalog for central California and the SCEC catalog for southern
California respectively. The windows of 100 consecutive earthquakes are overlapped
by 25 events with the neighbors. Each time series of N Mið Þ is then used to calculate the
cross-correlation with that of Q�1

C . They found that the cross-correlation coefficient
peaked (> 0.85) for Mi ¼ 3:0 in southern California and Mi ¼ 4:0 in central California
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with zero-time shift (Fig. 14a, b); and that the correlation coefficients are significantly
lower, sometimes even negative, for the other choices of Mi. Such a specific magnitude
that characterizes the temporal correlation betweenQ�1

C and N Mið Þ for a seismic region is
called MC.
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Using a high quality data set, produced by DRPI, Kyoto University, Hiramatsu et al.
(2000) observed the temporal variation of Q�1

C for the two frequency bands centered at
3 and 4 Hz, of which the temporal change associated with the occurrence of the Hyogo-
ken Nanbu (Kobe) earthquake of 1995 is the most significant (Fig. 15). A Q�1

C change of
about 20% was observed for the 2-year period before and after the Hyogo-ken Nanbu
earthquake, with a confidence level of 99% based on the Student’s t test. They calculated
the change in shear stress at a depth of 10 km, close to the depth of the brittle–ductile
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to 1997 corresponds to the occurrence of the Kobe earthquake of 1995. (Reproduced from
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transition zone, and found that the average increase in the shear stress over the study area
was estimated to be about 0.02 MPa, implying that the stress-sensitivity of Q�1

C is about
10% change per 0.01 MPa (0.1 bar). The frequency dependence of the change in Q�1

C

found by Hiramatsu et al. (2000) may be attributed to scattering by fractures. According
to Benits (1990), for example, the scattering of seismic waves by a fracture is most
effective when the wavelength is comparable to twice the characteristic length of the
fracture. The wavelength of S waves for which the change in Q�1

C was most significant is
around 1 km corresponding to the characteristic size of the fracture around 500 m.
Similarly, the corresponding MC in this case is around 3.0.
3.5. Models to Explain the Spatio-Temporal Correlation Between QC
�1 and Seismicity

To explain the observed temporal correlation between Q�1
C and N MCð Þ, Jin and Aki

(1989, 1993) proposed a creepmodel, in which the creep fractures in the ductile part of the
lithosphere are assumed to have a characteristic size within a given seismic region. The
increased creep activity would then cause the seismic attenuation to increase and simulta-
neously generate stress concentration in the adjacent brittle part, likely to result in earth-
quakes of magnitude MC corresponding to the characteristic size of the creep fracture.
Thus, ifMC is at the lower end of themagnitude range fromwhich the b-value is evaluated,
the b-value would show a positive correlation with Q�1

C and in the case ofMC being at the
upper end, the correlation would be negative. This model explains the above mentioned
puzzle correlation between the Q�1

C and b-value, while a positive correlation is also
expected between Q�1

C and N MCð Þ. The characteristic magnitude MC corresponds to a
characteristic scale length of heterogeneity in the brittle–ductile transition zone.
The existence of a characteristic scale length within the brittle–ductile transition zone
has been supported by various observations (see Aki, 1995, 2003, for the summary).

After a thorough survey of the tectonic stress in the Earth’s lithosphere, based on
observations concerning its brittle part, Zoback and Zoback (2002) concluded that
the tectonically stable region is stable because of the low rate of deformation in
its ductile part, and the active region is active because of the high rate of deformation
in its ductile part. They stated that the force applied to the lower lithosphere will result in
steady-state creep in the lower crust and upper mantle and hence the stress will be
accumulated in the upper brittle crust due to the drag of the layers below.
The above view suggests a simultaneous occurrence of the higher (lower) rate of stress

increase in the brittle part and the higher (lower) rate of deformation in the ductile part
due to plate-driving forces. This coincides, exactly, with the creep model proposed by Jin
and Aki (1989, 1993) and indicates that the Q�1

C variation may reflect the dynamic
loading process in the ductile layer and that the N MCð Þ may represent the response from
the brittle layer.
Based on this fresh perspective, Aki (2003) re-examined the temporal correlation

between Q�1
C and N MCð Þ observed in California (Jin and Aki, 1989, 1993) and found a

clear delay of Q�1
C change relative to the N MCð Þ; several years before both the M 7.1

Loma Prieta earthquake of 1989 and the M 7.3 Kern County earthquake of 1952.
Figure 16a represents the time series and its correlation function 10-years before the
Loma Prieta earthquake. Clearly, the correlation between the two time series is no longer
simultaneous, but theQ�1

C change is delayed by about 1 year relative to that of the N MCð Þ
before both earthquakes.
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Jin et al. (2004) extended the analyses of the temporal variation of Q�1
C and the

seismicity for central and southern California to the year 2003. The cross-correlation
function between Q�1

C and N MCð Þ is calculated using a 10-year moving time window.
The correlation coefficient for the entire period of about 60 years is peaked at the zero-
time shift, with the value close to 0.8 for both regions. They found, however, that the
simultaneous correlation was disturbed before every single major earthquakes, say
M > 7:0, in both regions. As an example, Fig. 16b shows the disturbance before the
Kern County Earthquake, 1952. The disturbances are, consistently, a delay in the change
of Q�1

C relative to that of N MCð Þ before the occurrence of a major earthquake. They
attribute the temporal change in Q�1

C to fractures in the ductile part of the lithosphere
and that in N MCð Þ to the response of the brittle part to the ductile fracture. The MC

characteristic to a seismic region originates from the characteristic size of fractures in
the ductile zone of the lithosphere. The observed delay of Q�1

C change relative to N MCð Þ
before a major earthquake can be explained simply by the strain energy stored in the
brittle part of lithosphere reaching its saturation limit and starting to flow back to the
ductile part. Aki (2003) pointed out that “When the stress in the brittle part builds up
over time to the point of failure preparing for a major earthquake, we may expect a
change in its mechanical property as a whole, as suggested in various laboratory
experiments on rock samples. There is, however, an important difference between the
laboratory and nature. During controlled laboratory experiments, the loading is a fixed
condition given externally by the experimental device, whereas in nature, the loading is
an internal process that is likely to be influenced by the change in property of the
material being loaded. One may subsequently expect a change in the mode of loading as
the brittle part undergoes such a change in preparation for failure. Thus, it might be
responsible for a breakdown in the positive simultaneous correlation between Q�1

C and
N MCð Þ.”
Aki (2003) proposed a possible physical model called the “Brittle-Ductile Interaction

Hypothesis (BDIH).” This model suggests that the observed temporal change inQ�1
C may

be unrelated to fractures in the brittle part, where the earthquakes are occurring, but
primarily related to those in the ductile part of the lithosphere or in the transition zone
from the brittle part to the ductile part.
Within the BDIH, the positive correlation between Q�1

C and N MCð Þ might be a tool to
monitor the status of the reaction of the ductile part of the lithosphere to the plate-
driving force loading, whereupon the brittle part responds to the change of the ductile
part within a seismic region. Jin et al. (2004) summarize the results from the studies on
correlations between the temporal change of Q�1

C and seismicity in Table. 2. In this
table, the duration is defined as the time length during which the simultaneous
correlation between the two time series is disturbed. The model has 4 parameters: (1)
duration of the abnormal period, (2) delay time of the change of Q�1

C and that of the
N MCð Þ%, (3) the characteristic magnitude MC, and (4) the dominant frequency, fP, at
which the peak Q�1

C change occurs. It is interesting that MC varies inversely with fP in
harmony with the brittle–ductile interaction model of earthquake loading as described
in Aki (2003). According to this model, fP corresponds to the fracture size in the ductile
part of the lithosphere, which must be comparable to the size of an earthquake of
magnitude MC. The data listed in Table. 2 indicate that such requirement is at least
qualitatively met.



TABLE. 2 The parameters of the brittle–ductile interaction model (after Jin et al., 2004)

Target earthquake Reference

Duration

(year)

Delay

time

(year) MC fP (Hz)

Stone Canyon (M5) Chouet (1979) (Normal

period)

1–2 24

Misasa, Japan (M6.2) Tsukuda (1988) >8 2–3 2–3 5–10

Loma Prieta (M7.1) Jin and Aki (1993) 7 1 4–4.5 1–3

Kobe, Japan (M7.2) Hiramatsu et al.
(2000)

6 2 2.6–3.6 1.5–4

Kern County (M7.5) Jin and Aki (1989) 8 1 3–3.5 1–3

Landers (M7.3) Jin et al. (2004) 10 4 3–3.5 1–3

Hector Mine (M7.1) Jin et al. (2004) 6 3.5 3–3.5 1–3

Tangshan (M7.8) Jin and Aki (1986);

Li and Chen (1981)

? 3 4.5–5 1–2
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4. Closing Remarks

1. The common decay rate of the coda envelope after a certain lapse time observed in
a given seismic region supported, empirically, a simple separation of the effects of
source, propagating path, and the recording site on coda spectra. This simplicity
leads to a powerful technique for seismological studies called the “coda normali-
zation method.” The application of this method on a single station records enables
us to measure attenuation factor of direct P- and S-waves, Q�1

P and Q�1
S , free from

the source and/or site correction.
2. In the context of the single scattering model codaQ�1 (Q�1

C ) estimated from a given
lapse time window around t represents the S-wave attenuation of the lithosphere
averaged over an ellipsoidal volume, with the source and receiver as the foci and a
radius of VSt=2. On the other hand, the multiple scattering model implies that Q�1

C

measured from the time window later than the mean free time should correspond
only to intrinsic absorption, and should not include the effect of scattering loss.

3. Numerous observations demonstrated the following characteristics of Q�1
C :
(i) Observed Q�1
C exhibits frequency dependence: Q�1

C estimated from coda waves

of local earthquakes at large lapse times is about 10�2 at 1 Hz and decreases to about
10�3 at 10 Hz. In general, Q�1

C lies between direct S-wave Q�1
S and intrinsic

absorption Q�1
int .
(ii) Observed Q�1
C shows systematical correlation with tectonic activity: high Q�1

C

in tectonically active regions such as California, Japan, and low Q�1
C in tectonically

stable regions, such as the northeastern US and Norway.

(iii) Attempts have been made to correlate the temporal variations of Q�1

C with the

occurrence of major earthquakes, although the observations are controversial. The
observed positive temporal correlation between Q�1

C and N MCð Þ may offer a possi-
ble clue to monitor the stress status of the brittle–ductile transition zone under the
plate-driving loading processes.
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4. Analyses of high density seismic network data have revealed non-uniform distri-
bution of coda energy. The non-uniformity increases with increasing frequency.
The spatial correlation between the Quaternary volcanoes and the high heat flux
suggests that the thermal structure (or intrinsic absorption structure) of the crust and
the uppermost mantle characterizes the regional variation of coda energy at high
frequencies.
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Ojeda, A., Ottemöller, L. (2002). QLg tomography in Colombia. Phys. Earth Planet. Inter. 130,

253–270.

Ouyang, H., Aki, K. (1994). EOS 75, 186. (Abstract).
Peng, J.Y. (1989). Spatical and Temporal Variation of Coda Q�1 in California, Ph.D Thesis,

University of Southern California, Los Angeles.

Phillips, W.S., Aki, K. (1986). Site amplification of coda waves from local earthquakes in central

California. Bull. Seismol. Soc. Am. 76, 627–648.
Rautian, T.G., Khalturin, V.I. (1978). The use of coda for determination of the earthquake source

spectrum. Bull. Seismol. Soc. Am. 68, 923–948.
Revenaugh, V.I. (1995). A scattered-wave image of subduction beneath the transverse ranges.

Science 268, 1888–1892.
Robinson, R. (1987). Temporal variations in coda duration of local earthquakes in the Wellington

region, New Zealand. Pure Appl. Geophys. 125, 579–596.



298 YOSHIMOTO AND JIN
Sagiya, T., Miyazaki, S., Tada, T. (2000). Continuous GPS array and present-day crustal deforma-

tion of Japan. Pure Appl. Geophys. 157, 2003–2322.
Sarker, G., Abers, G.A. (1998). Comparison of seismic body wave and coda wave measure of

Q. Pure Appl. Geophys. 153, 665–684.
Sato, H. (1977). Energy propagation including scattering effect: Single isotropic scattering approx-

imation. J. Phys. Earth 25, 27–41.
Sato, H. (1978). Mean free path of S-waves under the Kanto district of Japan. J. Phys. Earth 26,

185–198.

Sato, H. (1984). Attenuation and envelope formation of three-component seismograms of small

local earthquakes in randomly inhomogeneous lithosphere. J. Geophys. Res. 89, 1221–1241.
Sato, H. (1986). Temporal change in attenuation intensity before and after Eastern Yamanashi

earthquake of 1983, in central Japan. J. Geophys. Res. 91, 2049–2061.
Sato, H. (1988). Temporal change in scattering and attenuation associated with the earthquake

occurrence: A review of recent studies on coda waves. Pure Appl. Geophys. 126, 465–497.
Sato, H. (1995). Formulation of the multiple non-isotropic scattering process in 3D space on the

basis of the energy transport theory. Geophys. J. Int. 121, 523–531.
Sato, H., Fehler, M.C. (1998). Seismic Wave Propagation and Scattering in the Heterogeneous

Earth. Springer-Verlag, New York.

Sato, H., Nakahara, H., Ohtake, M. (1997). Synthesis of scattered energy density for non-spherical

radiation from a point shear-dislocation source based on the radiative transfer theory. Phys.
Earth Planet. Inter. 104, 1–13.

Sens-Schönfelder, C., Wegler, U. (2006). Radiative transfer theory for estimation of the seismic

moment. Geophys. J. Int. 167, doi: 10.1111/j.1365–246X.2006.03139.x.
Shang, T., Gao, L.S. (1988). Transportation theory of multiple scattering and its application to

seismic coda waves of impulse source. Sci. Sin. Ser. V 31, 1503–1514.
Singh, S., Herrmann, R.B. (1983). Regionalization of crustal coda Q in the continental United

States. J. Geophys. Res. 88, 527–538.
Steck, L.K., Prothero, W.A., Scheimer, J. (1989). Site-dependent Coda Q at Mono Craters,

California. Bull. Seismol. Soc. Am. 79, 1559–1574.
Steensma, G.J., Biswas, N.N. (1988). Frequency dependent characteristics of coda wave quality

factor in central and southcentral Alaska. Pure Appl. Geophys. 128, 295–307.
Su, F., Aki, K. (1990). Spatial and temporal variation in coda Q�1 associated with the North Palm

Springs earthquake of 1986. Pure Appl. Geophys. 133, 23–52.
Su, F., Aki, K. (1995). Site amplification factors in central and Southern California determined

from coda waves. Bull. Seismol. Soc. Am. 85, 452–466.
Su, F., Aki, K., Biswas, N.N. (1991). Discriminating quarry blasts from earthquakes using coda

waves. Bull. Seismol. Soc. Am. 81, 162–178.
Takahashi, T., Sato, H., Ohtake, M., Obara, K. (2005). Scale dependence of apparent stress for

earthquakes along the subducting pacific plate in Northeastern Honshu, Japan. Bull. Seismol.
Soc. Am. 95, doi: 10.1785/0120040075.

Takemura, M., Kato, K., Ikeura, T., Shima, E. (1991). Site amplification of S-waves from strong

motion records in special relation to surface geology. J. Phys. Earth. 39, 537–552.
Tsujiura, M. (1978). Spectral analysis of the coda waves from local earthquakes. Bull. Earthq. Inst.

Univ. Tokyo 53, 1–48.
Tsumura, K. (1967). Determination of earthquake magnitude from duration of oscillation (in

Japanese with English abstract). Zisin 2 20, 30–40.
Tsukuda, T. (1988). Coda Q before and after the 1983 Misasa earthquake of M6.2, Tottori Pref.,

Japan, 1988. Pure Appl. Geophys. 128, 261–280.
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IMAGING INHOMOGENEOUS STRUCTURES
IN THE EARTH BY CODA ENVELOPE

INVERSION AND SEISMIC
ARRAY OBSERVATION

Kin’ya Nishigami and Satoshi Matsumoto
Abstract

In this chapter, we introduce two kinds of deterministic analyses of coda waves, that is, inversion

analyses of coda envelopes and seismic array observations, and we show several studies that

effectively estimate the inhomogeneous structures in the crust and uppermost mantle. The first

one analyzes wave data obtained by local or regional seismographic networks. Nishigami (1991)

presented an inversion analysis of coda waves from local earthquakes, to estimate 3-D distribution

of relative scattering coefficients. The deviation of coda envelopes from average decay curves is

measured as the observational data, assuming a single isotropic scattering model. This method was

applied to central California and the inhomogeneous structure around the San Andreas fault system

was revealed (Nishigami, 2000). Asano and Hasegawa (2004) revised this method to estimate the

absolute scattering coefficients. Revenaugh (1995a) proposed another analysis method, called

Kirchhoff coda migration, in which the forward-scattered energy in teleseismic P coda observed

by a regional seismographic network is stacked. The second approach is seismic array observation

with station spacing shorter than the wavelength of seismic waves. We first summarize several

analysis methods of seismic waves propagating through the array. For example, scattered waves

with weak energy can be detected by beam-forming techniques. Coda waves are also decomposed

into wave trains with various ray directions using analyses such as multiple signal classification or

semblance coefficients. The energy of scattered waves in the coda can be evaluated by processing

the slant-stacked waveforms under the assumption of a single-scattering model. For example,

Matsumoto et al. (1998) applied this method to the source area of the 1995 Kobe earthquake

(M7.3), and revealed the existence of strong scatterers just beneath the hypocenter of the main-

shock. These studies analyzing the seismic network or array observation data seem to be effective

to estimate the Earth’s inhomogeneous structures.

Key Words: Coda wave, seismic scattering, coda envelope, inversion, seismic array, crustal

inhomogeneity. � 2008 Elsevier Inc.

1. Introduction

Coda waves from local earthquakes are considered to be waves scattered from
inhomogeneities in the crust and uppermost mantle (e.g., Aki, 1969). The Earth’s
medium contains various scale lengths of inhomogeneities as summarized by Wu and
Aki (1988). Inhomogeneous structures with scale length greater than the seismic wave-
length cause a fluctuation of travel times and amplitudes of the direct waves. These
observations can be inverted to estimate a 3-D distribution of seismic wave velocities and
attenuation properties (e.g., Aki and Lee, 1976). Detailed inhomogeneous images of the
lithosphere have been extensively studied and their relationships to the earthquake
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generating properties have been discussed (e.g., Zhao et al., 2000). On the other hand,
inhomogeneous structures with scale length comparable to or smaller than the seismic
wavelength cause strong scattering of the seismic waves, such that we observe an
excitation of coda waves after direct P and S waves. Analysis of coda waves can allow
us to extract small-scale inhomogeneities in much wider area than analysis of the direct
waves. Analysis methods of coda waves to estimate the statistical or deterministic
medium properties have been extensively developed, as described in Sato and Fehler
(1998).

In this chapter, we show two kinds of deterministic analyses to image the inhomoge-
neous structures in the Earth, in terms of the inhomogeneous distribution of seismic
scattering properties. The first one is an inversion analysis of coda envelopes observed by
local or regional seismographic networks, and the other is the seismic array observation
with station spacing shorter than the wavelength of seismic waves. The former analysis
has an advantage to estimate 3-D distribution of scattering coefficients in a relatively
wider area surrounding a seismic network, while the latter can obtain more detailed
images of scattering properties below the array.
2. Analysis of Seismic Network Data

2.1. Inversion of Coda Envelope

We analyze the S coda waves from local earthquakes based on a single, S–S, isotropic
scattering model. If we assume a spherical source radiation, the energy density E(t) of
single-scattered waves at lapse time t, measured from the event origin time, is expressed
as follows, referring to Sato (1977):
EðtÞ ¼
ð ð ð

W0

b4pr 21
gðxÞ 1

4pr 22
exp �ot

Q

� �
d t� r1 þ r2

b

� �
dx; ð1Þ
where W0, the energy radiated from the source; g(x), scattering coefficient at a point of
the coordinate vector x; r1 and r2, distances between hypocenters and scatterers, and
scatterers and stations, respectively; and b, S-wave velocity. The exponential term in
Eq. (1) expresses the attenuation effect along the propagation path with its quality factorQ
and the angular frequencyo. The volume integral is taken over the “scattering shell” where
the travel times of single-scattered waves equal to the lapse times of coda. When the spatial
distribution of scattering coefficient is random and uniform with the averaged value g0,
Eq. (1) is approximated as follows for lapse times greater than about twice the S wave
travel times,
E tð Þ � W0g0

4pb2
1

t2
exp �ot

Q

� �
: ð2Þ
This equation has been extensively used for estimating coda Q values in many regions in
the world (e.g., Jin et al., 1985). The actual observations of coda envelopes, however,
show a fluctuation due to nonuniform or localized distribution of scatterers. Nishigami
(1991) used Eq. (2) as a master curve for coda envelopes and defined the deviation of
observed coda envelope from this master curve as “coda energy residuals.” Figure 1
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shows an example of the procedure to obtain the coda energy residuals. The coda
envelope after the direct S wave is calculated by band-pass filtering (6.7–15 Hz, in
case of Fig. 1), correcting the geometrical spreading effect, and taking a running-mean-
square of velocity seismograms. Taking the ratio of the envelope to its average decay,
which is based on Eq. (2) and shown by a straight line in log scale in Fig. 1(b), and
averaging it with an appropriate time window (1 s, in case of Fig. 1), coda energy
residuals are obtained, as shown in Fig. 1(c).
In Eq.(1), spatial variation of the scattering coefficient g(x) has much greater effect on

the temporal variation of E(t) than that of Q values do, as explained in Nishigami (1991).
Therefore, the coda energy residuals are considered to reflect mostly the nonuniform
distribution of scattering coefficients, and from the coda energy residuals observed by a
seismographic networks, we can estimate a spatial distribution of scattering coefficients.
We divide the analysis area into small blocks with one side of 5–10 km, mostly
depending on distribution of stations and events, and then the volume integral in
Eq. (1) is changed to a summation of all the blocks concerning the scattering shell.
Finally we obtain the following observational equation, which describes the relationships
between the relative scattering coefficient ai in the ith block (i ¼ 1, M ) and the coda
energy residuals a(tj) at lapse time tj ( j ¼ 1, N ) for all of the waveforms analyzed
(Nishigami, 1991):
1P
i

1

ðr1;i � r2;iÞ2

X
i

ai
ðr1;i � r2;iÞ2

¼ aðtjÞ; ð3Þ
where r1,i and r2,i represent the distances from the center of the ith block to the
hypocenters and stations, respectively, and ai is a scattering coefficient (gi) in the ith
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block normalized by the background or averaged scattering coefficient g0 in the analysis
area. We can solve the linear Eq. (3) for a large number of events and stations. Nishigami
(1997) solved these equations by a recursive stochastic inversion (e.g., Zeng, 1991).
Nishigami (2000) applied this method to the San Andreas fault system in central

California. He analyzed 3801 waveforms from 157 local earthquakes recorded at 140
stations of the Northern California Seismic Network. The block size was taken as 10 km
in horizontal and 5 km in depth. Figure 2 shows the estimated distribution of relative
scattering coefficient. The inversion was made four times by shifting the horizontal block
assignment by half an interval, and the results were superposed for this figure. Diagonal
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elements of the resolution matrix were almost all greater than 0.5 except for the
peripheral of the analysis area. Figure 2(a) shows a good correlation between sub-
parallel active faults and relatively stronger scattering zones in the crust. The result
also suggested a segmentation of the San Andreas fault, where segment boundaries were
characterized by relatively stronger scattering. This inversion analysis was also applied
to several regions in Japan and crustal heterogeneities in active fault zones and active
volcanoes were discussed (e.g., Nishigami, 1997, 2006). Nishigami (1997) revealed two
zones with stronger scattering at a depth of 7–17 km just below Mt. Ontake, central
Japan, and showed that they agree well with the two reflectors (or reflection planes) of
S waves previously estimated by the normal moveout correction analysis (Inamori et al.,
1992). Nishigami (2007) also showed a good correlation between the distribution of
strong scattering zones and S wave reflectors estimated at a depth from 20 to 30 km in the
Kinki district, southwest Japan. These results show that the scattering inversion analysis
is effective to estimate inhomogeneous structures in the crust.
Asano and Hasegawa (2004) revised the inversion method stated above. They took

into account the source radiation pattern based on the focal mechanism and also the
intrinsic and scattering attenuation effects in the observational equation, and inverted
the absolute coda energy to estimate the absolute value of scattering coefficient. Asano
and Hasegawa (2004) applied their inversion analysis to the aftershock seismograms,
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band-passed for 4.5–9.0 Hz, of the 2000Western Tottori earthquake (M 7.3), and showed
larger scattering coefficients along the mainshock fault plane and also relatively smaller
scattering coefficients possibly related to the asperity with large coseismic slip.
We assumed a single-scattering model in the inversion analyses shown above. The

coda energy due to multiple scattering, however, becomes dominant over that of single
scattering at large lapse times, as shown in Sato (1988). The lapse time of coda waves
that is available for a single-scattering model is considered to be approximately within
the mean free time of the inhomogeneous medium. The mean free path of S waves in the
crust and uppermost mantle was estimated as �100 km at 10 Hz (e.g., Sato, 1978), and
therefore the corresponding mean free time is�30 s. The inversion analyses stated above
(e.g., Nishigami, 1997, 2000; Asano and Hasegawa, 2004) obeyed this limitation of lapse
times. Also they took the beginning of coda analysis at �1.5–2 times the S wave travel
times, which is a little earlier than the limitation of lapse times that satisfies Eq. (2). The
early coda part contains effective data to estimate detailed scattering properties in the
crust. It will be relevant to use the “K function,” which expresses the decay curve of coda
energy and its asymptote gives Eq. (2) for lapse times greater than about two times the
S wave travel time (Sato, 1977), in order to include the early coda part in the inversion
analyses.
2.2. Kirchhoff Coda Migration

In the previous section, we described the analysis method of back-scattered (or side-
scattered) waves from local earthquakes. Forward-scattered waves in the seismograms
from teleseismic events have also been analyzed to estimate scattering properties in the
crust and uppermost mantle beneath the local or regional seismographic networks. In the
Kirchhoff coda migration, we stack the absolute amplitude or the nth root of teleseismic
coda at the arrival times of forward-scattered waves, for each grid point of supposed
scatterers assigned in the analysis area (e.g., Revenaugh, 1995b). Nth-root stacking is
considered to suppress incoherent energy in coda waves (Revenaugh, 1995b). P–P, P–S,
or P–Rg scattering is assumed in this stacking. For example, Revenaugh (1995b) ana-
lyzed teleseismic P coda recorded by a short-period seismometer network, that is, 5606
seismograms from 120 teleseismic events recorded at 232 stations of the Southern
California Seismic Network (SCSN). Horizontal grid spacing was taken as 0.1� for
several depth layers from 50 to 400 km. He detected a zone with strong P–P scattering
at depths from 50 to 200 km, and interpreted it as a slab subducting beneath the
Transverse Ranges. Revenaugh (1995a) also analyzed teleseismic P coda recorded at
the SCSN and pointed out a correlation of P–Rg scattering strength with topographic
roughness. Revenaugh (1995c) analyzed the area surrounding the 1992 M7.3 Landers
earthquake sequence, using the SCSN data, and suggested a correlation between P–S
scattering strength and the aftershock distribution. In these studies, seismograms
low-pass-filtered below 1–2 Hz were analyzed.
From a viewpoint of imaging heterogeneous structure of vertical faults in the crust,

inversion analyses of back-scattered waves from local earthquakes seem to be more
effective than the Kirchhoff coda migration of forward-scattered waves from teleseismic
events. As described above, however, the inversion analysis has a limitation of maximum
lapse times analyzed, Kirchhoff coda migration may be more appropriate to estimate
inhomogeneous structures in the uppermost mantle.
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3. Analysis of Seismic Array Data

3.1. Detection of Seismic Signals by Array Observations

A seismic array is composed of many seismometers deployed with intervals shorter
than a target wavelength of seismic waves, and is used for investigating the character-
istics of coda waves. Aki (1969) first showed that coda waves consist of wave trains
arriving to the array from various directions. Following this pioneering work, many
studies have investigated the characteristics of coda waves. Array analyses have been
used in the studies of the rupture process of earthquakes and the origin of volcanic
tremors, and the analysis techniques, for example, detecting waves with various ray
directions have been remarkably improved in these studies.
In the reflection survey for seismic exploration, many sophisticated techniques have

been developed to determine subsurface structures just beneath a seismic array profile.
These are the procedures that the wave field observed at the surface is back-propagated
downward, that is, downward continuation, Kirchoff migration, and so on. However, the
reflection survey can determine the fine structure only beneath the profile. Such surveys
usually focus on finding a deterministic structure beneath the array.
Detectability of a seismic array depends on the configuration of the array, that is, the

aperture, shape, and number and interval of stations. The array usually consists of
individual stations, which sample the wave field at discrete spatial locations, so that
array response function W is defined as a function of wave number vector k of steered
direction:
W kð Þ ¼
XN
n¼ 1

wn exp ik � xnð Þ ¼
XN
n¼ 1

1

N
exp ik � xnð Þ; ð4Þ
where xn is a positioning vector of the nth station, and N denotes the number of stations.
A weighting factor is defined as wn, which equals to 1/N when we adopt equal weight for
all stations. For convenience, we introduce a matrix expression for the above formula and
a complex expression for the wave field. The complex waves consist of waves in the real
part and Hilbert-transformed ones in the imaginary part. This expression is often used in
signal processing. In an ordinary beam forming, the vector of weighting factor W is a
function of wave number k in the direction where the beam is steered:
W kð Þ ¼ exp �ik � x1ð Þ; exp �ik � x2ð Þ; . . . ; exp �ik � xNð Þ½ �T : ð5Þ

k is also called the steering vector. The array response function W is related with W by
the formula:
W kð Þ �
XN
i¼1

Wi kð Þ: ð6Þ
An ideal array aperture function is a delta function, which has no directional dependency.
A standard technique of beam forming is a slant stacking. This is also called the

“delay-sum beam former,” which shifts the phases and stacks the waveforms among the
stations. The phase shift is calculated from an assumed ray direction (i.e., defined by
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slowness vector s ¼ k/o, k: wave-number vector). The array aperture function for an
incident wave with k0 ando is defined as a function of stacking slownessW (os-k0). The
aperture function is also called a beam pattern or a steered response. The array response
depends on the difference between the direction vector of incident wave and that of
stacking. Johnson and Dudgeon (1993) described the beam-forming and the array
response in detail.
The power of slant-stacked waveforms can be expressed as:
P k; tð Þ ¼ W kð ÞHddHW kð Þ; ð7Þ

where d is a complex input wave vector in a narrow frequency band andW is a complex
weighting vector given in Eq. (5). In this case, each column of vectorW is a function of k
defined as a wave number vector of the stacking direction. The superscript H denotes the
Hermitian transposition. d is a column vector composed of the complex input waves at
stations in the array; d ¼ [d1(t),d2(t), . . ., dN(t)]

T, where N is the number of stations and
di(t) is the waveform observed at ith station.
WHd implies a slant-stacked waveform since W is a delay operator for an assumed

stacking direction with the wave-number vector k. The phase delay at each station can be
calculated by the scalar product between k and x. Multiplying WH and d, we obtain a
delay and stacked waveform, namely the slant-stacked output.
There are many methods to determine ray direction with high resolution. For example,

the multiple signal classification (MUSIC) spectrum (Schmidt, 1986) has a high resolu-
tion in the array signal detection. The ordinary beam-forming is a beam-sensing method
by using a lobe of the array response function, as described above. In contrast, the
MUSIC method uses “null sensing” of the array response function based on eigen vector
decomposition. This is a reason why the MUSIC has much higher resolution than the
classical method. Goldstein and Archuleta (1991) studied the MUSIC spectrum in detail,
providing effective applications to the adoptive alignment of seismograms and also
spatial averaging of seismograms in the sub-array.
A semblance coefficient is one of the simple methods to estimate ray directions

(Neidel and Taner, 1971; Nikolaev and Troitskiy, 1987). This processing is often used
for a velocity analysis of reflected waves in the seismic reflection survey (Yilmaz, 1987).
The ray direction is determined by searching a maximum semblance value among
possible k vectors. The semblance coefficient for an assumed slowness vector s is
calculated from the waveform vector d observed by an array (Neidel and Taner, 1971).
Using a matrix expression, semblance is defined as:
S k; tð Þ ¼ 1

N

WHddHW

dHd
; ð8Þ
where N is number of traces stacked. The semblance coefficient has a characteristic
similar to a coherence function between waves within the time window. The semblance
value ranges from 0 (no correlation) to 1 (identical waveform). Random noise provides a
semblance value of 1/N since the stacked power is equal to its total power. It should be
noted that the semblance analysis detects the waves with high correlation among stations,
not always with large amplitudes. In addition, a scattering strength can not be directly
obtained from the semblance coefficient due to its independence of the absolute power of
the signal. However, the analysis has an advantage that it is a simple algorithm to
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implement and it requires little computation. The zero-lag cross-correlation coefficient
has been developed as a method similar to the semblance coefficient. This method is also
useful in estimating the crustal inhomogeneity (e.g., Frankel et al., 1991; Del Pezzo et al.,
1997).
3.2. Single-Scattering Model for Seismic Array

As mentioned above, there are several techniques to determine the ray directions of
wave trains by means of the array processing. The high resolution method such as
MUSIC and the semblance can not always evaluate the absolute energy approaching to
the array. In this section, we describe the energy of slant-stacked waveforms under the
assumption of a single-scattering model. We simply assume that a source radiates energy
in a spherical symmetry and the scattering coefficient g is homogeneous in a medium.
Energy density E(r0,t) at a hypocentral distance r0 and a lapse time t from the origin time
can be expressed as follows in a coordinate system shown in Fig. 3:
FIG.
Eðro; tÞ ¼
ð ð ð

W0gðcÞLðy; ’; y0; ’0Þ
b4pr 21 4pr

2
2

d t� r1 þ r2
b

� �
dx; ð9Þ
where W0 is the radiated energy from the source, b is a seismic velocity of the medium,
g(c) is the scattering coefficient having anisotropic property on scattering angles c, and
x is a location vector of scatterers. The intrinsic attenuation of scattered waves during
propagation in the medium is neglected in Eq. (9) for simplicity. This is a general form of
Eq. (1), taking an effect of array beam forming into account. It means that the coda
energy is, as described in Sato (1977), obtained by summing up the scattered wave
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energy from scatterers distributed in the space. For the envelopes of slant-stacked
waveforms by the seismic array, the sensitivity of the array varies as a function of the
ray direction coming to the array as well as the direction of slant stacking. Therefore, we
have to add a directional weighting function Lðy; ’; y0; ’0Þ in the kernel of the integra-
tion. This reflects the array response for the slant-stack directions y0 and ’0, which are
obtained from k in Eq. (5).
We transform Eq. (9) into prolate-spheroidal coordinates (see Sato and Fehler, 1998)

and obtain
Eðr0; tÞ ¼ Hðv� 1Þ W0

4pr 20 2p

ð2p
0

d’

ð1
�1

dw
gðcÞLðy; ’; y0; ’0Þ

v2 � w2
; ð10Þ

cos y ¼ 1þ vw

vþ w

cosc ¼ 2� v2 � w2

v2 � w2
;

where v is a travel distance normalized by a hypocentral distance (v ¼ bt/r0). For an
envelope of a single station record, the energy is obtained in the case of L¼ 1. According
to Sato (1977), Eq.(10) becomes under an isotropic scattering hypothesis,
E r0; tð Þ ¼ H v� 1ð Þ g0W0

4pr 20

1

v
ln

vþ 1

v� 1

0
@

1
A

v ¼ bt=r0; K ¼ 1;

g0 ¼ 1

4p
rgðCÞdO; ð11Þ
where H(x) is Heaviside step function. For the slant-stacked trace, (10) can be rewritten
using the angle from the array y,
E r0; tð Þ ¼ H v� 1ð Þ W0

4pr 20 2p

ð2p
0

d’

ðp
0

dy
g0 sin y

v2 � 2v cos yþ 1
L y; ’; y0; ’0ð Þ: ð12Þ
The above equation means that the slant-stacked coda wave energy is expressed by a
summation of a product of energy sequence propagating from the direction y, ’ and the
array energy response. If we write in the matrix expression used in the previous section,
the energy would become P(k,t) ¼ (WH W)(dHd). However, the exact expression
described before is P(k,t) ¼ WHddHW. The right hand sides in both equations agree
with each other, when non-diagonal components of ddH become zero. It should be noted
that this situation is realized only when either the scattered waves come from various
directions randomly or the array response function is close to the delta function.
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On the basis of the above formula, Matsumoto et al. (2001a) analyzed the seismic array
records and found that the coda energy levels for slant-stacked records from explosion
sources are smaller than that for single station records as expected from the single-
scattering model, as shown in Fig. 4. This implies that the slant-stacking can eliminate
energy coming from directions other than the direction steered by the array because of the
envelope in Fig. 4 normalized by direct P wave energy. Moreover, the energy level of the
slant-stacked waveform depends on the stacking direction. The differences in the energy
level of the envelopes stacked in the directions of the hypocenter and the opposite one
attribute to the area size of the scattering shell, which is related to the geometries of the
source and array locations, and also to the lapse times. Their result showed that the single-
scattering model for the slant-stacked waveform was applied to the observations effec-
tively and that the single-scattering model is applicable to the observed records.
3.3. Characteristics of Coda Waves Based on Array Observations

The array observation can decompose the ray directions of wave trains in the coda part,
and this can reveal the characteristics of coda waves and inhomogeneous structures in the
Earth. We introduce some of the recent studies with remarkable results in this section.

3.3.1. Wave Composition of Seismogram

Wave types (P or S waves) and propagating directions of wave trains in the coda part
of seismograms have been studied (e.g., Scherbaum et al., 1997; Kuwahara et al., 1997).
Especially, detailed studies based on the array observations with three-component
seismometers were performed by Wagner (1998) and Taira (2004). Wagner (1998)
analyzed both P and S coda waves and showed that P coda waves from local earthquakes
are composed of P waves with the same ray directions with the direct P waves.
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He interpreted this result as a propagation in some waveguide. On the other hand, he
showed that S coda waves consist of scattered S waves with random arrival-directions to
the array. Taira (2004) analyzed seismograms recorded by a dense three-component
seismic array from explosion sources, and determined both slowness and polarization
vectors of coda waves. He showed that P–S scattering, but not P–P scattering, was
dominant near the surface trace of the fault. This means that composition of the coda
waves is not always simple but affected by strong inhomogeneities such as active faults.

3.3.2. Number Density of Scatterers and Strength of Scattering

In the basic expression of coda waves, seismic energy in the coda part can be
expressed as a summation of energy propagating to the station from randomly distributed
scatterers. Based on the single-scattering model, as reviewed by Sato and Fehler (1998),
we briefly describe the relationships between a scatterer density and a scattering strength.
We consider a medium with average velocity b and point-like scatterers distributed
randomly and uniformly with a number density n. The energy density in the coda part is
expressed by a summation of energy contribution from each scatterer distributed in the
medium as follows:
Ec r0; tð Þ ¼
X

scatterer

W0

b4pr 21 4pr
2
2

s0d t� r1 þ r2
b

� �
exp �g0btð Þ; ð13Þ
where r0 is the hypocentral distance,W0 is the energy radiated from the source, and r1 and
r2 are distances from a hypocenter to a scatterer and from a scatterer to a station,
respectively. s0 is called as the total scattering cross section, which is in integral form
of the differential scattering cross section over a solid angle. s0 is a product of n-value
and the scattering coefficient g0. Both the n-value and the scattering coefficient g0 are
important parameters in modeling the crustal inhomogeneity. Matsumoto (2005) showed
that the n-value can be estimated from the lapse time dependency of the semblance coef-
ficient in coda part. Figure 5 shows the relationships between the semblance values and
the number of waves incident to the linear-aligned array. Matsumoto (2005) analyzed the
data observed in the aftershock area of the 2000 Western Tottori earthquake, and
evaluated the n-value and g0 as 0.03 km�3 and 0.001 km�1, respectively, by comparing
the simulated and observed sequences of the semblance and power. The estimated n-
value (0.03 km�3) means that, for example, scatterers are distributed with average 3-D
spacing of 3.2 km. These scatterers are most effective in scattering of seismic waves at 20
Hz. This is the first estimation of n-value in the crust, so that studies about regional
differences in n-value are needed.
3.4. Scatterer/Inhomogeneity Distribution Inferred from Seismic Array Data

The location of scatterers can be estimated from the ray directions and travel times of
wave trains, which were extracted from the coda using the array analyses described in the
previous section. The wave type of coda waves, that is, P–P, P–S, S–P, or S–S scattering,
is usually assumed in determining the location of scatterers. However, in case of
analyzing the three component seismograms, the wave type can be estimated from the
polarization of coda waves.
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with lapse time [modified after Matsumoto (2005)].
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The analysis method of scatterer distribution has been studied (e.g., Nikolaev and
Troitskiy, 1987). Spudich and Bostwick (1987) developed an analysis method that used
an earthquake cluster well localized as a seismic source array. Krüger et al. (1993)
proposed an array analysis, called the “Double Beam Imaging,” which uses both the
source and the station arrays. Scherbaum et al. (1997) estimated a detailed scatterer
distribution in the lower mantle by applying the Double Beam Imaging method as well as
the travel time analyses. Similar analyses were also made, for example, by Thomas et al.
(1999).

The slant stack is a transformation of array records from a space-time domain to a
slowness-time domain. This has an advantage that many processings for a time series can
also be applied to the slant-stacked waveforms. Matsumoto et al. (1998) obtained an
image of scatterers in the source area of the 1995 Kobe earthquake (M7.3). They applied
the processing used in seismic exploration such as filtering, gain recovery, and depth
conversion, to the slant-stacked waveforms, and revealed the existence of strong scat-
terers just beneath the hypocenter of the mainshock. Furthermore, Matsumoto et al.
(1999, 2006) imaged scatterer distributions beneath a high seismicity region in north-
eastern Japan and also in the aftershock area of the 2005 West off Fukuoka Pref.
earthquake (M7.0) by a semblance-weighted slant stacking. The semblance-weighted
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stacking provides a higher-resolution image than the usual slant stacking, although the
stacked waveforms in this analysis reflect no longer the energy of the scattered waves
correctly, due to use of semblance weighting. In northeastern Japan, Matsumoto et al.
(1999) obtained the scatterer distribution from the records of seismic explosions and
found relatively strong inhomogeneities just beneath the high micro-seismicity regions,
as shown in Fig. 6. In the aftershock area of the 2005West off Fukuoka Pref. earthquake,
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FIG. 6. Map showing a distribution of relative P–P scattering strength at a depth of 10 km in

northeastern Japan estimated from seismic explosion data. Dark areas correspond to those with high

strengths of scattering. Solid triangles denote locations of active volcano. Asterisks are locations of

the array. Open circles are hypocenters determined by Tohoku University. Upper figures show

configuration of the array and location of the target region [modified after Matsumoto et al. (1999)].
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they showed that the scatterer distribution was partly correlated with the low velocity
zone at the edge of the mainshock fault plane. The scatterer distribution inferred from
array observations revealed a possible relationship between strong inhomogeneities and
the generation of earthquakes. These results are similar to those estimated from the
analyses of seismic network data, as described in Section 2.
In addition, there are a number of important findings obtained from the array analyses.

These include a temporal variation of scatterer distribution (Matsumoto et al., 2001b),
detecting an anisotropic structure (Bear et al., 1999), and a spatial distribution of P–P and
P–S scatterers (Taira, 2004). Referring to the findings mentioned above, the array
processing can focus on the areas of interest and, therefore, is considered to be a powerful
tool for detecting inhomogeneous structures in the Earth.
4. Summary

In this chapter, we introduced two deterministic analyses of coda waves, that is,
inversion analyses of coda envelopes and seismic array observations, and we showed
several studies that effectively estimated the inhomogeneous structures in the crust and
uppermost mantle.
The first one analyzes the wave data obtained by local or regional seismographic

networks. Nishigami (1991) presented an inversion analysis of coda envelopes from local
earthquakes. In this method, the deviation of coda envelopes from average decay curves
is measured as the observational data, assuming a single isotropic scattering model, and
then 3-D distribution of relative scattering coefficient is estimated by solving the
observational equations. This method was applied to central California and the deep
structure of the San Andreas fault system was revealed as a structure with strong
scattering (Nishigami, 2000). Asano and Hasegawa (2004) revised this inversion analysis
to estimate a distribution of absolute scattering coefficients. Revenaugh (1995a) proposed
another method, called Kirchhoff coda migration, which stacks the forward-scattered
energy within the coda of teleseismic P waves observed by a regional seismographic
network. This method was applied to southern California and revealed, for example,
strong P–P scattering from the slab subducting beneath the Transverse Ranges at depths
from 50 to 200 km. These methods, analyzing the seismic network data, seem to be
effective to estimate the inhomogeneous structures in the crust and uppermost mantle.
As to the second approach, that is, seismic array observations, many studies have

developed the analysis techniques and revealed the images of inhomogeneity from the
lower mantle to the surface. Scattered waves with weak energy can be detected by beam-
forming techniques. Coda waves can be decomposed into the wave trains with various
ray directions using the array analyses such as MUSIC or semblance coefficients.
Analyses of three-component seismograms are especially effective. For example,
Wagner (1998) showed that P coda waves from local earthquakes are composed of
P wave trains coming from the direction of hypocenters, while S coda waves consist of
scattered S waves coming from random directions. The scattered wave energy in the coda
can be evaluated by processing the slant-stacked waveforms under the assumption of a
single-scattering model. For example, Matsumoto et al. (1998) applied this method to the
source area of the 1995 Kobe earthquake (M7.3), and revealed the existence of strong
scatterers just beneath the hypocenter of the mainshock.
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Many studies shown here have been performed under the ill-conditions, such as sparse
distribution of hypocenters and stations, and large hypocentral distances. Consequently,
these studies have well exemplified the effectiveness of the seismic network or array
observations, providing lots of information of the Earth’s inhomogeneity. For further
study, newer and more reliable techniques for analyzing natural earthquakes are neces-
sary in order to improve the images of inhomogeneities and understand their physical
properties.
Acknowledgments

The authors are grateful to Prof. H. Sato and Dr. M. Fehler for inviting us to this publication.

Comments by an anonymous reviewer and Dr. M. Fehler were helpful in improving the chapter.
References

Aki, K. (1969). Analysis of the seismic coda of local earthquakes as scattered waves. J. Geophys.
Res. 74, 615–631.

Aki, K., Lee, W.H.K. (1976). Determination of three-dimensional velocity anomalies under a

seismic array using first P-arrival times from local earthquakes, 1, A homogeneous initial

model. J. Geophys. Res. 81, 4381–4399.
Asano, Y., Hasegawa, A. (2004). Imaging the fault zones of the 2000 western Tottori earthquake by

a new inversion method to estimate three-dimensional distribution of the scattering coefficient.

J. Geophys. Res. 109, B06306, doi:10.1029/2003JB002761.
Bear, L.K., Pavlis, G.L., Bokelmann, G.H.R. (1999). Multi-wavelet analysis of three-component

seismic arrays: Application to measure effective anisotropy at Pinon Flats, California. Bull.
Seism. Soc. Am. 89, 693–705.

Del Pezzo, E., Rocca, M.L., Ibanez, J. (1997). Observations of high-frequency scattered waves

using dense arrays at Teide Volcano. Bull. Seismol. Soc. Am. 87, 1637–1648.
Frankel, A., Hough, S., Friberg, P., Busby, R. (1991). Observations of Loma Prieta aftershocks

from a dense array in Sunnyvale, California. Bull. Seismol. Soc. Am. 80, 1900–1922.
Goldstein, P., Archuleta, R.J. (1991). Deterministic frequency-wavenumber method and direct

measurements of rupture propagation during earthquakes using a dense array: Theory and

method. J. Geophys. Res. 96, 6173–6185.
Inamori, T., Horiuchi, S., Hasegawa, A. (1992). Location of mid-crustal reflectors by a reflection

method using aftershock waveform data in the focal area of the 1984 Western Nagano

Prefecture earthquake. J. Phys. Earth 40, 379–393.
Jin, A., Cao, T., Aki, K. (1985). Regional change of coda Q in the oceanic lithosphere. J. Geophys.

Res. 90, 8651–8659.
Johnson, D.H., Dudgeon, D.E. (1993). Array signal processing—Concepts and techniques.

Oppenheim, A.V. (Ed.), Signal Processing Series. Prentice Hall, Tokyo.
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SOURCE EFFECTS FROM BROAD AREA
NETWORK CALIBRATION OF REGIONAL

DISTANCE CODA WAVES
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Abstract

We have applied regional coda techniques to a network of 64 stations across central and east Asia to
isolate source effects for bands from0.03 to 8Hz. The heterogeneity of the study region required us to

determine two-dimensional (2-D) path and transfer function corrections. The importance of the 2-D

path corrections increased with frequency and distance, and for continental paths, became critical

beyond 500 km for 1 Hz data. We propose a new spreading model for coda amplitudes, termed the

extended Street-Herrmann (ESH) model, to which attenuation can be added, facilitating the use of

tomographic techniques for path correction. The 2-D transfer function varied between continents and

oceans, as well as within continents in areas of poor Lg propagation, reflecting differing excitation of

Lg and Sn coda. We also demonstrate the use of empirically determined coda shapes, or type curves,
to measure coda amplitudes, adding precision and flexibility for source regions of special interest.

We applied these techniques to 112,000 records from 35,000 events, magnitudes 2–7, depths 0–50

km, between latitudes 0� and 60� and longitudes 60� and 150�. The resulting coda source spectrawere
used to derivemoments and, for the better recorded events, corner frequencies, allowing computation

of apparent stress for just under 6700 earthquakes. Preliminary apparent stress results ranged from

10–2 to 1MPa and showed some regional variation. For example, stress increased from south to north

across the Tian Shan, perhaps reflecting deformation in varying crustal rheology or effects of prior

slip history. Low stress observed in Tibet could be an artifact of under correction for high attenuation;

however, the correlation also could be physical. Low stress observed in oceanic regions is inconsis-

tentwith local studies and indicates that upgrades to the codamethodology tomore explicitly account

for mixed Lg and Sn coda will be needed. The regional network coda results should be further tested

by comparing to ground-truth spectra obtained by applying coda techniques to data from local scale

networks within the study region.

Key Words: Coda, source parameters, apparent stress, calibration, tomography, Asia.
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1. Introduction

Interest in the origin and analysis of the seismic coda was sparked by the work of
Dr. Keiiti Aki, who discussed the topic in the literature as early as 1956 (Aki, 1956).
Since that time, seismologists have applied significant effort to model coda wave
behavior, as well as to analyze coda wave data for purposes of understanding the
stochastic nature of earth materials and to isolate source, propagation, and site effects
on seismic waves.
The scattering origin of seismic coda waves leads to their observed stability. Stability

refers to the lack of dependence of coda amplitudes and coda shapes on source-receiver
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distance, and other path details, and on source mechanism. While direct waves would be
expected to differ for a given event recorded at a number of stations, the coda waves are
observed to be similar, outside of slight differences in overall level due to local site
response. This allows the coda to be of great utility in studies of the seismic source,
and motivated much of the early basic research on coda waves (Aki, 1969; Aki and
Chouet, 1975; Tsujiura, 1978).
In the predigital era, seismologists deployed so-called spectral analyzing seismometers

that produced a series of band-passed traces over a broad range of frequencies. These
traces could be measured manually, and the coda provided redundant measures of
amplitude that helped to improve precision in spectral studies of the earthquake source.
Chouet et al. (1978) developed a coda source isolation method that applied an empirical
Green’s function technique to amplitude spectra, followed by a shift to match indepen-
dently determined moments, allowing the direct comparison of earthquake scaling
behavior and source parameters at sites around the world where such instruments had
been deployed (California, Japan, and Hawaii). Similar instrumentation (ChISS) and
analysis methods had been developed independently, arguably prior to the western work,
and applied to data from the Garm region of Tajikistan by Rautian and Khalturin (1978).
Coda techniques were developed for use with local network data (source-receiver

distance less than 100 km) and relied on measurements in the late coda (beginning at
twice the S-wave travel time). This allowed time for the scattered wavefield to homoge-
nize and reduce dependence on path and source radiation effects. At regional distances
(up to 2000 km), however, the late coda is measurable only for the largest events, and we
must adjust by measuring earlier sections of the coda. This introduces distance-
dependent (1-D) effects. Mayeda (1993), Mayeda and Walter (1996), and Mayeda
et al. (2003) developed a new technique that made it possible to analyze regional distance
coda by empirically calibrating distance-dependent effects on coda start time, coda
shape, and coda amplitude. Their results showed that early coda methods retain the
precision and the source radiation averaging of the late coda methods. This technique has
been applied to study source scaling issues, finding nonconstant stress scaling in a
number of regions (Eken et al., 2004; Malagnini et al., 2006; Mayeda et al., 2005a;
Morasca et al., 2005a,b), and to monitoring studies, as a basis for event identification as
well as magnitude and yield estimation. The technique appears to work well over broad
areas for local to near regional distances (up to 500 km or so) and to study events from the
same source region, traveling similar paths, for far regional distances.
In applying these methods to studies in central and east Asia, however, we have seen

that 2-D effects on coda amplitudes can be strong. By spatially interpolating distance-
corrected coda amplitudes, we observed patterns that were similar to known lateral
variations in regional phase propagation characteristics (e.g., Phillips et al., 1998;
Phillips, 1999). These observations encouraged us to extend the regional coda method-
ology to 2-D to be more effective over broad areas and far regional distances, and allow
the simultaneous calibration of an extensive network. Here, we further allow the source-
to-coda transfer function to vary regionally, under the presumption that coda generation
efficiency may be affected by structure in the vicinity of the source.
In the following text, we describe our work with coda wave data from a network of

stations covering central and east Asia, including oceanic regions, for frequencies from
0.03 to 8 Hz. We emphasize methodology that consists of multiple quality control and
calibration steps. The extensive calibration process may surprise the reader, given the
simplicity of the original, local distance methods developed by Dr. Aki and coworkers.
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We point out that high precision, as well as the lack of source radiation effects, relative to
direct wave approaches, motivate our effort. We hope that our experience will benefit
others who seek to improve coda analysis further. We also point out challenges that we
hope the community will help to solve. Finally, we present source spectral results and
preliminary regional variations in apparent stress that we hope will help to understand
rupture physics across this region, as well as aid in predicting source spectra for use in
monitoring studies.
2. Data Analysis

We analyze coda wave data from a network of 64 stations across central and east Asia
(Fig. 1). While station density varies significantly, with high densities in Kyrgyzstan,
Taiwan, and Japan, we find interstation distances of 1000 km or greater over much of the
region. Waveform data and instrument response information are obtained from many
sources, chief of which is the IRIS DMC, housing data from GSN, FDSN, IDA,
and Geoscope global networks. Unique data sets such as the Borovoye Archive
(Kim and Ekstrom, 1996) are also included.
We segmented waveforms for processing based on a merged set of global, regional,

and special event bulletins. Event merging was carried out by comparing epicenters and
origin times of events defined by different bulletins. When more than one origin was
available for a given event, the origin with the highest ranking was selected. The ranking
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was based on estimates of location quality, with explosions of known location and origin
time ranked highest, followed by special studies based on dense local or temporary
network data, then regional and global or teleseismic sources. The majority of our origins
were taken from, in rank order, EHB (Engdahl et al., 1998), ISC, EDR, and REB global
event catalogs, with additional origins from regional Chinese (ABCE) networks (Lee
et al., 2002).
We collected broadband and short-period, three-component data for this study. Our

primary focus was on the broadband data; however, short-period data were included
when coverage could be increased, due to higher short-period triggering rates or gaps in
the broadband archives, or when data quality was higher such as for the short-period
borehole data from Lanzhou.
Events were selected, for a given station, based on the following magnitude–distance

criteria: we accepted all events within 500 km of the station, and any event with
magnitude greater than 2.5 plus distance/1250 between 500 and 2000 km. Depths were
restricted to 50 km and under. For this study, we processed 112,000 records from 35,000
events between latitudes 0� and 60� and longitudes 60� and 150�. Magnitudes ranged
from 2 to 7. The data set included records from 154 underground nuclear tests from
Semipalatinsk and Lop Nor. These events helped constrain calibrations in less seismi-
cally active regions such as the Kazakh platform, and were used in all calibration steps
except for the transfer function. Explosions have been shown to produce codas with
shapes indistinguishable from those of earthquakes in southern Nevada (Hartse et al.,
1995). Events yielding at least one coda measurement, nearly 19,000 in number, are
plotted in Fig. 1.
Data were processed by stacking smoothed, narrow band, Hilbert transform envelopes.

Processing was performed using Seismic Analysis Code software. We followed the
suboctave band recipes of Mayeda et al. (2003; Table 1). After deconvolving the
instrument, we decimated the trace and then applied a Butterworth, four-pole, two-pass
band-pass filter. Decimation included an FIR antialias filter and was performed to
maintain the bandwidth to Nyquist frequency ratio greater than 0.05, ensuring stability
of the band-pass filter. Decimation also stabilized the subsequent Hilbert transform
envelope processing, which Seismic Analysis Code software implements in the time
domain. After taking a base-ten logarithm, the resulting envelopes were smoothed using
a boxcar shape function with smoother width dependent on the frequency band (Table 1,
column 2). Horizontal component envelopes were averaged together. Sample envelopes
are shown in Fig. 2.
We controlled data quality using a combination of manual and automatic methods.

Certain stations were scanned manually for saturation, dropouts, and glitches (e.g.,
Borovoye archive data) prior to processing, and poor data were repaired or eliminated
from consideration. Following processing, all events for selected stations, as well as all
records for ground-truth moment events, were manually reviewed to determine coda start
times and measurement window limits (Fig. 2). The start time picks were made at the
envelope peak, or break in slope, that was most closely associated with the final coda.
The latter picks are not easily made using automatic methods (e.g., Fig. 2, NIL, 3–4 Hz).
The coda start time picks associate the coda with different phases, most often Lg, but also
P, Sn, and surface wave phases. We found that P and Sn coda are more common at higher
frequencies and greater distances, whereas surface waves become important below
periods of 5 s. An optional measurement window starting point can be chosen to avoid
compromised data. Finally, we picked the end of the measurement window prior to the



TABLE 1. Band-dependent processing and calibration parameters

Band (Hz)

Smoother

width (s)

Window

start (s)

Window

end (s)

Measurement

time (s)

Initial

spreading

Final

spreading

Transition

distance

(km)

Transition

factor Lambda

0.03–0.05 50 60.0 460 325 0.0 1.0 4900 2.0 16.0

0.05–0.1 20 40.0 405 285 0.0 1.0 2470 2.0 16.0

0.1–0.2 20 40.0 360 255 0.1 1.0 1250 2.0 8.0

0.2–0.3 20 30.0 320 225 0.12 1.0 760 2.0 6.0

0.3–0.5 14 20.0 285 195 0.22 1.0 760 2.0 3.0

0.5–0.7 14 10.0 255 175 0.24 1.0 730 2.0 4.0

0.7–1.0 14 5.0 230 155 0.24 1.0 550 2.0 4.0

1.0–1.5 8 2.0 202 135 0.24 1.0 340 2.0 4.0

1.5–2.0 8 2.0 177 120 0.24 1.0 330 2.0 3.0

2.0–3.0 4 1.0 156 105 0.12 1.0 320 2.0 3.0

3.0–4.0 4 1.0 131 90 0.08 1.0 290 2.0 3.0

4.0–6.0 4 1.0 111 75 0.07 1.0 250 2.0 3.0

6.0–8.0 4 1.0 81 55 0.06 1.0 280 2.0 2.0

Window start, end, and coda measurement time are all relative to the calibrated coda start time. Initial and final spreading refer to short-distance and long-distance spreading

parameters, respectively. Lambda is the regularization (smoothing constraint) applied to attenuation tomography.
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FIG. 2. Sample mean horizontal channel envelopes from the Hyderabad (HYB) and Nilore (NIL)

stations for the Bhuj mainshock, showing manually set coda window picks. Frequency bands

increase from top to bottom as noted. Coda start and window endpoint picks (arrows) are shown

if within the plot window (limited by group velocity 1 km/s). A secondary event influenced

endpoint picks for high-band envelopes. Predicted Pn, Sn, and Lg arrivals are marked (8.0, 4.6,

and 3.5 km/s, respectively). Note the shift from Lg to Sn coda for high bands along the path to NIL.
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point at which the coda decays into noise, avoiding secondary events and other transient
sources of noise. This pick indicated good quality coda to later processing procedures.
Conversely, if an envelope had been reviewed, but no window endpoint chosen, we did
not use that envelope further. In addition to controlling processing, the window end picks
were used to tune automatic methods.
We also tested for undocumented changes in instrument response by plotting 1-Hz

envelope noise levels against time. This method allowed us to observe shifts on the order
of a factor of two or greater, for well-sampled stations. In such cases, we chose one or
more intervals to eliminate. This is a crude method, but it allowed us to identify and
eliminate one or more time segments for 29 of our 64 stations. Clearly, minor response
issues may remain undetected with this method.
Further, arrivals from secondary events must be avoided in coda analysis. Using the

event catalog information described earlier, we estimated arrival times of any direct
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phases that could contaminate the coda. Automatically determined measurement win-
dows were not allowed to include a predicted secondary arrival, whereas manually
chosen endpoints were left alone. We found this especially useful with aftershock
sequences. Of course, the available catalogs are not complete enough to predict all
secondary arrivals, but we do want to avoid those that we can.
To aid the reader in following the numerous quality control and subsequent calibration

steps, we present a flowchart in Fig. 3.
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FIG. 3. Flowchart representing processing, quality control, and calibration steps taken to obtain

source spectra from coda envelope data.
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3. Coda Calibration Methodology

Calibration consists of a series of steps that convert high precision, coda amplitude
measurements to absolute source spectral estimates. We followed Mayeda et al. (2003)
with noted modifications, to extend the coda method to far regional distances. Briefly,
the calibration steps estimated: (1) group velocity of the coda start time, (2) coda shape
functions, (3) relative site effects for different recording channels of the same station, (4)
path and relative site effects between stations, and (5) absolute source-to-coda transfer
function (Fig. 3). Extensions to the Mayeda et al. (2003) method included the integration
of purely empirical (type curve) decay functions for source regions of special interest, a
coda spreading function extending that of Street et al. (1975), and the two-dimensional
(2-D) attenuation and transfer functions that are needed to describe coda behavior over
the broad study area.
To explicitly summarize the calibrated effects, we write the measured coda

amplitude,
Aij fð Þ ¼ Si fð ÞT fi; yi; fð ÞP0ðfi; yi;fj; yj; f ÞR
0
j fð ÞD0

j x; f ; tc x; fð Þ þ tm fð Þ½ �; ð1Þ
where f is the frequency, i and j are the source and site indices, respectively; f is the
latitude, y is the longitude, x is the source-receiver distance, and tm is the codameasurement
time, relative to the coda start time,
tc x; fð Þ ¼ t0 þ x

vg x; fð Þ ; ð2Þ
where t0 is the event origin time and vg is the calibrated, range- and frequency-dependent
coda start time group velocity. In Eq. (1), S represents the source spectrum that will be
recovered by calibrating the remaining terms on the right-hand side, specifically T, a 2-D,
frequency-dependent, source-to-coda transfer term; P0, a 2-D path term; R0, a site
amplification term; and D0, a coda decay function. The primes indicate relative
or dimensionless terms. Individual terms will be further defined in appropriate sections
to follow.
We employed a station network of uneven density, with multiple recording channels

for each station, and variable operation periods and numbers of records for each channel.
Thus, for practical reasons, we combined certain stations and channels together during
calibration and such groups could change with each calibration step. For example, if two
or more stations are closely located, or located in similar geological terrain, we might
constrain them to have the same coda shape functions. Stations with limited recordings
can be grouped with better-populated stations. We set up station and channel groups to
constrain coda start time group velocity, coda shape functions, coda decay type curves,
intrastation site effects, 1-D path effects, and source spectral fitting. Groups used in this
study are indicated by a master station for each calibration step (Table 2), such that all
stations and channels with the same master will be constrained the same. In constructing
such a table, care must be taken that at any calibration stage, each group will have been
constrained the same for all previous stages upon which the current calibration step
relies. A group constrained to have the same coda decay function, for example, must all
rely on the same coda-origin group velocities. In this study, master station constraint
groups were the same for all frequency bands.



TABLE 2. Master station groups

Station and

channel

Master

station

Coda origin

master

Intrastation site

master Shape master

Type curve

master 1-D path master

AAK_BHH AAK WMQ_BHH AAK_BHH AAK_BHH AAK_BHH AAK_BHH

AAK_BHH00 AAK WMQ_BHH AAK_BHH AAK_BHH AAK_BHH AAK_BHH

AAK_BHHKN AAK WMQ_BHH AAK_BHH AAK_BHH AAK_BHH AAK_BHH

AML_BHH AML WMQ_BHH AML_BHH AAK_BHH AML_BHH AAK_BHH

BAG_BHH BAG WMQ_BHH BAG_BHH BAG_BHH BAG_BHH BAG_BHH

BJI_BHH BJI WMQ_BHH BJI_BHH BJT_BHH BJT_BHH BJT_BHH

BJI_SHH BJI WMQ_BHH BJI_SHH BJT_BHH BJT_BHH BJT_BHH

BJT_BHH BJT WMQ_BHH BJT_BHH BJT_BHH BJT_BHH BJT_BHH

BJT_BHH00 BJT WMQ_BHH BJT_BHH00 BJT_BHH BJT_BHH BJT_BHH

BRVK_BHH BRVK WMQ_BHH BRVK_BHH BRVK_BHH BRVK_BHH BRVK_BHH

BRVK_BHH00 BRVK WMQ_BHH BRVK_BHH BRVK_BHH BRVK_BHH BRVK_BHH

BRVK_BHZ BRVK WMQ_BHH BRVK_BHZ BRVK_BHH BRVK_BHH BRVK_BHH

BRVK_BHZ00 BRVK WMQ_BHH BRVK_BHZ BRVK_BHH BRVK_BHH BRVK_BHH

BRVK_SHH03 BRVK WMQ_BHH BRVK_SHH03 BRVK_BHH BRVK_BHH BRVK_BHH

BRVK_SHH07 BRVK WMQ_BHH BRVK_SHH07 BRVK_BHH BRVK_BHH BRVK_BHH

BRVK_SHZ01 BRVK WMQ_BHH BRVK_SHZ01 BRVK_BHH BRVK_BHH BRVK_BHH

BRVK_SHZ03 BRVK WMQ_BHH BRVK_SHZ03 BRVK_BHH BRVK_BHH BRVK_BHH

BRVK_SHZ07 BRVK WMQ_BHH BRVK_SHZ07 BRVK_BHH BRVK_BHH BRVK_BHH

BRVK_SHZV6 BRVK WMQ_BHH BRVK_SHZV6 BRVK_BHH BRVK_BHH BRVK_BHH

BVA0_BHH BVAR WMQ_BHH BVA0_BHH BRVK_BHH BVA0_BHH BRVK_BHH

CHKZ_BHH CHKZ WMQ_BHH CHKZ_BHH BRVK_BHH CHKZ_BHH BRVK_BHH

CHMS_BHH CHMS WMQ_BHH CHMS_BHH AAK_BHH CHMS_BHH AAK_BHH

CHTO_BHH CHTO WMQ_BHH CHTO_BHH CHTO_BHH CHTO_BHH CHTO_BHH

CHTO_BHH00 CHTO WMQ_BHH CHTO_BHH CHTO_BHH CHTO_BHH CHTO_BHH

CMAR_BHH CMAR WMQ_BHH CMAR_BHH CHTO_BHH CMAR_BHH CHTO_BHH

DAV_BHH00 DAV WMQ_BHH DAV_BHH00 BAG_BHH DAV_BHH00 BAG_BHH

EKS2_BHH EKS2 WMQ_BHH EKS2_BHH AAK_BHH EKS2_BHH AAK_BHH

ENH_BHH ENH WMQ_BHH ENH_BHH ENH_BHH ENH_BHH ENH_BHH

(continued on next page)
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TABLE 2. Continued.

Station and

channel

Master

station

Coda origin

master

Intrastation site

master Shape master

Type curve

master 1-D path master

ENH_BHH00 ENH WMQ_BHH ENH_BHH ENH_BHH ENH_BHH ENH_BHH

ERM_BHH00 ERM WMQ_BHH ERM_BHH00 MAJO_BHH00 ERM_BHH00 MAJO_BHH00

GAR_BHH00 GAR WMQ_BHH GAR_BHH00 KKAR_BHH GAR_BHH00 KKAR_BHH

GUMO_BHH00 GUMO WMQ_BHH GUMO_BHH00 GUMO_BHH00 GUMO_BHH00 GUMO_BHH00

HIA_BHH HIA WMQ_BHH HIA_BHH HIA_BHH HIA_BHH HIA_BHH

HIA_BHH00 HIA WMQ_BHH HIA_BHH HIA_BHH HIA_BHH HIA_BHH

HIA_SHH HIA WMQ_BHH HIA_SHH HIA_BHH HIA_BHH HIA_BHH

HIA_SHH10 HIA WMQ_BHH HIA_SHH HIA_BHH HIA_BHH HIA_BHH

HYB_BHH HYB WMQ_BHH HYB_BHH HYB_BHH HYB_BHH HYB_BHH

INCN_BHH INCN WMQ_BHH INCN_BHH00 KSRS_BHH INCN_BHH00 KSRS_BHH

INCN_BHH00 INCN WMQ_BHH INCN_BHH00 KSRS_BHH INCN_BHH00 KSRS_BHH

INCN_BHH10 INCN WMQ_BHH INCN_BHH10 KSRS_BHH INCN_BHH00 KSRS_BHH

INU_BHH INU WMQ_BHH INU_BHH MAJO_BHH00 INU_BHH MAJO_BHH00

KAAO_SHZ KAAO WMQ_BHH KAAO_SHZ NIL_BHH KAAO_SHZ NIL_BHH

KBK_BHH KBK WMQ_BHH KBK_BHH AAK_BHH KBK_BHH AAK_BHH

KKAR_BHH KKAR WMQ_BHH KKAR_BHH KKAR_BHH KKAR_BHH KKAR_BHH

KMI_BHH KMI WMQ_BHH KMI_BHH KMI_BHH KMI_BHH KMI_BHH

KMI_BHH00 KMI WMQ_BHH KMI_BHH KMI_BHH KMI_BHH KMI_BHH

KMI_SHH KMI WMQ_BHH KMI_SHH KMI_BHH KMI_BHH KMI_BHH

KMNB_BHH KMNB WMQ_BHH KMNB_BHH TATO_BHH KMNB_BHH TATO_BHH

KSRS_BHH KSRS WMQ_BHH KSRS_BHH KSRS_BHH KSRS_BHH KSRS_BHH

KURK_BHH KURK WMQ_BHH KURK_BHH KURK_BHH KURK_BHH KURK_BHH

KURK_BHH00 KURK WMQ_BHH KURK_BHH KURK_BHH KURK_BHH KURK_BHH

KURK_BHHKZ KURK WMQ_BHH KURK_BHH KURK_BHH KURK_BHH KURK_BHH

KZA_BHH KZA WMQ_BHH KZA_BHH AAK_BHH KZA_BHH AAK_BHH

LSA_BHH LSA WMQ_BHH LSA_BHH LSA_BHH LSA_BHH LSA_BHH

LSA_BHH00 LSA WMQ_BHH LSA_BHH LSA_BHH LSA_BHH LSA_BHH

LZH_BHH LZH WMQ_BHH LZH_BHH LZH_BHH LZH_BHH LZH_BHH
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LZH_SHH LZH WMQ_BHH LZH_SHH LZH_BHH LZH_BHH LZH_BHH

MAJO_BHH00 MAJO WMQ_BHH MAJO_BHH00 MAJO_BHH00 MAJO_BHH00 MAJO_BHH00

MAKZ_BHH MAKZ WMQ_BHH MAKZ_BHH MKAR_BHH MKAR_BHH MKAR_BHH

MAKZ_BHH00 MAKZ WMQ_BHH MAKZ_BHH MKAR_BHH MKAR_BHH MKAR_BHH

MAKZ_BHHKZ MAKZ WMQ_BHH MAKZ_BHH MKAR_BHH MKAR_BHH MKAR_BHH

MAKZ_SHH MAKZ WMQ_BHH MAKZ_BHH MKAR_BHH MKAR_BHH MKAR_BHH

MATB_BHH MATB WMQ_BHH MATB_BHH TATO_BHH MATB_BHH TATO_BHH

MDJ_BHH MDJ WMQ_BHH MDJ_BHH MDJ_BHH MDJ_BHH MDJ_BHH

MDJ_BHH00 MDJ WMQ_BHH MDJ_BHH MDJ_BHH MDJ_BHH MDJ_BHH

MDJ_BHH10 MDJ WMQ_BHH MDJ_BHH10 MDJ_BHH MDJ_BHH MDJ_BHH

MDJ_SHH MDJ WMQ_BHH MDJ_SHH MDJ_BHH MDJ_BHH MDJ_BHH

MKAR_BHH MKAR WMQ_BHH MKAR_BHH MKAR_BHH MKAR_BHH MKAR_BHH

NIL_BHH NIL WMQ_BHH NIL_BHH NIL_BHH NIL_BHH NIL_BHH

NIL_BHH00 NIL WMQ_BHH NIL_BHH NIL_BHH NIL_BHH NIL_BHH

NIL_BHH10 NIL WMQ_BHH NIL_BHH10 NIL_BHH NIL_BHH NIL_BHH

NIL_SHH NIL WMQ_BHH NIL_BHH10 NIL_BHH NIL_BHH NIL_BHH

NVS_BHH NVS WMQ_BHH NVS_BHH NVS_BHH NVS_BHH NVS_BHH

NVS_BHH00 NVS WMQ_BHH NVS_BHH NVS_BHH NVS_BHH NVS_BHH

OGS_BHH OGS WMQ_BHH OGS_BHH OGS_BHH OGS_BHH OGS_BHH

PALK_BHH10 PALK WMQ_BHH PALK_BHH10 HYB_BHH PALK_BHH10 HYB_BHH

PALK_BHZ00 PALK WMQ_BHH PALK_BHZ00 HYB_BHH PALK_BHH10 HYB_BHH

PALK_BHZ10 PALK WMQ_BHH PALK_BHZ10 HYB_BHH PALK_BHH10 HYB_BHH

PDGK_BHH PDGK WMQ_BHH PDGK_BHH PDGK_BHH PDGK_BHH PDGK_BHH

PDY_SHH PDY WMQ_BHH PDY_SHH YAK_BHH00 PDY_SHH YAK_BHH00

PDY_SHZ PDY WMQ_BHH PDY_SHZ YAK_BHH00 PDY_SHH YAK_BHH00

PSI_BHH PSI WMQ_BHH PSI_BHH BAG_BHH PSI_BHH BAG_BHH

QIZ_BHH QIZ WMQ_BHH QIZ_BHH QIZ_BHH QIZ_BHH QIZ_BHH

QIZ_BHH00 QIZ WMQ_BHH QIZ_BHH QIZ_BHH QIZ_BHH QIZ_BHH

QIZ_SHH QIZ WMQ_BHH QIZ_SHH QIZ_BHH QIZ_BHH QIZ_BHH

SSE_BHH SSE WMQ_BHH SSE_BHH SSE_BHH SSE_BHH SSE_BHH

SSE_BHH00 SSE WMQ_BHH SSE_BHH00 SSE_BHH SSE_BHH SSE_BHH

SSE_SHH SSE WMQ_BHH SSE_SHH SSE_BHH SSE_BHH SSE_BHH

(continued on next page)
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TABLE 2. Continued.

Station and

channel

Master

station

Coda origin

master

Intrastation site

master Shape master

Type curve

master 1-D path master

SSLB_BHH SSLB WMQ_BHH SSLB_BHH TATO_BHH SSLB_BHH TATO_BHH

TATO_BHH TATO WMQ_BHH TATO_BHH TATO_BHH TATO_BHH TATO_BHH

TATO_BHH00 TATO WMQ_BHH TATO_BHH00 TATO_BHH TATO_BHH TATO_BHH

TATO_BHH10 TATO WMQ_BHH TATO_BHH10 TATO_BHH TATO_BHH TATO_BHH

TGY_BHH TGY WMQ_BHH TGY_BHH BAG_BHH TGY_BHH BAG_BHH

TKM2_BHH TKM2 WMQ_BHH TKM2_BHH AAK_BHH TKM2_BHH AAK_BHH

TLG_BHH TLG WMQ_BHH TLG_BHH AAK_BHH TLG_BHH AAK_BHH

TLY_BHH TLY WMQ_BHH TLY_BHH TLY_BHH TLY_BHH TLY_BHH

TLY_BHH00 TLY WMQ_BHH TLY_BHH00 TLY_BHH TLY_BHH TLY_BHH

TSK_BHH TSK WMQ_BHH TSK_BHH MAJO_BHH00 TSK_BHH MAJO_BHH00

TWK1_BHH TWK1 WMQ_BHH TWK1_BHH TATO_BHH TWK1_BHH TATO_BHH

UCH_BHH UCH WMQ_BHH UCH_BHH AAK_BHH UCH_BHH AAK_BHH

ULHL_BHH ULHL WMQ_BHH ULHL_BHH AAK_BHH ULHL_BHH AAK_BHH

ULN_BHH ULN WMQ_BHH ULN_BHH ULN_BHH ULN_BHH ULN_BHH

ULN_BHH00 ULN WMQ_BHH ULN_BHH ULN_BHH ULN_BHH ULN_BHH

USP_BHH USP WMQ_BHH USP_BHH AAK_BHH USP_BHH AAK_BHH

VOSK_BHH VOSK WMQ_BHH VOSK_BHH BRVK_BHH VOSK_BHH BRVK_BHH

WMQ_BHH WMQ WMQ_BHH WMQ_BHH WMQ_BHH WMQ_BHH WMQ_BHH

WMQ_BHH00 WMQ WMQ_BHH WMQ_BHH WMQ_BHH WMQ_BHH WMQ_BHH

WMQ_SHH WMQ WMQ_BHH WMQ_BHH WMQ_BHH WMQ_BHH WMQ_BHH

WUS_BHH WUS WMQ_BHH WUS_BHH WUS_BHH WUS_BHH WUS_BHH

XAN_BHH XAN WMQ_BHH XAN_BHH XAN_BHH XAN_BHH XAN_BHH

XAN_BHH00 XAN WMQ_BHH XAN_BHH XAN_BHH XAN_BHH XAN_BHH

YSS_BHH00 YSS WMQ_BHH YSS_BHH00 MAJO_BHH00 YSS_BHH00 MAJO_BHH00

ZAL_SHH ZAL WMQ_BHH ZAL_SHH NVS_BHH ZAL_SHH NVS_BHH

ZAL_SHZ ZAL WMQ_BHH ZAL_SHZ NVS_BHH ZAL_SHH NVS_BHH

ZRNK_BHH ZRNK WMQ_BHH ZRNK_BHH BRVK_BHH ZRNK_BHH BRVK_BHH

Standard station names are listed, while channel names are constructed from IRIS channel names and location codes. Exceptions are the Borovoye (BRVK) archive channel

names, for which, the original Russian channel code is appended to a standard channel name. An “H” as the third character of a channel name indicates an N plus E channel

stack.
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In the following sections, we describe calibration steps in detail, with emphasis on
techniques we have developed to extend the Mayeda et al. (2003) method to a broad area
network of stations and to far regional distances.
3.1. Coda Start Time Calibration

The first calibration step determined the starting point of the coda [Eq. (2)], and thus
defined the coda type (P, Sn, Lg, or surface wave). Mayeda et al. (2003) suggested a
three-parameter hyperbolic function to describe the distance dependence of the group
velocity,
vg x; fð Þ ¼ v0 fð Þ � v1 fð Þ
v2 fð Þ þ x

: ð3Þ
Note that the hyperbola coefficients all have different units, in spite of our naming
convention. This function was fit to manually determined starting times for each fre-
quency band. For this study, coda start times were obtained via manual review of stations
WMQ, MDJ, BJI, SSE, MKAR/MAKZ, BRVK, NIL, QIZ, ULN, TATO, and KKAR, in
order of number of reviewed events, with over 6000 events reviewed at WMQ and over
300 at KKAR. We combined these data together and applied results to all stations, as
indicated by the master station grouping (Table 2, column 3). Figure 4 shows group
velocities for selected bands and includes the calibrated curves. Data were restricted by
an upper bound on group velocity that varied slightly with band in order to isolate the Lg
or surface wave branch from mantle shear phases. We found that group velocities were
relatively independent of distance for the lowest three bands, as expected for surface
waves. Group velocity increased with distance, reflecting transition from shallow crustal
shear to Lg phases for higher bands. We calibrated the Lg and surface wave branches in
this study; however, Sn and P branches were also apparent. Sn and P were more common
at greater distance and at higher frequency, likely due to stripping of the Lg energy by
attenuating crustal materials.
3.2. Coda Shape Calibration and Amplitude Measurement

We obtained coda amplitudes by fitting envelopes to a calibrated coda shape function.
This shape function varied with frequency and distance via a simple model for broad area
application. We also determined empirical coda shapes or type curves to measure
amplitudes in certain source regions. Both techniques and a method to integrate their
results will be described next.
As proposed by Mayeda et al. (2003), coda shape functions follow a standard,

spreading, and attenuation model,
D
0
j x; f ; tð Þ ¼ t� tc x; fð Þ½ ��a xð Þ

exp �b xð Þ t� tc x; fð Þf g½ �; ð4Þ
where t is greater than tc, and the distance dependence of both a(x) and b(x) is identical to
that of Eq. (3). This standard form is known to fit lengthy coda poorly (e.g., Roecker
et al., 1982), and we restricted measurement window lengths to avoid this effect.
Measurement window limits used in this study are given in Table 1.
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We determined shape functions for a station or group of stations (Table 2, column 5). In
this way, we crudely accounted for regional scale, 2-D effects on a station-by-station basis.
Our calibration procedure fitted parameters of six cubic polynomials, each describing the
variation of one shape hyperbola coefficient with log-base-ten frequency, using the highest
quality coda decay data binned by radius and azimuth. Data quality was based on manual
review, coda length, and event magnitude, in that order. This selection procedure reduced
the amount of data used, and thus speeded up computation, while retaining a broad
geographical selection. The polynomial parameterization reduced the number of free
parameters from 78 to 24, adding stability between results for adjacent bands.
While calibrating shape functions, we automatically determined coda endpoints for

records that had not been manually reviewed. To do this, we stopped the coda at the first
point falling below four times the noise level. Noise was estimated by taking the
minimum envelope after applying a second smoothing operation, with smoother widths
five times the original widths listed in Table 1 (column 2) or 30 s, whichever is greater.
This noise technique is flexible, but can be fooled by large dropouts, which we assume
are rare.
Once calibrated, we used the shape functions to measure amplitudes at a consistent

point in the coda [tm, Eq. (1); Table 1, column 5]. We chose tm near the end of the
maximum prescribed coda window. This produced flat local distance spreading that was
similar for amplitudes measured at different stations, even in cases where coda shapes
might vary between stations. If the coda fell below the noise level prior to tm, the fitted
coda shape was extrapolated to tm. This is acceptable as long as the shape functions are
well calibrated over the full, prescribed window. If we had no manual endpoint pick, we
took advantage of the calibrated decay shapes to determine endpoints automatically. This
method was more versatile than applying the signal-to-noise cutoff described earlier, as
coda can be analyzed without a good background noise measurement, a common
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situation with triggered data. Furthermore, this method was more sensitive to secondary
arrivals and other sources of noise in the coda. To apply, we fitted a short section of the
earliest coda and extended to a point where the absolute difference exceeded 0.2. The
new length of coda was fitted in the same way, and the process iterated until the coda
endpoint failed to increase further. The end of the measurement window was set to the
earliest of the automatically determined endpoint, the maximum allowed duration from
Table 1, and any predicted secondary event arrival.
We also employed a second decay shape method: the type curve (Aki,1969; Hartse

et al., 1995). A type curve is a purely empirical decay curve, with no model assumptions,
that is obtained by combining coda decay data from a source region of limited extent. The
type curve defines the coda shape for a particular path and has arbitrary level. Amplitudes
were measured by directly comparing data to the type curve and taking the median
difference. To incorporate type curve amplitude measurements into our broad area data
set, we fitted the type curve with the appropriate shape function, over the window limits,
as if the type curve were actual coda data, and corrected using that offset. Advantages of
the type curve approach include increased precision, as the coda shape is not limited by a
model. Even more important for monitoring work, the type curve can be defined outside
the window limits applied to standard shape function calibration [Eq. (4)], and can be
used with older data sets in which instrument saturation is common. For example, the
Borovoye Archive data set contains saturated records, and saturation often extends
beyond the window restrictions we have set; yet relative amplitudes can still be measured
using the type curve method and integrated into the study.
We constructed type curves by minimizing the difference, less the mean difference,

between the type curve model and each envelope coda segment, in a least squares sense.
To ensure that we work with the main body of envelopes, we determined the most
heavily represented point in time, given a group of envelopes of various offsets and
lengths, then traced overlapping envelope continuity forwards and backwards to deter-
mine time limits for the type curve model. Disconnected segments were left out. As the
model level is unconstrained, we added an equation to the inversion that damps the sum
of model parameters to zero. Type curve results are shown for Semipalatinsk explosions
at the Kyrgyz network station AAK (Fig. 5). Also shown are shape function fits, as
described above. We note that the shape functions are determined using earthquake data
primarily, and fit the explosion codas well.
Only stations that are very close together can be combined in the type curve calcula-

tions, and this was controlled using master station groups (Table 2, column 6). Type curve
groups can be finer than for later calibration stages, seemingly violating the grouping rules
discussed earlier. Recall, however, that we readjust the type curve results using shape
functions, which is the calibration step in the main progression. The type curve can be
considered a detour in this sense, as indicated in the flowchart (Fig. 3).
3.3. Intrastation Site Calibration

Seismic stations typically record many channels of data. Channels can be physically
separate, on a pier, or in a shallow borehole, and the arrangement can change over time,
leading to different site amplification effects that must be accounted for if we want the
most comprehensive coverage. We accounted for intrastation site effects using a combi-
nation of three methods: (1) site terms were constrained equal given knowledge of the
recording environment, (2) relative site effects were measured by direct comparison of
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coda envelopes, or (3) relative site effects were estimated along with path effects in a
later calibration stage. Site constraints (method 1) were implemented using master
station and channel groups (Table 2, column 4) such that channels with the same master
were constrained to have the same site terms.
For channels that run concurrently, we estimated relative site terms by direct comparison

of coda envelopes for common events using
daij ¼ si � sj; ð5Þ
where s is the intrastation relative site term (i and j are site indices) and da is the median
amplitude difference over the coda window common to both channels, for one band.
We solved for s using singular value decomposition, which allowed the separation of
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unconstrained subgroups by analysis of the eigenvector null space. If channels have no
common events, often the case when more than one channel is changed at one time, we
were left with more than one site effect group for that station. This procedure set
the mean relative site term to zero in each band.
Examples of intrastation site effect calculations are shown for stations NIL and HIA in

Fig. 6. At NIL, channels BHH and BHH00 are borehole seismometers, whereas channels
SHH and BHH10 are sited on a nearby pier. We constrained BHH and BHH00 to have
the same site term, likewise for SHH and BHH10 (Table 2, column 4). The relative site
terms between groups peak between 3 and 4 Hz, perhaps the result of a resonance in the
amplified surface channels. Relative site terms for HIA also peak at about 1 Hz, but
differences are of lower magnitude. Relevant deployment details of the HIA channels are
not known to the authors. The site terms show symmetric behavior because the mean is
constrained to zero by our procedure, as mentioned above.
3.4. 2-D Path and Interstation Site Calibration

We performed path calibration in four steps, updating starting models and data quality
control as we proceeded: (1) basic spreading parameters were chosen for each band,
using a grid search in which 2-D tomography was repeatedly applied to amplitudes that
were corrected for source effects using event magnitude, (2) 1-D attenuation and relative
site terms were determined for each station and band individually, using the basic
spreading parameters and source corrected amplitudes, (3) 1-D attenuation and relative
site terms were updated by considering amplitude differences for all network stations
simultaneously, for each band, and (4) 2-D attenuation and relative site terms were
obtained from an amplitude difference, network inversion, for each band. Steps 2 and 3
used robust minimization techniques, whereas steps 1 and 4 used least squares inversion.
Steps 1 and 2 used amplitudes corrected for source based on magnitude, whereas steps 3
and 4 relied on relative amplitudes from multiply recorded events. Given our sparse
network, we rarely obtained more than one local distance record per event, and had to
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perform the more crude magnitude-based source correction to determine the spreading
parameters that control local distance behavior. The relative amplitude techniques are
more accurate, but can only be used to constrain path parameters that control long
distance behavior, such as attenuation. We anticipate that focusing on data from local
scale networks within our study region will allow us to use amplitude differences to more
accurately determine short distance spreading parameters in future work. All inversions
were based on a new spreading model for coda, to be described next. We constrained
stations to have the same attenuation for 1-D path steps via master station grouping as for
earlier calibration steps (Table 2, column 7). In this study, path effect constraint groups
were set the same as for coda shape. In the following, we discuss the new spreading
model and then provide detail concerning application and results of each of the four path
calibration steps outlined above.
We based our coda spreading model on that of Street et al. (1975), commonly referred

to as the Street-Herrmann model, that uses two branches to define the transition from 3-D
to 2-D spreading with distance:
a xð Þ ¼ x�a1 ; x � X0

a xð Þ ¼ X�a1
0 x=X0ð Þ�a2 ; x � X0; ð6Þ
where amplitude, a, is a function of three parameters: short distance and long distance
spreading coefficients, a1 and a2, respectively, and a transition distance, X0. Measuring
coda amplitudes at a fixed time from the beginning of the coda, as was done here,
requires spreading to be close to zero at short distances (e.g., Aki, 1969), and to approach
the spreading of the direct wave at long distances. Equation (6) could be used to describe
this behavior; however, the transition at X0 is very sharp. Mayeda et al. (2003) showed
that the transition between short and long distances is gradual for coda amplitudes.
Therefore, we add one more parameter, F, the transition factor, to smooth over the
sharp corner. The new spreading function, which we refer to as the ESH model, is as
follows:
a xð Þ ¼ x�a1 ; x � X1

a xð Þ ¼ X�a1
1 x=X1ð Þ�a 0 xð Þ; X1 < x < X2

a xð Þ ¼ X�a1
1 X2=X1ð Þ�a0 X2ð Þ x=X2ð Þ�a2 ; x � X2; ð7Þ
where
X1 ¼ X0=F
X2 ¼ X0F ð8Þ
and
a 0 xð Þ ¼ a1 þ 1=2 a2 � a1ð Þlog x=X1ð Þ=log X2=X1ð Þ: ð9Þ

Equations (7)–(9) define a four-parameter model specified by a1, a2, X0, and F. The
X1 and X2 mark the edges of a smooth transition range. The F parameter must be greater
than one, and the ESH model approaches the original Street-Herrmann model as
F approaches one. For the same a1, a2, and X0, the ESH and Street-Herrmann models
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are equal for all distances outside the transition range. The a0 is an effective spreading
parameter that is applied as if the spreading were uniform between X1 and x.

A suite of ESH curves are plotted in Fig. 7 for short distance spreading 0, long distance
spreading 1, transition distance 100 km, and transition factors from 1 (no transition) to
40. Also included is the path effect model used by Mayeda et al. (2003),
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line) as
a xð Þ ¼ 1

1þ x=X0ð Þp ð10Þ
for X0 ¼ 100 and p ¼ 1. The two model types have slightly different character as the
Mayeda et al. (2003) curve is sharper at transition, but tails away more slowly than
comparable ESH curves. ESH parameters can be adjusted to fit the Mayeda et al. (2003)
model nearly identically over practical distance ranges (distance greater than 1 km),
although such fits will diverge at zero distance. We assume distances less than 1 km are
meaningless in a regional study, given location error and source finiteness.
We added attenuation and site terms to the ESH model to fully characterize path and

relative site effects in our calibration procedures. Nonzero spreading at local distances
can be introduced by complex shape effects and measurement points near the beginning
of the coda window. For this study, we used a measurement point deeper in the coda to
lessen this effect, as discussed earlier.
We now return to describing details of our four path calibration steps. Our first step

determined basic spreading parameters that were used for the entire study region. We
started by assuming the long distance spreading to be 1.0 (Yang, 2002) as we expect an
early coda measurement to eventually spread at the same rate as the direct phase. We set
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the transition factor to 2.0, based on fits to data from shield regions, and general
similarity to the Mayeda et al. (2003) path model, recognizing that this parameter will
trade off with attenuation to some extent; thus, its exact value is less consequential.
The initial spreading and transition distance were adjusted in a grid search wherein
amplitude data, corrected for source size using event magnitude and a central Asia
scaling model (Taylor and Hartse, 1998), were inverted for 2-D attenuation and site
terms. Data were weighted inversely with distance to emphasize behavior at short
distances. The spreading parameters we obtained are listed in Table 1. Initial spreading
was close to zero, although slightly above zero for higher bands, whereas transition
distances increased with decreasing frequency.
Once basic spreading parameters were set, we performed our second path calibration

step: fitting the ESH model, with variable attenuation and site terms, to the source-
corrected amplitudes for each station group and band. We used an L1 fit and, again,
weighted inversely to distance so that the close-in data are emphasized (Fig. 8).
This facilitated visual evaluation and quality control of the amplitude data. We observed
much scatter, which is due to error in magnitude as well as to regional path variation.
We eliminated extreme outliers by applying a residual cutoff (log base ten) of 1.0 (above)
and 1.5 (below) at this stage. The cutoff was set more tightly for high measurements to
eliminate noise. We often observed a leveling of the source corrected amplitudes at long
distances, especially for higher bands and for stations in attenuating regions (Fig. 8). This
could be a noise effect; however, spot checks showed that coda-like envelopes well
above noise levels are often present. These could be mantle coda that exhibit flatter path
behavior. Although this behavior would be of interest to quantify, we have not investi-
gated further and simply set a distance limit for each station and band so that long
distance data that do not follow the spreading and Q models are not used. The shortest
such limit is 400 km at station KMI for the 6–8 Hz band. Clearly, including such data
will contaminate path effect inversions, while we lose data from large, distant events,
which are likely recorded well elsewhere.
In our third path calibration step, we inverted for 1-D path and relative site terms using

amplitude differences frommultiply recorded events, as proposed byMayeda et al. (2003).
The inversion was performed as an L1 minimization, and we solved for station (or station
group)-dependent attenuation and relative site terms. Using amplitude differences elimi-
nated our dependence on magnitude-based source corrections, and mean absolute residuals
ranged from 0.9 to 1.1 log-ten units. Using L1 techniques allowed easy identification of
outliers, which were removed using tighter thresholds at this stage (0.5 log base ten), in
preparation for the use of least squares in our 2-D inversions to follow.
In our fourth and final path calibration step, we applied amplitude tomography to

multiply recorded event data that pass all previous, quality control steps, to recover 2-D
attenuation (1/Q) and relative site terms. We assumed great circle ray paths, presuming
that the early coda samples the earth within an elongated ellipsoid that stretches further as
path length increases. The inversion was regularized by applying a first-difference
smoothing constraint to the attenuation parameters and damping the sum of site terms
to zero. The magnitude of the smoothing constraint was chosen to minimize variance
without introducing geologically unreasonable, high wave number model fluctuations
(lambda, Table 1). This approach was developed for application to Lg data in central and
eastern Asia (Phillips et al., 2005), and was applied to coda wave amplitudes from
northern California by Mayeda et al. (2005b). Mayeda et al. (2005b) found that the
2-D inversion improves residuals only slightly, but for distances that are relatively short
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(under 500 km), compared to our Asia study. The tomography yielded RMS residuals
of 0.07–0.11 log-ten units, with smallest residuals for bands around 1 Hz. Results for the
0.7–1.0 Hz band are shown in Fig. 9. Attenuation results followed regional geology, with
high Q in stable regions such as India, the southeast China platform, and northern regions
of Kazakhstan and Siberia, and for microcontinent regions such as the Tarim, Ordos, and
Sichuan basins. LowQ was observed in plateau, mountain belt, and rifting areas, including
Tibet, Qinghai, Yunnan and Burma, the Pamir, Tian Shan and Hindu Kush ranges, the east
China basin, and oceanic regions. The low Q observed for oceans is an artifact of Lg
blockage in otherwise high Q oceanic crust (Knopoff et al., 1979). Continental attenuation
patterns were similar to those of Lg (Mitchell et al., 1997; Phillips et al., 2000, 2001, 2005).
Figure 10 shows the resulting 2-D path corrections for stationWMQ and band 0.7–1 Hz for
events at all azimuths. Clearly, the 2-D corrections were small for distances less than 500
km, but became more important beyond.
3.5. Source to Coda Transfer Function

Our final calibration step estimated the source-to-coda transfer function [T, Eq. (1)],
which allowed us to produce absolute source spectra. The transfer function was obtained
by applying a multiple event, empirical Green’s function technique to amplitude spectra,
including constraints to match ground-truth moments for certain events. We estimated
earthquake corner frequencies based on magnitudes, and obtained corrections that fit the
flat portion of a Brune source model for frequencies well below the estimated corner.
If this is performed using a number of earthquakes and a sufficient range of magnitudes,
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the full transfer spectrum can be recovered. We first estimated the transfer function using
catalog magnitudes, which allowed us to determine initial moments for our data set,
whereupon the transfer function was recalculated using coda Mw in place of catalog
magnitude. The Mw-based calculation extended the transfer function to higher bands, as
more small events could be included. As our study covered a broad area, we allowed the
transfer function to vary in 2-D by source epicenter. The transfer function converted
velocity amplitude (m/s) to moment rate (Nm), thus has units of Ns.
Only earthquake data can be used to compute the transfer function. We eliminated

known explosions, required source depths greater than 5 km, and only allowed events
under magnitude 3 that occurred at night to avoid any unidentified mine blasts that might
be present. Absolute levels were constrained using 165 continental events with indepen-
dently determined moments (Randall et al., 1995; Zhu et al., 1997, Ghose et al., 1998;
Patton and Randall, 2002; Ammon et al., 2003; Saikia, 2006). To calibrate oceanic
regions, we added 217 CMT moments from offshore events of depth less than 50 km.
Locations of ground-truth moment events are shown in Fig. 1.
We recovered the 2-D transfer function using tomographic techniques, applying

relative constraints to amplitude data between bands and adding absolute constraints
for ground-truth moments. We set first difference regularization parameters that varied
with band, in the same manner as for 2-D path tomography. 2-D grids for all bands were
determined simultaneously. For low bands, the transfer function is most sensitive
to differences between continental and oceanic crust. For high bands, the transfer
function is quite flat across continental regions with dramatic exceptions in limited
areas (0.7–1.0 Hz, Fig. 11), primarily reflecting differing excitation of Lg and Sn coda. In
the 0.7–1.0 Hz example shown, we observed rapid changes between Tibet and the Assam
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region of India. Remarkably, we discovered that low-frequency spectral slopes were not
as flat as anticipated, biasing the transfer function. We assumed that events with more
negative, low-frequency spectral slopes result from low stress, or low band noise contam-
ination, and down weight those data, requiring iterative recalculation of the transfer
function. Prior to undertaking the iterative weighting procedure, we observed slight
spectral peaking (1 Hz) for many events and small coda moments that deviated slightly
from one-to-one scaling with ground-truth moments. The iteratively reweighted transfer
function corrected these problems, and Fig. 12 shows that the final coda moment magni-
tudes vary one-to-one with the ground-truth measures. Scatter was 0.13 magnitude units
for the continental, regionally modeled events. Scatter increased to 0.24 for oceanic
moment magnitudes, derived using teleseismic data and global models. The oceanic
coda moments are larger and relied heavily on the lowest bands, which are less well
calibrated. Broadband spectral results are compared between stations ENH and XAN, 421
km apart, in Fig. 13, showing nice correspondence over an order of magnitude in
frequency.
4. Coda Spectral Results

The coda-derived, absolute source spectra allowed us to determine source parameters.
We only analyzed bands for which the transfer function is resolved, for a given source
region. To obtain Mw, we fix the scaling law, weight amplitudes by their proximity to
the second lowest measured band, and fit an o2 source model using L1 minimization.
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This scheme is insensitive to departures from the assumed scaling law when signal is
measured below the corner frequency, but will increase in error if signal is only available
above the corner and we have mischaracterized scaling. To obtain Mw and corner
frequency simultaneously, we used a two-parameter L1 minimization with no band
weighting. The quality of the result for calculation of source parameters, such as apparent
stress, was judged by the number of spectral points or bandwidths on both sides of the
corner, as well as a crude L2 estimate of error at the L1 solution point. Figure 14 gives
spectra from selected, ground-truth moment events, showing variations in corner fre-
quencies, thus stress, with respect to a constant scaling model fit (apparent stress 1 MPa).
Apparent stress (sa; Wyss, 1970) can be obtained from moment (M0) versus shear

wave corner frequency ( f0) measurements, following Walter and Taylor (2001):
f0 ¼ 1

2p
Ksa
M0

� �1=3

; K ¼ 16p

b2s R2
y’Pz

3=a5s þ R2
y’S=b

5
s

� � ; ð11Þ
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where as and bs are compressional and shear velocities at the source point (6.0 and 3.5
km/s), respectively; Ry’P and Ry’S are average P and S radiation patterns for earthquakes
(0.44 and 0.6), respectively; and z relates P and S corner frequencies (1.0). Walter and
Taylor (2001) assumed an o2 source model to derive Eq. (11).
We plot apparent stress in map view for network spectral fits in Fig. 15. We required

bandwidths of a factor of two above and below the corner frequency, yielding nearly
6700 measurements. The majority fall between 10–2 and 1 MPa. Much scatter is
apparent, and physically interesting variations may occur on scales too small to observe
here (Shearer et al., 2006). High stresses appear to be associated with the Tian Shan,
especially the eastern and northwestern extensions, also the Altay range, edges of the
Tarim, and Assam, Bhuj, and Koyna regions of India. Low stress appears in Tibet, central
Pakistan, and certain trench areas.
5. Discussion

We are working to extend 1-D coda methods to be effective over broad areas and far
regional distances. We begin by applying 2-D techniques to the path and transfer
function portions of our coda analysis. However, our heterogeneous region of study
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has provided many opportunities to observe 2-D behavior that may affect other calibra-
tion stages. It will be important to quantify the effect of ignoring additional 2-D
variations, and, if substantial, we must develop coda techniques further. The most
important of these are variations in coda type and coda start time.
It is well known that surface waves are affected by regional geology and maps can be

found in the literature that show the effects of near surface structure, including basins, on
Rayleigh and Love group velocities (e.g., Pasyanos, 2005). Because we set coda origin at
the peak arrival, if it exists, we must pay attention to lateral variations in group velocity,
if only to avoid having a late peak fall in our coda window and contaminate the
measurement. Our long-period (0.03–0.05 Hz) coda start time picks show variations
consistent with the literature maps of group velocity. The effects are more dramatic for
shorter periods (5–20 s), with extremely late envelope peaks common in basin regions
such as the Tarim and the Junggar. If we are to investigate further, we should consider
using radial and/or transverse components, rather than the stacked horizontals, so that the
direct surface waves will be more predictable. These low-frequency bands are influential
when setting absolute levels using ground-truth moments. We also observe regional
variations in higher bands. At 1 Hz, we observe late group arrivals across basins such as
the Tarim and Junggar, but the phenomenology is different as we see normal arrivals
for more distant events along the same azimuths (Fig. 16; Phillips and Stead, 2006). This
implies a modal effect for events occurring under the basins, rather than an integrated
velocity effect as for the long periods. We can also expect degradation and delay of
envelope peaks in higher bands (above 4 Hz) due to high path heterogeneity, as shown in
Honshu by Saito et al. (2005).
Of equal or greater importance are coda types, which can vary, for high frequencies,

between Lg, Sn, and P coda, or even Rg in special cases. The dominant coda type can be
regionally dependent (Fig. 16). We would be wise to measure Sn coda in areas where Lg is
absent, in order to start the coda at the earlier Sn time and recover more measurement
length, and thus, include smaller events. When Sn and Lg are present, the Lg will
contaminate the Sn coda, and what appears to be Sn to Lg conversion contaminates the
Sn coda prior to arrival of the Lg, which makes the calibration problem difficult. Effective
strategies have yet to be worked out, but we could start by calibrating Sn coda over limited
areas where Lg is strictly absent, and similarly for P. Of further interest are models of
where the various coda types sample the earth. We assume that the Lg coda are crustal
scattered waves, whereas P and Sn coda are scattered in the upper mantle. Array studies
could help understand the composition of the different, regional coda types.
Any attention to 2-D variations in coda type must also include a focus on lateral

variations in coda shape. If we fit a shape function representative of Lg coda to an Sn
coda, or vice versa, the measured amplitude will change with coda length, which means
varying signal-to-noise levels will bias the measurements. This effect may be significant
for only the smallest measurable events, but currently remains to be quantified.
Formal error propagation is another topic for future work with regional coda.

We currently treat results with equal weight and assign errors based on final calibration
fits when calculating Mw, corner frequency, or calibrating to magnitude. Residual
variance from path and transfer function calculations is 0.1 log-ten units or so, but
represents a lower bound on absolute error. The scatter in coda versus ground-truth
moments are generally 0.2 log-ten Nm, but reflect errors in the moments as well as the
coda. Mayeda et al. (2003) suggested setting the data error based on coda length, using
interstation scatter measurements. Whether such scatter measurements give accurate
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errors can be argued, but, at minimum, effective relative errors can be established and
carried through the calibration procedure.
Apparent stress computed from the coda spectra show much scatter and hints of

physical variations in central and eastern Asia. We observe low stresses in central
Pakistan, Tibet, and certain trench areas. These patterns have evolved as we have
included 2-D effects on the coda, in particular, the 2-D transfer function (Phillips
et al., 2003, 2004). The 2-D transfer function has affected ocean results the most, but
stresses observed for Japan by this study (0.1 MPa) still fall at the low end of ranges
determined by focused studies (0.1–10 MPa; Kinoshita and Ohike, 2002; Takahashi
et al., 2005). Little manual review was performed for Japanese events, but even so, we
are concerned that the current method does not yet adequately account for cases where
Lg and Sn coda must be considered together. We believe that it remains a challenge to
calibrate such regions of oceanic and continental crust. Interestingly, low stress for
continental events is somewhat correlated with low Q crust (Phillips et al., 2005) such
as for Pakistan and Tibet. One could argue that the lower stresses are artifacts of
undercorrection for low Q path effects. It is well known that tomographic calculations
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smooth high and low extremes. Conversely, the low stress and low Q may be correlated
for physical reasons. We speculate that earth materials may be less brittle or faults are
more lubricated, have more recent slip history, or are less heterogeneous in such areas.
Furthermore, higher stress events are observed in low-stress regions, which should not
be the case if Q is poorly corrected for, unless extremely low Q materials are concen-
trated in certain, limited source regions and are, for this reason, not captured by the
tomographic calculations. Increasing station density in remote regions of Asia, such as
Tibet, and surrounding regions, by including temporary deployment data will help
resolve the stress-attenuation trade-off issue.
We observe high stresses along edges of seismic regions, most dramatically at the

eastern and northwestern extensions of the Tian Shan, but also in the Altay ranges to
the north and around the western edges of the Tarim basin. Small clusters of high stress
are also seen in the Indian plate, most notably in the Assam region. We are unsure of how
to interpret this, except to note that these areas are less seismic than neighboring areas,
are associated with higher Q crust, and deformation may occur in a more brittle manner.
We note that our high-stress Assam cluster is in the vicinity of the high-stress events
discussed by Tatham et al. (1976), who considered the concentration of stress between
the Himalaya and the Andaman arc and speculated on the formation of a new fault.
Spectral ratio studies of far regional P waves from Tibet and northwest Tian Shan

regions failed to find stress differences between source regions (J. Granville, personal
communication, 2003) and this remains to be reconciled.
Fehler and Phillips (1991) mapped static stress drops during pressurization of a

geothermal reservoir, finding that high-stress drops occurred along the edge of a cloud
of seismicity, whereas low-stress drops occurred in the central regions, where previous
injection experiments had already caused much slip. Thus, previous slip history perhaps
related to mechanical smoothing of fault heterogeneity may affect stress drop. Fehler and
Phillips (1991) also discussed the lowering of stress drop by increased heterogeneity
related to injection (after Madariaga, 1979). Although stress patterns are remarkably
similar to those shown here, other than scale, we have no reason to believe that similar
mechanisms are at work.
Shearer et al. (2006) mapped static stress drops obtained from stacked P spectra for an

extensive southern California data set, showing striking variations at small scales. A
correlation between lower stress and slipped fault surfaces was noted in one case. Such
stress variations would be on scales too small to observe, if similar effects are present in
our Asia data set, given the larger and less well-located event set we have used.
We hope to further quantify regional variations in scaling behavior and high frequency

roll off, in addition to stress. Monitoring work relies on comparisons with earthquake
scaling models to identify anomalous events (e.g., Taylor and Hartse, 1998). If we can
quantify regional scaling variations, our ability to identify non-earthquake sources, and,
of course, anomalous natural events, will greatly improve.
6. Conclusions

We have worked to apply coda techniques to an extensive network, with the attendant
issues of data quality control, multiple channels, and time periods of operation, automation,
and the beginning of 2-D calibration. Much of our discussion covered practical details that
we hope will help others that wish to improve network-based coda analysis further.
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We have shown that 2-D path calibration becomes important at far regional distances.
We also find that transfer functions are not generally transportable, with large differences
between continents and oceans, and also for regions such as Tibet where Lg attenuation is
high. Thus, much of the variation may be due to differences in how well earthquakes
excite Sn versus Lg coda. Learning how to calibrate when both Lg and Sn are present, in
a 2-D sense, is an important future step in extending coda methods to broad areas.
We observed regional variations in apparent stress that tend to correlate with poor crustal

propagation.We believe that the correlation could be physical, although undercorrection of
path effects remains a possibility. We propose further tests using local network coda
studies to produce ground-truth source spectra for comparison with regional results.
Networks such as HIMNT (de la Torre and Sheehan, 2005), which straddles Tibet and
Indian plate regions, hold promise.We observed low stress for earthquakes in Japan, which
is inconsistent with local studies. Regional calibration over broad areas of mixed oceanic,
continental, and island arc structures remains a challenge.
While relative coda measurements can be extremely precise, errors following calibra-

tion are estimated to be 0.1 log-ten units or so. Formal error propagation should be an
important focus of future work.
We believe that basic research concerning the origin and composition of various types

of regional coda, including array analysis, will provide clues as to the temporal evolution
of the composition of the coda, and will help make calibration more effective at far
regional distances. In addition, investigations into source scaling behavior, including
physical mechanisms of stress variation (e.g., Shearer et al., 2006), will lend confidence
to the broad area source parameter measurements, which will, in turn, improve our ability
to classify event types in routine monitoring work.
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SEISMIC WAVE SCATTERING
IN VOLCANOES

Edoardo Del Pezzo
Abstract

Volcano-tectonic earthquakes produce high-frequency seismograms characterized by impulsive

shear mechanism; their seismogram coda reflects the random inhomogeneity of the volcano

structure. Consequently, this inhomogeneity can be investigated through the analysis of the coda

wave envelopes of the volcano-tectonic events. In this chapter, I will review the main observational

results obtained from volcanoes around the World, with the aim of quantifying the scattering and

attenuation properties of the volcanic areas. First, I will review the coda-Q observations and their

frequency dependence, then I will report on attempts that have been made to separate the intrinsic

from the scattering attenuation using multiple scattering and diffusion models, and finally, I will

report on the interpretations based on these results. The results show that the coda-Q absolute values

characteristic of volcanoes are slightly smaller than those measured in nonvolcanic zones, and that

sometimes their frequency dependence is different. It is impossible to deduce by coda-Q observa-

tions only whether this difference is controlled more by the intrinsic or the scattering attenuation.

The application of multiple scattering models allows separate estimates of the intrinsic and the

scattering attenuation coefficients. Results show that volcanoes are highly heterogeneous structures,

with a mechanism of seismic wave energy dissipation that tends to be controlled by the scattering

phenomena with increasing frequency. ForMt. Vesuvius, Mt. Merapi, and Deception island volcano

scattering attenuation prevails at frequencies higher than 2–3 Hz. At Mt. Etna, intrinsic dissipation

prevails or is comparable with scattering attenuation for frequencies lower than 8 Hz.

At high frequencies, diffusion approximation is appropriate to describe the energy seismogram

envelope. The intrinsic dissipation of shear waves (possibly connected with magma reservoirs,

which should decrease the intrinsic Q values for shear waves) only has an important role at low

frequencies.

Key Words: Seismic scattering, coda waves, volcanoes. � 2008 Elsevier Inc.

1. Introduction

1.1. Volcanic Earthquakes

Volcanoes are sites of peculiar seismic activity, which is generally classified into four
categories: volcano-tectonic (VT) earthquakes, long-period (LP) events, very long-
period (VLP) events, and volcanic tremor (Chouet, 2003). In typical observatory prac-
tice, this classification is carried out visually, by analyzing the seismogram shapes and/or
the spectral contents of the waveforms. Modern research in volcano seismology, aimed at
the quantification of the seismic phenomena associated with volcanic eruptions,
enlighten the role played by magmatic and hydrothermal fluids in the generation of the
seismic waves, making critically important the quantification of the source properties of
LP and tremor. As the different events reflect different kinds of source mechanisms, the
quantification of their source is crucial to determine the extent and evolution of the
353 # 2008 Elsevier Inc. All rights reserved.
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magmatic energy. In particular, LP events and tremor generally precede and accompany
the eruptive phenomena (Chouet, 2003, and references therein), and are used to assess the
eruptive state or to estimate the eruptive potential. This is an obvious reason why
monitoring the insurgence of this kind of seismicity is considered to be the most reliable
and powerful techniques of volcano monitoring. One of the problems is that the seismo-
gram shape of the volcanic quakes or, similarly, their spectral shape (frequency domain),
is greatly dependent on the propagation effects, and hence on the elastic properties of the
seismic medium. Consequently, the medium properties need to be studied carefully to
correctly adjust for the effects of propagation and to obtain valid event classifications
aimed at an understanding of the physics of a volcanic source.
VT events are located inside the volcano structure, generally at shallow depths (down

to 10 km). They are the brittle responses of the volcano materials to the magma processes
and/or to changes in the thermal state of the rocks (the heating or cooling in the vicinity
of a magma body). VT may also reflect far-field stresses acting on heterogeneous
materials and changes in the pore pressure. The impulsive shear mechanism of these
events produces high-frequency seismograms that reflect the random heterogeneity of
the volcano structure in their coda. The heterogeneity of volcanoes can thus be investi-
gated through the analysis of the VT coda wave envelopes. Other volcanic earthquakes,
on the contrary, are characterized by non-impulsive and time-persistent sources, which
generate complex coda waveforms. In this case, the problem of separating the radiation
generated by the scattering phenomena from that related to the source is more difficult.
Because of the impulsive shear mechanism that generates the high-frequency content

of the coda, VT earthquakes are the most suitable for investigations into small-scale
heterogeneity characterizing the earth medium beneath volcanoes.
1.2. A Brief Review of Coda-Q�1 Observation on Volcanoes

The first attempts to quantify the scattering and attenuation parameters for rocks
constituting the volcanic structures were carried out using the estimate of coda-Q�1, or
Q�1

C of the local VT earthquakes. As is well known, this parameter describes the energy-
density decay of the short-period seismogram, ESS(x, t), recorded at position x and at
the time t due to an impulsive source applied at x0 in the single-scattering assumption
(Sato and Fehler, 1998; Section 3.1.2) as
ESS x; tð Þ ¼ E0g0

4pjx� x0j2
K

bt
x� x0j j

� �
H bt�ð jx� x0jÞe�otQ�1

C ; ð1Þ
where E0 is the energy density at the source, g0 is the scattering coefficient, b is the
seismic velocity for the shear waves (taken as a constant), H is the Heaviside step
function, K is a term depending on geometrical spreading and distance, and o is the
angular frequency. With short hypocentral distances (source is assumed to be colocated
with the receiver) formula (1) can be approximated by
ESS tð Þ ’ E0g0

2pb2t2
e�otQ�1

C : ð2Þ
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Using these assumptions (often respected by VT earthquakes, that are generally recorded
by stations close to the source), Q�1

C appears to include both absorption and scattering
losses (see Sato and Fehler, 1998, Sections 3.1, 3.3.2, and 7.1.1) although its physical
meaning has been controversial for many years. The idea that coda-Q�1 accounts for
both intrinsic and scattering attenuations prevailed until the appearance in the literature
of theoretical (Shang and Gao, 1988), numerical (Frankel and Clayton, 1986), and
laboratory (Matsunami, 1991) studies concluding that coda-Q�1 is essentially an esti-
mate of intrinsic-Q�1. More recently, Zeng (1991) described the solution of the integral
equation for the seismic energy density, E(x,t), recorded at position x and at the time t due
to an impulsive source applied at x0. The integral equation, that is equivalent to the
equation of radiative transfer in case of isotropic scattering, is given by
E
 x; tð Þ ¼ E0 t� x� x0j j
b

� �
e�� x�x0j j

4pjx� x0j2
þ
ð
V

�SE x; t� x� xj j
b

� �
e��jx�x

4pjx� xj2 dV xð Þ;

ð3Þ

where E0 t� ðjx� x0½ j=bÞ� represent the impulsive energy radiated by the source, � ¼ �S
þ ZI is the total attenuation coefficient, with �S and �I, respectively the scattering and the
intrinsic attenuation coefficients, and x is the variable of integration (describing the
spatial position of the scatterers). The quality factors for scattering and intrinsic attenua-
tion can be expressed in terms of attenuation coefficients by
Q�1
S;I ¼ �S;Ib=o; ð4Þ
where subscripts S and I stand for scattering and intrinsic, respectively. The assumptions
underlying Eq. (3) are more general than those for the Eq. (1), as all multiple scatterings
are included. In both Eqs. (1) and (3), scattering is assumed to be isotropic and the
medium randomly uniform.
Formulas (1) and (2) have been widely used for fitting the experimental coda envel-

opes to invert for Q�1
C . Results obtained over time and throughout the World have been

used to characterize the average attenuation properties of the zones under study simply
by comparing coda-Q�1 parameters. Unfortunately, as reported above, the physical
interpretation may be confusing. Moreover, there is an additional problem of interpreta-
tion of these early results, due to their significant dependence on the time window in
which the fit of data with single-scattering model is made. This dependence is often
named “lapse time dependence of QC.” Because of this dependence (Q

�1
C decreases with

lapse time), the experimental results reported without an explicit specification of the
lapse-time window length used for calculations may be not strictly suitable for compari-
son among the different areas. Figure 1 shows a compilation ofQ�1

C observations made in
volcanic areas using similar lapse-time window lengths (or I explicitly report the lapse
time used). Looking at the plots of Figure 1, it can be noticed that in some cases coda-Q
pattern shows a peculiar frequency pattern. This is particularly evident for Kilauea, Mt.
S. Helens, and Mt. Vesuvius. A comparison with Q�1

C estimates in stable or tectonically
active nonvolcanic areas using data taken from Ibanez (1990) and Del Pezzo et al. (1996)
is reported in Fig. 2 for the volcanic area of Mt. Etna (Italy) and the nonvolcanic zone of
Andalucia (Spain). The plots reproduce estimates obtained at the same lapse-time
intervals. Leaving aside the interpretation of the physical meaning, these plots show



1 10 100
Frequency (Hz)

0.001

0.01

0.1

1

Q
C–1

QCODA
–1 for volcanic areas

Flegrei lapse = 20 s
Flegrei lapse = 30 s
Flegrei lapse = 40 s
Flegrei lapse = 50
Etna lapse = 20 s
Etna lapse = 30 s
Etna lapse = 50 s
Etna lapse = 70 s
Deception lapse = 10 s
Deception lapse = 20 s
Vesuvius BKE lapse = 12 s
Vesuvius OVO lapse = 12 s
Tres virgenes lapse = 20 s
Tres virgenes steam
Teng chon lapse = 20 s
Canarie lapse = 40 s
Kilauea lapse = 40 s
S. Helens, lapse = 15 s 1000

100

10

1

Q
C

1 10 100

FIG. 1. Q�1
C as a function of frequency, calculated for several volcanic areas around the world.

References are: Campi Flegrei (Bianco et al., 1999); Etna (Del Pezzo et al., 1996); Deception
(Martinez Arevalo et al., 2003); Tres Virgenes (Wong et al., 2001); Tengchong (Baiji et al., 2000);
Canary Islands (Canas et al., 1995); Kilauea (Mayeda et al., 1992); andMt. S. Helens (Bianco et al.,
1999). Lapse-time intervals in which the fit to the single-scattering model has been carried out are

also given. Data from the literature with no explicit report of lapse-time interval have been

disregarded.

1 10 100
Frequency (Hz)

0.0001

0.001

0.01

0.1
Comparison between Etna volcano

and Andalusia (Southern Spain)
Etna lapse = 30 s
Etna lapse = 50 s
Etna lapse = 70 s
Andalusia lapse = 30 s
Andalusia lapse = 50 s
Andalusia lapse = 70 s

10,000

1000

100

10

Q
C

Q
C–1

FIG. 2. Comparison of Q�1
C versus frequency, calculated for the same lapse-time interval at Etna

volcano and in Andalucia (Granada basin-Southern Spain). Despite the similar frequency patterns,

the values of attenuation are different; higher for Etna volcano than for the tectonically active

region of Andalucia.



357SEISMIC WAVE SCATTERING IN VOLCANOES
that Etna volcano behaves differently from the tectonically active sedimentary Granada
basin, showing an overall higher coda wave attenuation.
The results reported in Fig. 1 show that in some cases (Etna, Kilauea, and Vesuvius),

there is a frequency dependence that is weaker than or opposite (Q�1 increasing with
frequency) to the other regions.Whether these differences are controlledmore by intrinsic
attenuation or by scattering attenuation is impossible to deduce by examining only Q�1

C

observations. A further difficulty in the interpretation ofQ�1
C is given by the uniform half-

space assumption. Gusev (1995) found that Q�1
C may be closer to the real Q�1

I for earth
media characterized by strong velocity gradients. This study demonstrated that coda
decay is quantitatively well explained if the scattering coefficient decreases with depth,
when the leakage of scattered energy to the bottom cannot be discriminated from intrinsic
loss. Margerin et al. (1998) andWegler (2004) using the diffusion approximation, derived
analytical expressions which describe the coda decay due to leakage, in the assumption of
a heterogeneous layer superimposed to a transparent half space.
It can be concluded that there is no simple relation between Q�1

C and scattering and
intrinsic inverse-Q. Consequently, separate estimates of intrinsic and scattering attenua-
tion coefficients performed by using the realistic assumptions of positive (with depth)
seismic velocity gradients and depth-dependent attenuation parameters are necessary to
quantify the scattering processes in volcanic regions.
2. Separated Estimates of Intrinsic and Scattering Attenuation

To date, the most complete approach to characterize the earth medium for optimally
describing energy propagation and scattering properties has been the radiative transfer
theory, which includes multiple scattering of any order (Ryzhik et al., 1996). This theory
allows the analytical description of the coda envelope as a function of source–receiver
distance and lapse time, in the hypothesis of a uniform medium and isotropic scattering
(Zeng, 1991). Numerical simulation is needed to describe more realistic media, char-
acterized by non-isotropic scattering and/or nonuniform velocity and scatterer distribu-
tions (Hoshiba, 1991, Gusev and Abubakirov, 1996). This theory can be fitted to the
experimental coda envelope to directly invert the scattering and dissipation attenuation
coefficients, and is well suited to model the seismic coda on volcanoes.
This inversion for attenuation coefficients has often been carried out with the multiple

lapse-time window analysis (MLTWA) technique, as described by Hoshiba (1993). This
analysis is based on calculation of the seismogram energy integrals across three succes-
sive time windows, as a function of the source–receiver distance and medium para-
meters. The three energy–distance curves are then fitted to the theoretically determined
values, to retrieve the scattering attenuation and the intrinsic dissipation coefficients (for
a detailed discussion of this method, see also Sato and Fehler, 1998, pages 190–191).
Because of the low velocity of the S waves in the shallowest layers of the volcanic areas
(as low as 1.5 km/s), to the short duration of the seismograms of VT earthquakes, and to
the limited intervals of source-station distance generally available for these kinds of
earthquakes, the integrals in the three successive time windows cannot generally be
calculated with sufficient numbers of data points, and the distance range is insufficient to
make the fit stable. Consequently, the application of MLTWA to volcanoes may become
difficult. For this reason, previous attempts carried out to separately estimate intrinsic
and scattering attenuation coefficients for local volcanic earthquakes are based on
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different and sometimes approximate techniques. In the following sections, I will review
the approaches used to experimentally study the scattering properties of volcanic areas
and I will discuss the results obtained.
2.1. The Method of Wennerberg

One of the first attempts to separately obtain scattering and intrinsic attenuation
parameters in volcanic areas was done for the zones of Etna and Campi Flegrei (Italy)
(Del Pezzo et al., 1995) using an approach developed by Wennerberg (1993). This study
suggested the possibility of reinterpreting the estimates of single-station Q�1

C values in
terms of multiple scattering. It used the approximation given by Abubakirov and Gusev
(1990) to the energy-transport theory in the formulation of Zeng (1991) to describe the
multiple-scattered wave field in the case of a source colocated with the station.
Wennerberg (1993) expresses Q�1

C as a function of Q�1
I and Q�1

S as:
TABLE

Q�1
S

6 Hz

0.004

0.05 �
Q�1

I

6 Hz

0.0036

0.0035

Values
Q�1
C ¼ Q�1

I þ 1� 2d tð Þ½ �Q�1
S ; ð5Þ
where d tð Þ ¼ �1= 4:44þ 0:738tð Þ and t ¼ 2pftQ�1
S . Using the definition of Q�1

T ¼
Q�1

I þ Q�1
S , the total inverse quality factor for S waves, this method allows the estima-

tion of Q�1
I and Q�1

S from (independent) measurements of Q�1
T and Q�1

C . The method is
strictly applicable to local earthquake data recorded at stations close to the source for
which the direct ray paths share the same volume encompassed by the scattered waves.
Results obtained for Etna volcano and Campi Flegrei areas were compared with the
tectonically active nonvolcanic zone of Granada Basin, for which the same experimental
conditions were encountered (shallow sources located close to the recording stations—
20 s maximum lapse time forQ�1

C ). The results forQC,QT,QI, andQS are summarized in
Table 1 of Del Pezzo et al. (1995). Martinez Arevalo et al. (2003) applied the same
method to local VT earthquakes recorded at a small aperture (300 m) array composed of
13 short-period sensors, located in Deception Island, Antarctica. Deception is the most
important active volcano of the South Shetland Islands, and is located northeast of the
Antarctic Peninsula. Results are reported in Fig. 17 of Martinez Arevalo et al. (2003).
The plot of Fig. 3 shows the results obtained for Etna and Deception [those for Campi

Flegrei after being reviewed by Del Pezzo et al. (1996) were shown to be based on a
rough estimate of total Q-inverse, and will be discussed later]. For the sake of uniformity
with the plots of the present study, I have plotted Q-inverse (instead of Q) with its error
1 Separation of inverse QI and QS for Campi Flegrei

n

8 Hz 10 Hz

� 0.001 0.005 � 0.001 0.005 � 0.001 0.1

0.01 0.04 � 0.01 0.031 � 0.007 0.9

8 Hz 10 Hz

5 � 0.00007 0.0031�0.0001 0.0028 � 0.0001 0.1

7 � 0.00006 0.0031 � 0.0001 0.0027 � 0.0001 0.9

are re-calculated from Table 2 of Del Pezzo et al. (1996).
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bars for Etna and Deception Island, and compared the results obtained with those of the
tectonically active area of Andalucia. The plot shows that the earth lithosphere beneath
volcanoes (Etna and Deception) and the tectonically active area of Andalucia (Granada
basin) have different scattering properties: The two volcanic zones are more heteroge-
neous than the tectonically active zone of the Granada basin. Attenuation at Etna is
controlled by intrinsic dissipation at frequencies below 8 Hz, whereas for the higher
frequency bands, dissipation and scattering effects are comparable. At Deception, only
the frequency bands higher than 7 Hz are available. For high frequencies, scattering
effects predominate over the intrinsic dissipation at Deception.
2.2. The Energy-Flux Model

An approximate method, different from that described in the previous section, for
obtaining separate estimates of intrinsic and scattering attenuation parameters was
applied to Campi Flegrei area, close to Naples, Italy, by Del Pezzo et al. (1996). This
study used the energy-flux model for coda generation in a uniform medium (Frankel and
Wennerberg, 1987)—see formula 3.34 of Sato and Fehler (1998). The energy-flux model
is a phenomenological model based on the assumption that coda envelopes, recorded at
different distances, approach the same value for increasing lapse time. In contrast to that
of Wennerberg (1993), this method, inverts the coda envelope and does not use an
independent estimate of Q�1

T . The results are obtained assuming a priori a frequency
dependence ofQ�1

S . Del Pezzo et al. (1996) assume that Q�1
S ¼ q0 f

�n and calculate both
Q�1

S and Q�1
I for a suite of n values, spanning the interval between 0.1 and 0.9. Here I

report in Table 1 only those for n ¼ 0.9 and for n ¼ 0.1, corresponding to a strong
frequency dependence and an almost constant Q�1

S with frequency, respectively. Results
were obtained for three frequency bands (centered at 6, 8, and 10 Hz, respectively).
In the area of Campi Flegrei, scattering phenomena strongly predominate over inelas-

tic dissipation.
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2.3. 2-D Transport Theory Applied to Volcanic Tremor

Volcanic tremor is a sustained seismic signal which is often seen in association with
magmatic activity. Its importance as a forecasting tool of eruptions has been widely
acknowledged since many years (e.g., Chouet, 2003, and references therein). The
mechanism of the tremor source is still under debate, although the generation of the
sustained ground motion is generally ascribed to the trapping of elastic energy in fluid-
filled cavities. Studying the tremor sources is, however, challenging, due to the main
reason that tremor signal is quasi-stationary, with no clear onsets and/or clear phases that
can be ascribed deterministically to a particular path. Moreover, the signal generally
looses coherency with increasing station spacing, making it impossible to adopt classical
tools for locating sources and separating path, source, and site effects. An understanding
of the scattering properties of the volcanic media for the tremor wave propagation is
consequently an important task that should be properly addressed.
The first measurements of the total attenuation for tremor waves were carried out

by Del Pezzo et al. (1989) at Etna volcano, who simply calculated the spectral-amplitude
decay of the tremor as a function of source-station distance. The results show that total

Q-inverse is frequency dependent with data fitting well the relation Q�1
T ¼ q0

f
f0

� ��n
with

f0 ¼ 1 Hz, n ¼ 0.7 and q0 ¼ 1
12

. Lower values of Q�1
C and Q�1

T calculated for VT

earthquakes in the same area (see the previous section of the present chapter) were inter-
preted in terms of a strong depth dependence of attenuation:As the tremorwave propagation
is essentially shallow (the tremor is mainly composed of a mixture of surface waves), it
samples the highest attenuation layers. A first attempt to separately estimate intrinsic and
scattering attenuation coefficients for volcanic tremor has been carried out by Del Pezzo
et al. (2001) utilizing data recorded at Etna by Del Pezzo et al. (1989) and at Masaya
volcano by Metaxian et al. (1997). The method is based on the energy-transport theory
in two dimensions (Sato, 1993). The space and time pattern of the tremor seismic energy
is calculated by convolution of the source function with the energy density for an impulsive
source radiation. The source time function for tremor is assumed to be constant, in
the hypothesis of time- and frequency-stationary emission of seismic energy, and the
convolution integral reduces to the following expression
ETremor rð Þ ~

Z þ1

�1
E r; tð Þdt ¼

1
2pr exp � �S þ �I

y fð Þ
� �

r
h i

u fð Þj j
þ
Z þ1

r=y fð Þ

�S

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u fð Þ2t2 � r2

q exp �S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u fð Þ2t2 � r2

q
� u fð Þt

� �
exp ��Itð Þdt; ð6Þ
where ETremor (r) is the tremor energy as a function of distance, r; the frequency, f; the
wave speed, u( f ); the intrinsic attenuation coefficient, �I; the scattering attenuation
coefficient, �S; and the lapse time, t. u( f ) represents the wave velocity in a dispersive
wave field. E(r, t) is the Green’s function for an impulsive source (Sato and Fehler, 1998,
pages 173–176).
Formula (6) was fit to the experimentally measured tremor energy decay with distance.

The best estimates of �I and �S were obtained with a grid search method, and the results
for Q�1

S and Q�1
I derived from formula (4) are given in Table 2. Despite the trade

off between the estimates of Q�1
I and Q�1

S , the results show that the mechanism of



TABLE 2 Separation of inverse QI and QS for volcanic tremor at Etna and Masaya

Volcano Frequency (Hz) Q�1
I sQ�1

I
Q�1

S sQ�1
S

Etna 1 0.2 0.4 0.009 0.005

2 0.5 2 0.005 0.001

3 1 10 0.010 0.001

4 0.3 7 0.009 0.007

5 0.1 0.2 0.005 0.002

Masaya 2 0.2 0.5 0.04 0.02

3 0.1 0.5 0.005 >0.001

Values are re-calculated from Table 1 of Del Pezzo et al. (2001).
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dissipation is predominant over scattering phenomena in the characterization of the
seismic attenuation of tremor for both volcanoes under study. This is in contrast to the
earlier results for VT events at Campi Flegrei, Etna, and Deception. This contradictory
result may have a geological explanation, as the uppermost layers composing the
structure of Etna are spatially homogeneous (smaller amount of scattered energy), all
composed by loose and incoherent materials (high intrinsic dissipation).
3. Diffusion Model Applied to Shot Data

3.1. Uniform Half Space

Hereafter I will focus attention on two volcanoes, Vesuvius and Merapi, where most of
the studies dealing with the application of the diffusion model (that will be described in
the present and in the following sections) have been done.
The transport theory has an important asymptotic approximation in the case of strong

scattering: the diffusion theory (Wegler, 2004). This approximation ismathematicallymuch
simpler and can be analytically expressed in case of a medium composed of two layers with
different characteristics. The analytical expression for a homogeneous earth medium is
E jxj; tð Þ ¼ E0 4pDtð Þ�p=2
e �bt�jxj2

4Dt

	 

; ð7Þ
where p ¼ 3 for body waves and p ¼ 2 for surface waves. p ¼ b/�SD and b ¼ � Ib. D is
named “diffusivity.”
The presence of diffusive waves was revealed experimentally in the seismograms of

artificial shots fired at Merapi (Indonesia; Wegler and Luhr, 2001) and at Vesuvius
(Wegler, 2003) during active tomography experiments. In these two cases, a rapid
decrease of direct S-wave energy was observed and detected up to a distance of less
than 1 km from the source. Despite this rapid decrease, the coda of the seismogram shots
exhibits increasing amplitudes up to a lapse time much greater than the S-wave travel
time and a slowly decaying amplitude for longer lapse time. Observations at small
aperture arrays set up at Merapi (Wegler and Luhr, 2001) and at Mt. Vesuvius (La
Rocca et al., 2001) in the time period of the active experiments showed that the
coherence among the array stations is lost at distances smaller than a few tens of meters
for frequencies higher than 1 Hz; the polarization properties calculated at the array



362 DEL PEZZO
stations also show that the pattern is chaotic, being the three components of the ground
motion almost uncorrelated. This evidence is phenomenologically interpreted by Wegler
and Luhr (2001) as the product of a diffusive wave field composing the coda of the
seismogram shots.
Fitting the experimentally calculated energy envelopes to the expression of formula (7),

it is possible to invert for D and b and to separately obtain the intrinsic and
scattering attenuation coefficients.
The pattern of intrinsic and scattering attenuation as a function of frequency (averaged

over distance) for Mt. Vesuvius and for Merapi obtained for the shot data is reported in
Fig. 4. In both cases, scattering predominates over inelastic dissipation by at least one
order of magnitude in the analyzed frequency range. Wegler and Luhr (2001) estimate
that the transport mean free path ��1

S is of the order of 100 m for Merapi, whereas Wegler
(2003) estimates ��1

S ¼ 200 m for Mt. Vesuvius [for a wide and exhaustive discussion
about the physical meaning of the transport mean free path, see Gusev and Abubakirov
(1996)]. In both studies, a dominance of S waves in the coda of the seismogram shots is
assumed. This estimate is consistent with the assumption that diffusion is a valid
approximation when source-station distance is much greater than the transport mean
free path. In their experiments, source-station distance is always greater than 1 km.
Almost the same diffusivity value is obtained assuming a 3- or a 2-D propagation.
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FIG. 4. Diffusion model under the assumption of a half space applied to shot data recorded at

Merapi and Mt. Vesuvius. The patterns of both Q�1
I and Q�1

S are similar for the two volcanoes.

Scattering attenuation prevails over the intrinsic dissipation of about one order of magnitude.
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This is due to the strong influence of the term e �bt� x2

4Dt

	 

in formula (7) with respect to the

term accounting for geometrical spreading.
The above results indicate that multiple scattering cannot be neglected in the modeling

of seismic wave propagation and in studying seismogram formation in volcanic areas.
The comparison of the transport mean free path at Vesuvius and Merapi ’ 200mð Þ with
the much higher value estimated for the earth’s crust ’ 200kmð Þ leads to the important
conclusion that the multiple scattering strongly affects the seismogram shape for sources
close to or within volcanoes. An indirect confirm of this important observation comes
from high-resolution velocity tomography carried out in volcanoes (see, e.g., Scarpa
et al., 2002; Chouet, 2003, and references therein) which shows high-velocity contrasts
in small-scale structures. This result cannot be neglected in any modeling of seismic
wave propagation in volcanic environments.
3.2. Two-Layer Media

The uniform randommedium assumes that heterogeneity is uniformly distributed in the
propagation volume. On the other hand, it is quite reasonable and well accepted that the
earth properties change with increasing depth. The transport Equation (3) can be solved
analytically for a uniform random medium with a uniform scatterer distribution. Numeri-
cal simulation is necessary in the case of nonuniform velocity and/or scatterer density
(see, e.g., Hoshiba et al., 2001). In the approximation of strong scattering, the diffusion
equation can be solved for a two-layer model formed by a shallower diffusive layer over a
weakly scattering half space.Margerin et al. (1998) proposed a boundary condition for the
layer half space including deterministic reflections. Wegler (2005) presents an improved
boundary condition for the diffusion equation connecting a strongly scattering layer to a
weakly scattering half space. This condition has a wide range of validity, failing only
when the thickness of the upper layer (the strong scattering layer) is smaller than its
transport mean free path, and/or when a large contrast in scattering strength between the
upper layer and the half space exists. The application of this two-layer model to volcanoes
is straightforward, as volcanoes are highly heterogeneous structures in their upper part,
due to the presence of lava and ash formations; and generally less heterogeneous in their
deeper portion, made up by the last part of the upper crust. An understanding of the
diffusive characteristics of the volcanic media using this realistic earthmodel may explain
why the scattering strength apparently decreases with the increasing source–receiver
distance when it is estimated assuming a half-space model.
This approach has been used to study Merapi (Wegler, 2005) and Mt. Vesuvius

(Wegler, 2004). At Merapi, the application of the theory to the same data set used by
Wegler and Luhr (2001) yields new insight in the seismogram interpretation. For shot
data (where the source is located at the surface), the coda envelopes well fit to a model
with a diffusivity coefficient in the upper layer equal to 0.027 km2 s�1 (corresponding to
Q�1

S ¼ 0:7 at 6 Hz) and in the lower half space equal to 0.3 km2 s�1 (corresponding to a
Q�1

S ¼ 0:06 ). The data inversion yields the position of the half-space boundary at 0.5 km
depth below the zero level. This model explains well the differences in the estimates of
diffusivity obtained at different source-station distances for the uniform half-space
model, fitting the data well at both short and long distances (see, Fig. 5 of Wegler,
2005). For Mt. Vesuvius, Wegler (2004) uses the same data set utilized in the work done
assuming a half space (see also Fig. 4 in the present study), and finds nearly the same
diffusivity and intrinsic attenuation as those determined for the 2-D diffusion model.



0 5 10 15 20 25 0 5 10 15 20 25
Frequency (Hz)

1E − 5

0.0001

0.001

0.01

0.1

1/
Q

Frequency (Hz)

1E + 5

10,000

1000

100

10

Q

BKE 3 component stack

3D QC
–1 QI

–1 MS

QI
–1 DF QS

–1 DF

QT
–1 MS

2D QC
–1

QS
–1 MS

BKE 3 vertical

3D QC
–1 QI

–1 MS

QS
–1 DF QT

–1 MS
2D QC

–1

QS
–1 MS

(a) Mt. Vesuvius. comparison between three component stack and vertical
BKE station

0 5 10 15 20 25
Frequency (Hz)

0 5 10 15 20 25
Frequency (Hz)

1E − 5

0.0001

0.001

0.01

0.1

(b)

1/
Q

1E + 5

10,000

1000

100

10

Q

Mt. Vesuvius. comparison between three component stack and vertical
OVO station

OVO 3 component stack

3D QC
–1 QI

–1 MS
QI

–1 DF QS
–1 DF

QT
–1 MS

2D QC
–1

QS
–1 MS

OVO vertical

3-D QC
–1 QI

–1 MS
QI

–1 DF QS
–1 DF

QT
–1 MS

2-D QC
–1

QS
–1 MS

FIG. 5. (a)Left panel showsQ�1
C ;Q�1

I ;Q�1
S ;Q�1

T ¼ Q�1
I þ Q�1

S

	 

forBKEstation-three component

stack (seeDel Pezzo et al., 2006, for the station location). The right panel shows the same quantities for

BKE vertical component only. (b) The same of for OVO station. 3-D Q�1
C and 2D Q�1

C values were

obtained using different geometrical spreading (body waves and surface waves, respectively).



365SEISMIC WAVE SCATTERING IN VOLCANOES
The correspondingQ�1
S spans the interval between 0.6 and 0.07. The values are similar to

those obtained at Merapi. At Mt. Vesuvius, the diffusive-layer thickness is found to be
of the order of 1 km, and the results for a diffusive layer over a half space are similar to
those for a homogeneous model. This is due to the source–receiver distance range used
that is always greater than the thickness of the diffusive layer. The results for Mt.
Vesuvius appear to be independent of the boundary conditions used.
4. Energy-Transport Theory Applied to Earthquake Data

4.1. Uniform Half Space

Del Pezzo et al. (2006) use earthquakes instead of shot data to measure the scattering
properties of the earth materials beneath Mt. Vesuvius. These authors use the energy-
transport theory in the approximation of Zeng (1991) given by
EMS x; t; �i; �Sð Þ ’ E0e
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same as for Eq. (3). This equation was fitted to the average normalized energy coda
envelope calculated for two stations, BKE and OVO, of the local seismic network (see
Fig. 1 of Del Pezzo et al., 2006). These two stations are �1 km distant from each other,
and are located respectively eastward and westward from the crater. The assumptions of
this theory are constant velocity and scattering coefficient in a uniform random medium.
This study used the stacked S-coda envelope at BKE and OVO obtained by filtering

seismograms in four frequency bands, centered respectively at fc ¼ 3, 6, 12, and 18 Hz
with a bandwidth of �0.3 fc. The stack is achieved by aligning all the three component
envelopes at the P-wave onset time and normalizing to the coda level at 11s lapse time.
The average coda is fit to the theoretical model of formula (8) starting at a lapse time of
twice the S-wave travel time, after which all the envelopes have a smooth and regular
time decay. A further fit of the same data was also done to the diffusion model [Eq. (7)].
The results are given in Fig. 5. Details on the misfit function at 1s confidence level are

given in Del Pezzo et al. (2006). The errors are always of the order of �25% of the
estimated value. From Fig. 5, it appears clear that three-component stack and vertical
component average energy envelope share the same pattern and yield the same result.
Multiple scattering (MS) and diffusion models (DF) furnish the same results, whereas
single-scattering approximation (Q�1

C ) gives different results. This last result indirectly
indicates that the diffusion regime is also appropriate to describe the seismic energy
decay in the coda at Mt. Vesuvius for natural VT earthquakes, confirming the results
obtained for shot data. The most important condition for the validity of the diffusion
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approximation is that the lapse time, t, should be greater than the transport mean free path
divided by the wave velocity:
tlapse > L=b: ð9Þ
Taking b ¼ 1.5 km/s I estimate the mean free path L from the estimates of Q�1
S obtained

by Del Pezzo et al. (2006) through the formula (Sato and Fehler, 1998)
Q�1
S ¼ b

2pfL
: ð10Þ
Results show that for OVO station L ’ 0:7 km for frequencies centered at 3 and 6 Hz and
L> 5 km for higher frequency; for BKE station L ’ 0:5 km in the whole frequency range
investigated. Since the lapse-timewindow utilized byDel Pezzo et al. (2006) is in the range
from 4 to 12 s, inequality (9) is fulfilled except for the highest frequency band at OVO.
4.2. Possible Bias Introduced by Assuming a Uniform Diffusive Layer

On the basis of the results obtained by a velocity tomography study carried out by
Scarpa et al. (2002), Del Pezzo et al. (2006) assume a simplified two-layer structure for
Mt. Vesuvius: The first layer with Vp ¼ 2.6 km/s from the crater top down to the
limestone interface overlying a half space with Vp ¼ 4.5 km/s. A further assumption is
that the S-wave velocity is estimated by the P-wave velocity divided by the Vp/Vs ratio
(1.8, averaged from the values reported in Scarpa et al., 2002). Hereafter, I will call
MODEL1 the uniform half space and MODEL2 the two-layer model.
Del Pezzo et al. (2006) use the analytical solution for the diffusion equation obtained

for a thick layer over a homogeneous half space, described by Wegler (2004) assuming
(a) that diffusivity D (see, eq. 7) is constant in the top layer of MODEL2 and (b) that
the whole diffusion process takes place in the same layer. They check both the cases of
a fully absorbing boundary between the two layers and a fully reflecting interface
(Eqs. 16 and 18 of Wegler, 2004, respectively) comparing the energy envelopes obtained
for MODEL2 with those calculated for MODEL1. The results are that the coda-energy
envelope for MODEL1 calculated with the diffusion parameter, Duniform, is well approxi-
mated by the energy envelopes in MODEL2 with Dabsorbing ’ Duniform and Dreflecting ’
2Duniform. This result indicates that an earth model more realistic than the half space may
introduce severe biases into estimate of diffusivity. These may be introduced by neglect-
ing the effects of the leakage, as described in Margerin et al. (1998), whereas the
diffusion constant may be not severely influenced by the simplified assumptions. The
bias introduced by the simplifying assumption of half space has been demonstrated for
shot data fired at Mt. Vesuvius by Wegler (2004) and has thus been confirmed also for
natural seismicity. This should be taken into account for any comparisons among
different volcanic zones.
4.3. Coda-Localization Effects

Aki and Ferrazzini (2000) observed at Piton de la Furnaise volcano (PdF) that the
coda-site amplification depends on source position when sources are close to the crater
and that most of the scattered energy is produced near the source. This phenomenon has
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been called coda localization. The same phenomenon was claimed to explain the energy
coda shape observed at Merapi volcano by Friederich and Wegler (2005). This study
showed that in their area of investigation, the coda-energy envelope had the same
systematic decrease with increasing source–receiver distance, different from the general
observation of Aki and Chouet (1975) that the coda energy tends to a common level
independent of source–receiver distance. The Ioffe Regel criterion kL < 1 (k is the wave
number and L is the scattering mean free path—Van Tiggelen, 1999) is met in their data.
This is the condition for the application of the Anderson localization model (Van
Tiggelen, 1999). In this scattering regime, Weaver (1994) found phenomenologically a
formula describing the energy-density decay E as a function of distance r and lapse time t,
which includes the intrinsic dissipation:
E r; tð Þ ¼ E0 exp � r

x
� r2þn

4Drestx
n

� �h

� bt

 !
; ð11Þ
where n and h are empirically determined constants (assumed to be respectively equal to
0.46 and 0.76), x is the localization length, Dres is the residual diffusivity, and b is the
intrinsic dissipation coefficient. Friederich and Wegler (2005) compared the Anderson
localization model with the half-space diffusion model fitted to their data using both
Eqs. (11) and (7). They saw that at Merapi, the energy envelopes as a function of distance
and lapse time fit well to formula (11) in the frequency band between 1 and 3 Hz with
Dres ’ D ¼ 0:12 km2=s ; b ¼ 2pf

Q�1
I

¼ 0:2 s�1 ; x ¼ 1:7 km . The condition kL< 1 indicates
that the Anderson localization regime may be present in their data at low frequency, with
a localization length x. It is important to note that, however, the spatial localization of
coda energy can also be explained, according to Friederich and Wegler (2005) as a result
of an inhomogeneous distribution of scattering strength.
For earthquake data recorded at Mt. Vesuvius, the Ioffe-Regel criterion is not met in

the investigated frequency bands. Taking v ¼ 1.5 km/s and estimating the mean free
path L from the estimates of Q�1

S obtained through the formula (10), we have for OVO
station 13 < kL < 7�103 and for BKE station 6 < kL < 48, well outside the limits given
by kL < 1. In conclusion, the difference at OVO should be not a distance effect, as OVO
and BKE are almost equally distant from the location centroid of VT earthquakes. The
different energy envelope shape between OVO and BKE may be interpreted as being
due to different scattering conditions between the N-Western part of Mt. Vesuvius, where
OVO is set up, and the Eastern part of the volcano, where most of the other seismic
stations are located.
5. Concluding Remarks

In the present chapter, I have described the results obtained from fitting several
scattering models to the seismic coda envelopes of volcanic earthquakes and artificial
shots fired in volcanic structures. The estimates of coda-Q values on volcanoes (made
with the single-scattering model) are only slightly smaller than those measured in
nonvolcanic zones, and the frequency dependence of coda-Q in volcanic areas is
sometimes different from that in tectonically active regions. However, it is impossible
to deduce using only coda-Q observations whether this difference between the coda-Q
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estimates in volcanic and nonvolcanic zones is controlled more by intrinsic or by
scattering attenuation.
In contrast, the application of multiple scattering models allows a separate estimate of

the scattering and intrinsic attenuation parameters. The main results obtained in volca-
noes show in general that, at low frequency, intrinsic dissipation is more important,
whereas scattering predominates at high frequencies. Volcanoes are consequently het-
erogeneous structures with a mechanism of seismic wave energy dissipation that tends to
be controlled by the scattering phenomena with increasing frequency. For Mt. Vesuvius,
Mt. Merapi, and Deception Island, volcano scattering attenuation prevails at frequencies
higher than 2–3 Hz, but unfortunately there is no information for lower frequencies. At
Mt. Etna, intrinsic dissipation prevails or is comparable with scattering attenuation for
frequencies lower than 8 Hz. This result, obtained in the early 1990’s with the use of
approximate models, has been confirmed by the application of the energy-transport
theory to both earthquakes and tremor. At a first sight, it sounds unexpected, as one
can image volcanoes as structures where the magma reservoirs, partially filled with
melted, high temperature rocks, intrinsically dissipate the seismic energy. This seems to
happen only at low frequency. The difference in the pattern of attenuation between low-
and high-frequencies can be explained in terms of the scale length of heterogeneity.
Volcanoes may represent non self-similar earth medium, characterized by one or more
predominant characteristic correlation length.
As a consequence of the high degree of heterogeneity in volcanoes, the seismograms

of VT events can visually appear different in shape from the corresponding magnitude
seismograms of nonvolcanic earthquakes. In fact, the coda of volcanic earthquakes is
longer than that for earthquakes generated with the same magnitude in less heteroge-
neous environments, including tectonically active nonvolcanic areas. Moreover, the
maximum of the energy envelope for volcano earthquakes (VT) is more delayed with
respect to the time of S-onset than that for nonvolcanic earthquakes.
Unfortunately, a comparison among the investigated volcanoes is only partial, as

seismograms from both shots and VT earthquakes recorded at Mt. Vesuvius have a
sufficient signal-to-noise ratio only at high frequency, in contrast to those of Etna and
Merapi. Consequently, the best estimate of separated intrinsic- and scattering attenuation
is stable for Mt. Vesuvius only at high frequencies, and we have no information in the
low frequency band between 1 and 5–6 Hz. Further efforts need be made towards
quantifying the observation at low frequencies on this volcano and in general on different
volcanoes, to determine if the difference in the attenuation pattern at low and high
frequencies could be ascribed to a general phenomenon, peculiar for volcanic environ-
ments, or to the geological characteristics of only some volcanoes.
Quantification of the scattering properties is seen also to be very useful in the physical

interpretation of the seismic phenomena accompanying volcanic eruptions. Recent
results have shown that small changes in the elastic properties of the medium, that
have no detectable influence on the first arrivals, are instead amplified by multiple
scattering and may thus be readily observed in the coda. This idea is quantified in the
concept of coda wave interferometry (see another chapter of this book) that is going to be
one of the most promising techniques to monitor the temporal changes of the scattering
coefficients of the earth medium (see Gret et al., 2005, and references therein). So,
knowledge of the average scattering properties may help in quantifying the effects on the
earth medium of the stress changes acting on volcanoes before and during the eruptive
periods. This knowledge is also very useful in the interpretation of the attenuation



369SEISMIC WAVE SCATTERING IN VOLCANOES
tomographic images obtained in volcanoes. Recent work by Nishigami (1997) and
Tramelli et al. (2006) among others, show that most of the strong scattering in volcanoes
takes place in zones with maximum contrast in their geological characteristics. Tramelli
et al. (2006) show, for example, that the border between the old caldera rim and the
central new caldera zone at Campi Flegrei is characterized by the maximum positive
spatial change in the scattering coefficient. As this zone coincides with that of maximum
total attenuation, this is an indirect confirmation that the low-total Q zones in volcanoes
are often associated with low-scattering Q.
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MONITORING TEMPORAL VARIATIONS
OF PHYSICAL PROPERTIES IN THE CRUST

BY CROSS-CORRELATING THE WAVEFORMS
OF SEISMIC DOUBLETS

Georges Poupinet, Jean-Luc Got and Florent Brenguier
Abstract

Doublets or multiplets are earthquakes with nearly identical waveforms. First observed on volca-

noes, doublets are found in tectonic environments. Doublets can be relocated relatively with a

precision of a few meters. Very good doublets separated by a large time lapse are essential for

detecting slow temporal variations of crustal properties. We present basic techniques for selecting

and processing doublets. In a seismic database, coherency between all pairs of seismograms is

computed and high coherency pairs are candidate doublets. Time delays between waveforms are

measured by cross-correlation techniques; a precision of 1 ms is common for good pairs sampled at

100 Hz. Several techniques can relocate one event relatively to the other and P and S delay residuals

are obtained. Clock precision remains critical when searching for a few millisecond anomalies.

Delays in the coda are analyzed by a cross-spectral moving window (CSMW) or a cross-correlation

moving window (CCMW) analysis. Time delay measured in the coda shows variations even when

the time elapsed between the two events of a doublet is extremely short. These variations are due to

hypocenter separation and to changes in the waves which form the early coda. When seismic

velocity is changing homogeneously in the propagation medium, the delay of the coda is propor-

tional to lapse time. Thus, the slope a of the delay in the coda is a very precise (up to 10�4)

measurement of the change in S-wave velocity DVS/VS, a¼�DVS/VS. Relative changes of delay on

the horizontal components can detect temporal variations in S-wave splitting and anisotropy.

Temporal changes in coda Q may be reflected in the coda amplitude ratio measured in several

frequency bands. However, minor changes in sources induce variations in early coda (the coda that

just follows the S wave) amplitude ratios, comparable to those due to attenuation changes. There-

fore, the interpretation of coda amplitude ratios in terms of coda Q changes should be undertaken in

the late coda only, using a statistical approach. Good doublets are seldom, so we present a technique

that creates “virtual doublets” from the correlation of seismic noise long sequences. Temporal

variations of physical properties in surface layers are recovered by a CCMW analysis of these

“virtual doublets.” This is an interesting method for measuring strain variations preceding volcanic

eruptions. Many other applications should blossom in the near future. At last, we present teleseismic

doublets which are a tool for measuring the rate of rotation of the inner core of the Earth. The goal of

this chapter is to show that doublet processing is elementary but that the detection of temporal

variations of velocity or attenuation remains quite difficult. Excellent doublets should be selected to

study temporal variations and such very good natural doublets are few in most seismic regions.

Key Words: Microearthquakes, temporal variation of properties, earthquake forecasting
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1. Introduction

Doublets or multiplets have been noticed in Japan by several seismologists, among them
Hamaguchi and Hasegawa (1975) and Tsujiura (1981). They are observed on volcanoes for
instance from magmatic type sources (Okada et al., 1981) and on the Moon (Nakamura,
1978). InNorthernCalifornia, families of similar low-magnitude earthquakeswere reported
byGeller andMueller (1980)who suggested that the epicenters arewithin a radius less than a
quarter of the wavelength or about 200–400 m. The waveform similarity implies that the
hypocenters are very near and that moment tensor and rupture process are similar; the
proximity of hypocenters is not enough. How similar the sources should be is difficult to
quantify but coherency betweenwaveforms is an efficient tool to compare events. Twomain
types of doublets can be distinguished: the short time lapse doublets—spatial doublets—and
the long time lapse doublets—temporal doublets. Nakamura (1978), Poupinet et al. (1982,
1984), Ito (1985), ScherbaumandWendler (1986), Frémont andMalone (1987),Deichmann
and Garcia-Fernandez (1992), Got et al. (1994), Gillard et al. (1996), Rubin et al. (1999),
Nishimuraetal. (2000,2005),GotandOkubo(2003),Battagliaetal. (2003), andmanyothers
used waveform correlation for relative relocation of similar events and mapped very accu-
rately clusters ofmicroearthquakes. Accuracy in relative relocation through the use of cross-
correlation timedelaysmotivated very numerous authors to use such differential techniques,
mainly after Waldhauser and Ellsworth (2000) double-difference location code. In a search
for precursory changes of velocitybefore largemagnitude events, Poupinet et al. (1984) took
advantage of the waveform similarity of the entire seismograms to attempt to measure
temporal changes with a moving window technique similar to surface wave processing.
However, time delay measurement accuracy needed for temporal variation studies is far
higher than the one needed for earthquake relocation. The precision in timing is very
dependent on the precision of stations clocks. Independent analog stations did not get time
precision at themillisecond level. Analog seismic arrays transmitted their signals on radio or
phone links and recorded them in a central site with a single reference time base: the unique
time base was well suited for comparative time delay studies. The advent of GPS time
synchronization improvedclockprecisionbutvarioussourcesof instrumentaldelays remain;
numerous temporary and permanent stations still have periods with unreliable timing.
The search for temporal changes of crustal velocities and attenuation has been a goal for

many years in connection with earthquake precursor studies. Both natural events and
artificial sources have been monitored over long period of time. In this chapter, we present
basic techniques for detecting temporal variations and discuss their limits and illustrate
them with data provided by the Japanese Hi-Net seismic array (Okada et al., 2004).
2. Selection of Doublets

Nowadays seismic arrays store data continuously on hard disks. Seismicity is moni-
tored in real time and origin times and hypocenters catalog are published. Knowing the
origin times, event files are extracted from the continuous data. Extraction can also be
performed automatically by comparing the amplitude of the signal in several stations to a
set threshold. Each event is given an index number. The simplest technique to select
doublets is to extract some seconds of record in several good quality stations and to
compute the average coherency in a given frequency band for all pairs of events.
If coherency is larger than about 90%, we have potential doublets. This technique may
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not work when noise is correlated from one record to another or during an aftershock
sequence because of the short interval between small events. Aster and Scott (1993) used
short time P and S windows (�0.5 s) and showed that the median of shear wave three-
component cross-correlation maximum gives the best evaluation of the similarity. This
method supposes a good knowledge of individual S arrival times. Limited precision in
locations usually prevents direct selection from the catalogs, so that selection is usually
performed by the direct computation of coherency or cross-correlation from events
occurring in kilometer-scale volumes. For studies of temporal variation, the very high
coherency large lapse time doublets—temporal doublets—are interesting. For coseismic
effects associated with a large magnitude event, pairs with one event before and one
event after are selected. Short lapse time doublets—spatial doublets—are interesting for
local structural studies and for assessing possible source variations than may create
patterns similar to temporal variations (Got et al., 1990; Got and Fréchet, 1993; Got
and Coutant, 1997). The procedure to select possible doublets is straightforward and can
be implemented as a routine on any database. The probability to find doublets increases
with the size of the database, that is, with time.
3. Basic Processing

3.1. Time Delays Measured from Cross-Correlation or Cross-Spectrum

Once a doublet has been selected, travel-time delays between its two events are
measured. Figure 1a shows the two P waves for a good doublet recorded by one Hi-net
station in Japan. In signal processing, the delay between two signals corresponds to the
maximum of the envelope of their cross-correlation in the time domain (Fig. 1b) or to the
slope of the phase of their cross-spectrum in the frequency domain (Fig. 1d). Two
temporal signals s1 and s2 of length ND are sampled at times iD, where i is an integer,
D is the sampling rate, and N is the total number of samples. In the time domain, the
cross-correlation gs1s2 is
gs1s2 nDð Þ ¼
X

i

n
s1 iDð Þs2 iD� nDð Þ

o
; ð1Þ
where nD is the time delay t. In the frequency domain, the cross-spectrum Gs1s2 ( f ) is
Gs1s2 ( f ) ¼ s1( f ) s2*( f ), where * is the complex conjugate and f is the frequency.
The relation between the two similar signals s1 and s2 may be described as a linear filter,
theWiener filter whose transfer functionG is such thatG ( f )¼<Gs1s2 ( f )>/<Gs2s2 ( f )>,
where <> denotes smoothing. The Wiener filter (module and phase) characterizes the
relationship between the two signals. The delay between the two signals is measured from
the Wiener filter phase and amplitude variations are imbedded in its module. The module
of the coherency C( f ) is defined by
C fð Þ ¼ j < Gs1s2 fð Þ > j = ð< Gs1s1 fð Þ >< Gs2s2ð f Þ >Þ1=2; ð2Þ

where coherency quantifies the similarity of the recorded signal (Fig. 1c).
The time delay t is t ¼ ’ (Gs1s2 ( f ))/2pf, where ’ is the phase of the cross-spectrum.

t is actually computed from a weighted least squares adjustment of the series of phase
samples. Several choices for the weights are possible, the optimal one in the least square
sense being inversely proportional to the error in phase measurement. The uncertainty on
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376 GEORGES POUPINET ET AL.
the phase is s2 ¼ (1/C2�1)/(2BT), expressed in radians, where B is the bandwidth of the
signal and T is its effective duration. B can be estimated as the width at half-height of
the amplitude spectrum and T is the width at half-height of the amplitude of the envelope
of the signal window (Mari et al., 1999). The BT product therefore represents the
information content of the signal window. After various tests by Frémont (1984),
Fréchet (1985) used weights of the form w( f ) ¼ jGs1s2 j ( f ). C2 ( f )/(1�C2( f )). Some
clipping has to be applied for high coherency, as this weight diverges for C ¼ 1.
The uncertainty in time delay measurement is therefore
err tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

w2
i fi � afið Þ2

Pn
i¼1

w2
i f

2
i

vuuuuut ; ð3Þ
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where wi is the weight corresponding to the frequency sample fi, and a the slope of the
cross-spectrum phase. A special attention has to be brought to use a robust phase unwrap-
ping algorithm. Accuracy in the computation of the transfer function G( f ) and the
coherency C( f ) is better when the signals are aligned; standard procedures for computing
bothG( f ) andC( f ) therefore involve an iterative alignment of the signals. They avoid the
lack in accuracy due to mis-alignment mentioned in Schaff et al. (2004). Longer signal
windows provide better accuracy (sample rate being unchanged) in the time delay estima-
tion as far as its physical value remains actually constant over the whole window.
Variations of the physical value of the time delay may occur, due to velocity temporal
variations or the arrival of seismic waves leaving the source with various directions (see
paragraph 7). FromUSGSCalnet (Northern California seismic array) data, Poupinet et al.
(1984) showed the error on the time delays to be as low as�1 ms; computation was made
using 1.28-s time windows, the signal (maximum band with 20–25 Hz) being sampled at
100 Hz. Seismic bodywaves ofmicroearthquakes recordedwith a local networkmay have
a small duration and their frequency band may be limited. Anelastic attenuation may
therefore make the BT small and imply less precision on the delay.
To compute the delay in the time domain, signals are resampled at a higher rate.

The best way is to perform it in the Fourier sense, that is, without modifying its frequency
content, by zero-padding the real and imaginary parts of the FFT in the frequency domain
and retransform it to the time domain. This step may be applied to the signal FFT or to the
cross-spectrum. The delay between s1 (t) and s2 (t) being the delay of the maximum of
the envelope of the cross-correlation, it can be measured with a precision better than the
original sampling rate. Schaff et al. (2004) showed that correlation measurements were
better than travel-time differences, and were usable for relocation of Calaveras fault
microearthquakes even for interevent separation distance up to 2 km and correlation
coefficient down to 70%.
3.2. Cross-Spectral Moving Window or Cross-Correlation
Moving Window Technique

A delay can be computed for the entire seismograms, without considering that the
record is the sum of many seismic phases following various ray paths and arriving at
different times. Phases like P, S, or the coda are physical entities that are independent
from each other and their delays may differ. Poupinet et al. (1984) used a moving
window technique (CSMW, cross-spectral moving window) to measure the delay of
the different seismic phases. Moving window spectrum or multiple filtering are standard
techniques in surface waves studies. The analysis can be performed in the frequency
domain or in the time domain. We get one delay for a given window and move the
window by constant number of samples along the two seismograms. The operation is
repeated along the entire length of the seismograms: a curve delay versus lapse time is
plotted. In the absence of correlated signals, like before the P arrival time or when the
coda becomes smaller than the noise, the delay is erratic. Despite the fact that they
are computed by correlating different waveforms, delays remain remarkably stable when
the amplitudes are larger than the ambient noise. This may be taken as an independent
estimate of the good precision of the measurement (see Fig. 2). Matsumoto et al. (2001),
Nishimura et al. (2000, 2005), and Peng and Ben-Zion (2005) have presented excellent
applications of this technique on recent data.
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4. Relocating Doublets from P and S Travel-Time Delays

4.1. Double-Difference Location

In a standard earthquake location, we measure the arrival times of P waves (and S).
Then, we compute the sum of the square of the differences between the observed travel
times and the computed travel times for different inputs. The hypocenter and origin
time minimize this misfit function: we obtain an absolute location. In a doublet study, the
measurements are P delays (or S delays), that is, differences in arrival times between the
two events. The location is found by minimizing the square of the differences between
measured delays and computed delays. Therefore, differences of differences—double
difference—are computed. The location is relative: one event is positioned with respect
to the other. There are various techniques for relocating doublets, but they usually apply
as far as the interevent distance is small regarding the hypocentral distance. The simplest
method is to perform a grid search of the minimum of the misfit function (Poupinet et al.,
1984). This technique is not the most computationally efficient; linear inversion is a
better tool. However, grid search is still valuable in heterogeneous media, when
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nonlinearity could pose numerical problems. Fréchet (1985) proposed a simple linear
approach. He considered a location difference vector r ¼ (@x, @y, @z) and the slowness
vector sk (whose module is supposed to be constant around the hypocenters). The delay is
the dot product of the slowness vector by the relative position vector
tk ¼ sk�r; ð4Þ

For a doublet, the later equation leads to a set of n equations (n ¼ number of stations)
with four unknowns, @x, @y, @z, and Dho, the origin time difference minus the arbitrary
time shift introduced for delay computation,
tk ¼ Dho þ @x sin Ak sin Ik þ @y cos Aksin Ik þ @z cos Ikð Þ=V; ð5Þ

where Ak and Ik are respectively the azimuth and the take-off angle of the wave vector
and V is the velocity around the hypocenters. Fréchet (1985) solved these equations by a
singular value decomposition technique. Accuracy in the computation of double-
difference location increases as the square root of the number of similar events contained
in a multiplet, as far as the probability density function of the time delay is gaussian
(Got et al., 1994). To avoid the inversion of huge matrices, Got et al. (1994) directly built
the Hessian matrix without storing the derivative matrix and used Cholesky decomposi-
tion for solving the weighted normal equations. This approach is linear and limited to the
case where interevent distance is small compared to the hypocentral distance: all rays
leaving the sources and reaching one station have a similar wave vector. It is, however,
fast and accurate and convenient. In a hydraulic injection experiment with seismograms
sampled at 20,000 Hz, Fréchet et al. (1989) achieved a precision of a few centimeters in
relative distance between tiny magnitude events. The algorithm has been generalized to
the case of extended multiplets by relocating them progressively (Got et al., 1994).
Jordan and Sverdrup (1981) wrote a more general algorithm and used it to relocate
teleseismic clusters. Waldhauser and Ellsworth (2000) generalized the linear approach to
distant events, each ray being characterized by a wave vector. This allows the computa-
tion of the geometric center of the cluster if event separation is sufficient and if the
modeling of P (and S) velocities is correct. Wolfe (2002), Menke and Schaff (2004),
Michelini and Lomax (2004), and Monteiller et al. (2005) discussed some properties of
double-difference locations. Zhang and Thurber (2003) and Monteiller et al. (2005)
applied double-difference location using 3D tomographic models. Unfortunately, doub-
lets used for monitoring temporal variations are made from very similar events which are
extremely close; they do not allow the accurate determination of their absolute position.
4.2. Two Synthetic Examples with IASP91 Travel Times

Let us present the delays computed for two examples of synthetic doublets. Travel
times of body waves are listed in propagation tables like IASP91 or are computed.
The output formats of the software “ttimes” (Kennett et al., 1995) were modified to
get a precision of 0.1 ms. We used the distribution of stations of the Japanese Hi-net array
(Obara et al., 2005), and the hypocenter is that of the first event listed in Table 1. The first
example is a shallow doublet (Fig. 3a) at a depth of 5 km and the second example is a
deep doublet (Fig. 3b) at a depth of 65 km. Both pairs of events are 15 m apart on the
horizontal plane and 15 m apart in depth. The circles in Fig. 3a and b are the theoretical



TABLE 1. Hypocenters of an excellent doublet recorded by Hi-net array the in Japan

Date Origin time Latitude Longitude Depth Magnitude

2003/08/25 06:08:31.78 (JST) 35.686 N 140.127 E 65.94 2.2

2005/05/21 04:20:31.39 (JST) 35.683 N 140.127 E 65.10 2.4
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delays. Figure 3a exhibits two distinct sinusoidal curves: one sinusoid corresponds to
stations at short distance (<0.8�) and the other to stations at large distance (>0.8�).
Figure 3b shows more dispersed delays but a single sinusoidal pattern remains. How can
we explain these simple patterns? In a distance interval where apparent velocity is
constant, the delay tk is a sinusoidal function of azimuth; the amplitude of the sinusoid
is related to the distance between the two hypocenters, r12, and its phase to the azimuth of
the vector joining the two events, az12:
tk ¼ r12 * @TP Dk;hð Þ=@Dð Þ * cos azk�az12ð Þþ@z * @TP Dk;hð Þ=@hð ÞþDh0: ð6Þ

Dk and azk are the distance and azimuth to station k. r12 * cos (azk�az12) is the projection
of r on the unit horizontal vector toward station k. @z is a depth change and Dh0 the
difference in origin times. @TP(Dk, h)/@D and @TP(Dk, h)/@h, the distance and depth
derivatives of the hodochron TP(D, h) are both standard outputs of travel-time computa-
tions. For a simple velocity model, @TP(D, h)/@D or its inverse ck, the apparent velocity,
remains nearly constant on large distance intervals. For crustal events (Fig. 3a), the Pg

has an apparent velocity of �6 km/s and Pn �8 km/s. The sinusoid at short distance
corresponds to Pg and the sinusoid at longer distance to Pn. The average offset from the
zero base line is due to the change in depth @z. Also an error in origin times causes an
offset in the base line of delays. For a deep event, the apparent velocity is varying
continuously and becomes constant at large distance, so the sinusoidal pattern appears
better for long distance stations; the scatter of delays is larger at short distances. These
synthetic examples show that we can get the location difference vector from the delays
versus azimuth graph. Difference in origin times or depth change can be retrieved from
the offset of the base line with respect to zero: we subtract the mean (or the median)
delay. The amplitude and phase of the sinusoid at large distances give the amplitude and
azimuth of the epicenter difference vector.
4.3. Possible Technical and Intrinsic Difficulties

Any instrumental error in the database affects the precision of delays measurements.
Clock precision should be �20–100 times better than the sampling rate, because the
cross-correlation achieves a precision 10 times better than the sampling rate. Large clock
errors, for instance, 0.01 s, are easy to pinpoint, but errors which are of the same size as
the variance of travel times (induced by 3D structure fluctuations) are nearly impossible
to detect. Mistakes like the labeling of components or a change in the transfer function of
a station can also be detected (see, e.g., Rubin, 2002). In a study of temporal change,
we compute residuals of P and S delays, that is, the difference between delays and
theoretical delays; we cannot use raw measurements of P and S delays. The precision of
residuals depends on the precision of the velocity model; our frequent limitation in model
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description limits our capacity to detect temporal changes from non perfect doublets.
In case of a very good doublet, the mislocation vector is nearly null and the observed
delays are the basic data containing directly the information on temporal travel-time
changes. The search for very good doublets is a must for tracking temporal variations.
5. An Example of Observed Delays: An Excellent
Doublet in Japan

Figure 4 is a map of S–P delays for doublet 2003/08/25–2005/05/21 (hypocenters from
the catalog listed in Table 1) recorded by the Hi-net Japanese array. The delays are in
millisecond and are extremely small. The distance between the two events is of the order
of a few meters. We should keep in mind that these two events originate at a depth of
65 km.
Figure 5 is an azimuthal plot of P and S raw delays for the same doublet. Residuals of

delays are similar to raw measured delays when the two events are at the same location.
The variance of P and S delays is of the order of 3–4 ms.
Let us consider some typical cases of travel-time changes. If velocity is changing in a

small area beneath contiguous stations, and if the relocation process and the instrumental
changes do not completely erase the anomaly, we should detect the change in the
residuals. Like in any hypocenter search, the spatial distribution of stations is a key
ingredient. Temporal changes may be “mapped” into location changes. For instance, an
isotropic change in velocity in the entire region will be essentially mapped in the origin
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time and depth difference. A large azimuthal gap in stations coverage will prevent
detection of some “one-sided” temporal changes: they would be equivalent to a location
difference vector.
Despite an uneven coverage in azimuth, Fig. 5 exhibits a sin (2 azimuth) pattern. Clock

errors cannot cause the observed pattern because, according to the manufacturer, the time
precision ofHi-net GPS clocks is significantly better than 1 ms.What would be the effect of
a stress change in the region? Velocity is dependent on stress (Nur and Simmons, 1969); a
change in stress induces a small directional variation in velocity. A temporal change in
anisotropy gives a sin (2 azimuth) pattern in opposition with the sin(azimuth) pattern related
to location difference. The squares in Fig. 5 show the delay expected when anisotropy has
changed between the dates of occurrence of the two events of a doublet. Notice that this is a
very small effect that can be hidden by the mislocation pattern when the two events of
a doublet are not exactly similar. Also, seasonal variations in the weathered layer can be
of the order of a few milliseconds and should be checked before any firm conclusion.
More complex simulations of a scenario in which only a small region is affected by

such a change in anisotropy can be computed. The detection of anisotropy related
changes is important because strain rate at depth could be measured from precise seismic
observations. Several active seismic experiments have a similar goal; shots or a
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continuous vibration sources are activated at regular time interval, and a transit time is
monitored as a function of time. One limiting factor for this type of experiments is that
the weathered surface layers may be sensitive to periodic seasonal effects.
Furumoto et al. (2001) repeated explosions in the Kanto-Tokai region and found

travel-time changes as large as 10 ms over a 10-year period. Nishimura et al. (2005)
repeated shots in the vicinity of Iwate volcano and reported a 1% velocity decrease
associated with a M6.1 event in 1998 followed by a partial recovery of velocity
until 2002.
6. Slope of the Delay in the Coda and the Measurement
of S-Velocity Temporal Variation

According to Aki (1969), coda waves are essentially S-wave energy backscattered from
randomly distributed inhomogeneities in the volume surrounding the source and the
station. The first remarkable observation is that the two records of a good doublet are
nearly identical for a very long duration; randomness generates exactly the same signal.
Poupinet et al. (1984) found experimentally that delay versus lapse time curves are often
straight lines but exhibit a slope, null, positive, or negative: the delay increases or
decreases proportionally to lapse time following the arrival of S. One possible explanation
is that average S velocity changes in the volume between the two dates of a doublet. In the
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velocity by the relationship: a ¼ �DVS/VS.
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hypothesis codawaves are backscattered Swaves, a homogeneousVS changewill induce a
delay in the coda at lapse time t, t(t)¼�t DVS/VS. The slope a of the delay versus time is
proportional to the S velocity change: a ¼ �DVS/VS. The lapse time t on which t(t) is
measurable being as large as one or severalminutes, the precision on a can reach�10–4 or a
few 10–5. Therefore, we should be able to detect an average change in S velocity in a large
region with a precision better than 10–4. This is an elementary type of coda interferometry
(Snieder et al., 2002). The measurement of the slope is not dependent on the precision in
timing; it would be erroneous if the clock was drifting over a few 10 s. One important
question is to know if the coda is generated in the deep crust; Phillips and Aki (1986),
Dainty and Toksöz (1990), Mayeda et al. (1991, 1992), and Koyanagi et al. (1992) argue
that the coda is essentially generated in the near vicinity of stations so that any temporal
change may be very superficial. Figure 6 shows an example of a delay versus time lapse
curve for doublet 2003/08/25–2005/05/21. The average slope of the three lines measured
on the three components of station N, NRTH, is �3 � 10–5 and it could correspond to a
temporal S velocity change�DVS/VS.

From simple synthetic seismogram computations, Poupinet et al. (1996) illustrated
more complex patterns of coda delay configurations due to simple changes in the deep
structure of volcanoes.
7. Possible Artifacts in DVS/VS Measurement: Arguments from
the Coda of Spatial Doublets

Studying temporal variations in the coda implies to knowwhether variations of the delay
as a function of lapse time can occur in the absence of temporal variations of crustal
properties. Got and Coutant (1997) studied a 71-event cluster recorded in south flank of
Kilauea volcano (Hawaii) by the HVO (Hawaiian Volcano Observatory) seismic network
from 1979 to 1983 and selected from this cluster 27 subclusters forming 83 doublets
occurring during 1-week periods or less (see Fig. 7a). Such short periods do not contain any
eruption or intrusion, in such a way the medium properties may be assumed as constant
during this time. Cross-spectral time delays were computed along the entire seismograms,
using 1.28 s signal windows sampled at 100 Hz. Relative relocations were performed from
the P-wave time delays with an average accuracy of 50 m horizontally and vertically.
Events were found to be located on a subhorizontal decollement plane beneath the Kilauea
south flank (see, e.g., Got et al., 1994), and cover a 1 km � 1 km wide, 300–500 m high,
volume. They may be considered as an (earthquake) array, playing at depth the same role
as seismic station networks at the earth surface. Given the short average interevent distance
in the cluster, having regard to the hypocentral distance range (10–100 km), waves were
assumed to leave the hypocenters with the same slowness vector for each station. The
complete set of 83 relocated event pairs was used to infer the slowness vector direction for
each station as a function of lapse time from the time delay computed for each signal
window and the event relative positions. This computation was performed from the onset
of the P wave up to four times the S travel time. For each station and each signal window, a
linear system was solved:
rij�sk ¼ DT k
ij ; ð7Þ
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where rij is the relative position vector for events i and j, sk is the slowness vector for
station k and DTk

ij ¼ dtkij � dtorij, where is the time delay computed between each signal
for a given time window for the station k and the events i and j, and is the error in origin
time difference.
The previous equation may be written, in matrix form
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FIG. 7. (b) Stereogram showing the direction of arrival of energy in the early coda of several

seismic stations, from Got and Coutant (1997).

387MONITORING TEMPORAL VARIATIONS OF PHYSICAL PROPERTIES
whereR is the matrix containing the relative positions rij, s
k is the slowness vector for the

station k and dk is the time delay vector containing,
whose solution is
sk ¼ RTC�1
d R

� ��1
RTC�1

d dk; ð9Þ
where Cd is the data covariance matrix.
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Time delay computation was performed using the moving window technique from the
P-wave onset to the end of the coda. Results of this computation show variations of the
delay as a function of the lapse time, even for event pairs that are very close in time, for
which there is a few probability to have a temporal variation of the medium properties.
To explore the origin of such variations, the direction of the slowness vector was
computed for each signal window. The computation converges easily, showing that for
each signal window, the whole set of time delays computed for the 83 event pairs is
explained by only one slowness vector. It proves that purely geometrical propagation
effects may explain the variation of the time delay in the coda. The order of magnitude of
this time delay variation is controlled by the interevent distance and the seismic velocity
around the hypocenters. Results of the slowness vector computation (Fig. 7b) show that
the seismic energy dominating each window leaves the hypocenter in directions close to
the station one, for lapse times up to 4ts. For some stations (e.g., stations AHU, RIM,
OTL in Fig. 7), the emission remains coherent and shows a rotation of the azimuthal
plane with the propagation time. For others (e.g., stations HLP, POL, KPN), the energy
remains very concentrated in the direction of the station and reveals reverberation close
to the station: most of the travel time is spent in the most superficial and slow layers,
rather than at depth. For other stations (e.g., ESR, PAU, MPR), the energy is more
randomly distributed through wave packets, though it does not cover the whole space
around the source. Similar conclusions have been reached for comparable geological
settings by numerous authors and various methods [see, e.g., Phillips and Aki (1986),
Dainty and Toksöz (1990), Mayeda et al. (1991, 1992), Koyanagi et al. (1992), Dodge
and Beroza (1997), Rubinstein and Beroza (2004)]. Notice that Dodge and Beroza (1997)
used beam forming from an array of similar earthquakes to compute the slowness power
spectrum of coda waves.
This study shows that for small-magnitude earthquakes, seismic energy following S

waves may never reach the random scattering regime, which may be reached at longer
propagation times. Slow superficial layers exhibiting strong impedance contrasts with
surrounding or underlaying formations may contribute strongly to build the early coda.
Seismic energy coming from these slow superficial layers may mask scattered seismic
energy coming from depth. A suitable way to avoid contamination of the deep scattered
wave field by the superfical reverberation is to use data recorded by buried seismic
station networks. Hi-net seismic network offers from this point of view extremely
favorable characteristics, as most of the stations are buried at depth of some (a few)
hundred meters and may be located below the more unconsolidated sediment layers
responsible for the superficial reverberation. Another important conclusion is that the
early coda bears the signature of the actual source radiation, recorded at the surface; this
information clearly appears by studying the time delays computed in the coda of spatial
earthquake doublets. Such a conclusion was already reached by Got et al. (1990) and Got
and Fréchet (1993), by studying amplitude ratios of earthquake doublets in Central
California. Got and Coutant (1997) have shown that typical relative variations of the
time delay for spatial doublets were in the 0–1% interval. An interevent distance of
100 m and S velocity �3 km/s give a time delay of �0.035 s in the direction of the
relative position vector. A station located in the azimuth of the doublet may show a
time delay decrease in the coda in the range 0.3–0.7%, that is, typically in the range of the
variations that may be measured by using temporal doublets. A practical consequence is
that the study of temporal variations using time delays or amplitude of microearthquake
doublets, which has been undertaken again recently (e.g., Li et al., 2007), should
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use extremely close events (some meters—less than a few tens of meters for the usual
S-wave velocities encountered in the upper crust), to avoid a significant time delay
contribution due to purely geometrical propagation effects.
8. Search for Temporal Variation of S-Wave Splitting

S-wave anisotropy is widespread. Anisotropy is related to layering and to the distribu-
tion of cracks and fluids inside rocks; it is dependent on stress (see, e.g., Crampin, 2001).
The S-wave train is composed of two S waves, a fast one and a slow one, separated by a
small time delay. The usual procedure to detect S-wave splitting is to plot the horizontal
S-particle motion: the particle motion displays a linear segment at the beginning of the
S-wave train and then becomes chaotic. The fast axis is the direction of the initial S linear
segment and the slow axis is perpendicular to it. The delay tsplitting between the fast wave
and the slow wave and ’ the polarization angle define S-wave splitting. Let us suppose
that the S-wave train is recorded on the radial and transverse components SNS and SEW.
Considering rays close to the vertical, we have the relationships
Sfast tð Þ ¼ SNS tð Þcos ’� SEW tð Þsin ’;� � � �

co
cr
b

slow tð Þ ¼ SNS t� tsplitting sin ’þ SEW t� tsplitting cos ’; ð10Þ

he case of vertical S waves, the horizontal components are rotated and their cross-
S

tion is computed for different polarization angles and delays. The maximum of the

In t
rrela
oss-correlation gives ’ and tsplitting. If a change in anisotropy occurs on the S ray path
etween the two dates of a doublet, the new slow wave is

S0slow tð Þ¼SNS t�tsplitting�@tsplitting
� �

sin ’ þ SEW t�tsplitting�@tsplitting
� �

cos ’;
ð11Þ

where @tsplitting is the temporal change in splitting. This delay can also be defined as
@tsplitting ¼ tslow � tfast; ð12Þ
where tfast is the delay between the two fast component S records, and tslow the delay
between the two slow component S records. Both tfast and tslow are measured by cross-
correlating very similar waveforms and are very precise measurements. The phases
between the N–S and E–W components will also vary with time.
Aster et al. (1990) studied shear wave splitting on the records of the Anza array in

southern California. They measured S-wave splitting on individual events with
an automated processing and checked the temporal variations of splitting on changes
in multiplets waveforms. Their very precise analysis shows the complexity of S-wave
splitting measurements and the ambiguity between sources, local effects and large
scale temporal changes. Bockelman and Harjes (2000) used a doublet technique to
observe velocity changes after the injection of water in the KTB deep borehole
in Germany. Saiga et al. (2003) found evidence for temporal changes in anisotropy in
Japan related to an earthquake in the Tokai region. Peng and Ben-Zion (2005) studied
spatiotemporal changes in anisotropy in the aftershocks sequences of the 1999 M7.4
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Izmit and M7.1 Düzce earthquakes in Turkey; temporal change in splitting delay
associated with the Düzce earthquake are smaller than 2%. In a controlled source
experiment using the ACROSS vibrator, Ikuta and Yamaoka (2004) found that the S
velocity between the surface and a depth of 800 m slowed down by 0.4% and 0.1% after
two M>6.4 distant earthquakes and then recovered its initial value.
Figure 8 zooms on the horizontal components of one Hi-net station for doublet 2003/

08/25–2005/05/21 and shows a possible variation in anisotropy between 2003 and 2005:
the delay is different by 2 ms at the beginning of the S wave than at the end; this could
correspond to a variation of anisotropy of about 3% in one station of Hi-net array.
9. Search for Temporal Variation of Coda Attenuation

After Chouet’s (1979) pioneered temporalQ-coda studies, Q coda has been considered as
a key parameter for monitoring physical changes in the crust [see Sato (1988) for an early
review; Hiramatsu et al. (2000) for an application to Kobe earthquake]. Jin and Aki (1993)
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presented evidence for Q-coda temporal variations that could be correlated with changes in
the seismicity rate. More recently, Aki (2004) strongly advocated Q-coda decay and
seismicity rate in a certain magnitude interval as essential seismic precursors to large
earthquakes.MostQ-coda studies are statistical analysis of the rate of decay of the amplitude
of coda waves using a large number of earthquakes, and temporal comparisons involve sets
of earthquakes having different source parameters. Another approach using doublets is
tempting, but it is limited by the smaller number of data. Starting from the expression
given byAki (1969) and Chouet (1979), the logarithm of the spectral ratio of the amplitudes
of the coda of two events in station i is
Log SRi f ; tð Þð Þ ¼ �pftDQ=Q2 þ SRi0; ð13Þ

where f is frequency, t lapse time, Q coda Q, and DQ the change in coda Q. For one
station, SRi0 is a constant. So for a given frequency and DQ, the log of the spectral ratio is
proportional to lapse time. Got et al. (1990) processed doublet data to monitor Q–1

temporal changes in Coyote Lake region in California with this model; they did not find
any significant Q-coda temporal change. Moreover, they showed that there are many
possible variations in source radiation (source size and rupture velocity) that may
produce amplitude changes which are not related to temporal changes, even when
using coda waves from highly similar and close events (located within some meters).
Coda waves showing such coherent source effects belong to the early coda, which
constitutes most of the coda of the small-magnitude earthquakes studied: in that case it
seems that scattering regime is not reached. Therefore, small-magnitude earthquake
doublet amplitude ratios should be more surely used to infer the absence of temporal
variations rather than to find temporal variations. Beroza et al. (1995) performed a
detailed analysis of 21 doublets recorded between 1978 and 1991 in the Loma Prieta
earthquake region. They placed an upper bound of 5% on preseismic, coseismic, and
postseismic change in coda Q in the epicentral region of Loma Prieta.
10. “Virtual Doublets” Computed by Cross-Correlating
Seismic Noise

As mentioned previously, very good doublets (i.e., having similar source processes
occurring within a few meters or tens of meters) are seldom and restricted to very active
tectonic or volcanic environments. This limitation can be partially overcome by using
explosions as repetitive seismic sources (Li et al., 2006). However, this activemonitoring
technique suffers from the difficulty to repeat explosions in remote and hardly accessible
terrains (volcanoes). Here, we present a new technique of real-time passive monitoring
using cross-correlations of ambient seismic noise as repetitive seismic sources.
The basic idea is that a cross-correlation of random seismic wave fields such as coda or

noise recorded at two receivers yields the Green function, that is, the impulse response of
the medium at one receiver as if there was a source at the other (Weaver and Lobkis,
2001; Campillo and Paul, 2003; Campillo, 2006; Wapenaar, 2006). This property has
been used for imaging the crust at regional scales (Shapiro et al., 2005; Sabra et al., 2005;
Yang et al., 2007) and, more recently, has been applied to infer the internal structure of
the Piton de la Fournaise volcano at La Réunion island (Brenguier et al., 2007a).
By computing noise cross-correlations between different receiver pairs for consecutive
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time periods, we make each receiver to act as a virtual highly repetitive seismic source.
Green functions computed for consecutive time periods may therefore be considered as
virtual doublets. They can then be used to detect temporal perturbations associated to
small velocity changes (<1 %, Stehly et al., 2007).

We applied this method to study the Piton de la Fournaise volcano on La Réunion
island (Fig. 9a). We used the continuous seismic noise recorded during year 2006 by 21
vertical short period receivers operated by IPG Paris to compute 210 cross-correlation
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functions corresponding to all possible receiver pairs. We used the spectral band between
0.1 and 0.9 Hz where the recovered Green functions have been demonstrated to consist of
Rayleigh waves that are sensitive to the structure at depths down to 2 km below the
edifice surface (Brenguier et al., 2007a). The cross-correlation functions obtained by
correlating 18 months of seismic noise are called the reference Green functions.
The temporal evolution was then tracked by comparing the reference Green functions
with current Green functions computed by correlating the noise from a 10-day-long
moving window. We applied the technique of CSMW to measure time shifts between the
current and reference Green functions and estimate the relative velocity changes (Dv/v)
by using the technique described in Section 6.

Figure 9b shows the temporal evolution of the relative velocity changes before the
eruption of July 2006. The figure shows a clear precursor to the volcanic eruption
characterized by a decrease of relative seismic velocities measured with an unprecedent
accuracy (0.05%). This precursor starts about 20 days before the eruption and reaches
�0.3% of relative velocity change few days before the eruption. This type of precursor
was also observed for five other eruptions of the Piton de la Fournaise volcano
(Brenguier et al., 2007b). We interpret the observed decreases in seismic velocities as
an effect of the dilatation of a part of the edifice resulting from the magma pressurization
within the volcano plumbing system similar to observations at Mount Etna (Patanè et al.,
2003). This new direct observation of the dilatation of volcanic edifices should thus
improve our ability not only to forecast eruptions but also to a priori assess their intensity
and environmental impact. Finally, this new technique of passive monitoring using
virtual doublets may also be useful in other geophysical, engineering, and geotechnical
applications that require nondestructive monitoring of the media.
11. PKP From Teleseismic Doublets and the Rotation
of the Inner Core

A few large magnitude earthquakes have similar waveforms and are recorded at large
distance; they are called teleseismic doublets. They are extremely useful for tracking
temporal variations deep inside the Earth. We illustrate this with an application on the
rotation of the inner core relatively to the mantle of the Earth. Song and Richards (1996)
studied the differential travel times of PKP(DF) and PKP(BC) for South Sandwich
Islands earthquakes recorded in COL, Alaska. They noticed a change in PKP(DF) travel
time as a function of date. Their interpretation is that this change in PKP(DF) travel time
is caused by superrotation of the inner core of the Earth relative to the mantle: the inner
core would rotate 1� per year faster than the daily rotation of the mantle and crust.
The very small size of the residual anomaly, 0.3 s for 30 years, led to questions about the
robustness of this observation. Poupinet et al. (2000) showed that teleseismic doublets
should contribute to this debate by improving on the time delay precision. Song and
Richards’s data were reprocessed by pairs and the best doublets were selected from their
data. After alignment of the two records, the relative delays between PKP(DF), PKP
(BC), and PKP(AB) are measured by correlation as presented in Chapter 3, this volume.
Observed PKP(BC) delay–PKP(DF) delay is plotted versus observed PKP(BC) delay–
PKP(DF) delay. Theoretical PKP(BC)–PKP(DF) and PKP(AB)–PKP(BC) are computed
with “ttimes” (Kennett et al., 1995) for hypocenters positioned on a 3D grid around the
doublet. PKP(AB)–PKP(BC) is proportional to distance but depends also on depth which
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is not precisely known. These theoretical points form a narrow band—the mislocation
band. If PKP(DF) changes significantly with date, a measurement lies outside the
mislocation band. Figure 10 is a mislocation diagram for PKP phases from South
Sandwich events recorded in COL, Alaska. Full lines show the mislocation band in
which the data should be in the absence of inner core rotation. The dotted lines
correspond to different PKP(DF) travel-time changes, as expected in the case of inner
core rotation. There is no need to relocate the events and to compute observed travel-time
residuals. Some controversies followed because phase reversals of core phases may
occur and are sometimes difficult to assess. The precision of the delay depends on the
similarity of the waveforms and when doublets are not perfect, the polarity of PKP can
reverse. Zhang et al. (2005) found a very good South Sandwich Islands doublet which
shows a temporal change in PKP(DF). Doublets have only been recently used in global
seismology and despite their rare occurrence, they have a great potential for detecting
temporal variation anywhere inside the Earth. The study of differential travel times
of clusters of events could also contribute to an improved mapping of structure at
depth.
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12. Conclusion

Finding doublets in a digital seismic data bank can be automated by performing a
systematic computation of the coherency between events. This computation does not need
the determination of accurate arrival times. The basic tools for doublet processing are
cross-correlation or cross-spectrum moving window techniques. Delays between P and S
waves are input for relative relocation; they are measured with a precision of a few
milliseconds on a large array and better on a smaller scale. After relocation, P and S
delay residuals are obtained; theymay contain information on temporal variations of P and S
travel times in the crust. To achieve precision, events must be recorded by a dense seismic
array with good azimuthal coverage. With such constraints, in most seismic regions, there
are a few high quality doublets. We illustrate a possible change in crustal anisotropy with
time in Central Japan. The small size of the residual change supposes that timing is perfect.
Clock precision is not presently verifiable; it would be extremely helpful to be able to a
posteriori check clocks. To avoid time delay variation in the near coda due to simple
geometrical effects, temporal change studies should be restricted to the late coda of very
close and highly similar doublets. The late coda contains information on the stability of the
medium or on an average temporal change in S velocity: in a simple model where the coda
is made from backscattered S energy, the slope of the delay versus lapse time is equal to
�DVS/VS. The rate of decrease of the amplitude of the late coda of highly similar earth-
quakes allows a precise measurement of temporal changes in Q coda. Natural doublets
studies can complement active artificial source experiments like ACROSS; the weathered
zone is the site of large changes in velocity so that the presence of both the source and the
receiver near the surface makes measurements less sensitive to deep layer properties.
The S-wave phase can also be processed to find extremely small temporal changes in
S-wave splitting. A systematic and routine processing of doublets and multiplets on the
best seismic arrays would certainly improve investigations of temporal changes in crustal
properties. The Japanese Hi-net array and its database are very adapted for this kind of
study. The use of “virtual doublets” computed by cross-correlating seismic noise is a
promising technique: it should provide precise measurements of strain variations in the
upper crustal layer, on a large scale, and can provide one of the best tool for forecasting
eruption and contribute to earthquake risk assessment.
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Abstract

Studies of high-frequency (above 1 Hz) earthquake source processes are important not only to

clarify the earthquake source process on smaller length scales but also to quantitatively predict

strong ground motion. However, the application of conventional waveform inversion methods is

not straightforward for high frequencies, because random heterogeneities in the Earth cause

incoherent scattered waves and the source process is also hard to treat deterministically. To obviate

these difficulties, seismogram envelope inversion methods have been developed since the 1990s for

clarifying high-frequency earthquake source processes. In this chapter, we first give a broad

discussion of the methods in terms of data types, Green’s function, source parameters, inversion

methods, and so on. We developed an envelope inversion method in 1998, in which we used

theoretical envelope Green’s functions based on the radiative transfer theory as a propagator from a

source to a receiver, and estimated the spatial distribution of high-frequency seismic energy

radiation from an earthquake fault plane. We have applied the envelope inversion method to nine

moderate-to-large earthquakes. Here, we compile the results and clarify some characteristics of

high-frequency seismic energy radiation from moderate-to-large earthquakes. Concerning a scaling

of high-frequency radiated energy, logarithm of the high-frequency seismic energy is found to be

proportional to the moment magnitude with a coefficient of proportionality of 1, which is different

from 1.5 for whole-band seismic energy. Moreover, a regional difference in high-frequency seismic

energy radiation is detected for the earthquakes analyzed: Earthquakes in offshore regions

of northeastern Japan are found to be more energetic by about an order of magnitude than inland

earthquakes in Japan and Taiwan. Regarding the spatial relations, we find four earthquakes

in which high-frequency radiation occurs dominantly at the edges of asperities (areas of large

fault slip); in four cases there is no correlation between locations of high-frequency radiation and

asperities. For one earthquake, we have no fault slip model. So far, reasons for the variation are not

known yet, heterogeneous distribution of stress, strength, and material properties may control the

variability. These characteristics will provide important information for the study of high-frequency

earthquake source process and improvements for predicting strong ground motion.
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1. Introduction

Studies on high-frequency (usually higher than 1 Hz) earthquake source processes of
moderate-to-large earthquakes are important not only for clarifying the earthquake source
processes in detail but also for quantitatively predicting strong ground motion. However,
it is not easy to apply conventional waveform inversionmethods for high frequencies. One
of the reasons is that random heterogeneities in the Earth cause scattering and produce
incoherent wave trains in seismograms (Sato and Fehler, 1998). Another reason is that the
source process of moderate-to-large earthquakes becomes complex at higher frequencies
so it is hard to treat it deterministically (e.g., Koyama, 1994).
Historically, various approaches have been developed to clarify high-frequency earth-

quake source process of moderate-to-large earthquakes. Hypocenter determination of
subevents may be the most primitive method, in which arrival times of large-amplitude
phases are picked on strong-motion records and their source locations are determined. If
the large-amplitude phases have not originated from structures (e.g., reflected or scat-
tered or refracted waves), the phases are attributed to earthquake sources. Waveform data
other than these large-amplitude phases are neglected in this kind of analysis. Moreover,
information on the amplitude of the phases is not considered. Measurements of earth-
quake source spectra had been conducted and led to heterogeneous fault rupture models
(e.g., Gusev, 1983; Papageorgiou and Aki, 1983; Koyama, 1985). This kind of study uses
amplitude information of all seismograms but lacks spatial resolution, because the
amplitude source spectrum is calculated from seismograms in a long time window. To
improve the spatial resolution, it is necessary to investigate the temporal change in
observed signals. So, time series of seismogram envelopes have been used since the
1990s to invert for high-frequency earthquake source processes. (e.g., Gusev and Pavlov,
1991; Cocco and Boatwright, 1993; Zeng et al., 1993; Kakehi and Irikura, 1996).
In particular, Zeng et al. (1993) and Kakehi and Irikura (1996) have succeeded in

clarifying the spatial distribution of the intensity of high-frequency wave radiation on
earthquake fault planes. They have also enabled the comparison of the results to the
spatial distribution of fault slip obtained by conventional waveform inversions in lower
frequency ranges. The relationship between the locations of high-frequency wave radia-
tion and the locations of asperities (regions with large fault slip) identified by studying
low-frequency data is an important characteristic to be explained by the theory of
dynamic earthquake rupture. At the same time, this relation is recently one of the central
issues in strong-motion seismology from a perspective of the prediction of broadband
strong ground motion (e.g., Irikura and Miyake, 2001). Regarding the lower frequencies,
fault slip models found by waveform inversion methods have been accumulating since
the middle of 1980s. Based on the slip models, some statistical characteristics in slip
distributions on earthquake faults have been successfully extracted (e.g., Somerville
et al., 1999; Mai and Beroza, 2000). On the contrary, the number of high-frequency
envelope inversion analyses is much smaller than that of waveform inversion analyses in
lower frequencies. Accordingly, our knowledge about the high-frequency seismic wave
radiation is much smaller than that about fault slip models. However, the number of high-
frequency envelope inversion analyses has been gradually increasing since the 1990s.
Therefore, we here make the first trial to extract statistical characteristics in high-
frequency wave radiation based on the previous results obtained by envelope inversions.
Moreover, we discuss the relationship between the locations of high-frequency wave
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radiation and those of low-frequency wave radiation. The compilation will provide
us with important information which should be incorporated into the simulation of
broadband strong ground motion.

2. Envelope Inversion Methods

2.1. General Framework

As far as the Earth can be assumed to be a linear system, an observed seismogram u(t)
can be expressed by the convolution between a source time function S(t), an impulse
response for propagation paths P(t), that is the Green’s function, and a receiver (site)
response function R(t) as
FIG.
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ensemble average is substituted by a moving time average. Therefore, <u tð Þ2> can be
calculated as a mean-squared (MS) envelope or a squared envelope of the analytic signal
of the observed seismogram u(t). Assuming that high-frequency seismic waves are
incoherent, we can calculate the observed envelope by the convolution of each envelope
for the source, the propagation path, and the site effects, respectively. This characteristic
facilitates a direct calculation of an envelope of Green’s function, which we call the
envelope Green’s function.
We note that spatial coordinates do not appear explicitly in Eqs. (1) and (2). So, the

equations are for a point source and a receiver in a strict sense. For multiple sources and
finite-sized faults, an additional convolution with respect to the spatial coordinates is
necessary. Such an extension is straightforward for Eq. (1) because of the superposition
principle for linear systems. However, the extension of Eq. (2) has to rely on an
assumption that energy radiated from different subsources is additive. This assumption
is equivalent to the incoherence of high-frequency seismic waves.
Most envelope inversion methods are based on the finite-fault version of Eq. (2).

However, some others make a forward calculation of synthetic seismograms based on the
finite-fault version of Eq. (1) and the envelope is used just in fitting for inversion.
However, differences between the approaches are small because signals are assumed to
be random with zero mean.

2.2. A Classification of Current Envelope Inversion Methods

It may be helpful to find similarities and differences in the envelope inversion methods
which have been proposed to date. Here, we make a classification of the methods in terms
of data types, frequency ranges, source parameters, Green’s functions, inversion meth-
ods, and so on as shown in Table 1. The source is modeled as a point source, multiple
point sources, or finite-sized faults. Frequency ranges are higher than 0.45 Hz in all the
methods. Types of the Green’s function are empirical or theoretical, and the data are
seismograms or envelopes. Estimation of source parameters is conducted by trial-and-
error methods, inversion methods, or deconvolution methods.
Iida and Hakuno (1984) is a pioneering paper in using temporal change in absolute

amplitude of acceleration seismograms for estimating intensity of source radiation on
earthquake fault planes. Because the amount of available data was small, trail-and-error
modeling was conducted for the 1968 Tokachi-Oki, Japan, earthquake and 1978 Miyagi-
Ken-Oki, Japan, earthquake. Gusev and Pavlov (1991) performed deconvolution of MS
envelopes of far-field P-wave velocity seismograms of the 1978 off Miyagi, Japan, earth-
quake (M 7.6), and estimated the location of a “short-period radiator,” which corresponds to
a centroid for high-frequency wave radiation. Cocco and Boatwright (1993) deconvolved
MS envelopes of acceleration records and estimated the power rate function for an after-
shock (ML 5.9) of the 1976 Friuli earthquake. Kakehi and Irikura (1996) estimated high-
frequency wave radiation areas on the fault of the 1993 Kushiro-Oki earthquake (MW 7.6)
by using root MS envelopes of acceleration seismograms. These four studies used seismo-
grams of small earthquakes as empirical Green’s functions.When there are records of small
events available which have the same location and focal mechanism as a target large event
(mainshock), realistic propagation effects can be naturally included in the empirical Green’s
function. However, that is not always the case. Petukhin et al. (2004) relaxed this constraint
a little and used average envelopes of small events located in the same area as a mainshock
as the envelope Green’s function, and invertedMS envelopes of squared velocity records of



TABLE 1. Envelope inversion methods for earthquake source studies

References Data type

Frequency

(Hz)

Source

model

Source

parameters Green’s function

Estimation

methods

Iida and Hakuno

(1984)

Near-field acc.

2 horiz. cmp.

No

description

Finite fault Acceleration

radiation

Empirical

seismograms

Forward

Gusev and Pavlov

(1991)

Teleseismic sqr. vel.

P-wave vert. cmp.

0.45–1.75 Point

source

Seismic

energy

Empirical envelope Deconvolution

and inversion

Zeng et al. (1993) Near-field sqr. disp.

2-cmp. sum

>5 Finite fault Displacement

radiation

Ray theory envelope Inversion

Cocco and

Boatwright (1993)

Near-field sqr. acc.

2-cmp. sum

No

description

Multi point

source

Acceleration

radiation

Empirical envelope Deconvolution

and inversion

Kakehi and Irikura

(1996)

Near-field rms. acc.

3-cmp.

2–10 Finite fault Acceleration

radiation

Empirical

seismograms

Inversion

Nakahara et al.
(1998)

Near-field S-wave sqr.

vel. 3-cmp. sum.

1–16 Finite fault Seismic

energy

Radiative transfer

theory envelope

Inversion

Petukhin et al.
(2004)

Near-field S-wave sqr.

vel. 3-cmp. sum.

1–16 Finite fault Seismic

energy

Empirical envelope Inversion
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the 1992 Avachinsky Gulf earthquake (Mw 6.8). Regarding the empirical Green’s function
method, estimated source parameters are relative to those of a small event for which the
empirical Green’s function is used.
The use of theoretical Green’s function is superior in terms of estimating absolute

values of source parameters as far as a reference station is correctly selected. However,
the number of the studies using theoretical envelope Green’s functions is very small.
Zeng et al. (1993) inverted MS envelopes of displacement seismograms from the 1989
Loma Prieta earthquake by using ray-theoretically calculated Green’s functions, and
mapped the high-frequency source radiation intensity on the earthquake fault. Nakahara
et al. (1998) inverted MS envelopes of squared velocity seismograms using the radiative
transfer-based theoretical envelope Green’s function, and estimated the spatial distribu-
tion of high-frequency seismic energy radiation on the fault plane of the 1994 far east off
Sanriku earthquake (Mw 7.7).
Finally, it is worth while to refer to two pioneering studies dealing with envelopes

though they are not inversion studies in a strict sense. Midorikawa and Kobayashi (1979)
proposed a method to calculate a velocity response spectrum on seismic bedrock due to
the rupture of a finite-sized fault. The method estimates an average empirical envelope of
a velocity motion of an oscillator with a certain natural period on the seismic bedrock due
to the rupture of a subfault. The envelope of the oscillator due to the entire fault is
obtained by summing up contributions from all subfaults. The maximum amplitude of
the envelope corresponds to the velocity response at the period on the seismic bedrock.
The method serves for a forward modeling of strong ground motion based on a fault
model. Koyama and Zheng (1985) proposed a technique to estimate spectral amplitude at
a frequency of about 1 Hz from envelopes of teleseismic P-wave displacement records
obtained by short-period sensors of the World Wide Standardized Seismic Network.
After the correction of propagation effects and instrumental responses, they estimated the
short-period seismic moment for 79 large earthquakes, and verified that the radiation of
high-frequency seismic waves is incoherent.
2.3. The Method of Nakahara et al. (1998)

Here, we make a brief explanation of the envelope inversion method of Nakahara et al.
(1998), because we will be mainly concerned with the results based on the method. The
method uses the theoretical envelope Green’s function developed by Sato et al. (1997)
based on the radiative transfer theory (e.g., Chandrasekhar, 1960). The radiative transfer
theory, sometimes called the energy transport theory or the multiple scattering theory,
was first introduced to seismology by Wu (1985) for stationary cases. Later, it was
extended to time-dependent cases numerically by Gusev and Abubakirov (1987) and
theoretically by Zeng et al. (1991), because seismic energy is usually radiated from a
transient (approximately impulsive) earthquake source. Because the radiative transfer
theory was initially used to explain coda envelopes of local earthquakes, the source
radiation pattern, which has a large effect on early parts but a small effect on later coda
parts, had not been included in the modeling. Sato et al. (1997) succeeded in introducing
the radiation pattern for a point shear dislocation (double couple) source and enabled the
synthesis of S-wave seismogram envelopes from the direct waves through coda. The
study paved a way to the application of the radiative transfer theory to detailed earth-
quake source studies.
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Here, we briefly explain the envelope Green’s function used in our envelope inversion
method. As shown in Fig 2(a), point-like isotropic scatterers are assumed to be
distributed randomly and homogeneously in an infinite medium, where the background
S-wave velocity V is constant. Only S waves are considered in the modeling. A double-
couple source is located at the origin from which seismic energy of unit amplitude is
impulsively radiated. In the framework of the radiative transfer theory, the energy
density EG x; tð Þ at a location x ¼ r; y;fð Þ in a spherical coordinate system and time
t can be expressed by the following integral equation:
EG
 x; tð Þ ¼ R y;fð ÞG x; tð Þ þ g0V

ð ð ð
dx0
Z 1

�1
dt0 G x� x0; t� t0

� �
EG x0; t0
� �

; ð3Þ
where r ¼ xj j, y is the zenith angle and f is the azimuth angle, and g0 is the total
scattering coefficient characterizing the scattering power per unit volume. The function
EG is the envelope Green’s function in the scattering medium. R y;fð Þ is the radiation
pattern of S-wave energy which is normalized as r R ðy;fÞdO ¼ 4p. The first term in
the right-hand side means the coherent part corresponding to the direct wave. The second
term means the scattered energy, which is given by integrating the contributions from the
last scattering point x0 and at lapse time t0. The propagator function G x; tð Þ is expressed
as
G x; tð Þ ¼ exp � g0V þ �ð Þtð Þ
4pVr2

d t� r

V

� �
for t � 0: ð4Þ
This is characterized by geometrical spreading, time lag due to propagation, and expo-
nential decay due to intrinsic absorption and scattering attenuation of seismic energy.
Intrinsic absorption � is related to the intrinsic Q value as Q�1

i ¼ �=o for an angular
frequency o.

For a double-couple source with the fault normal vector in the first axis and slip vector
in the second axis as shown in Fig. 2(a), we can explicitly express R y;fð Þ in terms of the
spherical harmonics with the order n of up to four as
R y;fð Þ ¼
X

n¼0;2;4

Xn
m¼�n

anmYnm y;fð Þ ¼
ffiffiffiffiffiffi
4p

p
Y0;0 y;fð Þ þ 5

7

ffiffiffiffiffiffi
4p
5

r
Y2;0 y;fð Þ

� 2

7

ffiffiffiffiffiffi
4p
9

r
Y4;0 y;fð Þ þ

ffiffiffiffiffiffiffiffiffiffi
280p

p

21
Y4;4 y;fð Þ þ Y4;�4 y;fð Þ� �

; ð5Þ
where y is measured from the null axis (the third axis), and f is measured from the fault
normal (the first axis).
We solve Eqs. (3–5) for the envelope Green’s function EG x; tð Þ by using the Fourier

transform in space, the Laplace transform in time, and the spherical harmonics expansion
with respect to radiation angles. The energy density can be written in a spherical
harmonics expansion with the expansion coefficients of the radiation pattern:
EG x; tð Þ ¼
X1
n¼0

EG;n r; tð Þ
Xn
m¼�n

anmYnm y;fð Þ; ð6Þ
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where
EG;nð
r; tÞ ¼ e� g0Vþ�ð Þt

4pr2V
d t� r

V

� �
H tð Þ þ g0e

� g0Vþ�ð Þt

4prVt
Qn

Vt=rð Þ2 þ 1

2 Vt=rð Þ

 !
H t� r

V

� �

þ g20V
2

2pri

Z 1

�1
do

eiot

2p

Z 1

�1
dk

eikr

2p
kun krð ÞG

――

n k; ioð ÞG2
0

――

k; ioð Þ
1� g0VG

――

0 k; ioð Þ : ð7Þ
The first term is the coherent term, the second is the single scattering term, and the third
is multiple scattering term with the order higher than or equal to 2. Qn is the Legendre
polynomial of the second kind. Function un xð Þ originates from the spherical Bessel
function and is defined as
un xð Þ �
Xn
s¼0

is�n nþ sð Þ!
s! n� sð Þ! 2xð Þs : ð8Þ

�
Function G�n k; sð Þ corresponds to the Laplace transform of the spherical Bessel function:
G
――

n k; sð Þ ¼ 1

kV

kV

2 sþ gV þ �ð Þ
� �nþ1 ffiffiffi

p
p

G nþ 1ð Þ
G nþ 3=2ð Þð Þ

2F1

nþ 1

2
;
nþ 2

2
; nþ 3

2
;� kV

sþ gV þ �

� �2
 !

; ð9Þ
where G is the Gamma function, and 2F1 is the Gauss’s hypergeometric function.
We can numerically calculate EG;n r; tð Þ using the fast Fourier transform (FFT) algo-

rithm over frequency and wave number for given three parameters of g0, V, and Q�1
i . In

Fig. 2(b), we give examples of calculated theoretical envelope Green’s functions for a
double-couple source in solid curves and those for an isotropic source in broken curves.
Time on the horizontal axis and energy density on the vertical axis are both normalized.
Envelopes at three different receivers are shown. A prominent character of the envelope
Green’s function EG r; tð Þ is a long tail which follows the direct wave and decays slowly
due to the scattering. Moreover, early parts of envelopes clearly exhibit a difference in
energy density due to the radiation pattern. However, the difference becomes smaller as
time elapses. Envelopes for the double-couple source are found to converge to those for
the isotropic source after twice the direct S-wave travel time. The energy density of the
higher-order modes diminishes faster than that of the lower-order modes because of
multiple isotropic scattering. Therefore, only the lowest 0th mode corresponding to
spherical source radiation dominates at large lapse times. From the examples, it is
found that detailed information on the focal mechanism can be extracted from early
part of the coda whose lapse time is smaller than twice the direct S-wave travel time.
Using this envelope Green’s function, we formulated an envelope inversion method to

estimate the spatial distribution of energy radiation from an earthquake fault and site
amplification factors. The method is schematically illustrated in Fig. 1. A rupture is
assumed to propagate with a constant rupture velocity of Vr from the initial rupture point.
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The fault plane is composed of subfaults. When a rupture front passes through the kth
subfault, the energy Wk is radiated from a double-couple source on the subfault with a
time history of fk tð Þ. The integral of fk tð Þ over the transit time of the rupture front is
normalized as 1. The radiated energy is multiply scattered in the course of propagation
through the scattering medium, and reaches the ith receiver at the jth time, and is
modified by a subsurface structure in the vicinity of the receiver (Fig. 1). We further
assume that seismic energies radiated from different subfaults are additive (waves are
incoherent), so that the energy density for the ith receiver at the jth time is the sum of the
radiated energy from the subfaults. Then, we can formulate the theoretical energy density
Cij as
Cij ¼ R2
i

X
k
WkFijk; ð10Þ
where
Fijk ¼
ð
fk t0
� �

EG xi � xk; tj � t0
� �

dt0 : ð11Þ
Fijk is the convolution of the envelope Green’s function and the energy radiation time
history. Ri is the receiver (site) amplification factor for velocity amplitude at the ith
receiver. Under the framework of Eq. (2), this corresponds to the assumptions that
<S tð Þ2> ¼ Wk fk tð Þ; <P tð Þ2> ¼ EG x; tð Þ, and <R tð Þ2> ¼ R2

i d tð Þ. The values of
Wk and Ri are estimated so as to minimize the residual between observed envelopes
and synthesized ones in the following least squares sense:
X
i

X
j

1

maxj Oij

� �2
Oij � Cij

		 		2 ! Min:; ð12Þ
where Oij is the observed energy density at the ith receiver and the jth time. We
normalize both the observed envelopes and the synthesized ones by the observed
maximum value at each receiver to set the weight of all receivers equal. To simplify
the inversion, we further assume that fk tð Þ is a box-car function with the same duration
time of Dt for all subfaults. Because Eq. (10) is nonlinear for the radiated energyWk and
the site amplification factor Ri, the equation is iteratively solved by the following
procedures: (i) Assuming values of Vr and Dt, (ii) Setting the initial value of Ri for all
receivers. The value is assumed to be 2 for a reference hard rock site on the surface, and
1 for a reference hard rock site in the subsurface. (iii) Solving Eq. (10) for the radiated
energy Wk by the linear least squares method. (iv) Estimating the site amplification
factors by fixing the radiated energy calculated in step (iii). (v) Iterating steps (iii) and
(iv) until the residual between the observed envelopes and synthesized ones does not
change with increasing number of iterations. We thus estimate the best-fit values of Wk

and Ri for various sets of Vr and Dt. The final result is obtained by choosing the solution
having the minimum residual among them.
Finally, we mention about a few points which are necessary for practical applications

of the inversion method. First, we need to make corrections of travel times and takeoff
angles by using a horizontally layered structure, because theoretical envelopes are
calculated for a medium with homogeneous background S-wave velocity. Second, we
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need to select a reference receiver carefully to estimate absolute values of radiated
seismic energy. Velocity logging data and site amplification factors estimated by other
previous studies are useful for the purpose. Third, strong nonlinear site effects may affect
our inversion results, because our modeling is based on the linear elastic theory. For an
accurate estimation of radiated seismic energy, a reference receiver is required to never
experience the nonlinear effect.
3. Data Analysis and the Results

3.1. An Example of Practical Data Analysis

We explain analysis procedures of our inversion method by taking the 2003 Miaygi-
ken Oki, Japan, earthquake (Mw 7.0) as an example. This is an intraslab earthquake
which took place at a depth of about 70 km in the subducted Pacific plate beneath
northeastern Japan. We use strong-motion seismograms recorded at 18 stations of the
K-NET and Kik-net within epicentral distance of 50 km. A reference station is set at a
subsurface (depth of about 100 m) of MYGH12 station, denoted as MYGB12 in this
study, because logging data show high seismic velocity at the site. Three component
acceleration records are numerically integrated to velocity records, and are band-pass
filtered in four octave-width frequency bands of 1–2, 2–4, 4–8, and 8–16 Hz. We square
band-passed velocity records, take the sum of three components, and then smooth them
by taking a moving average using a time window of 2 s. Multiplying them by a density of
the crust (2.5 � 103 kg/m3), we obtain seismogram envelopes having the unit of energy
density (J/m3). A time window from the S-wave onset to the lapse time of 51.2 s is used
for the inversion analysis. The end of the time window is set to be smaller than twice the
direct S-wave travel time.
The envelope Green’s function is calculated using scattering parameters (g0 and Q�1

i )
estimated at Onagawa (ONG) station (a solid square in Fig. 3) by Sakurai (1995) using
envelopes of smaller events in the region. The background S-wave velocity of the scattering
medium is estimated to be 4.09 km/s. Travel times and takeoff angles of S waves are
corrected using a structure with four horizontal layers. For the inversion analysis, we set a
fault plane with a length of 30 km and a width of 25 km dipping to the west (see Fig. 3), and
divide it into 30 subfaults each of which is a 5� 5 km2. The geometry of the fault plane is
assumed as strike ¼ 193�, dip ¼ 69�, and rake¼ 87� with reference to a focal mechanism
obtained from far-field body waves by Yagi (2003). Rupture velocity and duration time of
the box-car source time function are estimated by grid search.
A contour map in Fig. 4 shows residuals between observed envelopes and synthesized

ones for all the four octave-width frequency bands plotted for various rupture velocities
and source duration times. A solid star marks parameters for which the minimum residual
is obtained. The residuals are normalized by the minimum one. The duration time was
estimated to be 1.6 s. Rupture velocity is 3.8 km/s. In Fig. 5, we show the spatial
distribution of seismic energy radiation on the fault plane in a gray shade, in which a
darker color corresponds to larger energy radiation. A solid star shows the initial rupture
point. High-frequency seismic energy was mainly radiated from two regions on the fault.
The first one is around the initial rupture point and the other is a northern deeper part of
the fault. This spatial pattern looks common irrespective of frequency band analyzed.
Total amount of seismic energy radiation is 8.3� 1015 J in 1–16 Hz. Observed envelopes
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(solid) and synthesized ones (broken) for 4–8 Hz are shown in Fig. 6. Two peaks are
clearly found in observed envelopes at most of the stations. Generally, the peaks are well
explained by the synthesized envelopes. The first and the second peaks are attributed to
the strong energy radiation from the initial rupture point and the northern deeper part of
the fault, respectively.
For the estimation of errors in our inversion results, we perform the following

procedure. First, we produce synthetic envelopes for the best-fit distribution of energy
radiation in Fig. 5 and best-fit site amplification factors and by adding random noise to
the synthetic envelopes. The random noise is assumed to obey an exponential distribu-
tion. To the amplitude of the noise, a root MS residual between an observed envelope and
a synthesized envelope from the best-fit solutions in Fig. 5 is assigned at each station.
The amplitude of the noise is up to 15% of the maximum amplitude of the signal.
Repeating the envelope inversion by changing random noise 100 times, we estimate
the spatial distribution of energy radiation. In Fig. 7, we show standard deviation of
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estimated seismic energy normalized by the true solution in Fig. 5, that is, the coefficient
of variation (CV). Errors are considered to be small in the parts where CV is small. Two
parts of strong high-frequency energy radiation shown in Fig. 5 are found to be located in
the region shaded by black, which confirms that estimation errors in seismic energy are
less than 20% for the two parts.
From a waveform inversion analysis of both teleseismic and near-field seismograms in

a frequency range between 0.05 Hz and 0.5 Hz, Yagi (2003) estimated the spatial
distribution of slip on the fault plane. A contour of the slip is shown in Fig. 8. The
maximum slip amount reaches about 1.7 m. From the comparison between the slip
distribution and high-frequency seismic energy radiation (shaded map in Fig. 8), both
the high-frequency and the low-frequency waves are radiated around the initial rupture
point. But the other region of high-frequency radiation in the northwestern part does not
overlap an asperity and rather corresponds to the edge of the asperity. Therefore, the
spatial relationship between the location of high-frequency radiation and that of low-
frequency radiation is not simple for this event.
4. Compilation of the Results

We have applied the envelope inversion method of Nakahara et al. (1998) to nine
earthquakes around Japan with moment magnitude (Mw) of from 5.9 to 8.3. Among the
earthquakes, three are interplate earthquakes, one is an intraslab earthquake, and five are
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inland earthquakes. Focal mechanisms differ among the earthquakes. Although the
number of nine cases is small, we compile the results in Table 2, and make one of the
first trials to extract statistical characteristics of high-frequency seismic energy radiation
from moderate-to-large earthquakes. We put our focus on the following three subjects:
(1) Frequency dependence of high-frequency radiated energy. (2) A scaling relationship
between high-frequency radiated energy and earthquake magnitude. (3) A spatial rela-
tionship between locations of asperities (areas of large fault slip) and locations of high-
frequency energy radiation. The second subject can be studied only by our envelope
inversion analysis, because our method is capable of dealing with absolute values of
seismic energy.
4.1. Frequency Dependence of High-Frequency Seismic Energy

First, we examine the theoretical frequency dependence of high-frequency seismic
energy. If the source spectrum obeys the omega-squared model (e.g., Aki, 1967;
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Brune, 1970), the acceleration source spectrum a oð Þ becomes flat at frequencies
higher than the corner frequency, and the amplitude level, often denoted as A, can be
expressed as
a oð Þ � A / sL; ð13Þ

where o is the angular frequency, s is a stress parameter, and L is a characteristic length
scale of a fault. If the stress parameter s is constant, A is proportional to L. A velocity
source spectrum v oð Þ in the frequency range is
v oð Þ ¼ A

o
: ð14Þ
S-wave energy spectrum in an octave-width frequency band EHF oð Þ, which is directly
obtained from our envelope inversion method, is expressed as
EHF oð Þ ¼ 1

10prb5

ð2o
o

v o0
� �			 			2do0 ¼ 1

20prb5
A2

o
; ð15Þ
where r is the density and b is the S-wave velocity. Therefore, the seismic energy is
expected to decrease with frequency with a power of �1.
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In Fig. 9, we plot EHF versus frequency relations for nine earthquakes shown in
Table 2. Seismic energy in an octave-width band is found to decrease with increasing
frequency. Here, we fit regression lines to the data to estimate the power of the decay of
seismic energy with frequency. The results are tabulated in Table 3. The mean value of
the power for all the events is estimated to be �0.99 which is close to the theoretical
expectation of �1, though it shows variation from �0.38 for the Sanriku event to �1.85
for the Kobe event. The median value is �0.70. To have a more closer look at the
frequency dependence, we find a slight increase of energy in 1–8 Hz band for the Sanriku
event. We also note that the energy in the 8–16Hz band falls off rapidly for the Sanriku
event and the Kobe event. Although someone might think that this is caused by fmax, the
two datasets are probably contaminated by instrumental response which we could not
correct. For events other than Sanriku and Kobe, we can not detect a rapid fall off for
higher frequency which might be associated with fmax.



TABLE 2. Summary of our envelope inversion analyses

Event (Mw)

Source

location

Focal

mechanism

type

HF location and

LF location Reference

1994 Off-Sanriku,

JAPAN (7.6)

Plate

boundary

Thrust Complementary Nakahara

et al. (1998)
1995 Kobe, JAPAN

(6.9)

Inland Right-lateral

strike slip

Otherwise Nakahara

et al. (1999)
1998 Northern Iwate,

JAPAN (5.9)

Inland Reverse Complementary Nakahara

et al. (2002)
1999 Chi-Chi, Taiwan

(7.6)

Inland Thrust Complementary Nakahara

et al. (2006)
2000 Western Tottori,

JAPAN (6.7)

Inland Left-lateral

strike slip

Complementary Nakahara

(2003)

2003 Off-Miyagi,

JAPAN (7.0)

Intraslab Reverse Otherwise Nakahara

(2005a)

2003 Off-Tokachi,

JAPAN (8.3)

Plate

boundary

Thrust Otherwise Nakahara

(2004)

Largest aftershock of the

2003 Off-Tokachi,

JAPAN (7.3)

Plate

boundary

Thrust Indeterminate Nakahara

(2004)

2004 Niigata Chuetsu,

JAPAN (6.6)

Inland Reverse Otherwise Nakahara

(2005b)

HF, high frequency; LF, low frequency.
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4.2. Scaling of High-Frequency Seismic Energy

Here, we discuss a scaling relationship between high-frequency seismic energy and
earthquake magnitude. As shown in the previous subsection, our observation of high-
frequency seismic energy in an octave-width frequency band for individual events shows
variation from the theoretical expectation based on Eq. (15). However, it may be
acceptable to use the Eq. (15) as a reference since it fits the average of the observed
data. For a fixed frequency band, we obtain the following relation by taking the logarithm
of both sides of Eq. (15)
log EHF oð Þ / 2 log A � log L2 � M: ð16Þ

The final proportionality comes from a well-known empirical relationship between
earthquake magnitude and fault area (e.g., Kanamori and Anderson, 1975). Therefore,
the logarithm of high-frequency seismic energy in an octave-width band is predicted to
be proportional to earthquake magnitude. Or, high-frequency seismic energy is propor-
tional to fault area. This is an important relation which only holds for high-frequency
seismic energy. It should be noted that the coefficient of proportionality is 1, which is
different from 1.5 in the Gutenberg–Richter’s relation (Gutenberg and Richter, 1956) for
whole-band seismic energy. We also find that the high-frequency seismic energy
becomes half when a frequency is doubled.
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FIG. 9. Frequency dependence of high-frequency seismic energy for nine earthquakes. Solid

circles are data and solid lines are regression lines. High-frequency seismic energy in an octave-

width frequency band decreases with increasing frequency.

TABLE 3. Power of the decay of high-frequency seismic energy with frequencies

Event (Mw) Power

1994 Off-Sanriku, JAPAN (7.6) �0.38 	 0.41

1995 Kobe, JAPAN (6.9) �1.85 	 0.58

1998 Northern Iwate, JAPAN (5.9) �0.91 	 0.26

1999 Chi-Chi, Taiwan (7.6) �1.83 	 0.17

2000 Western Tottori, JAPAN (6.7) �1.08 	 0.15

2003 Off-Miyagi, JAPAN (7.0) �0.66 	 0.13

2003 Off-Tokachi, JAPAN (8.3) �0.79 	 0.15

Largest aftershock of the 2003 Off-Tokachi, JAPAN (7.3) �0.70 	 0.28

2004 Niigata Chuetsu, JAPAN (6.6) �0.70 	 0.14
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Then, we compile the results for nine earthquakes shown in Table 2. Here, we divide
the data into two categories: one is inland earthquakes and the other is offshore earth-
quakes. For offshore earthquakes, there is no discrimination between interplate earth-
quakes and intraplate ones. Observed high-frequency seismic energy in 1–2, 2–4, 4–8,
and 8–16 Hz, respectively, is shown against Mw in Fig. 10. Observed data are shown by
open symbols. For the calculation of theoretically expected values from the Eq. (15), we
assume that r ¼ 2:5� 103 kg=m3½ 
 and b ¼ 3:5 km=s½ 
. In addition, we adopt a relation
A ¼ 5:3� 1012 M

1=3
0 Nm=s2½ 
 in which M0 is measured in [Nm], corresponding to

Brune’s stress drop of 9.7 [MPa] (97 [bars]). The value was obtained from measurements
for 12 inland earthquakes by Dan et al. (2001). Theoretically expected values thus
calculated are shown by solid, long-broken, short-broken, and dotted lines for 1–2,
2–4, 4–8, and 8–16Hz, respectively. Our observation matches with the expectation for
inland earthquakes as shown in Fig. 10(a). This suggests that our estimates for high-
frequency seismic energy are consistent with independent estimates by Dan et al. (2001)
which used a different method. However, we can not explain levels of high-frequency
seismic energy for offshore earthquakes in Fig. 10(b) by using A of Dan et al. (2001). Our
observation seems larger than the expectation by about 10 times. Because the energy is
proportional to A2 as shown in Eq. (15), we multiply the A value by 3.16 (square root of
10), corresponding to Brune’s stress drop is about 54.6 [MPa] (546 [bars]), and compare
again with our observation for offshore earthquakes in Fig. 10(c). The new expected
values can roughly explain our observation for the offshore earthquakes. This is not a
strict fit to the data but a rough estimate. However, this implies that the offshore earth-
quakes in northeastern Japan radiate about 10 times more high-frequency seismic energy
than inland earthquakes in Japan and Taiwan with the same magnitude. This tendency
was also reported for the same region by Satoh (2004) and for regions to the south by
Takemura et al. (1989) and Kato et al. (1998), though it seems to contradict an empirical
rule that the static stress drop is higher for intraplate events than for interplate events
(e.g., Kanamori and Anderson, 1975). Kato et al. (1998) referred to the depth dependence
of the stress drop as a possible cause.
Two points have been clarified from our studies. First, the high-frequency seismic

energy is proportional to fault area. This relation is a manifestation that the high-
frequency seismic waves are incoherent. Because this point was first pointed out by
Koyama and Zheng (1985), our result is a confirmation of their results. Second, there
exists a regional difference in the excitation level of high-frequency seismic energy.
Although the reason is not clear, this result is practically important for quantitative
prediction of strong ground motion.
4.3. Spatial Relationship Between Asperities and High-Frequency Sources

For broadband simulations of strong ground motion due to an earthquake fault, it is
necessary to specify regions of high-frequency radiation on the fault as well as those of
low-frequency wave radiation (asperities). So, a spatial relationship between these two
kinds of regions is of particular interests in strong-motion seismology.
Here, we classify the relation into 3 cases: (1) Complementary, (2) Matching, and (3)

Otherwise. The complementary case means that locations of high-frequency radiation are
at peripheries of asperities. The matching case means the both locations are the same.
The otherwise case includes any others but the two. For example, if there are several
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FIG. 10. Scaling relation of high-frequency seismic energy radiation in four octave frequency

bands with moment magnitude. Open circles, open triangles, open squares, and open inverted

triangles are observed energy for 1–2, 2–4, 4–8, and 8–16 Hz, respectively. Solid, long-broken,

short-broken, and dotted straight lines with a proportionality factor of 1 show theoretically expected

values for 1–2, 2–4, 4–8, and 8–16 Hz, respectively. Figure (a) shows the results for 5 inland

earthquakes with the expected values from the A value of Dan et al. (2001). Figure (b) is for

offshore earthquakes composed of 3 interplate earthquakes and 1 intraslab earthquake with the

expected values from the A value of Dan et al. (2001). Figure (c) is for the offshore earthquakes

composed of 3 interplate earthquakes and 1 intraslab earthquake with the expected values from

3.16 (square root of 10) times the A value of Dan et al. (2001).
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asperities and high-frequency sources on a fault plane, some are complementary but
some are matching. Such a case is identified as the otherwise case. In terms of this
classification, four events are identified as complementary, none is matching, and four
are otherwise. Unfortunately, the comparison is impossible for one event because no fault
slip models have been estimated for lower frequencies.
According to envelope inversion studies by other groups (shown in Table 4), the

complementary relation is reported for the 1989 Loma Prieta earthquake (Ms 7.1) (Zeng
et al., 1993) and for the 1993 Kushiro-Oki, Japan, earthquake (Mw 7.6) (Kakehi and
Irikura, 1996). The otherwise relation is reported for the 1993 Hokkaido-Nansei-Oki,
Japan, earthquake (Mw 7.7) (Kakehi and Irikura, 1997), for the 1994 Northridge earth-
quake (Ms 6.7) (Hartzell et al., 1996) and the 1995 Kobe, Japan, earthquake (Mw 6.9)
(Kakehi et al., 1996).

On the contrary, from the simultaneous fitting of displacement waveforms and accel-
eration envelopes in a 0.2–10 Hz band for 12 crustal earthquakes (Mw 4.8 – 6.0) in Japan,
Miyake et al. (2003) estimated source areas, which they call the strong-motion genera-
tion areas, on each fault plane. They found that the strong-motion generation areas
coincide with those of asperities.
The classification conducted in this subsection is still qualitative. We hope to intro-

duce more quantitative measures to characterize the relationship between locations of
low-frequency radiation and those of high-frequency radiation in the near future. In terms
of this viewpoint, Gusev et al. (2006) conducted a quantitative analysis. They estimated
slip rate time functions in lower frequencies and seismic luminosity (source) time
functions in high frequencies (0.5–2.5 Hz) at the same time for 23 intermediate-depth
earthquakes with magnitude of 6.8 and larger. Calculating correlation coefficients
between the two kinds of time functions after corrections of propagation effects, they
estimated the mean correlation coefficient of 0.52, and concluded that this mean value
indicates the genuine difference in distributions of low-frequency radiation and high-
frequency radiation.
Finally, we discuss this spatial relation based on kinematic heterogeneous fault-

rupture models (e.g., Papageorgiou and Aki, 1983; Koyama, 1985). In the models,
TABLE 4. Summary of envelope inversion analyses by other authors

Event (Mw)

Source

location

Focal

mechanism

type

HF Location

and LF location Reference

1989 Loma Prieta (6.9) Inland Reverse Complementary Zeng et al.
(1993)

1993 Kushiro-Oki,

JAPAN (7.6)

Intraslab Down-dip

extension

Complementary Kakehi and

Irikura (1996)

1993 Hokkaido-Nansei

–Oki, JAPAN (7.7)

Plate

boundary

Thrust Otherwise Kakehi and

Irikura (1997)

1994 Northridge,

California (6.6)

Inland Reverse Otherwise Hartzell et al.,
(1996)

1995 Kobe, JAPAN

(6.9)

Inland Right-lateral

strike slip

Otherwise Kakehi et al.
(1996)

HF, high frequency; LF, low frequency.
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many small-scale asperities or patches are assumed to be randomly distributed on the
fault. Generation of high-frequency seismic waves is due to the rupture of the small-scale
asperities. On the contrary, low-frequency waves are radiated by the coherent rupture of
the entire fault. Relative contribution of the coherent rupture and the incoherent rupture
may be a key. If the coherent rupture is dominant, we expect that the rupture propagates
smoothly and stops at the edge of the fault. For example, Madariaga (1976) investigated
the dynamic rupture of a circular crack. He showed that slip (moment release) is large at
the center of the fault and high-frequency seismic waves are strongly radiated from edges
of the fault. This is an example of a complementary relation. On the contrary, if the
contribution of the incoherent rupture becomes large, we expect that high-frequency
waves are strongly radiated from throughout the fault plane due to the rupture of small-
scale asperities, whereas slip is large at the center of the fault due to the coherent rupture.
This is an explanation for the matching case. Based on the consideration, the relationship
between the locations of high- and low-frequency radiation may be understood by a
relative weight of the coherent rupture and the incoherent rupture, which may be
controlled by the heterogeneity of stress and/or strength on the earthquake fault: Com-
plementary for homogeneous faults and matching and/or otherwise for heterogeneous
faults. But the consideration here is under a frame of kinematic rupture models. Dynamic
rupture simulations should be conducted for asperities with various degrees of hetero-
geneities in stress and/or strength for more quantitative considerations. Kato (2007) may
be the first step forward to this direction.
5. Conclusions

We have made a brief review of envelope inversion studies for high-frequency seismic
wave radiation frommoderate-to-large earthquakes. Several methods have been proposed
since the 1990s. An assumption on the incoherency of high-frequency seismic waves
facilitates direct convolution of each envelope for source, path, and site effects. Thanks to
the methods, it became possible to image earthquake source process at high frequencies
and to compare the results to those from lower frequencies. On the basis of results for 9
earthquakes so far analyzed by us, we have clarified the following two characteristics in
high-frequency seismic energy radiation. First, logarithm of the high-frequency seismic
energy is proportional to the moment magnitude with a coefficient of proportionality of 1
as is theoretically expected.Moreover, a regional difference in the high-frequency seismic
energy radiation has been detected: Earthquakes in offshore regions in northeastern Japan
are found to be more energetic by about an order of magnitude than inland earthquakes in
Japan and Taiwan. Second, spatial relationships between the locations of asperities and
the locations of high-frequency radiation have been summarized. Among 9 earthquakes
analyzed by us, 4 are complementary, none is matching, 4 are otherwise, and 1 is
indeterminate. According to analyses of 5 earthquakes by other groups, 2 are reported
to be complementary, none is matching, 3 are otherwise. In total, 6 are complementary,
none is matching, 7 are otherwise, and 1 is indeterminate among 14 earthquakes. Reasons
for the variation are not yet known. However, heterogeneities in the distribution of stress,
strength, and material properties on and around earthquake faults may control the varia-
tion. The two characteristics found for high-frequency seismic energy radiation will give
important information for the study of high-frequency earthquake source processes.
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And they may also contribute to improving the accuracy of predicting strong ground
motion, because the locations of high-frequency radiation on an earthquake fault greatly
affect ground motion at nearby stations.
Acknowledgments

Most of the results were obtained through collaborations with H. Sato, M. Ohtake, T. Nishimura,

and R. Watanabe. We thank the National Research Institute for Earth Science and Disaster

Prevention, Japan for providing us with strong-motion data recorded by the K-NET and the Kik-

net. A figure of the slip distribution for the 2003 Miyagi-Oki earthquake was provided by Y. Yagi

of Tsukuba University. We greatly appreciate thoughtful comments from an associate editor,

M. Fehler, and two reviewers, A. Gusev and Y. Zeng.
References

Aki, K. (1967). Scaling law of seismic spectrum. J. Geophys. Res. 72, 1217–1231.
Brune, J.N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes.

J. Geophys. Res. 75, 4997–5009.
Chandrasekhar, S. (1960). Radiative Transfer. Dover, New York, pp. 393.

Cocco, M., Boatwright, J. (1993). The envelopes of acceleration time histories. Bull. Seismol. Soc.
Am. 83, 1095–1114.

Dan, K., Watanabe, M., Sato, T., Ishii, T. (2001). Short-period source spectra inferred from variable-

slip rupture models and modeling of earthquake faults for strong motion prediction by semi-

empirical method (in Japanese with English abstract). J. Struct. Constr. Eng. AIJ 545, 51–62.
Gusev, A.A. (1983). Descriptive statistical model of earthquake source radiation and its application

to an estimation of short period strong ground motion. Geophys. J. R. Astron. Soc. 74, 787–808.
Gusev, A.A., Abubakirov, I.R. (1987). Monte-Carlo simulation of record envelope of a near

earthquake. Phys. Earth Planet. Inter. 49, 30–36.
Gusev, A.A., Pavlov, V.M. (1991). Deconvolution of squared velocity waveform as applied to the

study of a noncoherent short-period radiator in the earthquake source. Pure Appl. Geophys. 136,
235–244.

Gusev, A.A., Guseva, E.M., Panza, G.F. (2006). Correlation between local slip rate and local high-

frequency seismic radiation in an earthquake fault. Pure Appl. Geophys. 163, 1305–1325.
Gutenberg, B., Richter, C.F. (1956). Magnitude and energy of earthquakes. Ann. Geofis. 9, 1–15.
Hartzell, S., P. Liu, and C. Mendoza (1996). The 1994 Northridge, California, earthquake:

Investigation of rupture velocity, risetime, and high-frequency radiation, J. Geophys. Res.,
101, 20091-20108.

Iida, M., Hakuno, M. (1984). The difference in the complexities between the 1978 Miyagiken-oki

earthquake and the 1968 Tokachi-oki earthquake from a viewpoint of the short-period range.

Nat. Disaster Sci. 6, 1–26.
Irikura, K., Miyake, H. (2001). Prediction of strong ground motions for scenario earthquakes

(in Japanese with English abstract). J. Geogr. 110, 849–875.
Ishimaru,A. (1978).Wave PropagationandScattering inRandomMedia, AcademicPress, SanDiego,

Volume 1, pp. 270.

Kakehi, Y., Irikura, K. (1996). Estimation of high-frequency wave radiation areas on the fault plane

by the envelope inversion of acceleration seismograms. Geophys. J. Int. 125, 892–900.
Kakehi, Y., Irikura, K. (1997). High-frequency radiation process during earthquake faulting—

Envelope inversion of acceleration seismograms from the 1993 Hokkaido-Nansei-Oki, Japan,

earthquake. Bull. Seismol. Soc. Am. 87, 904–917.



425SEISMIC ENERGY RADIATION FROM EARTHQUAKES
Kakehi, Y., Irikura, K., Hoshiba, M. (1996). Estimation of high-frequency wave radiation areas on

the fault of the 1995 Hyogo-ken Nanbu earthquake by the envelope inversion of acceleration

seismograms. J. Phys. Earth 44, 505–517.
Kanamori, H., Anderson, D.L. (1975). Theoretical basis of some empirical relations in seismology.

Bull. Seismol. Soc. Am. 65, 1073–1095.
Kato, K., Takemura, M., Yashiro, K. (1998). Regional variation of source spectra in high-frequency

range determined from strong motion records (in Japanese with English abstract). Zisin 2(51),
123–138.

Kato, N. (2007). How frictional properties lead to either rupture-front focusing or cracklike

behavior. Bull. Seismol. Soc. Am. 97, 2182–2189.
Koyama, J. (1985). Earthquake source time function from coherent and incoherent rupture.

Tectonophysics 118, 227–242.
Koyama, J. (1994). General description of the complex faulting process and some empirical

relations in seismology. J. Phys. Earth 42, 103–148.
Koyama, J., Zheng, S.H. (1985). Excitation of short period body waves by great earthquakes. Phys.

Earth Planet. Inter. 37, 108–123.
Madariaga, R. (1976). Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am. 66,

639–666.

Mai, M., Beroza, G. (2000). Source scaling properties from finite-fault-rupture models. Bull.
Seismol. Soc. Am. 90, 604–615.

Midorikawa, S., Kobayashi, H. (1979). On estimation of strong earthquake motions with regard to

fault rupture (in Japanese with English abstract). Trans. Arch. Inst. Jpn. 282, 71–81.
Miyake, H., Iwata, T., Irikura, K. (2003). Source characterization for broadband ground-motion

simulation: Kinematic heterogeneous source model and strong motion generation area. Bull.
Seismol. Soc. Am. 93, 2531–2545.

Nakahara, H. (2003). Envelope inversion analysis for the high-frequency seismic energy radiation

by using Green’s functions in a depth dependent velocity structure: The 2000 Western Tottori

earthquake, IUGG 2003 meeting SS02/04A/D-024, Sapporo, Japan.

Nakahara, H. (2004). High-frequency envelope inversion analysis of the 2003 Tokachi-Oki,

JAPAN, earthquake (Mw8.0), AGU fall meeting S13D-1082, San Francisco, California.

Nakahara, H. (2005a). High-frequency envelope inversion analysis of the May 26, 2003 Miyagi-

Ken-Oki, JAPAN, earthquake (Mj 7.0) (in Japanese). Chikyu Monthly 27, 39–43.
Nakahara, H. (2005b). High-frequency envelope inversion analysis of the 2004 Niigata-Ken

Chuetsu earthquake (Mw 6.6) (in Japanese), Japan earth and planetary science joint meeting,

S079–006.

Nakahara, H., Nishimura, T., Sato, H., Ohtake, M. (1998). Seismogram envelope inversion for the

spatial distribution of high-frequency energy radiation from the earthquake fault: Application to

the 1994 far east off Sanriku earthquake, Japan. J. Geophys. Res. 103, 855–867.
Nakahara, H., Sato, H., Ohtake, M., Nishimura, T. (1999). Spatial distribution of high-frequency

energy radiation on the fault of the 1995 Hyogo-Ken Nanbu earthquake (Mw 6.9) on the basis of

the seismogram envelope inversion. Bull. Seismol. Soc. Am. 89, 22–35.
Nakahara, H., Nishimura, T., Sato, H., Ohtake, M., Kinoshita, S., Hamaguchi, H. (2002). Broad-

band source process of the 1998 Iwate Prefecture, Japan, earthquake as revealed from inversion

analyses of seismic waveforms and envelopes. Bull. Seismol. Soc. Am. 92, 1708–1720.
Nakahara, H., Watanabe, R., Sato, H., Ohtake, M. (2006). Spatial distribution of high-frequency

seismic energy radiation on the fault plane of the 1999 Chi-Chi, Taiwan, earthquake (Mw 7.6)

as revealed from an envelope inversion analysis, Submitted to PAGEOPH .

Papageorgiou, A.S., Aki, K. (1983). A specific barrier model for quantitative description of

inhomogeneous faulting and the prediction of strong ground motion Part I. Description of the

model. Bull. Seismol. Soc. Am. 73, 693–722.



426 NAKAHARA
Petukhin, A.G., Nakahara, H., Gusev, A.A. (2004). Inversion of high-frequency source radiation of

M6.8 Avachinsky Gulf, Kamchatka, earthquake using empirical and theoretical envelope Green

functions. Earth Planets Space 56, 921–925.
Sakurai, K. (1995). Separation of scattering loss and intrinsic absorption based on a multiple non-

isotropic scattering model (in Japanese), Master thesis Tohoku University, Sendai, Japan.

Sato, H., Fehler, M. (1998). Seismic Wave Propagation and Scattering in the Heterogeneous Earth.
Springer-Verlak, New York.

Sato, H., Nakahara, H., Ohtake, M. (1997). Synthesis of scattered energy density for the non-

spherical radiation from a point shear dislocation source based on the radiative transfer theory.

Phys. Earth Planet. Inter. 104, 1–13.
Satoh, T. (2004). Short-period spectral level of intraplate and interpolate earthquakes occurring off

Miyagi Prefecture (in Japanese with English abstract). J. JAEE 4, 1–4.
Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y.,

Kagawa, T., Smith, N., Kowada, A. (1999). Characterizing crustal earthquake slip models for

the prediction of strong ground motion. Seismol. Res. Lett. 70, 59–80.
Takemura, M., Hiehata, S., Ikeura, T., Uetake, T. (1989). Regional variation of source properties

for middle earthquakes in a subduction region (in Japanese with English abstract). Zisin 2(42),
349–359.

Wu, R.S. (1985). Multiple scattering and energy transfer of seismic waves -seperation of scattering

effect from intrinsic attenuatuon- I. Theoretical modeling. Geophys. J. R. Astron. Soc. 82,
57–80.

Yagi, Y. (2003). Source rupture process of the 2003 Miyagi-ken-oki earthquake determined by

joint inversion of teleseismic body waves and strong ground motion data, http://iisee.kenken.

go.jp/staff/yagi/eq/east_honshu20030526.

Zeng, Y., Su, F., Aki, K. (1991). Scattering wave energy propagation in a random isotropic

scattering medium 1. Theory J. Geophys. Res. 96, 607–619.
Zeng, Y., Aki, K., Teng, T.L. (1993). Mapping of the high-frequency source radiation for the Loma

Prieta Earthquake, California. J. Geophys. Res. 98, 11981–11993.

http://iisee.kenken.go.jp/staff/yagi/eq/east_honshu20030526
http://iisee.kenken.go.jp/staff/yagi/eq/east_honshu20030526


ADVANCES IN GEOPHYSICS, VOL. 50, CHAPTER 16
ON THE RANDOM NATURE OF
EARTHQUAKE SOURCES AND GROUND

MOTIONS: A UNIFIED THEORY

Daniel Lavallée1
Abstract

The synthesis of fundamental principles of physics and of the theory of probability provides a

coherent and unified picture of earthquake variability from its recording in the ground motions to its

inference in source models. This theory, based on the representation theorem and the (generalized)

Central Limit Theorem, stipulates that the random properties of the ground motions and the source

for a single earthquake should both be (approximately) distributed according to a Lévy law. The

Lévy law is a special class of probability law. According to the (generalized) Central Limit

Theorem, a sum of Lévy random variables is simply a Lévy random variable. The Gauss and the

Cauchy laws are special cases of the Lévy law.

Random models are best suited to describe the spatial heterogeneity embedded in the earthquake

source model of slip (or stress). For this purpose, we have developed a random model that can

reproduce the variability in slip amplitude and the long-range correlation of the slip spatial

distribution. Analysis of slip spatial distribution shows that a non-Gaussian law, that is, the Lévy

law, is better suited to describe the distribution of slip amplitude values over the fault. Furthermore,

a comparison of the random properties of the source and of the ground motions for the 1999 Chi-

Chi and 2004 Parkfield earthquakes demonstrates that the slip distribution and the peak ground

acceleration (PGA) can be described by the Lévy law. Additionally, the tails of the probability

density functions (PDFs) characterizing the slip and the |PGA| are controlled by a parameter, the

Lévy index, with almost the same values as predicted by the (generalized) Central Limit Theorem.

Thus, from the source to the ground motion, the Lévy index provides a universal law describing the

tail of the PDF.

The PDF tail controls the frequency at which extreme large events occur. These large

events correspond to the large stress drops—or asperities—distributed on the fault surface and to

the large PGA observed in the ground motion. The theory and the results suggest that the

frequency of these events is coupled: the PDF of the |PGA| is a direct consequence of the PDF of

the asperities.

Key Words: Earthquake, source model, ground motion, random model, Lévy law.
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1. Introduction

In a discussion about his motivation to study turbulence, Kolmogorov indicated
the following: “I took an interest in the study of turbulent flows of liquids and gases in
the late 1930s. It was clear to me from the very beginning that the main mathematical
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instrument in this study must be the theory of random functions of several variables
(random fields) which had only then originated” (Kolmogorov, 1991). More
recently, Kagan observed that “seismicity is the turbulence of solid” (Kagan, 1992;
cited in Andrews, 1980, p. 3869). From this, one can infer that a proper
“mathematical instrument” in the study of the “turbulence of solid” “must be the theory
of random functions.” In this chapter, we intend to illustrate the full consequences of this
approach.
The investigation of the random properties of source models of several earthquakes

suggests that the probability law that best describes the slip variability, or heterogeneity,
is either a Cauchy law or the more general Lévy law (Lavallée and Archuleta, 2003,
2005; Lavallée et al. 2006a). The Gauss (or Normal) law is less appropriate. The tail
of the Gauss probability density function (PDF) decreases too quickly to predict with
accuracy the frequency of large fluctuations observed in the slip inversions. These large
fluctuations correspond to the large stress drops—or asperities—distributed over the
fault surface. The list of earthquake source models investigated includes the 1979
Imperial Valley, the 1989 Loma Prieta, the 1994 Northridge, the 1995 Hyogo-ken
Nanbu (Kobe), the 1999 Chi-Chi and the 2004 Parkfield earthquakes.
Kostrov and Das (1988, p. 234) observed that heterogeneity in the source parameters

“would be manifested in the complexity of the pulse shapes.” Lavallée and
Archuleta (2005) take a step further and assume that observation of a non-Gaussian
law of the Lévy type in the ground motion metrics (Gusev, 1989, 1996; Tumarkin and
Archuleta, 1997) could have its origin in the spatial variability of the slip over the
fault surface. The basic idea supporting this hypothesis rests on the fundamental proper-
ties of linear wave propagation and the Lévy random variables. The principle of
superposition stipulates that the sum of linear waves is also a linear wave. Consequently,
during an earthquake the ground motion recorded at a given distance from the fault
is essentially the sum of seismic waves emitted by point sources distributed over the
fault surface. Similarly, the (generalized) Central Limit Theorem postulates that the sum
of Lévy random variables is also a Lévy random variable (Zolotarev, 1986; Uchaikin
and Zolotarev, 1999). These two fundamental principles can be used to infer the
random properties of the radiated field and at fortiori of ground motion metrics.
During an earthquake, the rupture front propagates over the fault surface; as the
rupture front reaches different points on the fault, each point source will emit a
wave with an amplitude proportional to the slip (or stress released, Andrews, 1980).
Since the slips are distributed according to a Lévy law, the point source wave amplitudes
will also be. Because the point source wave amplitudes are distributed according to
the Lévy law, the sum of these amplitudes observed at a given distance from the sources
will also be distributed according to the Lévy law (see Fig. 1 for a schematic illustration).
In this chapter, we will discuss the theoretical framework and present empirical

evidence that earthquake source models, and the ground motions generated during
the rupture process, are coupled through their random properties. A fundamental conse-
quence of this coupling is to relate the PDF tails of the source and of the ground motion
through an invariant measure: the Lévy index of the Lévy law. Not only heterogeneity
in the source parameters will be mirrored in the complexity of the ground
motions (as suggested by Kostrov and Das, 1988, p. 234), but their random properties
will be also!
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FIG. 1. Two of the most fundamental principles in science are founded on the similitude in

properties between a single event and a sum of these events: the principle of superposition of linear

waves (a), and the Central Limit Theorem (b). In (c), the two principles are combined to predict that

the sum of linear waves with amplitude distributed according to the Lévy law will result in a wave

signal with amplitude also distributed according to the Lévy law.
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2. Random Model of Earthquakes Slip Spatial Distribution and
Consequences for the Ground Motions

2.1. From the Source . . .

Up to now, the spatial heterogeneity observed in the slip (or stress drop) has been
interpreted and simulated with the help of random models. According to Andrews
(1980), both the slip and the stress drop are related by a linear relation—see also the
Appendix in Mai and Beroza (2002). (In a uniform medium, the Fourier transform of the
stress drop is proportional to the magnitude of the wave number times the Fourier
transform of the slip.) Because of this relation, we assume that we can derive the
random properties of the stress from the slip or vice versa. (Thus, we will refer to
slip random property and stress drop random property interchangeably.)
A random model can be understood (at least approximately) as a set of random

variables characterized by a given probability law, and a set of rules and operations to
combine the random variables. The set of rules and operations can be chosen in such away
to control the functional behavior of the correlation function and spectrum (two-point
statistics), the three-point statistics, and so on. Different rules and probability laws have
been reported to model the spatial heterogeneity of the slip or stress drop distribution.
In Boore and Joyner (1978), the rule consists of a simple normalization of the random

variables, while it consists of a normalization and smoothing of the random variables in
Oglesby and Day (2002). In the past, the rule of choice implemented in almost every
random model of source heterogeneity consisted of operations that insured that the
Fourier amplitude (or spectrum) of the source decreased asymptotically with a power
law behavior. In a two-dimensional random model, the spectrum is proportional to k�n2D

where k ¼ kj j is the 2D radial wavelength number, while in a one-dimensional random
model the spectrum is proportional to k�n1D

1 , where k1 is the wave number component
along the length of the fault. (For an isotropic random function, the exponent of the 2D
spectrum is related to the exponent for the spectra of 1D profiles by the following relation
n2D ¼ n1D þ 1—see Peitgen and Saupe, 1988.) This rule essentially constrains the
functional behavior of the autocorrelation function of the random model. Several values



430 LAVALLÉE
have been proposed for the parameter n2D (or n1D). They are based on theoretical
considerations (for a review, see Herrero and Bernard, 1994, and references therein;
see Lavallée et al., 2006a), numerical simulations (Liu-Zeng et al. 2005), or empirical
studies of slip inversions (Mai and Beroza, 2002; Lavallée et al., 2006a). A proper choice
for the value for the parameter n1D (or n1D) and the method used to generate the power
law behavior k�n2D is still the object of investigation and debate. In recent modeling of
source heterogeneity, the power law behavior is generated using either a von Karman
model (Guatteri et al., 2003; Hartzell et al., 2005; Liu et al., 2006), or a fractional
Brownian motion (fBm) (Lavallée and Archuleta, 2003; Liu-Zeng et al., 2005).
In the literature, there is a large focus on the power spectrum of the random

model of sources. However, much less attention has been paid to the fundamental
question of the probability law that will govern the distribution of the random varia-
bles used to generate the random model of slip. The distribution of the random
variables is the basic feature in the random model that controls the slip variability
over the fault surface and the expectation to observe large slip values. The distri-
bution is also the foundation of the random model, in the sense that the rules are
applied to the random variables to obtain, for instance, the proper power spectrum.
Furthermore, application of the rules assigned to the random variables may drasti-
cally change the law governing their distribution. For instance, a sum of random
variables distributed according to a uniform distribution gives a random variable
distributed according to the Gauss law. It is thus unfortunate to neglect this basic
feature of random modeling. There is no discussion of the probability law in the
random model derived in Mai and Beroza (2002) and subsequent synthetic slip
spatial distribution based on this model (Guatteri et al., 2003; Hartzell et al., 2005).
In Boore and Joyner (1978), the slip values are distributed according to a Uniform
law, while Oglesby and Day (2002) choose a Uniform law to generate synthetic
stress spatial distribution. It should be noted that under the relationship between the
slip and the stress drop given by Andrews (1980), it is not possible to have both the
slip and the stress drop distributed according to a Uniform law (see below for
details on sum of random variables). Liu-Zeng et al. (2005) use a random model
based on Gauss random variables. Liu et al. (2006) developed a random model of
slip distributed according to the Cauchy law (Lavallée and Archuleta, 2003) to
compute broadband ground motions that compared rather well to near-source data
recorded during the 1994 Northridge earthquake.
There are more than 80 probability laws (just including those for continuous random

variables) available to generate random variables that can be used to model the slip
spatial variability (for a listing of the probability laws, see http://mathworld.wolfram.
com/topics/ContinuousDistributions.html). In theory, all these laws can be used and
tested (providing the rather remarkable opportunity of publishing many papers—a sure
career move). However, early investigation of numerical modeling of fault ruptures
(Mikumo and Miyatake, 1978; Fakao and Furumoto, 1985) and the pioneering works
of Gusev (1989, 1992) suggest that the choice can be restrained to probability laws with a
PDF characterized by “heavy tails” such as the Pareto law (Gusev, 1989) or the Lévy law
(Gusev, 1992).
In general, the PDF of the Lévy law is characterized by a “heavy tail” (except for the

Gauss law, a special case of the Lévy law). Four parameters (a, b, g, and m) are needed to
characterize the Lévy law. The parameter a(0 < a � 2) controls the rate of fall off of the
“heavy tail” of the PDF (except for a¼ 2 corresponding to the Gauss law). The parameter

http://www.mathworld.wolfram.com/topics/ContinuousDistributions.html
http://www.mathworld.wolfram.com/topics/ContinuousDistributions.html
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b(�1 � b � 1) controls the departure from symmetry of the PDF curve. The parameter
g(g > 0) is mainly responsible for the width of the PDF, while the parameter m(�1 < m
<1) controls the location of the PDF. A fundamental property of the Lévy law is that a
sum of Lévy random variables X(a, bj, gj, mj) maps onto a Lévy random variable
Xða; b; g; mÞ ¼
X
j

AjXða; bj; gj; mjÞ þ B; ð1Þ
where Aj and B are real numbers. Furthermore, the Lévy index a characterizing the
random variable X(a, b, g, m) is identical to the Lévy index of the summation of the Lévy
random variables X(a, bj, gj, mj). Additional details and the relationship between the
quadruple (a, b, g, m) and the parameters (bj, gj, and mj), Aj and B are discussed in
Zolotarev (1986) and in Uchaikin and Zolotarev (1999). The expression in Eq. (1) can be
understood as the general formulation of the Central Limit Theorem. The origin of the
term stable, also used to name the Lévy law, is attributed to the property in Eq. (1)—
Janicki and Weron (1994).
Lavallée and Archuleta (2003) introduced a random model of slip spatial heterogene-

ity for the 1979 Imperial Valley earthquake (Archuleta, 1984) with random variables
distributed according to the Lévy law. The random model is similar to an fBm, except
that in the fBm, the random variables are usually distributed according to the Gauss law.
The wave number spectrum of the slip spatial distribution decreases as a power law
function of the wave number. So, fBm provides the proper rule to reproduce the power
spectrum of the slip, but the Gauss law turns out to be a poor proxy to reproduce the
spatial variability observed in the slip spatial distribution. Subsequent investigations of
the random properties of source models of several earthquakes, the 1989 Loma Prieta,
1994 Northridge, 1995 Hyogo-ken Nanbu (Kobe), and the 1999 Chi-Chi earthquakes,
established that the probability law that best describes the slip variability is either the
Cauchy law (a special case of the Lévy law) or the more general Lévy law (Lavallée and
Archuleta, 2005; Lavallée et al. 2006a).
The (discrete) random model of the slip Dux is given by the following expression in

one dimension:
Dux /
X1þN=2

s¼2�N=2

k1
2p

����
����
�n1D=2

Fs Xx½ �exp �2pi x� 1ð Þ s� 1ð Þ
N

� �
; ð2Þ
where the random variables Xx are distributed over a 1D lattice (or grid) of length N.
The index x is the integer spatial component along the 1D lattice. The discrete variable
s is related to wave number k1 by k1 ¼ 2p s� 1ð Þ=N; Fs Xx½ � is the discrete Fourier
transform of the random variables (for s � 0 in Eq. (2), the index s ¼ N þ s in Fs Xx½ �).
The exponent n1D measures the deviation of the wave number spectrum from flat, that is,
white noise spectrum with n1D ¼ 0. We assume that k

�n1D=2
1 Fs Xx½ � ! 0 at s ¼ 1. (On the

question of the scaling property of the slip spatial distribution, see also Section 2 in
Lavallée et al., 2006a.)

Given the relation (Eq. 2), it is possible in principle to invert Dux to recover the set of
random variables Xx and then to compute the probability law that fits the PDF associated
with Xx. For this, it is sufficient to recognize that the 1D power spectrum P(k1) for Dux is
given by the following relation:
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P k1ð Þ ¼ jFs Dux½ � 2 / k�n1D
1 :

��
ð3Þ

uation (3) can be used to compute the values of the parameter n1D. Using the value
Eq
of n1D, the random variables Xx can be computed using
Xx / F�1
x Fs Duxð Þ � k

n1D=2
1

h i
; ð4Þ
where F�1
x is the Fourier inverse. (For a generalization of the model to 2D, see Lavallée

et al., 2006a.)
Ji (2006; personal communication) draws a parallel between kinematic source inver-

sion, understood as a mapping of the radiated seismic energy onto the source, and
watching a star with a telescope. When the telescope is poorly focused, the image of
the star is blurred. Focusing the telescope concentrates light rays over smaller subregions,
and allows us to picture the star image with additional details that were absent at lower
resolution. Computing source inversion, refining the fault geometry, and selecting
ground motions and Green functions is analogous to refocusing the telescope. It provides
additional details in the slip spatial distribution. Formulating the random property of the
slip with the help of the random model in Eq. (2) is in good agreement with this analogy.
In Eq. (7), spatial variability at higher resolution is obtained by laying additional
randomness at smaller scales (or higher wave numbers). However, the random variables
are independent of the length scale or resolution. In other words, at every length scale
(or wavelength), the random variables are governed by the same probability law.
Finally, it is important to review (although briefly) the limitations of the random model

discussed in this section (for a detailed discussion of the limitations, see Lavallée et al.,
2006a). First, the power law behavior of the slip spatial distribution [see Eq. (3)] is limited to
a finite range of k given (approximately) by 10�4 m�1 � k � 102 m�1 (see Andrews,
1980). Second, the power spectrum, and the exponent in Eq. (3) can only be computed in
average. This raises questions about the accuracy of the n1D (or n2D) that cannot be easily
resolved in view of the quality, the resolution, and the number of events (or subfaults)
available in current slip models. Third, the range of values for the random variables Xx is
also bounded, which implies that the Lévy PDF is truncated. The rationale for the truncation
is that physical or geophysical parameters are usually bounded between finite values. For
instance, the maximum slip value that can be observed is limited by the finite size of the
fault. Peak ground velocity (PGV) and peak ground acceleration (PGA) are also limited to a
finite range of values. Thus, modeling these parameters with the Lévy law—or other
probability laws (McGuire, 2004)—requires a modification to the asymptotic behavior of
the probability law. An instance where the effect of the truncation may have significant
implications is in the computation of the random properties of the ground motions under
limit conditions. This question is not only theoretical, for it has fundamental consequences
in computing the probability associated with seismic hazard (PSHA –see McGuire, 2004)
for the nuclear waste repository at Yucca Mountain and in predicting the observation of
large PGA over a very long period of time (Bommer et al., 2004; Andrews et al., 2007).
In principle, it is possible to modify the asymptotic behavior of the PDF of the Lévy law

while preserving—at least approximately—the properties of replication of the Lévy random
variables given by the (generalized) Central Limit Theorem. For instance, one can assume
that the power law behavior of the PDF tail holds up to a very large cutoff random variable.
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The sumof randomvariableswith values (sufficiently) smaller than the cutoffwill converge
to a Lévy randomvariable. Alternatively, it is also possible to consider an explicit functional
form for the truncated tail (for details, see Paul andBaschnagel, 1999 and references therein;
Voit, 2001; Sornette, 2004). In this chapter, we assume that the property of the Lévy random
variables given by Eq. (1) is not affected by the truncation. Thus, in addition to the five
parameters (a, b, g, m, and n1D) needed to specify the randommodel of slip given in Eq. (2),
the two cutoff values bounding the range of random variables Xx will have to be provided
(see also Lavallée and Archuleta, 2003).
2.2. . . . to the Ground Motion

The formulation of the slip spatial distribution in terms of Lévy random variables has
fundamental consequences on the radiated field generated by the rupture motions as well
as on the ground motions recorded at the surface during an earthquake. First, consider the
consequences of this formulation on the slip. In Eq. (1), the random model of the Dux is
essentially obtained through a linear sum of random variables distributed according to
the Lévy law. Indeed, consider the expression for the real part of the Fourier transform
Fs Xx½ � in Eq. (2), which can be written as follows:
Re Fs Xx½ �½ � /
XN
x¼1

Xx cos
2p x� 1ð Þ s� 1ð Þ

N

� �
: ð5Þ
For any fixed value of s, the left-hand side of Eq. (5) is a sum of Lévy random variables
modulated by real numbers given by the cosine functions estimated at s. Thus, according
to Eq. (1), Re Fs Xx½ �½ � is a random variable distributed according to the Lévy law. Note,
however, that the parameters (b, g, and m) of the random variable Re Fs Xx½ �½ � vary with s.
The Lévy index a remains invariant, and is thus the same for Re Fs Xx½ �½ � and the random
variable Xx. Again we emphasize this fundamental property of the summation of Lévy
random variables. The same considerations apply to the imaginary part of Fs Xx½ �which is
thus also distributed according to the Lévy law. In a similar way, when expanding
exp �2pi x� 1ð Þ s� 1ð Þ=N½ � in term of sines and cosines, the sum in the left-hand side
of Eq. (6) is performed over Lévy random variables Re Fs Xx½ �½ � or Im Fs Xx½ �½ �, modulated
by the product of a cosines (or sines) with the function k1=2pj j�n=2

. For instance, the real
part of Dux in Eq. (2) is given by
Re Dux½ � /
X1þN=2

s¼2�N=2

k1
2p

����
����
�n=2

Re Fs Xx½ �½ �cos 2p x� 1ð Þ s� 1ð Þ
N

� ��

þIm Fs Xx½ �½ �sin 2p x� 1ð Þ s� 1ð Þ
N

� ��
: ð6Þ
For any fixed value of the position x and fixed value of s, the product
fjk1=2p �n=2 cos 2p x� 1ð Þ s� 1ð Þ=N½ ��� �

, or fjk1=2p �n=2 sin 2p x� 1ð Þ s� 1ð Þ=N½ ��� �
, is

reduced to a real number. These products are factors of the random variables
Re Fs Xx½ �½ � and Im Fs Xx½ �½ �, respectively, and correspond to the real numbers Aj in
Eq. (1). As far as the random properties are concerned, the sum on the left-hand side
of Eq. (6) is equivalent to the sum on the left-hand side of Eq. (5), thus the slip obtained
through Eq. (6) is a random variable distributed according to the Lévy law. Again, the
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random variable Dux is characterized by a set of parameters (b, g, and m) which are
functions of the position x, but a is invariant under spatial translation and fixed by the
Lévy parameter of the random variable Xx. By the same order of approximation,
assuming that the relationship between the slip and the stress drop given in Andrews
(1980), the stress drop is also distributed according to the Lévy law with the same
parameter a.
Now, consider the expression for the ith component of the far-field seismic ui(x, t)

observed at point x for a finite dislocation source buried in a homogeneous, isotropic,
unbounded medium discussed in Aki and Richards (2002; Eq. 10.4). The derivation of
this result is based on the representation theorem for seismic sources. For the sake of
simplicity, we assume that the slip variability is mainly along a given direction, for
instance, the strike slip as for the 1979 Imperial Valley earthquake (Archuleta, 1984).
The expression for the far field consists of an integration over the fault surface that
involves essentially a linear transformation (derivative with respect to time) of the slip
function Du j; tð Þ, and other parameters such as the density, the distance between the
receiver and the point source r ¼ x� jj j, the medium velocity, and so on. The variable j
corresponds to the position of the source point over the fault surface. Let us assume
furthermore that the integration over the fault surface can be reduced to a summation (see
Appendix B in Heaton and Hartzell, 1989; Tumarkin and Archuleta, 1994). The expres-
sion for the far field can be approximated by the following sum:
ui x; tð Þ /
XNSubfault

j¼1

D _uj t
0ð Þfj rð Þ; ð7Þ
where D _uj t
0ð Þ is the slip velocity, t0 a lagged time, and fj rð Þ a function that involves all the

other parameters and variables. The fault is divided in NSubfault with index j. (A similar
formulation between the pulse shape of P waves and a sum of tractions is discussed in
Kostrov and Das, 1988. For the purpose of this demonstration and to keep it simple, the
contribution of the P waves and S waves are regrouped in a single term—see Aki and
Richards, 2002. Eq. 10.4). Now, if we assume that the only source of randomness in
Eq. (7) is the slip spatial distribution, that is, if we assume that Duj tð Þ / Xjgj tð Þ where Xj

is a Lévy random variable, and gj(t) a function of time and of the position j on the fault
then Eq. (6) can be rewritten as
u x; tð Þ /
XNSubfault

j¼1

Xj _gj t
0ð Þfj rð Þ: ð8Þ
For a fixed time t0 and a fixed position x, the sum in Eq. (8) is a sum of random variables
distributed according to the Lévy law multiplied by a real number. In Eq. (8), the real
number is given by the product of _gj t

0ð Þ by fj rð Þ at the specific time t0 and position r.
According to Eq. (1), the far-field ui x; tð Þ is also distributed according to the Lévy law.
As for the random slip, each of the parameters (b, g, m) of the Lévy law characterizing the
randomness of ui x; tð Þ are a function of the position and time. However, the Lévy index a
characterizing the tail fall off of the PDF of ui x; tð Þ is identical to the parameter a that
controls the tail fall off of the PDF of the slip. The same conclusion applies to the ground
motion variables such as the acceleration and velocity. The formulation of the far-field
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displacement based on the representation theorem and the assumption that the probability
law controlling the slip spatial distribution is the Lévy law implies that the power
law controlling the PDF tails is invariant from the source to the ground motion. Another
(but equivalent) formulation of the random property of the ground motions is discussed
in Lavallée and Archuleta (2005)—see also Fig. 1. In the Appendix, we discuss a
generalization of Eq. (7).
Finally, it should be noted that in the formulation discussed in Appendix B of Heaton

and Hartzell (1989), the slip value at coarser resolution for the jth subfault is itself an
integral performed over a slip spatial distribution that varies at higher resolution. In that
sense, the slip value at coarser resolution corresponds to some sort of average. Assuming
that the Central Limit Theorem can be applied to the slip spatial variability at higher
resolution, this will constrain the probability law of the slip values observed at coarser
resolution to converge to the Lévy law. Thus, observations of slip values distributed
according to the Lévy law at coarser resolution can be understood as a consequence of the
formulation given in the Appendix B Heaton and Hartzell (1989).
3. The 2004 Parkfield Earthquake

3.1. Random Model of the Source

In view of the density of near-source data, the 2004 Parkfield earthquake is arguably one
of the best-recorded earthquakes in history. It provides an ideal candidate for evaluating
and validating the coupling of the randomproperties between the slip and the radiated field
discussed above. Furthermore, abundance of near-source records (see Fig. 2) provides an
exceptional opportunity to test inversion methods and the random properties of the source
parameters. Using different sets of ground motion data, Custódio et al. (2005) computed
several sourcemodels of the Parkfield earthquake. The sets of groundmotion data differ by
the number and the location of the stations used in the inversion. All the source models
used in Custódio et al. (2005) are based on a method to invert the kinematic source
parameters developed by Liu and Archuleta (2004). The sets selected for our investigation
of the random property of slip spatial distribution are listed in Table 1.

For each dip and strike slip spatial distribution, we compile the parameters of the
random model discussed in Section 2.1 (see Fig. 3A and B). The procedure used
to compile the parameters can be summarized in three steps (for additional details,
see Lavallée et al., 2006a).

1. The power spectrum is computed for each of the horizontal (along the strike) layers
(layers are values at constant depth) of the slip component (dip or strike). The mean
power spectrum of the horizontal layers is computed (see Fig. 4). The values of the
exponents n1D are reported in Tables 2 and 3.

2. Using Eq. (4), each layer of the slip spatial distribution is filtered in the Fourier
space. We assume that the resulting field corresponds to a field of (uncorrelated)
random variables Xi and we compute the PDF of Xi (see Figs. 5–8).

3. The PDF of Xi is fitted with the PDF of theoretical probability laws. Three
candidates are considered: the Gauss law, the Cauchy law, and the more general
Lévy law. The parameters of the probability laws are obtained by minimizing the
following expressions:
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FIG. 2. Map of the Parkfield segment of the San Andreas fault is illustrated with the 43 three-

component strong-motion instruments used in Custodio et al. (2005). The stations used in the
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recorders. The template also includes the 2004 Parkfield epicenter (black star), modeled fault
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XN
i¼1

PDF Xið Þ � p Xi; a; b; g; mð Þj j; ð9Þ
where N is the number of random variables, and p Xi; a; b; g; mð Þ is the theoretical PDF of
Xi for either the Gauss (a ¼ 2, no parameter b), Cauchy (a ¼ 1, b ¼ 0), or Lévy law.



TABLE 1. The four slip models used in this section are based on the following set of ground

motion data

Set Number of stations Stations

All All 43 stations All stations illustrated in Fig. 2.

1 17 C1E C2W C3E C4AW EFU FFU FZ12 FZ4 FZ8 GH2E JFU

KFU MFU PHOB SC1E VC1W VC3W

2 25 C2E C3W C4W COAL EFU FZ1 FZ12 FZ15 FZ3 FZ6 FZ8

FZ9 GFU GH3E GH3W GH5W JFU RFU SC2E SC3E TEMB

VC2W VC4W VC5W VFU

5 24 C1E C2W C4AW COAL EFU FZ12 FZ15 FZ3 FZ6 FZ8 FZ9

GFU GH3E GH5W JFU KFU SC2E VC2W VC4W VFU
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FIG. 3. Source inversion of the 2005 Parkfield earthquake (Custodio et al., 2005) based on strong
ground records (set All). The model fault plane is divided in subfaults located at 2 km intervals in

the strike direction and 1.84 km in the dipping direction. The spatial distributions of the dip slip is

illustrated in the top panel (a), while the strike slip is illustrated in the bottom panel (b).

437RANDOM NATURE OF EARTHQUAKES
In parallel with fitting the parameters of the Lévy law by optimizing Eq. (9), we also
fitted the parameters by optimizing an expression similar to Eq. (9) but given for the
characteristic function and its (corresponding) absolute value. (The characteristic func-
tion is defined as the Fourier transform of the PDF.) The parameters obtained by fitting



2p
4

2p
8

2p
16

2p
32

2p
64

k1 (km−1)

1

10

P
 (

k 1
)

FIG. 4. The mean power spectrum P(k1) and the best straight lines that fit the log–log curve are

reported for the strike slip distributions in Table 1: set All (D), set 1 (□), set 2 (◊), and set 5 (�).

The quality of the fit, as estimated by the values of the linear correlation coefficient (in absolute

values) is 0.94, 0.84, 0.87, and 0.76, respectively, for the set All, 1, 2, and 5. These values are within

the range of values computed for other earthquakes (see Lavallée et al., 2006a). Variations in the

slopes of P(k1) and in the estimated linear correlation coefficients suggest that the convergence to a

single exponent n1D is difficult to achieve with such a small sample of values. These results also

suggest that the convergence is also dependent on the number of stations used in computing the slip

distribution.
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the characteristic function and its absolute value are in good agreement with those
reported in this chapter. The procedure used to estimate the parameters of the Lévy
law is discussed in details in the Appendix in Lavallée et al. (2006a). Note also, that in
Janicki and Weron (1994, Section 3.7), histograms of generated Lévy random variables
are compared to the theoretical curves of the PDFs for several values of the Lévy index.
The theoretical curves and the histograms are also in good agreement.
The curves of the Gaussian, Cauchy and Lévy laws that best fit the PDF are illustrated

in Figs. 5–8. The parameters of the Gaussian, Cauchy and Lévy laws are reported in
Table 2 and 3. The values of the parameter a estimated for both the strike and the dip
components of the four slip models are quite consistent. The spread of �0:3 around the
value a ffi 1:1 is in good agreement with a similar spread observed when fitting the PDF
of 200 synthetic Lévy random variables (see Appendix in Lavallée et al. 2006a for
details). These results suggest that estimation of the parameter a is relatively independent
of the number of stations (provided that this number is large enough). The estimation is
also independent of the stations selected for computing the slip spatial distribution. Since
a controls the relative decreasing expectation to observe large slip values, the result
suggests that the decreasing power law of the PDF tail is well captured by source
inversions computed with the different sets reported in Table 1. This is quite an
achievement in view of the number of subfaults used to compute the PDF (N¼180).
This result is in good agreement with the theory discussed in Section 2.2. A value for the
Lévy index a close to 1 is also comparable to the value computed for the slip inversion of
the Imperial Valley earthquake (Lavallée and Archuleta, 2003), the 1989 Loma Prieta
and the 1994 Northridge earthquake (Lavallée et al. 2006a), and the 1999 Chi-Chi
earthquake (Lavallée and Archuleta, 2005; and next section).



TABLE 2. Parameters of the random model for the dip slip of four settings presented in Table 1

Set

Power law

exponent Gauss law Cauchy law Lévy law

n1D m s g m a b g m

All 0.92 0.08 1.62 0.95 0.03 1.2 0.14 1.02 0.5

1 0.69 �0.18 1.71 1.14 �0.3 0.88 0.0 1.13 �0.3

2 0.6 0.1 1.71 1. 0.04 1.28 0.11 1.15 0.4

5 0.82 �0.19 1.60 1.07 �0.22 0.93 0.08 1.05 �1.

TABLE 3. Parameters of the random model for the strike slip of four settings presented in Table 1

Set

Power law

exponent Gauss law Cauchy law Lévy law

n1D m s g m a b g m

All 1.40 0.25 0.86 0.63 0.23 1.13 �0.18 0.55 �0.34

1 1.28 0.31 1.09 0.79 0.3 1.13 �.09 0.71 �0.05

2 0.72 0.42 2.12 1.37 0.26 0.87 0.16 1.35 �0.74

5 1.01 0.42 1.49 1.02 0.28 1.01 0. 0.97 0.34
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The values of the parameter b reported in Tables 2 and 3 are close to 0 for (almost)
every slip inversion. This suggests that positive and negative fluctuations in the slip
spatial distribution are equally probable. As discussed in Lavallée et al. (2006a),
the value of the parameter m is an artifact of the operations [see Eq. (4)] used to compute
the random variables Xi, thus its value is not really relevant.
Of the five parameters needed to describe the random model of the slip, only the

parameters n1D and g vary significantly (i.e., relative to the other parameters) from one
slip inversion to another. The fact that both parameters are affected in a similar way is
essentially due to the filtering process used to generate the random variables Xi. The
amount of filtering in Eq. (4) essentially controls the spreading of the Xi and thus the
width of the PDF, which in turn is (mainly) characterized by the parameter g. Using
different slip distributions with a similar range of values, and filtering the slip distribu-
tions with Eq. (4) but with an exponent n1D that varies significantly from one slip
inversion to another, will generate white noise Xi characterized by different ranges of
values. For a fixed value of a (e.g., in Tables 2 and 3, for a ¼ 2 and a ¼ 1), the
interdependence between n1D and g is clearly illustrated and shows that when n1D is
growing, g is decreasing. The results summarized in Tables 2 and 3 suggest that an
accurate estimation of the parameter n1D, and thus the amount of correlation in the slip
variability, is difficult to achieve. The small number of subfaults used in computing n1D
may be responsible for a slow convergence to the real value of n1D and may explain the
variation reported in Tables 2 and 3 (see also discussion in Lavallée et al., 2006a).
Alternatively, the variation in n1D may be due to a dependency in the number of stations
and/or the location of the stations used in computing the slip inversion. Additional
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the Cauchy and the Lévy laws are reported in Table 2.

440 LAVALLÉE
investigations are needed to understand the origin of variations in the estimated parame-
ter n1D reported in Tables 2 and 3. Fortunately, according to Eq. (5) and numerical
simulations with generated Lévy random variables (see discussion on pseudo-white
noise, in Lavallée et al., 2006a), estimation of the parameter a is not too dependent on
an accurate estimate of the parameter n1D.
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3.2. Random Model of the Ground Motion PGA

Under the assumption that the slip spatial heterogeneity can be interpreted in terms of a
random model and the representation theorem (approximated by Eq. (7)), we have found
that the random properties of the ground motion are constrained by a sum of random
variables. According to the (generalized) Central Limit Theorem, a sum of Lévy ran-
dom variables with identical a value, but with different values for b, g, and m, is a Lévy
random variable characterized by the same a values [see Eq. (1)]. With respect to its
random property, the ground motion recorded at a given station can be understood as a
Lévy random variable modulated by a function of time. At any time, the ground motion is
thus a Lévy random variable characterized by the same a, but the parameters b, g, and m
are functions of time [see Eq. (8)].
The PGAs recorded during the 2004 Parkfield earthquake are used to test this

hypothesis. The signal recorded at a station is divided into three components: N-S, E-
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W, and U-D. In this analysis, we are using the PGA of the three components. Further-
more, we consider the PDF of the absolute value of the PGA as it is traditionally done in
seismology. We assume that the functional behavior of the “heavy tails” of the PDF of |
PGA| is essentially similar to the functional behavior of the “heavy tails” of the PDF of
PGA. The |PGA| is one of the most important ground motion metrics used in computing
the PGA probability associated with seismic hazard (PSHA)—see McGuire (2004). By
definition, the PGA is an extreme “event” in the ground motion signal. The parameter a
controls the attenuation of the PDF tail, and thus the frequency of extreme events. It is
thus particularly relevant to compute the PDF of the |PGA| to test the hypothesis
discussed above. More specifically, we want to compare the functional behavior of the
tail of the PDF for the |PGA| to the “heavy tails” of the PDF of the random variable X
associated to the slip (see Figs. 5–8).
The stations selected for this analysis are located within a closest distance to the

rupture surface that varies from 0 km to 11 km (Fig. 9). To test the effect of the distance
on the computed random properties, these stations are divided into three subsets. The first
set includes the stations located between 0 km and 5 km, the second set includes the
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stations located between 0 km and 7.5 km, and the third set includes all the stations
located between 0 km and 11 km. For each set, the PDF of the |PGA| is computed.
Assuming that the PDF of the |PGA| can be approximated by the Lévy law, we compute
the parameters of the Lévy law that fit the PDF curves. The procedure used to compute
the parameters is identical to the one discussed in Section 3.1 for the random variable X.
The results are reported in Table 4 and illustrated in Figs. 10 and 11.
Note that the PGAvalues recorded at different stations are surely characterized by PDFs

with different values of b, g, and m. The PGA values do not correspond to a white noise.
The variation in b, g, and m surely affects the shape of the PDF computed for the PGA,
in particular thewidth of the PDF.Weassume that these variations in the parameters values
do not significantly affect the computation of a. Consistency in the values of a estimated
for the three different sets supports this assumption (see also Gusev, 1996).
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TABLE 4. Parameters of the Lévy law that best fit the probability density function (PDF) of the peak

ground acceleration (PGA) for stations within distance intervals with size of 10, 7.5, and 5 km

Location of the

stations (km) Number of events

Lévy law

a b g m

0–5 65 0.95 1. 51.5 �613.

0–7.5 77 1.04 1. 75.0 1236.

0–11 92 1.11 0.93 125. 561.

The number of PGA events used to compute the PDF for every interval is given in the second column.
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3.3. Random Model of the Ground Motion PGV

The ground motion velocity is the time integral (or sum) of the ground motion
acceleration. If the ground motion acceleration is distributed according to the Lévy law
at any time, a time integral (or sum) over the recorded ground motion will also be
distributed accorded to the Lévy law. According to Eq. (8), the Lévy index a should be
invariant under this linear transformation.
To the same order of approximation and for the same stations used to estimate the PDF of

the |PGA|, we compute the PDF of the |PGV|. Again, we assume that the PDF of the |PGV|
can be approximated by the Lévy law, and we compute the parameters of the Lévy law that
best fit the PDF curves. The results are reported in Table 5 and illustrated in Fig. 12.

These results show that the PDF of the |PGA| and the PDF of the |PGV| can be
approximated by the Lévy law. The estimated parameter a is (almost) invariant for
stations located between 0 km and 11 km, and (almost) independent of the size of the
distance intervals used to compute the PDF. The values of a are also in good agreement
with the values reported in Tables 2 and 3. This suggests that the same parameter a
controls the rate of decrease in the PDF tails of the |PGA|, of the |PGV|, and of X.
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4. The 1999 Chi-Chi Earthquake

4.1. Random Model of the Source

The results discussed in Section 3 are in good agreement with the results obtained for
the 1999 Chi-Chi earthquake (Lavallée and Archuleta, 2005). The same procedure
discussed in Section 3.1 was applied to the dip and the strike slip components computed
by Zhang et al. (2003). The power spectrum of the dip and the strike slips are illustrated
in Fig. 13. As for other earthquake slip inversions (see Lavallée et al. 2006a), the power
spectrum is attenuated as k�n1D

1 . The values of the parameters n1D are listed in Table 6.
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TABLE 5. Parameters of the Lévy law that best fit the probability density function (PDF) of the peak

ground velocity (PGV) for stations within distance intervals with size of 10, 7.5, and 5 km

Location of the

stations (km)

Number of

events

Lévy law

a b g m

0–5 65 1.23 1. 6.15 21.7

0–7.5 77 1.22 1. 8.39 25.6

0–11 92 1.21 0.94 7.97 25.5

The number of PGV events used to compute the PDF for every interval is given in the second column.
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Using the parameter n1D, the white noise X is obtained by filtering the dip (or strike)
slip (see Eq. (4). The parameters of the Gauss, the Cauchy, and the Lévy laws that best fit
the PDF of X are computed and listed in Table 6 (see Figs. 14 and 15). As for the
Parkfield earthquake, the Lévy law (with a close to 1) and the Cauchy law (a ¼ 1) give a
much better representation of the decrease in the PDF tail of X.
4.2. Random Model of the Ground Motion PGA

The model presented in Section 2.2 was first tested for the PGA recorded at the surface
during the 1999 Chi-Chi earthquake. The stations are located with a closest distance to
the rupture surface that varies from 0 km to 30 km (Fig. 16). Contrary to the Parkfield
earthquake (see Fig. 9), the spatial distribution of the PGA is clearly a function of the
distance. However, we can assume that variations in the random property are (approxi-
mately) independent of the distance to the fault if we only consider the stations located
within a window of a narrow size (along the horizontal axis). There is a trade-off to be
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TABLE 6. Parameters of the random model for the dip and strike slips of the 1999 Chi-Chi

earthquake

Power law

exponent Gauss law Cauchy law Lévy law

n1D m s g m a b g m

Dip slip 1.11 9.2 25.9 19.1 9.8 .95 �0.3 14.6 79.

Strike slip 1.27 �7.5 17.3 13. �7.7 1. 0.3 12.3 9.7
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made between the size of the window and the number of PGA values. The larger the size
of the window, the larger the number of PGA values within the window will be. From a
statistical point of view, a larger number of events provides a more reliable estimate. To
test the effect of the location of the stations on the computed PDF, Lavallée and
Archuleta (2005) computed the PDF of the PGA for stations located within windows
of different sizes and with the window centers located at different positions. Several
settings were investigated in Lavallée and Archuleta (2005). For each setting, the
parameters of the Lévy law were computed. Except for 2 of the 13 settings, the values
of a are close to 1. There is a very small deviation from a ¼ 1 for the three PDFs
computed within windows with a size of 10 km (see Table 7 and Figs. 17 and 18). In these
settings, the largest window size used was 10 km. The number of stations included within
a broader distance interval is larger than the number of stations within a narrower
distance interval. Accordingly, the PDF of the former are computed with more accu-
racy—especially the PDF tail.
The results for the Chi-Chi earthquake corroborate the results obtained for the Park-

field earthquake (see Section 3) and validate the model discussed in Section 2. The
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449RANDOM NATURE OF EARTHQUAKES
results discussed in this section and in Sections 3.2 and 3.3 also confirm that Lévy
type laws with “heavy tails” are a better proxy than Gaussian or log-normal laws to
reproduce the asymptotic behavior of the PDF of ground motion metrics (Gusev, 1989;
Tumarkin and Archuleta, 1997). For a discussion on fitting the PDF of the |PGA| with
log-normal laws see Abrahamson (1988) and references therein.
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5. Limitations of the Model

The random properties of the ground motions, and a fortiori of the ground motion
metrics, are not completely determined by the random properties of the slip. Only the law
that governs the fall off of the PDF of the ground motion metrics is essentially con-
strained by the random properties of the slip. The interplay between the rupture dynamics
and the heterogeneity in the fault’s surrounding medium will also affect the distribution
of ground motion values. However, according to the theory discussed above, these
effects will mainly affect the width and the location (position) of the PDF of the ground
motions, for example it will affect the mean value of the |PGA| and its variance (see also
the Appendix).
Strictly speaking, according to the theory given above, it is the displacement, velocity,

and acceleration that can be approximated by Lévy random variables, not the absolute
value of such variables. However, we were mainly interested in investigating the
functional behavior of the tail of the PDF and to verify that the Lévy law can reproduce
the PDF functional behavior with a parameter a predicted by the (generalized) Central
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TABLE 7. Parameters of the Lévy law that best fit the probability density function (PDF) of the peak

ground acceleration (PGA) for stations within different distance intervals

Location of the stations (km) Number of events

Lévy law

a b g m

0–10 102 0.95 1. 46.2 �492.

10–20 99 0.96 0.58 33.9 �259.

20–30 60 1.03 1. 28.4 754.

The number of PGA events used to compute the PDF for every interval is given in the second column.
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Limit Theorem. Because the values of the PGA are distributed symmetrically with
respect to the value 0, it is also possible to investigate the behavior of the PDF tails of
the PGA. We do not expect that the conclusion reached in this study will be affected
significantly by using this procedure.
Furthermore, it should be noted that the PDF values computed for the small values of

the |PGA| is an artifact of the Lévy law used to fit the PDF. A more accurate description
of the probability of the |PGA| will require fitting the small |PGA| values with a different
probability law. Only a small number of values are affected by this limitation. The Lévy
law is a better approximation of the probability associated with the larger values of
|PGA|, for instance, for those values that exceed the |PGA| value that characterizes the
maximum of the PDF curve. The same limitations apply to the |PGV|.
Recorded ground motions under different soil conditions may or may not include

nonlinear effects (see Archuleta et al., 2003; Bonilla et al., 2005 for illustrations of
modeling wave propagation including the nonlinear soil dynamics). Taking advantage of
the strong-motion data recorded during the Northridge earthquake, Field et al. (1997)
went on to infer pervasive nonlinear soil response. However, O’Connell (1999) explained
much of the same data used by Field et al. (1997) with a linear site response and scattering
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of waves in the upper kilometers of the Earth’s crust. In this study, we ignore site
amplification effects for the following reasons. First, taking into account shallow soil
properties would require subdividing the limited samples accordingly, thus reducing the
number of stations used to compute the PDF. Second, it is usually understood that
nonlinear effects deamplify the signal recorded at a given site (though in some cases
nonlinearity may create PGA, Archuleta, 1998; and Bonilla et al. 2005). In terms of the
random properties of the |PGA|, this implies rescaling (or narrowing) and translating the
PDF curve. These transformations are mainly controlled by the scale parameter g and the
location parameters m. In Section 3.2, we ignored variability in these parameters from one
station to another, pointing out that the relevant parameter for our analysis is the Lévy
index a. Finally, using ground motions recorded at the surface and at the bottom of the
boreholes during the 2003 Tokachi-oki earthquake, we found that the tails of PDF of PGA
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FIG. 18. Same as Fig. 17 but for the stations located between a distance of 20–30 km.
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decrease with power law behaviors controlled by Lévy indexes with values close to 1
(Lavallée et al., 2006b). These results suggest that nonlinear shallow soil properties may
not influence the rate of decrease in the PDF tails of PGA recorded at the surface.
To the same order of approximation, we can also ignore directivity effects. The

consistency in the estimate of the parameters a for different windows (see Tables 4–6)
suggests that this approximation is correct (see also Lavallée et al., 2006a).
Besides the Lévy law, other probability laws can also be used to reproduce the typical

shape observed for the PDF of the |PGA| (see also the Appendix). For instance, the
Gamma and the Weibull laws have similar functional behaviors for certain parameter
values (for other examples, see Abrahamson, 1988). Relying only on statistical tests to
identify the law that best reproduces a functional shape of the PDF curve will not provide
insight into understanding the physical origin of the random nature embedded in the
ground motions. Furthermore, the determination of the best probability law for a given
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set of a data will essentially be grounded on statistical tests, with the consequence that
different data sets may be best approximated by different probability laws.
Although not a model limitation per se, the question of the quantification of the

accuracy of—or uncertainty on—the parameters estimated in Sections 3 and 4 deserve
a brief discussion. There is no simple procedure to compute the accuracy of the estimated
parameters of the random model. However, it is possible to compute the range of
“plausible” values for the parameters of the random model. For the sake of simplicity,
we focus on the Lévy index a. In the Appendix of Lavallée et al. (2006a), the computed
PDF (and characteristic functions) of generated Lévy random variables were fitted with
the Gauss, Cauchy, and Lévy laws. The fitted parameters were compared to the para-
meters used to compute the Lévy random variables. In these numerical experiments, the
number of generated random variables was chosen to match the number of events (or
subfaults) in a source inversion—see also Janicki and Weron (1994), for numerical
experiments that involve a larger number of random variables. These numerical experi-
ments allow us to quantify, although approximately, the degree of accuracy that can be
expected under “ideal conditions” when estimating the parameters of the Gauss, Cauchy,
and Lévy laws. The numerical experiments discussed in Lavallée et al. (2006a) suggest
that the parameter a can be determined within a spread of �0:3. Another procedure to
infer the interval of “plausible” values consists of using the computed values of the
parameters for empirical data. For instance, the range of values computed for the
parameter a for the four dip-slip models of the Parkfield earthquake varies from 0.88
to 1.28 (see Table 2). The range for the strike slip goes from 0.87 to 1.13 (see Table 3).
For different earthquake source models, the range of values estimated for the parameter a
goes from 0.87 (2004 Parkfield earthquake, this chapter) to 1.56 (1995 Hyogo-ken
Nanbu—see Lavallée et al., 2006a). For the slip, the range magnitude for the parameter
a is thus 	0:7. For the ground motion metrics, the range of values can be estimated by
comparing the values of a obtained for different subsets of data discussed in Sections 3.2
and 4.2. The range of a values for PGA recorded during the 2004 Parkfield earthquake
goes from 0.95 to 1.11 (see Table 4) while the range goes from 0.95 to 1.03 (see Table 7)
for the events recorded during the 1999 Chi-Chi earthquake (see Lavallée and Archuleta,
2005 for additional results). The values obtained for the ground motion metrics are thus
within the range of values estimated for the different earthquake source models. The
range of values for a computed for empirical data is thus consistent with the range for
numerical experiment discussed in the Appendix of Lavallée et al. (2006a).
6. Conclusion: From Randomness to Invariance

The concept of conservation laws plays a fundamental role in science. This concept
specifies that a physical quantity is invariant under time, space, or scale translation,
regardless of the complexity of the interactions or mechanisms involved in the process
under consideration. Furthermore, application of the concept does not require a detailed
knowledge of these interactions and mechanisms. In the second section of this chapter,
we argue that, based on the synthesis of the representation theorem and the (generalized)
Central Limit Theorem, the random properties of the slip and of the ground motion
should be distributed according to the Lévy law. Our investigation of the random
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properties of the source model and of the 1999 Chi-Chi earthquake confirmed this
hypothesis (Lavallée and Archuleta, 2005).
In Section 3, we investigated the random properties of several source models com-

puted for the Parkfield earthquake (Custódio et al. 2005). For each source, we compiled
the parameters of the random model and compared them to the parameters of the PDF of
the PGA and the PDF of the PGV. We found that the tails of the PDF characterizing the
slip, the |PGA|, and the |PGV| are governed by a parameter a with almost the same values
as predicted by the (generalized) Central Limit Theorem. This parameter, the Lévy index
a that controls the rate of decrease in the frequency of large fluctuating slip values, |PGA|
values and |PGV| values, can be considered an invariant measure.
In an earlier work (Lavallée and Archuleta, 2003), we stressed the fact that a descrip-

tion of the slip spatial distribution in terms of a Cauchy law has a significant consequence
on the distribution of asperities over the fault surface. (Asperities are usually defined as
regions with large slip or stress drop values on the fault.) The results presented in this
chapter show that the PDF of the |PGA| (and the PDF of the |PGV|) is a direct
consequence of the PDF of the asperities as first suggested by Gusev (1989).

An important application of the theory outlined in this chapter will be the validation
and the calibration of source models. Often for a given earthquake, several candidates
are available with spatial configurations that differ significantly from one source
model to another (http://www.seismo.ethz.ch/srcmod; Mai et al., 2005). The optimal
inversion can be found by comparing the random properties of the source to the random
properties of the ground motion, assuming that enough data are available. Numerical
simulations of dynamic rupture require realistic complexity in fault geometry,
material properties, and stress state. Again, intercomparison of the random properties
of the stress drop and generated synthetic ground motions can be used to insure that these
properties are in agreement with each other as predicted by the theory outlined in this
chapter.
In devising a random model of slip inversions, we have stressed the importance of

properly describing the probability law that governed the slip spatial distribution. In
Section 2, we show that the representation theorem implies that the randomness in the
radiated field is a direct consequence of the randomness embedded in the slip. Then,
using the (generalized) Central Limit Theorem, we are able (at least approximately) to
constrain the probability law governing the radiated field to the Lévy law. This suggests
that the basic principles governing the combination of random variables are to random
modeling what calculus is to physics!
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Appendix. Generalization of the Random Model of
the Radiated Field
A.1. Near-Field Displacement

The random properties of the far-field displacement u(x, t) can be extended to the near-
field seismograms if we adopt the formulation given by Aki and Richards (2002,
Eq. 10.39). Here, we assume that the slip spatial distribution is the only source of
randomness. In Aki and Richards (2002, Eq. 10.39), the near field is essentially related
to the slip through relationships that involve the slip or linear transformations of the slip
such as the integral or derivative. To the same order of approximation, the results
discussed in Section 2.2 can be extended to the near-field displacement.
A.2. Product of Random Variables

For the sake of simplicity, we consider again the expression for the far-field displace-
ment u(x, t) given by expression (Eq. 8), with Xj distributed according to the Lévy law
with a Lévy index aX.
u x; tð Þ /
XNSubfault

j¼1

Xj _gj t
0ð Þfj rð Þ: ðA:1Þ
We assume that besides the slip heterogeneity, there is another source of randomness in
the formulation of the far field. For instance, additional random effects can be due to
heterogeneity in the medium surrounding the fault. Heterogeneity in the medium can be
approximated by assuming that the medium velocity is related to a random variable Y
(Fouque et al., 2007). First, we assume that this effect is independent of the sum over the
NSubfault subfault. Thus, the expression for u(x,t) can be rewritten as
u x; tð Þ / Y
XNSubfault

j¼1

Xj _gj t
0ð Þfj rð Þ: ðA:2Þ
For a fixed time t0 and position r, and using Eq. (1), the expression for u x; tð Þ is
proportional to the product of two random variables
u x; tð Þ / YX: ðA:3Þ

If we assume that Y is also distributed according to the Lévy law with Lévy index aY—a
rather general assumption that also includes the Gauss law as a special case—then u x; tð Þ
is given by the product of two Lévy random variables. In general, the product of two
Lévy random variables with Lévy indexes aX and aY is not a Lévy random variable.
However, the product is in the basin of attraction (for addition) of the Lévy law with a
Lévy index given by a ¼ Min aX; aY½ � (see Breiman, 1965; Sornette, 2006, personal
communication; and Marsan, 2005 for an application). Let us assume that the “attractive”
property is (nearly) valid for truncated Lévy random variables and that heterogeneities in
the crust are distributed according to the Lévy law. The results obtained in Sections 3



457RANDOM NATURE OF EARTHQUAKES
and 4 suggest that the Lévy index of the medium heterogeneities will be bounded
between the value obtained for the slip (aY � aX close to 1) and a Gauss law (aY ¼ 2).
If we assume that the slip is distributed according to a Cauchy law and that the medium

heterogeneity is distributed according to a Gauss law, we can compute the analytical PDF
associated with u x; tð Þ. (In general, other nonrandom parameters in Eq. A.3 can be
absorbed in the definition of the probability laws for Y or X. To keep it simple, we
ignore the nonrandom parameters.)
The analytical expression for the product of two random variables w1 and w2, with

respective PDF p1 w1ð Þ and p2 w2ð Þ, can be obtained by using either this relationship
p uð Þ ¼
ð1

�1
dw1

ð1
�1

dw2d u� w1w2ð Þp1 w1ð Þp2 w2ð Þ ðA:4Þ
or by computing the Jacobian of the inverse transformation (for details, see Rohatgi and
Ehsanes Saleh, 1976) and producing the following expression
p uð Þ ¼
ð1

�1
dw1

p1 w1ð Þ
w1j j p2

u

w1

� 	
: ðA:5Þ
Consider the hypothesis where p1 corresponds to the Gauss law (a1 ¼ 2) with mean m1 ¼ 0
and standard deviation s21 ¼ 1, and where p2 corresponds to the Cauchy law (a2 ¼ 1) with
m2 ¼ 0 and g2 ¼ 1. Then, p uð Þ takes the following expression
p uð Þ ¼ Exp u2=2ð ÞG 0; u2=2ð �ffiffiffiffiffiffiffi
2p3

p ; u 6¼ 0; ðA:6Þ
where G 0; u2=2ð Þ is the incomplete gamma function. The asymptotic expansion of
Eq. (A.6) gives
pðuÞ 	
ffiffiffiffiffi
2

p3

r
1

u2
þ O

1

u4

� 	
; u 
 1: ðA:7Þ
In the expression in Eq. (A.7) , the PDF tail is decreasing as u�a�1 with a ¼ 1, the Lévy
index of the Cauchy law. Consider now the hypothesis where both p1 and p2 are
distributed according to the Cauchy law (a ¼ 1) with m1 ¼ m2 ¼ 0 and g1 ¼ g2 ¼ 1.
Computing p uð Þ using Eq. (A.5) gives,
p uð Þ ¼ Log u2ð Þ
p2 u2 � 1ð Þ ; u 6¼ 0 ðA:8Þ
and the asymptotic expansion
p uð Þ 	 2Log uð Þ
p2

1

u2
þ O

1

u4

� 	
	 2

p2
1

u2
þ O

1

u3

� 	
; u 
 1; ðA:9Þ
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when using the following asymptotic expansion for Log zð Þ ¼ 1� 1=zð Þ þ 1=2ð Þ
1� 1=zð Þ2 þ 1=3ð Þ 1� 1=zð Þ3þ . . . (see Abramowitz and Stegun, 1972, p. 68,
Eq. 4.1.25). Again, the PDF tail in Eq. (A.9) is decreasing as u�a�1 with a ¼ 1. The
results in Eqs. (A.7) and (A.9) show that predicting the frequency of large values of u is
principally constrained by the probability law that governs the random variables with the
smaller a value. If the ground motions can be understood as a product of random
variables, it is thus fundamental to correctly describe the probability law that governs
each random variable involved in the product (see Lavallée and Archuleta, 2005). The
results in Eqs. (A.6) and (A.8) show that, in general, the product of random variables is
not distributed according to a log-normal law (see Galambos and Simonelli, 2004).
In theory, the expression for p uð Þ can be computed for any values of the parameters

m1, m2, g1 and g2. However, the expression for p uð Þ is rather complicated and cumber-
some. For this reason, we only provide analytical solutions of p uð Þ for the parameter
values given above.
In principle, the analytical expression for p uð Þ in Eq. (A.5) can be computed with the

help of either Mathematica or Maple. However, for the cases discussed above, the
solutions computed by Mathematica or Maple lead sometimes to awkward analytical
expressions. For instance, the expression for the PDF may include an imaginary term like
Ip�1 (see also Glen et al., 2004). Computation of p uð Þ by traditional methods (that
usually requires the indispensable Abramowitz and Stegun, 1972; Gradshteyn and
Ryzhik, 1994) is usually free of such incongruities!
Finally, we consider the more general case where the additional random effect is also a

function of the position on the faults (e.g., due to variations in the fault geometry or using
the more general formulation of the far-field displacement, see Aki and Richards, 2002,
Eq. 10.4). The expression for u x; tð Þ can be approximated by the following expression
u x; tð Þ /
XNSubfault

j¼1

XjYj _gj t
0ð Þfj rð Þ; ðA:10Þ
where Yi is a random variable with a Lévy index aY . If we assume that Yi is also
distributed according to the Lévy law, then the random variable Ui ¼ XiYi is in the
basin of attraction (for addition) of the Lévy law with a Lévy index aU ¼ Min aX; aY½ �.
The expression for u x; tð Þ
u x; tð Þ /
XNSubfault

j¼1

Uj _gj t
0ð Þfj rð Þ ðA:11Þ
is thus a sum of random variablesUj with a PDF tail that decreases asU�aU�1. According
to a theorem due to Gnedenko and Kolmogorov (1954), a sum of many independent
random variables with PDFs that have a power law tail U�aU�1 with an index 0 < aU < 2
is also distributed according to the Lévy law (here, we are borrowing a formulation of the
theorem given in Voit, 2001, p. 101). If aU � 2, the sum converges to the Gauss law. For a
fixed time t0 and position r, the sum in Eq. (A.11) is equivalent to a sum of random variables
that meet the requirement of the theorem formulated by Gnedenko and Kolmogorov (1954)
and u x; tð Þ is thus distributed according to the Lévy law with a Lévy index aU. Here, we are
making the assumptions that the theorem remains valid for truncatedLévy randomvariables,
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and thatUJ can be approximated by an independent random variable (or conversely that the
theorem applies to nonindependent variables).
In Section 2 and in this Appendix, we assumed that the slip took place along the strike

direction. The randommodel of groundmotion displacement can be generalized to include
the effect of slip along the dip direction. Additional “linear” random contributions can also
be included to the randommodel of the groundmotion displacement. In principle, this can
be achieved by following the procedure discussed in this Appendix and in Section 2.
This exposé on the random nature of earthquakes started with a quotation of Kolmo-

govov and concludes with a theorem that he coauthored!
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Anisotropic (nonisotropic) scattering/Transport mean free path

In a random medium, when the scatterers have a tendency to diffract energy preferen-
tially in some directions, one introduces the notion of anisotropic scattering. In such a
situation, it usually takes several scattering events before a beam propagating initially in
a well-defined direction has distributed a significant amount of energy in all space
directions. The typical length scale over which a beam “loses memory” of its initial
direction is the transport mean free path. It can be significantly larger than the scattering
mean free path.

Anisotropic (nonisotropic, anisometric) random media

Randommedia statistically characterized by different characteristic distances in different
directions. For example, the horizontal characteristic distance is larger than the vertical
characteristic distance in sedimentary layers.

Born approximation

A perturbation method used for the calculation of scattering waves due to a specific
obstacle or a localized inhomogeneity, where the wave is written as a sum of the primary
wave and scattered wave. This approximation is valid only when the scattered wave
amplitude is smaller than the incident wave amplitude.

Coda attenuation

The coda wave envelopes of local earthquakes smoothly decay with increasing lapse
time. The decay can be empirically described as a product of a geometrical factor and an
exponential decay factor, where the latter is called coda attenuation. Generally, coda
attenuation depends on frequency and is characteristic of a given region. The relation
between coda attenuation and direct-wave attenuation by either scattering or intrinsic
mechanisms is not well established.

Coda normalization method

A method used for measurements of earthquake magnitudes, wave attenuation per
distance, and site amplification factors from the coda wave amplitude at a fixed lapse
time within some frequency band. This method is based on the assumption that the
distribution of coda energy of a local earthquake is spatially uniform in a given region at
a sufficiently large lapse time.

Coda waves

Wave trains in the tail portion of a seismogram. They are interpreted as waves that are
multiply or singly scattered by distributed heterogeneities in the Earth. This term is often
used as names for wave trains following the direct phase: P coda, S coda, and Lg coda.
463
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Differential scattering cross-section/Total scattering cross-section

A measure of scattering power of an obstacle. The differential scattering cross-section,
which is proportional to the square of scattered wave amplitude, means the scattered-
wave energy generation per time in a solid angle for a unit incident energy flux density.
Its integral over all the solid angle gives the total scattering cross-section.

Diffusion constant/Transport mean free path

In a strongly scattering medium it is possible to describe the energy propagation of
multiply scattered waves with a simple scalar diffusion equation for the total energy. This
equation is identical to the heat conduction equation in thermal processes. The parameter
that determines the strength of the scattering process is the diffusion constant. It is the
product of the energy propagation velocity and transport mean free path divided by the
space dimension. The strength of the scattering increases as the diffusion constant
decreases.

Earthquake doublet

A pair of earthquakes that ruptured at nearly the same location with nearly identical focal
mechanisms (or identical source waveforms) but at different occurrence times. Doublets
are often used to monitor the temporal changes of Earth medium properties.

Envelope

Time trace connecting the peak values of oscillating waves. It is often used to character-
ize the shape of a short-period seismogram. The smoothed curve of the squared waves is
called the mean square (MS) envelope, which represents the time trace of wave energy
density.

Fresnel zone

In ray theory (infinite-frequency approximation), the propagation path of waves between
two points A and B in an inhomogeneous medium is represented by a line or ray
connecting A and B along which the travel time is minimal (or extremal to be exact).
The wavefield at B due to a source at A solely depends on medium properties along that
ray, however this is not correct for finite-frequency wave propagation for which one can
show, in the light of diffraction and interference, that the wave field at B usually depends
on medium properties at points within a volume around that ray and this volume is called
the Fresnel zone. The wavefield at B may have different sensitivity due to changes at
different points within the Fresnel zone. For a propagation distance L, the size of the

Fresnel zone in the transverse dimension scales like
ffiffiffiffiffiffi
Ll

p
, where l is the wavelength.

Intrinsic attenuation

Amechanism of wave amplitude decay caused by the transfer of wave oscillation energy
into heat.

Lapse time

The time measured from the origin time of an earthquake.
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Markov approximation

Consider the propagation of harmonic plane waves through media with random velocity
fluctuation, where the wavelength is shorter than the correlation distance. The master
equation that governs the statistical moments of the wave field on a plane perpendicular
to the global ray direction is derived from the parabolic equation as the average over an
ensemble of random media. The parabolic equation describes one-way propagation
without backscattering. Using this approximation, the wavefield at some distance from
the source depends only on the wavefield at a slightly smaller distance. This is called the
Markov approximation since it has roots in the concept of Markov process in which the
probability of future events is dependent only on most recent events.

Mean wave-field/Mean intensity/Dyson and Bethe-Salpeter equations

Consider the following thought experiment. Launch a point source at r0 in a random
medium and record the wave field at r. Repeat the experiment for all possible realizations
of the random medium and compute the average of all the wave records. This defines the
mean wave field, or mean Green’s function, at r due to a point source at r0. In statistical
wave theory, the equation that governs mean Green’s function is known as the Dyson
equation. It is usually formulated in the frequency domain for a monochromatic source.
If instead of the wave field one measures the average energy, one obtains the mean
intensity. The equation that governs the mean intensity in a random medium is known as
the Bethe-Salpeter equation. It forms the rigorous theoretical basis for the radiative
transfer equation.

Parabolic approximation

Consider the propagation of harmonic plane waves through a medium with velocity
inhomogeneity whose characteristic scale is longer than the wavelength. The wave
equation can be approximated by a parabolic-type equation since the second derivative
with respect to the global ray direction can be neglected. The parabolic wave equation
describes a one-way wavefield with no turning waves and it is widely used in seismic
imaging or underwater acoustics.

Radiative transfer theory

A theory that describes the energy propagation in scattering media, where the key
parameters are the scattering coefficient and the background velocity. Originally it was
a phenomenological theory based on energy conservation and causality; however, it can
be theoretically derived from the Bethe-Salpeter equation based on the stochastic wave
theory in random media.

Random media/Ensemble of random media

A statistical concept of inhomogeneous elastic media, where the fractional fluctuations
of elastic coefficients are random functions of locations. An ensemble of random media
is a collection of random media characterized by the same statistical moments. Autocor-
relation functions of the fractional fluctuations of elastic coefficients are often used for
the characterization. Physical quantities calculated by their average over the ensemble
can be compared with observed quantities. “Discrete” random media contain randomly
distributed discrete obstacles (cracks, cavities, etc.) whose spatial distribution can also be
characterized by statistical means.
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Reciprocity

Reciprocity is a general property of the acoustic and elastic wave equations. It can be
summarized with this simple sentence: “If you can see me, I can see you.” It means that
the response measured at r2 due to a source at r1 is rigorously identical to the response
measured at r1 due to a source at r2. Reciprocity can be broken in the presence of an
external field. For instance the rigid Earth rotation breaks the reciprocity for long period
seismic waves.

Rytov approximation

A perturbation method to solve the parabolic wave equation in weakly inhomogeneous
media. The wave amplitude is expressed as a product of the unperturbed wave and the
exponential of a surrogate function (the complex phase function), which must be itera-
tively solved. This approximation is valid when the transverse variations of the pertur-
bation term of the phase fluctuation over distances of about the wavelength should be
smaller than the square root of the velocity fractional fluctuation. This method is known
as the method of smooth perturbations because of this smoothness condition. The Rytov
approximation can account for some diffraction effects and it is still valid when the
geometrical ray theory breaks down, and even better than the Born approximation for
long-range wave scattering. The Rytov approximation is not valid for backscattering. It is
often used for the line of sight propagation problems.

Scattering amplitudes

The scattering amplitude is the amplitude of spherically outgoing scattered wave due to a
specific obstacle or a localized inhomogeneity for the incidence of a plane wave with unit
amplitude. In general, the scattering amplitude is nonisotropic and is a function of angle,
size, and shape of scatterer, and frequency.

Scattering attenuation

A mechanism of attenuation that results in amplitude decay of the pulse due to scattering
from distributed heterogeneities. This mechanism causes the redistribution of wave
oscillation energy in space and time without energy loss.

Scattering coefficient/Total scattering coefficient

Ameasure of scattering power of a unit volume of heterogeneous media. It is a product of
4p, the differential scattering cross-section and the number density of scattering obsta-
cles. Total scattering coefficient is the average of the scattering coefficient over all the
solid angles.

Scattering mean free path

In a random medium, the scattering mean free path is the typical length scale beyond
which a plane wave has been significantly attenuated by scattering. It also represents the
average distance between two scattering events in the multiple-scattering theory. It is the
reciprocal of the total scattering coefficient.
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Transmission fluctuations

Statistical fluctuations of phase and amplitude of transmitted waves through random
velocity inhomogeneities. These fluctuations can be used to determine the spectrum of
the velocity inhomogeneities.

Wave parameter D

In a random medium with large-scale inhomogeneities compared with the wavelength,
an initially planar wavefront will be distorted by diffraction within the Fresnel volume.
This generates fluctuations of arrival times and amplitudes compared to the undistorted
plane wave. The nondimensional wave parameterD, defined as four times the ratio of the
squared Fresnel zone width to the squared average size of inhomogeneities is a key
parameter to quantify the fluctuations of phase and amplitude along the wavefront.

Weak/Anderson localization

Weak localization is an interference effect that occurs in a multiple scattering random
medium. It results in an increase or enhancement of the mean intensity in a zone of linear
dimension about one wavelength around the source. A consequence of weak localization
is the reduction of the amount of energy transported away from the source. In the case of
extremely strong scattering, the transport of energy can be completely blocked by
interference effects, a phenomenon known as Anderson localization.

WKBJ (Wentzel-Kramers-Brillouin-Jeffreys) approximation

A high-frequency approximation method originally developed for the semiclassical
calculation of the Schrödinger equation in quantum mechanics. Consider the plane
wave propagation through a medium with smooth velocity inhomogeneity, of which
the characteristic scale is longer than the wavelength. The solution to the wave equation
assumes a form called the WKBJ ansatz (or trial solution) in which the phase and
amplitude separates. With this ansatz, the original wave equation reduces to two equa-
tions, one about the phase and the other the amplitude and they can be solved approxi-
mately. The WKBJ method solves only transmitted waves and it assumes no reflections,
thus preserving the transmitted energy flux.
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A

Acoustic logging

array processing, 250–252

dipole and monopole, 250

guided and head waves

investigations, 253–255

measurement, 249

tools used, 249, 250

waves generation, 250

Akaike’s information criterion

(AIC), 231

Angular coherence

function (ACF), 22

Anisotropic heterogeneities,

211–213

Apparent attenuation

mechanism, 125

Asymptotic scaling, seismic waves

attenuation, 162, 163

Autoregressive (AR) reflection sheet

definition, 223

phase spectra, 234

travel-time fluctuation, 231
B

Bethe-Salpeter equation, 85

Biot’s slow wave, 124

Biot’s wave-induced flow equation,

124, 129, 130

Birch’s law, 66

Borehole seismic measurement

acoustic logging
array processing, 250–252

dipole and monopole, 250

guided and head waves

investigations, 253–255

measurement, 249

tools used, 249, 250

waves generation, 250

crosswell seismic survey

products and sources, 255

reflection image, 257–259

velocity tomogram, 256, 257

vertical seismic profiling

reflection image, 260, 261

walkaway and 3D, 260

zero-offset, 259, 260
Born approximation scattering

coefficients, 83–85

Brittle-ductile interaction

hypothesis (BDIH),

291, 292

C

Calibration methodology

band-dependent processing and

parameters, 323

coda spectral results
level comparison, ENH and

XAN, 344

network coda vs.

ground-truth moment

magnitudes, 343

source parameters, 342

coda start time, 331

2-D path and interstation site

coda spreading model, 336

ESH model and

curves, 336, 337

path calibration steps,

337–340

flowchart representation, 325

intrastation site

mean relative site, 335

methods, 333

master station constraint groups,

326–330

measured coda amplitude, 326

shape function and amplitude

measurement, 333

source to coda transfer function

Brune source model, 340

catalog magnitudes, 341

reweighted transfer

function, 342

CDP transform algorithm, 257

Centimeter-scale heterogeneities,

126, 127

Chernov theory, 21, 22

Chi-Chi earthquake

ground motion PGA model
probability density function

(PDF), 447, 448

random property

variation, 447
469
source random model, 444, 445

Coda energy density

definition, 265

diffusion–absorption model,

273–275

predicted assumptions, 266

single isotropic scattering

approximation, 266, 267

Coda energy distribution

nonuniform distribution
coda normalization method,

273, 276, 277

diffusion–absorption model,

273–275, 277

in higher regions, 275, 276

radiative transfer theory, 269

spatio-temporal correlation,

289–292

uniform distribution

coda normalization

method, 270

intrinsic absorption

and scattering

attenuation, 271

isotropic/nonisotropic

scattering models, 269

S-coda waves, 268

Coda envelope

inversion analysis and scattering

coefficient, 302
energy density and residuals,

302, 303

fault system, 304, 305

focal mechanism, 305, 306
Coda normalization method

nonuniform distribution, 273,

276, 277

uniform distribution, 270

Coda QC –1

2D finite difference method, 266

temporal decay rate
frequency dependence,

279–281

geographic variation, 281–284

lapse time dependence,

278, 279

temporal variation, 284–289
Coda waves

characteristics
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Coda waves (cont.)

back-scattering, 266

coherence distance, 267

scattering strength, 312

seismogram composition,

311, 312

conventional seismogram-

stacking methods, 168

definition, 265

envelope and inversion analysis,

302, 306

Kirchhoff coda migration, 306

seismic signal detection, 307–309

single back-scattering model,

265, 266

slant-stacked waveforms,

309–311

teleseismic P, 170–174, 187, 188

Coherence function

constant background medium, 35

delta-correlated assumption,

34, 35

plane waves
bessel function, 32

correlation functions,

29, 30

fourier transform pairs, 31
Coherence tensor, 7

Covariance function

anisometric fluctuations,

100, 101

Gaussian, 115

longitudinal, 113

quasi-homogeneous

fluctuations, 99

small offsets, 104–106

travel-time variance, 106

Cross-correlating seismic noise

definition, 393

impulse response, 391, 392

relative velocity changes, 392,

393

Cross-correlation moving window

technique (CCMW),

377, 378

Crosswell seismic survey

products and sources, 255

reflection image, 257–259

velocity tomogram, 256, 257

Crustal inhomogeneity, 305

D

Disk-shaped transducer,

224–226

Double passage effect (DPE)

geometry, 103

zero offset, 106, 107

Dynamic poroelasticity, 129–133
E

Earthquake doublet waveforms

P and S phase time delay

relocation
crustal and deep doublet,

379–381

double-difference location,

378, 379

instrumental error, 380

temporal change, 380, 382

selection, 374, 375

spatial doublet coda

cross-spectral time delays

computation, 385, 386

slowness vector computation,

387, 388

S-P observed delays

anisotropy detection,

383, 384

azimuthal function, 382, 383

S-velocity temporal variation,

384

teleseismic doublets

definition, 394

PKP phase delays, 393, 394

temporal variation search

coda attenuation, 390, 391

S-wave splitting, 389, 390

time delay measurement

cross-correlation and

coherency module,

375, 376

fast Fourier transform

(FFT), 377

phase uncertainty, 376, 377

virtual doublets, 391–393

Earthquake, random model

Chi-Chi earthquake
ground motion PGA model,

447, 448

source random model,

444, 445

Parkfield earthquake

ground motion PGA model,

440–443

ground motion PGV model,

443, 444

source random model,

435–440

slip spatial distribution, ground

motions

distributed random variables,

434, 435

far-field seismic source, 434

Lévy randomvariable, 433

slip/stress distribution spatial

heterogeneity
Lévy randomvariable, 432,

433

limitations, 432

probability laws, 430, 431

variable normalization and

smoothing, 429, 430
Earthquake source process. See

High-frequency seismic

energy radiation

Effective wave number

1-D random media, 138

3-D random media
coherent phase and statistical

smoothing, 151, 152

correlation function and

fluctuation spectrum,

153

weak-wavefield-fluctuation

regime, 151, 154
Elastic wave propagation, random

media

laboratory experiments
heterogeneity statistical

description, 221–223

scale-invariant expression,

227–230

wave fields, 223–227

wave fluctuations

EHM/SRM boundaries, 241,

242

scattered waves diffraction,

242, 243

small-scale heterogeneities,

240, 241

waveform analysis

common approaches, 230, 231

cross spectrum, 231–236

shear-wave particle velocities,

236–238

travel-time fluctuation, 231

waveform envelope, 238–240

Elastic waves, weak localization

effect

Bethe-Salpeter equation, 10

2-D chaotic cavity, 7

inhomogeneous medium, 1

reciprocity properties, 4

Energy-flux model, 359

Energy transport theory. See

Radiative transfer theory

Envelope inversion

classification
frequency range, 404

Green’s function, 404, 406

velocity response

envelope, 406

double-couple source

configuration, 407, 408
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finite-fault version, 404

high-frequency seismic energy

radiation

frequency dependence,

414–418

scaling, 418–420

vs. asperities, 420–423

practical applications, 410, 411

practical data analysis

envelope residuals, 411, 413

frequency radiation spatial

relationship, 413, 417

observed and synthetic

envelopes, 412, 415

spatial distribution of energy

radiation, 412, 414

standard deviation, 413, 416

S-wave velocity, 411

radiative transfer theory, 406, 407

seismogram envelope, 403, 404

spherical Bessel function,

407, 409

theoretical energy density, 410

Equivalent homogeneous material

(EHM). See Scattering random

medium (SRM)

Extended Street-Herrmann model

path curves, 337

spreading function, 336

F

Flexural wave, 250

Fourier transform

angular spectrum, 56

wandering effect, 55

Fresnel filters, 151, 155, 156

G

Gassmann’s equation, 130

Gaussian autocorrelation function

three-dimensional random elastic

media, plane wavelet

incidence
plane S-wavelet, 63, 64

P-wave envelope

characteristics, 60–62

P-wavelet ISDs, 57–60

teleseismic P-wave envelope

analysis, 62

three-dimensional random elastic

media, radiation from point

source

P-wavelet ISDs, 72–74

spherically outgoing P-wave

envelopes, 74–76

spherically outgoing

S-wavelet, 77, 78
two-dimensional random elastic

media

plane wavelet incidence,

64–66

radiation from point source,

78–81

Gaussian correlation model, 128,

140, 145

Geometrical optics (GO)

basic elements
applicability, 101, 102

equations, 97–99

quasi-homogeneous

fluctuations (QHF)

model, 99

travel-time covariance

function, 100, 101

numerical simulation

longitudinal correlation scale

vs. distance, 118

refractive index fluctuations,

115

travel-time fluctuations, 115,

116

travel-time variance, 115, 117

statistical parameters, 96, 97, 114,

117

travel-time fluctuations

reflection geometry, 102–107

refraction geometry, 107–115

Green’s function, 129, 154

Green’s functions

high-frequency seismic energy

radiation
double-couple source

configuration, 407, 408

energy density, 410

practical applications, 410,

411

propagator function and

energy density, 407

spherical Bessel function, 409

spherical harmonics

expansion, 407, 409
Green’s tensors

first-order statistical smoothing,

135

homogeneous and isotropic

media, 132

scattered wavefields, 133, 134

spatial Fourier transform, 136

H

Heterogeneity scale, 126–128

Heterogeneity statistical description

averaged auto-correlation, 222

layered structure, 223
Oshima granite distribution, 221

Heterogeneous plate model, 210, 211

High-frequency seismic energy

radiation. See also Envelope

inversion

envelope Green’s functions
double-couple source

configuration, 407, 408

energy density, 410

practical applications, 410,

411

propagator function and

energy density, 407

spherical Bessel function, 409

spherical harmonics

expansion, 407, 409

frequency dependence

acceleration source spectrum,

414, 416

decay power, 417, 419

octave-width frequency band,

416, 417

scaling

fixed frequency band, 418

inland and offshore

earthquakes, 420, 421

vs. asperities

complementary and matching

spatial relations, 420,

422

kinematic heterogeneous

fault-rupture models,

422, 423

slip rate and luminosity time

functions, 422

High-Q and high-V models, 208–210

I

Inland earthquakes, 420, 421

Intensity spectral density (ISD)

plane wavelet incidence, 54, 55

radiation from point source,

71, 72

Interlayer flow attenuation, 1-D

random media, 158

Intrinsic attenuation, 123. See also

Seismic waves attenuation

J

Joint transverse and angular

coherence function (JTACF),

22

K

Kirchhoff coda migration, 306

Kirchhoff depth migration, 257
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Kramers–Kronig equations, 152, 153

Kramers–Krönig relation, 84

L

Laboratory scale-model

experiments, 219, 220

Large aperture seismic array

(LASA), 21

Laser Doppler vibrometer (LDV),

220, 221

Logarithmic amplitude, 21

M

Macroscopic heterogeneities, 126

Mesoscopic heterogeneities, 126

Monte Carlo algorithms

applications
acoustic wave scattering, 175

different approaches, 176

isotropic S-wave

scattering, 175

computer-generated random

numbers, 174

implementation, 176

interfaces

Snell’s law, 180

standard Earth models, 179

interinsic attenuation

definition, 185, 186

PREM Earth model, 186, 187

particle trajectories

free surface, 179

ray theory, 178

S-wave polarizations, 178,

179

powerful tool, 188

scattering angles

Birch’s law, 185

Born scattering

coefficients, 182

computational

advantages, 185

Gaussian function, 182

ray-centered coordinate

system, 184

scattering at high frequencies,

174

shallow-and deep-earthquake

coda amplitudes, 170

Shearer and Earle heterogeneity

model, 189

sources

double-couple, 178

event biasing, 177

isotropic radiation, 177

teleseismic P coda, 187, 188

Monte Carlo solution, 84, 85
Mt. Merapi

coda-localization effects, 367

diffusion model, 361–365

two-layer media, 363, 364

uniform half space, 361–363

volcano scattering

attenuation, 368

Mt. Vesuvius

coda-localization effects, 367

coda-Q–1 observation, 355

diffusion model, 361–365

two-layer media, 363–365

uniform diffusive layer, 366

uniform half space, 361–363,

365, 366

volcano scattering

attenuation, 368

Multiple lapse-time window analysis

(MLTWA) technique, 357

Multiple scattering theory. See

Radiative transfer theory

Multiple signal classification

(MUSIC) spectrum, 308

N

Non-isotropic heterogeneity

structure, 215

Numerically simulated envelopes

finite difference simulations
mean square envelopes, 68, 69

pulse shape, plane wavelet, 66

P-wavelet and S-wavelet

incidence, 67, 68

Markov envelopes vs. FD

envelopes, 68, 69

Numerical simulations

Gaussian correlation function,

34, 35

random velocity model, 35

WKBJ Green’s function, 36

O

O’Doherty–Anstey (ODA)

formalism

locally layered media, 148

wave fields self-averaging

properties, 149, 150

Offshore earthquakes, 420, 421

One-dimensional poroelastic random

media, seismic waves

interlayer flow, 158, 159

numerical validation, 161

reciprocal quality factor, 158

and wave-induced flow

attenuation, 159, 160

Oshima granite

distribution, 221–223
quartz grain distribution, 243

three-component waveforms, 238

wave form fluctuation, 225

wave particle velocities, 236

Oyo Geospace, orbit vibrator, 255
P

Pacific plate events

anelastic attenuation properties,

203, 204

frequency selective propagation,

201, 202

low-frequency precursors, 201

Parabolic wave equation, 52, 79

Parkfield earthquake

ground motion PGA model
Lévy random variable, 440,

441

probability density function

(PDF), 441–443

ground motion PGV model,

443, 444

source random model

mean power spectrum

P(k1), 438

parameter compilation,

435, 436

parameter variation, 439

probability density function

(PDF), 440

source inversion, 437

strike and dip components,

438, 439

Peak ground acceleration (PGA)

ground motion random model
Lévy random variable,

440, 441

probability density function

(PDF), 441–443,

447, 448

random property

variation, 447
Peak ground acceleration (PGA)

pattern

PHS events, 198, 199

radial-component records,

200, 201

Perturbation theory, 1-D random

media wavefields, 124, 163

Plane P-wavelet, 51, 52

Plane S-wavelet

Gaussian ACF, 63, 64

intensity spectral density, 63

parabolic wave equation, 62

Poroelastic scattering equation,

seismic waves, 133, 134

Pseudo-Rayleigh wave, 250
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Q

Quasi-homogeneous fluctuations

(QHF) model, 99

R

Radiative transfer theory

envelope Green’s functions
double-couple source

configuration, 407, 408

energy density, 410

practical applications,

410, 411

propagator function and

energy density, 407

spherical Bessel function, 409

spherical harmonics

expansion, 407, 409
Radiative transfer theory (RTT)

conversion and large-angle

scattering, 83, 84

Monte Carlo solution, 84, 85

Random porous media, seismic

waves attenuation

2-D and 3-D random media,

152–154

effective wave number, 149–154

ODA formalism, 148, 149

Ray theory

sample-scale heterogeneity, 240

sample surfaces, 241

travel-time fluctuation, 231

wave propagation, 230

Reciprocity, 4

Reflection geometry

covariance function
small offsets, 104–106

travel-time variance, 106

double passage effect (DPE)

geometry, 103

zero offset, 106, 107

Refraction geometry

constant velocity gradient
auxiliary dimensionless

random field, 107

refractive index, 108

inverse problem solution

inhomogeneity scale lengths

and standard

deviation, 112

longitudinal and transverse

correlation scales,

112–114

transverse length, 113

offset dependence, 110–112

variance, 108–110, 115, 117

Relative fluid displacement, 130

Rytov
heterogeneous medium, 25, 26

monochromatic wave, 25

Rytov approximation, 148, 151–154

S

Scale-invariant expression

scattering random medium, 229,

230

subsurface heterogeneities, 229

wave frequencies, 227, 228

Scattered waves diffraction, 242, 243

Scattering random medium (SRM)

EHM boundaries, 241, 242

wave propagation method, 229,

230

S-coda waves, 268

SCSN. See Southern California

Seismic Network

Seismic analysis code software, 322

Seismic arrays

scatterer distribution, 312–315

signal detection
ray direction, 308

slant stacking, 307, 308

subsurface structure, 307

single-scattering model and slant-

stacked waveforms

energy density, 309

energy level of envelopes,

310, 311

wave characteristics

scattering strength, 312

seismogram composition, 311,

312

Seismic coda waves

apparent stress distribution, 345

band-dependent processing and

calibration parameters, 323

calibration methodology
coda start time, 331

intrastation site, 333–335

master station constraint

groups, 326–330

measured coda amplitude, 326

shape and amplitude

measurement, 331–333

source to coda transfer

function, 340–342

coda techniques, 320

data Analysis

event merging, 321

flowchart representation, 325

seismic analysis code

software, 322

waveform data and

instrument response

information, 321
2-D transfer function, 347

flowchart representation, 325

Green’s function technique, 320

regional coda techniques, 319

spectral analyzing

seismometers, 320

spectral results

level comparison, ENH and

XAN, 344

network coda vs.

ground-truth moment

magnitudes, 343

source parameters, 342

stability, 319, 320

static stress drops, 348

types, 346

Seismic doublets

observed delays, S–P delays
anisotropy detection, 383, 384

azimuthal function, 382, 383

P and S phase time delay

relocation

crustal and deep doublet,

379–381

double-difference location,

378, 379

instrumental error, 380

temporal change, 380, 382

selection, 374, 375

spatial doublet coda

cross-spectral time delays

computation, 385, 386

slowness vector computation,

387, 388

S-velocity temporal variation,

384

teleseismic doublets

definition, 394

PKP phase delays, 393, 394

temporal variation search

coda attenuation, 390, 391

S-wave splitting, 389, 390

time delay measurement

cross-correlation and

coherency module,

375, 376

cross-correlation moving

window technique

(CCMW), 377, 378

fast Fourier transform

(FFT), 377

phase uncertainty, 376, 377

virtual doublets, 391–393

Seismic network data

coda envelope
energy residuals, 302, 303

fault system, 304, 305

focal mechanism, 305, 306
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Seismic network data (cont.)
Kirchhoff coda migration, 306

Seismic scattering

coda envelope
energy density, 302

energy residuals, 302, 303

fault system, 304, 305

focal mechanism, 305, 306

in deep earth

envelope-stacking technique,

169, 170

PKP precursors, 167

small-scale arrays, 169

teleseismic P coda, 170–174

waveform stacking

advantages, 168

density and strength, 312

distribution, 312–315

envelope-stacking methods, 188

Monte Carlo methods

applications, 175, 176

computer-generated random

numbers, 174

implementation, 176

interfaces, 179, 180

intrinsic attenuation, 185–187

particle trajectories, 178, 179

powerful tool, 188, 189

scattering angles, 181–185

scattering at high

frequencies, 174

scattering events, 180, 181

sources, 177, 178

teleseimic P coda, 187, 188

seismic array data, 309–311

Seismic waveform analysis

common approaches, 230, 231

cross spectrum
amplitide spectra, 233

lapse time frequency bands,

235, 236

phase spectra, 233, 234

statistical analysis, 231, 232

shear-wave particle velocities

polarization and propagations,

237, 238

S-wave particle, 236, 237

travel-time fluctuation, 231

waveform envelope

shear-wave sources,

238, 239

S-wave envelope, 239, 240

Seismic wave-induced flow

attenuation and dispersion
Biot’s equations, 129, 130

correlation function, 140, 141

1-D effective wave

number, 138
effective fast wave number,

135–138

first-order statistical

smoothing

approximation,

134, 135

Green’s tensors, 132–134

homogeneous poroelastic

composite, 130, 131

point source response, 132

poroelastic scattering

equation, 133, 134

P-waves, 139, 142–145

spectral filter function and

fluctuation spectrum,

140, 141

mechanism, 124

Seismic waves

elastic scattering medium, 1

logarithm of energy, 2

source mechanism and wavefield

polarization
acoustic and elastic waves,

10–13

Bessel function, 11

Bethe-Salpeter equation, 8, 10

diffuson and cooperon, 8

elastic waves, 2-D chaotic

cavity, 7

Feynman diagrams, 9

Green function, 11

Heisenberg time, 6

multiple scattering formalism

review, 7–9

transport mean free path, 2

weak localization effect

application, 13–17

coherent back scattering, 5

enhancement zone, 6

Lamb mode, 15

reciprocity property, 4

scalar partial wave, 3

scattering media

measurement, 16, 17

speckle pattern, 15

surface waves, measurement

of, 13–15

Seismic waves attenuation

asymptotic scaling, 162, 163

attenuation coefficient, 148, 149,

152, 154

Biot’s slow wave, 124

conversion scattering, 135, 138,

140

1-D poroelastic random media
interlayer flow, 158, 159

numerical validation, 161

reciprocal quality factor, 158
and wave-induced flow

attenuation, 159, 160

elastic scattering, 125, 138, 159

exponential correlation function,

129, 142, 146

mesoscopic and macroscopic

heterogeneity, 126–129

phase velocity, 138, 142, 147

P-waves

correlation function, 145, 146

differently correlated

fluctuations, 144

reciprocal quality factor,

142, 143

solid and fluid phase

parameters, 142

variances, 142

velocity for, 144–146

in random porous media

2-D and 3-D random media,

152–154

effective wave number,

149–154

ODA formalism, 148, 149

scattering attenuation

and asymptotic behavior,

154–158

statistical smoothing method,

148

spatial autocorrelation function,

126, 136, 140, 141

wave-induced flow

asymptotic behavior, 145–148

and dispersion, 138–145

dynamic poroelasticity,

129–133

and effective wave number,

135–138

first-order statistical

smoothing

approximation,

134, 135

mechanism, 124

Seismogram envelope analysis

regional and local earthquake

seismograms, 45, 46

teleseismic P-waves
energy-flux model, 46–48

scattering attenuation, 48

statistical parameters,

lithospheric

inhomogeneity, 48, 50

travel-time fluctuations, 45

wave field fluctuations, 46

vector-wave envelope, Markov

approximation, 48, 49, 51

Seismograms, 195

Kirchhoff migration, 306
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wave composition, 311, 312

Semblance cross-correlation method

head wave sensitivity, 253, 255

wave velocity formation,

251, 252

Semblance-weighted slant stacking,

313, 314

Single back-scattering model,

265, 266

Single isotropic scattering

approximation, 266, 267

Slant stacking, 307

Southern California Seismic

Network (SCSN), 306

Spatio-temporal correlation

brittle-ductile interaction

hypothesis (BDIH),

291, 292

coda energy and seismicity,

289–292

Spherical Bessel function, 409

Spherically outgoing P-wavelet,

70, 71

Spherically outgoing S-wavelet

Gaussian ACF, 77, 78

intensity spectral density, 76, 77

Stoneley wave, 250

Street-Herrmann model, 336

Subduction waveguide

2D FDM models
anisotropic heterogeneities,

211–213

heterogeneity scale effect,

214, 215

heterogeneous plate model,

210, 211

high-Q and high-V models,

208–210

P-and S-wave velocities,

204, 205

plate thickness, 213, 214

quasi-lamina structure,

206, 207

slab guided waves, 208

large ground motions, 197

Pacific plate events

anelastic attenuation

properties, 203, 204

frequency selective

propagation, 201, 202

low-frequency precursors, 201

peak ground acceleration (PGA)

pattern, 198–201

zone plates, 197, 198

S-wave attenuation

attenuation parameter, 281

coda normalization method, 270

frequency dependence, 271
T

Teleseismic doublets

definition, 393

PKP phase delays, 393, 394

Teleseismic P-waves

energy-flux model, 46–48

lithospheric inhomogeneity,

statistical parameters,

48, 50

scattering attenuation, 48

travel-time fluctuations, 45

wave field fluctuations, 46

Temporal decay rate, coda energy

frequency dependence, 279–281

geographic variation, 281–284

lapse time dependence, 278, 279

temporal variation, 284–289

TFMCF. See Two-frequency mutual

coherence function

Three-dimensional random

elastic media

plane wavelet incidence
angular spectrum, 56

Gaussian ACF, 56–62

intensity spectral density,

54, 55

plane P-wavelet, 51, 52

plane S-wavelet, 62–64

random media ensemble, 52

TFMCF, stochastic master

equation, 52–54

wandering effect, 55

wave equations,

inhomogeneous

media, 51

radiation from point source

Gaussian ACF, 72–76

intensity spectral density

(ISD), 71, 72

spherically outgoing

P-wavelet, 70, 71

spherically outgoing

S-wavelet, 76–78

TFMCF, stochastic master

equation, 71

Tikhonov regularization, 256

Tramsmission fluctuations

acoustic waves
stratified medium, 23

WKBJ green function, 23–25

Chernov theory, 21, 22

coherence function

constant background

medium, 34

delta-correlated assumption,

33, 34

plane waves, 29–32
heterogeneous medium, 25, 26

numerical simulations

Gaussian correlation function,

34, 35

random velocity model, 35

WKBJ Green’s function, 36

phase

delta-correlated assumption,

36, 37

plane wave incidence, 26–28

Transverse coherence function

(TCF), 21

Travel-time fluctuations

reflection geometry
covariance function, 104–106

double passage effect (DPE),

106, 107

refraction geometry

constant velocity gradient,

107, 108

inverse problem solution,

112–115

offset dependence, 110–112

variance, 108–110, 115, 117

Two-dimensional finite-difference

method (FDM) models

anisotropic heterogeneities,

211–213

heterogeneity scale effect, 214,

215

heterogeneous plate model, 210,

211

high-Q and high-V models,

208–210

P-and S-wave velocities, 204, 205

plate thickness, 213, 214

quasi-lamina structure, 206, 207

slab guided waves, 208

Two-dimensional random elastic

media

plane wavelet incidence
Gaussian ACF, 64–66

vs. numerically simulated

envelopes, 66–69

radiation from point source,

78–83

Gaussian ACF, 78–81

Markov envelopes vs. FD

envelopes, 82–83

Two-frequency mutual coherence

function (TFMCF)

cylindrical wave analytic

solutions, 90

plane wave analytic solutions
three dimensions, 87, 88

two dimensions, 88, 89

plane wavelet incidence

angular spectrum, 56
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Two-frequency mutual
coherence function
(TFMCF) (cont.)

definition, 52–53

Gaussian ACF, 56, 57

Markov approximation, 53

stochastic master equation,

53, 54

radiation from point source, 71

spherical wave analytic solutions,

89, 90

U

Uniform diffusive layer, 366

V

Vector-wave envelope synthesis,

Markov approximation

Born approximation scattering

coefficients
conversion and large-angle

scattering, 83, 84

Monte Carlo solution, 84, 85

plane wavelet incidence

angular spectrum, 56

Gaussian ACF, 56–62, 64–66

intensity spectral density, 54,

55

plane P-wavelet, 51, 52

plane S-wavelet, 62–64

random media ensemble, 52

TFMCF, stochastic master

equation, 52–54

two-dimensional random

elastic media, 64–69

vs. numerically simulated

envelopes, 66–69

wandering effect, 55

wave equations,

inhomogeneous

media, 51

radiation from point source

Gaussian ACF, 72–76, 78–81
intensity spectral density

(ISD), 71, 72

Markov envelopes vs. FD

envelopes, 82, 83

spherically outgoing

P-wavelet, 70, 71

spherically outgoing

S-wavelet, 76–78

TFMCF, stochastic master

equation, 71

realistic ACFs, 85, 86

Vertical seismic profiling (VSP)

reflection image, 260, 261

walkaway and 3D, 260

zero-offset, 259, 260

Virtual doublets, seismic noise

definition, 393

impulse response, 391, 392

relative velocity changes, 392,

393

Volcanic tremor, 360, 361

Volcanoes

classification, 353, 354

coda-Q–1 observation, 354–357

diffusion model
two-layer media, 363–365

uniform half space, 361–363

energy-transport theory

coda-localization effects, 366,

367

uniform diffusive layer, 366

uniform half space, 365, 366

intrinsic and scattering

attenuation

2-D transport theory, 360, 361

energy-flux model, 359

MLTWA technique, 357

volcanic tremor, 360, 361

Wennerberg method, 358, 359

Volcano-tectonic (VT) earthquakes

coda-localization effects, 366,

367

coda-Q–1 observation, 354–357

2-D transport theory, 360, 361
energy envelop, 368

shape, 368

uniform half space, 365, 366

Wennerberg method, 358, 359

von Kármán correlation model, 128,

129, 141, 162

VSP. See Vertical seismic profiling

W

Walkaway VSP, 260

Wandering effect, 55

Wave envelope synthesis, Markov

approximation, 44

Wave fields

autoregressive (AR) reflection

sheet, 223

fluctuations, 225–227

generation, 223–225

WaveSonicTM, 250

Weak localization effect

applications
dispersion relation of surface

waves, 13–15

Lamb mode, 15

scattering media, 16, 17

Bessel and Green functions, 11

Bethe-Salpeter equation, 10

coherence tensor, elastic

wavefield, 7–9

coherent backscattering, 5

elastic waves, 6

multiple scattering paths, 4

scalar partial wave, 3

seismology, 1

transport theory, 7

Wennerberg method, 358, 359

WKBJ Green’s function, 23–25

Z

Zero-offset VSP, 259, 260

Z-Seis, piezoelectric source, 255,

256
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