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PREFACE FOR SHAPE AND MICRODYNAMICS OF ICE 
PARTICLES AND THEIR EFFECTS IN CIRRUS CLOUDS 

I spent a semester of sabbatical leave at MIT in the fall of 1997. On my way back 
to Madison, I visited Yale University's Professor Barry Saltzman, who encouraged 
me to sunmiarize my research about ice particles in clouds into a monograph. This 
volume is the result of just such an endeavor. 

Ice particles are present both in the lower atmosphere (during hailstorms and 
snowstorms for example) and in upper atmospheric clouds such as cirrus and the 
upper parts of cumulonimbus. Earlier studies of clouds strongly emphasized the 
physics of liquid processes, as ice processes were then not very well understood. 
On the observational side, the difficulty lay in accessing the higher parts of clouds 
where ice particles are located. On the theoretical side, the main difficulty was that 
attending the more complex ice particle shapes. My own research in Wisconsin in 
the past two decades has focused largely on theoretical studies of ice particles in 
clouds, especially the mathematical description of their shapes, their diffusional 
and collisional growth rates, and their influence on cloud development. All these 
seem to be related, in one way or another, to their hydrodynamic properties. That 
is why I use the word "microdynamics" in the title to distinguish from the usual 
word "microphysics," which tends to cover all microscale cloud processes. 

This volume mainly consists of my research works on this subject, most of which 
have been published in referred scientific journals; however, some unpublished 
results are also included. These latter include some results that are too detailed 
for journal articles, insights that occurred to me after a paper was pubUshed, and 
excerpts from some of my students' Ph.D theses. Formal journal articles are being 
prepared to disseminate these theses excerpts. This monograph is not intended to 
be a comprehensive treatment of ice microdynamics. 

The historical notes in Section 1 are not formally related to microdynamics; 
rather, they represent a passage of human discovery of ice crystal behavior in 
the atmosphere. Thus I feel it is of some interest and not totally out of place here. 
Joseph Needham had discussed some of them, but others—from my own reading— 
are probably presented in English for the first time. The second half of Section 
1 briefly introduces the later sections. Sections 2 through 4 are concerned with 
the microdynamic behavior of individual ice particles—their size and shape, their 
hydrodynamics, the diffusion of vapor around them, and their collision efficiencies 
with small droplets. Section 5 focuses on the impact of ice microdynamics on the 
scavenging of aerosol particles, a process that may play an important role in the 
upper tropospheric chemical transport. Finally, the subject of Section 6 is cirrus 
cloud development, where ice microdynamics assumes a central role. A cirrus 
model equipped with cloud microphysics and radiation packages is used for the 
cirrus study. 
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February 2, 2001.) I am indebted to my colleague Dr. Bob Schlesinger, who tire-
lessly read the manuscript and made innumerable corrections and comments that 
resulted in great improvements. (And, from what Bob has done, I finally understand 
what the word "meticulous" really means!) Of course, I bear the responsibility for 
any mistakes in this volume. I would also like to acknowledge my current and 
former students who have dedicated much of their youthful energy into these re-
search. I also thank two long-time friends. Dr. Andy Heymsfield and Professor 
Ken Beard, for many discussions about my research and helpful comments on the 
manuscript. 
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Physical Meteorology Program, and Dr. Steve Nelson, Director of the Mesoscale 
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1. ICE PARTICLES IN THE ATMOSPHERE 

1.1. Ice Particles—A Personal Perspective 

Except for those who live in the polar regions, most people associate ice parti-
cles only with winter and cold climates. The reality is that ice particles are more 
ubiquitous than they realize. Even in the tropics in summer, ice particles may roam 
in the skies. Some of them may be small ice crystals in cirrus clouds, sometimes 
too thin to be visualized. Others may be snow crystals, graupel, and hailstones 
in vigorously developing cumulonimbus clouds. The only reason that common 
tropical dwellers do not see ice particles (unless they live on or near high moun-
tains) is that they melt completely when they fall through the very warm air in 
the lower troposphere there. Even the upper parts of tropical storms—hurricanes 
(typhoons)—contain many ice particles. 

Dwellers in middle and high latitudes are, of course, more familiar with ice 
particles, mostly as snow in winter but occasionally as hail in severe thunderstorms 
in summer. Here the air below the cloud base is sometimes cold and dry enough 
to allow hailstones to survive to the ground, causing great grief to farmers whose 
fruits or other crops may be badly damaged. There are other forms of ice particles 
as well, such as the frost on the grass in a cold morning in the fall and the menacing 
freezing rain in the early winter. They are "atmospheric" ice particles in a sense 
because their origins are in the atmosphere. 

The Chinese ideograms representing ice and snow have been in existence for 
at least 3000 years. The earliest existing records are those engraved on the oracle 
bones of the Shang Dynasty (ca. 1000 B.C.). Aside from their usual usage in 
weather, they are often used to describe the color white, for they are probably 
the whitest things one can see in nature. In Chuang-Tzu, a book attributed to 
(and possibly written, at least partially, by) the great philosopher Chuang Chou 
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(ca. 4th century B.C.), a passage reads: 

In the Mt. Miao-Gu-Ye there lives a goddess whose flesh and skin are as white as ice and snow 
and who looks like a graceful and beautiful virgin. 

So it appears that Snow White is not necessarily just a Western stereotypical beauty. 
The author was bom and grew up in Taiwan, a tropical country where natural 

ice particles exist only in high mountains (according to some statistics, some 
60 peaks there are taller than 10,000 feet!). Until about 20 years ago these high 
mountains were not readily accessible to the public (except for those diehard 
mountain climbers, of course). As a result, most people living in Taiwan have never 
seen snow, even though the usage of "snow" is very common in the language. When 
I was a high school student, I hiked in high mountains in wintertime and surely saw 
ice packed by the roadside, but I never saw actual snowfall. I remember that one 
year a little flurry occurred in Chi-Sin-Shan [Seven Star Mountain], a mountainous 
area close to Taipei. After the news was reported in the media, thousands of people 
jammed the highway, racing to the area to see the snow. According to one of my 
friends who went to see it, the snows "look like a layer of thin flour spreading 
on grass." Years later when I came to Madison, Wisconsin and was wading one 
winter morning in knee-high snow after a major blizzard, I couldn't help but burst 
into a big fit of laughter recalling the "snow flours" in Taipei. 

The most impressive aspect of an ice crystal is its extremely elegant geometric 
design. For a layman knowing little about crystallography, it is hard to believe 
that something produced by natural processes can be so beautiful, intricate, and 
apparently made to great precision. Who is not impressed when looking at the 
album of snow crystal pictures photographed by that venerated Vermont farmer 
Bentley (Bentley and Humphreys, 1931)? The one that strikes me most is the 
picture of a capped ice colunm that looks like a perfectly made pillar, complete 
with graceful engravings, taken from an ancient Greek temple. Not only are they 
beautiful and elegant, but the designs are so complex and detailed that one gets 
an impression, as an old saying has it, that no two snowflakes are exactly alike. 
Even if they look the same on the surface, there must be some subtle differences 
in details. Thus came an interesting encounter between the news media and me. 
One day a reporter from a major local newspaper called me up wanting me to 
verify whether it is true that no two snowflakes are exactly alike. I wanted to be as 
precise as possible and replied, "It depends how detailed you really want to get. 
Two simple hexagonal ice plates without any visible internal designs may look 
exactly alike. But if you go down to the molecular level, you are bound to find 
some differences." The next day the news article read, "Wang confirms that it is 
indeed true that no two snowflakes look exactly alike." So much for my "scientific" 
answer! 

In fact, as reported in Science Now (March 1995), the notion that no two snow 
crystals are identical was disproved in 1988 when National Center for Atmospheric 
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Research scientist Nancy Knight, who was examining samples collected at 6 km 
over Wisconsin for a cloud-climatology study, found two thick hollow columnar 
crystals that apparently were Siamese twins. 

1.2. Some Historical Notes on the Knowledge of Ice Particles in Ancient China 

It is of some interest to review the history of our scientific knowledge about 
ice particles. Chapter 1 of the book by Pruppacher and Klett (1997) has provided 
such a review for Western history. However, relatively few such works have been 
done for the case of China, where there is also a long tradition of meteorological 
observations. An exhaustive review of the observations would not be possible at 
present, but in the following few paragraphs I would just like to mention a few 
interesting observations about ice particles in ancient China. 

1.2.1. The Hexagonal Shape of Snow flakes 

According to Needham and Lu (1961), the first European to write something 
about the shape of snow crystals was Albertus Magnus (ca. A.D. 1260). He thought 
that snow crystals were star-shaped, but he also seemed to believe that such regular 
forms of snow fell only in February and March. In 1555, the Scandinavian bishop 
Olaus Magnus wrote that the snow crystals could have shapes like crescents, 
arrows, nail-shaped objects, bells, and one like a human hand. It was only in 1591 
that Thomas Hariot correctly recognized the hexagonal nature of snow crystals 
(unpublished private manuscript). It is therefore quite an impressive feat that in 
135 B.C., Han Ying, a Chinese scholar of the Western Han Dynasty, wrote in his 
book Han Shih Wai Chuan [Moral Discourses Illustrating the Han Text of the Book 
of Odes] about the hexagonal shape of snow crystals.The passage reads as follows: 

Flowers of plants and trees are generally five-pointed, but those of snow, which are called ying, 
are always six-pointed. 

Han did not say anything about how the observations were made, but Needham 
and Lu wondered whether some kind of magnifying lens was used because this 
kind of discovery would imply fine-scale examination. Ever since Han's work 
was published, the six-sided nature of snowflakes has been a household term for 
Chinese scholars, and numerous writings, especially poems, allude to this fact. 
Needham and Lu mentioned one poem written by Hsiao Tung, a sixth-century 
prince of Liang Empire: 

The ruddy clouds float in the four quarters of the cerulean sky. 
And the white snowflakes show forth their six-petaled flowers. 

When I was about five years old, my father showed me a popular textbook used 
oy children of ancient China (up to the beginning of 20th century) when they first 



4 PAO K. WANG 

became students. In this book, You Hsue Gu Shih Chong Ling [A Fine Jade Forest 
of Stories for Beginning Students] y there is a sentence of a verse saying, "The flying 
of snow flakes, which are six-pointed, is an auspicious omen for good harvest." 
Snow is considered auspicious because it is beheved to kiU insect eggsAarvae, but 
it is also clear that the hexagonal shape of snow crystals is common knowledge 
among the masses. 

Although there was no crystallographic explanation of the hexagonal nature of 
the crystals, the Chinese attempted to explain this six-sidedness by the explain-all 
principle of the Yin-Yang and Wu-Shing [Five Elements] theory. It was believed 
that these were the two opposing forces operating in the whole universe, and 
everything in this world is produced from their interaction. Yang is said to relate 
to male or positive aspects, whereas yin is said to relate to female or negative 
aspects of nature. Curiously, yang is also associated with odd numbers, whereas 
yin is associated with even numbers. In principle, everything in the universe can be 
categorized as belonging to either yin or yang. Not surprisingly, water is considered 
to possess the quality of yin, a female attribute, and hence is associated with 
an even number. For an unexplained reason, the number six was assigned to the 
element Water in the ancient time. So ancient Chinese scholars took this semimagic 
principle to "explain" why snow crystals are six-pointed. An example was given 
by the great 12th-century Chinese medieval philosopher Chu Hsi, who wrote, "Six 
generated from Earth is the perfect number of Water, so as snow is water condensed 
into crystal flowers, these are always six-pointed." In another writing in Chu Tzu 
Chuan Shu [Collected Writings of Master Chu], Chi Hsi also tried to explain the 
formation of snow in a slightly more detailed way: 

The reason why "flowers" or crystals of snow are six-pointed is because they are only sleet split 
open by violent winds they must be six-pointed. Just so, if you throw a lump of mud on the ground, 
it splashes into radiating angular petal-like form. Now six is a yin number, and tai-yin-hsuan-jing-
shi (selenite crystal) is also six-pointed, with sharp prismatic angular edges. Everything is due to 
the number inherent in Nature. 

The ancient Chinese seemed content to accept that the six-pointed shape of snow 
is a natural fact, and no further study on its hexagonal nature was done. 

7.2.2. Protection of Crops from the Cold 

One concern about ice particles is the possibility that they may cause damage 
because of their coldness. This is especially relevant for the case of frost, a form 
of ice particles, which may severely damage fruits or other crops. Since China has 
been mainly an agricultural country through most of its history and can be cold, it 
is only natural to expect that the Chinese have paid some attention to the protection 
of crops from cold damage. In a Wei Dynasty agricultural book, Chi Min Yao Shu 
[Essential Technologies for Common People], Jia Si-shie (early 6th century), we 
find two accounts concerning the protection of crops from frost damage: 
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(1) In the book written by Fan Sheng-Chih [A.D. 1st century] it says, "In planting rice, it is 
common to watch during the midnights during the period at about 80 or 90 days after the sunmier 
solstice. There may be frosts looking like white dews descending from the sky. [If this happens] 
at dawn, have two persons holding the two ends of a long rope and facing each other to scrape 
the frosts and dews from the rice plants. Continue to do it until the sunrise. This will prevent the 
damage of all crops." 

To my knowledge, this is the only account ever mentioned in the literature of 
this direct scraping technique for frosts. In addition to the direct effect, two persons 
walking back and forth with a long rope over the crop field may also help stir up 
the air and cause the cold air below and the warm air above to mix, hence raising 
the temperatures near the crops. If this is the case, then the technique is essentially 
similar in principle to the wind machines used in some modem orchards to prevent 
frosts, but predated them by nearly 1900 years. 

(2) If frost occurs during the blossoming season of fruit trees, the trees will bear no fruits. [To 
prevent this] one must first stock weeds and animal feces beforehand in the garden. When the sky 
clears up right after the rain and the north wind is cold and intense, frost will occur during that 
night. [If this happens] ignite the fuel to make thick smokes and the frost will be prevented. 

This technique is exactly like the "orchard burner" technique of frost prevention 
used in modem orchards, but predated it by about 1400 years. 

1.2.3. Observations of Frost-Free and Dew-Free Situations in High Mountains 

Chu Hsi, the aforementioned philosopher of the Sung Dynasty, wrote in Chu 
Tzu Yu Lei [Analects of Master Chu] that 

Frosts are merely frozen dewdrops and snow is merely frozen raindrops. Ancient folks related 
that dews are produced by the vapors of the stars and the moon. This statement is wrong. Nowadays 
on high mountains there is no dew even if the sky is clear. So the vapors that form dewdrops must 
come from below. 

In this passage Chu Hsi recognized that if the dews (and hence the frosts, 
because back then people believed that frosts were frozen dews) came from the 
condensation of vapors descended from the stars and moon, then they should be 
abundant in high mountains that presumably are closer to those celestial bodies 
than low-lying ground is. Yet his observations indicated that that was not the case. 
He correctly concluded that the water vapor necessary for dew formation must 
come from below. 

In the same book, Chu Hsi also mentioned that "on top of high mountains there 
is no frost or dew." This observation is probably not valid for all mountains because, 
in my own memory, there were dews early on summer morning in mountains of 
Taiwan. But this may be the case in the drier mountain areas where Chu Hsi lived. 
On the other hand, he also observed that there is snow on high mountains. Of 
particular interest is the way Chu Hsi reasoned about these phenomena: 
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Someone asked, "What is the reason that there is no frost and dew on high mountains?" Answer: 
As you go up higher, the air becomes clearer and windier. Even if you have some moisture to 
begin with, the winds would have diluted them and prevented them from condensation. On the 
other hand, snow is caused by the freezing of raindrops when they are chilled. Hence one would 
see snow first in high and cold places. 

In this passage Chu Hsi made a clear distinction between the formation of snow and 
that of frost even though they are both ice particles. His idea that snow is caused by 
freezing of moisture in the air aloft, and frost by freezing of moisture in low levels, 
is basically sound. Of course, what Chu said about snow formation is only true for 
the riming process whereas the more complete picture of snow formation had to 
wait until the work of Bergeron and Findeisen in the 20th century. But consider 
that Chu Hsi was a 13th-century observer! 

1.3. A Brief Summary of the Following Sections 

In the following few sections, the studies done by the author's research group 
concerning the microdynamic aspects of ice particles will be summarized. The 
main theme of these studies focuses on ice processes in the atmosphere, and 
the main effect emphasized here is the microdynamics of ice particles—that is, 
the effect of their motions. Ice microdynamics is important because ice particles 
move in a viscous medium, namely, air. The motions cause complicated flow 
fields around the faUing ice particles, influencing their growth rates and hence 
the overall development of the cloud. Other processes in the atmosphere, such as 
transport of trace chemicals and radiative transfer, are certainly influenced greatly 
by the cloud development. 

Section 2 details our studies on the mathematical descriptions of ice particles 
(mainly hexagonal snow crystals and conical graupel and hail). I start with the 
two-dimensional expressions and then expand to the three-dimensional expres-
sions. The 3-D expressions allow the representation of hexagonal columns of 
finite lengths, hexagonal plates of finite thickness, and conical particles with el-
liptical cross sections. Such expressions should simpHfy the calculations of the 
physical properties (heat and mass transfer, flow fields, and scattering properties) 
of these particles. They may also be used for quantitative descriptions of the size 
distributions of these particles. 

Section 3 deals with the numerical calculation of flow fields around falling ice 
particles. The main importance of such studies is that the flow fields determine 
the growth rates of ice particles for both diffusional and coUisional modes. In the 
former, the flow fields determine the ventilation coefficients of vapor fluxes toward 
ice particles due to their falling motion. In the latter, the flow fields determine the 
collision efficiencies between particles. Owing to computational difficulties, we 
were able to calculate the flow fields for falling ice particles only at low and inter-
mediate Reynolds numbers. But in these calculations we used more realistic shapes 
(finite-length columns, hexagonal plates, and broad-branch crystals with finite 
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thickness) than in all other previous studies; moreover, we studied the case of 
unsteady flow to a certain extent. We hope to perform calculations of flow fields 
for larger falling ice hydrometeors such as large snowflakes, graupel, and hail 
in the future. The tasks will be very challenging because the flow will be fully 
unsteady, the particles' fall attitudes will be complicated, and viscous effects will 
have to be considered. 

The numerical determinations of the ventilation coefficients for falling ice par-
ticles and of the collision efficiencies of ice crystals collecting supercooled cloud 
droplets are the subjects of Section 4. Both endeavors require the knowledge of 
flow fields around falling ice crystals, and these fields are taken from the results 
presented in Section 3. Using the ventilation coefficients presented here, we can 
determine the diffusional growth and sublimation rates of ice crystals falling in 
air (subject to limitations on the Reynolds number range, of course). This is espe-
cially useful in the modeling of cirrus clouds, in which the ice particles are mainly 
small to medium-sized crystals; we have also done some preliminary work in this 
aspect, as is discussed in Section 6. The collision efficiencies determined here can 
be applied to the calculation of riming rates that are important to the growth of 
graupel and hail. 

From Section 2 through Section 4, we focus on the physical properties of individ-
ual ice particles. In Section 5, we look into the details of microdynamic processes 
by which aerosol particles are removed by ice. Here two complementary models 
of aerosol collection, one valid for smaller particles and the other for larger parti-
cles, are developed. The combined results from these two models give collection 
efficiencies over the whole particle size spectrum. Finally, these theoretical results 
are compared with some experimental measurements. 

Section 6 is devoted to the study of cirrus clouds. It is increasingly accepted that 
the distribution of cirrus clouds has very important repercussions on global climate. 
One of the crucial questions is how long a cirrus cloud can survive under a special 
environmental condition. We constructed a two-dimensional cirrus cloud model 
with detailed cloud microphysics and radiation, and studied the development of 
cirrus clouds under four representative conditions representing stable and unstable 
atmospheric conditions in tropical and midlatitude regions. The results we obtained 
show that there are indeed complicated interactions among cloud microphysics, 
cloud dynamics, and radiative fields. 

2. MATHEMATICAL DESCRIPTIONS OF ICE PARTICLE SiZE AND SHAPE 

2.1. Size Distribution versus Size-Shape Distributions 

It is clear that, except for some small frozen cloud droplets, ice particles in clouds 
are basically nonspherical. This nonsphericity causes many difficulties in the quan-
titative treatment of physical processes involving ice particles. For example, it is 



PAO K. WANG 

270l 

360' 
FIG. 2.1. The "size" of a hexagonal plate ice crystal is a function of the polar angle in this 

two-dimensional projection. 

known that the optical properties of clouds depend not only on the size and concen-
tration of their constituent particles, but also on the shape of these particles. Now, 
suppose we have a set of measured optical properties (absorption, scattering, etc.) 
for various parts of a cloud. How do we express the relation between these prop-
erties and the "aggregation state" of the cloud particles? For a cloud composed of 
only spherical particles, this would not be a problem because only the distribution 
of one variable, either the radius or the diameter, is needed to completely describe 
this aggregation state. This is known as the size distribution (see, for example. 
Chapter 2 of Pruppacher and Klett, 1997). Therefore, optical properties of such a 
cloud can be expressed as a function of the size distribution of cloud particles. 

But for an ice cloud composed of nonspherical ice particles, it is no longer so 
simple. In this case, even the very definition of "size" is ambiguous. What, for 
example, is the size of a hexagonal ice plate? From Figure 2.1 it is clear that 
the size here is a function of the angle 0 and is not a unique number. Moreover, 
even if two plates have the same horizontal dimensions, they could have different 
thicknesses. These problems exist for other ice crystal shapes as well. The problem 
becomes even messier when we are dealing with an ensemble of ice particles of 
different habits (shapes) and sizes. In short, the aggregation state of an ensemble 
of nonspherical particles cannot be described by the size distribution alone but has 
to be specified by the shape-size distributions. 

A conventional method of classifying ice particle shapes was given by Magono 
and Lee (1966). The Magono-Lee classification is qualitative and thus useful 
in the descriptive categorization, but it is inadequate in providing quantitative 
information about the crystals. What we need here are some simple mathematical 
expressions that can describe both the size and shape of an ice particle so that 
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its geometric properties (surface area, cross-sectional area, volume, etc.) can be 
calculated easily. "Simple" here means that these expressions should contain only a 
few adjustable parameters (and the fewer the better) while reproducing the correct 
size and essential shape of the ice particle. If this can be done, such expressions 
can be used to describe the shape and size of ice particles, and the distributions of 
these parameters can serve to characterize the shape and size characteristics of the 
ensemble. 

2.2. Mathematical Expression Describing the Two-Dimensional Shapes 
of Hexagonal Ice Crystals 

Let us start with the mathematical expression that describes the two-dimensional 
cross-sectional shapes of ice crystals. Only hexagonal ice crystals are treated, as 
this is the most common shape of ice crystals. This has been done by Wang and 
Denzer (1983) and Wang (1987, 1997). 

Certainly there is more than one way to describe the hexagonal shapes, but the 
method discussed here is probably the simplest and also allows easy classification. 
Since hexagonality is a form of periodicity, it is intuitively appealing to invoke 
sine and cosine functions. We can choose the sine function here without loss 
of generality. For hexagonal shapes, we note that the function f{0) = [sin^(3^)] 
produces six peaks in the range 0 <0 <27i and is therefore suitable for describing 
the hexagonal shape of snow crystals (see Fig. 2.2). To modulate the amplitude, 
we need only multiply f{0) by a constant. On the other hand, the width of the 
peaks can be modulated by raising / (^ ) to a positive power b, where b can be any 
positive number. The peaks are broad when b is small and are narrow when b is 
large because 0 < sin^(3^) < 1. 

Based on this idea, called the successive modification of simple shapes 
(SMOSS), we can change a simple shape into another shape by successively mod-
ifying it by some mathematical functions. The following expression is the one that 
smosses a circle (r = c) into a polygonal shape (in polar coordinates): 

r = a[sm^(nO)f + c (2.1) 

where r and 0 are the radial and angular coordinates, respectively; and 
a, b, c, and n are adjustable parameters to fit the shape and size of the ice crystals. 
The ranges of these parameters are as follows: 

a from —c to oo (amplitude parameter) 

b from 0 to oo (width parameter) 

c from 0 to oo (center size parameter) 

n 0, | , 1, | , 2 , . . . (polygonality parameter) 



10 PAO K. WANG 

0 -̂ /e 2V6 -̂n/e 6-n/6 

FIG. 2.2. Functional behavior of [sin^(3^)]^ versus 6 
d 

\2fr/e 

The number of sides of the polygon generated by (2.1) is 2n because of the square 
of the sine function. For the characterization of ice crystals, n = 3 since most ice 
crystals are hexagonal. 

Examples of ice crystal shapes generated by Eq. (2.1) will be given later. 

2.2.1. Determination of the Parameters a, b, and cfor an Ice Crystal 

Given that a hexagonal ice crystal shape can be described by Eq. (2.1), how 
do we determine the parameters a,b, and c if we are given a real ice crystal 
sample? This can be done in reference to Figure 2.3. The method described here is 
more suitable for fitting ice crystals with rounded branches. [Here we will consider 
only idealized symmetric crystals. Real crystals often have unequal branch lengths 
(dendrites) or are missing branches, and sometimes have surface features (pits); 
but these are not of concern here.] 

From the geometry of Figure 2.3, it is easy to see that 

C2 = a-\- c 

(2.2) 

(2.3) 
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FIG. 2.3. Definition of c, ci, and ci for Eqs. (2.2) and (2.3). This hexagonal crystal is generated 
by Eq. (2.1) by setting (3 = 5.13,Z? = l,c = 2.49 [Bentley and Humphreys (1962), p. 143,(3,1)]. 

where c\ and C2 are the radial lengths at ^ = TT/12 and 7r/6, respectively. From 
(2.2) and (2.3) we get 

Z7 = ln [ (c2-c ) / (c i -c ) ] / ln2 (2.4) 

Equations (2.3) and (2.4) provide all the calculations needed to fit Eq. (2.1) to 
a real snow crystal. The steps are as follows: 

1. Measure c, ci, and C2. 
2. Determine a from Eq. (2.3). 
3. Determine b from Eq. (2.4). 

The area enclosed by Eq. (2.1) can be determined from the following 
formula: 

1 /*2" 

= 2io ' r^dO (2.5) 

where r in the integral, of course, is to be replaced by the expression on the RHS 
of (2.1). For an ice crystal of thickness h, the volume is simply V = Ah. 

2.3. Approximating an Exact Hexagonal Plate 

The simplest shape of hexagonal ice crystals is the hexagonal plate whose ideal 
cross section is an exact hexagon. It is of interest to see if we can use Eq. (2.1) 
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FIG. 2.4. Definitions of notations used in Section 2.4. 

to approximate an exact hexagon. It turns out that we can do this to a fairly good 
degree (Wang, 1987). 

Let us examine the general scheme of using Eq. (2.1) to approximate exact 
polygons (of which the hexagon is just a special case). Figure 2.4 shows a sector 
of an exact polygon which is circumscribed by the circle with center at O and 
radius C. If the polygon is m-sided, then the angle LCOA is jt/m. The length of 
the line segment OA is 

OA = C cos(7r/m) 

The length of line segment OB is therefore 

0B = 
OA C cos(7T/m) 

cos[{n/m) — 0] cos[(7r/m) — 0] 

so that 

OB-C 
cos(7r/m) 

cos[(7r/m) — 0] 
1 

(2.6) 

(2.7) 

(2.8) 

The RHS of (2.8) is the amount to be subtracted from the circle in order to 
produce the polygon, and exactly the amount that should be approximated by the 
first term on the RHS of Eq. (2.1). In order to achieve a close approximation, this 
term should be made to generate a value as closely as possible to the RHS of (2.8) 
for all 0. Clearly we have to let m = 2nif (2.1) is to be used. In order to determine 
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the optimum value of a, we note that the "wave" height at ^ = 7t/m = n/ln 
generated by (2.1) is a maximum (i.e., the amplitude): 

a\_^m^{ne)f = fl[sin^(7r/2)]^ = a (2.9) 

3X0 = 7T/2n, which, in the most ideal situation, should be equal to the RHS of 
Eq. (2.8); i.e., 

cos(n/2r] 
cos[(7t/2n 

or 

^s(n/2ri) _ 1 ^[cos(7r/2«) - 1] (2.10) 
2n) - (n/2n)] J 

a/c = cos(n/2n)-l (2.11) 

The above equation determines the optimum a for given values of c and n. To 
determine the optimal value of b, we substitute Eq. (2.10) in the first term of (2.1) 
and require that the resultant expression approximates (2.8) for all 0, i.e.. 

cos 

or 

/ 7r \ 1 0 h r cos(7r/2n) 1 
- - 1 [sinHnO)]" ^ c \ ' - 1 (2.12) 

\2nJ J \_co?,[{n/In) — 9] J 

for all 0. The simplest way of determining the optimum width parameter b is 
perhaps the least-squares method, which requires that the sum of the squares of 
the differences between the LHS and RHS of (2.13) be a minimum for all 0. 
This can be easily done by iteration. Table 2.1 shows the values of a/c and b 
for generating approximated exact polygons with m(=2n) sides. For a hexagon, 
the values turn out to be a/c = —0.1339 and b = 0.397. Figure 2.5 shows a few 
examples of the polygons generated by Eq. (2.1) using values of a/c and b as 
specified in Table 2.1. It is seen that, while the cases for the triangle and square 
are less than satisfactory, the approximation looks rather good for m > 5. [It turns 
out that a square can be generated nearly exactly by Eq. (2.14).] 

Equation (2.1) can produce many other shapes in addition to those des-
cribed above. For details, see Wang (1987). 

2.4. Two-Dimensional Characterization of an Ensemble of Planar 
Hexagonal Ice Crystals 

We have seen that Eq. (2.1) can be used to fit various shapes of planar hexagonal 
ice crystals. As indicated earlier, the distributions of the parameters a, b, and c can 
serve to characterize the shapes and sizes of an ensemble of such ice crystals, with 
n = 3 as explained before. 
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a«- .067 
b« .397 
C= .5 

a«-.0495 
b= .406 
c« .5 

a=- .038 
b- .412 
c« .5 

FIG. 2.5. Approximated exact polygons using Eq. (2.11) with values of a,by and c given in 
Table I. 

In addition to characterizing actual ice or snow crystal samples, Eq. (2.1) can 
be used to generate model samples of ice crystals in clouds. The latter application 
may be particularly useful for cloud modeling work. Recent cloud models 
often contain detailed cloud microphysics to describe the growth of, or interaction 
between, various kinds of cloud and precipitation particles (Cotton and Anthes, 
1989; Johnson et al, 1993, 1994). Until now most models have implemented 
only generic categories of ice particles without specifying their habits. Yet it is 
known that crystal habits do influence the diffusional and coUisional growth rates 
(Pruppacher and Klett, 1997; Wang and Ji, 1992) and also the radiative properties of 
clouds (see Sec. 6). To include crystal habit features in the model quantitatively, we 
can use Eq. (2.1) to generate ensembles of ice crystals. First, the cloud model would 
determine the temperature and saturation ratio of a particular cloud region. Then an 

TABLE 2.1 VALUES OF a/c AND b FOR GENERATING 

APPROXIMATED EXACT POLYGONS WITH 2n SIDES 

n 

1.5 
2 
2.5 
3 
3.5 
4 
4.5 
5 
5.5 
6 
6.5 
7 
7.5 
8 
8.5 
9 
9.5 

10 

a/c 

-0.5000 
-0.2929 
-0.1910 
-0.1339 
-0.0990 
-0.0761 
-0.0603 
-0.0489 
-0.0405 
-0.0341 
-0.0291 
-0.0251 
-0.0219 
-0.0192 
-0.0170 
-0.0152 
-0.0136 
-0.0123 

b 

0.292 
0.355 
0.382 
0.397 
0.406 
0.412 
0.416 
0.418 
0.421 
0.422 
0.423 
0.424 
0.425 
0.426 
0.426 
0.427 
0.428 
0.428 
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FIG. 2.6. A simulated sample of 15 hexagonal ice plates generated by Eq. (2.1). 

appropriate crystal habit can be selected according to this temperature and satura-
tion ratio. Suppose only one crystal habit, say, a hexagonal plate, is to be assigned 
to a certain cloud region, in which case the parameter b is fixed. Next, the amount 
of excess moisture to be converted into ice is distributed into specified spectra of 
a and c. The distributions of a, b, and c so specified determine not only the size 
but also the shape of ice crystals in this region. 

Figure 2.6 shows such a hypothetical ensemble of hexagonal plates whose dis-
tribution ofa,b, and c are given in Figure 2.7. Numerical values ofa,b, and c are 
given in Table 2.2. Since these are congruent shapes, the b distribution assumes 
a single value, with b = 0.397 as determined in the last section. In this example, 
the a and c spectra are chosen to resemble gamma-type distributions. Note that 
in this sample, the value of a/c is fixed, so that the a and c distributions are not 
independent. In fact, to characterize this ice crystal sample, it is only necessary to 
specify either an « or c distribution and note that b = 0.397. 

The case of mixed-habit ice crystals is more complicated. Again we create a 
hypothetical ice crystal sample whose (a, b, c) values are given in Table 2.3. The 
appearance of this sample is shown in Figure 2.8 and the distributions of the 
a, b, and c parameters are given in Figure 2.9. Again, the a and c distributions 
are chosen to be quasi-gamma type, whereas the b distribution is now bimodal. 
Obviously the dominant habit here is broad-branch crystals. Figure 2.9 appears to 
be a "reasonable" ice crystal sample. 
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FIG. 2.7. Distributions of a, b, and c for the simulated sample shown in Figure 2.6. In this 
sample, b = 0.397. 
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TABLE 2.2 VALUES OF AMPLITUDE (a) AND CENTER 

SIZE (C) PARAMETERS AND THE CONCENTRATION OF 

HEXAGONAL ICE CRYSTALS SHOWN IN FIGURE 2.6 

a 

0.18 
0.21 
0.23 
0.27 
0.30 

c 

1.35 
1.55 
1.75 
2.00 
2.25 

Concentration 

2 
4 
5 
3 
1 

Note: In this sample, n = 3,b = 0.397. 

At this point, it is useful to sound a cautionary note about the nature of shape-size 
distributions. While it is true that a well-documented ice crystal ensemble will lead 
to a unique set of shape-size distributions, the reverse is not necessarily true. For 
a sample of ice crystals with a single habit, one can always reconstruct the crystals 
in Figure 2.6 from the information in Figure 2.7. But this is not true for mixed-
habit ice crystal samples. For example, an ensemble of crystals whose shape-size 
parameters are given in Table 2.4 will have the same a, b, and c distributions also 
represented by Figure 2.9. Only the orders of the a and b values are randomly 
switched. Yet the shapes of these ice crystals, shown in Figure 2.10, are not the 
same as those in Figure 2.8. However, the two ensembles look rather similar, so 

TABLE 2.3 VALUES OF a, b, AND C PARAMETERS 

OF THE SIMULATED ICE CRYSTAL SAMPLE AS 

SHOWN IN FIGURE 2.8 

a 

-0 .68 
-1 .97 
-1 .85 
-1 .00 
-1 .24 
-1 .54 
-2 .31 
-1 .17 
-1 .15 
-1 .57 
-0 .35 
-0 .15 
-0 .75 
-1 .05 
-1 .75 

b 

2.0 
3.5 
2.1 
3.3 
1.7 
3.6 
5.2 
1.6 
2.7 
0.9 

10.0 
0.6 

10.0 
5.0 

50.0 

c 

1.16 
2.45 
2.77 
1.05 
1.75 
1.65 
2.44 
1.85 
2.05 
1.96 
1.66 
1.97 
1.96 
1.54 
1.80 
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FIG. 2.8. A simulated sample of 15 ice crystals generated by Eq. (2.1) with the distributions 
ofa,b, and c given in Figure 2.9. 

they may not have significantly different physical properties. Whether this is true 
for all occasions is unclear at present. 

2.5. Mathematical Expressions Describing the Three-Dimensional 
Shapes of Ice Crystals 

The previous few sections dealt mainly with mathematical descriptions of the 
two-dimensional cross-sectional shapes of hexagonal ice crystals. Real ice crys-
tals are, of course, three-dimensional, and a complete description of their geomet-
ric characteristics needs three-dimensional mathematical formulas, such as those 
developed below. 

2.5.1. Three-Dimensional Mathematical Expression Describing 
Planar Hexagonal Crystals 

Since Eq. (2.1) can generate the 2-D cross-sectional shapes of hexagonal crys-
tals, we need to consider how to represent the thickness of the crystal and combine 
it into the 2-D shape formula. To do this, we start with the simpler question of how 
to find a mathematical expression to describe a finite circular cylinder. If this can 
be done, we can use Eq. (2.1) to transform the circular cross section of the cylinder 
into a hexagon so that we have a 3-D hexagonal crystal. If the length is small, we 
have a plate; if the length is large, we have a hexagonal column. 
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FIG. 2.9. Distributions of a, b, and c for the simulated sample shown in Figure 2.8. 
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TABLE 2.4 VALUES OF a, b, AND C PARAMETERS 

OF THE SIMULATED ICE CRYSTAL SAMPLE AS SHOWN 

IN FIGURE 2.10 

-0.68 
-1.97 
-1.85 
-1.00 
-1.24 
-1.54 
-2.31 
-1.17 
-1.15 
-1.57 
-0.35 
-0.15 
-0.75 
-1.05 
-1.75 

1.6 
2.7 
0.9 

10.0 
0.6 

10.0 
5.0 

50.0 
2.0 
3.5 
2.1 
3.3 
1.7 
3.6 
5.2 

1.80 
2.05 
2.44 
1.05 
1.75 
1.65 
2.77 
1.66 
2.45 
1.96 
1.85 
1.97 
1.96 
1.16 
1.80 

FIG. 2.10. A simulated sample of 15 ice crystals generated by Eq. (2.1) with the values ofa,b, 
and c given in Table 2.4. 
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- 1 

0 . 5 [ 

- 0 . 5 

FIG. 2. U . A 2-D columnar crystal (in reality, a rectangle) generated by Eq. (2.14) with a = 2 
and c = 1. 

We note that the cross section of a finite circular cylinder through its axis is 
a rectangle. If we can find an equation closely approximating the rectangle, then 
rotating the resulting curve along its long axis will yield a close approximation of 
a finite circular column. 

Wang (1997, 1999) has given the equation describing a rectangle in Cartesian 
coordinates: 

+ ̂ ( — : J ) = (2.14) 

where x and z are the common Cartesian coordinates; a and c are the half-lengths 
in the x and z direction, respectively; and s is an adjustable positive parameter that 
can be set as small as we wish (but never equal to zero)^ to closely fit the sharp 
comers of a rectangle. Larger values of s would result in more "rounded" comers, 
while smaller values of s produce sharper comers. For regular purposes, it may 
be sufficient to set s = 10"^. Indeed, Figure 2.11 shows a "rectangle" generated 
by Eq. (2.14) with a = 2, c = 1, and s = 10"^. Since s is finite, the rectangle 
represented by (2.14) is differentiable at every point. 

It is now easy to generate the right circular cylinder from the rectangle as 
represented by (2.14) by simply rotating it about an axis. If we now let the length 
be in the vertical z direction, then the cyHnder is given by the following expression 
(see Fig. 2.12) 

( ^ ) ( — ^ ) + = 1 (2.15) 

Hfs = 0, then discontinuities occur at JC = ±a, and Eq. (2.14) represents two parallel line segments. 
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FIG. 2.12. A circular cylinder generated by Eq. (2.15). 

This is the expression representing a right cylinder to a high degree of precision if 
6 is set small enough. The cross section of the cylinder in (2.15) is very close to a 
circle of radius a. The "equator" of the cylinder is slightly constricted but only by 
a fractional amount of the order £. 

To turn this cylinder into a hexagonal column of length c, all we need to do is 
to transform the circular cross section into a hexagon. This is the form given by 
Eq. (2.11). Changing the symbols therein to go with the change to a 3-D situation, 
we have 

a^ a- A[sin^(3(p)]^ (2.16) 

where the expression on the RHS of (2.16) is in 2-D polar coordinates and cp is 
the angular coordinate. A and B are adjustable parameters that change the shape 
of the cross section. Transforming Eq. (2.15) via (2.16) would then give a column 
of finite half-length c with hexagonal cross sections in mixed coordinates. Thus it 
is necessary either to transform (2.16) into Cartesian coordinates or to transform 
the final result into spherical coordinates. This is done in the following section. 

If we apply the rectangular transformation (2.14) in Eq. (2.15), then we would 
obtain a rectangular column (or a cube if all sides are of equal length) instead of 
a circular column. This will not be discussed here. 
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Cartesian Coordinates Representation 

We note that 

so that 

sm{3(p) = 3 siiK^ cos^ cp — sin^ (p 

J r 3{a sin (p)(a^ cos^ (p) a^ sin^ (p 1 sm (3^) = ^ ^ ^ J 

2x2 y\3x^ - y^y 
(2.17) 

where we have utihzed the fact that on a circle of radius a in polar coordinates, 
we have 

X = a cos (p 
y = asincp 

(2.18) 

Thus, by substituting (2.16) into (2.15) and changing the resulting equation into 
Cartesian form, the expression for a column of hexagonal cross section is given 
by 

(x^ + y^) 
[a - A{y\3x^ - y^)/ix^ + y^f}^? 

1+8-^^ + ^ = 1 (2.19) (—5) 
Spherical Coordinates Representation 

To express (2.19) in spherical coordinates, we use the conventional metrics 

X = rsinO cos (p 
y = rsinO sin (p 
z = r cos 0 

(2.20) 

where r, 0, and cp are radial, zenith angular, and azimuth angular coordinates, 
respectively. By substituting (2.20) into (2.19), we get 

r^ sin^ 0 

{a - A[sin^(3^)]^}2 

1 - (r^ cos^ 0)/c^ 

1 + e - (r2 cos2 6>)/c2 
(2.21) 

which is the expression desired. 
The parameters to be specified in order to generate a particle with hexa-

gonal cross sections are At, c, A, and B (the parameter e is considered to be pre-
set). Once these four parameters are specified, both the size and the shape of 
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FIG. 2.13. A short hexagonal column generated by Eq. (2.21) with a = l,c = I, A = 0.1339, 
and B = 0.397. Dots represents data points computed from Eq. (2.21) and are connected by lines 
to show the prism surfaces of the simulated ice crystal. Note that Eq. (2.21) also generates points 
on the basal surfaces, which are not shown to avoid confusion. 

the particle are completely fixed. The relative magnitudes of a and c determine 
whether the particle looks more nearly planar or columnar, according to whether 
c > a or a > c, respectively. The parameters A and B determine the shape of the 
cross section, as explained in Wang (1987, 1997). Figures 2.13, 2.14, and 2.15 
give three examples of the ice particles specified by (2.19) or (2.21). Figure 2.13 
represents a hexagonal ice column while Figure 2.14 represents a hexagonal ice 
plate. The only difference between the two is the length parameter c. Figure 2.15 
represents the shape of a broad-branch crystal of the same thickness as the 
ice plate in Figure 2.14, albeit of a different cross section. The reader is re-
ferred to two papers (Wang, 1987, 1997) for more detailed descriptions of var-
ious cross-sectional shapes and how to generate them. It is emphasized here 
that Eqs. (2.19) and (2.21) represent not only the prism surfaces but also 
the basal surfaces, which are not shown in Figures 2.13, 2.14, and 2.15 for the 
sake of clarity. The degree of flatness of both surface types is controlled by the 
parameter s. The smaller s is, the closer the prism and basal surfaces to real 
"planes." 
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N 

FIG. 2.14. A hexagonal plate generated by Eq. (2.21) with a = I, c = 0.2, A = 0.1339, and 
B = 0.397. 

The surface and cross-sectional areas and volumes of the particles generated 
by Eqs. (2.19) and (2.21) can be easily obtained. The method of calculating the 
cross-sectional area of the particle is given in Wang and Denzer (1983) and Wang 
(1987). The volume of the ice crystal is simply the cross-sectional area times its 
length c. The surface area is the sum of the basal planes (= 2 x cross-sectional 

FIG. 2.15. A broad-branch crystal generated by Eq. (2.21) with a = l,c = 0.2, A = - 3 , and 
B = \. 
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area) plus the area of the prism surface (= length x the perimeter of the cross 
section). The perimeter of any shape represented by (2.16) can be determined by the 
integral 

I 
In 

r dip 
JO 

where r represents the expression on the RHS of (216). 

2.5,2, Three-Dimensional Mathematical Expressions Describing Spatial 
Dendrites and Rosettes 

Ice crystals in clouds are, of course, not all planar. What we have deve-
loped in the previous few sections may describe the basic shapes (while ignoring de-
tails such as the delicate dendritic branches), but they obviously fall short in describ-
ing many ice crystals whose characteristics are conspicuously three-dimensional, 
e.g., C2a, P5b, P7b, and CP2a in the classification of Magono and Lee (1966). 
Some of these crystals, e.g., bullets in cirrus clouds, may occur relatively often. 
Before we try to devise formulas to describe the three-dimensional ice crystals, it 
is useful to briefly review their structures. 

Three-dimensional ice crystals are thought to grow from frozen drops and hence 
are usually polycrystalline. They are not well understood relative to single crystals, 
and only a handful of studies exist (see, for example, Hallett, 1964; Lee, 1972; 
Hobbs, 1976; Kobayashi et al, 1976a,b; Kikuchi and Uyeda, 1979; Furukawa, 
1982). Unlike the single crystals treated in previous sections, these crystals are 
usually not polygonally symmetric. Even with a single type of crystal, such as a 
combination of bullets, the angles between different branches may differ widely in 
different samples. Figure 2.16 is an example of the frequency histograms of angles 
between the c axes of each component for the case of bullets (from Kobayashi 
et al, 1976a). Strangely, the other two more common types of three-dimensional 
crystals—the spatial dendrites and the radiating dendrites—both have a dominant 
angle frequency at 70° (Lee, 1972; Kobayashi et al, 1976; Kikuchi and Uyeda, 
1979). 

Although it may be possible to simulate rather closely the shape of these three-
dimensional crystals, the ensuing mathematical expressions would be rather com-
plicated, especially in reproducing the 70° angle, which is not evenly divisible by 
360°. The purpose of introducing mathematical formulas here is to use them for 
estimating the bulk distributions of ice water contents and performing first-order 
calculation of some simple diffusional and radiative properties, and not for pre-
cise crystallographic investigations. Therefore, it is thought that simple formulas 
that produce polygonally synmietric shapes, instead of shapes with 70° angles, 
are probably sufficient. In addition, at this writing, it seems that the collection, 
preservation, and analysis of a large sample of three-dimensional crystals would 
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FIG. 2.16. Normalized frequency of occurrence of the angle between two branches of combi-
nations of bullets and radiating dendrites. (Data adapted from Kobayashi et al, 1976a.) 

be a rather intractable effort, so it is probably impractical to try characterizing 
an actual sample. Perhaps, the holographic technique will eventually advance far 
enough so that such tasks can be easily and economically done. On the other hand, 
it is relatively easy to construct hypothetical samples with characteristics similar 
to actual samples. It is for this purpose that the formulas described below are 
designed. 

With the above considerations in mind, it is possible to generalize the 
two-dimensional equation (2.1) to three-dimensions so as to simulate two more 
commonly observed three-dimensional ice crystals, namely, combinations of 
bullets and radiating dendrites. These expressions are described below. 

Bullets are fairly common in cirrus clouds (see, for example, Heymsfield, 1975; 
Parungo, 1995). Cirrus clouds are known to have considerable influence on the 
radiative budget and hence the climate of the earth-atmosphere system. Therefore, 
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FIG. 2.17. (a) A four-lobe combination of bullets generated by Eq. (2.22). (b) Another ex-
ample of a four-lobe combination of bullets generated by (2.22) except that b = b' = 6 in this 
case, (c) An example of an eight-lobe combination of bullets generated by r = [1 — cos(2(p)'^]^^ 
[1 - sin(2(9)4]20. 

it is of significance to examine the expressions that can simulate such a shape. The 
following expression can be used to generate the combination of bullets: 

r = {a[cos\mO)f + c}'^{a'[sm\n(p)f + c'f (2.22) 

This equation is simply Eq. (2.1) applied to both the 0 and (p directions. Thus, 
it can be expected that it will produce shapes similar to those shown in previous 
sections when looking at cross sections for some specific values of ^ or cp. The 
shape generated by this expression will have 2mn branches. For example, a four-
branch combination of bullets as shown in Figure 2.17a can be generated by the 
following expression: 

r = [l- cos^(2(9)]^^[l - sm\(p)] 20 (2.23) 
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where m = 2 and n = I here. The angle between branches is evidently 90°, which 
also occurs in nature as indicated by Figure 2.16. The widths of the branches 
are controlled by b and b' in Eq. (2.22). For example, if we change the values 
of b = b' = 2 in Eq. (2.22) to b = b' = 3, then the branches will look "fatter" 
as shown in Figure 2.17b. In both examples, the branches have relatively flat end 
surfaces that are close to the actual samples. However, there are cases where the end 
surfaces are capped plates that are not simulated here. The shape of each branch is 
not hexagonal, in contrast to real ice bullets. It is unclear at this point whether this 
really matters much in terms of the bulk radiative properties. It is also noted that 
hexagonal columns have hollows, as do bullets, but they are not considered here. 

Figure 2.17c is an example of a bullet combination with 8 (m = n = 2) branches. 
The angle between branches is again 90°, but this time the branches are distributed 
in two mutually perpendicular planes. A "broken" combination, say, only the lower 
half, can be generated by selecting only the values of 0 from n j2ion. 

The other habit to be considered here is the radiating dendrites. Again, it is 
impractical to simulate the intricate designs of each branch, but the basic shape of 
the crystal can be represented by the following expression: 

r = a[sm^(mO)f[sm\n(p)f + c (2.24) 

This is an obvious extension of Eq. (2.1) from 2-D to 3-D, and hence it is easy 
to see that it will produce a 3-D polygonally synmietric shape. Figure 2.18 is 
an example of radiating dendrites generated by Eq. (2.23) by assigning a = 0.1, 
b = b' = 30, and c = 0.001. The large value of b and b^ are chosen in order to 
make the branches very thin. 

FIG. 2.18. A radiating dendrite generated by Eq. (2.24) with a = 0.l,b' = 30, and c = 0.001. 
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Fitting observed 3-D crystals by the above expressions is analogous to the 
procedure for 2-D crystals, except the measurements may be difficult to perform 
as mentioned previously. The easiest way to do this is probably by measuring 
the 2-D projection of the crystals and then performing the fitting process for the 
2-D crystals as described in Wang and Denzer (1983) and Wang (1987). Since the 
expressions given here generate polygonally symmetric shapes, it should be easy 
to obtain a 2-D projection. 

2.6. Mathematical Expressions Describing Conical Hydrometeors 

In the previous few sections we are mainly concerned with pristine ice crystal 
shapes. In this section, we treat conical hydrometeors. 

There are two main kinds of conical hydrometeors: (a) conical graupel and 
hailstones and (b) large raindrops. Berge investigated a total of 1,920 hailstones 
and reported that 21% of them were conical while 41, 10, and 8 percent were 
oblate, spherical and prolate respectively (Battan, 1973). Although the fraction of 
conical hailstones was not the largest, it is large enough to deserve some special 
attention. Many graupel particles are also conical, as has been reported by Knight 
and Knight (1970), LocateUi and Hobbs (1974), and Hobbs (1976), among others. 
FalHng raindrops of millimeter size usually have a "hamburger bun" shape with a 
more or less round top and flattened bottom (Pruppacher and Klett, 1997). Under 
certain conditions, such as in a strong vertical electric field, drops can be elongated 
to become pear-shaped (Pruppacher et ah, 1982; Richards and Dawson, 1971). 
They can also be thought of as conical particles. 

Conical graupel and hailstones can be approximated by spherical sectors or the 
combination of a flat-based cone and a spherical cap, as has been done by Jayaweera 
and Mason (1965) and List and Schemenauer (1971). While these approximations 
are certainly workable and much has indeed been learned by making such assump-
tions, they also have some shortcomings. For example, these approximations all 
consist of two surfaces, namely, a conical surface and a spherical surface. This may 
complicate theoretical study of these particles because the two surfaces constitute 
a mixed boundary problem, which is usually more difficult to solve than a simple 
boundary. The shapes of falling raindrops have been investigated theoretically by 
Pruppacher and Pitter (1971), who used a cosine series to represent the shape of a 
deformed drop. Their method is useful when dealing with the detailed drop shape 
under the influence of certain forces. On the other hand, for some studies of phys-
ical properties such as the heat diffusion rates from such drops and the flow fields 
around them, it may be desirable to have a simpler mathematical function than a 
series to describe their shape. 

Accordingly, we next present a single mathematical function that can describe 
the shape of conical graupel and hailstones as well as some deformed raindrops. 
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This function allows us to calculate fairly easily the volume, cross-sectional area, 
and the surface area of revolution of these hydrometeors. In addition, as in the case 
for pristine ice crystals, the parameters involved in this function may also serve as 
a method of classifying the dimensions of the hydrometeors. 

2,6A. Mathematical Formula—Two-Dimensional Cross Section 

The mathematical function under consideration is 

X = ±ay/l - zyc^ cos-\z/XC) (2.25) 

where x and z are the respective horizontal and vertical coordinates of the surface 
(see Fig. 2.19), while a, C, and X are parameters to be determined. The parameters 
a and C have dimensions of length whereas A is a dimensionless number; C is 
one-half the length from the apex to the bottom along the z-axis, the center point 
being defined as the origin O, and a is defined in the following paragraph. We first 
note that 

X = ±a^l - zyc^ (2.26) 

is the equation of an ellipse whose semi-axes in the x and z directions are a and 
C, respectively. Therefore, Eq. (2.25) can be thought of as an ellipse modulated 

FIG. 2.19. Definitions of the coordinate system and various quantities appearing in Eq. (2.25). 
Solid curve is an axial cross section of a conical body. Dashed curves (1) and (2) are generating 
and limiting ellipses, respectively. 
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by an arccosine function. We may conveniently call the ellipse of Eq. (2.26) the 
generating ellipse. Therefore a is the horizontal semi-axis of the generating ellipse. 

The principal value of the arccosine function lies between 0 and jt, i.e., 

0 < cos-\z/XC) < 7t (2.27) 

Also since the absolute value of the cosine function cannot exceed 1 and — C > 
z > C, it is necessary that 

A > 1 (2.28) 

We need not consider negative values of A,, since z can be either positive or negative. 
When A. -^ oo, (z/XC) = 0, and 

cos-^(zAC) = cos-^O) = 7t/2 (2.29) 

so that Eq. (2.25) becomes, in the limit, 

X = ±(7T/2)ay/l - zyc^ (2.30) 

which is the equation of an ellipse with horizontal and vertical semi-axes na/l 
and C, respectively. Since it represents the limit as A -^ oo, it may be conveniently 
called the limiting ellipse. Curves representing Eqs. (2.25), (2.26), and (2.30) are 
shown in Figure 2.19. We see that Eq. (2.25) defines a pear-shaped curve. It will 
be shown later that Eq. (2.25) can approximate the shape of conical hydrometeors. 
The curve in Figure 2.19 represents an axial cross section only. To obtain a three-
dimensional body, it is only necessary to rotate the curve about the z-axis. 

2.6.2. Fitting Procedure and Examples 

Various conical shapes can be obtained by changing parameters a, C and A in 
Eq. (2.25). In the following we outline the steps that determine a, C, and A for a 
real conical hydrometeor. We use a conical graupel as an example here. 

Step 1: First we determine C. This is obtained by measuring the length H 
from the apex A to the bottom point B (refer to Fig. 2.19). C is one-half 
of this length, the center point O is defined as the origin, and the line of 
length H lies on the z-axis. 

Step 2: Next we determine a. First draw the jc-axis and measure the length L, 
as shown in Fig. 2.19. Of course, z = 0 along the jc-axis. Therefore from 
Eq. (2.25) we have 

L = 2x = layJX - z^/C^ cos-'(z/AC) 

which becomes, when z = 0 

L = an 
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SO that 

a = L/TV (2.31) 

Step 3: Finally we have to determine X. This can be divided into two cases: 

Case 1: The conical curve intersects the generating ellipse 
This is probably the most common case for conical graupel and hailstones. In 

this case the function 

cos-\z/XC) 

is smaller than 1 for some values (usually positive) of y. Right at the point of 
intersection (point K in Fig. 2.19), the value of the arccosine function is 

cos-^(z^ AC) = 1 

where ZK is the z-coordinate of point K. Thus 

ZK/XC = cos(l) = 0.5403 

Therefore 

A = ZK/0.5403C (2.32) 

Hence substituting the values of ZK and C determine the value of X. 
Note that the value of A, determined from Eq. (2.32) may be slightly less than 1 

due to measuring errors or deviation from standard shape. In this case we have to 
set X = 1 since, by definition, the argument of the arccosine function must satisfy 

ZK/XC < 1 

However, this small correction does not produce a large deviation from the actual 
shape. 

Case 2: The conical curve does not intersect the generating ellipse 

In this case, cos~^(z/XC) > 1 along the conical curve. We can determine the 
value of A from its relation to the maximum value of the jc-coordinate, Xm. In the 
following we only have to consider the half curve 

X = a^l - zyc^ cos-\z/XC) 

since the curve is symmetric with respect to the z-axis. The maximum x value, x^, 
will occur at the point where 

= 0 = 
azcos-\z/XC) a^\-z^lC^ 

"C^ ^\-z^lC^ " VA2C2 - z2 

where Zm is the z-coordinate of the maximum point. 

dx 

~dz 
(2.33) 

z=zm 
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Equation (2.33) can be written as 

z ay/\ - z^/C^ cos-'(zAC) a_ ^ 1 - z^/C^ 

c^ y/i-zvc^ c yxrr^vci 
= 0 

-''̂ m»̂ m 

or 

But 

£^ a^\-zl/C^ cos-'(ZmAC) a ^1 - zj/C^ 1 ^ ^ 
(2.34) 

a ^ l - zl/C^ cos-'(ZmAC) = ^„ (2.35) 

\-zl/C^ = xl/a^ (2.36) 

where Xg is the x-coordinate of the generating eUipse when z = Zm- Putting (2.35) 
and (2.36) into (2.34), we have 

C^xl C ^X^-zl/C^ 

,2 / r r 3 \ 2 
k" 

C2 V-^mZm«V 

Thus 

1/2 

(2.37) 

As in case 1, the value of X determined from (2.37) may be subject to errors 
and deviations and may be smaller than 1 occasionally. In this case we have to set 
k = 1. It is also possible to construct a numerical routine to determine a, C, and 
X by digital computer, as will be demonstrated in Section 2.6.4. 

Sometimes it is desirable to calculate x^ and Zm from a given combination of 
a, C, and k. This is given in item iv, Section 2.6.4. 

2.6.3. Examples and Discussion 

Using the above steps, I have tried to fit many conical graupel and hailstones 
documented in the literature. Figure 2.20 shows two examples taken from Mason 
(1971) and one from Iribame and Cho (1979). It appears that the fittings by 
Eq. (2.25) are reasonably close to the actual shapes, and that the most conmion 
values of A lie between 1 and 2. Figure 2.21 shows an example of fitting for a 
falling large raindrop in an environment with and without a vertical electric field. 
The photographs are taken from Pruppacher et al. (1982). 
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FIG. 2.20. Examples of fitting conical graupel and hailstones by Eq. (2.25). (a) a = 2.42, c = 
3.80, and A. = 1.0. (b) a = 1.40, c = 3.20, and A = 1.12. (c) a = 2.55, c = 6.20, and A = 1.045. 
Original particle photographs simulated in (a) and (b) are taken from Mason (1971, Figs. 6.20 
and 6.21) whereas (c) is taken from Iribame and Cho (1980, Fig. V-21). 

Note that Eq. (2.25) can also be used to describe spheres and spheroids, provided 
we replace cos~\z/kC) by unity. The remaining equation then describes an ellipse. 
By rotating the ellipse about the z-axis, we obtain spheroids. If a < C, prolate 
spheroids result. If a > C, oblate spheroids result. In the special case where A = C, 
spheres result. 

While Eq. (2.25) appears to be a reasonably good approximation to many con-
ical hydrometeors, one also may note that it still represents an idealization. Nat-
ural conical hydrometeors, especially conical graupel and hailstones, may differ 
considerably from the idealized conical shape. They may not possess rotational 
symmetry and may have a rough surface. However, in many simple theoretical 
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FIG. 2.21. Examples of fitting a freely falling water drop of radius 2.3 mm by Eq. (2.25) with 
a = 4.58, c = 5.0, and X = 14.79. Original drop photograph simulated is taken from Pruppacher 
etal. (19S2). 

Studies, such complications can be disregarded, at least to a first order of ap-
proximation. Equation (2.25) also provides a convenient way to categorize the 
dimensions of observed conical hydrometeors. 

2.6.4. Cross-Sectional Area, Volume, and Area of the Surface of Revolution 

The cross-sectional area, volume, and surface area are among the most important 
quantities that determine the physical properties of hydrometeors such as their 
Hquid/soHd water contents, heat and vapor diffusion rates, and so forth. We can 
use Eq. (2.25) to estimate the above geometric quantities for conical hydrometeors. 
One may refer to Courant and John (1965) for the formula used below. 

(i) Cross-Sectional Area 

We restrict ourselves here to the calculation of axial cross-sectional area of a 
conical hydrometeor. This area is 

A = 2J\dz = 2aj^yll-^^ cos-' (-^^ dz (2.38) 
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It turns out that this area is independent of X, with 

A = 7z^aC/2 (2.39) 

The derivation of (2.39) is given in Appendix A. 

(ii) Volume 

While the axial cross-sectional area is independent of A, the volume does depend 
on X. The volume is given by 

"=£•"'*=-71 ('-^)h'(^) dz (2.40) 

There are two approaches in this integration: a series representation or an exact 
solution. The former has the benefit of faster calculation with relatively small error; 
but the latter is more elegant in the expression. The details of the calculation are 
given in Appendix B. 

(A) Series Representation 

The results are: 

(a) When k = 1 

(b) When A. = oo, 

(c) When 1 < X < cx), 

V 

where 

V = 3.6l677ia^C 

3.28897r«^C 

(2.41) 

(2.42) 

--c[^o + -,+j, + -,+-,+^,) (2.43) 

jSo = 3.2889 

^2 = 0.2667 

)84 = 0.0382 

)S6 = 0.0113 

fis = 0.0046 

)6io = 0.0024 

(2.44) 
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Since X > 1, the largest error that can occur in using Eq. (2.43) is when A, = 1. 
But even in this case, the volume calculated from Eq. (2.43) is 

Vx=i = 3.6l2l7ta^C 

which deviates from Eq. (2.41) by just 0.13%. In view of the approximate nature 
of using Eq. (2.25) to describe the shape of a conical hydrometeor, this error is 
completely negligible. 

(B) Exact Solution 

The exact solution to (2.40), obtained by Magradze and Wang (1995), is 

--'^JTnh-'(x)r-(^)^--a) 
The details of the derivation are given in Appendix C. 

(Hi) Area of the Surface Revolution 

The area of the surface of revolution can be calculated from Guldin's rule: 

A, = 27t f xJl-\- (^^ dz (2.46) 

This equation can be transformed into 

/.cos-^lA) r ^2 r;^2 "121 1/2 

Ar = -InaCX i; | /(i;) sin^ i; + ^ - ^ — usin2i; + / ( i ; ) [ dv 
/cos-i(-lA) 

= -27taCkI, (2.47) 

where 

and 

V = cos — 

\xcj 
(2.48) 

f(v)= l -A^cos^i; (2.49) 

The integral I^ in Eq. (2.47) was evaluated out numerically, and the result is 
surprisingly simple. For X up to as large as 10 ,̂ /r is almost exactly equal to 
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(—TT/A,). Therefore for the regular range of X (usually close to 1), the area of the 
surface of revolution is almost exactly 

A, = In^aC (2.50) 

to a high degree of accuracy. However, numerical calculation does show that /r 
decreases slowly with increasing A. As A becomes infinity, the area A^ becomes 

where 

f+ ^̂ ^̂ 1̂ (2.51) 

K'^i^.-^) (2.52, 

Equation (2.51) can be easily checked by letting A, ^- oo with C = 7ta/2. Then 
the second term in the brackets vanishes and we have a sphere with surface 
area AnC'^ = n^a^ = In^aC. Ar oo is smaller than iTt^aC. For example, if we 
let a = 5 mm and C = 10 mm, then Ar oo = 919.7 nmi^ whereas In^aC = 
986.96 mm^, a difference of 6.8%. Again, in view of the fact that these are all 
approximations, we can probably live with this error. 

(iv) Cross-Sectional Area Normal to the Direction of Fall 

The cross-sectional area normal to the direction of fall is one of the important 
dynamic quantities of conical particles. If the conical particle falls in the direction 
of its axis of symmetry, this area is simply 

where X^ was defined in Section 2.6.2. The formulation in Section 2.6.2 is for 
determining a,C, and k from a photograph of a particle. Here we shall investigate 
a converse problem, namely, determining X^ and Zm for a given a, C, and X. 
The most straightforward method would be to put Eqs. (2.33) and (2.25) in the 
computer directly and solve for Xm and Zm by an iterative method. In the following, 
we provide an alternative method. 

We first note that the value of Zm (and thus the corresponding Zm) must be such 
that Eq. (2.33) holds. By letting cos Mm = (Zm/^C) we can transform Eq. (2.33) 
into the following equation: 

7 1 
Mm COS Mm SlU Mm — COS Mm = ^ ( 0 < Mm < TT) ( 2 . 5 3 ) 

A 

while at the same time one must remember that Â  cos^ Mm < 1. 
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FIG. 2.22. Values of A and the corresponding Mm from Eq. (2.54). 

The possible solutions are in the range between 7r/2 (when k -> oo) and 
2.028758 (when X = 1). Figure 2.22 gives a curve of X versus u^. Thus for a 
given X we can find a corresponding value of u. The value of Zm is then given by 

Zm = ^C cos Wn (2.54) 

Putting this Zm, along with a, C, and X, into Eq. (2.25), we obtain Xm. As an 
example, the conical graupel in Figure 2.20b has a = 1.40, C = 3.20, and X = 
1.72. From Figure 2.22, the value of u^ corresponding to A = 1.72 is 1.75. Thus 

Zm = (1.72)(3.20)cos(1.75) = -0.9811 
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and from Eq. (2.25) the corresponding X^ is 

X^ = (1.40)[1 - (-0.981 l/3.20)^]^/^(l.75) = 2.3320 

Xm is related to the characteristic lengths used by several previous investigators in 
describing conical particles. For example, Jayaweera (1971) used a characteristic 
length L* defined by Pasternak and Gauvin (1960); L* is the ratio of the total 
surface area divided by its perimeter P normal to the flow. In terms of a, C and A, 
this would be equivalent to 

2nXjn 27rZm X^^ 

Other investigators, such as List and Schemenauer (1971) and Heymsfield (1978), 
used a characteristic length which is essentially IX^. 

Using a technique based on Eq. (2.25), Wang et al. (1987) analyzed the shape 
and size distributions of an ensemble of 679 hailstones collected by Dr. Nancy 
Knight of the National Center for Atmospheric Research (NCAR) during a 22 
June 1976 hailstorm at Grover, Colorado. They demonstrated that the resulting 
distributions have relatively simple statistical behavior and thus the technique is 
useful for studying geometric properties of conical particles. 

2.6.5. Three-Dimensional Expression of Conical Particles with Circular 
and Elliptical Cross Sections 

In the discussions of the previous few sections, we used Eq. (2.25) to represent 
the axial cross sections of conical particles. This simplicity assumes that these hor-
izontal cross sections of are circles. It has been pointed out by some investigators 
(Charles Knight, private communication; Albert Waldvogel, private communica-
tion) that many hailstones have elliptical horizontal cross sections. Hence it is 
desirable to have a formula describing such conical particles. 

This can be easily done by first writing down the 3-D form of Eq. (2.25) and 
then generalizing it to include the case of elliptical cross sections. The 3-D form 
of Eq. (2.25) is simply 

x^ / z^ 

[a cos-i(z AC)]2 [a cos-\z/XC)f C^ 

An example of the 3-D body represented by (2.56) is shown in Fig. 2.23. The 
horizontal cross section of a conical body at a given z, specified by (2.56), is a 
circle of radius 

fl[cos-^(zAC)] 



2,5 

-2.5 

FIG. 2.23. Two z-axisymmetric conical particles generated by Eq. (2.64) by setting a = c = 1. 
(a)A= l.(b)A = 5. 

FIG. 2.24. A conical body with elliptical x-y cross sections generated by Eq. (2.62) with a = 2, 
Z? = 1, andc = 5. 
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It is now easy to generalize (2.56) to a conical body with elliptical horizontal 
cross sections. This is 

+ T. ; . . .^. .o + T;^ = 1 (2.57) 
[acos-i(zAC)P [bcos-\z/XC)f a 

This form makes it clear that the horizontal cross section of a conical body 
specified by (2.57) at a given z is an ellipse of semi-axes [a cos~Hz/XC)] and 
[Z?cos~^(z/AC)] in the x and y directions, respectively. Figure 2.24 shows an 
example of such a particle. 

The conical body as given by Eq. (2.56) has been used for the calculations of 
scattering by microwaves at 35.8 GHz. For details, see Stumilo et al (1995). 

3. HYDRODYNAMICS OF SMALL ICE PARTICLES 

3.1. Fall Attitude of Ice Particles 

Ice particles are never truly stationary in clouds—they are always falling relative 
to the vertical air current. Since air is a viscous medium, the motion of ice crystals 
in it will produce complicated flow fields around the crystals. These flow fields, in 
turn, influence the way the ice crystals are falling. 

When ice crystals are small, they fall in a steady manner. Observations show 
that small ice crystal plates or other planar crystals fall with their basal planes 
oriented horizontally, while small ice columns fall with their long axes horizontal. 
The flow fields around the falling crystals are said to be steady in this situation 
because they are independent of time. 

As ice crystals grow larger, their fall attitude may become unsteady. Eddy shed-
ding may start to occur in the downstream region. Eventually, they may fall in 
fairly complicated fashion; for example, large plates may fall in a zigzag manner, 
as anyone who has been through a snowstorm would never forget. Ice columns may 
perform rotation, frittings, and other unsteady fall motion (Jayaweera and Mason, 
1965). For a more detailed description of these motions, the reader is referred to 
Pruppacher and Klett (1997). 

Any quantitative investigation of the growth and dissipation of these ice particles 
will have to take their motion into account. For example, due to the existence of 
flow fields, the collision efficiencies between ice crystals and supercooled droplets 
(the riming process) can be significantly different from that deduced by just con-
sidering the geometry of the particles alone. Similarly, the diffusional growth of 
ice crystals will be influenced by their motion through the so-called ventilation 
effect (Pruppacher and Klett, 1997, Chap. 13). 

In principle, the flow fields can be obtained either by experimental measurements 
or theoretical calculations. Experimental methods are preferred if they can be done 
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properly. The reality is, however, that it is very difficult to measure the flow fields 
for a wide variety of cloud and precipitation particles, which vary greatly in size 
and shape, and for a wide range of atmospheric conditions. Since ice crystals 
are nonspherical, the measurements are especially difficult to perform. The other 
option is to perform theoretical calculations to see if the calculations can be done 
efficiently based on a realistic model. The advent of fast computers makes this 
option a viable choice, and the calculations can often be done at relatively economic 
cost in comparison with experimental measurements. 

The theme of this section is the theoretical computations of flow fields around 
falling ice crystals. These flow fields can be either steady or unsteady depending 
on their Reynolds numbers (Re = Woo d/v). Calculations are done using realistic 
ice crystal models. The results compare favorably with the few experimental mea-
surements available, demonstrating that theoretical computation is indeed a viable 
means of determining the flow fields. 

3.2. Review of Previous Studies 

Most of the previous theoretical studies of hydrodynamics relevant to 
cloud and precipitation particles have been reviewed and summarized by 
Pruppacher and Klett (1978) and Clift et al (1978). Among the earUer stud-
ies relevant to this area are the analytical and semiempirical study of Stokes 
(see, for example, Happel and Brenner, 1965; Yih, 1969), Oseen (1910), 
Goldstein (1929), and Carrier (1953) regarding flow past rigid spheres, and 
Hadamard (1911) and Rybczinski (1911) regarding fluid spheres. Refinements 
of these early studies were made by many fluid dynamicists. However, it 
was soon realized that these analytical solutions can be applied only to a 
limited range of real atmospheric conditions, and producing results useful 
to cloud physics necessitates prescribing initial and/or boundary conditions 
that are more complicated and closer to realistic cloud environments. These 
problems would be very difficult to solve analytically and are indeed most 
conveniently solved by numerical methods. Thus, Jenson (1959), Hamielec 
et al (1967), Le Clair et al (1970), and Pruppacher et al (1970) started to per-
form numerical calculations of fields for incompressible flow past rigid and liquid 
spheres. 

Spherical problems, especially at low Reynolds numbers, are largely relevant 
only to cloud drops. Most other cloud and precipitation particles are prominently 
nonspherical. Large raindrops have relatively flat bottoms and round tops, like 
hamburger buns. Columnar ice crystals, dendrites, and conical graupel are certainly 
far from spherical. There is clearly a need to determine the flow fields around 
nonspherical hydrometeors. Some investigators have carried out a few such cases. 
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Again, more realistic solutions were obtained by numerical methods. For instance, 
the flow past infinitely long cylinders, which are often used to approximate flow 
fields around ice columns, were obtained by numerous researchers (e.g., Thom, 
1933; Dennis and Chang, 1969, 1970; Hamielec and Raal, 1969; Takami and 
Keller, 1969; Schlamp et al, 1975). The numerical flow fields around thin oblate 
spheroids, used to approximate hexagonal ice plates, were obtained by Rimon and 
Lugt (1969), Masliyah and Epstein (1971), and Fitter et al (1974). 

All the studies mentioned above have two things in common. First, they all 
treated steady-state flow fields, which are only applicable to the motion of cloud 
and precipitation particles at low Reynolds numbers. Second, they treated only two-
dimensional problems. In that Reynolds number range, the particles fall steadily, 
and therefore the flow fields around them are also independent of time. However, 
when these particles grow larger, they start to show unsteady fall behavior and 
create unsteady flow fields characterized first by the shedding of eddies downstream 
and then by turbulent eddies when the Reynolds numbers become sufficiently large. 
Undoubtedly, if we are to understand the unsteady motion of these particles and 
their effect on cloud growth, we need to determine these unsteady flow fields. This 
amounts to solving the unsteady Navier-Stokes equations with appropriate initial 
and boundary conditions. In addition, the flow fields around most real ice crystals 
are actually three-dimensional in nature even when the flow is steady. For example, 
the steady flow past a hexagonal plate does not really possess azimuthal symmetry, 
as would be the case for a circular disk or a thin oblate spheroid. The flow past 
a cylinder of finite length is even more asymmetric owing to the presence of a 
cylindrical surface and two plane end surfaces. When the flow becomes unsteady, 
of course, the asymmetry becomes even more pronounced. 

In the following sections, I present some numerical techniques and the resulting 
flow fields around a few types of nonspherical ice particles in the low-to-medium 
(from 0.1 to about 200) Reynolds number range. These are taken from Ji and Wang 
(1989, 1991) and Wang and Ji (1997). 

3.3. The Physics and Mathematics of Unsteady Flow Fields around 
Nonspherical Ice Particles 

3.3.1. Streamfunction versus Momentum Equation Formulation 

In this section, we discuss the conceptual setup of the problems for unsteady 
flow past nonspherical ice crystals and the numerical schemes that we used to solve 
them. In the treatment of two-dimensional steady-state incompressible flow prob-
lems, it is common to formulate the problems in terms of a scalar streamfunction -^. 
The benefit of doing so is that only a single dependent scalar variable needs to 
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be solved for, and the components (e.g., w, v) of the flow velocity vector V can 
be derived from i/r. On the other hand, using the original momentum equation 
formulation would require solving for two dependent variables. 

Unfortunately, the attractiveness of the streamfunction formulation disappears 
for three-dimensional flows. While it is still possible to define a streamfunction, 
this function will be a vector instead of a scalar (see, for example, Anderson et ah, 
1984). This means that three separate component equations of the streamfunction 
need to be solved instead of one. Thus there is no advantage of the streamfunc-
tion formulation over the original momentum equations. In the present study, the 
momentum equation formulation is used. 

33.2. The Incompressible Navier-Stokes Equations and the Initial 
and Boundary Conditions 

We shall treat three relatively simple ice crystal shapes: the columnar ice crystals 
(approximated by finite circular cylinders), hexagonal ice plates, and broad-branch 
crystals. Figure 3.1 shows a schematic sketch of these three types of crystals. The 
quantity a represents the "radius" of the ice crystals as defined in the figure. We 
shall also assume that these ice crystals fall with their broad dimensions oriented in 
the horizontal direction, which is known to be the common fall orientation of many 
medium-sized ice crystals (Pruppacher and Klett, 1997). It is known that large ice 
crystals also exhibit zigzag fall attitudes, but that is not simulated here owing to 
limited computer resources. The schematic configuration of the theoretical problem 
considered here is shown in Figure 3.2. 

FIG. 3.1. The three types of ice crystals and their geometric dimensions considered in this 
study. 
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FIG. 3.2. The general configuration of the theoretical problem. Ice crystals are assumed to fall 
with their long axes in the horizontal direction. 

To facilitate the numerical analysis, we first introduce the following dimension-
less variables: 

X = - , 
a 

V = 
IVool' 

,= '-^ P' = 
p\y. 

Re = 
2|Voo|^ 

V 

(3.1) 

where x (or y, z) is one of three Cartesian coordinates, V is the fluid velocity, 
Voo is the freestream velocity (which is equal to the terminal fall velocity of the 
ice crystal), P is the dynamic pressure, v is the kinematic viscosity of the fluid, 
p the air density, and Re is the Reynolds number relevant to the flow. All primed 
quantities are nondimensional. Using these dimensionless variables, we can write 
down the nondimensional Navier-Stokes equation and continuity equation as (after 
dropping the primes) 

av 2 , — + V • vv = -vp + — v^v 
dt Re 

v v = o 
The ideal boundary conditions appropriate for the present problems are 

and 

V = 0 at the surface of the ice crystal 

V = ê  at infinity 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

where ê  is the unit vector in the general flow direction. In real numerical compu-
tations, of course, the domain is always finite and condition (3.5) can only be taken 
to mean that the velocity is constant at an outer boundary that is sufficiently far 
away from the crystal. It is difficult at present to predetermine on purely theoretical 
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TABLE 3.1 OUTER BOUNDARIES OF THE COMPUTATIONAL DOMAINS FOR THE 

THREE CRYSTAL CASES'" 

Boundaries Columnar crystal Hexagonal plate Broad-branch crystal 

Upstream 
Lateral 
Lengthwise 
End-on 

Downstream 

'̂  The radius is 1. 

12.7 

25.5 
23.5 
63.0 

3.3 

6.74 
6.86 

14.3 

1.7 

10.10 
11.09 
15.27 

ground how far the distance should be in order to be called "sufficiently far." We 
did this by trial and error, and considered the outer boundary far enough away 
as long as the computed results do not change by more than a few percent as we 
move the boundary farther out. Similar treatment was done for all outer boundaries. 
Table 3.1 shows the locations of the upstream, downstream, and lateral boundaries 
for determining the numerical flow fields in the three cases. 

While condition (3.5) is approximately valid at the upstream and lateral bound-
aries, it is usually not valid at the downstream boundaries. This is because, at 
the relatively high Reynolds number range investigated here, the shedding of ed-
dies may occur. The disturbances often propagate downstream for a long distance. 
Thus, at the downstream boundary, (3.5) is replaced by a weaker condition 

dz 
The pressure field can be determined from the Navier-Stokes equation at all 

boundaries except at the downstream boundary, where the condition 

dz 
is used. Since we are dealing with unsteady flow here, we also need initial condi-
tions to close the equations. The initial conditions (at r = 0) are P = 0 and V = ê  
everywhere except at the surface of the crystal, where we require V = 0 (nonslip 
condition). 

3.3.3. Generation of Unsteady Flow Features 

Although the Navier-Stokes equation (3.2) is written as a time-dependent equa-
tion, this does not mean that the computational results will always result in time-
dependent flow features such as the shedding of eddies. Indeed, Dennis and Chang 
(1970) have shown that for flow past two-dimensional cylinders starting with 
symmetric initial conditions, the eddy shedding does not occur even at Reynolds 
numbers as high as 1000. In order to generate these time-dependent, or unsteady, 
features, it is necessary to implement an asymmetric initial perturbation field. 
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A 
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B 

t 

^ V«> 

FIG. 3.3. The initial perturbation imposed on the steady flow field in order to generate time-
dependent flow behavior. The magnitude of perturbation in regions A and B is 30% of the 
free-stream velocity but the directions of the perturbations are opposite. 

There are many ways of implementing this perturbation. For example, Braza et al. 
(1986) achieved this on a two-dimensional cylinder by performing a rotation of 
the cylinder along its axis. In the present study, we achieve this by implementing 
a velocity perturbation of magnitude 0.3Voo in the downstream region immedi-
ately behind the crystal to the steady-state solutions, as shown in Figure 3.3. The 
directions of the perturbation are opposite each other in the regions A and B 
so as to form a shear along the central plane of the flow. As we shall see, at high 
enough Reynolds numbers, this perturbation will generate a periodic eddy shedding 
pattern in the simulated flow. On the other hand, the perturbation will be damped 
out in a short time if the Reynolds number is low. 

3.4. The Numerical Scheme 

To solve Eqs. (3.2) and (3.3) with the appropriate initial and boundary con-
ditions, we adopt a numerical approach utilizing the finite difference method. It 
is also necessary to set up a mesh grid. Due to the more complicated shapes of 
these ice crystals, it is decided that the simplest way to set up grids is to use the 
Cartesian coordinate system. In order to prescribe the inner boundary conditions 
with adequate precision, the grid spacing near the crystal surface has to be small. 
On the other hand, the grid spacing far from the crystal can be larger to save com-
puting time. This results in nonuniform grids used in the present study, as shown 
in Figure 3.4. 

As indicated before, the primitive velocity formulation of the Navier-Stokes 
equation is adopted for this study. The velocity at each time step is obtained by 
a predictor-corrector method. First, the velocity predictor V* is determined by 
solving the following equation: 

V* - V 2 
+ (V" • V)V" = — V^V" 

At Re 
(3.6) 
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a 
FIG. 3.4. The nonuniform grids used for numerically solving the Navier-Stokes equations for 

flow past a columnar ice crystal: (a) broadside view; (b) end view. 
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RG. 3.4. Continued. 

where V" is the velocity solved at time step n and Ar is the time increment. The 
pressure at time step « + 1 is then given by 

2 p « + l V'P v-v* 
Af 

(3.7) 

(see, for example, Peyret and Taylor, 1983). Finally the velocity at time step n-\-\ 
is determined by 

jn+\ 

At 
_ Ypn+l (3.8) 

A scheme of quadratic upstream interpolation for convective kinematics 
(QUICK) is used here (Leonard, 1979, 1983; Freitas et al, 1985; Davis, 1984). 
Since a uniform grid system is obviously inefficient in the present problem 
(higher resolution is needed in regions near the cylinder), we adopted Freitas 
and colleagues' (1985) strategy of a modified QUICK version which applies to a 
nonuniform grid. The quadratic interpolation equation becomes one-dimensional 
if Leonard's CURVT terms are neglected. Thus, following Freitas et al, let a 
function O of § be written as (|> = ci + C2§ + cs^^, where § is the local coordinate 
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of a control volume. The general quadratic interpolation equation is then integrated 
over each control volume face to generate the corresponding one-dimensional flux 
interpolation equations for a nonuniform grid. These equations are as follows: 

For M > 0: 

f 1 Ax,VAx,_i 1 f Ax,/(Ax/ + Axi_i) 1 

f[-(A^,/2 + Axf/A^,_i/4)l A;c,/Ax,_il 

+ U (A;c, + A;c,_0 J 2 T ' - ' + 
f l AA;,_i/(AXi_2 + Ax,_i) 1 f l AX,_I /AJ : ,_2 ] . 

<i>w={- ^ r ' - i 2 + — 4 — r -
fr(A..._./2 +A. ,^ . /A . ,_ , /4 )1 _ A . . _ , / A X , . _ , 1 

U (AJC,_2 + Ax,_,) J 2 I '-2 V • ^ 

For M < 0: 

f l AA:,/(AJ:,+, + Ax,)l . , f l , Ax,/Ax,+i 1 

fr(Ax,/2 + Axf/A,^i/4)-| _ Axj/Axt^,] 

\[ (Axi^, + Axi) J 2 J '-' 

^ r i Ax,_i/Ax,l rr(Ax,/2 + Ax,^i/Ax,/4)-| 

Axi^i/Axi 1 f Ax/_i/(Ax,- + Axi-i) 1 0,_i 
f^f+i — \ f ^ / - i H — z — (•^•A^; 2 J I 4 \ ' ' 2 

where Ax/ = (x,+i — x/). 
Using the above operators, a component equation of Eq. (3.6) can be written as 

^n+l ^n \Ui/{AXi.i+ AXi)'] 
<D«+i = O;' - ^̂  (cDe - Ow ) 

2[Ax,_icD,-+i + Axj^j.i - {Axj.i + Ax,)0,] ^ 

Axi/Axi^i/(Axi + AJCJ_I) 

The three-dimensional QUICK scheme can be similarly constructed. The stability 
condition for one dimension is 

A^ < 7 ^-—T (3.14) 
(Re-VLJ 

and 

2Af At 
+ \^—--<0.5 (3.15) (Re-AA:2) """(4 Ax) 
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where At is the time step and Vmax is the maximum velocity in the flow domain. 
To ensure stabiHty in 3-D calculations, we took time steps, which are at least three 
times as small as those required by Eq. (3.14). Similarly, Ax's were chosen so that 
the right-hand side of Eq. (3.15) is three times smaller than required. As pointed 
put by Freitas et al. (1985), such a scheme results in second-order accuracy. 

The Poisson equation for pressure, Eq. (3.7), is solved by the standard successive 
over relaxation (SOR) method described in Peyret and Taylor (1983) and Anderson 
etaL(l9S4y 

The time step At used in the integration varies from 0.015 to 0.03 depending on 
the local grid spacing such that the stability criterion is satisfied. The smallest grid 
spacing was Ax = 0.0775. The largest grid size used was 59 x 75 x 89. Naturally, 
a larger grid size will result in better accuracy but will increase the computing time 
considerably. The typical computing time for 10,000 time steps is on the order of 
a few hours on a Cray X/MP computer. The computation on a Cray-2 computer is 
somewhat faster. It appears that the SOR scheme in solving the pressure equation is 
the main bottleneck of the computation. The grid size used in this study represents 
a compromise between accuracy and available computing resource. 

3.5. Results and Discussion 

The size, aspect ratios, and Reynolds numbers of the columns, hexagonal plates, 
and broad-branch crystals are listed in Tables 3.2, 3.3, and 3.4, respectively. Their 
dimensions are chosen to overlap those adopted by some previous work (Schlamp 
et al, 1975, 1976; Pitter et al, 1973; Pitter and Pruppacher, 1974; Pitter, 1977; 
Miller and Wang, 1989) so that the results can be compared. In the following we 
discuss the results for each crystal type separately. 

TABLE 3.2 DIMENSIONS OF COLUMNAR ICE CRYSTALS 

TREATED IN THE PRESENT STUDY 

Units (dimensionless) 

Re 

0.2 
0.5 
0.7 
1.0 
2.0 
5.0 

10.0 
20.0 
40.0 
70.0 

Diameter (d) 

2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

Length (L) 

2.85 
2.85 
3.08 
3.33 
4.44 
6.67 

10.00 
16.67 
12.58 
25.32 

L/d 

L43 
1.43 
1.54 
1.67 
2.22 
3.33 
5.00 
8.33 
6.29 

12.66 
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TABLE 3.3 DIMENSIONS OF HEXAGONAL ICE PLATES 

TREATED IN THE PRESENT STUDY 

Units (dimensionless) 

Re 

1.0 
2.0 

10.0 
20.0 
35.0 
60.0 
90.0 

120.0 

Diameter (d) 

2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

Thickness (h) 

0.225 
0.177 
0.1265 
0.1034 
0.0863 
0.0725 
0.064 
0.0576 

h/d 

0.1125 
0.0885 
0.06325 
0.0517 
0.04315 
0.03625 
0.032 
0.0288 

3.5.1. Comparison with Experimental Results 

Before we present the complete results of the flow fields around falling ice 
columns, it is of interest to compare the numerically calculated and experimental 
measured results so that the validity of the numerical scheme can be checked 
to a certain degree. The main experimental results for this purpose come from 
Jayaweera and Mason (1965). 

Previous experimental studies of both two- and three-dimensional flow past 
circular cylinders indicated that the flow remains steady up to Re ^ 50 (e.g., 
Kovasznay, 1949; Jayaweera and Mason, 1965). It is therefore useful to perform 
calculations for flow past finite cylinders at Reynolds numbers below and above 
50 to represent the steady and unsteady cases, respectively. We chose Re = 40 and 
70 for this purpose. The aspect (diameter/length) ratio (d/l) is 0.159 for Re = 40 
and 0.079 for Re = 70. These ratios are the same as that of the cylinders used in 
the experiment of Jayaweera and Mason (1965). 

TABLE 3.4 DIMENSIONS OF BROAD-BRANCH CRYSTALS 

TREATED IN THE PRESENT STUDY 

Units (dimensionless) 

Re 

1.0 
2.0 

10.0 
20.0 
35.0 
60.0 
90.0 

120.0 

Diameter (d) 

2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

Thickness (h) 

0.15 
0.14 
0.0914 
0.080 
0.0667 
0.060 
0.052 
0.047 

h/d 

0.075 
0.07 
0.0457 
0.040 
0.033 
0.03 
0.026 
0.0235 
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a b 
FIG. 3.5. Streak pattern, or "snapshot" field, of massless tracer particles for flow past an ice 

column for Re = 40: (a) broadside view; (b) end view. 

In order to compare visually with the experimental photographs of Jayaweera 
and Mason (1965), positions of massless marker particles were calculated. These 
particles were originated from various places on the surface of the cylinder and 
new particles were introduced at each time step. Figure 3.5 shows the streak plots 
of these particles. Since the flow at this Reynolds number tends to converge to 
steady state (even if unsteady initially, as will be discussed later), the streaklines 
are essentially the same as streamlines. The pyramidal standing eddies shown in 
Figure 3.5a are similar to those described above. It is seen that the eddies consist 
of mainly fluid particles originated near the ends of the cylinder. This is due to the 
relatively large vorticities there that trap the particles. Particles originated in the 
center part of the cylinder follow relatively straight paths and quickly move to 
the downstream. Figure 3.5b shows the end-on view of particle streaks in the central 
yz plane. This view looks more like the familiar two-dimensional eddies attached 
to an infinitely long cylinder. Figures 3.5a and 3.5b show striking similarities 
to the photographs of tracer particles taken by Jayaweera and Mason (1965), as 
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FIG. 3.6. Experimental photographs of a falling short cyUnder at Re = 40. Broad-side view. 
(Photo courtesy of Dr. K. O. L. F. Jayaweera.) 

shown in Figure 3.6. The characteristic pyramidal wake in the broadside view, 
the shape of the standing eddies, and the sHghtly diverging streak tails are well 
reproduced. 

It is important to remember at this point that the trajectories and streaks of 
particles (whether massless or not) are the same in this case since the flow is 
steady. This is not true if the flow is unsteady. 

Figure 3.5a also reveals an interesting feature of the flow in the pyramidal wake. 
It is obvious that tracer particles near the edges of the cylinder are subject to higher 
vorticity of the flow, hence tending to stay longer in the wake. Tracer particles near 
the center of the cylinder, on the other hand, would experience less vorticity and 
hence spend little time in the wake, instead, they go into the long tail region quickly. 
This phenomenon is illustrated even more clearly from Figure 3.7, where a top 
view of the tracer particle trajectories is shown. Here a tracer particle near the 
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Re = 40 Top view 

25 26 27 28 29 30 31 32 33 34 35 36 

FIG. 3.7. Top view of the computed tracer particle trajectories around the falling cylinder for 
Re = 40. Larger particles represent those located at "higher" altitudes (i.e., more downstream). 
Particles originate at points one grid away from the cylinder surface. 

center makes a simple curve and swiftly goes into the long tail region whereas a 
particle near the edge makes many loops before it reaches the long tail region. 

As mentioned previously, experimental studies indicate that the flow past cyHn-
ders is steady at Re = 40. This would mean that small disturbances occurring in 
the field would be damped whereas at higher Reynolds numbers, the disturbances 
will tend to develop into unsteady flow patterns and result in shedding eddies. 
To see if this damping can be numerically simulated, we introduced an artificial 
disturbance in the flow as described in Section 3.3.3 and observed the development 
of this perturbed field. 

Figure 3.8 shows the fluctuation of velocity in this perturbed field with time at 
a point in the wake. The perturbation was introduced at r = 91, indicated by the 
sharp downward spike. This came as a fluctuation in the velocity field, which 
becomes smaller and smaller as time goes on and is eventually damped out. 
Fluctuation of velocities at other points in the downstream were also traced 
and similar behavior was found. Figure 3.9 shows the computer marker parti-
cle streaks ai t = 120. At this time, the initial disturbance has propagated a bit 
downstream and the field immediate to the cylinder is beginning to restore to the 
initial steady state. At t = 165, shown in Figure 3.10, the disturbance is nearly 
gone and the flow is almost completely restored to the original steady field. This 
demonstrates that for such a cylinder at Re = 40, the flow tends to become steady-
state even under a perturbation as much as 30% of the freestream velocity. This 
also indicates that the steady flow field obtained in this calculation is a stable 
one. It will be of interest to see if there exists a critical perturbation magni-
tude that will set the flow into an unsteady pattern. This, however, is not yet 
done. 
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FIG. 3.8. Fluctuation of the nondimensional velocity with time at the point (38.0, 24.0, 18.9) 
in the wake of the flow field of the falling cylinder (Re = 40) considered here. 

a b 
FIG. 3.9. Computed particle streaks for perturbed flow past the short cylinder at Re = 40 at 

t = 120. (a) Broadside view; (b) end view. 
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FIG. 3.10. Computed particle streaks for perturbed flow past the short cylinder at Re = 40 at 
^ = 165. (a) Broadside view; (b) end view. 

As mentioned earlier, at higher Reynolds numbers the flow past a finite cylinder 
becomes unsteady, as demonstrated by the experiment of Jayaweera and Mason 
(1965). Eddies begin to shed away from the cylinder and form the von Karmen 
vortex street. In order to study this eddy shedding, a perturbation of the same 
magnitude as above was again introduced into a steady flow field. For the purpose 
of a fair comparison with the Re = 70 case, we computed the flow past a cylinder 
exactly the same as before except for changing the Reynolds number to 70. Now 
the result is completely different from the previous case. Figure 3.11 shows a 
"snapshot" of the computed particle streaks at ^ = 120. Instead of the damping, 
the perturbation develops into a periodic oscillating pattern and shows no sign of 
damping in later times. Since the dimension of the cylinder is the same as before, 
the different result obtained here can only be interpreted as due to a different 
Reynolds number. This, together with the fact that other investigators have also 
successfully simulated the unsteady motion by different kinds of perturbations 
(e.g., Braza et al, 1986), seems to confirm the notion that the periodic character 
of the flow is an intrinsic property of the Navier-Stokes equations and does not 
depend on the method of the perturbation. 
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a b 
FIG. 3.11. Computed particle streaks for perturbed flow past the short cylinder at Re = 70 at 

r = 120. (a) Broadside view; (b) end view. The dimensions and aspect ratio of this cylinder are 
the same as that in Figures 3.9 and 3.10. 

The result of the Re = 70 case described above cannot be compared directly 
with the experimental results of Jayaweera and Mason, however, because the aspect 
ratios of the two cases are different. In order to compare fairly with experimental 
results, we performed another set of calculations for Re = 70, but using a cylinder 
with an aspect ratio the same as that in Jayaweera and Mason (1965). The same 
perturbation was again introduced after a steady flow field was obtained. Again, 
the perturbation developed into periodic shedding of eddies. Figure 3.12 shows 
the fluctuation of velocity component i; at a point in the wake. The abscissa rep-
resents the time starting with the perturbation. The periodic oscillation becomes 
a stable pattern at r = 120. The Strouhal number St (= nd/\, where n is the 
frequency of the oscillation) is about 0.138 which is close to but sUghtly below 
the value reported by Chilukuri (1987) for unsteady flow past a 2-D cyUnder (see 
Fig. 3.13). 

Figure 3.14 shows particle streaks for this case in the end and broadside views 
at r = 300. Both look strikingly similar to the experimental photographs taken by 
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FIG. 3.12. Fluctuation of the nondimensional velocity with time at the point in the wake of 

the flow field of a falling cylinder (Re = 70). Note the aspect ratio of this cylinder is the same as 
that in Jayaweera and Mason (1965), but differs from that in Figures 3.9 and 3.10. 
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FIG. 3.13. Strouhal number St versus Re for flow past cylinders. 
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FlG. 3.14. Computed particle streaks for perturbed flow past the short cylinder at Re = 70 at 
t = 120. (a) Broadside view; (b) end view. Dimensions of this cylinder are the same as that in 
Figure 3.15. 

Jayaweera and Mason (1965) for the same Reynolds number. Figure 3.15 shows an 
experimental photograph for Re = 70 (K. L. O. F. Jayaweera, 1988, private com-
munication). It is seen that both the computed angle extended by the vortex street 
and positions of individual vortices agree excellently with experimental results. 
Figure 3.16 shows the top view of the massless trace particle streaks (i.e., snapshot 
of particle positions). Note that since the flow is unsteady, the particle streaks are 
different from trajectories. An interesting contrast to the two-dimensional flow 
case is illustrated in this figure. Here we see that particles originating near the 
edges of the cylinder would first flow toward the center of the cylinders and go 
upward at the same time. Because of the unsteady nature, the shedding of eddies 
occurs in the downstream and hence the particle streaks also oscillate with their 
eddy shedding. As the particles go up, their streaks would oscillate along an axis 
perpendicular to the cylinder. In time, the spread of the tracer streaks will result 
in a pattern perpendicular to the cylinder itself. This is a pure three-dimensional 
feature. A true two-dimensional system, such as an infinitely long cylinder, would 
result in a wake streak pattern still parallel to the cylinder itself. 
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FIG. 3.15. Experimental photograph of a falling short cylinder at Re = 70. (Photo courtesy of 
Dr. K. O. L. F. Jayaweera.) 

Figure 3.17 shows a few trajectories of tracer particles originated from different 
parts near the cylinder surface. Although some periodic features are also present, 
it is quite clear that the trajectories are quite different from the streaks due to the 
unsteady nature of the flow. 

In short, the computational results presented in this section seem to agree with 
available experimental measurements to a good extent, suggesting that the numer-
ical schemes used here are probably reasonable. 
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Re = 70 Top view 
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FIG. 3.16. Top view of the computed tracer particle trajectories for flow past a cylinder at 
Re = 70. Larger particles represent those located at "higher" altitudes (i.e., more downstream). 

3.5.2. General Features of the Flow Fields around Falling Columnar Ice Crystals 

We are now ready to present the computed results of the flow fields around falling 
columnar ice crystals. As mentioned earlier, this type of crystal is approximated 
by a circular cylinder of finite length. Because of the finite length, the cylinder, 
as well as the flow field around it, is no longer cylindrically symmetric. The 
dimensions and aspect ratios of the cylinders chosen for the computation are shown 
in Table 3.2 and are the same as those given by Schlamp et al. (1975) for Reynolds 
numbers between 0.2 and 20 and by Jayaweera and Mason (1965) for Reynolds 
numbers 40 and 70 (as seen in the last section). Several higher Reynolds numbers 
cases were also computed for the purpose of checking, but the details of these will 
not be discussed here. The aspect ratios of the cylinders specified by Schlamp et al. 
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FIG. 3.17. Computed trajectories of a few selected tracer particles for flow past a cylinder at 
Re = 70. 

(1975) are taken from the actual samples whose diameter-length relations were 
reported by Auer and Veal (1970). In all cases, the ice columns become longer as 
compared to the diameters as the Reynolds numbers increases. 

As an example of the case of eddyless flow, Figures 3.18a-d show the velocity 
fields and the vorticity fields of flow past an ice column of Re = 2.0. The velocity 
fields in the central plane of the crystal in the broadside and end views, shown 
in Figures 3.18a and 3.18b, respectively, reveal a completely laminar flow pattern 
without any trace of an eddy. Note that the velocity vectors shown here are the 
projections of the three-dimensional velocities on the xz plane. The flow, of course, 
is not symmetric in the fore and aft direction, which is most evidently shown by 
the corresponding views of the vorticity fields in Figures 3.18c and 3.18d. Highest 
vorticity occurs in the two comers of the front edge. 

The case of flow fields with standing eddies is amplified by that shown in 
Figures 3.19a-c for the flow past an ice column at Re = 40. As we have seen 
before, this is a steady flow case. In Figure 3.19a, the wake region looks triangular 
which, in three dimension, is actually pyramidal in shape, as we have seen in the 
tracer streaks before. The extent of the return flow region (i.e., the length of the 
eddy) is about 5.6 radii downstream, somewhat longer then the 4.8 radii for flow 
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FIG. 3.18. Computed flow fields for flow past a short column at Re = 2.0. (a) Velocity field in 

the central cross section, broadside view, (b) Velocity field in the central cross section, end view, 
(c) Vorticity field in the central cross-section, broadside view, (d) Vorticity field in the central 
cross-section, end view. 
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FIG. 3.18. Continued. 
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FIG. 3.18. Continued. 
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FIG. 3.18. Continued. 

past an infinitely longer cylinder at the same Reynolds number (Pruppacher and 
Klett, 1978, p. 336). 

Figures 3.19b and 3.19c show the end view of the velocity fields in the central 
and near-edge planes, respectively. The feature of the standing eddies is quite clear. 
It is also clear that the eddy size as well as the intensity in Figure 3.19c is much 
smaller than the eddy size in Figure 3.19b, consistent with the pyramidal structure 
model of the eddy. 

The vorticity field in the central xz plane is shown in Figure 3.19d. Again, the 
maximum vorticities occur at the two front edges. Figure 3.19e shows the vorticity 
field in the central yz plane. 

Figures 3.20a-d show the flow fields pertaining to the case of Re = 70 at 
X = 300. As we have noted before, this is an unsteady flow case. Figure 3.20a 
shows the velocity field in the central JCZ plane. This periodic shedding of the eddies 
in the downstream region is clearly seen and has the same pattern as the tracer 
streaks shown in Figure 3.14a, as it should be. Figure 3.20b, on the other hand. 
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FIG. 3.19. Computed flow fields for flow past a short column at Re = 40. (a) Velocity field in 
the central cross section, broadside view, (b) Velocity field in the central cross section, end view, 
(c) Velocity field in a cross section near an end surface, end view, (d) Vorticity field in the central 
cross section, broadside view, (e) Vorticity field in the central cross section, end view. 
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FIG. 3.19. Continued. 
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FIG. 3.19. Continued. 
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FIG. 3.19. Continued. 
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FIG. 3.19. Continued. 
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FIG. 3.20. Computed flow fields for flow past a short column at Re = 70. (a) Velocity field in 
the central cross section, broadside view, (b) Velocity field in the central cross section, end view, 
(c) Velocity field in a cross section near an end surface, end view, (d) Vorticity field in the central 
cross section, broadside view, (e) Vorticity field in the central cross section, end view. 
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FIG. 3.20. Continued. 
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FIG. 3.20. Continued. 



78 PAO K. WANG 

cO:) 

5̂Z=> o 

^ 

FIG. 3.20. Continued. 
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FIG. 3.20. Continued. 
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FIG. 3.21. Drag coefficients for flow past cylinders of various d/l ratio versus Re. The solid 
line and the triangles are for infinitely long cylinders. It is seen that as the Reynolds number 
increases, the cylinder becomes longer and the drag coefficient becomes closer to that of the 
infinitely long cylinder. 

exhibits the same features as the tracer streaks in Figure 3.14b. Again, near the end 
the effect of the column on the flow becomes weak and the eddy feature becomes 
less pronounced. 

Figures 3.20d and 3.20e show the vorticity fields at this instant. It is interesting to 
note that while the vorticity distribution in Figure 3.20d is symmetric with respect 
to the z-axis, that in Figure 3.20c is not. Obviously, the alternating nature of the 
shedding eddies is only revealed in the end view. 

Figure 3.21 shows the comparison between the computed drag coefficients with 
those obtained by the other theoretical and experimental results. The drag coeffi-
cient is defined as 

CD = 
D 

pv^« 
(3.16) 

where a is one-half of the cross-sectional area of the cylinder normal to the flow 
direction. Obviously, the drag coefficients of the present results differ from the 
results for infinite long cylinders. The difference is the greater the smaller the 
Reynolds numbers. This is due to the fact that the dimensions of the columns for 
lower Reynolds numbers are such that their shapes differ more from infinitely long 
cyhnders. On the other hand, columns for higher Reynolds numbers are closer to 
the shape of infinitely long cylinders, hence their drag coefficients are closer to each 
other. This implies that the theoretical results obtained by previous investigators 
regarding the behavior of columnar ice crystals are probably reasonable for the 
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case of larger ice columns, but not for short columns. The collection efficiencies 
of small droplets by and ventilation factors of falling ice columns computed based 
on a new scheme recently performed by us did show such trends and will be 
reported elsewhere. The discrepancies are mainly for Re < 10. It is seen here 
that the coefficients are practically the same as that of infinitely long cylinders 
for Re > 10. The drag coefficients calculated here can be fitted by the following 
expression: 

logio CD = 2.44389 - 4.21639A - 0.20098A2 + 2.32216A^ (3.17) 

where 

A = !^Mlo^^±i:2 (3.18) 
3.60206 ^ ^ 

This formula is valid within the range 0.2 < Re < 100. It fits the computed data to 
within a few percent. Note that in reality the drag coefficient is also a function of the 
aspect ratio of the cylinder, which is not explicitly represented in Eq. (3.17); hence, 
strictly speaking, this fit is only applicable to those cases indicated in Table 3.2. 
But judging from the smooth behavior of this relation, we feel that it is probably 
applicable to columnar crystals with dimensions satisfying Auer and Veal's (1970) 
relations and with flow Reynolds numbers in the aforementioned range. It would 
be desirable to find a relation of CD as a function of the aspect ratio. However, 
more calculations are needed to establish this relation. 

Figure 3.22 shows examples of the dimensionless pressure parameter K in the 
central section of the cylinder surface for Re = 40 and 70. K is defined as 

K = {P- /'oo)/(pV^/2) 

where Poo is the pressure far away from the cylinder. In the computation, it was 
obtained by taking the average of pressure values at the boundaries. There are no 
measured values available for 3-D flow past cylinders, so no experimental verifica-
tion is possible at present. However, comparisons with pressures measured for 2-D 
flow cases may shed some light on the plausibility of our results. Thus when com-
pared to the experimental results of Grove et al (1964) for 2-D flow past a cylinder 
at Re = 40, the present results show similarities in shape, but slightly different in 
values. In particular, the minimum pressure (at 0 ^ 70°) in the present results is 
somewhat higher than the 2-D case. The result seems to be reasonable since a 3-D 
cylinder allows the fluid to pass the end surfaces to reach the wake, hence higher 
rear pressures. For a cylinder of the same dimension (i.e., the short cylinder) but 
with Re = 70, the pressures in the rear are higher, in agreement with the general 
behavior of 2-D flows. (Note that the rear pressures for Re = 70 here represent 
time-averaged values.) On the other hand, the rear pressures of a longer cylinder 
(Re = 70) are lower than that of a shorter cylinder. This also seems to be reasonable 
since a longer cylinder is closer to a 2-D cylinder, hence lower rear pressures. 
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FIG. 3.22. Angular distribution of the dimensionless surface pressure parameter A'in the central 

yz (end view) cross section. 

Since the cylinders are finite, surface pressures at other cross sections are differ-
ent from that in the central cross section. Figures 3.23a and 3.23b show the surface 
pressure contours for Re = 40 and 70, respectively. As expected, the effect of the 
end surface is most pronounced near the end, but unimportant near the center por-
tion of the cylinder. Again, the distribution over the longer cylinder (Re = 70) is 
closer to that over an infinitely long cylinder. In the latter case, the contours would 
be simply parallel straight lines. 

Figure 3.24 shows the surface vorticity distributions for the Re = 40 and 70 
cases. Like the pressure distributions, the angular distribution of surface vorticity 
in the central cross-section, is close to the 2-D flow case. The peak absolute values, 
however, are slightly lower than the 2-D cases for both Reynolds numbers as 
reported by Braza et al (1986). Figures 3.25a and 3.25b show the surface vorticity 
contours. Near the end surfaces, the vorticity distributions are somewhat different 
due to the strong end effect. Otherwise the vorticity distributions are similar to the 
2-D cases. 

Finally, the pressure distribution of the whole domain for the case of Re = 70 
is shown in Figures 3.26a-c as an example of the presence of the ice column on the 
overall pressure field. The common features of front stagnation high pressure and 
the low pressures in the wake region are well illustrated here. The cases of steady 
flows would have similar, but simpler, features. The pressure distribution around 
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the falling crystal has an impact on the collision efficiencies of other particles with 
ice crystals, as has been explained by Fitter et al (1974). 

3.5.3. General Features of the Flow Fields around Falling Hexagonal Ice Plates 

Pioneering numerical work on the flow fields around falling ice plates was 
performed by Fitter et al. (1973), who used thin oblate spheroids to approximate 
planar ice crystals. In the present study, we use the actual hexagonal shape to 
model the ice plates whose dimensions are given in Table 3.3. The corresponding 
range of the Reynolds numbers is from 1 to 20. However, additional cases were 
also computed as needed to demonstrate the flow fields. 

Examples of steady flow fields around hexagonal crystals are shown in 
Figures 3.27 and 3.28 which represent cases of Reynolds numbers 2 and 20, 
respectively. These are steady flow cases. The flow fields look similar to those 
obtained by Fitter et al. (1973). 

The flow field of Re = 1 (figure not shown) does not indicate the existence of 
standing eddies. But there are already standing eddies formed in the wake region 
of the crystal at Re = 2. This is consistent with Fitter et al (1973) who indicated 
that the eddies start to appear at Re = 1.5. As expected, the eddies become larger 
at higher Reynolds numbers. 

Experiments of Willmarth et al. (1964) showed that at Re > 100, eddy shedding 
occurs in the downstream of a falling disk. Such unsteady behavior can be simulated 
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- I 1 -

-7 7 -

- - 7 - 7 7 -
. - y H y -

- l I I -

( ^ ^ ^ I ==^t? =^ir— ~? " " ^ ^ 

a 
FIG. 3.23. Surface pressure distribution for flow past a finite cylinder, (a) Re = 40; (b) Re = 70. 
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using the same technique as we did for the finite cylinders. Figure 3.29 shows 
the simulated unsteady flow fields for flow past hexagonal plates at Re = 140 
at four different time steps after the steady-state solution is achieved. The initial 
perturbation introduced (after the steady-state solution has been obtained) was 
again 0.3Voo, which has been proven to be adequate for kicking up the shedding. 
It can be seen that the flow field is obviously asynmietric due to the shedding. 

FIG. 3.26. Computed pressure fields for flow past a finite cylinder at Re = 70. (a) Broadside 
view, central cross section, (b) Pressure field in the central cross section, end view, (c) Pressure 
field in a cross section near an end surface, end view. 
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FIG. 3.26. Continued. 
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FIG. 3.26. Continued. 
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Detailed analysis of how shedding starts has not been done yet, but it is expected 
that the shedding would start at a particular comer and the point of detachment 
would rotate around on the plate. 

It must be stressed here that the flow fields described above are computed as-
suming that the plate position is fixed with respect to the incoming air flow, that is, 
the angle between the c-axis (normal to the plate basal surface) of the plate and the 
general flow is kept at 90°. In reality, falling plates are known to perform zigzag 
motion, which implies that the angle is not constant, but is actually a function 
of time. In order to simulate such zigzag motions, one must use very small time 
steps for adequate accuracy. Owing to the constraint of computing resources, these 
cases are not yet simulated here, but we are currently studying them. However, 
it is expected that the above results should give good approximations, especially 
when the variations of the angles are not large. 

No experimental measurements appear to be available for flow properties past 
hexagonal plates. The results of Willmarth et al. (1964) for flow past circular 
plates are the closest cases for the comparison purpose. But here the comparison 
is difficult to make because the aspect ratios of the computed and experimental 
results are different. For that same reason the comparison between our results 
and those of Fitter et al. (1973) is also difficult to make. The aspect ratio of the 
plates calculated here varies with the Reynolds number whereas the thin oblate 
spheroids in Fitter ^ra/. (1973) have fixed aspect ratios (/z/(i = 0.05), therefore, the 
computed results cannot be compared directly except for the case of Re = 20. At 
this Reynolds number, the drag coefficient obtained by Fitter et al (1973) agrees 
with the present result for hexagonal plate to within 1%. The results of Willmarth 
et al (1964) do not have the case of Re = 20, and the two cases that are close 
have rather different aspect ratios (h/d = 0.0033 for Re = 15.7 and 0.00167 for 
Re = 29.1). In other Reynolds number cases, the differences are somewhat larger, 
possibly due to the different aspect ratios (and, of course, somewhat different 
shapes). But even there, the largest error which occurs at Re = 140 is less than 
15%. Thus it seems to be fair to conclude that the general trend and the magnitude 
of CD constants are indeed quite similar for the present and Fitter et al (1973) cases, 
and hence the predictions made by Fitter et al (1973) seem to be generally valid. 

Figure 3.30 shows the massless tracer streaks computed for flow past a hexagonal 
plate at Re = 240. Although no exact comparison can be made with experimental 
photographs, the main features of the streaks are very similar to the pictures taken 
by Willmarth et al (1964, their Fig. 7) for a falling Flexiglas disk at Re ^ 100 
(but in a disturbed medium). 

3.5.4. General Features of the Flow Fields around Falling 
Broad-Branch Crystals 

Broad-branch crystals are also a common form of ice and snow crystals. We 
have not seen any quantitative measurements or calculations about the flow fields 



100 PAO K. WANG 

FIG. 3.30. Streaks of tracer particles for flow past a hexagonal plate at Re = 240. 

around a falling broad-branch crystal, so the present results may be the first of their 
kind. Needless to say, it would be desirable to have experimental measurements 
in the future to compare with our computational results. 

Because broad-branch crystals are basically planar crystals, as are the ice plates 
discussed in the previous section, the flow fields around them are expected to 
be similar (albeit different in magnitudes) to that around ice plates. This is indeed 
the case, as shown by the present calculations. The major difference between a plate 



3. HYDRODYNAMICS OF SMALL ICE PARTICLES 101 

and a broad-branch crystal, of course, is in the gaps between the branches of the 
latter. Figures 3.31 and 3.32 show the computed flow fields around falling broad-
branch crystals for Re = 2.0 and 20, respectively. There are already standing eddies 
in the flow field of Re = 2.0 although they are very small, just barely discernible. 
The size of the eddies is smaller than that for flow past plates at the same Reynolds 
number. This may be understood by noting that the gaps between branches would 
allow the fluid to go through more easily and therefore reduce the tendency of 
creating return flow which constitutes the eddies. 

The flow in the gap region is of particular interest since this phenomenon has 
never been studied before. Figure 3.33 shows a special cross section of the flow 
field that reveals the nature of this regional flow. The flow converges slightly before 
entering the gap region, becomes relatively straight in the gap, and then diverges 
slightly upon leaving it. The magnitude of the flow velocity is relatively small. 

The standing eddy size again increases with increasing Reynolds number as 
shown by Figure 3.34 for Re = 20. The same convergent-straight-divergent be-
havior occurs in the gap region, as shown in Figure 3.33, but it is more evident 
because of the slightly higher velocity than the Re = 2.0 case. However, the velo-
city in this region is still small when compared to the general flow. This generally 
small velocity phenomenon seems to indicate that the flow in the gap regions can 
be approximated as creeping flow. If this observation can be sustained by future 
studies, then it implies that we can use the creeping flow theory to treat the even 
more intricate case of flow going through the dendritic crystals where the gaps are 
even smaller. 

Finally, Figure 3.35 shows the variation of drag coefficients as a function of 
Reynolds number for flow around hexagonal plates and broad-branch crystals. The 
drag coefficient for a broad-branch crystal is greater than that for a plate at the same 
Reynolds number. The drag coefficients for very thin oblate spheroids as calculated 
by Fitter et al. (1973) are also plotted for comparison. The drag coefficients for 
the hexagonal plates and broad-branch crystals computed in the present study can 
be fitted by the following empirical formulas which use a functional form similar 
to that of Fitter et al. (1973) for circular plates: 

'•̂  - {^^ (1 + 0.078 Re"^"') (3.19) 

_ / 64 
Vl+O.l CD = I ^ ^ 1(1 + 0.142 Re"^^^) (3.20) 

\7rRe/ 

These formulas are valid for the range of Re between 0.2 and 150. Both fit the 
calculated values of drag coefficients to within 1.5%. Currently, no experimental 
data are available to verify the calculations of flow fields for flow past broad-branch 
crystals. 
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FIG. 3.31. (a) Velocity fields of flow past a broad-branch ice crystal at Re = 2. The cross 

section is indicated by the line marked in the crystal in the upper right comer of the figures, (b) 
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FIG. 3.33. Velocity field of flow past a branch gap of a broad-branch ice crystal at Re = 2. The 
line in the upper right comer of the figure indicates the cross section. 
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FIG. 3.34. Velocity field of flow past a branch gap of a broad-branch ice crystal at Re = 20. 
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FIG. 3.35. Drag coefficients as a function of Reynolds number for flow past hexagonal plates 
and broad-branch crystals. 

3.5.5. Remarks on the Flow Fields around Larger Falling Ice Particles 

In this study we showed that the unsteady flow fields around three types of falling 
ice crystals can be determined by numerically solving the time-dependent Navier-
Stokes equations. Nonuniform Cartesian grids were used owing to the complexity 
of the crystal geometry which always results in three-dimensional flow fields. 
Comparisons of current numerical results with experimental data, when available, 
show good quantitative agreement between the two. This indicates that the present 
technique is capable of realistically simulating the flow fields around falling ice 
crystals. This also gives us some confidence in using the computed flow fields 
to derive other cloud physical quantities that depend strongly on hydrodynamic 
effects such as the collision efficiencies of small particles (cloud droplets, aerosol 
particles, etc.) with these ice crystals and the ventilation factors that influence the 
evaporation, cooling, and diffusional growth of these crystals. The computations of 
these quantities were also performed by us and will be reported in the next chapter. 

It is necessary to remind the reader that the present results represent only the 
first attempt to simulate the flow fields around falling ice crystals and hence are 
far from perfect. In particular, the ice crystals in the present study are all held 
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fixed with respect to air flow; thus the zigzag motion of some larger crystals is not 
simulated. In addition, no theoretical computations on the flow fields around large 
hydrometeors such as graupel, hail, and raindrops have been reported, although 
some preliminary tests on the computation of flow past conical hydrometeors have 
been recently attempted by the author's group. These tests were done using the 
conical shapes described by the expression in Eq. (2.25), and preliminary results 
show that they can be done in the similar manner as reported here. But, of course, 
more work is needed to obtain final results. We are hoping that this deficiency can 
be removed in the near future. Considerable computing resources will be necessary 
for this type of study since the required time step to achieve reasonable accuracy 
is likely to be rather small. However, judging from the recent impressive advances 
of computer speed, such computations will probably become possible soon. 

Finally, we lack experimental measurements of flow fields around falling ice 
crystals, which are necessary to verify the theoretical results. Ideal equipment for 
this purpose would be a vertical wind tunnel such as the one used by Beard and 
Pruppacher (1971) or Mitra et ah (1990). Presumably, measurements of this kind 
will become available in the future. 

4. VAPOR DIFFUSION, X^NTILATION, AND COLLISIONAL EFFICIENCIES 

OF ICE CRYSTALS 

4.1. Introduction 

The development of ice-containing clouds is naturally influenced greatly by the 
growth of individual ice particles. There are two main modes of ice particle growth 
in clouds: diffusion and collision. Diffusional growth is the mechanism by which 
water vapor molecules are added directly to the ice particles. The opposite of this is, 
of course, evaporation or sublimation whereby water molecules leave the surface 
of ice particles and become vapor. I shall use the generic term "evaporation" to 
represent the vaporization of both liquid and solid phases. Collisional growth is 
the mechanism by which ice particles become bigger by collecting either water 
droplets or other ice particles. We are only concerned with the collision between 
ice particles and supercooled droplets, a process called riming. The collection and 
melting of ice particles by water drops or the collection of ice particles by ice 
particles (aggregation process) will not be considered here. 

Both diffusional growth and collisional growth of falling ice particles are cer-
tainly influenced by the flow fields around the ice particles. The flow fields we 
obtained in the previous section play a vital role in determining the rates of these 
two growth modes. In the case of diffusional growth, the flow field influences the 
vapor distribution around the ice particle that results in a general enhancement of 
the vapor flux toward (or away from, in the case of evaporation) the ice crystal 
surface, a phenomenon called the ventilation effect. This effect makes a falling 
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crystal grow (or evaporate) faster than when it is stationary, relative to the air. In 
the following, we first treat the vapor diffusion problem around an ice column to 
demonstrate some analytical solutions, then we examine the ventilation problem. 

The other main topic is the coUisional efficiency of ice crystals with supercooled 
droplets. The presence of the flow field due to the motion of the ice crystal in air 
affects the droplet and makes the collision efficiency differ significantly from 1 
(i.e., the geometric collision efficiency). To determine this coUision efficiency, 
we performed calculations to determine the trajectories of the droplet under the 
influence of the hydrodynamic drag due to the flow field. The details are reported 
in Section 4.4. The treatments below follow mainly Ji and Wang (1998) and Wang 
and Ji (1997). 

4.2. Vapor Diffusion Fields around a Stationary Columnar Ice Crystal 

The rate of diffusional ice crystal growth depends on the magnitudes of water 
vapor density gradient at the surface of the crystal. Thus, the ideal way to solve 
the theoretical problem of diffusional growth of ice crystals would be to obtain the 
vapor density distribution around the crystal first, and then determine the vapor 
density gradients and integrate the vapor flux density (diffusivity times gradient) 
over the crystal surface to obtain the growth rate. However, in order to determine 
the vapor density distribution, one would need to specify the boundary conditions. 
This can be done easily for the outer boundary (the vapor density is a constant 
far away from the crystal surface), but is not so easy for the inner boundary (the 
vapor density is another constant on the crystal surface). The main problem is 
the difficulty in describing the crystal surface by simple mathematical expressions 
(and this has only recently been partially achieved by Wang, 1999, as described in 
Section 2) because most ice crystals consist of mixed surfaces, hence it is necessary 
to prescribe the boundary conditions in a "mixed" way. The boundaries between 
these mixed surfaces are usually discontinuous, and mathematical treatments here 
become very complicated. 

For this reason, the conventional way of treating the diffusional growth of ice 
crystals is to sidestep the solution of vapor density distribution and go on to de-
termine the growth rate by means of the so-called electrostatic analog, which 
utilizes the Gauss law in electrostatics and the relation between electric po-
tential (analogous to vapor density), electric charge (analogous to the growth 
rate), and capacitance. For details of this method, see Pruppacher and Klett 
(1997). 

However, using the electrostatic analog requires that we know the capacitance 
of the ice crystal, and the capacitance is usually unknown unless measured exper-
imentally. Furthermore, there are occasions when knowledge of the vapor density 
distribution is desirable (such as the direction of the crystal growth), but that cannot 
be provided by the electrostatic analog. 
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In the following section, the formal way of determining the vapor distribution 
around a columnar ice crystal (approximated as a finite cylinder) is demonstrated 
as an example for treating general vapor diffusion problems around ice crystals. 
This example consists of mixed boundaries. It is hoped that this difficulty can be 
removed in the future by using the expression developed in Section 2 for describing 
crystal surfaces. 

4.2. L Mathematical Formulation 

The word "potential" used in the following can represent many physical quanti-
ties, including vapor density, temperature, electric potential, and so on. The reason 
is that the distributions of these quantities in a "source-free" space can be described 
by the Laplace equation, and hence the solutions are the same if they have the same 
boundary condition (which they do). 

In this section, we investigate only columnar crystals. The true shape of these 
columns is hexagonal, which is very difficult to treat. We shall approximate these 
columns by circular cylinders of equal diameter and length. This approximation 
should represent an improvement to the prolate spheroid approximation, which 
lacks sharp edges at both ends. Even with such a simplification, the present prob-
lem is still not simple. The main difficulty here is that such a cylinder consists 
of two types of boundary surfaces: the cylindrical side surface and the planar end 
surfaces. This poses a mixed boundary problem, and the usual orthogonal func-
tion techniques become hopelessly complicated. In the present study, we applied a 
technique developed by Smythe (1956,1962), who used the series expansion and 
integral transformation methods to determine the charge density distribution and 
capacitance of a charged right circular cylinder. Here we extend his method to de-
rive an analytical expression for the potential distribution, which can represent any 
one of the electric potential, temperature, or vapor density fields surrounding such 
a cylinder. In the following subsection we formulate and calculate the electrostatic 
fields. Conversions of temperature and vapor density fields are given at the end. 

Figure 4.1 shows the configuration of the cyHnder and the nomenclature 
of the problem. Our task is to determine the field strength at any outside point P 
(ai, 01, zi). We shall assume that the cylinder is conducting and that it is charged 
to surface potential VQ- This may be valid for a single crystalline ice column. The 
charge densities on the side and end surfaces can be expressed as (Smythe, 1956; 
Wang^ra/., 1985) 

and 

a. = Y;^B„{\-pl)"-"' (4.2) 
n=0 
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^Z^ 
FIG. 4.1. Nomenclature of the problem. The radius and half-length of the cylinder are a and 

c, respectively; p is the radial and z is the vertical coordinate. 

respectively, where b, ZQ, and po are dimensionless quantities defined by 

h = c/a, zo = z/c, po = p/a (4.3) 

where a is the radius, c is the half-length of the cylinder, and p and z are the respec-
tive radial and vertical coordinates. A„ and 5„ are coefficients to be determined. 
The above charge distributions are such that the following equations are satisfied 
on a closed surface enclosing the origin: 

dz^P lAl VQ when p = 0, 
when p ^0 

(4.4) 

where V is the potential. 
Very near the edge, as indicated by Smythe (1956), the charge distributions (4.1) 

and (4.2) become equal and both approach the charge density on a rectangular 
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wedge which is proportional to 5~ /̂̂  where 8 is the distance from the edge. The 
property of such a wedge is given in Smythe (1962). 

The next step is to determine the coefficients A„ and Bn. This is done first by 
calculating the potential on the axis of the cylinder due to the charge densities 
of Eqs. (4.1) and (4.2). The expression of the potential is then differentiated with 
respect to zo, and finally zo is equated to 0 (see Smythe, 1962, for details). The 
result is 

^Zo „=() 

MB, 
Fi+MNGAnF2 (4.5) 

where 

M = 
\a{2p)\ 

Â  = 
(_l)P22/3(n + i ) ! p ! ' 

G = 0.674463408 

and 

Fi = Fi [/7 + i, /z - p + | ; « + 1 + | ; (1 + b^Y'] 

F2 = F2 [/7 + i, n - /7 + |; n + 1 + i; b\\ + Z^V] 

(4.6) 

(4.7) 

are two hypergeometric functions. Equation (4.5) can be substituted into Eq. (4.4). 
This yields a number of simultaneous equations which can be used for solving 
coefficients A„ and B,. But we still need an extra condition to relate AQ to BQ. This 
additional condition is 

b"'B, (4.8) 

so that the charge distributions as and a^ match at the edge of the cylinder. Thus by 
solving a number of simultaneous equations of the type of Eq. (4.5) plus Eq. (4.8), 
the coefficients A„ and J5„ can be determined. The number of A„ and B, required 
to achieve good accuracy (so that the correct surface potential is reproduced) need 
not be large, usually being six to eight terms. 

We now derive an expression for the electric potential outside the cylinder based 
on the charge density distributions (4.1) and (4.2). We first have to determine the 
distance r from a point B{a, 0, z) on the cylinder to the field point P{a\, 0i, zi). 
This is (see Fig. 4.1) 

r = [(z - z\f -\-a^ -{-al - laax cos(0i - 0)] 1/2 
(4.9) 

The contribution of the charges on the cylindrical side surface to the potential 
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at P is therefore 

Vs(ai,0i,zi) -I 
-I 

Ansr 
ds 

1/2 
s 47r£[(zi - zY + d^ + a\ — laai cos(0i - </>)] 

(4.10) 

where ds = adcj) dz is a surface element on the side surface. The angular part can 
be readily integrated to give 

Vs{au(t)i,z\) 

1 ^"£s-(̂ )"";̂ (̂/S5)-
where the complete elliptic integral K can be expressed as 

K{k) = 
7t H^HBMm^'^-]' 

and 

al = (zi - zf + a^ + al 

(4.11) 

r < l 
(4.12) 

(4.13) 

By a similar consideration, the contributions of the charges on the upper and lower 
planar end surfaces to the potential at P are, respectively, 

^-(^"^"^•>-/4S;^^-iK1^'"(^) 
^2 Jl\n-\/3 

X ^' K\ dp\ (4.14) 

and 

K , l ( « l , 0 1 , Z l ) 

1 ^ri:<^) 
2 \ " - l / 3 ' Ip 2Pl 

.K\ dp 

(4.15) 
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where 

aj = (zi - cf •^a\ + p'^ 

Pi = 2a,p (4.16) 

a] = (zi + cf -i-aj + p^ 

The electric potential at an external point P(fli, 0i, zi) due to the charged circular 
cylinder is therefore the sum of the above three parts (4.11), (4.14), and (4.15), 
i.e., 

V p = y s + Ve,u + Ve,l (4.17) 

The integrals (4.11), (4.14), and (4.15) are to be calculated by numerical methods. 
Once the potential profiles are known, the electric fields can be calculated by 

taking the gradients of the potentials. Here, these gradients are taken numerically. 
One can, of course, determine the fields graphically. It is most convenient to 
use spline interpolation to find the neighboring V values once certain base point 
potentials are known. It is found that the potentials determined this way are very 
close to the values calculated using the full expressions. The difference is on the 
order of only 1%. 

4.2.2. Examples 

Potential fields were calculated for eight cylinders, corresponding to the eight 
columnar ice crystals in Schlamp et al. (1975) and Wang and Pruppacher (1980a). 
The ratios of half-length to radius (c/a) used in the calculations are 1.21, 1.43, 
1.54, 1.67, 2.22, 3.33, 5.00, and 8.33, with approximate Reynolds numbers 0.2, 
0.5, 0.7, 1.0, 2.0, 5.0, 10.0, and 20.0, respectively. Some examples are presented 
here. All results shown are in SI units. Figures 4.2 and 4.3 show the computed 
charge density distributions (in C/m^) on the planar end surfaces and cylindrical 
side surfaces, respectively. All the cylinders are charged to a surface potential of 
1 V. If the surface potential is Vo volts, one merely has to multiply the results shown 
here by the factor VQ- In these and the following figures R represents the radial 
distance from the z-axis. Obviously, the charge densities approach infinity near the 
edges, as would be expected. This is due to our assumption that edges are infinitely 
sharp. Also it is clear that over most parts of both end and side surfaces the charge 
densities are fairly uniform. Only near the edges do the charge densities change 
rapidly. This behavior allows one to treat most of the surface areas as uniformly 
charged surfaces. One would therefore expect that the motion of a small particle 
(small compared to the dimension of the surface) near the center part of an end 
surface will be similar to that near a charged infinite plane, while the motion near 
the equator of the cylindrical surface will be similar to that near a charged infinitely 
long cylinder. 
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O a 

D I S T A N C E FROM R - O 
FIG. 4.4. Profiles of the electric potentials for ^ = 1.21. Curve I, z • 

curve 3, z = 1.0c; curve 4, z = 1.5c; curve 5, z = 2.0c; curve 6,z = 3.0c. 
: 0; curve 2, z = 0.5c; 

As mentioned previously, the ice crystal growth rate (dm/dt, where m is the 
crystal mass) is analogous to total charge; thus the charge density distributions 
shown in Figures 4.2 and 4.3 can be viewed as the "growth rate per unit area," 
which is really the vapor flux density. Therefore, from these two figures, we can 
also deduce that vapor flux density is the highest at the comer of the column. 

Figures 4.4 and 4.5 show the distribution of potential fields (in volts). Curves 1 
to 3 represent the potentials at z = 0, 0.5c, and 1.0c, respectively. In Figure 4.5, 
curve 2 is often very close to curve 1 and therefore is not shown. As expected, 
the potentials fall off with increasing distance from the cylinder, the rates of fall 
(dV/dr, where r is measured in units of a) being larger for shorter cylinders. Also, 
the potentials converge to one value when far away from the cylinder, regardless 
of z. This is, of course, because any finite cylinder, when viewed at sufficient 
distance, will look like a point charge, and therefore the equipotential surfaces 
approach concentric spheres. The convergence is faster for shorter cylinder because 
one need not go too far to view them as point charges. One can also view their 
shapes as being closer to spherical. These two figures also represent vapor density 
distributions because, as previously noted, vapor density is analogous to electric 
potential. 

Figures 4.6 and 4.7 show the magnitudes of the electric fields (in V/m). There is 
also a convergence feature which is similar to that of potentials and can be explained 
in the same manner. Curve 3 is the field at z = 1.0c, its value at R = l.Oa being 
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FIG. 4.5. Profiles of the electric potentials for b = 5.00. Curve 1, z = 0; curve 2, z = 0.5c; 

curve 3, z = 1.0c; curve 4, z = 1.5c; curve 5, z = 2.0c; curve 6, z = 3.0c. 
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FIG. 4.6. Profiles of the magnitudes of the electric fields for ^ = 1.21. Curve 1, z = 0; curve 2, 

z = 0.5c; curve 3, z = 1.0c; curve 4, z = 1.5c; curve 5, z = 2.0c; curve 6, z = 3.0c. 
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infinite. This is, of course, due to the sharp edges in our assumption. Figures 4.8 
and 4.9 show the zenith angles of the electric fields at different positions, where 
the zenith angle is defined as the angle between the electric field vector and the z-
axis. If the field vector is pointing straight upward (i.e., along the z-axis), then the 
zenith angle is zero. Since the electric field is azimuthally symmetric, this angle 
alone is sufficient to determine the direction of the electric field. These angles, 
together with the magnitudes given in Figures 4.6 and 4.7, completely determine 
the electric field vector. Figure 4.10 shows an example of the patterns of the field 
lines. Such configurations make it clear that the very strong fields near the sharp 
edges will have an important influence on the dynamic behavior of small charged 
particles approaching them. 

Since prolate spheroids have been considered good approximations of columnar 
ice crystals previously, it is instructive to compare their field distributions with the 
present cases. Figure 4.11 compares the potential distributions of circular cylinders 
and prolate spheroids of analogous dimensions. The semimajor and semiminor 
axes of the prolate spheroid correspond to the half-length and the radius of the 
cylinder, respectively. The potential distribution external to a conducting prolate 
spheroid charged to a surface potential of 1 volt is (Morse and Feshbach, 1953) 

V = ln[(§ + l)/(§ - l)]/ln[(§o + l)/(§o - 1)] (4.18) 

where ^ = (ri + r2)/f is the generalized radial coordinate in a prolate spheroidal 
coordinate system; § = constant, being a prolate spheroid with interfocal 
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FIG. 4.8. Zenith angles (the angle between the electric field vector and the z-axis) of the electric 

fields for ^ = 1.21. Curve 1, z = 0; curve 2, z = 0.5c; curve 3, z = 1.0c; curve 4, z = 1.5c; 
curve 5, z = 2.0c; curve 6, z = 3.0c. 
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FtG. 4.9. Zenith angles (the angle between the electric field vector and the z-axis) of the electric 

fields for b = 5.00. Curve 1, z = 0; curve 2, z = 0.5c; curve 3, z = 1.0c; curve 4, z = 1.5c; 
curve 5, z = 2.0c; curve 6, z = 3.0c. 
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distance / ; ri and r2 are the distances from an external point P to the two foci; 
and 0̂ is the generalized surface of the prolate spheroid, being equal to 2c/a 
where c and a are the semimajor and semiminor axes of the spheroid. It is seen 
from Figure 4.11 that there are clear discrepancies between the potentials of a 
prolate spheroid and that of a circular cylinder, both in magnitude and fall-off 
rate. For example, the potential of the spheroid at r = 3.0a from the equator 
is ^^0.35 V, while that of a circular cylinder is ~0.47 V, a difference of about 
34%. This also means that the temperature and vapor density (which are anal-
ogous to the electric potential) at this point surrounding a prolate spheroid will 
also be '^34% lower than for a circular cylinder. In addition, because of the 
steeper slopes of the potential curves for a prolate spheroid, the electric fields 
(and hence the heat and vapor fluxes) are overestimated. Since the electric fields 
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FIG. 4.11. Comparison of the potential distributions surrounding a charged circular cylinder 
and a charged prolate spheroid. Dashed curves represent a circular cylinder of Z? = 1.21 whereas 
solid curves represent a prolate spheroid with a and c as the semiminor and semimajor axes, 
respectively. Zenith angles (the angle between the electric field vector and the z-axis) of the 
electric fields for b = 1.21. Curve 1, z = 0; curve 2, z = 0.5c; curve 3, z = 1.0c; curve 4, 
z = 1.5c; curve 5, z = 2.0c; curve 6, z = 3.0c. 

and the heat and vapor fluxes represent the strengths of electric, thermophoretic, 
and diffusiophoretic forces, it is clear that using a prolate spheroid to approx-
imate a columnar ice crystal would result in a significant overestimate of these 
forces. 

This, in turn, results in inaccurate estimates of the coUision efficiencies of small 
aerosol particles or droplets with these crystals. These inaccuracies of the prolate 
spheroidal approximation are in addition to the fact that prolate spheroids lack the 
two sharp edges that the real columnar crystals possess. In summary, it is felt that 
the approximation of columnar ice crystals by prolate spheroids is inadequate. 

The temperature and vapor density fields surrounding a stationary ice crystal 
satisfy the same Poisson and Laplace equations as Eq. (4.4) with appropriate 
boundary conditions 

T = Ts, Pv = Pv,s at the surface 

T = Too. py = Pv,oo at infinity 

where T^, Too, Pv,s, and Pv,oo are all constants. 

(4.19) 
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Although the equations are the same as for the electric potential case, the bound-
ary conditions are different. The boundary conditions for electric potential are that 
y = 1 at the surface and V = 0 at infinity. Therefore, the preceding values of po-
tentials and electric fields cannot be used to represent the respective temperature 
(vapor density) and heat flux (vapor flux) directly, but must be modified by factors 
derived in the following equations. Define a dimensionless quantity T' as 

T — T 
r = " (4.20) 

Then T' also satisfies Eq. (4.4), with the boundary conditions for T' being 

T' = \ at the surface 
(4.21) 

T' = 0 at infinity 

which are the same as that for V. Therefore, the values given in Fig. 4.4 can be 
used to represent T\ The actual temperature is, of course, 

T = (T,- Too)r + Too (4.22) 

and the actual temperature gradient is 

vr = (rs-roo)vr (4.23) 
Similarly, 

Pv = (Pv,s - Pv,oo)Pv + Pv,oo (4.24) 

Vpv = (Pv,s - Pv,oo)Vp; (4.25) 

where 

p; = P^^-=-^^ (4.26) 
Pv,s Pv,oo 

4.2.3. Remarks 

In the above, we have presented the mathematical methods and results for the 
electric, temperature, and vapor density fields surrounding columnar ice crystals. 
Actually, any quantity satisfying the same Poisson and Laplace equations with 
Dirichlet boundary conditions (i.e., the values of the dependent variable at the 
boundaries are specified) can be treated in the same manner. The computed results 
should be useful in some cloud physical calculations. 

Note that we have treated here the cases for stationary ice crystals. The motions 
of crystals will not influence the electrostatic fields, and the values obtained above 
can be used directly. The temperature and vapor density fields, however, will 
change if ice crystals are moving, thus requiring knowledge of the flow fields. The 
results presented so far can be applied to cases when flow is not important. 
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In light of what we have developed in Section 2, it may be possible to obtain 
the various distributions shown here using simple mathematical expressions from 
Section 2 for the inner boundaries for solving this type of problems. 

4.3. Ventilation Coefficients for Falling Ice Crystals 

4.3.1. Background 

The vapor distributions and other quantities shown in Section 4.2 were obtained 
without regard to motion. In order to determine the real diffusional growth rates 
of these particles, it is necessary to recognize that these particles are moving rel-
ative to the air. This relative motion causes the air to flow around the crystal in a 
complicated way which, in turn, influences the distribution of water vapor around 
the crystal. Since its diffusional growth rate is determined by the vapor density 
gradient, it is obviously influenced by the motion. This effect on the growth (or 
evaporation if the air is subsaturated) of ice crystals (and other cloud and pre-
cipitation particles in general) is known as the ventilation effect, due to which 
a falling hydrometeor will grow (or evaporate) faster than when it is stationary 
relative to the air. This is caused by the enhancement of the mean vapor den-
sity gradient around the ice crystal. The magnitude of this enhancement is given 
by a factor called the mean ventilation coefficient, defined as (Pruppacher and 
Klett, 1997) 

(dm/dt)o 

where the numerator and denominator represent the growth rate of a hydrometeor 
with mass m under moving and stationary conditions, respectively. 

Unlike in the more thoroughly studied cases of water droplets (see 
Pruppacher and Klett, 1997, Chap. 13, for a review), little information is avail-
able for ice crystals. Either the mean ventilation coefficient can be measured ex-
perimentally in the laboratory or it can be computed theoretically. Experimental 
measurements, especially for ice crystals, require sophisticated equipment and 
are difficult to perform; thus far, only a few direct measurements have been done 
for ice spheres and hexagonal ice plates (Thorpe and Mason, 1966) and some 
indirect information has been inferred from experimental studies of snow crys-
tal growth (Takahashi et al, 1991). Theoretical computations of the ventilation 
coefficients have been carried out by Brenner (1963), who obtained analytical so-
lutions of the convective diffusion equation for infinitely thin circular disks, and by 
Masliyah and Epstein (1971) and Pitter et al. (1974), who computed numerically 
the ventilation coefficients of thin oblate spheroids of various axis ratios used for 
approximating hexagonal plates. 
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The results reported below are obtained using numerical techniques simi-
lar to that of Masliyah and Epstein (1971) and Fitter et al. (1974), but without 
using the thin oblate spheroid approximation for hexagonal plates. Instead, the 
true shapes of hexagonal plates are used directly. In addition, the ventilation coef-
ficients for falling columnar and broad-branch ice crystals are also computed. The 
three types of crystals considered in the present study are the same as those in Wang 
and Ji (1997; see Fig. 3.1). The mathematics and physics of the problem, and the nu-
merical methods employed to obtain solutions, are given in the following sections. 

4.3.2. Physics and Mathematics 

The theoretical problem of determining the ventilation coefficients for falling 
ice crystals is basically a convection diffusion problem for water vapor around the 
crystal. Unlike in the stationary crystal case treated in Section 4.2, we will now 
take the motion of the falling ice crystals into account. The convective diffusion 
equation appropriate for this situation is 

^ = DvV^Pv-V.Vp , (4.28) 
ot 

where Pv is vapor density, Dy is the diffusion coefficient of water vapor in air, and 
V is the local air velocity vector. The boundary conditions are 

p^ = p^^ at the surface of the crystal 
(4.29) 

p^ = p^^ far away from the crystal 

where Pv,s and Pv,oo are two constants representing the vapor density at the surface 
of the crystal and far away from it, respectively. For spheres, the inner boundary can 
be easily written down as the surface where r = a (a is the radius of the sphere); 
however, the surface of an ice crystal cannot be easily expressed mathematically. 
The mathematical expressions developed in Section 2 have not been applied to the 
present study yet, so the boundary conditions are specified numerically. 

Equation (4.28) is written in dimensional form. To facilitate the numerical cal-
culations, this equation is nondimensionalized by introducing the following non-
dimensional quantities: 

I Pv Pv,oo 0 = 
Pv,s Pv,oo 

x' = x/a 

TVpe = 2aV^/D^ 
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All the LHS quantities are dimensionless; x, y, and z are the three Cartesian 
coordinates, t is the time, Voo is the free stream velocity (or the air velocity far 
away from the ice crystal surface), a is the radius of the crystal, and Âpe is the 
Peclet number. Using the new dimensionless variables, Eq. (4.28) becomes 

^ ^ VV-V.V( /> (4.31) 
at TVpe 

and the boundary conditions (4.29) become 

0 = 1 at the surface of the crystal 
(4.32) 

0 = 0 far away from the crystal 

Equations (4.31) and (4.32) constitute the nondimensional set of equations to be 
solved numerically. While the first (inner) boundary condition can be applied in a 
straightforward manner, some considerations have to be given before the second 
(outer) boundary condition can be implemented in the actual computations. The 
ideal theoretical outer boundary is normally put at r -^ oo, which is obviously 
impossible to do in a real numerical scheme such as that on which the present study 
is based. Thus some finite outer boundary surfaces have to be devised sufficiently 
far from the crystal to replace the ideal one. 

There are additional considerations for setting the boundary conditions. First, 
the solution of the convective diffusion equation (4.28) requires knowledge of the 
local air velocity vector at each point of the numerical grid. These velocity vectors 
are obtained from the numerical solutions to the time-dependent Navier-Stokes 
equations for incompressible flow past ice crystals, as reported in Section 3.5. Thus, 
for consistency of precision, we must use a numerical grid that is either the same 
as or smaller than the one used in Wang and Ji (1997) for flow field calculations. 
We choose to use the same grid and hence the same boundary surfaces for the 
present study. The locations of the outer boundaries are given in Table 3.1. 

Second, while the second condition in (4.32) can be applied at the upstream 
and lateral outer boundaries, it will encounter difficulty at the downstream outer 
boundary if the flows are unsteady. Owing to the restrictions upon computing re-
sources and hence the distance to the finite downstream boundary, the requirement 
of a constant 0 at this distance is most Hkely unrealistic. Here we replace this 
condition by the following: 

d(b 
-^=0 (4.33) 
dz 

This simply means that we require the 0 field to be continuous at the downstream 
boundary surface. We have successfully used a similar condition for velocity for 
solving the flow field problem (Wang and Ji, 1997), and, as it turned out, have had 
good results for 0. 
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TABLE 4.1 REYNOLDS NUMBERS, DIMENSIONS, 

AND CAPACITANCE OF COLUMNAR ICE CRYSTALS IN 

THE PRESENT STUDY"" 

A^Re 

0.2 
0.5 
0.7 
LO 
2.0 
5.0 

10.0 
20.0 

Diameter 

2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

Length 

2.85 
2.85 
3.08 
3.33 
4.44 
6.67 

10.00 
16.67 

Capacitance 

1.3628 
1.3628 
1.4054 
1.4535 
1.6511 
2.0151 
2.5067 
3.3959 

^ The quantities are dimensionless. 

Once the <p profile is determined, the growth rate of the falling ice crystal (without 
considering the coupling of latent heat released or consumed) can be calculated 
using 

dm C 
— = -d)D,V(l)'dS (4.34) 
dt /s 

where the integration is to be carried out over the ice crystal surface S. On the 
other hand, the growth rate of a stationary ice crystal is given by the classical 
electrostatic analog (see Pruppacher and Klett, 1997): 

/ dm\ 
' — » - -47rCDv(Pv,. - Pv,oo) (4.35) \dtj. 

where C is the capacitance of the ice crystal. Hence, in order to calculate the 
growth rates of stationary ice crystals, it is necessary to know their capacitance. 

For columnar ice crystals, which are approximated by finite circular cylinders in 
this study, we used the formulation of Smythe (1956,1962) and Wang et al. (1985) 
to calculate the capacitance. The dimensions and capacitances in this study are 
given in Table 4.1. For the capacitance of hexagonal plates, we used the formulation 
of McDonald (1963), who measured the capacitance of various conductors cut in 
the shape of snow crystals. The theoretical values of C for hexagonal plates of 
small thickness may be written as 

1.82a / A 5 \ 
C = 1 + — (4.36) 

where a is the radius (measured from the center to one of the edges), S is the area 
of the basal plane, and AS is the area difference between the hexagon and a circle 
with the same radius. The dimensions and the capacitance of the hexagonal plates 
calculated according to this formula are given in Table 4.2. 
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TABLE 4.2 REYNOLDS NUMBERS, DIMENSIONS, 

AND CAPACITANCE OF HEXAGONAL ICE PLATES 

IN THE PRESENT STUDY"" 

A^Re 

1.0 
2.0 

10.0 
20.0 
35.0 
60.0 
90.0 

120.0 

Diameter 

2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

Thickness 

0.2250 
0.1770 
0.1265 
0.1034 
0.0863 
0.0725 
0.0640 
0.0576 

Capacitance 

0.7298 
0.6977 
0.6639 
0.6485 
0.6371 
0.6278 
0.6221 
0.6179 

^ The quantities are dimensionless. 

Unfortunately, there are no accurate values of either measured or theo-
retically calculated capacitance available for broad-branch crystals. Thus, in this 
case, we compute the growth rate of stationary broad-branch crystals directly 
by numerically solving the (nonconvective) diffusion equation first and then use 
(4.27) to determine the ventilation coefficient. The dimensions of the broad-branch 
crystals involved in the present study are given in Table 4.3. 

When flow is unsteady and eddy shedding occurs, the computed ventilation 
coefficient will vary slightly with time step size. The final value of the coefficient 
is taken as the average value over one eddy shedding cycle. Since the eddy shed-
ding occurs mainly downstream, its influence on the coefficient is not very large, 
typically smaller than 10%. 

The numerical scheme (including the grid and the iteration and interpolation 
techniques) used in the present study is identical to that of Wang and Ji (1997) for 
obtaining the flow fields around falling crystals. 

TABLE 4.3 REYNOLDS NUMBERS AND DIMENSIONS 

OF BROAD-BRANCH ICE CRYSTALS IN THE 

PRESENT STUDY" 

A^Re 

1.0 
2.0 

10.0 
20.0 
35.0 
60.0 
90.0 

120.0 

Diameter 

2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

Thickness 

0.15 
0.14 
0.0914 
0.080 
0.0667 
0.060 
0.052 
0.047 

" The quantities are dimensionless. 
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4.3.3. Results and Discussion 

As mentioned previously, the ventilation coefficients of three different ice crystal 
habits of various dimensions (as listed in Tables 4.1,4.2, and 4.3) are computed as 
described in Section 4.3.2. The atmospheric pressure is assumed to be P = 800 hPa 
and the temperature T = — 8°C. It may seem unnecessary to define P and T for 
the calculations of the ventilation coefficients, as they are controlled strictly by 
hydrodynamics. But the pressure and temperature do affect the values of several 
nondimensional characteristic numbers to be introduced below, and therefore need 
to be specified. 

Figure 4.12 shows an example of the vapor density field around a stationary 
columnar ice crystal. The field obviously possesses symmetry with respect to the 
crystal since no motion is involved here. Once motion is introduced, however, the 
symmetry disappears, and the resulting vapor density fields show enhanced gra-
dients upstream and relaxed gradients downstream, as illustrated by Figures 4.13 
and 4.14 for colunmar crystals falling at Reynolds numbers 2 and 10, respec-
tively. Comparison of these two figures clearly shows that the higher the Reynolds 
number, the more pronounced the asymmetry of the vapor density fields and the 
greater the enhancement of the upstream gradients. Figure 4.15 shows the vapor 
density fields around falling broad-branch crystals at Reynolds number 2. The 
main features are essentially the same as those in the previous two figures. 

For higher Reynolds number cases, where the flow fields become unsteady, 
the vapor density fields also become unsteady, but the main features of front 
enhancement and rear relaxation of vapor density fields remain the same. 

The mean ventilation coefficient is then calculated using (4.34), (4.35), and 
(4.27), and the results are summarized in Figure 4.16a. The horizontal axis is a 
dimensionless number X defined as 

X = (^sc,v)'/'(A^Re)'/' (4.37) 

where Â sc, v is the Schmidt number of water vapor (= air kinematic viscosity/water 
vapor diffusivity) and ÂRe is the Reynolds number of the falling ice crystal. 
Figure 4.16b shows the correspondence between the Reynolds numbers and X 
if the Schmidt number is assumed to be constant (= 0.63). It is seen that the func-
tional dependence of /v on X is similar to that found by previous investigators (see 
Fitter et ah, 1974, for a summary). The results for hexagonal plates are very close 
to those obtained by Fitter et al. (1974) for thin oblate spheroids of axis ratio 0.05. 
The largest difference is only about 10%, indicating that the thin oblate spheroid 
approximation to a hexagonal plate is a fairly good one. The differences are prob-
ably due to the different aspect ratios and the slightly different cross-sectional 
shapes of the crystals. Thorpe and Mason's (1966) results are somewhat larger 
than those obtained by us and Fitter et al, but are close to Masliyah and Epstein's 
(1971) numerical results for oblate spheroids of axis ratio 0.2. Apparently, the axis 
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\ 

. / 

FIG. 4.12. Water vapor density distribution around a stationary ice column, (a) Length view; 
(b) end view. 
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FIG. 4.13. Water vapor density distribution around a falling ice column at Re = 2.0. (a) Length 
view; (b) end view. The contour levels are (from outside) 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 
and 100 (surface). 
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FIG. 4.14. Water vapor density distribution around a falling ice column at Re = 10.0. (a) 
Length view; (b) end view. The contour levels are (from outside) 1, 2, 5, 10, 20, 30, 40, 50, 60, 
70, 80, and 100 (surface). 
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FIG. 4.15. Water vapor density distribution around a falling broad-branch crystal at Re = 2.0. 
(a) Central cross- sectional view; (b) diagonal cross-sectional view. The contour levels are (from 
outside) 1, 2, 5, 10, 20, 30,40, 50, 60, 70, 80, and 100 (surface). 
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ratio is one parameter that must be considered in characterizing the ventilation 
coefficient. At present we are aware of no experimental measurements to verify 
other results. 

The three curves in Figure 4.16a can be fitted by the following empirical ex-
pressions: 

/v = 1.0 - 0.00668 {XIA) + 2.39402 {X/Af + 0.73409 {X/Af 
- 0.73911 (X/4)^ (4.38) 

for columnar ice crystals of 0.2 (« = 23.5, L = 67.1 /xm)< ÂRe < 20(fl = 146.4, 
L = 2440 /xm); 

/v = 1.0 - 0.06042 (X/10) +2.79820 (X/10)^ -0.31933 (X/10)^ 
- 0.06247 (X/10/ (4.39) 

for simple hexagonal plates of 1.0 (a = 80, /? = 18 /xm) < ÂRe < 120 {a = 850, 
h = A9 /xm); and 

/ , = 1.0 +0.35463 (X/10) +3.55338 (X/10)^ (4.40) 

for broad-branch crystals of 1.0 (a = 100, h = 15 /xm) < ÂRe < 120 (a = 1550, 
h =13 /xm). 

In the present study, Â scv is held constant (= 0.63), so what the figure shows is 
essentially the variation of the ventilation coefficient with the Reynolds number. 
Figure 4.17 shows this relation. Here we see that the dependence is nearly linear. 
However, it is unlikely that the linear trend in the columnar case can be continued 
much further, and likely that the slope will become smaller at higher Reynolds 
number. 

Figure 4.17 also shows that, at the same Reynolds number, the columnar ice 
crystal has the highest ventilation coefficient. This is probably because the char-
acteristic dimension of the column used in defining its Reynolds number is its 
radius instead of its length, so a columnar crystal with a small Reynolds number 
is actually long and hence has a high fall velocity. This high velocity (higher than 
for both the hexagonal plate and the broad-branch crystal at the same Â Re) is the 
main reason for its higher ventilation coefficient. It is less obvious why the ven-
tilation coefficient of a broad-branch crystal is higher than a hexagonal plate at 
the same Â Re, but again this may be explained by looking at the dimension of the 
crystals. Due to the more skeletal structure of the broad-branch crystal, its bulk 
density is smaller than for a simple hexagonal plate. Hence, at the same Reynolds 
number, the broad-branch crystal is larger than a hexagonal plate, and the surface 
area subject to the ventilation effect is correspondingly greater. 
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the falling ice crystal assuming Nsc = 0.63. 

4.3.4. Remarks 

The above ventilation calculations were based on the formulation of water vapor 
diffusion, which is a mass transfer process. However, the results are also applicable 
to the ventilation of heat for the same falling ice crystals since the mathematical 
equations involved (including the boundary conditions) are entirely the same ex-
cept that the vapor density is replaced by temperature and the vapor diffusivity 
by the thermal conductivity of air. The reasoning is the same as that stated in 
Section 4.2.2. In the calculations of the diffusional growth rates of ice crystals 
where the heat diffusion is coupled with vapor diffusion, it is adequate to set 

/ v = / h 

where the latter represents the mean ventilation coefficient of heat. Detailed dis-
cussion of the equivalence of these two phenomena is given by Pruppacher and 
Klett (1997). 

In the above, we have shown the calculations of ventilation coefficients for falling 
ice crystals of columnar, hexagonal plate, and broad-branch habits based on the 
convective diffusion theory of water vapor. The convective part of the mass transfer 
was computed using the detailed flow fields computed by solving numerically the 
corresponding Navier-Stokes equations for falling ice crystals. The results show 
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that the ventilation effect can be significant for their diffusional growth. A falling 
ice crystal may grow several times faster than a stationary one. Similarly, the 
heating or cooling due to the falling ice crystal's growth or evaporation can also be 
several times as large as for a stationary one. Clearly, both effects have a significant 
impact on the evolution of clouds that contain ice crystals, especially for the cirrus 
clouds, in which nearly all particles are ice crystals. 

Note that aside from the ventilation effect examined here, radiative heating/ 
cooling (near the cloud top and base) may influence the growth rates of ice crys-
tals. These radiative effects and the effects of ambient dynamic conditions on the 
evolution of cirrus clouds will be examined by a cirrus model in Section 6. 

4.4. Collision Efficiencies of Ice Crystals Collecting Supercooled Droplets 

4A.L Background 

We now turn to another important growth mode of ice crystals—their coUisional 
growth. The collision of supercooled cloud droplets with, and the subsequent 
freezing of, these droplets on ice crystals, known as the riming process, plays a 
fundamental role in the formation of precipitation-sized hydrometeors in clouds 
(Pruppacher and Klett, 1997; Cotton and Anthes, 1989; Johnson et al, 1993). A 
recent numerical study by Johnson et al (1994) indicates that more than 70% 
of the rain water produced in a midlatitude deep convective storm comes from 
the melting of graupel and hail. Even in subtropical thunderstorms, the melting 
of graupel and hail accounts for about 50% of the rainwater production (Lin and 
Wang, 1997). Since graupel and hail are themselves products of the riming process 
in clouds, it is logical to expect that riming rates have a significant impact on the 
rain production rates in convective storms. 

In addition, riming involves the phase change of water from liquid to solid 
and hence the release of latent heat into the surrounding air. In a cloud region 
where riming proceeds rapidly, this heating may become significant enough to 
influence the thermodynamic structure and, ultimately, the dynamic behavior of the 
storm. 

The riming rate hinges on two quantities: the collision efficiency between ice 
particles and supercooled droplets, and the coalescence efficiency of the colliding 
pair. The coalescence efficiency is usually assumed to be 1 (i.e., 100%) since obser-
vations indicate that at temperatures lower than 0°C a supercooled droplet instantly 
turns into ice upon collision with an ice surface. The collision efficiency, on the 
other hand, is a complicated function of ice particle size, shape, density, and veloc-
ity as well as droplet size. This subsection addresses the determination of collision 
efficiencies. Here we shall restrict our discussion to collisions between pristine 
ice crystals and supercooled droplets. The riming of graupel and hail, where the 
collectors are usually larger than pristine ice crystals, will not be considered here. 
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In order to determine the collision efficiency between an ice crystal and a water 
droplet accurately, one either conducts experimental measurements under a con-
trolled laboratory condition or performs calculations based on rigorous theoretical 
models. The former is a difficult and often expensive task, and thus far only a 
few measurements have been done over limited ranges of ice particle size (Sasyo, 
1971; Sasyo and Tokuue, 1973; Kajikawa, 1974). On the other hand, theoretical 
calculations can be relatively economical to perform in comparison with experi-
mental measurements, if properly done. The main limitations are the accuracies 
of the formulation and computing algorithm and the adequacy of the computer 
resources, but these can be overcome with reasonable efforts. The present study is 
based on theoretical calculations. 

Some other investigators have performed theoretical calculations of collision 
efficiencies between ice crystals and cloud droplets. Ono (1969) and Wilkins and 
Auer (1970) calculated the collision efficiencies between ice disks and droplets 
based on inviscid flow fields past disks. Fitter and Pruppacher (1974) and Martin 
et a/. (1981) calculated the collision efficiency between ice plates and supercooled 
droplets assuming that the flow past hexagonal plates can be approximated by 
that past thin oblate spheroids. Schlamp et al. (1975) calculated the collision 
efficiencies between columnar ice crystals and supercooled droplets, assuming 
that the flow past an ice column can be approximated by that past an infinitely long 
cylinder. While these studies contributed significantly to our early understanding 
of the onset of riming, they left room for improvement. Furthermore, all of them 
assumed that flow fields are steady, but that is not valid for larger ice crystals that 
fall in unsteady attitude (Pruppacher and Klett, 1997). 

As reported in Section 3, Ji and Wang (1989, 1990) and Wang and Ji (1997) 
calculated the flow fields past three different shapes of ice crystals: hexagonal ice 
plates, broad-branch crystals, and ice columns. The crystal shapes used in their 
calculations were more realistic than those mentioned before. Also, unsteady fea-
tures such as eddy shedding were included in the calculations. These improvements 
ultimately led to more accurate computation of flow fields. The present study uses 
the flow fields as determined by Wang and Ji (1997). Using these fields, we cal-
culated the collision efficiencies between ice crystals of the above three shapes 
and supercooled droplets. The details of formulations, results and conclusions are 
given below. 

4.4.2. Physics and Mathematics 

The theoretical problem of determining the collision efficiency between an ice 
crystal and a supercooled cloud droplet mainly involves the solution of the equa-
tion of motion for the droplet in the vicinity of the falling ice crystal. Since the 
motions occur in a viscous medium, namely air, the effect of flow fields must 
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be considered. The flow fields around falling ice crystals are complicated, and 
are normally obtained by solving relevant Navier-Stokes equations governing 
the flow. These flow fields are fed into the equation of motion, and the latter is 
solved (usually by numerical techniques) to determine the "critical trajectory," i.e., 
the trajectory of the droplet that makes a grazing collision with the crystal (see, 
for example, Chap. 14 of Pruppacher and Klett, 1997, for an explanation of the 
grazing trajectory). Finally, the collision efficiency is calculated based on the 
knowledge of the grazing trajectory. 

As indicated above, the first step of determining the collision efficiency is to 
determine the flow fields around falling ice crystals. This is done by solving the 
incompressible Navier-Stokes equations for flow past ice crystals as described in 
Section 3. 

The equation of motion for a cloud droplet of radius a2 in the vicinity of a falling 
ice crystal of characteristic dimension ai is 

m — = m - — = F g + FD (4.41) 
dt dt^ ^ 

where m is the mass of the droplet, V is its velocity, r is its position vector, F^ 
is the buoyancy-adjusted gravitational force, and FD the hydrodynamic drag force 
due to the flow. These two forces are expressed as 

F , = m g ( ^ ^ ^ ^ : ^ ) (4.42) 

where Pw and Pa are the density of water and air respectively, and 

FD = enr^a^i^^^ (V - u) (4.43) 

In order to calculate the drag force (4.43), we need to input the local flow velocity 
u at each time step. That value comes from the solution of the Navier-Stokes 
equations. 

In order to solve (4.41), it is also necessary to specify an appropriate initial 
condition, which in this case is the initial horizontal offset, y, of the droplet from 
the vertical line passing through the center of the falling ice crystal (see Pruppacher 
and Klett, 1997, p. 569). Needless to say, this offset has to be set at a distance 
sufficiently upstream to ensure that the droplet is progressing in a straight line 
at the time. In this study the initial offset was set at 20 radii upstream of the ice 
crystal, and this proved adequate for the purpose stated above. With this initial 
condition in place, Eq. (4.41) can be solved for V and hence the drop radius r as 
a function of time, thus defining its trajectory. 

To determine the collision efficiency, we need to determine the critical initial 
offset jc of the droplet such that it will make a grazing collision with the ice crystal. 
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An initial offset greater than y^ would result in a miss, whereas one smaller than 
yc would result in a hit. In the present study, a bisection technique similar to that 
used in Miller and Wang (1989) was used to determine jc- Once this is done, the 
next step is determining the collision efficiency E. 

4.4.3. Definition of Collision Efficiency for Nonspherical Collectors 

Since the collector is an ice crystal that is usually not a sphere, it is important to 
make a closer examination of the proper definition of collection efficiency here. 
The old definition of collision efficiency is based on spherical symmetry [e.g., 
Pruppacher and Klett, 1997, Eq. (14.1)] and is therefore inappropriate here. In the 
following we shall take a closer look at this definition problem. 

Figure 4.18 illustrates the definition of collision efficiency between two spheri-
cal water drops. The most important quantity involved is y^, the initial horizontal 
offset of the center of sphere ^2 from the vertical through the collector sphere ai, 
both identified by their radii such that a grazing collision results (Mason, 1971; 
Pruppacher and Klett, 1978). The collision efficiency E is then defined as 

E^yl/{a,-\-a2f (4.44) 

(The linear colUsion efficiency is defined as y^/ax but is less popular.) The 
definition given by (4.44) is essentially two-dimensional and will therefore work 
for all cases whose configurations are two-dimensional. For example, the collision 
between two spheres as illustrated in Figure 4.18 is two-dimensional since yc is 
independent of the azimuthal angle 0. Another example is the collision between 
an infinitely long cylinder and small cloud droplets; the flow field is again two-
dimensional. 

But this same definition fails to apply when the configuration is three-
dimensional. One example is illustrated in Figure 4.19, where a cylindrical ice 
crystal of length L collides with small spherical droplets or aerosol particles. 
Here we see that the value of jc, i will generally differ from that of 3̂ 0,2, because the 
collector and the flow field around it do not possess rotational symmetry about 
the fall direction. In this situation, E defined in Eq. (4.43) results in ambiguity. 
The same difficulty exists for all cases where >'c depends on the azimuthal angle. 

Instead of (4.44), the following more general definition of collision efficiency 
is more suitable for the 3-D situations: 

E = K/K"" (4.45) 

where 

K = the effective volume swept out by the collector per unit time 

K* = the geometric volume swept out by the collector per unit time 
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FIG. 4.18. Collision geometry for two spheres. 

In Figure 4.19, K is the volume containing the droplets that will be collected 
by the cylinder per unit time. K* is simply the geometric volume per unit time, 
2aL(Voo,i — Voo,w), where a is the radius and L is the length of the ice crystal, 
and Voo,i and Voo,w are the terminal velocities of ice crystal and water droplet, 
respectively. In the case of spherical drops, this definition reduces to Eq. (4.44). 

The new definition of collision efficiency does not necessarily invalidate previ-
ous results. As noted above, the new definition is the same as the old one for particles 
with rotational symmetry, such as spheres and circular plates. For the special case 
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FIG. 4.19. Collision geometry for a finite cylinder and a small sphere. 

of an infinitely long cylinder colliding with small droplets, the old definition is 
still vaHd (Schlamp et al, 1975) since the flow field is two-dimensional. However, 
because the cyHnder is finite and the geometry is not rotationally symmetric, the 
new definition must be used. 

In the case of the unsteady flow, the trajectory of a droplet starting from a certain 
initial offset was determined by averaging a few trajectories over an eddy shedding 
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cycle. This was done for a few cases, but was later found to be unnecessary because 
these trajectories vary very little owing to the fact that grazing collisions in this 
study all occur in the upstream regions, where flow fields are steady. In addition, 
droplets are massive enough to resist small fluctuations in the flow fields. This 
may not be the case if the collection of submicron particles by hydrometeors is 
considered, since rear capture may occur in that case (e.g., Wang et al, 1978; 
Wang and Jaroszczyk, 1991) and the unsteady fields in the downstream would 
have greater effect. 

4.4.4. Ice Crystal Collision Efficiencies for Ice Columns, Hexagonal Plates, 
and Broad-Branch Crystals 

Using the formulations described above, we can determine the collision effi-
ciencies of ice crystals colliding with supercooled water droplets. Some of the 
computational results by Wang and Ji (1999) will be discussed below. 

Ice crystal collectors of three different habits are considered below: columnar 
ice crystals (approximated as finite circular cylinders), hexagonal ice plates, and 
broad-branch ice crystals. These are the same ice crystals whose dimensions are 
shown in Tables 4.1, 4.2, and 4.3. Figure 4.20 shows several trajectories of a 
droplet 2 /xm in radius moving around a falling broad-branch crystal of Re = 10. 
Of the eight trajectories shown here, trajectories 1,2,6,7, and 8 are misses whereas 
trajectories 3, 4, and 5 are hits. Trajectory 4 is the central trajectory while 3 and 5 
are grazing trajectories. 

Note that since the collector ice crystals are not spheres, the critical initial offset 
yc does not possess circular symmetry, but rather is a function of the azimuthal an-
gle. The asymmetry is most easily shown by the shape of the collision cross section 
A swept out by radial lines of length ydO) for all azimuth angles 0. Figures 4.21, 
4.22, and 4.23 show examples of these collision cross sections for droplets of 
various sizes colliding with three types of ice crystals. It is inmiediately clear that 
the shapes of the cross sections are more or less similar to those of the ice crystal 
cross sections themselves. When droplets are small, their collision cross sections 
(and hence the collision efficiencies) are usually (but not always) smaller. As the 
droplets become larger, the coUisional cross sections become larger and the shapes 
are closer to the cross sections of the ice crystals. This behavior is obviously due 
to the inertia of the droplet relative to the strength of the hydrodynamic drag force, 
reasoning discussed in great detail in Pruppacher and Klett (1997). When droplets 
are small, their inertias are small compared to the drag and their trajectories are 
close to the streamlines of the flow fields, which are generally curved around the 
crystal. Thus the shape of the colhsion cross section would differ significantly 
from that of the crystal. When droplets are larger, their inertia becomes greater 
and their trajectories are straighter, so that the collision cross sections have shapes 
closer to that of the crystal. 
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FIG. 4.20. Trajectories of a droplet of 2 /xm in radius moving in the vicinity of a falling broad-
branch crystal at Re = 10. Trajectories 1, 2, 6, 7, and 8 are misses, and trajectories 3, 4 and 5 are 
hits. 

Hexagonal Plates 

Figures 4.24, 4.25, and 4.26 show the computed colUsion efficiencies for the 
three crystal habits. Figure 4.24 is for the case of hexagonal ice plates. The general 
feature here is that, at a fixed crystal Reynolds number, the efficiency of a very 
small droplet is very small owing to its small inertia, as explained previously. For 
Re = 1.0 and 2.0, the efficiency drops to very small value (< 10""̂ ) for droplets with 
radii <9 /xm. For higher Re (larger ice crystals) cases, this efficiency drop is more 
gradual and there is no sharp cutoff. This is in contrast with earlier studies where a 
cutoff ata2 ^ 5/xm occurs (e.g.. Fitter and Pruppacher, 1974;Pitter, 1977). Instead, 
the efficiency remains finite even for droplets as small as 2.5 /im, in good agreement 
with Kajikawa's (1974) experimental results. Recent observational studies also 
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c d 
FIG. 4.21. Shape of collision cross sections for a hexagonal ice plate at Re = 20, colliding 

with supercooled droplets of radius r. The fixed hexagon is the cross section of the ice plate: 
(a) r = 3 /im, (b) r = 5 /xm, (c) r = 11 )U-m, and (d) r = 21 /xm. 

FIG. 4.22. Shape of collision cross sections for a broad-branch crystal at Re = 35, colUding 
with supercooled droplets of radius r. The fixed hexagon is the cross section of the ice plate: 
(a) r = 5 /xm, (b) r = 9 /xm, (c) r = 15 ixm, and (d) r = 36 /xm. 
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FIG. 4.23. Shape of collision cross sections for a columnar ice crystal at Re = 2.0, colliding 
with supercooled droplets of radius r. The fixed hexagon is the cross section of the ice plate: 
(a) r = 4 fim, (b) r = 6 /xm, (c) r = 35 /zm, and (d) r = 43 /xm. 
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FIG. 4.24. Collision efficiencies of hexagonal ice plates colliding with supercooled water 

droplets. The last data points (at large drop size end) for Re = 0 to 120 are extrapolated. 



4. VAPOR DIFFUSION, VENTILATION, AND COLLISIONAL EFFICIENCIES 147 

confirm that many frozen droplets on the rimed ice crystals are smaller than 5 /xm. 
The scarcity of frozen droplets with radius <5 /xm on planar ice crystals in some 
previous field observations (e.g., Harimaya, 1975; Wilkins and Auer, 1970; Kikuchi 
and Ueda, 1979; and D'Enrico and Auer, 1978) was probably due to the local 
microstructure of clouds instead of the intrinsic collision mechanism (Pruppacher 
and Klett, 1997). 

As the drop size increases, the efficiency increases rapidly. The efficiency 
reaches a peak or plateau, depending on the Reynolds number of the ice crystal, 
and then drops off sharply for further increasing drop size. The dropoff of effi-
ciency is apparently due to the increasing terminal velocity of the droplet. When 
the collector ice crystal and the droplet have about the same velocity, collision is 
nearly impossible and the efficiency becomes very small (Fitter and Pruppacher, 
1974;Pitter, 1977; Martin ^r a/., 1981; Pruppacher and Klett, 1997). The efficiency 
maxima take the shape of peaks in smaller Re cases, but become broader plateaus 
as the ice crystal Re increases. Owing to their low terminal fall speeds, smaller 
crystals are quickly "outrun" by the largest droplets, thus preventing a collision. 

Broad-Branch Crystals 

Figure 4.25 shows the collision efficiencies for broad-branch crystals colliding 
with supercooled droplets. The main features are similar to those for hexagonal 

90 100 

Drop Radius (micron) 
FIG. 4.25. Collision efficiencies of broad-branch crystals colliding with supercooled water 

droplets. The last data points (at large drop size end) for Re = 0 to 120 are extrapolated. 
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plates. The collision efficiencies for Re = 1.0 are practically zero, representing an 
inability to rime. This cutoff of riming ability will be discussed later. 

The collision efficiencies of broad-branch crystals are, in general, smaller than 
for hexagonal plates at the same Reynolds number. The maximum efficiencies 
in the plateau region are about 0.9, unlike the case of hexagonal plates whose 
maximum efficiencies are near 1.0. This is probably due to the more open structure 
of a broad-branch crystal, which would allow the droplet to "slip through" the gap 
between branches. The plateau is also much narrower than for a hexagonal plate 
of the same Reynolds number. This is most likely due to the lower fall velocity of 
the broad branch crystal (as compared to a hexagonal plate at the same Reynolds 
number), which is thus more easily outrun by a large droplet. 

If the above reasoning holds true, it implies that stellar crystals, whose structures 
are even more open, probably have collision efficiencies similar to or smaller than 
those of broad-branch crystals. However, the same cannot be said for dendrites, 
since they have more intricate small branches that enable them to capture droplets 
with higher efficiency. 

Columnar Ice Crystals 

Collision efficiencies of columnar ice crystals colliding with supercooled 
droplets are shown in Figure 4.26. The general features here look very similar 

20 30 40 50 60 70 

Drop Radius (micron) 

FIG. 4.26. Collision efficiencies of columnar crystals colliding with supercooled water droplets. 
The last data points (at large drop size end) for Re = 0 to 120 are extrapolated. 
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to those in Figure 4.24, despite the difference in Reynolds number ranges between 
these two cases. This is because the difference in Re is a superficial one, since 
the Reynolds numbers of the falling columns are determined based on their radii 
instead of lengths. Had the latter been used, the two sets of Reynolds numbers 
would be much closer in magnitude. 

The plateaus in Figure 4.26 are not as flat as those in Figure 4.24, but slope down 
toward larger drop size. Although the exact cause is not known, this is likely due to 
the higher asymmetry of a colunm relative to a plate. The effect of this symmetry 
would become more pronounced as the drop size increases. 

Finite versus Infinite Cylinders 

It is educational to examine the differences between the collection efficiencies 
that result for finite versus infinite cylindrical approximations to columnar ice 
crystals, so that we can assess the validity of the infinite-cylinder approach used in 
several previous studies (e.g., Schlamp et al, 1975). Figure 4.27 shows two sets 
of collection efficiency curves, one for finite cylinders and the other for infinite 
ones, for Re = 0.5, 1.0, 5.0, and 20.00. For Re = 0.5 and 1.0, we see that the 
finite cylinders have higher efficiencies than the infinite ones. The difference is 
greater for Re = 0.5 and becomes smaller for Re = 1.0. For Re = 5.0 and 20.0, 

Comparison between finite and infinite columns 
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FIG. 4.27. Comparison between the collision efficiencies for finite cylinders (present results) 

and infinite cylinders (Schlamp et al, 1975) for Re = 0.5, 1.0, 5, and 20. 
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the two sets of collection efficiencies are almost identical for drop size smaller than 
30 /xm, becoming more pronounced for larger drops. The enhanced efficiencies 
of the infinite cylinders may be due to the artificial effect of the superposition 
technique used by Schlamp et al. (1975), and hence probably do not reflect the 
real effect of the infinite length assumption. 

The above paragraph says that the discrepancies between the two sets of curves 
are most important when the columns are small and become less significant when 
column size (and hence the Reynolds number) increases. This is to be anticipated 
because, in the present study, smaller columns have aspect ratios much different 
from that of infinitely long cylinders, so that the collision efficiencies would also 
show greater differences. For larger columns, the aspect ratios are closer to that 
of infinite cylinders, so that the coUision efficiencies are also closer to those of 
the latter. 

In short, using the infinite cylinder approximation in treating the collisions 
between columnar ice crystals and supercooled drops is valid when the drop size 
is between a few and about 30 microns and the ice column Reynolds number is 
greater than 5. Since the flow field around an infinitely long cylinder is easier to 
compute than that around finite cyHnders, this approximation may be useful when 
computing resources are of concern. 

When the drop size becomes smaller than a few microns, the infinite cylinder 
model underpredicts the collision efficiencies for the same reason discussed in the 
paragraph about hexagonal plate results. 

Riming Cutoff 

Earlier observational studies have suggested the existence of a cutoff size (de-
fined as the maximum dimension) of ice crystals below which riming cannot 
occur (Ono, 1969; Wilkins and Auer, 1970; Harimaya, 1975; Takahashi et a/., 
1991). Since riming is due to the collision between ice crystals and super-
cooled droplets, the cutoff would occur at a crystal size where the coll-
ision efficiency is zero for all droplet sizes. Earlier theoretical studies of Fitter 
and Pruppacher (1974) and Fitter (1977) put the riming cutoff size of planar 
ice crystals at 300 /xm, which seemed to agree with observations at the time. 
However, recent studies indicate riming cutoff sizes smaller than this value 
(DevulapaUi and Collett, 1994). The results shown in Figures 4.24 through 4.26 
can be used to predict the cutoff riming crystal size. This is done by plot-
ting the maximum collision efficiency (the peak value of each curve in Fig-
ures 4.24, 4.25, and 4.26) as a function of the corresponding crystal size for 
each crystal habit, as shown in Figure 4.28. The point where the extrapo-
lated curve intersects the x-axis (where E = 0) indicates the cutoff crystal size. 
Using this method, we determined that the riming cutoff size is about 35 /xm for 
columnar ice crystals, 110 /xm for hexagonal plates, and 200 /xm for broad-branch 
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Threshold Riming Size 
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FIG. 4.28. Cutoff riming ice crystal sizes as extrapolated by the present results. For broad-

branch crystals, the data point for crystal radius 2.5 /xm was ignored when performing the best fit. 

crystals. These values are reasonably close to the observations of Wilkins and 
Auer (1970), Reinking (1979), and Bruntjes et al. (1987) as summarized in 
Table 4.4. 

The collision efficiencies of three types of ice crystals colliding with supercooled 
water drops have been computed and presented above. The main improvements in 
the present study over previous studies are as follows: 

(1) More realistic ice crystal shapes are adopted, especially the finite lengths 
of the columns and the broad-branch crystals, whose efficiencies have never been 
reported before. 

TABLE 4.4 OBSERVED CRITICAL RIMING SIZE^ 

Crystal habit Wilkins and Auer (1970) Reinking (1979) Bruntjes et al (1987) 

Hexagonal plate (Pla) 
Broad-branch crystal (Pic) 
Columnar crystal (Cle) 
Long solid column (Nle) 

/ = 100 /xm, J = 40 /xm 
/ = 100 /xm, fi? = 30 )[Am 

d = 275 /xm 
d = 150 /xm 
d = 240 /xm 

/ = 125 /xm, d = 40 /xm 

^ The code after the crystal habit is Magono and Lee's (1966) classification of natural snow crystals. 
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(2) More accurate flow fields, including the 3-D and unsteady features, are used 
to determine the grazing trajectories. 

The improvements have been demonstrated by the more accurate prediction of the 
captured droplet sizes and the cutoff riming crystal sizes. We believe the improved 
collision efficiency values will lead to more accurate growth rate calculations of 
ice particles in clouds. 

The results presented here pertain to relatively small and pristine ice crystals 
colliding with small supercooled droplets, so they are mainly applicable to the 
initial stages of riming process when ice particles have not grown too much. When 
riming is further along, the ice crystal gradually loses its pristine shape. However, 
as long as the basic shape of the ice crystal in question is discernible, we believe 
the present results are still useful for estimating the riming efficiency, as the flow 
fields would not differ much. As riming goes still further, the original shape of 
the ice crystals eventually becomes lost, and the pristine ice assumption no longer 
applies. 

As indicated before, the coalescence of the supercooled drop with the ice surface 
is assumed to be 100%, so that the case where droplets may bounce off from the 
ice surface is not considered. It is a much more compHcated task to determine 
theoretically the riming rates of larger ice particles, such as graupel and hail, 
which may fall in zigzag attitude. 

5. SCAVENGING AND TRANSPORTATION OF AEROSOL PARTICLES BY ICE 

CRYSTALS IN CLOUDS 

5.1. Importance of Aerosol Particles in the Atmosphere 

Although considered as a variable constituent and present in trace amounts, 
aerosol particles play many important roles in our atmosphere. First, without 
aerosol particles there would be little chance of clouds, and hence precipitation, 
because homogeneous nucleation of water drops is very unlikely to occur in the en-
vironment of Earth's atmosphere. Instead, heterogeneous nucleation is necessary 
for cloud droplets to form, and that requires the presence of cloud condensation 
nuclei (CCN) which are, of course, aerosol particles. Thus, aerosol particles can 
be regarded as the initiators of clouds, and it is entirely logical to expect that the 
amount of aerosol particles in the atmosphere will be correlated with the amount 
of clouds globally. 

But the amount of clouds directly controls how much solar radiation can reach 
the Earth's surface, and the latter is the central factor in the global climate process. 
Therefore, the above aerosol-cloud relation implies that the concentration (and 
the chemical composition) of the aerosol particles has great impact on the global 
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climate. In addition, as is becoming increasingly clear, the amount of aerosol par-
ticles produced by human industrial activities may be significant enough to affect 
solar radiation directly, even without considering their cloud-forming capability. 

Aside from this impact on climate, aerosol particles have long been studied for 
their possible (and mostly adverse) impact on the air quality. The most well-known 
example is probably the formation of photochemical smog in large cities, such as 
Los Angeles. The impact on air quality is directly related to the concentration 
of aerosol particles. For summaries of these impacts, the reader is referred to 
textbooks such as those of Pruppacher and Klett (1997) and Seinfeld and Pandis 
(1997). 

But aerosol particles also get removed from the atmosphere and the most efficient 
natural removal mechanism is their capture by cloud and precipitation. Once the 
particles become attached to a hydrometeor, they can fall out of the atmosphere 
along with the precipitating hydrometeors. This process is often called precipitation 
scavenging, which should be considered as a self-cleansing mechanism of the 
atmosphere. At present, our knowledge of its efficiency is still rather qualitative. 
But quantifying the efficiency is important in view of the impacts of aerosol particle 
concentration on global climate and air quality, and therefore it warrants more 
careful study. This is the main subject of this section. 

5.2. Physical Mechanisms of Precipitation Scavenging 

There are many physical mechanisms that can result in the removal of aerosol 
particles by cloud and precipitation particles. In this section, we briefly review 
the few mechanisms that are thought to be especially important to precipitation 
scavenging, i.e., the removal of aerosol particles by precipitation. 

(1) Nucleation 

As mentioned earlier, some aerosol particles, especially hygroscopic ones, can 
serve as CCN to initiate cloud droplets. Another group of aerosol particles, espe-
cially the hydrophobic kind, can serve as the nuclei to initiate ice crystals, and are 
thus are known as ice nuclei (IN). Upon the occurrence of nucleation, both CCN 
and IN would become part of the cloud droplet or ice crystal, and hence may fall 
out with these hydrometeors if the latter grow to precipitation size. For this reason, 
nucleation is regarded as one of the precipitation scavenging mechanisms and is 
often called nucleation scavenging. 

(2) Inertial Impaction 

Owing to their different speeds in clouds, hydrometeors may collide with and 
hence capture aerosol particles, thereby removing them from the atmosphere. 
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This is called inertial impaction, a process analogous to the collision between 
cloud droplets and ice crystals. 

(3) Brownian Diffusion 

Small aerosol particles, especially those smaller than 1 /xm in radius, move 
randomly in air because they are constantly bombarded by air molecules in random 
fashion. This is known as the Brownian motion of small particles. Einstein (1905) 
studied this problem and showed that the Brownian motion of small particles is 
kinetically similar to the diffusion of gases, hence the name Brownian diffusion. 
Due to this motion, aerosol particles may collide with and become captured by 
hydrometeors, even in the absence of mean relative motion between the two. 
Evidently, the Brownian effect is more pronounced for smaller particles than for 
larger ones. 

(4) Electrostatic Forces 

When both hydrometeors and aerosol particles are electrically charged, electro-
static forces operate between them. If the forces are attractive, the two may collide, 
resulting in the removal of the aerosol particles. Electrostatic interaction between 
the two may occur even if only one is electrically charged, due to the so-called 
"image force"; and even if neither is charged, electrostatic interaction may still 
occur in the presence of an external electric field that can cause "induced charges" 
on both particles (see, for example, Lorrain and Carson, 1967; Jackson, 1974). 

(5) Phoretic Forces 

The phoretic forces of interest here are microscopic scale forces that operate near 
the surfaces of the collectors. When a hydrometeor is either evaporating or growing, 
it will consume or release latent heat, respectively. This causes a nonuniformity 
of temperature, and hence a temperature gradient, near the hydrometeor surface. 
This temperature gradient in the air generates a microscopic force on the aerosol 
particles due to the differential thermal agitation of the air molecules. This is 
called the thermophoretic force. In an evaporating hydrometeor, where the surface 
is colder than the air, the thermophoretic force points toward the surface (the force 
is always downgradient), and vice versa for a growing hydrometeor. 

But in addition to the temperature gradient, there is also a vapor density gradient 
near the surface of a growing or evaporating hydrometeor. This vapor density gra-
dient will generate a microscopic flow, called the Stefan flow, near the hydrometeor 
surface, exerting a force on the nearby aerosol particle. This force, called the dif-
fusiophoretic force, points away from the surface of an evaporating hydrometeor 
because the vapor density gradient points toward the surface; however, the force 
direction is always downgradient. Again, the case of a growing hydrometeor is 
just the opposite. 
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From the descriptions above, it is clear that thermophoretic and diffusiophoretic 
forces are directed opposite to each other, hence tending to cancel each other. We 
shall see this later, using more concrete examples. For a more detailed discussion 
of these phoretic forces, see Pruppacher and Klett (1997, Chap. 17) or Hidy and 
Brock (1971). 

(6) Turbulence 

It is commonly accepted that air flow in the atmosphere is generally turbulent 
and that this turbulence will, conceivably, cause the collection of aerosol particles 
by hydrometeors and hence their removal from the atmosphere. At present, the 
scientific conmiunity is inclined to believe that turbulence increases the collection 
efficiency of aerosol particles by hydrometeors, but rigorous proof is still lacking. 

In the following sections, we look into the scavenging of aerosol particles 
by ice particles by mechanisms (2)-(5). This is because the effect of nucle-
ation scavenging is best studied using a cloud model, whereas the approach 
introduced below utiUzes dynamic equations. Similarly, turbulence cannot be 
treated easily by the dynamic equation approach. Hence we omit mechanisms 
(1) and (6) and focus on how the remaining four mechanisms affect precipitation 
scavenging. 

5.3. The Theoretical Problem of Ice Scavenging of Aerosol Particles 

In this section we investigate the theoretical problem of determining the collec-
tion efficiency of aerosol particles by ice crystals. The approach follows that of 
Wang and Pruppacher (1980b), Martin et al (1980, 1981), Wang (1985, 1987), 
Miller and Wang (1989), and Wang and Lin (1995). 

The main technique of treating this theoretical problem is similar to that used by 
Wang et al (1978) in treating the scavenging of aerosol particles by water drops, 
namely, a combination of two complementary models to deal with small and large 
aerosol particles separately. 

The model used to treat the scavenging of small aerosol particles (those with 
radii <0.5 /xm) is called ihtflux model. This model takes into account the combined 
effect of Brownian diffusion, phoretic forces, and electrostatic forces by explicit 
dynamic representations, but treats the effect of hydrodynamic drag (hence the in-
ertial impaction) empirically for the following reasons: (a) For such small particles 
the dominant scavenging mechanism is Brownian diffusion while scavenging due 
to inertial impaction is small; (b) this model utilizes the convective diffusion equa-
tion for determining the flux of aerosol particle concentration; (c) this equation can 
be solved analytically with the inclusion of phoretic and electrostatic forces but not 
with hydrodynamic drag force, whose inclusion would make the convective diffu-
sion equation numerically "stiff" and difficult to solve; and (d) inertial impaction, 
which is most influenced by the drag, is insignificant anyway. 
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The model used to treat the scavenging of large aerosol particles (those with 
radii >0.5 /xm) is called the trajectory model. This model takes into account the 
combined effect of inertial impaction, phoretic forces, and electrostatic forces, but 
ignores the effect of Brownian motion. This is because particles in this size range 
perform little Brownian motion, rendering its effect insignificant. This model is 
based on the equation of motion for aerosol particles under the influence of external 
forces (drag, phoretic forces, and electrostatic forces). The solutions of the equation 
of motion determine the aerosol particle trajectories that result in grazing collisions 
with the collector. These trajectories determine the coUision efficiencies. 

The final solutions are the combinations of results from these two models. The 
joining of the two model results is not done arbitrarily. As will be seen later, there 
is a broad aerosol size range where the results match each other closely, indicating 
the true complementary nature of the two models. 

5.4. Physics and Mathematics of the Models 

We now present the mathematical formulation of the two models described 
above, first the trajectory model and then the flux model. 

5.4.1. The Trajectory Model 

This model applies to ice crystals scavenging larger aerosol particles whose 
radii are between about 0.5 and 10 /xm. The precise lower size limit depends on 
the ambient atmospheric conditions and the crystal size, and may vary between 
0.1 and 1.0 /xm. The model considers the collection of aerosol particles by inertial 
impaction, phoretic forces, and electric forces, but neglects Brownian diffusion. 
The efficiency is computed from an analysis of the trajectories of the aerosol 
particles moving past the ice crystal. Assuming that the flow around the aerosol 
particle does not affect the crystal motion (which is usually justified, considering 
the smallness of the aerosol particles in comparison to the ice crystal), an aerosol 
particle trajectory can be determined from the equation of motion: 

dv 6Ttri^r 
m— = mg* - ——ii—(V - «) + FTh + F ^ + F, (5.1) 

dt (1+aA^Kn) 

Equation (5.1) appHes to the motion of an aerosol particle of radius r, mass 
m, and velocity v moving around an ice crystal of radius ac, both falling in 
air of dynamic viscosity rj^, under the effect of gravity, plus the hydrodynamic, 
phoretic, and electric forces. In Eq. (5.1), g* = g(pp — Pa)/Pa, where g is the 
acceleration of gravity, Pp is the bulk density of the aerosol particle, Pa is the 
density of the air, ÂKn = K/J" is the Knudsen number, Aa is the free path length 
of air molecules and, u is the velocity field around the falling collector. Also, 
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Of = 1.25 + 0.44 exp(—l.lONiJ), Fj^ is the thermophoretic force given by 

^ l27tr],r(k,-\-2.5k^NKn)k,VT 

^ 5(1 + 3Â Kn)(̂ p + 2k, + 5k,NKn)p 

and Fof is the diffusiophoretic force given by the relation 

Fof = -enrr],-——-——— (5.3) 

where k, and p̂ are the respective thermal conductivities of air and the aerosol 
particle, Dya is the diffusivity of water vapor in air, T is absolute temperature, p 
is the air pressure, Pv is the water vapor density in air, and M^ and M, are the 
respective molecular weights of water and air. Equations (5.2) and (5.3) were eva-
luated from a knowledge of the vapor density and temperature distributions around 
the falling crystal. These distributions were determined previously by numerically 
applying steady-state convective diffusion equation to an ice crystal as described 
in Section 4.2. The velocity field u around the falling ice crystal is obtained by the 
method described in Section 3. 

The electric force Fe in Eq. (5.1) is assumed to be determined by the electric 
charges residing on the surfaces of ice crystals and aerosol particles, and by the 
strength of the external electric field E (when it is present). From electrostatic 
theory, the force on a charged particle immersed in an electric field E is 

Fe = ^pE (5.4) 

where q^ is the charge on the particle. In the absence of an external component, 
the electric field affecting the interacting bodies results from the charges on their 
surfaces. In general, this is the sum of the forces due to the point charge interaction 
and the image force. However, Wang (1983b) showed that in the normal range of 
aerosol electric charges in the atmosphere, the image force could be neglected. 
Therefore, we consider only the point charge interaction in the following discus-
sions. We shall also assume that the electric effect due to the electrically charged 
aerosol particle is negligible on the motion of the ice crystal. The electric field 
around the electrically charged ice crystal satisfies the condition 

E = -V(De (5.5) 

where Oe is the electric potential around the crystal. Assuming that the space charge 
effect due to aerosol particles is again negligible, the electric potential satisfies the 
Laplace equation 

V^Oe = 0 (5.6) 

The explicit form of the electric fields and potentials depend on the specific co-
ordinate system and ice crystal habit. We will use ice plates as an example to 
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demonstrate the effect of electric forces on the scavenging of aerosol particles by 
ice crystals. 

Solving Eq. (5.1) yields the particle trajectory. The colHsion efficiency is again 
determined by 

E=l (5.7) 

as discussed in Section 3 for the coUisional growth of ice particles. We shall also 
assume that once collision occurs, the aerosol particle will stick with the ice crystal 
(i.e., retention efficiency is 1). With this assumption, the coUision efficiency is the 
same as the collection efficiency ( = collision efficiency x retention efficiency). 

5.4.2. The Flux Model 

For particles of r < 0.5 /xm the effect of Brownian diffusion becomes important 
and the trajectory model is unsuitable for determining the scavenging efficiency. 
Instead, the flux model is used for this purpose. The following treatment follows 
mainly Wang (1985). 

In this model we consider the scavenging of aerosol particles by snow crystals 
falling in the air due to the simultaneous action of Brownian motion of the aerosol 
particle (aerosol particle), electric and phoretic forces, inertial impaction, and 
turbulence. For particles of radii <0.5 /xm the inertia term is usually very small 
and can be neglected. The turbulence effect also turns out to be insignificant 
(S. Grover, 1985; private communication) for particles of these sizes. Therefore, in 
the present model, only Brownian diffusion, phoretic forces, and electric forces will 
be considered. Similar considerations were taken by Wang et al. (1978) and Wang 
(1983b) for aerosol particle scavenging by small water drops, and the theoretical 
predictions were verified by the experiments of Wang and Pruppacher (1977), 
Leong et al. (1982), and Deshler (1982). 

Under such assumptions the flux density of aerosol particle toward a stationary 
snow crystal of arbitrary shape is 

jp = nB(¥, + FTh + Fof) -DWn (5.8) 

where n, B, and D are, respectively, the concentration, mobihty, and diffusivity (as-
sumed to be constant) of aerosol particle. Fe, Fxh, and Fof represent the electrical, 
thermophoretic, and diffusiophoretic forces. Assuming steady-state conditions, the 
resulting continuity equation of aerosol particle concentration V • jp = 0 (which 
describes the conservation of aerosol particle in the space exterior to the snow 
crystal) leads to 

B(¥, + Fxh + Fof) 'Wn-DVh = 0 (5.9) 

which is the well-known convective diffusion equation. Here we have used the fact 
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that the forces involved are conservative and nondivergent. The latter condition 
does not hold for Fxh and Fof when the snow crystal is not stationary but falling 
in the air, for then the temperature and vapor density fields are coupled with the 
air flow. A first-order correction to include the air flow effect may be made by 
introducing the mean ventilation coefficients /h, /v, and /p , which represent 
the enhancement factors due to air flow for the respective fluxes of heat, water 
vapor, and particle diffusion. The phoretic forces are then represented by /hFxh 
and /vFof. The electric force Fe is unaffected by the flow. The ventilation factors 
can be calculated using the following empirical formulas developed by Hall and 
Pruppacher (1976): 

/v = l + 0 . 1 4 X ^ X < 1.0 (5.10) 

/v = 0.96 + 0.28Z, X> 1.0 (5.11) 

where X is defined as 

X = < ' v < l . (5.12) 

Here Â sc,v is the Schmidt number of water in air and A^R^L* is the Reynolds number 
of snow crystals of characteristic dimension L* defined as 

L* = Q/P (5.13) 

where ^ is the total surface area of the snow crystal and P is the perimeter of its 
area projected normal to the flow direction. It turns out that /h ^ /v for typical 
atmospheric conditions and that is assumed in the present study. The above scheme 
has been used with success by Hall and Pruppacher (1976) to study heat and mass 
transfer of ice crystals in cirrus clouds. Newer ventilation coefficients obtained 
by Ji and Wang (1998), as introduced in Section 4, have not been applied to the 
scavenging problem yet. 

Using such an approximation, we have 

V . F = V . (Fe + /hFTh + /vFof) = 0 (5.14) 

where F represents the sum of all three forces. Since the forces are conservative, 
we can express them as F = — V(/>, where 0 is a scalar potential, and from (5.14) 

V^0 = O (5.15) 

The approximated convective-diffusion equation for particles surrounding a falling 
snow crystal is therefore 

fpDVh-B¥-Vn = 0 (5.16) 

where /p is the ventilation factor for the Brownian flux due to the motion of the 
snow crystal, which can be calculated using Eqs. (5.10)-(5.12) except that the 
Schmidt number in (5.12) now refers to that of the aerosol particle. 



160 PAO K. WANG 

The boundary conditions necessary to solve Eq. (5.16) completely are 

n = 0 at the snow surface 
(5.17) 

n = rioo as /? ^- oo 

which can be written as 

n = 0 at 0 = 00 
(5.18) 

n = rioo 3.1 R ^^ oo 

where (/>o is the total force potential at the surface of the snow crystal and R is the 
distance from the surface. This set of boundary conditions simply says that once 
a particle hits the surface of the snow, it is retained there (i.e., the snow surface 
is a perfect sink) and that far away from the snow surface the concentration of 
aerosol particles remains a constant. A solution of (5.16) that satisfies the boundary 
conditions (5.18) is 

f e x p [ ^ ( ^ o - ^ ) / D / p ] - l ] 
n = noo{ =— } (5.19) 

The collection kernel is determined by integrating the flux density over the snow 
crystal surface: 

1 aÂ  / 1 \ / 
K = = - — (b(nBF-Df^Vn)'ds (5.20) 

where Â  is the total number of aerosol particles. Putting the solution (5.19) into 
(5.20), we obtain 

K = - ( l /noo)/ [exp(5^o/ /yp)- l ] t' ,5F{exp[5(^o-^)/Z)/p]-l} • Js 

i Df^(- riooB/Df^) exp[5(^o - (p)/Df^] Vcp • ds (5.21) 

Both integrals in (5.21) are to be evaluated on the surface of the snow crystal. Since 
(p = (PoaX the surface, we immediately have 

oxp[B{(po - (p)/Df^] = exp[0] = 1 

and therefore the first integral in Eq. (5.21) vanishes. Consequently, 

K = -(l/noo)/[cxpiB(po/Df,) - 1] ii-rio B) V(p • ds 

- • " f = {B/[sxp(B(po/Df^) -l]}<pF-ds (5.22) 
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We could have seen the vanishing of the first term in the integral of (5.20) sooner 
by noting that n = 0 at the surface, also implying that once the particles reach the 
surface, they stick there. In case particles rebound off the surface, this condition 
may not be quite accurate. Although there is no clear evidence of rebounding at 
present, this may happen at very low temperatures when the ice surface lacks a 
pseudo-liquid layer. 

There are some questions regarding whether the model is independent of snow 
crystal shape. To clarify this point, we first note that throughout the whole deriva-
tion, including the verification given here, we rely solely on vector operations, 
which are independent of any particular coordinate system. This says that the re-
sults are applicable to any geometry considered. Second, the boundary conditions 
(5.18) are also written in a form independent of the coordinate system, and (5.19) 
satisfies these conditions without reference to the crystal shape. 

The above shape-independence statement does not mean that the numerical 
values of n and K will be the same for all shapes of snow crystals. These values 
will be different because of the differences in (p and (po. We are merely saying 
that the form of the solution is shape-independent. The value of K, for example, 
depends on the capacitance C, which is a function of shape. 

The origin of this shape independence comes from the decoupling of hydro-
dynamic drag force and other forces. In writing down (5.9), we have assumed 
that the hydrodynamic effects have been taken care of by the ventilation factors. 
Thus, (5.9) is essentially the convective diffusion equation for a stationary crystal 
except that each scavenging mechanism is now enhanced by a ventilation factor. 
In other words, we have assumed that the flux of aerosol particles toward a falling 
snow crystal due to a specific mechanism is equivalent to that toward a stationary 
snow crystal due to the same mechanism, except multiplied by a ventilation factor. 
The theoretical justification of this assumption has not been worked out yet. But 
the numerical results agree excellently with those computed from the much more 
involved hydrodynamic model and experimental results (Wang et ah, 1978). It is 
therefore justified in the practical sense. 

The collection efficiency E can be determined according to 

E = K/K"" = K/{AVoo) (5.23) 

where A and foo are the cross-sectional area of the snow crystal perpendicular to 
the fall direction and the thermal velocity of the snow, respectively, and A'* is the 
geometric kernel. We have assumed that the sizes and terminal velocities of aerosol 
particles are very small compared to those of the snow crystals. This definition 
of E is essentially the same as that defined in Section 4. 

The integral in Eq. (5.22) is 

/ *F . J s = / ' F e - J s + / ' /hFTh-^s + J / v F o f t / s (5.24) 
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The explicit expressions of the terms on the right-hand side can be determined 
by the so-called electrostatic analog theory (see, for example, p. 448 of Pruppacher 
and Klett, 1978) which utilizes the Gauss theorem. Using this theorem immediately 
leads to 

/ 
Fe • ^s = 47tCq(Vs - Voo) = AnQq (5.25) 

where C is the capacitance of the snow crystal under consideration, V^ is its 
surface electric potential, Voo is the electric potential at infinity, and Q and q are 
the electrostatic charges of snow crystals and aerosol particles, respectively. We 
have ignored the image force here. We have used the fact that Q = 47rC(Vs — Voo). 
Here we have assumed that particles behave like point charges and the crystal 
surface represents an equipotential surface. Similarly, 

/ Fxh • ^s = 4;rC/hZTh(7; - Too) (5.26) 

Zxh = [I27tr]^r(k^ + 2.5̂ pA^Kn)̂ a] 

where 

(5.27) 

and 

where 

[5(1 + 3NKn)(k, -f 2K + 5k,NKn)P] 

/ Fof • dS = 47rC/vZDf(Pv,s - Pv,oo) (5.28) 

Zof = l67tr]^r(0J4DyM^)] 

[ ( l+aA^Kn)MwPa] 
(5.29) 

In the above equations, ÂKn is the Knudsen number (= Xa/r, where X^ is the mean 
free path of air molecules) and a is the Stokes-Cunningham slip correction factor 
(see Pruppacher and Klett, 1997). 

For very small aerosol particles (say, r < 0.1 /xm), Eq. (5.29) needs modifica-
tion. However, the overall effect of such modification is expected to be small since 
Brownian diffusion will be the predominant mechanism of collection for small 
aerosol particle. 

Using Eqs. (5.25)-(5.27), the collection kernel (5.22) for aerosol particles scav-
enged by a snow crystal can be written as 

z- A D [ 2 ^ + C/hZTh(rs - Too) + C/vZDf(Pv,s - Pv,oo)] 
K = —HrTVD 

[exp(50o/O/p) - 1] 

4nB4>oC 

{[exp(B</>o/Z)/p) - 1]} 
(5.30) 
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since the terms in the numerator are exactly (/>oC. The collection efficiency E can 
be determined using the relation 

E = 
47TB(I)OC 

{[cxipiBMDf,) - l]Av, 

The full form of the surface potential 0o is 

(5.31) 

00 
Qq 

+ [5(1 + 3iVKn)(̂ p + 2K + 5k,N^)P] 

+ 
fA6nrj^r(0J4DyM,)] 

[ ( l+aA^Kn)MwPa] 
(5.32) 

Once the efficiencies from the two models are determined, they can be merged 
to give the efficiencies over the whole aerosol particle size spectrum. The merg-
ing is not done arbitrarily, but according to the best matching of the two curves. 
Figure 5.1 shows an example (Miller, 1988). In this example, the two curves vir-
tually coincide for 0.3 < r < 0.7 /xm, and the merging is indeed very natural 
and smooth. The overlapping ranges are different for different colliding pairs and 
atmospheric conditions, but all of them merge smoothly. 

The merger is almost guaranteed to be smooth for a good reason. As we will see in 
more detail later, the dominant scavenging mechanism for r < 0.1 /xm is Brownian 
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diffusion whereas that for r > 1.0 /xm is inertial impaction. In the range of 
0.1 < r < 1.0/>6m,Brownian diffusion and inertial impaction are negligible com-
pared to the phoretic and electric forces in determining the collection efficiency. 
The representations of these forces are nearly the same in these two models (the 
only difference is in the ventilation effect, which is very close to the effect of the 
flow field). Hence the computed efficiencies are about the same. 

5.5. Efficiencies of Ice Plates Collecting Aerosol Particles 

Martin et al (1980a,b) studied the scavenging of aerosol particles by ice plates. 
They approximated the hexagonal ice plates by thin oblate spheroids of axis ra-
tio 0.05. The flow fields were those obtained by Pitter et al (1973). Note that 
the relevant coordinate system for this problem is the oblate spheroidal coordi-
nate system. Table 5.1 shows the dimensions and other characteristics of the ice 
plates. 

The aerosol particle radii considered were 0.001 < r < 10 /xm. The ice crystal 
plates had radii (i.e., semimajor axes) of ^c = 50.6, 87.9, 112.8, 146.8, 213, 289, 
404, and 639 /xm, corresponding to Reynolds numbers ÂRe = 0.1, 0.5, 1.0, 2.0, 
5.0,10.0,20, and 50, respectively, at 700 mbar and - 10°C. In addition to this pres-
sure level, both models were evaluated for the levels 1000 mbar, 0°C; 900 mbar, 
—5°C; and 600 mbar, —20°C. Owing to the particular choice of corresponding 
pressure and temperature, the Reynolds numbers corresponding to the above given 
crystal sizes were, with sufficient accuracy, the same at all pressure-temperature 
levels considered. At each pressure level we considered four relative humidities 
(RH)i (with respect to ice): namely, (RH)i = 100, 95, 75, and 50%. The values 
chosen for k^{p, T), X^{p, T), Dy^{p, 7), and rj^^iT) were those recommended by 
Pruppacher and Klett (1978). The values for p^ were those given by the Smith-
sonian Meteorological Tables. The bulk densities of the aerosols were Pp = 1.0, 
1.5, 1.75, 2.0, and 5 g cm~^. In the present computations we also assumed that 
/h ^ /v» where /v is the ventilation coefficient for mass transport. In evaluating /p 
we assumed that its functional dependence on the Reynolds and Schmidt numbers 
ÂRe and Â sc is the same as that given by Hall and Pruppacher (1976) for /v, except 
that now instead of Â scv = ^a/^v,a we used Â scp = ^a/^p,a, where D^^ is the dif-
fusivity of the aerosol particles in air. Values for D^^ and justifications for both of 
the above assumptions are given by Pruppacher and Klett (1978). The thermal 
conductivity of the aerosol particle material was assumed to be /:p = 4.19 x 
10"^ J cm~^ s"^°C~^ For evaluating the phoretic forces, a uniform ice crystal 
temperature was assumed, considering the thinness of the ice crystals and the 
relatively high heat conductivity of ice. 

Little is known about the surface charge Qa on platelike ice crystals. However, 
the scant information available provided bounds from which it was determined 
that the surface charge on plateHke ice crystals in strongly electrified clouds may 
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TABLE 5.1 REYNOLDS NUMBER OF OBLATE SPHEROID OF ICE 

CORRESPONDING TO A GIVEN SEMIMAJOR AXIS (RADIUS) AS A FUNCTION OF 

PRESSURE-TEMPERATURE LEVEL 

Reynolds number of 
available flow field ttc (/im) p (mbar) r(°C) NR, 

0.1 

0.5 

1.0 

2.0 

5.0 

10 

20 

50 

50.6 

87.9 

112.8 

146.8 

213 

289 

404 

639 

600 
700 
900 
1000 
600 
700 
900 
1000 
600 
700 
900 
1000 
600 
700 
900 
1000 
600 
700 
900 
1000 
600 
700 
900 
1000 
600 
700 
900 
1000 
600 
700 
900 
1000 

-20 
-10 
-5 
0 

-20 
-10 
-5 
0 

-20 
-10 
-5 
0 

-20 
-10 
-5 
0 

-20 
-10 
-5 
0 

-20 
-10 
-5 
0 

-20 
-10 
-5 
0 

-20 
-10 
-5 
0 

0.097 
0.10 
0.111 
0.114 
0.486 
0.499 
0.553 
0.568 
0.973 
0.999 
1.01 
0.14 
1.95 
1.998 
2.21 
2.27 
4.88 
5.00 
5.54 
5.7 
9.73 
9.99 
11.05 
11.36 
19.32 
20.02 
22.15 
22.8 
48.75 
50.00 
55.3 
56.9 

be represented by 

\Q,\ = \q,\al = 2al (5.33) 

An analogous lav^ was shown Wang et ah (1978) to hold for spherical particles. 
Thus we assumed for strongly electrified clouds | Qr\ = \qr\r^ = 2r^. 

It also appears from the studies cited above that platelike crystals are pre-
dominantly negatively charged. In order to test the effect of electric charges on 
the scavenging of aerosol particles by ice crystals, we considered both strongly 
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and weakly electrified clouds, and therefore investigated the charge effect for 
\q^\ = \q,\— 0.14, 0.20, 0.40, 1.0, 1.4, and 2.0 esu cm~^, assuming that the crys-
tals were negatively charged and the aerosol particles were positively charged: 

Ga 
and 

Qr 

Obviously, the smallest charge an aerosol particle can carry is gr = 4.8 x 
10"^^ esu, which is equal to one electron charge. Smaller particles carry no charge. 
Thus, it appears that our formulation Q^ = q^r^ applies only to aerosol particles 
of r > (4.8 X 10"^ /̂̂ r) '̂̂ ,̂ i-e., to aerosol particles of r > 0.2 /xm, if we assume 
qr = 2.0 esu cm"^. However, since the trajectory model considered only particles 
of r > 0.1 /xm while the flux models considered particles of 0.001 < r < 0.1 /xm, 
the above restrictions apply only to the latter. On the other hand, the flux model 
did not consider the motion of individual particles but rather the flux of a whole 
assembly of particles, some of which carry zero charge while others carry 1,2,... 
electron charges. Therefore, we assumed that, in the mean, the aggregate electric 
charge for the particles affecting the scavenging of the particle population could 
be given by Q^ = qrr^. 

Examples of the computed results are given in Figures 5.2 to 5.5. These figures 
give the efficiency with which electrically charged and uncharged aerosol particles 
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FIG. 5.2. Efficiency with which aerosol particles collide with a simple planar ice crystal of 
radius a^ = 289 /xm and Reynolds number Re = 10, in air of 700 mbar, -10°C, and of relative 
humidity (RH)i (with respect to ice) of 50, 75, 95, and 100%; for yOp = 2 g cm~^ and for 
q^=: q^ = 0 and q^ = q^ = 2.0 esu cm~ ,̂ where q^ = Qa/(^c ^^^ r̂ "= Qr/r^-
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FIG. 5.3. Efficiency with which aerosol particles collide with a simple planar ice crystal of 
radius Ac = 213 /xm and Reynolds number Re = 5, in air of 700 mbar, — 10°C, and of relative 
humidity (RH)i (with respect to ice) of 50, 75, 95, and 100%; for pp = 2 g cm~^, and for 
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FIG. 5.4. Efficiency with which aerosol particles collide with a simple planar ice crystal of 
radius Uc = 87.9 /xm and Reynolds number Re = 0.5, in air of 700 mbar, — 10°C, and of relative 
humidity (RH)i (with respect to ice) of 50, 75, 95, and 100%; for pp = 2 g cm~^ and for 
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FIG. 5.5. Efficiency with which aerosol particles colUde with a simple planar ice crystal of 
radius GC = 50.6 /itm and Reynolds number Re = 0.1, in air of 700 mbar, - 10°C, and of relative 
humidity (RH)i (with respect to ice) of 50, 75, 95, and 100%; for pp = 2 g cm~ ,̂ and for 
q^ = qj. = 0 and q^ = q^ = 2.0 esu cm~ ,̂ where q^, = Qa/^c ^^^ r̂ = Qr/r^-

of 0.001 < r < 10/xm are captured by electrically charged and uncharged ice crys-
tal plates of various radii in air of various humidities at —10° C and 700 mbar. The 
results at the other pressure-temperature levels under consideration differed only 
insignificantly from those at —10° C and 700 mbar. We attributed this finding to our 
particular choice of pressure-temperature level, which in combination affected ^a, 
^va» Pa. and A:a in such a manner that the pressure- and temperature-sensitive con-
tributions to the phoretic and hydrodynamic forces compensated each other. Other 
combinations of pressure and temperature may well change the present curves. 

The most significant feature of the curves in Figures 5.2 to 5.5 is the predominant 
minimum in the collision efficiency E for aerosol particles of radius between 
r = 0.01 /xm and r = 0.1 /zm. Analogous to the particle scavenging behavior of 
water drops (Wang et al, 1978), this result can be explained on the basis of 
Brownian diffusion, which is increasingly responsible for particle scavenging as 
the particle radius increases above 0.1 /xm. However, it is worth noting that the 
minimum (termed the Greenfield gap by Wang et ah, 1978) for particle scavenging 
by ice crystal plates appears at aerosol particle radii one order of magnitude smaller 
than those at which the minimum appears for water drops. This result is caused by 
the unusual properties of the ice crystal rim as a trap for the aerosol particles. In 
contrast to the air flow past a spherical drop, air flow past a thin falling ice plate 
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FIG. 5.6. Computed trajectories of an aerosol particle of r = 0.05 /xm moving around an ice 
plate of flc = 50.6 fim (Re = 0.1), for q^ = q^ = 2.0 esu cm~^. Note that the capture of aerosol 
particles takes place at the ice crystal rim, and also may take place on the rear side of the ice 
crystal. 

exhibits strong horizontal flow components on its lower side, recurving sharply to 
become more or less vertical near the crystal's edge, with the streamlines strongly 
crowding near the crystal tip as explained by Fitter et al. (1973). This flow beha-
vior causes aerosol particle trajectories of the type described in Figure 5.6. These 
demonstrate that the ice crystal rim is a preferred capture site for aerosol particles. 
Thus, the capture of aerosol particles is limited by the air flow past the scavenging 
body to much smaller aerosol particle sizes for thin ice plates than for droplets. 
For aerosol particles captured by such plates, we observed no annular behavior of 
the type found by Fitter and Fruppacher (1974) for drops captured by ice plates. 

It is evident from Figures 5.2 to 5.5 that, as in the case of particle scavenging by 
drops, particle scavenging by ice crystal plates is most strongly affected by phoretic 
forces in the Greenfield gap. The phoretic effects are quite small for aerosol 
particles if r > 1 /xmorr < 0.01 /xm, but are important if 0.01 < r < 1 /xm. Note 
also from these figures that the phoretic effects become stronger for smaller ice 
crystals. Obviously, the smaller the ice crystal, the smaller its Reynolds number 
and therefore the smaller the particle-deflecting effect of the flow field beneath the 
crystal. 



170 PAO K. WANG 

Like the phoretic effects, the electrical effects on particle scavenging are negli-
gible for r < 0.01/xm. However, they are very pronounced for 0.01 < r < 10/xm, 
depending on the size of the ice crystal. Thus, the collision efficiency for crystals 
of Uc = 639, 404, and 289 /xm is raised by as much as an order of magnitude in 
the range of 0.01 < r < 5 /xm if \q^\ = Iq^l = 2.0 esu cm~^. 

We also note from Figures 5.2 to 5.5 that the phoretic effects on scavenging 
are less noticeable if the aerosol particles and ice crystals are electrically charged. 
These figures show further that the smaller the Reynolds number of the ice crystal, 
i.e., the smaller the particle-deflecting hydrodynamic forces beneath the crystal, 
the more the collision efficiency is enhanced by the electric charges present. 

Some particularly strong electric effects are noted for particles of r > 1 /xm 
and ice crystals of GC = 213, 146.8, and 112.8 /xm. If crystals of these sizes 
are electrically uncharged, their coUision efficiency rapidly decreases to zero as 
r becomes larger than 1 /xm. In fact, no particles are collected if r > 2 /xm. 
Trajectory analysis shows that the reason for this behavior is that, at these rel-
atively low Reynolds numbers, the approach velocity of the aerosol particle to the 
ice crystal is sufficiently small to afford the strong horizontal hydrodynamic de-
flecting forces beneath the ice crystal sufficient time to move any aerosol particle 
of r > 2 /xm around the crystal, creating the collision efficiency of zero. However, 
if the ice crystal and aerosol particles are electrically charged, with |̂ al = l̂ rl = 
2.0 esu cm~^, the collision efficiency becomes finite and in fact quite large, being 
raised to a value above 10"^ by the electric charges. 

A further dramatic change in the collision behavior of ice crystal plates is noted 
if ÂRe < 1 (see Figs. 5.4 and 5.5). We note that at these very low Reynolds num-
bers, aerosol particles of r > 1 /xm are again captured. Analysis of the velocity 
field around the falling crystal shows that this behavior stems from a pronounced 
decrease of the horizontal, particle-deflecting velocity. In fact, the deflecting force 
for ÂRe < 1 becomes so low that, despite the small approach velocity, the particle 
cannot escape a collision with the crystal. Nevertheless, the increase in E due to 
the presence of electric charges is considerable over the whole particle size range. 
In fact, with decreasing r, the collision efficiency decreases unexpectedly to a local 
minimum near r ^ 0.5 /xm and subsequently increases with further decrease in 
r to a local maximum near r ^ 0.05 /xm as r decreases further. Trajectory analysis 
illustrated in Figure 5.6 shows that this effect is due to capture of the charged 
aerosol particles on the rear side of the charged ice crystal. Figures 5.4 and 5.5 
show that with even further decrease in particle size, the collision efficiency de-
creases again as the electric forces are now rapidly decreasing in comparison to 
the hydrodynamic forces, tending to move the particle around the crystal. The final 
increase in colUsion efficiency for r < 0.01 /xm is due to the effects of Brownian 
diffusion. In fact, the Brownian motion is so efficient for such small particles that 
£• > 1 for very small particles. This is a consequence of the effective collision 
kernel K becomes greater than the geometric kernel K* [see Eq. (5.7)]; i.e., even 
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those particles lying outside of the volume swept out by the ice crystal come to 
collide with the crystal. 

In Figures 5.7 and 5.8 the variation of the collision efficiency is plotted as a 
function of the charge | ̂ a I = I ̂ r I on the ice crystal and aerosol particle, respectively, 
where 

^a 
Ga 

and 9̂  = 7 1 

We note that for both aerosol particle sizes considered and for an ice crystal of 
radius GC = 289 /xm, electric charges begin to noticeably affect the capture of 
aerosol particles if |̂ al = \QT\ > 0.4. This charge is considerably below the mean 
charge on particles in thunderstorm clouds. Figure 5.9 shows that for an ice crystal 
of Gc = 404 /xm the collision efficiency is significantly affected even though the 
charge is as low as \q^\ = {q^l = 2.0 esu cm~^. 
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FIG. 5.8. Variation of the collision efficiency with electric charge on the crystal and aerosol 
particle for «c = 289 /xm and r = 0.3 /6m. 
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FIG. 5.9. Variation of the collision efficiency with aerosol particle radius for various electric 
charges on the ice crystal and aerosol particle for GC = 404 /xm. 

5.6. Efficiencies of Columnar Ice Crystals Collecting Aerosol Particles 

Using the methods described above, Wang and Pruppacher (1980a) and Miller 
and Wang (1989) determined the efficiencies with which aerosol particles are 
collected by columnar ice crystals. The discussions below closely follow Miller 
and Wang (1989). In this study, the air flow past ice columns is approximated 
by that past infinitely long cylinders. This approximation is valid for larger ice 
crystals, but may underestimate the efficiencies for smaller ice crystals especially 
for Re < 1 (see Sec. 4). Fortunately, the underestimation is not severe and does 
not affect the conclusions drawn below. 

Solutions to Eqs. (5.1) and (5.31) were computed for seven columnar ice 
crystals with Reynolds numbers, radii, lengths, densities, and terminal velocities 
as listed in Table 5.2. The results presented here correspond to an atmospheric 
pressure of 600 mbar and an ambient temperature of —20°C unless otherwise 

TABLE 5.2 COLUMNAR ICE CRYSTAL CHARACTERISTICS 

Â Re 

0.5 
0.7 
1.0 
2.0 
5.0 

10.0 
20.0 

r-c (Min) 

32.7 
36.6 
41.5 
53.4 
77.2 

106.7 
146.4 

k (/xm) 

93.3 
112.6 
138.3 
237.4 
514.9 

1067.1 
2440.0 

Pc (g/cm^) 

0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 

Voo (cm/s) 

12.21 
15.26 
19.22 
29.87 
51.65 
74.76 

108.98 

2c/i(esu/cm) 

-2.139 X 10-5 
-2.679 X 10-5 
-3.445 X 10-5 
-5.703 X 10-5 
-1.192 X 10-5 
-2.277 X 10-5 
-4.287 X 10-5 
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noted. Values for /Oa(P, T) are from the Smithsonian Meteorological Tables. For-
mulas for other key variables are k^(T) = (5.69+ 0.011 T°C) x IQ-^k^ 
(7) = (3.78 + 0.020r°C) X 10-^ X(P, T) = 6.6 x 10-^cm(1013.15/P)(r°K/ 
293.15), Dva(P, T) = 0.211(r°K/273.15)^ ^̂  (1013.25/P), and r]a(T) = (1.718 + 
0.0049r - 1.2 X lO-^T^) X 10- \ r(°C) < 0, each from Pruppacher and Klett 
(1978). The unit for the pressure P is the millibar. The bulk densities of the 
ice crystals and aerosol particles are 0.6 and 2.0 g cm"^, respectively, unless 
otherwise noted. 

Figure 5.10 indicates collection efficiencies for particles 0.001 < rp < 10.0/xm 
by columnar ice crystals with 0.5 < ÂRe < 20.0. The relative humidity is 95% with 
respect to ice (all relative humidities presented here are with respect to ice). It is 
seen that particles less than 0.9 /xm in radius have increasing collision efficiencies 
for decreasing Â Re. Particles with r^ > 2.0 /xm exhibit the opposite behavior. The 
increase in efficiency for decreasing ÂRe for r^ > 2.0 /xm is due to the increased 
contribution from the inertia term. In this case, as ÂRe increases, the corresponding 
flow speed u increases, as does (M — Vd) in F^. 

Figures 5.11a-c show examples of the collection efficiencies for ÂRe = 0.5, 
1.0, and 20.0 for aerosol particles of 0.001 < rp < 10.0/xm with different relative 
humidities as plotted in curves 1 (95%), 2 (75%) and 3 (50%), both without (soHd 
curves, no suffix) and with charge (dotted curves, suffix "e"). In these figures, 
gravitational, inertial, electrostatic, thermophoretic, and diffusiophoretic forces as 
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FIG. 5.11. Collection efficiency for aerosol particles by columnar ice crystals at 600 mbar and 
—20°C versus aerosol particle radius. Labels 1, 2 and 3 represent RH = 95%, 75%, and 50%, 
respectively. The suffix "e" denotes electrostatic charge of q = 2.0 esu cm~ .̂ The Reynolds 
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1.000 10.000 

well as Brownian diffusion are present. Our choice of the three humidity values 
highlights the temperature and water vapor dependencies of thermo- and diffu-
siophoretic forcing mechanisms in these figures. It is seen that phoretic forcing 
occurs in subsaturated air for particles of 0.01 <r^< 2.5 /xm. The magnitude of 
this forcing increases with decreasing relative humidity and for decreasing ÂRg. 
It should be noted that thermophoresis is toward the ice crystal surface when it is 
cooler than the ambient surroundings, while diffusiophoresis acts outward from the 
crystal surface under the same condition (for a falling columnar ice crystal). When 
Tp < 1.0 /xm, Fxh > F^f, and vice versa for rp > 1.0 /xm. The greatest net inward 
phoretic forcing (Fjh + Fj^f) is seen to occur for particles slightly less than 1.0 /xm. 

The effect of electric charges is shown by curves labeled with the suffix "e" after 
the curve number. As in the case of ice plates, in each instance q =2 esu cm~^, 
corresponding to measured electrostatic charge on drops in a thunderstorm 
(Takahashi, 1973). The presence of electrostatic charges is seen to increase the 
collection efficiency, markedly for high relative humidities and less so for low 
relative humidities, for which the efficiency is already much higher than in the 
moist scenarios. The electrostatic effect increases in proportion to the squares of 
increasing aerosol particle and ice crystal radii. 

The observed zero scavenging zone (ZSZ) within the Greenfield gap in 
Figure 5.11 occurs as the sum of the radially directed forces Fg + Fd + Fxh + Fof 
approaches zero. Nonzero scavenging values appear as (Frh + Fof) is increased in 
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magnitude. As ÂRe decreases, the ZSZ widens in the direction of increasing parti-
cle size; at 600 mbar with 95% relative humidity, the ZSZ covers radii between 1 
and 1.5 /xm for ÂRe = 10, but between 1.5 and 2.5 /xm for ÂRe = 5 and between 
1.5 and 7.5 /xm for ÂRe = 0.5. 

Figure 5.12 illustrates the dependence of the collision efficiency on particle 
density. Particle density effect is not important for rp < 0.5 /xm flux calculations; 
however, it becomes very significant for rp > 0.5 /xm trajectory calculations. In 
general, increasing particle density increases collision efficiency for rp > 1.5 /xm. 
However, the curves are crossing each other for rp < 1.5 /xm, and the efficiency 
decreases with increasing density, presumably because of the weakening inertial 
effects. 

Figure 5.13 shows the effect of temperature on scavenging efficiency. Increasing 
temperature increases the efficiency for rp < 1.0 /xm, but the opposite is true for 
rp > 2.0 /xm. Increasing temperature for minimal phoretic forcing will bridge 
the ZSZ. Variations in pressure are in the same direction as for temperature, as 
illustrated in Figure 5.14, showing the collision efficiency for a columnar ice 
crystal with ÂRe = 10 for several pressure-temperature levels in the atmosphere. 
Figure 5.15 compares the columnar ice crystal aerosol scavenging at 700 mbar 
with the drop aerosol scavenging at 900 mbar. The ice crystal-aerosol results are 
for a temperature of 263K while the drop-aerosol results are for 283K; both are 
at 95% relative humidity, but taken over ice and liquid water, respectively. These 
results, which are plotted versus their equivalent geometric kernels K*, indicate that 
columnar ice crystals scavenge more efficiently than drops across the Greenfield 
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gap, except in the region of the ZSZ. This zone, which is also seen in previous 
results for drop aerosol scavenging (Wang et ah, 1978) as well as ice plate aerosol 
scavenging (Martin et ah, 1980a,b), is wider and occurs over a greater geometric 
range for columnar ice crystals. 

In the above, we have presented a combined numerical and analytical model that 
investigates the scavenging efficiencies of aerosol particles by columnar ice crys-
tals. We have shown that relative humidity, temperature, pressure, and electrostatic 
charge variations can alter the collection efficiency across the Greenfield gap. The 
foregoing study quantitatively indicates increasing efficiency for decreasing rela-
tive humidity and/or increasing temperature, pressure, and electrostatic charge. 
The presence of a zero scavenging zone for flows past ice crystals with Re < 20 
was observed for particles 1.5 to 2.0 /xm, and this is seen to be a cancellation 
of radially directed forces. This gap widens with increasing pressure and with 
decreasing temperature. 

5.7. Comparison of Collection Efficiency of Aerosol Particles by Individual 
Water Droplets, Ice Plates, and Ice Columns 

5.7.7. Introduction 

Clouds and precipitation may consist of water drops, ice crystals, or both. 
All three cases exist in any season. Clouds in wintertime may consist of liquid 
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drops and clouds in summertime may contain ice particles. Thus a complete un-
derstanding of precipitation scavenging, as defined in the beginning of Section 
5.2, would necessarily involve the study of both rain and ice scavenging. The 
main question of interest here is how the relative scavenging efficiencies of water 
drops and ice crystals compare. Comments in past studies suggest that snow is a 
more efficient particle scavenger than rain (Camuth, 1967; Magono et ai, 1974; 
Murakami et ai, 1985a,b). The comparisons were based on the equivalent liq-
uid water contents. For data derived from field observations, this is probably the 
only way to compare the efficiencies. Recent theoretical studies and laboratory 
experiments (Slinn and Hale, 1971; Wang and Pruppacher, 1977; Wang et ai, 
1987; Martin et al, 1980a,b; Murakami et al, 1985a,b; Sauter and Wang, 1989; 
Miller and Wang, 1989) permit comparison between efficiencies by individual 
collectors. 

5.7.2. The Basis for Comparison 

One question has often been asked when comparing the scavenging efficiencies 
of rain and snow: What is the basis for comparison? This is a valid question, one 
that should be answered before we proceed. The most straightforward method of 
comparison is based on the size of the collectors, this method is easily understood 
when the collectors have the same shape (e.g., both are spheres or hexagonal plates) 
but leads to confusion when collectors are of different shapes. For example, a rain-
drop whose diameter is the same as that of a hexagonal ice plate will normally 
fall much faster than the plate. If the drop collects more aerosol particles, it may 
simply be that the drop has traveled a longer distance and hence has had more 
chance to collect particles. This is also true for ice particles of the same size but 
different shapes. Another method of comparison, already mentioned in the previ-
ous section, is based on the equivalent liquid water contents or equivalent rainfall 
rates (see, for example, comments in Wang and Ji (2000)). This may be useful for 
field observational data, but in view of the difficulty in separating various kinds 
of collector particles and mechanisms, it is to be noted that this method considers 
the integrated effect of the whole collector size (and often also shape) distribu-
tion. The real ability of each collector particle is blurred by that of other particles. 
Thus, in the present study only the collection efficiencies of individual collectors 
will be compared. Such a comparison will be especially useful in elucidating the 
physical mechanisms of scavenging and their relative contributions in the col-
lection and removal of atmospheric aerosol particles. The collection efficiencies 
are measures of the "ability" of the collectors to collect particles; thus we should 
use a fair basis for comparison. We propose here to use ^*, the geometric kernel 
introduced in Section 4. There have also been suggestions that the term "geomet-
ric sweepout volume per unit time" should be used, to avoid confusion with the 
term "scavenging kernel." The relation between ^* and the conventional scaveng-
ing kernel K (Pruppacher and Klett, 1978) can be made clear from the following 
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expression: 

E = K/K* 

i.e., the scavenging kernel is simply the collection efficiency times K*. Alter-
natively, the collection efficiency is simply the ratio of ^ to ^*. Thus, for example, 
A'* for a drop of radius a is 

/T* = Tta^Voo 

while ^* for a columnar ice crystal of length L and radius a is 

K* = laLVoo 

where Voo represents the terminal fall velocity of the collector. In this definition 
of A'*, we have assumed that all hydrometeors fall with their largest dimensions 
oriented horizontally. This assumption is valid for relatively small hydrometeors, 
which are being considered in the present study. For larger hydrometeors, the ori-
entation may change with time, whereupon the definition of Â* must be modified, 
but this will not be considered here. The rationale of using K* as the basis for 
comparing collection efficiencies is as follows. Since we are comparing collec-
tors of different shapes, we should compare their efficiencies under the condition 
that they are given the same chance to be exposed to the same amount of aerosol 
particles per unit time. We shall assume that the aerosol concentration is uniform, 
which is necessary for a fair comparison. Under this condition, the same volume of 
air would contain the same amount of aerosol particles. Thus, when we compare 
the collection efficiencies for collectors with the same Â *, we are exposing the 
collectors (even though of different shapes) to the same amount of aerosol parti-
cles per unit time. The one that collects more particles does so because it is really 
more efficient in capturing particles. Hence using A'* as the basis for comparison 
is "fair." Apart from Wang and Pruppacher (1980a), Podzimek (1987) also used 
the same technique for comparing collection efficiencies. 

5.7.3. Data Sources of Collection Efficiencies 

The "data" used for the present comparison are results derived from calculations 
based on the models developed by Wang et al. (1978) for drops, as well as the re-
sults presented in the previous two sections for ice particles. Ideally, experimental 
data sets such as those obtained by Wang and Pruppacher (1977), Lai et al. (1978), 
Prodi (1976), Murakami et al (1985a,b), Sauter and Wang (1989), and Song and 
Lamb (1992) should be the ones used for the comparison. However, at present 
the experimental data are not complete enough to form continuous data sets, and 
the available sets do not have substantially overlapping ranges of Â *, making the 
comparison difficult. Hence it was decided to use the model results for such a 
comparison. Fortunately, because the validity of these models has been confirmed 
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by experimental measurements, the present comparison is considered meaningful. 
In it, we use the collection efficiencies calculated for 95% relative humidity. These 
are taken from the results obtained in Wang et al (1978) for drops, Martin et al. 
(1980a) for hexagonal ice plates, and Miller and Wang (1989) for columnar ice crys-
tals. Note that the drop collection efficiencies are calculated for P = 1000 mbar, 
and T = 20°C, while the ambient conditions for the ice crystals are P = 700 mbar 
and T = -10°C for plates versus P = 600 mbar and T = -20°C for columnar 
ice crystals. Wang et al (1978) have shown that the pressure and temperature 
conditions have little effect on the collection efficiency. Note also that we define 
the relative humidity (RH) here as that with respect to saturation vapor pres-
sures over plane water and ice surfaces instead of the commonly used definition, 
which uses saturation over plane water surface as the standard. Thus, the condition 
RH = 95% is different for drops than for ice particles. But again, the resulting 
differences between collection efficiencies using different definitions are typically 
only a few percent, and hence would not alter the general conclusions discussed 
below. 

5.7.4. Comparison of the Aerosol Collection Efficiencies of Water Drops 
and Ice Crystals 

Figures 5.16 through 5.18 show comparisons of the aerosol collection efficien-
cies by water drops and ice crystals. We shall assume that the retention efficiency 
is unity, so that the collision efficiencies are the same as the collection efficiencies. 

Figures 5.16 and 5.17 show comparative expressions for K* appropriate to a 
drop and versus a columnar ice crystal. We note that over the whole range of 
collector sizes considered, and for both aerosol particle sizes studied, drops are 
better aerosol particle scavengers than are columnar ice crystals; i.e., for a given 
combination of relative humidity and for a given K*,thc collision efficiency of a 
water drop is larger than that of a columnar ice crystal. 

The situation for ice plates is somewhat different. A comparison of £" as a func-
tion of K* for a spherical drop versus a platelike ice crystal is given in Figure 5.18. 
We note that for all except the smallest ice crystals, plates are better scavengers of 
aerosol particles than are drops. This result must be attributed to the ice crystal rim, 
which acts as an efficient aerosol particle "trap." With decreasing values of K*, 
i.e., of crystal size, the difference between collision efficiency for ice plates versus 
water drops decreases quickly until, for sufficiently small plates (or values of K*), 
water drops dominate ice crystal plates as particle scavengers. This behavior is 
understandable since, with decreasing Reynolds number, the flow field around a 
crystal plate differs less and less from that around a sphere. 

The above figures are limited to a particular aerosol particle size. A more com-
prehensive comparison would be one that compares the efficiencies over the entire 
range of the aerosol particle sizes rp, as is done below. 
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of r = 1.0 IIVCL as a function of the parameter ^ * . 

Figures 5.19 and 5.20 show the collection efficiencies of water drops, hexagonal 
plates, and columnar ice crystals as functions of K"" and particle radius r^. In order 
to emphasize the difference among these efficiencies, the logarithmic scales are 
used. The ranges for the original values are from 10~^ to 1 for £", from 0.001 to 
10 /xm for Tp, and from 3.7 x 10""̂  to 0.6 cm^ s~̂  for ^*. These two figures are 
based on the same data sets except that the plots are viewed from different angles. 
It is immediately seen from Figure 5.19 that the collection efficiencies are very 
similar to each other for all three collector types. This indicates that these three 
kinds of collectors are almost equally efficient in collecting aerosol particles of 
radius about 0.001 /xm. The reason for this is that, in this particle size range, 
the most important collection mechanism is aerosol Brownian diffusion, which 
depends mainly on the aerosol particle size. The efficiencies are therefore fairly 
insensitive to the habit of the collector. The collection efficiencies also decrease 
with increasing A'* for all three collectors at about the same rate. This is entirely 
due to the way efficiency is defined in the first equation of Section 5.7.2. Here 
the collection kernel K is virtually the same, but E decreases as A'* increases. 
Thus, as all three collectors become larger, their efficiencies decrease because the 
number of particles they can capture remains practically the same even though 
the volumes swept by them per unit time increase. Subtle differences exist among 
the three collectors, but the magnitudes are insignificant. Moving along the r^ axis 



DROPS 9556RH 

FIG. 5.19. Collection efficiencies of aerosol particles captured by (a) water drops, (b) ice plates, 
and (c) ice columns at RH = 95% as computed by Wang et al (1978), Martin et al (1980a), and 
Miller and Wang (1989). The particle radius R^ is in microns and the unit for A'* is cm^ s~^ 
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FIG. 5.20. Collection efficiencies of aerosol particles captured by (a) water drops, (b) ice plates, 
and (c) ice columns at RH = 95% as computed by Wang et al. (1978), Martin et al. (1980a), 
and Miller and Wang (1989). The particle radius R^ is in microns and the unit for K* is cm^ s~^ 
(These figures are the same as those in Fig. 5.19 except viewed from a different angle.) 
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reveals more significant differences between the three collectors. If we look at 
E for larger K* (toward the left, along the K"" axis), we see that the efficiencies for 
drops and columns are similar but those for plates are drastically different. First, 
E for all three collectors initially decreases with increasing r^ due to the decrease 
in Brownian collection. For drops and columns, however, the efficiencies reach a 
minimum near r^ = \ /xm, then increase with r^ as inertial impaction becomes im-
portant. For plates, the minimum E occurs for r^ between 0.01 and 0.1 /xm. It is also 
obvious that E for plates for r^ between 0.02 and a few microns is much higher than 
for the drops and columns. For example, at rp = 1 /xm, E for plates is typically at 
least two orders of magnitude higher than for columns and drops. This size is in the 
so-called Greenfield gap range, so that plates are much more efficient in removing 
the Greenfield gap particles than columns and drops are. Figure 5.19 reveals E only 
for larger ^* values. To see the other side of the story, therefore, we have to look at 
Figure 5.20, where we see that what we said in the previous paragraph is also true 
for smaller A'* values. Unlike for the drops and columns, the E surface for plates 
does not have a very deep gap along the rp axis. The gap seems to be especially 
deep (and narrow) for columns. For drops, the gap is more gradual, although there 
is a very deep "pit" near ^* = 2.7 x 10~^, a value which corresponds to drop 
radius of 42 /xm, which is not very easy to see in this type of diagram. The gaps for 
both columns and droplets are much deeper on this side of the E surface, where the 
collector sizes are smaller, than on the other side. Thus, small columns and droplets 
are hardly effective in removing aerosol particles of about 1 /xm radius. Before 
reaching this gap region, all three collectors have relatively smooth E surfaces, 
indicating that the variation of E with Â * is gradual. This remains the case for 
columns and drops throughout the plotted range of i^* values. But the situation for 
plates is again very different. We see from both Figures 5.19 and 5.20 that there is a 
deep "crack" in E for plates along the A'* axis. This crack encompasses plate radii 
between about 100 and 200 /xm. The efficiencies are rather small for these plates at 
Tp > 1; indeed, if we examine the E curves in Martin et ul. (1980a,b), we see that 
there are local maxima of £" at rp ^ 1 /xm for ÂRe = 1,2, and 5. The efficiency 
decreases with increasing rp for these cases, as can also be seen more clearly in 
Figure 5.20 along the rp axis. This special collecting behavior of plates is probably 
due to the strong pressure buildup near the stagnation point. Unlike columns and 
drops, whose surface curvatures near the stagnation points remain constant, those 
of plates are fairly flat. This results in high-pressure buildup over a larger area 
on the plate surface than on drops and columns. This large high-pressure region 
prevents easy capture of aerosol particles, which may thus get deflected away from 
the surface, as has been pointed out by Fitter and Pruppacher (1974), Fitter (1977), 
and Martin et ah (1980a,b). This phenomenon is particularly effective in reducing 
the collection efficiency if the plates are small enough for the resulting relative 
velocities between them and the aerosol particles to nearly vanish, affording the 
particles sufficient time to be totally deflected. For smaller aerosol particles, the 
relative velocities will be larger, and therefore this effect is not as important. 
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Figure 5.19 also shows that the collection efficiencies of drops at small K* and 
relatively large r^ are much smaller than those of columns and plates. This is due 
to the fact that at small A'*, the terminal velocities of drops are not much different 
from those of the aerosol particles. The collector and collectee are thus falling 
at about the same speed, hence the low collection efficiency. It is also seen in 
Figures 5.19 and 5.20 that for rp > 1 /xm and small K*, columns have the highest 
collection efficiencies among the three collectors. At large ^*, drops have higher 
efficiencies than both columns and plates. 

5.7.5. Conclusions 

We have compared the calculated collection efficiencies of cloud droplets, ice 
plates, and ice columns. Several conclusions can be drawn therefrom. (1) The three 
collectors are about equally efficient in collecting very small (r^ < 0.01) aerosol 
particles. Thus it should be expected that the removal of these small particles 
should be nearly independent of the details of cloud processes, since it is mainly a 
function of the size of aerosol particles. Although the efficiencies of larger hydrom-
eteors (large raindrops, graupel, hailstones) have not yet been calculated, it is to be 
expected that their efficiencies will not differ too much from those three smaller 
collectors in the removal of very small particles. Thus, to these particles, clouds and 
precipitation behave like filters whose filtration efficiency depends mainly on the 
mechanical arrangement of the filter elements (number of collectors, pressure, etc.) 
but not much on the physical and chemical properties of these elements. 
(2) Ice plates are most efficient in removing aerosol particles in the size range 
between 0.01 and 1.0 /xm (the Greenfield gap particles). The cloud droplets and 
columns are generally one to two orders of magnitude less efficient than the plates. 
As no observations have yet been made of the habit distributions of ice crystals 
in clouds, it is impossible to deduce what this fact may imply. However, in light 
of crystal habit characteristics obtained in the laboratory experiments (see, for 
example, Magono and Lee, 1966; also Fig. 2.26 in Pruppacher and Klett, 1978), it 
may be said that plate ice crystals exist mainly in midlevels of a deep convective 
cloud at temperatures between —10 and —20°C, whereas in the higher part of the 
cloud at temperatures below —20°C, columns are dominant. Thus the Greenfield 
gap particles may be most efficiently removed in the midlevels of the cloud and 
inadequately removed in the higher levels. Thus these Greenfield gap particles 
may "leak" into the upper troposphere and/or lower stratosphere due to inefficient 
filtration of columnar crystals, whereas the middle troposphere may be "clean-
est" in terms of their number concentration right after such a cloud process. This 
also seems consistent with the observations of Changnon and Junge (1961) where 
there is a local maximum of "large" particles at 15-20 km and a local minimum 
at 5-10 km. Of course, due to insufficient observations of both the crystal habit 
distributions in clouds and the actual aerosol size distributions at different levels, 
this remains conjecture. (3) For aerosol particles of radius greater than 1 /xm. 
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both droplets and columnar ice crystals are fairly efficient in removing them, with 
columns somewhat more efficient, especially when the collectors themselves are 
small. This may be relevant to situations near the top of a deep convective cloud 
just starting to glaciate. In these cases, the ice crystals are expected to be small. 
On the other hand, ice plates are relatively inefficient particle filters for reasons 
mentioned earlier. Thus, depletion of "giant" particles may be faster near the cloud 
top than in the middle levels. In a deep convective storm, of course, other processes 
must be considered before definite conclusions about the aerosol particle removal 
can be drawn. These processes include drop nucleation, cloud-precipitation inter-
action, convection and turbulent diffusion of particle plumes, electricity, and so 
on. Nevertheless, it is expected that these processes can also be molded much as 
in the present study. 

5.8. Experimental Verification of Collection Efficiencies 

The collection efficiencies presented in the preceding two sections are theoretical 
results. In order to use them confidently to estimate the scavenging of aerosol 
particles by ice crystals, they have to be checked by experimental measurements. 
It is not necessary to produce large sets of experimental data (which is usually 
very difficult to do anyhow), but the data must be adequate to verify the theory. In 
this section we describe an experimental study of the aerosol particle scavenging 
by ice crystals, as performed by Sauter and Wang (1989). 

5.8.1. Experimental Setup and Procedure 

The experimental setup used in this study is similar to that used by Wang and 
Pruppacher (1977) for studying the scavenging of aerosol particles by raindrops. 
However, the total dimension of the present setup is smaller because snow crystals, 
unlike raindrops, require relatively short distances to reach terminal velocity. A 
schematic of the setup, including relevant dimensions, is shown in Figure 5.21. 

A modified La Mer generator was used to produce indium acetylacetonate 
aerosol particles of radius 0.75 /xm. These particles are nearly monodispersed 
spheres, as evidenced by electron micrographs taken after precipitation onto a 
glass slide by a thermal precipitator. The aerosol particles produced by the genera-
tor were flushed into a Plexiglas aerosol chamber 1.21m long and 0.155 m in inner 
diameter fitted with mechanical shutters at both top and bottom. This chamber was 
built in three pieces. In several experiments the center piece was removed, so that 
the chamber length was 0.61 m. When the chamber was being filled, a small air 
pump was run intermittently to circulate the aerosol in the chamber and ensure 
a uniform distribution. If the aerosol was to be electrically charged, it was first 
mixed with ions produced from a corona discharging unit. A mean charge of up 
to 26 electrons could be placed on each aerosol particle if so desired. Using a 



5. SCAVENGING AND TRANSPORTATION OF AEROSOL PARTICLES 189 

SNOW CRYSTfl. INLET 

RECIRClLflTICN 

PUMP 

REROSOL 

GENERRTOR 

[Q) 

BiniBR 

REROSOL 

CHRMBER 

SHUTTER 

SNOW 
COLLECTOR 

SNOW CHARGE 
DETECTOR 

PP MASS 
MONITOR 

flP ChWGE 

RNRLYZER 

THB^RL 

PRECIPITRTORj 

0.15 §"1 1̂ 

FIG. 5.21. Schematic of the experimental setup for aerosol scavenging by snow crystals. 

technique developed by Dalle Valle et al (1954), we determined the mean charge 
of aerosol particles by allowing an aerosol stream to pass through two parallel 
cylindrical electrodes and measuring the angle of deflection. The potential differ-
ence between the two electrodes was maintained at 10,800 V. Both the amount and 
the sign of aerosol charge can be determined in this way. 

A typical experiment proceeded as follows. Before or during a promising snow-
fall, the aerosol generator was turned on. After approximately one hour, when the 
assembly had reached proper temperature (150°C), the aerosol particles were fed 
into the aerosol chamber. A TSI Model-3500 mass monitor measured the mass 
concentration of aerosol particles in the chamber. The particle size was measured 
directly under a scanning electron microscope. Typical aerosol concentration in the 
chamber was between 10̂  and 10"̂  particles per cubic centimeter. Relative humid-
ity in the chamber was monitored by a dewpoint hygrometer. Next, a rectangular 
sheet of polyethylene was coated with 2-5% (by mass) solution of Formvar and 
was quickly placed on a clean sheet of paper on top of an adjustable metal stand 
beneath the bottom aerosol chamber shutter. A hollow cylindrical piece of rigid 
cardboard extended approximately 20 cm below this shutter. The cardboard tube 
was sealed with plastic sheet and tape to keep it airtight once the stand with the 
Formvar-coated sheet was cranked up tight against it. At this point, both the top 
and bottom shutters were briefly opened. The chamber humidity was about 85% 
with respect to ice saturation due to some mixing of the original chamber air and 
the environmental air. Some loss of particles occurred during the opening, and 
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the concentration was diluted to 30-50% of the original. Since the concentration 
was monitored continuously during the whole experiment, its value at the time of 
scavenging could be determined. 

When the snowflakes fell throughout the aerosol chamber, they first passed 
through an induction-ring electrometer connected to an oscilloscope. A short pulse 
would be induced when a charged snow crystal passed through the ring. From the 
amplitude of the pulse, the flake charge can be evaluated. Small charges were ob-
served (10""̂  esu or less), in seeming agreement with the measurements of Bauer 
and Fitter (1982), who indicated that 50-90% of unrimed snowflakes, includ-
ing those several millimeters across, have neghgible charges. In addition, in an 
experimental study done by Magono et ah (1974) in Sapporo, Japan, negligible 
charges on natural snow crystals were measured. Most of the crystals retrieved 
in this study were both unrimed and small, so the small charges are probably not 
surprising. 

After the shutters were closed, the polyethylene sheet was carefully removed 
and kept below freezing for at least 24 hours so that ice crystals were completely 
sublimed. Some crystals appeared to have melted during the collection process. As 
long as their size and shape could be determined, they were examined. When an 
appropriate snow crystal was identified, it was carefully cut out together with the 
surrounding polyethylene. The crystal size was measured, and the shape recorded 
and photographed. Originally, neutron activation analysis was employed to deter-
mine the aerosol mass on the snow crystal, but the results were unsatisfactory. It 
was then decided to count the particles on a snow crystal directly under a scan-
ning electron microscope. The indium acetylacetonate particles were fairly easy 
to distinguish from other debris or markings on the crystal owing to their size and 
spherical shape. Overcounting or undercounting was not deemed to be a serious 
problem. Several flakes were counted twice, the second time being several days to 
weeks after the initial count. The dual count gave consistent results. Once the num-
ber of aerosol particles on an individual snow crystal was known, the collection 
efficiency was determined by the following formula: 

E = n/(ALC) (5.34) 

where E is the collection efficiency, n is the total number of aerosol particles on 
the crystal, A is the cross-sectional area of the crystal, L is the length of the aerosol 
chamber (either 0.61 m or 1.21 m), and C is the aerosol concentration. Collection 
efficiencies determined in this manner are given in the next section. 

5.8.2. Results and Discussion 

Seventy-two crystals were analyzed and their collection efficiencies determined. 
Of these, 17 were irregularly shaped and were excluded. The results for the re-
maining 55 crystals are given below. 
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Since snow crystals have complicated shapes, it is impossible to describe both 
the size and shape simultaneously by a single parameter. Therefore, in presenting 
the experimental results, we chose to present collection efficiencies as a function of 
crystal size only. For columnar crystals, we used the length as the size parameter; 
for planar crystals, the diameter. Other parameters such as crystal cross-sectional 
area, total surface area, Pastemak-Gauvin length (total surface area divided by 
perimeter length), and crystal Reynolds number were tried as the independent 
variable, but no significant difference was observed. 

Figures 5.22 through 5.26 show the measured collection efficiencies versus 
crystal size. The data points show a fair amount of scatter, which may be due to 
many factors. First, the shapes of ice crystals in one category are actually not all 
the same. For example, of all crystals categorized as broad-branched, many have 
branches with different shapes and thickness. Similarly, crystals in the category 
of hexagonal plates may not be ideal hexagons. Some needles and columns have 
one end larger than the other, and some stellar crystals have branches broken off. 
With these nonideal size-shape situations, it is not surprising to see some scatter. 
Moreover, the aerosol chamber was exposed to the environmental air, which might 
have caused a temperature gradient so that the temperature was lower near the 
wall than in the center of the chamber. This could cause some nonuniformity in 
the aerosol concentration. 
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Despite the scatter, the results show clear trends. For a fixed crystal habit, the 
collection efficiency decreases with increasing collector size. Recall the definition 
of the collection efficiency for nonspherical collectors (Wang, 1983): 

E = K/K* 

where K is the collection kernel and K* is the geometric collection kernel, i.e., 
the volume swept out by the collector per unit time. For a fixed collector shape, 
K* increases with increasing size. In general, K also increases with size. The 
decreasing trend of E indicates that the increase of K with size is less than that of 
K*, consistent with what we have seen in the previous two sections. A qualitative 
explanation is given as follows. For the particle size considered here (r ^ 0.75 /xm), 
the most important collection mechanism is inertial impaction, which depends on 
the relative strength of the inertial force of the particle and the hydrodynamic drag 
force created by the falling motion of the crystal. Since the particle size is fixed 
in the present study, the decrease of collection efficiency with increasing crystal 
size must be due to the increasing drag force. Larger crystals of the same type 
have higher fall speeds, but the increase in fall speed is not enough to increase the 
induced inertia (which scales with fall speed divided by size). Thus, the effect of 
particle inertia relative to particle drag decreases, causing the particle to follow the 
streamlines more closely. Consequently, the particle is less likely to collide with 
the crystal, decreasing the collection eflSciency. 

The foregoing discussion can be further clarified by looking at the dimensionless 
equation of motion of the particle: 

dV = z/Fr - (Av/ VySk (5.35) 

where z is the vertical unit vector, V is the vector particle velocity, and Av = 
V — U is the instantaneous particle velocity relative to the local air velocity U; Fr 
and Sk are the Froude number and Stokes number, respectively, defined by 

Fr = U'jgD (5.36) 

Sk = p^dlU^/lSfiD (5.37) 

where Uoo and D are the fall speed and diameter of the crystal, g is the gravi-
tational acceleration, fi is the dynamic viscosity of air, and pp and dp are the density 
and diameter of the aerosol particle. For constant particle size and environmental 
conditions, Sk is proportional to the ratio of the crystal terminal velocity to its 
dimension; i.e., Sk a Uoo/D. Since fall speeds generally increase with the crystal 
size as f/ a D", where n < 1, then Sk decreases with increasing crystal size. For 
capture of particle on the upstream side of the crystal, the collision efficiency 
decreases monotonically with Sk. 
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The Froude number scales particle inertia relative to gravity, and helps explain 
changes in vertical forces that affect front and rear capture. For example, the 
increasing influence of gravity (decreasing Fr) may cause collision efficiencies to 
decrease on the upstream side of the collector. Changes in Fr depend on whether 
n>0.5orn < 0.5, since Fr oc U^/D. 

For these experiments a typical value of Sk ~ 0.02 suggests that the particle 
inertia is small compared to drag, whereas a typical value of Fr ^ 10 indi-
cates that particle inertia is small compared to gravity. Even though drag dom-
inates the equation of motion, so that particles tend to follow streamlines, inertia 
and gravity can still be important in the low collision efficiency problem. It is 
only because of such forces (and geometric interception) that the efficiency is 
nonzero. 

It is convenient to fit the experimental data by some empirical relations. The 
following power equations represent the least-squares fits for the data points in 
Figures 5.22 through 5.26 (E = efficiency, L = crystal length in mm, D = crystal 
diameter in mm): 

E = lA2x 10-^(L)-^^^ 1.0 < L < 2.3 mm (needles) (5.38) 

E = 2.35 X 10-^(L)-^^^ 0.8 < L < 1.14 mm (columns) (5.39) 

E = 2.45 X 10-^(D)-i ^^ 0.7 < D < 3.0 mm (broad-branched) (5.40) 

E = 3.41 X lO-\D)-^^\ 1.0 < D < 2.4 mm (stellar) (5.41) 

E = 2.12 X 10-\D)-^^\ 0.3 < D < 1.8 nmi (plates) (5.42) 

The typical values of collection efficiencies in Figures 5.22 through 5.26 are 
between 10~^ and 10~^. These values are characteristic of the collection efficiency 
in the atmosphere for collectors of a few millimeters scavenging submicron-size 
aerosol particles. Such E values are also typical for drop particle scavenging (Wang 
and Pruppacher, 1977). 

The effect of aerosol charge on the collection efficiency was also investi-
gated. Since snow crystals in the present study had negligible charge, the only 
effective electrostatic force would be the image force due to the charges on the 
aerosol particles. The results obtained with electrically charged aerosol particles 
(also included in Figs. 5.22-5.26) do not show significant differences from the 
uncharged aerosol, indicating that the image force did not play an important 
role in the scavenging process. This is consistent with the finding of Wang and 
Pruppacher (1980a), who concluded that image force is unimportant in the scav-
enging of aerosol particles by water drops in the presence of an external electric 
field. 

Note that the insignificance of the electric effect in the present study is due 
to the negligible charges on the snow crystals. In other situations where snow 
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FIG. 5.27. Comparison of theoretical and experimental collection efficiencies for aerosol 
particles captured by columnar ice crystals. Solid curve, theoretical predictions; A, needles 
(experimental); D, column (experimental). 

crystals may carry substantial charges, the electric effect may become important. 
We have inadequate knowledge of the electric charges on ice crystals in thunder-
clouds and snowstorms. If these crystals are significantly charged, the electric effect 
may be expected to play an important role in the scavenging of particles in these 
clouds. 

For columnar ice crystals (including needles), Figure 5.27 shows the compar-
ison between the experimental results and the collection efficiencies predicted 
by the theoretical method described in Section 5.6 under the same experimen-
tal and atmospheric conditions. It is understood here that due to the many ex-
perimental difficulties and nonideal conditions (for example, the crystals are 
rarely exactly columnar), an exact comparison is not possible. The only param-
eter that can be used as the basis of comparison is the crystal length. Never-
theless, comparison of theory to experiment, for this single particle size and at-
mospheric environment, shows that the two are in the same general magnitude 
range. Moreover, both show a trend of decreasing efficiency with increasing crystal 
dimension. 
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6. EVOLUTION OF ICE CRYSTALS IN THE DEVELOPMENT 

OF CIRRUS CLOUDS 

6.1. Cirrus Clouds, Radiation, and Climate 

It is well known that cirrus clouds are composed almost completely of ice 
crystals. The common perception of cirrus is that they are thin clouds, but in 
reality they can be rather thick, sometimes reaching a vertical extent of a few 
kilometers (Fig. 6.1). Possibly, they appear thin because substantial parts of them 
are subvisual. 

In spite of their tenuous appearance, cirrus clouds have a pronounced influence 
on climate, owing to their effect on the radiation (Ramanathan et al, 1983). Cirrus 
clouds are usually located high in the troposphere where temperatures are low. By 

FIG. 6.1. The vertical profile of a cirrus cloud as a function of time as seen by a vertically 
pointing lidar. In a quasi-steady state condition, this profile is nearly equivalent to a snapshot of 
the cirrus at a certain time. (Courtesy of Dr. Edwin Eloranta.) 
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virtue of their low temperature, they will interact strongly with the upwelling and 
down welling infrared radiation in the atmosphere, as dictated by the Kirchhoff law. 
In addition, satellite observations indicate that cirrus clouds cover extensive areas 
of the earth (Warren etal, 1986, 1988; Wylie and Menzel, 1989). Together, these 
two factors imply that cirrus clouds can influence the radiative budget of the earth-
atmosphere system significantly. Their radiative effects can be highly variable 
given the high variability in their radiative and microphysical properties. Either 
cooling or warming can occur, depending on the cloud radiative properties, cloud 
height, and the clouds' thermal contrast with the surface (Manabe and Strickier, 
1964; Cox, 1971). 

Randall et al (1989), via a general circulation model (GCM), showed that 
upper tropospheric clouds have dramatic impacts on the large-scale circulation 
in the tropics, with attendant effects on precipitation and water vapor amounts. 
Ramaswamy and Ramanathan (1989), also through GCM studies, suggested that 
the discrepancies between previous simulations and observed upper tropospheric 
temperature structure in the tropics and subtropics can be explained by the radiative 
heating effects of cirrus cloud systems. These studies point out that cirrus clouds 
are likely to have great impacts on the radiation and hence the intensity of the 
general circulation. 

The cloud forcing in GCMs is currently a major uncertainty factor. Cess et al. 
(1989), who compared the outputs of 14 GCMs simulating an equivalent climate 
change scenario, found that the results of global temperature change in response 
to an imposed sea surface temperature change were relatively uniform when clear 
sky conditions were assumed for radiative computations. The results were very 
different when the radiative effects of clouds were included. They also found 
that the effect of cloud feedback was comparable in magnitude to that due to 
imposed forcing, i.e., the change in sea surface temperature, but the sign can 
be positive or negative depending on the model chosen. Needless to say, this 
does not build confidence in the model predictions, and there is an urgent need 
to reduce the uncertainty in the cloud radiative forcing in GCMs and climate 
models. 

The radiative properties of cirrus clouds depend on their microphysical char-
acteristics such as ice crystal size, concentration, habit, and spatial distribution. 
The uncertainty about the radiative properties of cirrus comes from our inade-
quate understanding of their microphysical behavior. One way to improve this 
understanding is to perform model studies, provided, of course, that the model is 
adequately realistic. 

In the following, a recent model study by our research group on the evolution of 
ice crystal microphysics in cirrus clouds is described. The details of the physics and 
mathematics of the model can be found in Liu (1999) and Liu et al (2001a,b,c). 
Here, we describe the essence of the model briefly, but the major results in some 
detail. 
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6.2. Physics of the Model 

The basic ideas of the cirrus model used for the present study were derived from 
an earlier work by Starr and Cox (1985a,b), but the details differ significantly. In 
this section, the main elements of the model is discussed. 

6.2.1. Model Philosophy and Components 

Three types of physical processes that have been identified as essential for the 
development of cirrus clouds are dynamic, microphysical, and radiative. Cirrus 
clouds often form during the large-scale lifting of moist air, starting as small 
ice crystals. If the upward motion persists long enough to cause further cooling 
of the layer, ice crystals will grow to sizes with substantial fall velocities; i.e., 
precipitation will occur. As ice crystals grow larger, the radiative effect becomes 
more significant. The resulting radiative heating profile changes the temperature 
lapse rate, and with it the dynamics in the cloud. A change in cloud dynamics will 
affect the microphysical processes, altering the size distribution of ice crystals. 
This, in turn, further modifies the radiative heating profiles within the cloud. It is 
clear that these processes are interactive, as shown in Figure 6.2. None of the three 
processes should be ignored in developing a cirrus model. 

The dynamics model is a modified 2-D version of the dynamics framework used 
in the 3-D WISCDYMM described by Straka (1989) and Johnson et al. (1993, 
1994). The main modification is in the advection scheme. For the turbulent kinetic 
energy, water vapor, and potential temperature, we use the sixth-order Crowley 
scheme (see Tremback et al, 1987). The numerical method used to calculate 
the advection of hydrometeors, however, is the total variation-diminishing (TVD) 
scheme as described by Yee (1987). The TVD scheme is introduced here because 
most other numerical advection scheme are dispersive across the discontinuity 
(the interface between the environment and the advected property), and thus may 
lead to negative values, which are unphysical for positive definite variables such 
as mixing ratios and concentrations of hydrometeors. TVD schemes, in contrast, 
can effectively eliminate the dispersive oscillation across the discontinuity. 

In the microphysical module, a double-moment scheme is used to predict the 
evolution of the ice crystal size distribution at each grid point. Both the mixing 
ratio and the number concentration of ice crystals are prognostic variables, from 
which the distribution mean diameter is then diagnosed. This is more realistic 
than predicting mixing ratio only, as most models with bulk microphysics do. The 
growth rate of an ice crystal is explicitly calculated in this model. In the growth 
equation of ice crystals, both the capacitance and the ventilation coefficients are 
functions of ice crystal shape. Ventilation coefficients for different shapes of ice 
crystals commonly observed in cirrus are computed using the method outlined 
in Section 4.3. Another important microphysical process, homogeneous freezing 
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• Include homogeneous freezing 
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R G . 6.2. The three modules in the present cirrus model. 

nucleation, is included in our model since this has been recognized as a very 
effective source of ice crystals in cirrus. 

Because cirrus cloud decks are usually optically thin and the mean free path 
for a photon colliding with a particle in cirrus is much larger than in a typical 
stratocumulus, the radiative heating is distributed through the entire cirrus cloud 
body instead of being distributed like two Dirac functions with opposite signs at the 
cloud top and bottom as in a typical stratocumulus cloud (Ackerman et al, 1988). 
Moreover, the volume absorption coefficient and the volume extinction coefficient 
are very sensitive to the ice crystal size distribution. As the cloud evolves, the 
change in ice crystal size distribution causes changes in the radiative heating rates 
not only within, but also below and above the cloud deck. It is therefore important 
to represent the ice crystal optical properties correctly. For this purpose, a modified 
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anomalous diffraction theory (MADT) proposed by Mitchell (1996) is employed. 
In comparison to most of the existing ice crystal optics parameterizations that 
are derived from limited sets of observations or laboratory results, MADT has 
more physics. Its parameterization is based on the physics of how the incident 
ray interacts with a particle. Through anomalous diffraction theory, analytical 
expressions are developed describing the absorption and extinction coefficients 
and the single scattering albedo as functions of size distribution parameter, ice 
crystal shape, wavelength, and refractive index. Therefore, the optical properties 
calculated are not based on an effective radius that has little physical meaning. 
Another advantage of MADT is that the scattering properties in the thermal infrared 
spectral range can be explicitly calculated, so that the scattering is not ignored. 
The radiative fluxes are calculated using a two-stream model. More details of the 
cloud microphysics and radiative modules are described in the following sections. 

6.2.2. The Microphysics Model 

As mentioned earlier, a detailed double-moment parameterization scheme is 
used in this model. This scheme assumes that various ice categories may be repre-
sented by continuous size distribution functions. Parameterizations are then devel-
oped for various physical processes including nucleation, diffusional growth, and 
collisional growth based on the assumed size distributions. These parameteriza-
tions determine how mass is transferred between various hydrometeor categories. 
Realistic evolution of the ice crystal size distribution is promoted via a double-
moment parameterization as noted earlier. 

Figure 6.3 shows the schematic of the cloud microphysical processes included 
in this model. Three categories of hydrometeors are considered: haze particles, 
pristine ice crystals, and aggregates. The size spectra of these hydrometeors are 
assumed to follow the inverse exponential distribution analogous to the well-known 
Marshall-Palmer distribution for raindrops (Marshall and Palmer, 1948): 

/ ^ ( D ) ^ i - e x p ( - ^ ) (6.1) 

where F{D) is the probability distribution function defined over a size interval, 
D is the diameter of the ice crystal, and D„ is the mean diameter. The number 
density, n(D), is determined by 

n(D) = NtF(D) (6.2) 

where Ât is the total number concentration of the ice crystal species. Ice crystals 
are assumed to satisfy certain characteristic dimensional relationships as described 
in Auer and Veal (1970), Heymsfield (1972), and Mitchell et al (1990). These 
relationships are expressed in terms of power laws and are given in Table 6.1. 
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FIG. 6.3. Block diagram of cloud microphysical processes in the model. 

Starr and Cox (1985b) have shown that the evolution of cirrus clouds is very 
sensitive to the terminal velocities of the ice crystals because they determine the 
sedimentation rate and hence the vertical extent and optical depth of the cloud. In 
this model we used a method similar to that of Bohm (1989) and Mitchell (1996) 
to determine the terminal velocities of ice crystals. 

As indicated in Figure 6.3, the homogeneous freezing nucleation, heterogeneous 
nucleation, diffusional growth and sublimation, and aggregation of ice crystals 
are all considered in this model. The homogeneous freezing parameterization is 

TABLE 6.1 POWER LAW RELATIONSHIPS FOR ICE CRYSTALS (c.g.s. UNITS) 

Habit 

Spheres 
Plates 
Columns 
Rosettes 
Aggregates 

Dimensional relationship 

W = D 
W = 0.0141 DO-4^5 
D = 0.26L 927 
W = D 
W = D 

Projected area-dimensional 
relationship 

A = (7r/4)Z)2 
A = 0.2395D^-^5^ 
A = 0.0459L1-415 
A = 0.0869D15^ 
A = 0.22S5D^-^^ 

Mass-dimensional 
relationship 

m = pi{7T/6)D^ 
m = 0.007384D2-449 
m = 0.016581^91 
m = 0.0459Z)i-4i5 
m = 0.0028 ID 2 1 
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TABLE 6.2 ICE CRYSTAL CAPACITANCE 

Expression Sources 

Columns Approximated by charger circular cylinders: Smythe, 1956, 1962; 
C = [0.708 + 0.6l5{b/af^% Wang, 1985 

Plates Approximated by oblate spheroids: Pruppacher and Klett, 1978 
C = ae/isin-^ s), s = [I - (b^/a^)f^ 

Spheres/rosettes C = ^D 

a = semi-major axis length; b = semi-minor axis length; D = diameter of a sphere. 

taken from DeMott (1994). The parameterization of Meyers et al (1992) is used 
to determine the heterogeneous nucleation rate due to deposition and embedded 
freezing (contact nucleation, on the other hand, is not considered). 

The diffusional growth rate of ice crystals is calculated based on the approxi-
mation of Srivastava and Coen (1992). The saturation vapor pressure over the ice 
surface, a necessary quantity, is determined by using the eighth-order polynomial 
fitofFlatau^r^/. (1992). 

The capacitances of ice crystals are also needed to determine their diffusional 
growth rates. The capacitances of ice columns are approximated by those of con-
ducting finite cylinders as given in Smythe (1956,1962) and Wang et al (1985). The 
capacitances of ice plates are approximated by those of conducting oblate spheroids 
as described in Pruppacher and Klett (1997). As for rosettes, both McDonald (1963) 
and Heymsfield (1975) pointed out that the capacitance for particles, though with 
more intricate pores in them, could be approximated by that for spherical particles, 
as is done in this study. The capacitance formulas mentioned above are given in 
Table 6.2. For the convenience of computation, these formulas are approximated 
by power laws as shown in Table 6.3. 

When particles are large enough to have sustained terminal velocities, the ven-
tilation effect on the growth rate has to be considered. For ice columns and plates, 
the ventilation coefficients are taken from Ji and Wang (1998; see Section 4.3). 

TABLE 6.3 COEFFICIENTS AND POWERS FOR ICE 
CRYSTAL CAPACITANCE (m) 

Ice crystal type Power law 

Columns O.ll^D^-^'^ 
Plates O.IUD^-^^ 
Spheres/rosettes 0.5 D 
Columns 0.278^^-^^ 
Plates 0.277D -̂9^ 
Spheres/rosettes 0.5 D 
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For ice spheres, the values are taken from Hall and Pruppacher (1976). Note that 
these are just the ventilation coefficients for individual ice crystals. In the model 
we need to compute the distribution mean ventilation coefficient across the whole 
size spectrum of ice crystals so that the mean mass diffusional growth rate can be 
determined. This distribution mean ventilation coefficient is 

/»oo 

/ = / Cf,F(D)dD (6.3) 
Jo 

where C is the capacitance and /v is the ventilation coefficient of the ice crystal. 
The aggregation of ice crystals also contributes to the change in their size distri-

bution. The growth rate due to aggregation is determined by solving the stochastic 
collection equation: 

dt \^y 4y0o Jo Jo 

X \VAD,) - Vy(Dy)\MD,)fy(Dy)dD, dDy (6.4) 

and the change in concentration collected by species x is 

dN 
dt 

/»CXD i*Dc 

/ / ^ -
Jo Jo 

' ' ^ ' ^ ,y(D, + DyflvAD.) - Vy(Dy)\ 
xy 

XMD,)fy(Dy)dD,dDy (6.5) 

Here E^^y is the collection efficiency, which is the product of the collision and 
coalescence efficiencies; Dc is the diameter of species x, whose volume Vc is 
equal to or less than that of species y. Note that in Eqs. (6.4) and (6.5) the 
smaller particle can have a greater terminal velocity than the larger particle. 
In the above equations, only particles of species x are allowed to be collected 
by species y. This is done so as to prevent duplicate collections which occur 
when species x collects species y. Since the stochastic collection equation has no 
straightforward analytical solution, solutions for Eqs. (6.4) and (6.5) are calcu-
lated by numerically integrating the equation over 100 discrete size intervals in D^ 
and Dy. 

There are analytical solutions for Eqs. (6.4) and (6.5) for collection within the 
same ice category (self-collection process). According to Verlinde et al. (1990), 
the analytical solutions for the change in mixing ratio due to self-collection can be 
written as 

dq 

dt 

1 n 
= --EJ,, (6.6) 

self PO 4 



6. EVOLUTION OF ICE CRYSTALS IN THE DEVELOPMENT OF CIRRUS CLOUDS 205 

where 

i\72 
^ XX — 2 Nlm{D„)VlD„)DiC, (6.7) 

Cjrx — / , 
«=0 

r(/?)2Fi(t) + n,/j;j; + n + l ; - l ) 
V -\-n 

V(v + n)r(p„ + pv + 

2 

u - n + 2) 

+ E 
n=0 

r ( i ; + Pv + «)r(/7ni + U - Al + 2) 

r(^)2/^i(i^ + Pv + «, ry; i; + pv + « 4-1; - 1 ) 

(6.8) 

and 

^ = Pm + Pv + 2i; + 2 (6.9) 

The change in number concentration due to self-collection can be expressed as 

I self dt 4 
(6.10) 

where 

^xx — 2_^ 
n=0 

Jxx = \N^V,{D„)DlC,, 

-T{r])2Fi(v + n,»?; V + « + 1; - 1 ) 

(6.11) 

V -\-n 

T{v + n)T{p^ + u - n + 2) 

2 
+ E 

n=0 f + /?v + n ̂ {'n)2Fi{v + /7v + «, ^; t* + Pv + « + 1 ; - i ) 

- r(i; + pv + «)r(i; - Az + 2) 

and 

T] = Py-i-lV -\-2 

(6.12) 

(6.13) 

In the above equations, r2Fi is the Gaussian hypergeometric function, p^ is the 
exponent in the power-law relationship for terminal velocity, pm is the exponent 
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TABLE 6.4 BANDS IN THE RADIATIVE TRANSFER MODULE (SOLAR SPECTRUM) 

Band number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Band center 
(fim) 

0.25 

0.35 

0.45 

0.55 

0.65 

0.78 

0.94 

1.14 

1.38 

Fractional solar energy 
distribution (%) 

1.2019 

7.5150 

13.8740 

13.0840 

11.1960 

13.7430 

11.4830 

6.2990 

10.2070 

Absorption 
coefficient A'N 

135.000000000* 
12.549720000 
0.000000000 
6.091203000* 
1.177907000 
0.572324000 
0.000000000 
0.153407000* 
0.115351000 
0.000000000 
0.115351300* 
0.056013310 
0.000000000 
0.115351300* 
0.056013310 
60.857640000* 
0.007011613 
0.003504144 

135.000000000* 
36.586678000 
8.313803000 
2.362969000 
1.529817100 
0.563513920 
0.089909350 
0.000000000 

135.000000000* 
52.704774000 
17.572670000 
4.598316400 
1.497370000 
0.464925900 
0.087403004 
0.000000000 

135.000000000* 
45.155164000 
15.270085000 
3.191396700 
0.697789060 
0.114325470 
0.000000000 
0.000000000 

Weighting 
function W N 

0.68594100000 
0.29036870000 
0.00003220838 
0.12196820000 
0.07025021000 
0.23763020000 
0.57011060000 
0.02926001000 
0.01340009000 
0.95734590000 
0.47060510000 
0.46009560000 
0.06927936000 
0.25875810000 
0.74121330000 
0.00003323726 
0.69653730000 
0.30343740000 
0.00432769880 
0.00774681680 
0.01625321900 
0.02797893000 
0.01446416500 
0.07340810400 
0.21243957000 
0.64278851000 
0.00880807980 
0.00123414800 
0.01761926000 
0.02863373200 
0.04850655200 
0.08106161100 
0.14613502000 
0.66694856000 
0.05729474000 
0.00990807900 
0.10932248000 
0.11710367000 
0.10823056000 
0.14210582000 
0.44322885000 
0.00000000000 

Gaseous 
absorption 

O3 

O3 

O3 

O3 

O3 

O3 

H2O 

H2O 

H2O 
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TABLE 6.4 (continued) 

Band center Fractional solar energy Absorption Weighting Gaseous 
Band number (^ni) distribution (%) coefficient K^ function WN absorption 

10 1.87 6.7630 135.000000000* 0.04863024000 H2O 
45.155160000 0.01039200000 
15.270090000 0.08680198000 
3.258179000 0.08230453000 
0.666104600 0.06686005000 
0.079500980 0.17443730000 
0.000000000 0.51901520000 
0.000000000 0.00000000000 

11 2.70 3.6100 135.000000000* 0.18767610000 H2O 
45.155160000 0.08640150000 
15.221560000 0.06783896000 
8.911640000 0.14627670000 
1.872147000 0.15094330000 
0.400341300 0.20267700000 
0.048934550 0.10063670000 

* Denotes absorption coefficients for Rayleigh absorption. 

in the power-law relationship for ice crystal mass, and the rest of the variables are 
as previously defined. The collection efficiency, which is used in the collection 
equations, can be factored into two components, the collision efficiency (̂ coii)̂  
and the coalescence efficiency (£'coai)-

E = Ecoll X £coal (6.14) 

In this study, the coalescence efficiency is assumed to be 1, and the collision 
efficiency is set at 0.1 (Kajikawa and Heymsfield, 1989). 

6.2.3. The Radiative Transfer Model 

In order to calculate the radiative heating rates, the radiative transfer equations 
must be solved and the cloud optical properties determined. Since the upward and 
downward fluxes at a given layer in the atmosphere are the main concern here, it 
is not necessary to calculate the radiance distribution at each level. Instead, a two-
stream/adding model (Ackerman and Stephens, 1987) is used to calculate 
radiative fluxes at each grid point. The one applied here is a narrow-band model, 
which divides the solar and terrestrial radiation spectrum into 11 and 20 spectral 
bands, respectively. Tables 6.4 and 6.5 summarize these bands. The cloud optical 
properties are computed using the modified anomalous diffraction theory (MADT) 
proposed by MitcheU (1996, 1998) for ice particles of different shapes. With 
the use of MADT, analytical expressions can be obtained for describing the absorp-
tion and extinction coefficients and the single scattering albedo as functions of size 
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TABLE 6.5 BANDS IN THE RADIATIVE TRANSFER MODULE (TERRESTRIAL SPECTRUM) 

Band center Bandwidth Absorption Weighting Gaseous 
Band number (/zm) (/^m) coefficient ^ N function WN absorption 

1 4.71 

5.00 

5.26 

5.56 

10 

6.25 

6.67 

7.14 

7.70 

8.70 

3.00 

4.99 

5.13 

5.41 

5.71 

6.06 

6.45 

6.90 

7.40 

8.00 

1.02270 
0.09935 
7.46580 
0.24615 
1.24530 
4.70600 

77.18300 
17.33800 
1.02390 
4.61050 

47954.00000 
21321.00000 

26.25500 
49.70900 

217.62000 
2844.10000 

41242.00000 
807.17000 

44.54700 
200.56000 

2079.00000 
38140.00000 

682.94000 
27.79500 

142.99000 
1209.88000 
3390.50000 

487.11000 
12.40400 
58.74100 

496.14000 
1247.70000 

168.56000 
8.38210 
2.95740 

24.47500 
347.17000 

79.97900 
3.34820 

24.77400 
0.75039 
0.18471 
1.00000 

0.24189 
0.64075 
0.11349 
0.37737 
0.29677 
0.16017 
0.06306 
0.10260 
0.23925 
0.37021 
0.00853 
0.10218 
0.27983 
0.33730 
0.33385 
0.10910 
0.00455 
0.21519 
0.33757 
0.35053 
0.08749 
0.00135 
0.22305 
0.41228 
0.30772 
0.09035 
0.02281 
0.16583 
0.37385 
0.32079 
0.09805 
0.02305 
0.18425 
0.22777 
0.07143 
0.26819 
0.02050 
0.22761 
0.25107 
0.19668 
0.33681 
0.21535 
1.00000 

H2O 

H2O 

H2O 

H2O 

H2O 

H2O 

H2O 

H2O 

H2O 

H2O 
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TABLE 6.5 (continued) 

Band number 

11 

12 
13 
14 

15 

16 

17 

18 

19 

20 

Band center 
(Mm) 

9.70 

10.50 
11.75 
12.90 

15.30 

18.62 

22.50 

28.60 

40.00 

100.00 

Band width 
(/xm) 

9.40 

10.00 
11.00 
12.50 

13.30 

17.24 

20.00 

33.30 

50.00 

125.00 

Absorption 
coefficient ^ N 

119.76600 
22.26470 

2647.50000 
64387.00000 

1.00000 
1.00000 

135.30000 
3.75265 
0.53660 
0.08288 
0.00000 

135.30000 
3.75265 
0.64362 
0.10837 
0.00000 

135.00000 
10.66490 
3.75716 
1.37011 
0.47950 
0.18251 

135.00000 
12.91897 
6.01122 
2.33170 
0.70562 

135.00000 
5.80000 
0.00000 

61.06500 
554.22000 

9745.10000 
1884.40000 

182.85000 
389.43000 

17814.0000 
1159.4000 
3966.1000 

133.6000 

Weighting 
function W^ 

0.06310 
0.12344 
0.63267 
0.18079 
1.00000 
1.00000 
0.01493 
0.05505 
0.10154 
0.49848 
0.32999 
0.05973 
0.13612 
0.26775 
0.41955 
0.11683 
0.13599 
0.15818 
0.19582 
0.23766 
0.23491 
0.03807 
0.22419 
0.32042 
0.06852 
0.32235 
0.06242 
0.75308 
0.24472 
0.00213 
0.09530 
0.25561 
0.20390 
0.19568 
0.24952 
0.23989 
0.19969 
0.26330 
0.21371 
0.08337 

Gaseous 
absorption 

H2O, O3 

H2O 
H2O 
H2O 

H2O, CO2 

H2O 

H2O 

H2O 

H2O 

H2O 
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FIG. 6.4. Links between the microphysics module and the radiation module. 

distribution parameter, ice crystal shape, wavelength, and refractive index. The 
links between the radiative transfer module and the microphysics module to calcu-
late the radiative heating rates are illustrated in Figure 6.4. By using this method, 
the absorption coefficient, extinction coefficient, and single scattering albedo can 
be calculated accurately for both the solar and terrestrial spectrum and scattering 
is not ignored when calculating thermal infrared radiation. In this study, the ra-
diative heating rates are calculated for the solar spectrum and terrestrial spectrum 
separately. 

The indices of refraction for ice used in this study are from Warren (1984), 
and are shown in Figure 6.5. The absorption of terrestrial radiation is significant 
throughout the whole thermal infrared spectrum, while the absorption of solar 
radiation for ice is much weaker. Ice crystals are almost transparent at wavelengths 
less than 2 /xm, so the solar heating is expected to be small compared to thermal 
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1000 

infrared heating. On the other hand, ice has a very pronounced absorption feature 
near 3 /xm that can lead to significant heating. In this model, vertical atmospheric 
columns are assumed to be independent of each other. Consequently, interactions 
of radiative flux among adjacent columns are ignored. 

6.3. Design of the Present Simulation Study 

There is a wide range of possible environmental and physical factors that may 
influence the development of cirrus clouds. Table 6.6 lists several physical param-
eters that are important to cirrus clouds. Environmental forcing such as large-scale 
lifting (vertical motion) and static stability are important, as are cloud height 
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TABLE 6.6 IMPORTANT ENVIRONMENTAL AND MICROPHYSICAL FACTORS FOR CIRRUS CLOUDS 

Parameters Combinations 

Cloud height (temperature) Warm versus cold cirrus 
Large scale forcing Weak versus strong vertical uplifting 

Cirrus uncinus: 100-150 m/s 
Warm front overrunning: 2-10 cm/s 
Warm front occlusion: 20 cm/s 
Cloud low aloft: 25-50 cm/s 

Horizontal wind shear No shear versus weak to strong shear (usually positive) 
Ranging from about 4 m s~̂  km~^ in summer to 

6.5 m s~̂  km~^ in winter 
Time of day Nighttime versus daytime (thermal infrared only versus 

solar and thermal infrared radiation) 
Stability (thermal stratification) Stable condition versus conditionally unstable condition; 

quite variable 
Ice crystal habit Hexagonal columns C 0 

Bullet rosettes ^ 

Hexagonal plates { ^ 

Spheres (assumed by most models) (̂ _^ 
CCN composition and concentration (NH4)2S04 versus H2SO4 

(temperature or pressure factor), ice crystal habit, and the time of day. Another 
important factor, wind shear, is not considered in the present study. 

To test the influence of these parameters on the evolution of ice microphysics in 
cirrus clouds, several model simulations are performed under different prescribed 
environmental and physical conditions. In particular, the following parameters 
are tested. 

(1) Static Stability 

Cirrus cloud layers are in general statically stable in an absolute sense, with lapse 
rates less than the moist-adiabatic rates with respect to either water or ice. Some 
cirrus clouds are located above stable layers, indicating that they are associated 
with upper-level fronts. Others are below stable layers, indicating that they are 
located just below the tropopause. FIRE observations revealed that cirrus could 
also be found in a conditionally unstable environment whose lapse rate is slightly 
greater than moist-adiabatic, but much less than the dry-adiabatic. 

(2) Cloud Height 

Another consideration for the design of the simulation sets is the cloud height, 
i.e., the vertical location of cirrus. Ackerman et al (1988) pointed out that the 
cloud heating rates and cloud base warming due to thermal infrared heating are 
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very sensitive functions of cloud height and thickness. In addition, the altitude of 
high cirrus clouds makes in situ measurements of their microphysical properties 
by aircraft a difficult task. A numerical simulation of such clouds may provide 
some useful information that is otherwise difficult to obtain. 

In this study, we consider two types of atmospheric stability regimes in the 
simulation sets. The first is a statically stable atmosphere, and the other is a condi-
tionally unstable layer overlying a stable layer. Each of the two stability conditions 
is combined with one of two upper-tropospheric cloud heights designated as "cold" 
and "warm," to signify a high summertime cirrus layer and lower-lying springtime 
cirrus layer, respectively. This forms four kinds of atmospheric background pro-
files, which we call cold-stable, cold-unstable, warm-stable, and warm-unstable 
to schematize four typical environments for cirrus. Atmospheric profiles repre-
senting these four cases were made available by cirrus observation groups at 
NASA (GCSS WG2), and are thought to be representative for specific seasons 
and locations. Table 6.7 lists some general conditions of the cold, warm, stable. 

TABLE 6.7 DEFINITION OF INITIAL PROFILES 

Definitions Descriptions 

WARM 

COLD 

STABLE 

UNSTABLE 

U.S. Spring/Fall atmosphere 
March 21 (80 Julian day) 
Location: 45°N 
Initial supersaturated layer: 

Height: 8-9 km 
Temperature: -37°C ~ -48°C 

Surface temperature: 15°C 
Surface albedo: 0.2 
Tropopause at 10.5 km (-56.6°C) 
Simulation time: 13:00-16:00 
Solar zenith angle: 47.8°-69.9° 
U.S. SunMner 
June 21 (172 Julian day) 
Location: 30°N 
Initial supersaturated layer: 

Height: 13-14 km 
Temperature: -56°C 68°C 

Surface temperature: 31.4°C 
Surface albedo: 0.2 
Tropopause at 15.5 km (—76°C) 
Simulation time: 13:00-16:00 
Solar zenith angle: 14.9°-53.4° 
Temperature lapse rate is 8°C/km in the initial 

supersaturated layer 
Temperature lapse rate is ice pseudoadiabatic 

lapse rate for the lower 0.5 km supersaturated layer 
Temperature lapse rate is l°C/km greater than 

the ice pseudoadiabatic lapse rate for the upper 0.5 km 
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FIG. 6.6. Profiles of background atmospheric conditions for the warm-unstable case. 

and unstable situations. The details of the four background profiles are given in 
Figures 6.6 through 6.9. 

The warm cirrus profiles are based on the U.S. Standard Spring Atmosphere at 
45°N. The cold cirrus profiles are based on the U.S. Standard Sunmier Atmosphere 
at 30°N. Surface temperature is 15°C for warm cirrus, and 31.4°C for cold cirrus. 
The corresponding background tropospheric temperature lapse rates are 6.5°/km 
and height-dependent. The tropopause occurs at 10.5 km (—56.5°C) and 15.5 km 
(—76°C), respectively. The background tropospheric relative humidity is set to 
40% with respect to a plane water surface. Profiles in Figures 6.6 through 6.9, 
all versus height, include temperature, potential temperature, water vapor mixing 
ratio, temperature lapse rate, and relative humidities with respect to a plane water 
surface and plane ice surface. Temperature lapse rates for the warm-unstable case 
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FIG. 6.7. Profiles of background atmospheric conditions for the warm-stable case. 

are ice pseudoadiabatic from 8.0 to 8.5 km, and l°C/km greater than the ice 
pseudoadiabatic from 8 km to 9.0 km. Similarly, temperature lapse rates for the 
cold-unstable case are ice pseudoadiabatic from 13 to 13.5 km, and a value l°C/km 
greater than the ice pseudoadiabatic from 13.5 km to 14 km. For the statically stable 
cases, the lapse rates in these layers are set to 8°C/km in each profile. Relative 
humidity with respect to ice in the unstable cases is 100% at the base of the ice-
neutral layer and increases linearly with height to the base of the conditionally 
unstable layer, within which it is constant at 120%. Since both daytime and night-
time cirrus cases are examined in this study, some care must be taken regarding 
solar geometry, which is defined via a specification of latitude, date, and initial 
local solar time (LST). We choose March 21 (Vernal Equinox) for the warm cirrus 
cases and June 21 (Summer Solstice) for the cold cirrus cases. The simulations 
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FIG. 6.8. Profiles of background atmospheric conditions for the cold-unstable case. 

run for three hours from 1300 to 1600 LST. The corresponding solar zenith angle 
varies from 47.8° to 69.9° for the warm cirrus cases and from 14.9° to 53.4° for 
cold cirrus cases. We also assume that the surface albedo is 0.2, representing a 
climatological averaged value. 

(3) Ice Crystal Habit 

As we indicated before, ice crystals of different habits may grow at different 
rates through either diffusional or coUisional processes. In the present study, we 
also look into the effect of ice crystal habit on the cirrus development, assuming 
that the cloud consists of one of the following form types of ice crystals: hexagonal 
columns, hexagonal plates, bullet rosettes, or ice spheres. The first three are 
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FIG. 6.9. Profiles of background atmospheric conditions for the cold-stable case. 

commonly observed in cirrus clouds. The last kind has been used in many earlier 
Studies for simplified ice microphysics modules and is used here as a reference 
case for comparison. 

(4) Ventilation 

In this model, we have implemented more accurate ventilation coefficients of 
nonspherical ice crystals as reported by Ji and Wang (1998). Because it would be 
useful to investigate the impact of ventilation, we have therefore performed and 
compared simulations with and without the ventilation effect. 

For all simulations, we chose ammonium sulfate [(NH4)2S04] particles as the 
cloud condensation nuclei in our model. Although there is still debate about the 
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FIG. 6.10. Schematic of the model domain and initial configuration. 

CCN types in cirrus, ammonium sulfate is currently thought to be the most impor-
tant one. 

6.4. Numerics of the Model 

The model domain (Fig. 6.10) is two-dimensional and represents a cross section 
of cirrus advected by a nonsheared mean wind. The initial supersaturated layer is 
about 1 km thick. Temperatures in the supersaturated layer are randomly perturbed 
between —0.02°C and 0.02°C relative to the base-state profile to generate an initial 
disturbance. 

A weak large-scale updraft of 3 cm s~̂  is imposed for all simulations. Vertical 
motions of this magnitude are very typical for fair-weather cirriform clouds. The 
temperature change resulting from the adiabatic expansion due to this small updraft 
is very weak and will not obscure the signal produced by the radiative effects. This 
makes it possible to examine the effect of radiation on the cirrus development. 

The horizontal scale of the model is 20 km, and the vertical scale is 6 km. The 
spatial resolution used here is 200 m horizontally and 100 m vertically. In a test 
experiment in which the grid size was reduced to 100 m in the horizontal and 50 m 
in the vertical, the results did not show obvious differences from those obtained 
using the 200 x 100 m^ grid cells. 

Four time steps are applied to the different modules seperately: the radiative 
time step A r̂ad. the respective small and large dynamic time step Â dyn-smaii and 
Â dyn-iarge. and the microphysical time step A^mic. In order to reduce the computa-
tional time spent on radiative transfer, the radiation time step is usually set larger 
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than the dynamic time step (Lin, 1997). So the radiative transfer module is evaluated 
at 30 s, implying that the radiative heating rates remain constant during this 30 s. 

Since our model system is quasi-compressible, the dynamic module is split into 
two parts, one for non-sound-wave related variables (large time step), the other is 
for sound-wave related variables (small time step). For computational stability, the 
dynamic time step has to meet the CFL (Courant-Friedrichs-Lewy) condition: 

Ax 
Af < — - (6.15) 

•^max 

where Vmax is the maximum possible applicable phase speed including those of 
sound waves, falling particles, and the wind. Setting the dynamic step to 1 s requires 
that Vmax be less than 100 m s"^. This value is well above the terminal velocities 
of ice particles and the maximum wind speed in this study. As for the phase speed, 
the dispersion relation for linear internal gravity waves is 

Nk 

where v is frequency, k and m are the wave numbers in the horizontal and vertical 
directions respectively, and Â  is the Brunt-Vaisala frequency. The horizontal and 
vertical phase speeds are equal to v/k and v/m, respectively, with maximum 
possible phase speed about 3-4 m s~^ also well below 100 m s~^ Therefore, 
setting Â dyn-iarge cqual to 1 s is well suited to our situation. On the other hand, 
if we set Afdyn-smaii equal to 0.1 s, Vmax must be smaller than 900 m s"^ This 
magnitude justifies the value of 0.1 s for the small dynamic time step in this study 
since the sound wave in our model has been reduced to 100 m s~^ 

In the microphysical module, the time step is set to 1.0 s. Theoretically, the 
time step for the diffusional growth of hydrometeors requires 0.2 s to ensure 
computational stability. We performed the test using 1.0 s, and the results did not 
show large differences from those using 0.2 s. Therefore, the time step for the 
microphysical module is set to 1.0 s. 

6.5. Results and Discussion 

6.5.1. Development of Cirrus Clouds in Different Atmospheric Environments 

We first examine the development of cirrus clouds in the four different back-
ground environments. The ice crystals in these clouds are assumed to be columns 
for simplicity. Both solar (mainly shortwave) and terrestrial (mainly IR) radiations 
are included, implying that the results pertain to the daytime situation. In all cases, a 
background updraft of 3 m s~4s imposed at all times. The microphysical and radia-
tive profiles presented in the following sections are horizontally averaged values. 
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6.5.1.1. Warm-Unstable Case 

Figure 6.11 shows the vertical profiles of ice water content (IWC) and the number 
concentration (A )̂ of the cirrus cloud at 20,40,90, and 180 min. The top two panels 
show the total (pristine ice + aggregate) IWC and Â , whereas the middle and lower 
two panels show these quantities for pristine ice and aggregates separately. 

The top panels show that both IWC and Â  increase rapidly during the first 40 min, 
mainly due to homogeneous freezing nucleation. This nucleation process begins 
at 14.4 min and ends around 37 min. At each time the ice number concentration in 
general increases with height to a maximum somewhere in the upper cloud layer, 
then decreases sharply toward the cloud top. The peak number concentration of 
ice reaches its maximum value at about 40 min near the cloud top (9 km) before 
the decay starts. The decrease of ice concentration with height in the upper cloud 
layer is due to the fallout of ice crystals to lower layers and the termination of the 
nucleation process. The first mechanism is obviously triggered by the growth of ice 
crystals and their accompanying increases in fall speeds. The second mechanism is 
due to the diminishing water vapor supply, which is depleted by the rapid nucleation 
in the early stages of the cloud development. 

The peak ice water content also is greatest at 40 min, as IWC values are generally 
greater in the upper parts of the cloud. 

After 40 min, the peak values of IWC and Â  decrease while the thickness of the 
cloud increases from the original 1 km of the supersaturated layer depth to about 
4 km at ^ = 180 min. This is undoubtedly due to the continuous settling of larger 
ice crystals, extending the cloud downward. While the ice concentration seems 
to redistribute more evenly in the vertical, the IWC has a pronounced relative 
minimum near 8 km at this time, essentially splitting the cloud into two distinct 
layers. This two-layer structure is most likely due to the increasing aggregation in 
the lower layer coupled with fairly active cloud development in the upper layer at 
the same time, as will be elaborated later. 

The middle panels represent the time variation of the IWC and Â  profiles for 
pristine ice. It is clear that these curves mostly parallel those in the upper panels, 
reflecting the fact that pristine ice crystals are the dominant particles in the cloud, 
and the trends in the preceding two paragraphs apply to them as well. 

The differences between the curves in the upper and middle panels, then, are 
caused by the behavior of the ice aggregates, as revealed in the lower panels. 
The lower left panel shows the behavior of the aggregate IWC. Aggregates do 
not form in the early stages because the ice crystals are small and the collisions 
between them are rare and inefficient. As ice crystals grow, however, collisions 
that result in aggregation become more frequent. Appreciable aggregation starts 
at about 40 min, modifying the IWC profile in the lower part of the cloud. The 
development of both Â  and IWC for aggregates become more vigorous and spreads 
in the vertical. Note that while the values of aggregate IWC are only a few times less 
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than those of pristine ice, the concentration values are about 100 times lower 
and hence do not significantly modify the total ice concentration profile. The 
aggregate concentration profile shows a more pronounced lower peak than the IWC 
profile. 

Figure 6.12 shows the time variation of ice crystal size. Interestingly, the peak 
sizes of both pristine ice and aggregates do not seem to change appreciably over 
time, and only their positions are shifting. The pristine ice mean size profile shows 
a double-peak structure in the later stages of the cloud development, corresponding 
well to the total IWC profile. Even the aggregate size profile shows the double-peak 
structure, although the relative minimum is located slightly lower. 
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FIG. 6.13. Profiles of horizontally averaged (a) solar radiative heating rates ((2sw)> (b) IR 
hearing rates (Qir), and (c) latent heating rates (Qc). 

The effects of the cirrus cloud on radiation and latent heating are shown in 
Figure 6.13. Figure 6.13a shows the profile of the solar heating rate, which is 
sensitive to both the IWC and ice number concentration and becomes stronger 
in general when both those properties increase. Comparing Fig. 6.13a with the 
top two panels of Figure 6.11, we see that the solar heating rate profile generally 
parallels that of IWC and N, although the relation is nonlinear. Thus the strongest 
solar heating occurs at about 9 km. 
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The situation with the infrared heating is more complex. The cirrus cloud is 
"thin" in the sense of visible (shortwave) radiation, but not in the sense of IR. Ice 
particles in cirrus are efficient IR absorbers, and this is reflected in Figure 6.13b. 
Since IR enters the cloud from below, the lower parts of the cloud get heated first 
and the heating reaches a maximum at 8.8 km, lower down than the solar heating 
maximum. The peak heating rate, occurring at ^40 min, is ~llK/day, nearly 
twice that of the peak solar heating rate. 

Instead of heating, the upper part of the cloud shows cooling in the IR band. 
Apparently, most terrestrial IR has been absorbed before reaching the upper cloud 
region, and the ice crystals there radiate more IR than they receive. It appears 
that, unlike for the solar radiation, which results in net heating, the IR heating 
and cooling in the cirrus cloud seem to cancel each other and thus result in little 
net heating or cooling. But it does have an important dynamic effect. The IR 
cooling maximum occurs at an altitude only slightly above the maximum solar 
heating, so that these two heating mechanisms tend to cancel each other at the 
same height level. However, the peak IR cooling rate, occurring at / ^ 40 min, 
is about 16K/day, more than compensating the peak solar heating of ^6K/day. 
Consequently, the net radiative effect of the upper cloud parts will be cooling, as 
will be elaborated later. For now, we note that peak warming in the lower parts 
and peak cooling in the upper parts of the cloud both occur at ~40 min. This 
warm-bottom/cool-top configuration obviously destabilizes the cloud layer and 
tends to promote stronger convection in the cloud if not compensated by other 
effects. But, as we have seen from the IWC and other microphysical profiles, 
this does not occur, implying that other factors do influence the cloud develop-
ment. 

Aside from microdynamic factors such as the aggregation and sedimentation of 
the ice crystals, as discussed previously, another factor of importance to the cloud 
development is latent heat. Figure 6.13c shows the time variation of the latent 
heating rate profile. Naturally, cooling occurs wherever there is evaporation. 

In the early stages, the ice nucleation commences vigorously in the original 
supersaturated upper cloud layer and releases large amounts of latent heat in a short 
time. The latent heating rate at r ~ 25 min exceeds 30K/day, being nearly three 
times the IR heating rate and nearly five times the solar heating rate. Undoubtedly, 
the latent heating is the dominant factor. 

6.5.1.2. Cold-Unstable Case 

The results of the cold-unstable case look substantially different from those of the 
warm-unstable case. The time variation of the profiles for number concentration 
and water contents of total ice, pristine ice, and ice aggregates are plotted in 
Figure 6.14. Large amounts of ice crystals are produced in the upper cloud lay-
ers during the first 30 min due to rapid homogeneous freezing nucleation. The 
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homogeneous nucleation begins at 13.7 min and ends around 33 min. It is activated 
again in the last 5 min of the simulation. The ice number concentration in general 
increases from the cloud base to a maximum value in the middle of the cloud, 
then decreases toward the cloud top, reaching its peak value near the cloud top 
(13.8 km) at about 30 min. Although it begins to decay after 30 min, the rate of 
decay is much slower than in the warm-unstable case. There is no double-layer 
structure, unlike in the warm-unstable case. In addition, the maximum concentra-
tion remains in the initial supersaturated layer to the end of the simulation. The 
behavior of the ice concentration may be the result of two processes. First, 
the heterogeneous nucleation process remains very active in the upper layer after 
the 30-min rapid growth period. This is because ice crystals grow more slowly at 
low temperatures and consume less water vapor per unit time, allowing more new 
ice crystals to nucleate through the heterogeneous nucleation process.The Second, 
the slow growth rates imply that the ice crystals remain small, maximum horizon-
tally averaged mean sizes of pristine ice and aggregates are 20 /xm and 100 /xm, 
respectively (Fig. 6.15). Their fall velocities are small in this size range. Conse-
quently, there are still many ice crystals remaining in the initial supersaturated 
layer by the end of the simulation. Although the ice number concentration starts to 
decay after 30 min, the ice water content keeps increasing long after, reaching its 
maximum value at about 150 min. This is because there are new ice crystals pro-
duced near the cloud top at all times and the ice crystal fallout rate is low due to their 
small sizes. Hence, most ice crystals continue to grow in the supersaturated layer. 

Both the number concentration and IWC of aggregates at all levels are much 
smaller than those of pristine ice during the simulation, by the end of which the 
aggregates are concentrated in the lower parts of the cloud layer. The lowest 600 m 
of the cloud consists mostly of ice aggregates. 

The profiles of the solar heating rates are shown in Figure 6.16a. Overall, the 
structure is similar to that of the warm-unstable case; namely, the maximum is 
near the cloud top. The peak solar heating occurs at around 30 min, again similar 
to the previous case. 

The profiles of IR heating rates also change dramatically with time (Fig. 6.16b), 
but the behavior is significantly different from that of the warm-unstable case. The 
IR heating increases upward to a maximum value near 13.5 km level, then decreases 
toward the cloud top. The IR cooling at the cloud top is neghgible, whereas the IR 
warming is significant throughout the whole cloud layer. This is because that the 
cirrus cloud simulated here is optically thin so that the IR radiation entering the 
cloud base can reach the cloud top. Thus, the whole cloud layer is radiatively heated 
during the simulation. The magnitude of IR heating rates is again much larger than 
solar heating. The maximum IR heating in the cloud can be as large as 40°C/day 
during the simulation. It is interesting to note that both IR and solar radiative 
heating rates seem to be more sensitive to ice number concentration than to IWC. 
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The profiles of latent heating rates are shown in Figure 6.16c. The magnitude 
of latent heating is much smaller than that of the IR heating rate. This is caused by 
the small growth rates at cold temperatures that result in insignificant sublimation 
until 90 min into the simulation. 
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6.5.1.3. Warm-Stable Case 

We now turn to the stable cases, examining the warm-stable case first. A special 
feature of the model results from this case, in contrast to the two previous cases: No 
homogeneous freezing nucleation takes place during the 180 min of simulation. 
This is mainly due to the initial stable structure that limits the vertical motion and 
hence the development of cloud and the vertical transport of water vapor available 
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for the ice crystals to grow. Therefore, the cloud interior is not sufficiently cold 
or moist to favor homogeneous nucleation. As a result, the source of ice crystals 
for stable cases comes only from heterogeneous nucleation, which produces many 
fewer ice crystals than does the homogeneous nucleation process. The profiles of 
horizontally averaged ice water content and number concentration are shown in 
Figure 6.17. The location of maximum IWC moves rapidly downward with time 
due to the sedimentation during the first 40 min of the simulation. After that, the 
maximum stays fairly consistently at ~7.5 km. 

The time variation of ice number concentration profile is more complicated. 
During the early simulation stages, the number concentration is distributed more 
or less uniformly within the initial supersaturated layer. This is because the initial 
relative humidity with respect to ice is uniform and only heterogeneous nucle-
ation (which depends only on relative humidity) is involved. However, as time 
goes on, the number concentration changes dramatically. At later stages of the 
simulation, the ice crystals seem to concentrate in the subsaturated lower part of 
the cloud. This is because, at these stages, ice crystals grow larger when they 
fall down to the subsaturated environment so that most of them do not sublime 
to their core size. Consequently, the number of ice crystals does not decrease 
much due to sublimation in the lower part of the cloud. In fact, the number of 
ice crystals actually increases because ice crystals settling from the upper cloud 
layer are added to the ice concentration in the lower cloud layer. The increase 
of ice crystals due to fallout from the upper layer exceeds the number lost to 
sublimation. 

Figure 6.18 shows the time variation of ice crystal sizes. It appears that, for both 
pristine ice and aggregates, the profiles remain fairly constant. 

The profiles of solar, IR, and latent heating rates are shown in Figure 6.19. The 
magnitudes of these diabatic heating contributions are comparable. The IR heating 
rate (Fig. 6.19b) shows weak warming near the cloud base and cooling near the 
cloud top. The profiles of latent heating (Fig. 6.19c) indicate that the ice crystal 
fallout is significant after 40 min into the simulation. The total diabatic heating 
rates (Fig. 6.19d) show warming near the cloud base and cooling near the cloud 
top after 40 min. In this simulation, the diabatic heatings do not stabilize the cloud 
layer. This is consistent with the profiles of equivalent potential temperature (not 
shown). In this case, the effect of diabatic heating does not exceed that of adiabatic 
cooling. 

6.5.1.4. Cold-Stable Case 

Just as in the warm-stable case, homogeneous nucleation does not occur in this 
case. The profiles of IWC and ice number concentration are similar to those for 
the warm stable case, but their time variations are different (Fig. 6.20). The major 
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cause of the differences is tlie sensitivity of the growth rates to temperature. The 
growth rates of ice crystals at cold temperatures are very small so that ice crys-
tals remain small and stay in the initial supersaturated layer longer. Not until 
they grow to sizes with substantial terminal velocities would they fall out of this 
layer. 
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Hence, it takes substantially longer for the ice crystals to grow in this case and the 
maximum IWC does not peak until 90 min. 

Figure 6.21 shows the mean size profiles for pristine ice and aggregates. The 
mean sizes in both categories are only about half the corresponding values for the 
warm-stable case, confirming the reasoning in the above paragraph. 
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The profiles of solar heating, IR heating, and latent heating rates are shown 
in Figure 6.22. Both solar and IR heating rates are very sensitive to the IWC, 
and less so to ice number concentration. They are largest around 70 min into 
simulation. The profiles of IR heating show IR warming at the cloud base. 
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The IR cooling is distributed throughout most of the cloud deck due to small 
optical depth. The strength of the warming effect is decreasing upward, and even-
tually becomes weak cooling near the cloud top. The profiles of latent heating 
reveal that the ice crystal fallout is not significant until 70 min. The IR heating 
within the cloud layer dominates the total diabatic heating rates. Solar heating 
and IR warming balance the cooling due to sublimation in the lower part of the 
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cloud. The diabatic heating does not destabilize the cloud layer during the cloud 
development. 

6.5.2. Effect of Ice Crystal Habit on the Development of Cirrus Clouds 

Do ice crystal habits in a cirrus cloud influence its development? This is the 
problem to be examined in this section. Four types of ice crystals are considered in 
the simulation set presented herein: columns, plates, bullet rosettes, and spheres. 
The first three types are commonly observed in cirrus clouds, while the last one is 
the simplified shape as an approximation to ice particles in many previous models. 
To focus on the effect of habit, we will first consider the development of cirrus 
in cold-stable and warm-stable atmospheres, but turn off the aggregation process. 
Then we perform the simulation on warm-unstable and cold-unstable atmospheres 
with the aggregation process turned on. A summary of the scenarios simulated is 
given in Table 6.8. 

The sensitivity of cirrus development to ice crystal habit in a stable environment 
can be seen in Figures 6.23 and 6.24 for warm and cold cirrus, respectively. 
For the warm-stable cases (Fig. 6.23), the IWCs reach their peak values around 
40 min. However, the magnitudes of the peak values for different habits are quite 
different. The peak IWC for cirrus consisting of rosettes is more than twice as 
large as the one for spheres. The peak values of ice water content for columns 
and plates are similar. They are greater than for spheres, but smaller than for 
rosettes. The results for the cold-stable case (Fig. 6.24) are similar, except that 
the IWC reaches its maximum value at around 90 min instead of 40 min into the 
simulation. 

TABLE 6.8 SUMMARY OF SCENARIOS SIMULATED TO TEST THE EFFECT OF CRYSTAL HABIT 

Index 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Ice crystal 
habit 

Columns 
Plate 
Rosettes 
Spheres 
Columns 
Plate 
Rosettes 
Spheres 
Columns 
Rosettes 
Columns 
Rosettes 

Temperature 
zone 

Warm 
Warm 
Warm 
Warm 
Cold 
Cold 
Cold 
Cold 
Warm 
Warm 
Cold 
Cold 

Static 
stability 

Stable 
Stable 
Stable 
Stable 
Stable 
Stable 
Stable 
Stable 
Unstable 
Unstable 
Unstable 
Unstable 

Aggregation 
process 

No 
No 
No 
No 
No 
No 
No 
No 
Yes 
Yes 
Yes 
Yes 

Radiative 
process 

SW+IR 
SW+IR 
SW-fIR 
SW+IR 
SW+IR 
SW+IR 
SW+IR 
SW+IR 
SW+IR 
SW+IR 
SW+IR 
SW+IR 

Vertical 
velocity (cm/s) 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
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FIG. 6.23. Warm-stable case. Profiles of horizontally averaged ice water content for four dif-
ferent ice crystal types: (a) Columns, (b) plates, (c) bullet rosettes, (d) spheres. 

The corresponding profiles of mean size for the warm-stable and cold-stable 
cases are shown in Figures 6.25 and 6.26, respectively. The largest mean size 
of ice crystals is for rosettes, followed by plates and columns. The mean size of 
spheres is the smallest. The difference in mean size can be as large as fourfold 
between the cases of rosettes and spheres. 

The corresponding radiative heating rates for the warm-stable and cold-stable 
cases are shown in Figures 6.27 through 6.30. In all cases, rosettes have the 
biggest impact. This is especially true for IR heating, whose peak rate for rosettes 
(^15K/day) can be more than 10 times that for spheres. This indicates that, at least 
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FIG. 6.24. Cold-stable case. Profiles of horizontally averaged ice water content for four differ-
ent ice crystal types: (a) Columns, (b) plates, (c) bullet rosettes, (d) spheres. 

as far as radiation is concerned, assuming spherical ice particles in cirrus clouds 
will lead to large errors. Although the resulting profiles of IWC for columns and 
plates are similar, the corresponding solar and IR heating rates are somewhat larger 
for plates than for columns. It can be seen that the IR heating rate is more sensitive 
to ice crystal habit than is the solar radiative heating rate. 

The differences among simulations with different ice habit may be explained 
by ice crystal capacitance. As explained in Section 6.2.2, the capacitance is para-
meterized as a function of the maximum dimension. A plot of the capacitance 
as a function of mass and habit is shown in Figure 6.31. For ice particles with 
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FIG. 6.25. Warm-stable case. Profiles of horizontally averaged mean size of ice crystals for 
four different ice crystal types: (a) Columns, (b) plates, (c) bullet rosettes, (d) Spheres. 

the same mass, bullet rosettes have the largest capacitance, and hence the greatest 
diffusional growth rates, followed by plates and columns, whereas spheres have the 
smallest capacitance. Results here show that the IWC, in general, varies similarly 
with ice crystal habit. Although the capacitance of columns is larger than that 
of plates, the resulting IWC is almost the same (Figs. 6.23-6.24). This may be 
because the differential radiative heating induced by plates is greater than that by 
columns, resulting in slightly stronger upward vertical motion for plates and thus 
producing more IWC than expected. 



240 PAO K. WANG 

(c) Rosettes 

"0 50 100 ''^0 50 100 
Mean Size of Pristine Ice [micron] IVIean Size of Pristine Ice [micron] 

ia 

(b) Plates 

'0 50 100 ''̂ O 50 100 
Mean Size of Pristine Ice [micron] Mean Size of Pristine Ice [micron] 

FIG. 6.26. Cold-stable case. Profiles of horizontally averaged mean size of ice crystals for four 
different ice crystal types: (a) Columns, (b) plates, (c) bullet rosettes, (d) spheres. 

6.5.3. Effect of Ventilation on the Development of Cirrus Clouds 

We have seen in Section 6.2.2 that the ventilation coefficient is a sensitive 
function of ice crystal habit. Among the four ice crystal habits considered here, 
the column has the greatest ventilation coefficient for the same X parameter. In 
this study, we chose columns to show how sensitive the development of cirrus is 
to the ventilation effect. The scenarios are summarized in Table 6.9. 

The profiles of IWC for simulations with and without the ventilation effect are 
shown in Figure 6.32. The ventilation effect is more evident during the later period 
of the simulation, and also for the warm-unstable case than for the cold-unstable 
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FIG. 6.27. Warm-stable case. Profiles of horizontally averaged solar heating rates for four 
different ice crystal types: (a) Columns, (b) plates, (c) bullet rosettes, (d) spheres. 

case. It is known from Section 6.5.1 that the cold cirrus clouds are characterized by 
smaller ice crystals than warm cirrus clouds. Since larger ice crystals usually have 
greater terminal velocities, they would show a more pronounced ventilation effect. 
The difference can be as large as 25% for the IWC by the end of the simulation 
for the warm-unstable case. The domain-averaged IWC for the warm and cold 
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FIG. 6.28. Cold-stable case. Profiles of horizontally averaged solar heating rates for four dif-
ferent ice crystal types: (a) Columns, (b) plates, (c) bullet rosettes, (d) spheres. 

cases are shown in Figure 6.33. Since the cirrus clouds considered in this study are 
thin and consist of smaller ice crystals than in more convective cases (e.g., those 
associated with convective clouds), the ventilation effect is apparently not very 
strong. It is seen, however, that the effect of ventilation cannot be ignored, and is 
most pronounced during the later stages of the simulation. 
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TABLE 6.9 SUMMARY OF SCENARIOS SIMULATED TO TEST THE \^NTILATION EFFECT 

Index 

1 

2 

3 

Ice crystal 
habit 

Columns 

Columns 

Columns 

Temperature 
zone 

Warm 

Warm 

Warm 

Static 
stability 

Unstable 

Unstable 

Unstable 

Aggregation 
process 

Yes 

Yes 

Yes 

Diabatic 
process 

SW+IR 
Daytime 
Daytime 

NoQc 
No 

Vertical 
velocity (cm/s) 

3 

3 

3 

-10 -5 0 5 10 15 -10 -5 0 5 10 15 
IR Heating Rate [k/day] IR Heating Rate [k/day] 

-10 -5 0 5 10 15 ^10 -5 0 5 10 15 
IR Heating Rate [k/day] IR Heating Rate [k/day] 

FIG. 6.29. Warm-stable case. Profiles of horizontally averaged IR heating rates for four different 
ice crystal types: (a) Columns, (b) plates, (c) bullet rosettes, (d) spheres. 
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FIG. 6.30. Cold-stable case. Profiles of horizontally averaged IR heating rates for four different 
ice crystal types: (a) Columns, (b) plates, (c) bullet rosettes, (d) spheres. 

Anotlier reason why the ventilation effect is not very pronounced in the cases 
studied here is that all the cirrus clouds examined here developed in relatively 
quiescent environments. Remember that the background perturbation vertical ve-
locity is only 3 cm s"^ whereas in the vicinity of a deep convective storm that 
can produce extensive cirrus anvil clouds, the background perturbation vertical 
velocity can easily exceed this value by tenfold or more, in which case the ice 
crystals will grow to much larger sizes and the ventilation effect is expected to 
play an important role in the development of the clouds. 
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FIG. 6.31. Ice crystal capacitance as a function of ice crystal mass for different habits. 
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FIG. 6.32. Profiles of horizontally averaged ice water content at 120 min and 180 min for the 
warm-unstable case (top) and the cold-unstable case (bottom). The solid line is for simulation 
with ventilation effect; the dashed line is for simulation without ventilation effect. 
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FIG. 6.33. Domain-averaged ice water content for (a) the warm-unstable case and (b) the 
cold-unstable case. The solid line is for simulation with ventilation effect; the dashed line is for 
simulation without ventilation effect. 

APPENDIX A 

AREA OF AN AXIAL CROSS SECTION 

Equation (2.39) gives 

A = 2 £ x i z = 2 a £ / r ^ c o s - ' ( ^ ) dz 

If we let u = z/C, then 

A = 2aC I yjX-u?- cos"' ( - | du (A.l) 
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Next, let 

/ = / yjX —U^ COS M - I du (A.2) 

Since |M| < 1, |M|/A. < 1, we can expand the arccosine function into an infinite 
series in (M/A): 

COS 

+ 

\\) \l) L (̂2n)!(2n + l)U/ J 
r / M \ 1 / M V 1-3 / M V 

"[VX/"^2^VX/ "^2-4-5VAJ 

1-3-5 / M V 1 

•4-6-7U/ "̂  J 
Y l \ /0 .167\ , /0.0752\ , 7t 

( -

• '-0446 \ 7 1 

+ , _ _ j , v + ...J 
Putting (A.3) into (A.2), we obtain 

/ = — / V 1 — M̂  Jw — f — I / MV 1 — M̂  JM 

- ( — - j / M V l - ŵ  M̂ + • • • 

But for m = 2n + 1 (n = 0, 1, 2 , . . . ) , 

(see, for example, Dwight, 1961). Therefore 

2 y_i 2 

(A.3) 

(A.4) 

(A.5) 

and 

MVI — ŵ  1 
;; ^ :̂  sin 
2 2 

TT 

]1 2 

A = 2^C/ = —aC 
2 

(A.6) 

Equation (A.6) can be easily checked for two special cases: X = I and A = oo. 
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(i) A = 1. In this case we let v = cos ^ u. Then, from (A.2), 

/

I nO 

V 1 — u^ cos~^ u du = — I V sin^ v dv 

[ v'^ f s in 2v cos 2i;~| TT̂  

T 4 s^J.'^T 
Thus, 

(ii) A, = oo. In this case cos ^(u/X) = cos ^(0) = 7t/2 and 

/ = — / v l — W " W = / s i n i ; = 
2 7-1 2 A 2 [ 2 

Thus 

sin V 
2 4 

AA = OO = -;r(^^ 

(A.7) 

TT 

(A.8) 

APPENDIX B 

CALCULATION OF VOLUME 

Equation (2.41) gives 

= 7Ta^C f ( 1 - M ^ ) cos"^ (-j 

dz 

du 

where u = z/C. We investigate three cases of A: 

(i) A = 1. Equation (B.l) becomes (letting v = cos~^ u) 

V = Jxa'C ^) [cos ^ uf du 

. 0 

= —na^C I v^ sin^ v dv = na^C 
Jn 

(B.l) 

1 TT̂  ^ 3 2 
27 12 4 

3.61677rfl^C 
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(ii) X = oo. Equation (B.l) becomes 

= 3.2SS97Ta^C 

(iii) 1 < A < oo. In this case we expand cos~^{u/k) as in Eq. (A.3). Squaring 
it, we have 

Ha)r=T-(x)-(iy-(^y 
+ 

(B.2) 

Equation (B.l) then becomes 

—^^/ .>-4T-(X>-(F)" ' - (^>' 

+ m-'-]-
Integration of terms with odd powers of u in the square brackets yields even 
functions of u, therefore, the odd terms vanish. Only terms with even powers of u 
survive. The result is 

V = na^C 
• „ 0.2667 0.0381 0.0113 0.0046 0.0024 
3.2889 + .. + ,. + — r ^ - + ,o + —TTTT- + ' 

A2 A4 A6 A8 i lO 

(B.3) 

If we neglect higher-order terms, we see that Eq. (B.3) becomes identical with 
Eq. (2.44). 

APPENDIX C 

CLOSED-FORM EXPRESSION OF THE CONICAL VOLUME 

A conical particle whose axial cross section is described by Eq. (2.25) has a volume 
(assuming rotational symmetry with respect to the z-axis) given by 

In Appendix B, this volume integral is approximated by a series of expansions. 
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It turns out that the integral (C.l) can be calculated in the quadratures to yield a 
closed-form expression as given below. 

By defining 

1 ( 

Equation (C.l) can be rewritten as 

V = 7Ta^c 1 ( l - § ^ ) COS 

2 

Consider the integral 

'-fj'-''' cos — 1 ^, = /'a-i>,|[cos-.(^); 

+ COS"^ im-

(C.2) 

(C.3) 

2 

(C.4) 

The quantity in the wavy brackets in the second integral can be reduced further to 
become 

T-(-a)y 
so that Eq. (C.4) becomes 

-(T)-r<-K-(!)y 
Using the technique of integration in parts with 

d^ 

(C.5) 

(C.6) 

and 

yields 

u = (s in- ( i ) ) 

dv = il-^^)d^ 

•• ^(sin-'(?A)) , , , 2 /•' f3(sin-'(^A)) 

Jo y x ^ ^ 
d^ + 

2 r 
3 Jo y x ^ ^ 

d^ (C.7) 
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where, by using the same technique, we can get 

/-'gCsin-'CgA))^^ / T ^ T • - l / ' l ^ ^ , .n8^ 

and 

Thus the volume integral finally becomes 

It is useful to check if this expression converges to proper limits for the two 
extreme values of A,. For A, = 1, we have 

V = na^A — - — J = 3.61677ra^c (C.ll) 

For A, -> 00, the sum of all terms in the curly brackets other than the first in 
Eq. (C.9) vanishes, as can be shown by taking its limit as A, ^- cx). Hence 

y = 7 r f l ^c (^ ) (C.12) 

Equations (C.ll) and (C.12) are identical to those given by Wang (1982; 
Appendix B) via normal derivation. The closed-form expression (C.IO) thus 
converges to proper forms at these two extremes. 
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1. INTRODUCTION 

The size distribution of earthquakes in a seismogenic volume can often be 
adequately described over a large range of magnitudes (Abercrombie, 1995) by a 
power law relationship. This was first recognized in Japan by Ishimoto and lida 
(1939) and in California by Gutenberg and Richter (1944). The commonly used 
form of the power law is given as 

logA^ = a-Z?M (1) 

where N is the cumulative number of earthquakes with magnitude > = M, and a 
and b are constants. The parameter "a" describes the productivity of a volume, and 
b, the slope of the frequency-magnitude distribution (FMD), describes the relative 
size distribution of events. The example in Fig. 1 shows the FMD for southern 
California for the years 1995-2000. The Z7-value equals 0.99, and a = 6.08. 

The numerous papers that have been written about the FMD, specifically the 
Z7-value, fall into several categories: 

1. Studies addressing how the Z?-value, and its uncertainty, is computed accu-
rately (Aki, 1965; Bender, 1983; Hamilton, 1967; Page, 1968; Shi and Bolt, 1982; 
Utsu, 1965, 1992, 1999; Zuniga and Wyss, 1995; Gibowicz and Lasocki, 2001; 
Kijko and Sellevoll, 1989; Tinti, 1989; Tinti and Mulargia, 1987), 

2. Studies addressing temporal variations of b, some of them relating to earth-
quake prediction (Patane et al, 1992; Wiemer and Benoit, 1996; Wiemer and 
McNutt, 1997; Wiemer and Wyss, 1997; Wiemer and Katsumata, 1999; Wyss and 
Lee, 1973; Wyss etai, 1997, 2000; Zobin, 1979), 

3. Studies addressing the shape of the FMD for the largest magnitudes and the 
implication for hazard (Abercrombie and Brune, 1994; Kagan, 1999; Main, 2000; 

^Now at World Agency of Planetary Monitoring and Earthquake Risk Reduction, Geneva, 
Switzerland. 
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FIG. 1. Cumulative frequency of earthquakes in southern CaUfomia for the years 1995-2000 
as a function of magnitude. The straight line represents the maximum likelihood estimate of the 
a- and ^-values (Eq. (1)). This estimate is computed based on events above the magnitude of 
complete recording, Mc = 1.5. 

Pacheco et ai, 1992; Schwartz and Coppersmith, 1984; Stein and Hanks, 1998; 
Utsu, 1999; Wesnousky, 1994), 

4. Studies relating Z?-values to physical properties such as stress, material ho-
mogeneity, and pore pressure (Lockner and Byrlee, 1991; Mogi, 1962; Scholz, 
1968; Shaw, 1995; Warren and Latham, 1970; Wyss, 1973), 

5. Studies investigating implications of the power law scaHng in light of the 
concepts of fractal dimension and chaotic behavior (Amelung and King, 1997; 
Bak and Tang, 1989; Barton et al, 1999; Henderson et al, 1992; Hirata, 1989; Ito 
and Matsuzaki, 1990; Main, 1995,1996; Sammis etal, 2001; Okuda^r^/., 1992; 
Papadopoulos ^̂  a/., 1993), 

6. Studies addressing the spatial variabiHty of b from millimeter scales in the 
laboratory to global scales (Frohlich and Davis, 1993; Gerstenberger, Wiemer 
and Giardini et al, 2001; Imoto et al, 1990; Jolly and McNutt, 1999; Mori and 
Abercrombie, 1997; Ogata et al, 1991; Ogata and Katsura, 1993; Westerhaus 
et al, 2002; Wiemer and Benoit, 1996; Wiemer and Wyss, 1997; Wiemer et al, 
1998, 2001; Wiemer and Katsumata, 1999; Wyss, Hasegawa et al, 2001; Wyss, 
Klein et al, 2001; Wyss and Wiemer, 2000). 

This paper primarily addresses point 6, spatial variability of b, on a local to 
a regional scale (hundreds of meters to kilometers). It is not intended to be a 
comprehensive review of past work on ^-values. We focus largely on our own 
recent results, since we are most familiar with them, and because we believe that 
our detailed mapping has opened up some new directions of research, including 
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previously unavailable information about properties of seismogenic volumes. In 
addition, topics such as temporal variations, fractal dimension, and the correct 
estimate of b and its uncertainty will be discussed. 

Spatially mapping Z?-values has proven to be a rich source of information about 
the seismotectonics of a region. The ample, high-quality earthquake catalogs col-
lected primarily over the past 2 decades and the availability of increased computing 
power have enabled researchers to investigate spatial variations in b with an un-
precedented level of detail. The notion that the earthquake-size distribution can 
vary by up to a factor of 3 on a kilometer scale was first greeted with skepticism; 
however, with a growing number of case studies and rigorous statistical testing, 
acceptance is growing rapidly. To our understanding, the discovery of strong dif-
ferences in b is simply a reflection of the heterogeneity of the Earth that emerges 
on all scales, once suitable datasets become available. The first step in extracting 
information from the heterogeneity in the Z?-value is to determine with what other 
parameters these variations correlate. 

We believe for two reasons that changes in the frequency-magnitude distribu-
tion as a function of time are generally more difficult to observe than those in 
spatial variations: (1) Network configuration and analyzing procedures are likely 
to change as a function of time and can introduce artifacts in the magnitudes 
reported (Habermann, 1987, 1991; Wyss, 1991). These changes in the reporting 
history can introduce artificial changes in the ^-values, for example, a stretch 
in the frequency-magnitude distribution (Zuniga and Wyss, 1995). (2) Temporal 
variations may often be second-order phenomena, compared to the first-order vari-
ations of the ^-value with location (Wiemer and Wyss, 1997; Wiemer et ai, 1998). 
We have interpreted this as an indication that the production of earthquakes in a 
particular volume depends on stationary properties such as the crack distribution 
and that a particular volume does not readily change the characteristics displayed. 
However, in volcanic systems and during large earthquakes, substantial changes 
in the crust do occur, such as the intrusion of either a major dike or a change in 
pore pressure. We are particularly interested in comparing the pre-main-shock and 
post-main-shock Z?-values. 

The purposes of this paper are to summarize the new facts surrounding the 
spatial variability of the Z7-value, to discuss the new hypotheses that grew from 
these observations, to report how far the tests of these hypotheses have advanced, 
and to describe the methods used, such that a reader can implement them. 

2. DATA REQUIREMENTS 

2.1. Estimating the Magnitude of Completeness 

The correct estimate of the b- and a-values depends critically on the com-
pleteness of the sample under investigation. As seen in Fig. 1, the FMD deviates 
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from a linear power law fit increasingly for smaller magnitudes. This deviation 
is caused by the fact that the recording network is only capable of recording a 
fraction of all events for magnitudes smaller than the magnitude of completeness, 
Mc. Figure 2a shows the Z -̂values as a function of Mc for a sample taken from the 
Parkfield region. An underestimate of Mc (Mc < 1.2) results in too low a ^-value. 

a) 

100 150 200 

Sample Size 

FIG. 2. (a) The maximum likelihood estimate of Z? as a function of assumed Mc, based on 
the Parkfield data set from 1980 to 2000. For small M^ the /?-values are systematically under-
estimated, due to the incompleteness of the catalog. The plateau in the range 1.3 < Mc < 2.5 
indicates that the catalog is complete. The increase in the uncertainty with elevated minimum 
magnitudes (error bars in (a)) is caused by the decreasing sample size, (b) Range of ̂ -values as 
a function of sample size. A sample of size N was drawn randomly from a synthetic catalog of 
5000 events with a ̂ -value of 1.0. The maximum likelihood and weighted least squares ^-value 
were estimated for this sample, and the process was repeated 1000 times. Plotted for each sample 
size are the 5, 50, and 95 percentiles, illustrating the uncertainty in the estimate of ^. As sample 
size increases, the uncertainty decreases. The maximum likelihood method gives a less biased 
and less uncertain estimate than the weighted least squares method. 
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For 1.2 < Mc < 2.2, the estimate of b is about constant. If Mc is raised to large 
values, the uncertainty in the Z?-value estimate increases strongly (Fig. 2a). At the 
same time, the resolution for mapping decreases. The situation is complicated by 
the fact that Mc varies as a function of space and time throughout all earthquake 
catalogs, hence estimating the correct Mc, while maximizing the available number 
of earthquakes, becomes difficult. 

Different techniques can be used to estimate Mc (Gomberg, 1991; Kijko and 
SellevoU, 1992; Rydelek and Sacks, 1989; Wiemer and Wyss, 2000). A review 
with case studies is given by Wiemer and Wyss (2000). A frequently used simple 
technique is based on estimating Mc from the FMD itself. This is often done in 
seismicity studies by visual examination of either the cumulative or the noncu-
mulative FMD; however, we prefer to apply a quantitative criterion (Wiemer and 
Wyss, 2000). 

The following steps are taken to estimate Mc. First we estimate the b- and 
«-values of the FMD as a function of minimum magnitude, based on the events 
with M > = Mi, using a maximum likelihood estimate (Aki, 1965; Bender, 1983; 
Shi and Bolt, 1982; see Section 3.2). Next, we compute a synthetic distribution of 
magnitudes with the same b-, a- and M, values, which represents a perfect fit to 
a power law. To estimate either the goodness of the fit, or the percentage of data 
variability, we compute the absolute difference, R, of the number of events in each 
magnitude bin between the observed and the synthetic distribution: 

""' y ^ 1̂00 J, (2) 

where Bf and St are the observed and predicted cumulative number of events in each 
magnitude bin. We divide by the total number of observed events to normalize the 
distribution. Our approach is illustrated in Fig. 3, which shows R as function of M,. 
If Mj is smaller than the "correct" Mc, the synthetic distribution based on a simple 
power law (squares in Fig. 3) cannot model the FMD adequately and, consequently, 
the goodness of fit, measured in percentage of the total number of events, is poor. In 
this example, the goodness-of-fit value R increases with increasing M, and reaches 
a maximum value of R ^ 96% at Mc = 1.8. At this Mc, a simple power law with 
the assumed b, a, and Mc can explain 96% of the data variability. Beyond M, = 1.8, 
R increases again gradually. In this study, we map Mc at the 90% level; that is, we 
define Mc as the point at which a power law can model 90% or more of the FMD. 
For the example shown in Fig. 3, we therefore define Mc = 1.5. In some cases, 
the FMD cannot be approximated by a power law (Knopoff, 2000; Pacheco et al, 
1992; Trifu et aL, 1995) because of bimodal distributions (see also Section 8.6). 
The estimation of Mc based on the power law assumption will generally break down 
in these locations. It is important to identify such regions when mapping b, because 
neither the Mc estimation is valid nor does the Z?-value have the same meaning. 
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FIG. 3. Explanation of the method used to estimate the minimum magnitude of completeness, 
Mc. The three frames at the top show synthetic fits to the observed catalog for three different 
minimum magnitude cutoffs. The bottom frame shows the goodness of fit R, the difference 
between the observed and the synthetic FMD as a function of lower magnitude cutoff. Numbers 
correspond to the examples in the top row. The Mc selected is the magnitude at which 90% of 
the observed data is modeled by a straight-line fit. (From Wiemer, S., and Wyss, M. (2000). Bull. 
Seism. Soc. Am. 90, 861. With permission.) 

2.2. Tradeoff between Spatial Resolution and Significance 

To map the constants in the FMD in detail, we need as many events as possible 
to be able to analyze small sub volumes. The size of the volumes can also be re-
duced by limiting the numbers of events per sample. However, small sample sizes 
result in large uncertainties in the estimate of b. In Fig. 2b, we show the results of 
a random simulation, based on a synthetic catalog of 5000 events with a Z7-value 
of 1.0. For sample sizes smaller than 50, the 5 and 95% confidence regions are 
separated by more than 0.5 units, suggesting that only very large differences in b 
can be estabhshed with significance. For Â  = 100, this difference is about 0.25, 
and for A'̂  = 200 it is down to 0.2. Therefore, if the differences in b are large, 
samples of 50 events may be sufficient for statistical significance of differences. 
If they are smaller, 1000 events per sample may be needed (Wyss and Wiemer, 
2000). Thus, catalogs best suited for our analyses should cover long periods in 
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highly seismic regions at small magnitudes of completeness. The smallest cata-
log we found useful for mapping likely magma chambers in a volume of about 
10 X 10 X 20-km dimensions contained only 450 events (Murru et al, 1999); how-
ever, mapping the change in earthquake probability in southern California due to 
the Ml3 Landers (1992) main shock required several tens of thousands of events, 
because the temporal differences in b are small. 

2.3. Maximizing the Number of Events 

The longer the period included for analysis the more earthquakes per volume 
become available, but, in general, the Mc is higher during early periods. When 
early parts of catalogs are used, the Mc for the entire data set must be raised, which 
reduces the number of events that may be included for recent periods. Often, this 
more than cancels the benefit of a long history. Thus, we usually maximize the 
number of events by selecting a starting time, ts, that, together with the appropriate 
MciQ, leads to the maximum number of earthquakes in the catalog. In many parts 
of the United States and Japan that time is near 1980/1981. Because the t^ is selected 
on the basis of objective criteria, it is not a free parameter of the analysis. 

2.4. Mapping Minimum Magnitude of Completeness 

The quality of all regional and local earthquake catalogs decreases from high 
at the center of the network to low at the edges of the area monitored. Obvious 
boundaries of deterioration are coastlines, international borders, and seams be-
tween networks. Offshore catalogs are generally higher in their level of Mc, but the 
homogeneity of reporting is better. This is true because the installation of more 
seismographs on land can change both the Mc and the magnitude scale for events 
located beneath the landmass but does not affect the reporting off shore. To avoid 
problems that could be introduced by heterogeneity of M^ we usually map Mc 
to define the spatial extent of the high-quality part of the catalog and restrict our 
analysis to that area (e.g., Wiemer and Wyss, 2000). 

By mapping Mc for various periods, we can determine what area is covered 
at an approximately uniformly low Mc. In the selection of M^ we must choose 
a compromise that allows the coverage of the area of interest (or maximizes the 
area) but also does not unnecessarily reduce the number of events available. Thus, 
the boundary of the study area is determined based on objective criteria and is 
not a free parameter. An example of a map of Mc for the western United States is 
shown in Plate 2C. Mc ranges from > 2.5 off shore at Mendocino to < 1 in central 
California. 

We generally do not use hypocenter accuracy as a measure of catalog quality, 
because the individual sample volumes we use (1 km beneath volcanoes, 5-30 km 
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along fault zones) are larger than the errors; thus it usually is not a critical issue 
in our work. In those cases where the hypocenter errors may vary in space and may 
be comparable to the dimensions of the sampling volumes, the problem of hypocen-
ter error must be studied carefully to decide whether or not b-vahxc mapping 
is meaningful. 

2.5. Homogeneity of Reporting with Time 

In most catalogs, earthquakes are not reported homogeneously with time 
(Habermann, 1982, 1987; Zuniga and Wiemer, 1999; Zuniga and Wyss, 1995) 
because the data gathering and analysis methods change. Cases where the cause 
of these changes has been identified are described by Wyss (1991) and Pechmann 
et al. (2000), for example. 

It is not easy to discover possible shifts or stretches in the magnitude scale, 
because these may vary as a function of space as, for example, in offshore and 
onshore areas. We attempt to handle the problem by searching for significant re-
porting changes, using the algorithm GENAS (Habermann, 1983) in areas we judge 
likely to share major catalog characteristics. It is rare that duplicate catalogs are 
available to verify the interpretation of changes we detect by GENAS (Habermann 
and Craig, 1988). Simply comparing the FMD for two periods in either the cu-
mulative or the noncumulative form can yield important clues about artifacts. An 
example of a magnitude shift taken from the Tohoku region of Japan is shown in 
Fig. 4 (Wyss and Toya, 2000). Crosses and circles mark the two periods compared 
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FIG. 4. Example of a magnitude shift, observed in the Tohoku region of Japan. The noncu-
mulative FMD is shown. Circles mark events recorded in the earlier period (1984.27-1987.27); 
crosses, the later period (1988.73-1991.09). The shift between the FMDs of the two periods 
suggests that in 1988 a change occurred in the way magnitudes were reported. This shift was 
confirmed by a comparison to an independent data set. (From Wyss, M., and Toya, Y. (2000). 
Bull. Seism. Soc. Am. 90,1174. With permission.) 
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(1988.7-1991.1 and 1984.3-1987.3, respectively). The data in the later period are 
systematically shifted toward smaller magnitudes, suggesting that around 1988 a 
change in the magnitude scale occurred. 

Often, catalogs are reasonably homogeneous, starting when the network was im-
proved to its modem state. This allows us to use the data without modification from 
t^ on. In cases where simple magnitude shifts are detected, without changes in the 
average ^-value, one may be able to introduce corrections of the magnitude scale 
during selected periods and thus avoid shortening the data set. The successful mod-
eling of magnitude shifts by Wyss and Toya (2000) has shown that our interpretation 
of shifts and their correction is a viable means of repairing heterogeneous reporting. 

Magnitude stretches are more difficult to identify as artificially introduced, be-
cause they could be due to natural changes of ^-values. The criteria we use to 
interpret a change in the Z?-value as an artificial magnitude stretch is that (i) it oc-
curs in a large area, (ii) at a time without a major tectonic event, and (iii) possibly at 
the time of known innovations introduced in the seismograph network operation. 
For b-wahxt mapping, data sets containing apparent magnitude stretches cannot be 
used; the data period must be shortened to exclude the suspected stretch. 

2.6. Contamination by Explosions 

Explosions, mostly quarry blasts, frequently contaminate seismicity data. If 
they are present, they bias the ^-estimates locally toward large values, because, 
on average, explosions are smaller than earthquakes and of similar sizes. Since 
explosions usually take place during daytime hours, a histogram of the earthquakes 
in a region broken down by the hour of the day can show a telltale peak during 
daytime hours (Fig. 5). Consequently, areas where explosions occur frequently can 
be identified by the ratio, R^, of day-to-nighttime earthquakes (Wiemer and Wyss, 
2000). An example of an /?q map for Alaska is shown in Fig. 5. Because we usually 
do not have the resources to identify individual explosions by signal analysis, the 
only choice for cleansing the data is to eliminate the areas in which explosions 
are frequent. This leaves holes in the region selected initially for study, in which 
there is no information on either b- or a-values. However, this is preferable to 
contamination of the results through the presence of explosions. In some cases, 
the contamination by explosions may be so pervasive that the most sensible solu-
tion is to limit the analysis to nighttime events only. 

2.7. Magnitude Scales 

Different magnitude scales, such as ML, MD, mb, Ms, and M^, are in use. If 
an area is monitored by two or more networks, one often finds that the absolute 
Z?-values between networks vary. If a network provides a mixture of magnitudes. 
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FIG. 5. (A) Map of central and interior Alaska. The gray shading is the ratio of daytime to 
nighttime events, Rq. Dark regions indicate the presence of quarries and mines, active mainly 
during daytime hours. The data used were provided by the Alaska Earthquake Information Center 
for the period 1989-1998. The sample size was Â  = 200 earthquakes. (B, C) Histogram of the 
hourly distribution (the hours are in GMT, which is 10 hours advanced relative to local time) of 
the seismicity for two selected regions: an explosion-rich volume (1) and a normal volume (2). 
(From Wiemer, S., and Baer, M. (2000). Bull. Seism. Soc. Am. 90, 528. With permission.) 

one can aim to translate one into the other by finding a regression based on the 
events reported with both magnitudes; however, the scatter in these transforma-
tions is commonly large and systematic errors may be introduced. To map the 
Z?-value, we consider it best to analyze network data independently and, if possi-
ble, confirm spatial or temporal patterns discovered in b through independent data 
sources. 

Because the magnitude scale is defined arbitrarily, it has no physical meaning 
and the ̂ -slope cannot be directly related to source dimensions. Therefore, it would 
be desirable to investigate the slope, p, of the frequency-moment. Mo, distribution 
because in this case the abscissa has a physical meaning (Kagan, 1999; Wyss, 1973) 
and can be related to the dimensions of the ruptures. However, information on MQ is 
currently limited to large earthquakes worldwide (Harvard moment tensor catalog) 
and to very local catalogs (Nadeau and McEvilly, 1999). A strategy to derive some 
rough information might be to convert M into MQ by an average equation and 
study the resulting p. However, the scatter in data sets for which M and Mo are 
known is very large, which implies that earthquakes have vastly different stress 
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drops. In this case, the distribution of numbers of events as a function of Mo cannot 
necessarily be retrieved faithfully from data for which only M was measured. For 
these reasons, we have not yet mapped and analyzed fi. 

3. METHODS 

3.1. Mapping the Seismicity 

To visualize the frequency-magnitude distribution as a function of space, the 
earthquakes are projected onto a plane. We estimate the Z?-value at every node of 
densely spaced grids, using the N nearest earthquakes, or a constant radius, R. 
N is constant and usually in the range of 50-500, and the nodal separation is 
typically 0.5-10 km. The sampling volumes have the shape of cylinders with a 
vertical axis. Volumes overlap, and their sizes are inversely proportional to the 
local density of epicenters. The grid we interactively create excludes areas of low 
seismicity to save computing time. The Z?-value is estimated for each volume, 
and the corresponding value is translated into a color code and plotted at each 
node. 

Alternatively, we use the equivalent approach to analyze cross sections. A cross 
section of given depth is interactively defined, and all hypocenters are projected 
onto a plane. The sampling volumes are consequently cylinders with a horizontal 
axis. Figure 6 demonstrates the mapping approach for a 10-km-wide cross section 
along the Parkfield segment of the San Andreas fault. The top frame shows the 
hypocenters. The middle frame shows the nodes with a 1-km spacing, and some of 
the sampling volumes are plotted as circles. The bottom frame contours the radii 
of the sampling cylinders, ranging from 0.5-10 km. Light gray indicates a high 
spatial resolution; dark shades, a low resolution. 

For both map view and cross section, the sampling volumes can assume shapes 
that are undesirable. In areas of low seismicity, coin-shaped sample volumes 
may be neighboring pipe-shaped ones in areas of high seismicity. This may or 
may not be desirable. Alternatively, a true three-dimensional gridding can be 
used. At each node of a three-dimensional grid, we sample the nearest neighbors 
in three dimensions, resulting in spherical sampling volumes of either constant 
sample size or constant radius. This approach is best suited for areas of distributed 
seismicity. 

3.2. Computing the ^-Value and Its Uncertainty 

Numerous studies have been devoted to estimating b and its uncertainty (Aki, 
1965; Bender, 1983; Frohlich and Davis, 1993; Guttorp, 1987; Guttorp and 
Hopkins, 1986; Kijko and Sellevoll, 1989; Okuda et aL, 1992; Page, 1968; 



270 WIEMER AND WYSS 

•s 
0 -
Q 

0-

- 5 -

-10-

•}^ 

• i.^ » . j 

.f ' • 

r;^:j4!". •' 

•'i^'^ •••' 
r f • » • . • : ; =. 

.. ' 

- 1 ; ^ : — ' i •.••••• 

• 

>:<.•"••• 

> ^ ' ' 

— a ^ — m ^ ^ 

1 

vV • 

•M'mmmmm^^mm 

, > ' 

**i 

1 1 

a) 

1 ' 

0-

^ - 5 • 

8--10-^̂ ^̂ K̂ll 
30 40 

Distance [km] 

R G . 6. (a) NW-SE trending cross-sectional view along the strike of the San Andreas fault 
of the seismicity in the Parkfield region (M> 1, 1980-2000). Dots represent hypocenters. 
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compassing the Â  = 100 nearest hypocenters to that node are plotted. The radii of the circles 
are inversely proportional to the density of earthquakes and indicate the local resolution of the 
method. (C) Contour plot of the sampling radii shown above. Dark colors indicate a poor spatial 
resolution. 

Rhoades, 1996; Shi and Bolt, 1982; Tinti, 1989; Tinti and Mulargia, 1987). In 
our case studies, the ^-value is calculated by the most commonly used maximum 
likelihood method (Aki, 1965; Hamilton, 1967), which has been shown to be a 
robust and unbiased estimation of Mc in most cases (Bender, 1983; Wiemer and 
Wyss, 1997): 

b = logio (exp)/(Mmean " Mmin) (3) 

where Mmin is the minimum magnitude to which the FMD is defined and Mmean 
is the mean magnitude. Note that Mmin needs to take the effect of the discrete 
binning of magnitudes into account. If the binning is 0.1 magnitude units, Mmin = 
min(M) — 0.05 (Utsu, 1978). An estimate of the standard deviation 8b of the 
^-value can be obtained using either the equation first derived by Aki (1965) or 
the improved formulation by Shi and Bolt (1982), 

8b = 2.3/7' 
ij2.(Mi-{M)r 

n{n — 1) 
(4) 
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where n is the sample size. We commonly estimate the probability that two samples 
may come from the same population by Utsu's (1992) test: 

P ^ exp(-JA/2 - 2) (5) 

where dA = -IN \n{N) + INx ln(M + ^2^1/^2) + 2N2 XniNxbj/bx + N2) - 2 
and N = Ni -\- N2. This test accounts explicitly for the number of earthquakes 
contained in each sample. By using small samples to map b, one gains resolution 
but is penalized with lower probabilities that mapped anomalies are significant. To 
establish the significance of differences between two Z -̂values requires that they 
be either different at the 95% confidence limit or higher. 

Temporal changes of Z?-values can be mapped by "differential Z7-value maps" 
in the following fashion (Wiemer et al, 1998): (i) Calculate a Z?-value grid 
for the period Ti — T2, as described above, but using constant size volumes, 
(ii) Calculate a Z -̂value grid for the period Ts — T^, using the nodes and vol-
ume size defined in (i). (iii) Compare the frequency-magnitude distributions at 
each node for the two periods, (iv) Map the difference in the Z?-value at nodes 
where it is statistically significant at the 95% confidence level as measured by 
Utsu's (1992) test [Equation (5)]. These differential Z?-value maps thus identify 
volumes of either a significantly increased or decreased Z?-value. 

4. CASE STUDIES OF MAPPING THE Z?-VALUE IN VARIOUS TECTONIC REGIMES 

4.1. Volcanoes and Geothermal Fields 

It has been generally known for a long time that ^-values beneath volcanoes 
are elevated, but it was a surprise when Wiemer and McNutt (1997) showed that 
beneath Mount St. Helens and Mt. Spurr the high Z?-values were concentrated in 
small volumes (r ^ 1.5 km) and the rest of the crust showed normal to low values. 
Since then, we have mapped similar small, anomalous volumes beneath Off-Ito 
volcano (Wyss et al, 1997), Long Valley and Mammoth Mountain (Wiemer et al, 
1998), Montserrat (Power et al, 1998), Etna (Murru et al, 1999), Katmai (Jolly 
and McNutt, 1999), Mt. Redoubt (Wiemer et al, in preparation), and adjacent to 
the east rift zone of Kilauea (Wyss, Klein et al, 2001) (Plate 1). In all cases, high 
Z?-value volumes {b > 1.3) can be identified clearly, embedded in a background of 
normal b (b < 1). 

The most basic conclusion is that the Z -̂value underneath volcanoes is not, as 
previously thought, generally higher, but that pockets of anomalously high ^-value 
are embedded in average crust. These anomalies are highly significant and in 
general cannot be explained through problems in the catalog. 

Comparing the anomalies of high ^-values with other geophysical and geode-
tic data regarding the location and extent of magma chambers, we came to the 
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following conclusion: In the seismogenic vicinity of magma chambers located by 
independent studies, we always find high Z?-values. Additional anomalies of high 
Z?-values exist, particularly at shallow depths. In these cases, we do not know for 
certain if magma is associated with the Z?-value anomalies. However, the absence 
of an anomaly fairly strongly suggests the absence of magma. Other factors caus-
ing high ^-values may be either presence of hot fluids in geothermal systems or 
extensive cracking, which a volume may have acquired during past eruptions. 

Of course, magma chambers and volumes containing partial melt are not capa-
ble of generating earthquakes. The anomalies we map must reside in the volumes 
surrounding what we call "magma chambers," although we cannot distinguish be-
tween a volume such as a plexus that might be crisscrossed by dikes, a volume that 
contains partial melt, or a mostly liquid volume. Because the anomalous volumes 
generally have dimensions approximately equal to the errors in the hypocenter 
locations and because of the limited number of earthquakes available for mapping, 
we cannot map the anomalies as rings around a central body not containing any 
events. This may become possible in the future with new high-resolution hypocen-
ter location techniques. 

In the vicinity of a magma chamber embedded in the crust, one expects high 
heterogeneity, high pore pressure, and a high thermal gradient. All these parameters 
have been linked in the laboratory to high Z?-values. 

In many of the volcanoes studied so far, the ^-value anomalies are not located 
straight below the summit (Off-Izu, Etna, Mammoth, Kilauea east rift zone. 
Redoubt), which suggests that complex magma conduits are perhaps more conmion 
than simple ones. The depths of the "chambers" mapped ranged from 1-13 km, and 
several volcanoes showed anomalies at more than one depth (Mount St. Helens, 
Etna, Mammoth), also indicating that magma supply systems are often complex. 

4.2. Mapping Asperities 

The concept that faults consist of locked segments that resist faulting (asperi-
ties), unlocked segments characterized by creep, and segments with intermediate 
properties is generally accepted. In the creeping segments, stresses are largely 
relieved so they cannot build up, whereas in asperities stresses are concentrated. 

PLATE L Three-dimensional images of the ^-value distribution beneath and adjacent to vol-
canoes. Red colors mark volumes producing disproportionally more small earthquakes than 
the normal crust (blue to green). (A) Mt. St. Helens, Washington; (B) Mt. Redoubt, Alaska; 
(C) Manamoth Mountain, California. (From Wiemer, S., McNutt, S. R., and Wyss, M. (1998). 
California, Geophys. J. Int. 134, 412. With permission.); (D) Mt. Etna, Italy. (From Murru, M., 
Montuori, M., Wyss, M., and Privatera, E., Geophys. Res. Lett. 26, 2555, 1999. Reproduced 
with permission of American Geophysical Union.); (E) the South Flank and Kaoiki regions 
near Kilauea, Hawaii. (From Wyss, M. et al. (2001). J. Volcanol. Geotherm. Res. 106, 32. With 
permission.) (See color plate.) 
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Most main shock energy emanates from the asperities, while the creeping segments 
may participate in a main rupture by smaller amounts of co-seismic slip. A rupture 
may involve only one asperity and stop as a major earthquake, or it may reach one or 
several neighboring asperities and continue to generate a large to great earthquake. 
Whereas it is clear that the above model applies to many fault ruptures, the reasons 
for the difference in resistance to failure are not firmly established. Varying pore 
pressure is one parameter that is capable of causing the observed differences in 
locked and unlocked segments (Byerlee and Savage, 1992; Miller, 1996; Nur, 
1973; Rice, 1992). 

Given the fault model described above, one should expect variations in a- and 
b-wdlues in different fault segments because fault properties and stresses vary. 
Testing this idea along the San Andreas fault near Parkfield yielded a strong con-
trast between Z -̂values in the creeping segment and the asperity beneath Middle 
Mountain (Amelung and King, 1997; Wiemer and Wyss, 1997) (Plate 2A). We 
found not only that this pattern was surprisingly stable during the period of avail-
able data (1973-2000.5) (Plate 2B) but also that the magnitude distribution and 
productivity level can be predicted from past activity. This is illustrated in Fig. 7, 
where we compare the frequency-magnitude distribution observed in the creeping 
segment of the San Andreas fault with the one in the asperity. The two distri-
butions are distinctly different in each of the periods analyzed. Based on the data 

PLATE 2. Maps of the variability of seismicity parameters. (A) Cross section of the Parkfield 
segment of the San Andreas fault showing the variation of Ẑ -value (top), a-value (middle), 
and the local recurrence time for an M6 main shock, calculated from a and b (bottom). The 
asperity beneath Middle Mountain, defined by the two largest earthquakes during the observation 
period (stars) is clearly defined by the TL plot. (B) The stability of the ^-value pattern along the 
Parkfield segment of the San Andreas fault is demonstrated by mapping it in cross section for 
four consecutive periods, each ending at the time indicated as the start of the next one, with the 
last period ending in January 2000. The contrast between the creeping segment (high ^-values) 
and the asperity exists in all periods. (C) The minimum magnitude of complete reporting in 
central and northern California varies from M < 1 in (between San Francisco and Parkfield 
and in Long Valley) to M > 3 off shore. The inset shows two examples of local frequency 
magnitude distributions in the locations marked by A and B. (D) The variation of b with depth 
in southern California measured by the ratio of b above and below a 5-km depth. In most areas, 
^-values decrease with depth (red), but in some the opposite trend is found (blue). Areas with 
not enough earthquakes in either top or bottom to establish a significant change are shown 
in gray. (From Gerstenberger, M., Wiemer, S., and Giardini, D., Geophys. Res. Lett. 28, 58, 
2001. Reproduced by permission of American Geophysical Union.) (E) From the change of 
the seismicity parameters due to the Landers M7.3 earthquake of 1992, a change in the local 
probability for major earthquakes is calculated (frame C). The background parameters were 
estimated from the period 1981-1992.4; the new parameters, from 1993-1999.7. The change 
in the <3-value (measured by the standard deviate Z in frame A) together with the change in the 
Z?-value (frame B) result in an estimated increase in probability that is largest for the northern 
part of the source volume of the subsequent M7.1 earthquake at Hector Mine (frame C). (From 
Wyss, M., and Wiemer, S., Science, 290, 1336, 2000. Reproduced by permission of American 
Geophysical Union.) (See color plate.) 
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FIG. 7. Comparison of the frequency-magnitude distribution for the creeping part of the San 
Andreas fault (triangles) and the locked part (squares) for the period 1971-1981 (A) and the period 
1981-1996 (B). In the right frame (C), the forecasts for the period 1996-2000.2, assuming that 
the earthquake-size distribution was stationary for the respective volumes, are plotted as solid 
lines. The forecasts are based on the observation period 1981-1996. The observed seismicity 
(triangles and squares) matches the forecast closely. 

from 1981-1996 (Fig. 7B), we forecast the distribution of earthquakes represented 
as solid lines in Fig. 7C in the two contrasting volumes. These forecast distribu-
tions are confirmed by the events that occurred in the last 4.2 years (triangles and 
squares in Fig. 7C ). In particular, the two largest events that occurred in the last 
4.2 years were located in the volumes where they were forecast by the data through 
1996. 

Having discovered that Z7-values are strongly heterogeneous and being aware 
of the well-known variations of the a-value in Eq. (1), we realized that the local 
recurrence time, TL, must also vary strongly. TL is estimated for seismic hazard 
assessments by extrapolating the frequency-magnitude relationship observed over 
a period, AT, to a target magnitude of Mtarg by 

TL = Ar/(io^"-^^^^^) (6) 

The inverse of TL, calibrated by the area from which the data are extracted, is 
the annual probability per square kilometer for an earthquake with the target 
magnitude 

Pi^ = l/TJA (7) 

Thus, the second step in our analysis is to map the a-value and combine the infor-
mation contained in it with that of the local Z7-value to estimate PL (alternatively 
Ti). By doing this, the image of the asperity beneath Middle Mountain becomes 
very sharp (Plate 2A) and conforms precisely to the definition of this asperity by 
other means (Bakun and McEvilly, 1984). 
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The earthquake catalog for the San Jacinto-Elsinore fault system provided an 
excellent testing case for the hypothesis that asperities may be mapped by TL (PL) 
because since 1981 the catalog contained no earthquakes larger than M4.9, but 
the locations and approximate extents of six historic shocks in the range 5.8 < 
ML < 6.8 are known. We estimate that the result that five of the six main shocks 
correlated with anomalies in PL (Plate 3D), although the area covered by these 
anomalies was only about 10%, has a probability of about 10"^ to occur by chance 
(Wyss et aL, 2000). 

A similar result was found for the Tokai-Kanto area, where again five out of six 
main shocks (M > 6.5) correlated with areas of anomalously large PL, covering 
about 14% of the total area studied (Wyss and Matsumura, 2002). The 1923 Kanto 
earthquake that destroyed Tokyo emanated from the largest anomaly found. At 
least one, anomaly exists at the estimated ends of the expected Tokai earthquake. 

Along the Pacific margin of Mexico, the plate boundary segment off shore 
of Chiapas shows anomalously high PL. As this part of the plate boundary was 
seldom considered in publications concerning seismic hazard, we investigated its 
history and found that five M >1 shocks had ruptured this segment since 1903, 
with an average return period of 23 years (Zuniga and Wyss, 2001). The fact that 
the analysis drew our attention to a plate boundary segment with a short historic 
recurrence time, but that was not known as unusually active, suggests that the 
method is useful. 

In the case of the 1999 Izmit M7.4 earthquake (Westerhaus et ah, 2002) a 
volume only 10 km from the epicenter was identified as the most likely location 
for a main shock a year before it occurred, on the basis of a Z?-value anomaly in an 
earthquake catalog covering the eastern part of the rupture. This pre-main-shock 
assessment of the earthquake potential along this part of the North Anatolian fault 
was contained in a report to the funding agency and in a manuscript submitted for 
publication in 1998. After the Izmit main shock, Oencel and Wyss (2000) found 
that the earthquake catalog covering the western part of the rupture contained a 
Z?-value anomaly at the western end of the 1999 rupture, suggesting that this rupture 
may have been arrested by a locked fault segment, not yet under sufficient stress 
to continue rupturing. 

The reason for the low Z?-value is likely the state of stress near an asperity 
(a strong and homogeneous stress field). On the other hand, creeping segments of 
faults display high Z?-values. The local recurrence time for moderate main shocks 
of neighboring subvolumes varies by several orders of magnitude depending on 
the local b- and a-values. The fact that the local recurrence times measured in 
the asperity volumes agree reasonably with the historical and paleoseismic record 
(Wyss et al, 2000; Zuniga and Wyss, 2001) suggests that recurrence of main 
shocks is timed by processes in the asperity volume. Neighboring creeping 
segments do not contain information about the recurrence time of main shocks. 
Combining information from these two distinctly different regions into one 
recurrence time calculation results in overestimates. 
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4.3. Mapping Temporal Changes of Earthquake ProbabiHty 

Assuming that the frequency-magnitude relationship may be extrapolated to 
large earthquakes, we can calculate the local recurrence time TL (Mmax) by Eq. (6) 
and the local probability by Eq. (7). If the redistribution of stress due to a large 
earthquake leads to a change in one or both of the parameters a and b, then the TL 
and PL will also change. Because the seismicity rate increased strongly after the 
Landers Ml 3 earthquake of 1992 in several parts of California during the following 
several months, arguments were put forth to show that not only static, but also dy-
namic stress changes played roles in triggering the additional seismicity (Gomberg 
and Davis, 1996; Gomberg et al, 2001; Hill et al, 1995; Stein et ai, 1992). 

According to our hypothesis, a short-lived change in seismicity rate that lasts 
only months would not lead to a change in PL» because we classify this short-
term increase in activity as a cluster, like an aftershock sequence. However, 
the Landers earthquake changed the background seismicity rate in a positive as 
well as in a negative sense in neighboring volumes for at least 7 years follow-
ing it (Plate 2E(A)), which made a recalculation of PL after Landers necessary 
(Wyss and Wiemer, 2000). In addition, it appears that the Landers earthquake also 
changed the Z7-value in many parts of southern California (Plate 2E(B)). Thus, 
we calculated the TL and PL based on the declustered catalog for the 12 years 
before and for the 7 years following Landers and mapped the difference (Wyss and 

PLATE 3. Maps of Z?-value variations on various local scales that can be interpreted to re-
flect differences in either stress level or degree of heterogeneity. (A) Variations of Z^-values 
in the aftershock sequences of the M7.3 Landers and M7.1 Hector Mine earthquakes (red: 
high Z?-values ~ 1.5). Black lines indicate the areas ruptured in the two main shocks; triangles mark 
the epicenter. Low ^-values are found outside the actual ruptured areas. (B) Anomalies of high 
^-values (red) in a cross section of the deep seismic zone and the crust beneath northeastern Japan 
correlate with the ends of a low Vs velocity channel (gray) in the mantle wedge above the slab, 
suggesting that material generated at a 150-km depth in the upper part of the slab ascends along 
an inclined path to the arc volcanoes (triangles). Arrows show assumed flow directions. Typically 
sampling radii are R = 20 km. (From Wyss, M., Hasegawa, A., and Nakajima, J., Geophys. Res. 
Lett. 28,1820, 2001. Reproduced by permission of American Geophysical Union.) (C) Regional 
^-value map (typically R = 300 km) of the Himalayas and adjacent areas. Anomalies of high 
Z7-values are observed at the two apexes formed by the impact of India on the Asian continent, 
where stress orientations vary rapidly as a function of space. White lines are based on a numerical 
model of the stress trajectories. Contrasting frequency-magnitude distributions from regions A 
and B are shown at the right of the map. (D) Maps of the local recurrence time along the San 
Jacinto fault in southern California, based on small earthquakes recorded during 1981-1999, 
are compared with the rupture extent of historic main shocks that occurred during 1895-1966. 
Thick blue lines dehneate the extents of ruptures estimated from seismic signal analyses and 
macroseismic and surface rupture evidence. Circles mark epicenters of after- and foreshocks. 
The positive correlation suggests that asperities associated with main shocks may be mapped by 
anomalies in short local recurrence times (blue). (From Wyss, M., Schorlemmer, D., and Wiemer, 
S., J. Geophys. Res. 105,7836, 2000. With permission.) (See color plate.) 
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Wiemer, 2000). Plate 2E(C) shows that PL decreased strongly in some volumes 
but increased in others. One of the strongest increases in PL is observed in the 
northern part of the source volume of the Ml. I Hector Mine earthquake of 1999. 

4.4. Changes of b with Depth in California 

Three recent studies have addressed the change of the Z -̂value with depth in the 
seismogenic crust in California. Wiemer and Wyss (1997) noted that the Z -̂value in 
the Parkfield and Morgan Hill regions systematically decreases from high ^ > 1.1 
in the top 5 km to Z? < 0.8 below a 6-km depth (Fig. 8). Mori and Abercrombie 
(1997) confirmed this decrease with depth for several other regions in California 
and proposed that the lower b at depth corresponds to a higher probability of 
larger earthquake to nucleate at depth. In a systematic test, Gerstenberger, Wiemer, 

7 < d < 1 5 k m 
b= 0.88+/-0.03 

3=4.08 

2 3 4 5 
Magnitude 

FIG. 8. (A) (top) The Z?-values as a function of depth for the Parkfield segment of the San 
Andreas fault. Each Z?-value was calculated for a depth slice containing 250 earthquakes. Vertical 
bars are the errors in b; horizontal bars indicate the depth range sampled. (Bottom) Histogram 
of the number of events in 0.5-km-depth bins. (Right) Frequency-magnitude distribution for 
two depth ranges: 0-5 km and 7-15 km. (B) same as (A) except for the Morgan Hill segment 
of the Calaveras fault. (From Wiemer, S., and Wyss, M., J. Geophys. Res. 102, 15121, 1997. 
Reproduced by permission of American Geophysical Union.) 
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and Giardini (2001) separately mapped the areas in both southern and northern 
California where a statistically significant decrease can be observed. In about one-
third of the area investigated, this decrease of b with depth can be established at 
the 99% confidence level. The opposite pattern, an increase of b with depth, was 
only found for about 1% of the nodes; the remainder had either no change with 
depth or insufficient data to establish significance (Plate 2D). 

Based on these studies, we believe that for California, a decrease of b with 
depth has been firmly established. The physical cause of this decrease, however, 
has not been established with certainty. We speculate that the change of ambient 
stress with depth plays an important role. The top 5 km in this model is weakly 
coupled and cannot build up significant amounts of shear stress, resulting in a high 
Z7-value. 

4.5. Mapping b in Subducting Slabs 

Although it is not a surprise that b varies in the heterogeneous crust, one might 
assume that deep seismic zones may be more homogeneous and do not show 
significant variations. However, Wiemer and Benoit (1996) mapped well-defined 
anomalies (b > 1.2) similar to those found in the crust at a few kilometers be-
neath volcanoes, at about 100-km depths, in the subduction zones of Alaska and 
New Zealand. They interpreted these anomalies as due to dehydration of the de-
scending oceanic crust at the top of the slab and proposed that their locations mark 
the origin of magma, feeding subduction zone volcanism. 

In northeastern Japan, the anomaly is located at 150-km depth, tens of kilometers 
to the west of the volcanic arc. Detailed seismic tomography revealed a low-
velocity zone that connects the ^-value anomaly in the descending slab at 150-km 
depth with the Z?-value anomalies directly beneath the volcanoes at a 30-km depth 
by an inclined path (Wyss, Hasegawa et al, 2001] (Plate 3B). 

Detailed mapping of the Z?-value in segments of the deep seismic zones with the 
best data (Japan and Alaska) showed that the extent and strength of the Z7-anomalies 
in the depth range of from 80 to 150 km vary along the strike of the subduction 
zone and that another anomaly exists at a 400-km depth in Japan (Wyss, Wiemer 
etal, 20^2]. 

4.6. Variations of b in Aftershock Sequences 

In addition to investigating the ^-value, the decay rate of aftershocks is also of 
interest. It is often described through the parameter/? in the modified Omori law: 

R{t) = (8) 
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where R(t) is the rate of occurrence of aftershocks, and k, c, and p are constants 
(KissHnger and Jones, 1991; Omori, 1894; Utsu et al, 1995). 

When investigating Z?-values of aftershock zones, it is particularly important to 
carefully study first the temporal changes of Mc. Within the first hours to days 
of an aftershock sequence, Mc tends to decrease systematically. This is caused 
by improvements of the station network and by the fact that the frequent larger 
aftershocks mask small events. 

In Plate 3A, we show a map of the Z7-value after the Ml 3 1992 Landers and 
the M7.1 1999 Hector Mine main shocks (Wiemer et al, 2002). Low Z?-values are 
found south of the Landers hypocenter and north of the Hector Mine hypocenter. 
In both cases, the lowest Z -̂value areas are located outside the rupture area of 
the main shock. It is tempting to propose that the slip distribution during the 
main shock and its resulting stress distribution may control the size distribution 
within the aftershock sequence; however, we have yet to establish this correlation 
quantitatively (Wiemer and Katsumata, 1999; Wiemer et al, 2002). 

The analysis of the spatial distribution of the b- and /7-values within five after-
shock zones (Landers, Hector Mine, Northridge, Kobe, and Morgan Hill) suggests 
that these parameters vary strongly (Wiemer and Katsumata, 1999; Wiemer et al, 
2002). Therefore, the common practice of simply assigning an overall p- and 
Z?-value to an entire aftershock sequence is an oversimplification of the complex 
and spatially heterogeneous internal structure of aftershock sequences. This should 
not come as a surprise, since the physical parameters governing the decay rate and 
size distribution, such as stress, material properties, pore pressure etc., are likely to 
vary substantially along the strike of an extended aftershock zone. The aftershock 
seismicity in one section of the fault can be considered as largely independent of 
the activity at another end. Just as a large main shock cannot be treated as a point 
source when studying effects within the near field, our results show that we must 
investigate spatial variations of these seismicity parameters within the aftershock 
zone. We propose that spatial variations in b- and /7-values are characteristic for 
all aftershock sequences of moderate to large earthquakes. 

4.7. Implications for Aftershock Hazard 

Aftershocks may pose a significant hazard in populated areas and at the same 
time offer a rich source of information for seismicity studies. Measures have been 
implemented to assess this hazard in near-real-time to assist government, industry, 
and emergency response teams in decisions such as determining when it is safe 
to demolish, repair, or allow people to use damaged structures (Hough and Jones, 
1997; Reasenberg and Jones, 1989, 1990, 1994). ProbabiHstic aftershock hazard 
assessment is based on the two power laws that describe the temporal behavior 
of an aftershock sequence: the modified Omori law and the Gutenberg-Richter 



MAPPING SPATIAL VARIABILITY 283 

relationship. From these power laws, one can obtain an equation (Reasenberg and 
Jones, 1989,1990,1994) that describes the rate A(r,M) of aftershocks of magnitude 
M or larger: 

X(t, M) = io«+^(^--^>(r + c ) - ^ (9) 

where t is the time after the mainshock and M^ is the mainshock magnitude. By 
modeling the aftershock sequences as a Poisson process with a time-dependent 
rate parameter (Reasenberg, 1985), one can derive the probability P of one or 
more earthquakes occurring in both magnitude range (Mi < = M < M2) and time 
range (S< = t<T): 

P = 1 - exp(- / X{t, M)dt) . (10) 
V JT /Ml 

Since all three parameters, the a-, b- and p-values, vary significantly within in-
dividual aftershock sequences, the aftershock hazard also varies. This hazard can 
be expressed by either spatially and temporally varying the forecast of an after-
shock above a given magnitude threshold or computing time-varying probabilistic 
aftershock hazard (PAH) maps (Wiemer, 2000). These PAH maps have been in-
vestigated in a retrospective study for the Landers sequences (Wiemer, 2000) and 
in a near-real-time mode for the Hector Mine earthquake (Wiemer et al, 2002). 
In both case studies, PAH maps have been shown capable of reasonably portray-
ing the aftershock hazard, with the highest hazard to the south of the Landers 
rupture and to the north of the Hector rupture. A systematic test of the capabili-
ties and limitations of PAH maps is currently under way (Gerstenberger, Wiemer, 
Giardini, Hauksson et al, 2001). The pattern of the highest hazard for the Landers 
and Hector Mine sequences is interestingly directly reversed to the observed trig-
gering of small aftershocks at larger distances (Gomberg et al, 2001; Harris and 
Simpson, 1992), suggesting that static and not dynamic transfer of stress through 
the mainshock is governing the aftershock hazard; however, the current static stress 
triggering models (Hardebeck et al, 1998; King et al, 1994; Stein et al, 1992) 
cannot explain either the distribution of the aftershock hazard or the distribution 
of seismicity. 

4.8. Spatial Variations of b on Regional to Global Scales 

While the evidence for spatial variability in b is overwhelming on a local to 
regional scale, there continues to be doubt about the regional to global scale. Studies 
by Frohlich and Davis (1993) and Kagan (1999) suggest that there is little variation 
of b between different tectonic regions and that the observed differences are at least 
partially due to artifacts rather than to natural differences. The spatial resolution 
of these studies is on the order of several hundreds to thousands of kilometers. 
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In a recent study of the Himalayan region, on the other hand, Regenauer-Lieb 
and Wiemer (2001, personal communication) did find spatial variability of b on 
this scale (Plate 3C). High Z?-value regions are found near the singularities of the 
indenter (India) that penetrates into the Eurasian plate. We speculate that the fact 
that spatial variations of b on large scales have not often been established could be 
due to (i) the lack of high-quality earthquake catalogs with low M^ on this scale, 
(ii) the lack of rigorous studies, or (iii) because heterogeneity in the Earth exists 
primarily on smaller scales. 

5. CHANGES OF Z?-VALUES AS A FUNCTION OF TIME 

Many authors have investigated temporal changes of b. Most of these studies 
addressed bulk changes rather than temporal changes in sub volumes; however, 
some studies have investigated both spatial and temporal variabilities of ^ simulta-
neously (Ogata et al, 1991). In mines, temporal variations in b have been used for 
time-varying hazard analysis (Gibowicz and Lasocki, 2001), whereas the appli-
cation to larger scale tectonic systems remains speculative (Knopoff et ai, 1982, 
1996; Smith, 1998). In our research, we found that lasting and significant changes 
of the Z?-value as a function of time are not common. In our efforts to spatially 
map b, we searched for temporal changes but could generally not find substantial 
and lasting changes. In one of the best data sets at Parkfield, b is remarkably sta-
ble with time (Plate 2B). However, major events such as magmatic intrusions and 
large earthquakes do change b locally. Beneath the Off-Izu volcano, we noticed 
a three-phase increase in b correlating with three intrusions (Wyss et ah, 1997). 
To document the change associated with the 1989 intrusion beneath Mammoth 
Mountain, we improved the technique by mapping the change (Wiemer et ai, 
1998). In this case, the change had a maximal amplitude of A^ = 0.6 near the 
shallow termination of the intrusive dike but extended to about a 2-km depth at a 
reduced ampHtude of Ab = 0.2 (Fig. 9). 

The three cases in which we documented a temporal Z?-value change with high 
statistical significance were all step-function-like increases and associated with 
either a major redistribution of stress or an injection of fluids into the seismogenic 
volumes. However, long-period changes may also occur. Jones and Hauksson 
(1997) showed that the Z -̂value in southern California was lower before the 1952 
Kern County earthquake than after it. The hypothesis that the seismic moment 
release increases regionally before large earthquakes (Vames, 1989) implies that 
b should be anomalously low before them (e.g.. Bowman et al, 1998). 

The differential Z?-value map after the 1984 Morgan Hill main shock (Fig. 10) 
shows that a change in b only occurred near the area of largest slip (Wiemer and 
Katsumata, 1999). Therefore, we propose that although it is easy to change the 
productivity of a volume (the a-value), it is much more difficult to change its 
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FIG. 9. Differential ^-value cross section through the Mammoth Mountain area. The Z?-values 

are compared for the periods 1983-1989 and 1989-1990.5. A positive value indicates that the 
^-value increased in the later period. Contour interval is 0.05. Nodes where the difference in b 
could not be established at the 99% confidence level are left white. (From Wiemer, S., McNutt, 
S. R., and Wyss, M., California, Geophys. J. Int. 134, 416, 1998. With permission.) 

^-value. This explanation is consistent with the physical interpretation of b as an 
expression of homogeneity in both stress and material properties, since it is not 
easy to change these properties. 

5.1. Precursory Changes of Z?-Values before Main Shocks 

Early investigations of the possibility that the FMD may change before main 
shocks were hampered by inferior data quality, but the suggestion that during 
a preshock-foreshock period the mean magnitude increased {b decreased) was 
supported by some data (Main et ah, 1989; Narkunskaya and Shnirman, 1994; 
Smith, 1986, 1990; Wyss and Lee, 1973). Interest in this topic has recently been 
renewed (Rotwain et al, 1997; Smith, 1998). Several observations show that 
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FIG. 10. Differential Ẑ -value map for the Morgan Hill region, comparing the two periods 1971-
1984.3 and 1984.3-1985.3. A star marks the 1984, M6.2 Morgan Hill hypocenter. Only areas 
where the difference in the ̂ -value is significant at the 95% confidence level are shown. Contour 
lines represent the slip during the main shock in 0.2-m intervals. A positive value of Ab indicates 
that the Z?-value is higher in the later period. The circle marks the volume of strongest increase 
in b. (From Wiemer, S., and Katsumata, K., J. Geophys. Res. 104,13, 1999. With permission.) 

Z7-values are different before main shocks than after them or than during the back-
ground period (Jones and Hauksson, 1997; Bowman etal, \99%\ Wyss and Wiemer, 
2000, Kno^oE etaU 1982, 1996). 

6. FRACTAL DIMENSION AND Z?-VALUE 

It has long been speculated that the spatial distribution and the size distribution of 
earthquakes are related. The fractal dimension, D, of hypocenters is one convenient 
measure of the distribution of hypocenters in space. D was found to follow a power 
law (Kagan, 1991; Kagan and Knopoff, 1980; Robertson et al, 1995; Turcotte, 
1992; Volant and Grasso, 1994), hence exhibiting a self-similar scaling. Assuming 
that the seismic moment, MQ, is proportional to fault dimension cubed and that 
the spatial distribution of earthquakes is fractal, Aki (1981) showed that then the 
fractal dimension D and Z?-value should be related as 

3Z? 
(11) 

where c ^ 1.5 is the scaling constant between log moment and magnitude 
(Kanamori and Anderson, 1975). If a more general relationship between moment 
and fault length L (MQ OC L"^) is assumed (King, 1983) Eq. (1) can be generalized 
to 

D = (12) 
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For small earthquakes with circular rupture areas, J = 3, as in (10), and D = 2b. 
For large earthquakes that span the crust and only extend laterally, d = 2 and 
D = 4/3b. 

For the Parkfield data set there is specific information on these constants. 
Nadeau and Johnson (1998) observed the period T of repeating earthquakes 
scales as T oc MQ . For noninteracting asperities, continuity of fault displace-
ment requires the same average displacement rate on all asperities, i.e., d/T = 
constant, independent of moment. Hence d oc M^ . Since MQ = GAd, this leads 
to A a MQ^^ or, equivalently, MQ a (L^)^/^ = V-^ which, by definition, gives 
d — 2.4. In addition, an independent determination of magnitude and moment 
for the events (Sammis et al, 2002) yields logioMo = 1.6M + 15.8. Thus 
c = 1.6 for Parkfield events. Hence, based on the Parkfield data itself, we expect 
d/cF = 2.4/1.6 = 1.5. 

A critical issue when determining D is hypocenter accuracy, AL(x, y, z), since D 
should not be determined based on values less than AL (De Luca et al, 1999; Harte 
and Vere-Jones, 1999; Nerenberg and Essex, 1990). Similar to the estimation of 
completeness in magnitudes, estimating AL is not simple and incorrect estimation 
of AL can lead to significant errors in D. 

Hirata (1989) disagreed with Eq. (11) based on measuring both the Z?-value and 
the fractal dimension of the hypocenters of shallow (0-60 km) earthquakes located 
off shore east of Japan as a function of time. However, the catalog used by Hirata 
is not homogeneous either in the reporting of magnitudes or in epicenter accuracy, 
over the period he used (1923-1986), and each measurement of D and b was based 
on 100 events only. Many of the epicenters are uncertain to at least 20 km, which 
suggests that the results may not be reliable. Sammis et al (2002) concluded, on 
the basis of an earthquake catalog with hypocentral errors of 0.2 km, that along 
parts of the San Andreas fault Eq. (11) holds. 

The questions of how well the distribution of earthquakes in space approaches 
a fractal distribution and how well Eqs. (11) and (12) describe the relationship of 
D with b are of fundamental interest but currently still open. We expect that they 
will be answered in detail, as more high-quality data sets become available. 

7. THE PHYSICAL PROCESSES PERTURBING Z?-VALUES 

The data from underground mines (Urbancic et al, 1992; Gibowicz and Lasocki, 
2001) and from a gas field (Lahaie and Grasso, 1999) are the most convincing, 
linking decreases in Z -̂value to increased ambient stress and increased stressing 
rate, respectively. The correlation of high pore pressure with high Z7-values also 
links low Z?-values to higher stress, but so far the data are weak (Wyss, 1973). 
In addition, laboratory experiments support the same conclusion (Scholz, 1968). 
Also, the conceptual model is convincing that earthquakes are more likely to grow 
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into larger events in a highly stressed medium, because the difference between 
volumes of maximum and minimum stress is small and can be overcome more 
easily by a propagating rupture than it would be in a low-stress volume with deep 
energy wells that a rupture must overcome to continue. Furthermore, the rapid 
(one to a few months) and massive (AZ? ~ 0.4) increase in Z -̂values at a distance 
of several kilometers from a magmatic intrusion is well explained, assuming an 
increase in pore pressure (Wiemer et al, 1998). We also find a correlation of the 
average stress tensor misfit with the ^-values (Wiemer et al, 2001). Finally, the 
observed decrease in the Z?-value as a function of depth in California (Gerstenberger, 
Wiemer and Giardini et al, 2001; Mori and Abercrombie, 1997; Wyss, 1973) can 
also be interpreted as due to the increasing ambient stress level. Taken together, 
these lines of evidence support the interpretation that Z?-values can be perturbed by 
differences in ambient stress. Nevertheless, the correlation of low Z -̂values with 
high stresses needs to be strengthened by additional high-quality observations. 

The alternative explanation that high Z?-values may be due to increased structural 
heterogeneity (Mogi, 1962) cannot be ruled out and is supported by some data 
(Westerhaus etal, 2002). Although this line of evidence is not strongly developed, 
it is likely that both factors, structural heterogeneity and stress level, can perturb 
the Z?-value. 

The idea that Z?-values may be influenced by temperature is supported by only 
one sequence of laboratory experiments (Warren and Latham, 1970), and it seems 
difficult to test it in the field. In our discussions, we tend to give it less weight than 
the two aforementioned possibilities because of the paucity of information about 
it, but we cannot rule it out as another feasible mechanism. 

8. COMMON PROBLEMS AND COMPLICATIONS 

8.1. Catalog Heterogeneity as a Function of Time 

This can be a serious problem for identifying both b- and a-value changes 
with time. Although careful analyses, using the techniques we have developed, 
can detect some artificial reporting changes (Pechmann et al, 2000; Wyss, 1991; 
Wyss and Toya, 2000; Zuniga and Wiemer, 1999; Zuniga and Wyss, 1995), others 
may go undiscovered. 

8.2. The Lack of a Unique Physical Interpretation of Anomalies 

This may remain a problem, even if more correlations to specific causes can be 
established, because it may well be that more than one parameter can influence 
the Z?-value. 
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8.3. Selective Hypocenter Location Errors as a Function of Magnitude 

These types of errors might sort small and larger microearthquakes into diff-
erent volumes. Because the Z?-value anomalies beneath volcanoes often have radii 
of about 1 km, the systematic error thus introduced may be large enough to mimic 
an anomaly where there is none. 

8.4. Magnitude Scales Can Differ 

This can lead to problems within a region and between regions. 

1. Microearthquakes from which the Z?-value is derived are commonly measured 
by duration magnitudes, M^. In spite of the best efforts of network operators, this 
scale is often not the same as the Ms scale, on which main shocks are measured. In 
this case, local differences in earthquake potential (JL and PL) can still be defined, 
but the absolute values for TL and PL are incorrect because they depend on the 
extrapolation from the M^ data set (Zuniga and Wyss, 2001). 

2. In some regional networks, it may not be known that the attenuation properties 
are anomalous. This can lead to a regional M^ scale that is substantially stretched 
(or compressed) with respect to the original ML scale, as defined in California 
(Gutenberg and Richter, 1954). In that case, the ^-value range may be unusual 
(l< b<3, for example (Oencel and Wyss, 2000; Westerhaus et al, 2002). We 
do not interpret the observation of a regionally shifted Z7-range to mean that the 
entire region is anomalous but assume that the magnitude scale differs from the 
standard. In this case also, the differences in local Z -̂values can still be defined re-
liably, and inferences on locations of asperities or magma chambers may be drawn. 

8.5. The Methods Can Only Be Applied to Seismically Active Volumes 

Beneath volcanoes, where earthquakes are often restricted to very small events 
(M < 2), Z?-values can only be mapped if local networks provide detailed catalogs. 
Also, large magma bodies and locked fault segments may produce no earthquakes 
and cannot be mapped. 

In many catalogs, the number of earthquakes per unit volume available is 
marginal, and may allow a resolution for mapping that is coarser than the hetero-
geneity actually present. For example, beneath Etna most of the radii containing 
sufficient events for estimating b exceeded 2 km (Murru et al, 1999), whereas we 
would have liked to map this volume with r <\ km, to sharply resolve the images 
of the two anomalies. Similarly, we were forced to use r = 20 km to map anoma-
lies in the Kanto-Tokai area (Wyss and Matsumura, 2002), although asperities for 
M > 6.5 main shocks may be substantially smaller and not crisply resolved by 
our analysis, until more time has elapsed so that the catalog contains more events. 
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FIG. 11. Cumulative (top) and non cumulative FMD for a shallow volume underneath 
Mt. Redoubt volcano, Alaska. This volume shows a distinct bimodal FMD due to the existence 
of swarm-type earthquakes. 

8.6. Bimodal Distributions of Magnitudes 

In some volumes of the Earth, the assumption that the FMD can be adequately 
described as a power law is clearly invalid (Knopoff, 2000; Pacheco et ai, 1992; 
Trifu et al, 1995). This breakdown of a power law scaling is, for example, often 
observed in volcanic regions, where earthquake swarms and families introduce 
a non-power-law population of events of very similar size. A sample FMD in 
noncumulative form is shown in Fig. 11. The excess of M ^ 1.3 earthquakes is 
caused by a self-similar family of events which are likely not earthquakes but 
vibrations of a crack or pipe. In other cases, contamination by explosions can 
introduce an apparent bimodal scaling. Wiemer and Wyss (2000) documented for 
a case study in Hokkaido (Taylor et ai, 1990) that temporal and spatial variability 
in Mc can be misinterpreted as an apparent breakdown in scaling. 

When mapping Z?-values, it is vital to look out for areas were a power law scaling 
is not appropriate. These areas might be found by their poor fit of the FMD to a 
power law. In addition, bimodal areas can sometimes be identified as anomalies in 
Mc maps. Using automatic mapping, bimodal FMDs can be misinterpreted as an 
either unusually low or high ^-value, depending on the estimate of Mc. Therefore, 
inspecting maps of Mc and of the goodness of fit to Mc is indispensable before 
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trusting a Z?-value map, and selected interactive screening of the individual FMDs 
for bimodal distributions is advisable. 

9. NEW HYPOTHESES AND PRELIMINARY CONCLUSIONS 

9.1. Hypothesis I: Active Magma Chambers in Seismogenic Crust May Be 
Mapped by an Excess of Small Earthquakes, Which Can Be Measured 
by Anomalously Large Z?-Values 

The idea that magma chambers in the crust may be identified by anomalously 
high Z?-values (Wiemer and McNutt, 1997) has been tested on eight volcanoes, thus 
far (Section 5). In all cases, relatively small volumes (0.5 < r < 2 km) of exceed-
ingly high Z?-values were found, surrounded by crust with normal values (Plate 1). 
Beneath volcanoes, where modeling of crustal deformation, seismicity rate, and 
other parameters suggested the presence of magma chambers in specific loca-
tions, the Z?-value anomalies agreed closely with these models (Mount St. Helens, 
Redoubt, Off-Ito, Long Valley, Mammoth Mountain, east rift of Kilauea). Thus, 
we believe that the mapping of Z7-value anomalies beneath volcanoes is an effective 
tool for locating active magma chambers. 

The possible existence of large magma chambers at either the base of the crust 
or in the upper mantle can probably not be detected by our method in most cases 
because the surrounding volumes are not brittle enough to generate earthquakes. In 
one case, where earthquakes are generated at subcrustal depths beneath volcanoes, 
the Z7-values were anomalously high, identifying a magma reservoir or magma path 
(Plate 3B). In three of the eight cases, we found two anomalies at different depths 
(Mount St. Helens, Mammoth Mountain, and Mt. Etna), supporting the results of 
other techniques, which indicated complex magma supply systems. 

We favor the interpretation that elevated pore pressures cause the high Z?-value 
anomalies beneath volcanoes because an intrusion under Mammoth Mountain 
changed the ^-values at a distance of several kilometers within less than 1 month 
(Wiemer et ah, 1998). We conclude that long-term monitoring of the seismicity 
of active volcanoes, down to small magnitudes, furnishes important information 
on the depth, location, size, and relative activity of magma chambers and magma 
supply paths. 

9.2. Hypothesis II: Asperities May Be Mapped by Maxima in Local Earthquake 
Probability (Minima in Local Recurrence Time) 

This hypothesis assumes that the frequency-magnitude relationship defined by 
small earthquakes can be extrapolated to large ones. It is likely that this is not 
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valid for all seismogenic volumes. Nevertheless, the support for the hypothesis, 
accumulated so far, is strong. 

1. The asperity we mapped under Middle Mountain correlates exactly with the 
definition of the asperity by other means (Wiemer and Wyss, 1997). In addition, 
out of 12 main shocks (San Jacinto-Elsinore plus Kanto-Tokai) 10 correlate with 
PL maxima (TL minima) covering only 10 to 15% of the studied area (Wyss et ai, 
2000; Wyss and Matsumura, 2002). The probability that this result was achieved 
by chance is small. 

2. The values of the recurrence times calculated at Parkfield (Wiemer and Wyss, 
1997), along the San Jacinto-Elsinore fault (Wyss et ai, 2000) and along the 
Mexican subduction zone (Zuniga and Wyss, 2002), agree closely with recurrence 
times estimated based on historically recorded main shocks. 

3. A location close to the epicenter of the 1999 Izmit MIA main shock was 
identified in 1998 as the most likely place, along the segment of the North Anatolian 
fault covered by the German-Turkish seismograph network, to generate a major 
to large earthquake (Westerhaus et al, 2002). 

Thus, we conclude that our method to map asperities promises to be useful in 
identifying locations that may become crucial in future large earthquakes. In fact, 
it has already drawn attention to a part of the Mexican subduction zone where 
the frequent occurrence of M > 7 events had not been noticed and discussed 
appropriately. 

9.3. Hypothesis III: The Permanent Changes in the Probability for Earthquakes 
Caused by Major and Large Shocks in Their Vicinity Can Be Estimated 
from the Changes in Local Recurrence Time, Calculated from Changes 
in a- and ^-Values 

Short-term changes in seismicity due to redistribution of stress have been docu-
mented for many main shocks but in most detail for the Landers 1992 earthquake 
(Gomberg and Davis, 1996; Harris and Simpson, 1992; Hill et al, 1995; Stein 
et al, 1992). This main shock also caused long-term changes in the background 
seismicity rates and Z?-values, lasting for many years, which implies that the prob-
ability for small and large earthquakes has been changed "permanently" (Wyss 
and Wiemer, 2000). By "permanent" we mean duration comparable to the cat-
alog length available since the event. Using Eq. (7), we estimate that the local 
probability for a main shock changed by a couple of orders of magnitude in both 
a positive and a negative sense in neighboring volumes, respectively (Plate 2E). 

We suggest that most main shocks change the probability for future earthquakes 
permanently in their vicinity, due to changes in the Coulomb fracture criterion 
(Harris, 1998), and we propose that this may be measured quantitatively by 
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the change in local earthquake probability, extrapolated from the frequency-
magnitude distribution. This information can be translated into time-dependent 
hazard assessment. 

9.4. Hypothesis IV: Phase Transitions, and Thus the Deep Source of Magma 
for Subduction Volcanism, May Be Mapped by Anomalously High Z?-Values 

Wiemer and Benoit (1996) formulated this hypothesis, based on their obser-
vation that anomalously high b values were located beneath the volcanoes of the 
Alaskan and New Zealand subduction zones at the top of the deep seismic zone 
(100-km depth). In northeastern Japan, we found the same type of anomaly at 
about a 150-km depth, considerably west of the volcanic front (Wyss, Hasegawa 
et al, 2001). In the case of northeastern Japan, detailed tomography shows that 
a low-velocity channel connects this anomaly with the arc volcanoes. Thus, we 
propose that anomalously high Z?-values in the depth range of 70-160 km at the 
top of deep earthquake zones may map the origin of fluids for arc magmatism but 
that the geometrical relationship between these anomalies and the volcanoes may 
be complex and depend on yet unknown factors, including the back-flow velocity 
in the mantle wedge above the descending slab. 

9.5. Hypothesis V: The Z?-Values in Aftershock Sequences Are Heterogeneous, 
Suggesting That the Probability of a Major Aftershock Varies in Space 

We have documented that the spatial variability of the a-, p-, and Z?-values 
within aftershock sequences is considerable (Wiemer and Katsumata, 1999), and 
we hypothesize that this information can be effectively translated into probabilistic 
hazard maps (Wiemer, 2000; Wiemer et aL, 2002). In this model, the aftershock 
hazard, as well as the hazard that an earthquake is followed by an even larger 
main shock, varies spatially. Particularly, after a large main shock we propose that 
the hazard at one end of the fault may be quite different from the hazard at the 
other end. The ultimate aim is to forecast this pattern in near-real-time after a 
main shock, based on the first hours and days of aftershock data and an improved 
understanding of the physical processes causing the asymmetry in aftershocks. 

10. OUTLOOK AND FUTURE WORK 

We anticipate increased interest in the detailed spatial mapping of Z?-values on 
a local scale in the next years. The quality and quantity of seismicity catalogs 
are improving rapidly. The ability to perform precise relocations of hypocenters 
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(Gillard et al, 1996; Hauksson, 2000; Waldhauser and Ellsworth, 2000) is starting 
to produce highly interesting data sets with hypocenter accuracies better than 
500 m. Unfortunately, some of these relocation studies are limited to subsets 
of catalogs. Because not only small magnitudes are eliminated in these subset 
selections, alterations of the frequency-magnitude distribution result; hence some 
of these relocated data sets may not be useful for Z?-value mapping unless the lost 
events are reinserted in the catalog with their original hypocenters. 

Little progress has been made toward significant improvements in the homo-
geneity of earthquake catalogs, particularly in magnitudes. Magnitudes will con-
tinue to differ between networks. Also, network configurations and data-processing 
approaches will continue to change, often introducing artifacts into earthquake 
catalogs. The presence of these artifacts and the general lack of independent ver-
ification of seismicity-based studies will likely remain major challenges for all 
seismicity studies. Incremental progress through, for example, more widespread 
use of moment magnitudes, improved artifact recognition techniques, real-time 
monitoring for artifacts, and improved awareness by network operators is possible. 

Increased computer power and enhanced imaging software will make 
three-dimensional mapping more feasible. The spherical sampHng volumes used 
in three-dimensional mapping are in many cases the most appropriate approach to 
Z?-value mapping and, therefore, particularly suited for hypothesis testing. 

Rigorous testing of the hypotheses outlined previously will commence over the 
next years, particularly in the area of asperity mapping, temporal changes, and 
aftershock hazard. Case studies are the natural first step to build up knowledge 
and to form hypotheses. Because the spatial variability of b has considerable 
implications for earthquake hazard, it is necessary to move beyond case studies 
toward statistical tests performed a posteriori as well as in real-time. We are 
currently implementing two hypothesis tests: (i) How do we achieve the best 
forecast of seismicity: using either a constant Z?-value or a spatially variable bl 
(ii) Do probabilistic aftershock hazard maps provide a significantly better forecast 
of aftershock hazard than the conventional aftershock hazard assessment? Other 
tests will follow; however, in volcanic environments (Plate 1) and in the subducting 
slab (Plate 3B) the case study approach will remain the most widely used. 

APPENDIX A. FREQUENTLY ASKED QUESTIONS 

A.l. Should One Use Samples with Constant Numbers Rather Than 
with Constant Radius? 

Either approach is equally valid, and often it is a good idea to compare the 
results of both to make sure that they are independent of the choice of sampling 
method. By sampling a constant number of events at each node, the sample size, 
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and hence uncertainty, is approximately constant, and the best spatial resolution 
possible at each node is achieved. In this case, the radii of sampling volumes, 
or resolution, are inversely proportional to the local density of earthquakes and 
consequently variable across a region. When using constant radii for sampling, the 
resolution does not vary spatially, but the sample size, and hence the uncertainty, 
does. It is necessary to exclude nodes where fewer than a minimum number of 
earthquakes are sampled (e.g., 50), or one can use a cutoff, based on a maximum 
for the allowed uncertainty. Recurrence time and probability maps, calculated by 
Eqs. (6) and (7), require sampling by constant radius, because otherwise the a-
value is meaningless. 

A.2. Why Do We Map Z -̂Values and Not Mean Magnitude? 

The parameter we are interested in is the mean magnitude and not the b-slope. 
These two parameters are equivalent, because they are inversely proportional to 
each other (Eq. (3)). Discussions of the Z?-value can be understood better because 
the values of b have (or should have) the same meaning in all regional networks, 
regardless of the magnitude range used to define b. Thus, a value of b = 1.54 
beneath a volcano estimated from earthquakes in the range 0 < MD < 2.0 con-
tained in a local catalog may be judged as anomalously high compared to either 
b = I, defined by a regional catalog with events in the range 1.5 < M^ < 5.0, or 
even to ^-values derived from a worldwide catalog in the range of 4.5 < m < 6.5. 
On the other hand, the mean magnitude in the three catalogs is different, be-
cause it depends on Mc resolved by the network (Eq. (3)). Therefore, comparing 
mean magnitudes derived from different data sets would be confusing, whereas 
a discussion of the same property in terms of Z?-value is both informative and 
understandable. 

A.3. Should the Catalog Be Declustered? 

Declustering is the separation of the dependent events (i.e., foreshocks, after-
shocks, and clusters) from the background seismicity (Reasenberg, 1985). For 
seismicity rate studies (Wiemer and Wyss, 1994; Wyss and Wiemer, 1997) as 
well as for hazard related studies (Frankel, 1995) declustering is often considered 
necessary to achieve the best results. When studying aftershock distributions or 
aftershock hazard (Wiemer and Katsumata, 1999; Wiemer, 2000; Wiemer et al, 
2001), the data are not declustered. In the absence of larger aftershock sequences 
in a data set, the impact of declustering generally tends to be small, and it may 
be advisable to compare the results with and without declustering. In sunmiary, 
the question of whether or not to decluster a data set prior to analysis cannot be 
answered universally, as it depends on the problem to be addressed. 
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A.4. What Is the Influence of Location Errors? 

If the location errors are random and do not depend on magnitude, we can use any 
size volume for sampling because, on average, events are randomly moved into and 
out of the volume in which they really belong. If the errors are random, but larger for 
small events, then a sample biased toward too many small events can be obtained at 
the edge of a seismically active volume because selectively small ones are thought 
erroneously to lie outside the true seismogenic volume. Cases in which systematic 
errors may depend on magnitude are rare but can exist. For example, small and 
medium-size earthquakes beneath a volcano may be afflicted by systematically 
different errors, if they are located by a local and regional network, respectively. 
Thus, artificial Z?-value anomalies, in particular as a function of depth, may appear. 
In addition, all hypocenters may be shifted systematically, for example, in depth. 
In this case, the mapping would not be biased, but the tectonic interpretation may 
be biased. 

A.5. What Software Do You Use? 

The software we use to do most of our analyses is bundled in a package called 
ZMAP (Wiemer, 2001). It is written in the Matlab language, and users will need 
to purchase a Matlab license to operate ZMAP. ZMAP can be obtained via the 
internet at http://www.seismo.ethz/staff/stefan. Also, a manual, a cookbook, and 
sample data sets are available for downloading. 
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capacitance, 128 
collection efficiency 

vs. crystal diameter, 192 

303 



304 INDEX 
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collision cross sections, 145 

supercooled water droplets, 147 
collision efficiency, 147-148 
dimensions of, 53 
flow fields around, 99-100 
flow past 
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problems and complications, 288-291 
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determination. 111 
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ice crystal, 203 
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function of time, 288 
CCN, 152-153 
Charge 
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vs. charged circular cylinder 

potential distribution, 122 
Charged right circular cylinder 

capacitance 
determination, 111 

charge density distribution 
determination, 111 

China 
ice particles in 

historical notes on, 3-6 
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climate, 197-198 
cold-unstable case, 224-228 
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development of, 199 
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development of, 219 
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environmental and microphysical factors for, 
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evolution of ice crystals in, 197-246 
ice crystals in, 1 
layer 

ice crystal habit, 216-217 
microphysical module, 199, 201 
microphysics model, 201-207 
model components, 200 
radiation of, 197-198 
radiative properties, 198 
ventilation effect on 

development of, 245-246 
vertical profile of, 197 
warm-stable case, 215 
warm-unstable case, 220-224 

Cirrus model 
modules, 200 
physics of, 199-211 
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solar heating rates, 223 
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optical properties of, 8 

Cloud condensation nuclei (CCN), 152-153 
Cloud heating rates 
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Cloud microphysical processes 

block diagram of, 202 
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description of, 213 
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cirrus profiles, 217 
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comparison of, 178-188 
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vs. crystal length 
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data sources of, 180-181 
density effect, 176 
experimental verification of, 188-196 

results of, 190-196 
setup and procedure for, 188-190 

vs. geometric kernel, 178 
for nonspherical collectors, 194 
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theoretical vs. experimental, 196 

Collection kernel 
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Collisional growth, 109-110 
Collision cross sections 

broad-branch crystal, 145 
supercooled water droplets, 147 
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supercooled water droplets, 146 
ColUsion efficiency, 143-152, 158, 207 

for aerosol particles, 166-168 
broad-branch crystal, 147-148 
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supercooled water droplets, 148 
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determination, 139-140 
with electric charge, 171 
finite cylinders 

vs. infinite cyUnders, 149-150 
hexagonal ice plates, 144-147 
ice crystals 

collecting supercooled droplets, 
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defined, 140-143 

radius of aerosol particle, 172 
vs. radius of aerosol particle, 166-168 
three-dimensional configurations, 140-141 

Collision geometry 
finite cylinder, 142 
spheres, 141 
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characteristics of, 172 
collision cross sections, 146 
collision efficiency, 148-149 

supercooled water droplets, 148 
dimensions of, 53 
flow fields around 

general features of, 61-74 
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vapor diffusion 
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efficiencies of, 172-178 
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total ice water content, 236 
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estimation, 261-263 
Computed flow fields 
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Reynolds number, 136 
Computed particle streaks 

for perturbed flow past 
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Computed pressure fields 
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flow past, 87-89 
Computed tracer particle trajectories 
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fitting procedure for, 32-34 
mathematical expressions 

shape of, 30-31 
shape of 

mathematical expression describing, 30-31 
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Conical hydrometeors 

describing 
mathematical expressions, 30-43 

mathematical expressions describing, 30-43 
types of, 30 

Conical particles 
with circular and elUptical cross sections 

three-dimensional expression of, 41 
Conical volume 

closed-form expression of, 249-251 
Constant numbers 

vs. constant radius, 294-295 
Contamination by explosions 

seismicity data, 267 
Convective-diffusion equation, 158 

snow crystal, 159 
Convergent-straight-divergent behavior 

gap region, 105 
Coulomb fracture criterion, 292 
Critical riming size, 151 
Crops 

ice particles damaging, 4-5 
Cross section 

sampling volumes, 269 
Cross-sectional area 

of hydrometeors, 36-37 
normal to direction of fall, 39-41 

of ice particles 
calculation of, 25 

Crystal habit 
effect of, 235 

Cumulonimbus clouds 
ice particles in, 1 

CURVT,51 
Cylinders 

boundary surfaces. 111 
charged circular 

vs. charged prolate spheroid, 122 
charged right circular 

capacitance determination, 111 
charge density distribution determination, 

111 
circular, 22 
equator of, 22 
falling 

computed tracer particle trajectories 
around, 57 

flow field of nondimensional velocity 
fluctuation, 58, 62 
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experimental photographs of, 56, 64 

finite 
collision geometry, 142 
flow past, 85-89 
flow past of, 58 
vs. infinite cylinders, 149-150 
surface pressure distribution, 82-83 

finite circular 
cross section of, 21 

flow past 
computed tracer particle trajectories for, 

65-66 
drag coefficients of, 81 
strouhal number vs. Re for, 62 

infinite 
vs. finite cylinders, 149-150 

potential fields 
calculation, 115 

short 
perturbed flow past, 59-61, 63 

Domain-averaged ice water content 
cold-unstable, 245 
warm-unstable, 245 

Double-layer structure, 227 
Double-moment parameterization 

scheme, 201 
Drag coefficients 

calculation of, 70 
of flow past cylinders, 81 
flow past hexagonal plates 

as function of Reynolds number, 108 
as function of Reynolds number, 105 

Drag force 
calculation, 139 
hydrodynamic 

decoupling of, 161 
Droplet trajectory 

unsteady flow 
determination, 142-143 

3-D WISCDYMM, 201 
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Decay rate 
aftershocks, 281 

Declustered 
catalog, 295 

Decoupling 
of hydrodynamic drag force, 161 

Dew 
origin of, 5 

Dew-free situations 
in high mountains, 5-6 

Diabatic heating rate 
cold-stable case profiles of, 234 

Diameter 
of crystal, 194 

Diffusional growth, 109-110, 202 
electrostatic analog, 110 
rate 

ice crystal, 203 
vapor density gradient 

crystal surface, 110 
ventilation effect, 137 

Diffusiophoretic forces, 157, 158 
Diffusiophoretic forcing mechanisms 

ice crystal surface, 175 
Dirichlet boundary conditions, 123 

Earthquake. See also individual names of 
cumulative frequency, 260f 
magma chambers and volumes, 273 
mapping spatial variability of frequency 

magnitude distribution, 259-296 
permanent changes, 292-293 

Earthquake catalogs 
quality, 265 
San Jacinto-Elsinore fault system, 277 
Tokai-Kanto, 277 

Earthquake probability 
mapping temporal changes, 279-280 

Eddy shedding, 43-44 
ventilation coefficient, 128 

Electrical effects 
on particle scavenging, 170 

Electrical forces, 157, 158 
Electric charge, 110 
Electric effects 

ice crystals, 170 
Electric fields 

profiles, 118-119 
zenith angles, 119-120 

Electric potentials, 110, 115, 118 
outside cylinder, 113 
profiles, 117 
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Electrostatic analog 
diffusional growth, 110 
theory 

of snow crystal, 162 
Electrostatic charges 

ice crystal surface, 175 
Electrostatic fields 

moving crystals, 123-124 
Electrostatic forces 

precipitation scavenging, 154 
Elliptical horizontal cross sections 

of hailstones, 41-43 
End surface 

charge density distributions, 116 
Enhanced imaging software 

future work, 294 
Equation. See also actual names of 

describing rectangle 
in Cartesian coordinates, 21 

Etna, 271 
Events 

maximizing number, 265 
Exact hexagonal plate ice crystals 

approximating, 11-13 
Exact polygons, 14 
Explosions 

seismicity data, 267 

Fall attitude 
of ice particles, 43-44 

Falling broad-branch crystal 
droplet trajectories, 144 
water vapor density distribution, 133 

Falling columnar ice crystals 
ventilation coefficients, 125 

Falling cylinder 
computed tracer particle trajectories 

around, 57 
flow field of 

nondimensional velocity fluctuation, 
58,62 

Falling hexagonal ice plates 
flow fields around 

general features of, 84-99 
ventilation coefficients, 125 

Falling ice column 
water vapor density distribution, 131-132 

Falling ice crystals 
vs. stationary ice crystals 

growth, 109, 137 
ventilation coefficients, 124-137 

physics and mathematics, 125-129 
Falling ice particles 

flow fields around, 105-109 
Falling raindrops 

fitting procedure for, 35-37 
shape of, 30-31 

Falling short cylinder 
experimental photographs of, 56, 64 

Fall speed 
of crystal, 194 

Faults. See also San Andreas fault 
North Anatolian, 277 
San Jacinto-Elsinore, 277 

Field distributions 
prolate spheroids, 119-122 

Finite circular cylinder 
cross section of, 21 

Finite cylinders 
collision geometry, 142 
flow past of, 58 

computed pressure fields, 87-89 
surface vorticity for, 85-86 

vs. infinite cylinders, 149-150 
surface pressure distribution, 82-83 

Five Elements theory, 4 
Flow 

past rigid spheres 
studies of, 44 

Flow fields, 43-44 
around broad-branch crystals, 99-100 
around columnar ice crystals 

general features of, 61-74 
around falling hexagonal ice plates 

general features of, 84-99 
around falling ice particles, 105-109 
of falling cylinder 

nondimensional velocity fluctuation, 
58,62 

ice particles, 109 
measurement of, 44 
moving crystals, 123-124 
for short colunm flow past, 67-80 

Flow past 
broad-branch crystal 

velocity fields of, 101-104, 
106-109 
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cylinders 
computed tracer particle trajectories for, 

65-66 
drag coefficients of, 81 
strouhal number vs. Re for, 62 

of finite cylinders, 58 
computed pressure fields, 87-89 
surface vorticity for, 85-86 

hexagonal plates 
drag coefficients as function of Reynolds 

number, 108 
massless tracer streaks for, 99-100 
velocity fields of, 90-94 

incompressible 
Navier-Stokes equations, 126 

short colunm 
computed flow fields for, 67-80 

short cylinders 
computed particle streaks for, 

59-61, 63 
Fluid spheres 

studies of, 44 
Flux 

of whole particle assembly, 166 
Flux model, 155 

physics and mathematics of, 158-164 
Fractal dimension 

and Z?-value, 286-287 
Frequency-magnitude distribution (FMD), 259 

cumulative and non cumulative, 290f 
Frost 

formation of, 6 
origin of, 5 
protection from, 4-5 

Frost-free situations 
in high mountains, 5-6 

Froude number 
particle inertia, 195 
vector particle velocity, 194 

Fruits 
ice particles damaging, 4-5 

Gap region 
convergent-straight-divergent behavior, 105 
flow, 105 

Gaussian hypergeometric function, 205 
Gauss law in electrostatics, 110 

Gauss theorem 
of snow crystal, 162 

GCM 
tropospheric clouds, 198 

GENAS algorithm, 266 
General circulation model (GCM) 

tropospheric clouds, 198 
Generating ellipse, 32 
Geometric kernel 

vs. collection efficiency, 178 
Geothermal fields 

Z?-value mapping, 271-273 
Global scales 

spatial variations of b, 283-284 
Graupel 

conical, 30-34 
in cumulonimbus clouds, 1 
mathematical expressions 

shape of, 30-31 
Greenfield gap, 169,175, 178 
Growth 

falling ice crystals 
vs. stationary ice crystals, 109, 137 

Gutenberg-Richter relationship, 282-283 

H 

Hailstones 
conical, 30 
in cumulonimbus clouds, 1 
elliptical horizontal cross sections of, 41-43 
fitting procedure for, 35-36 
sl̂ ape of 

mathematical expression describing, 30-31 
Han Ying, 3 
Haze particles, 201 
Heating rates. See Cloud heating rates; 

IR heating rates; Latent heating rate; 
Radiative heating rates; Solar heating rates; 
Total diabatic heating rate 

Hector Mine earthquake, 274p, 279 
main shocks, 282 
PAH, 283 
spatial distribution, 282 

Heterogeneous nucleation 
ice crystals, 202 

Hexagonal ice columns, 24, 216-217 
Hexagonal ice crystals, 25 

amplitude of, 17 
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Hexagonal ice crystals (Continued) 
approximating, 11-13 
size of, 8 
three-dimensional mathematical expression 

describing, 18-26 
two-dimensional characterization of, 13-17 
two-dimensional shapes of 

mathematical expression describing, 9-11 
Hexagonal ice plates, 46, 143-152, 

216-217 
capacitance, 128 
collection efficiency 

vs. crystal diameter, 193,195 
collision cross sections, 145 

supercooled water droplets, 146 
collision efficiency, 144-147 
dimensions of, 54 
flow fields around 

general features of, 84-99 
flow past 

massless tracer streaks for, 99-100 
velocity fields of, 90-94 

generating model samples of, 15 
Reynolds number, 128 
unsteady flow field past, 95-99 
ventilation coefficients, 125 

High mountains 
frost-free situations in, 5-6 

Homogeneity 
earthquake catalogs, 294 
reporting with time, 266-267 

Homogeneous freeing nucleation 
ice crystals, 202 

Horizontally averaged ice water content 
cold-stable case profiles of, 237 
profiles of, 244 
warm-stable case profiles, 236 

Horizontally averaged IR heating rates 
cold-stable case, 243 
warm-stable case, 242 

Horizontally averaged mass-weighted terminal 
velocity 

cold-stable case profiles of, 233 
cold-unstable profiles of, 226 
warm-stable case profiles of, 230 

Horizontally averaged mean size of ice crystals 
cold-stable case profiles of, 233, 239 
cold-unstable profiles of, 226 
warm-stable case profiles of, 230, 238 
warm-unstable profiles of, 222 

Horizontally averaged solar heating rates 
cold-stable case, 241 
warm-stable case, 240 

Horizontal mean ice number concentration 
cold-stable case profiles of, 232 
cold-unstable case profiles of, 225 
profiles of, 221 
warm-stable case profiles of, 229 

Horizontal mean ice water content 
cold-stable case profiles of, 232 
cold-unstable case profiles of, 225 
profiles of, 221 
warm-stable case profiles of, 229 

Horizontal scale 
cirrus model, 218 

Hsiao Tung, 3 
Hurricanes 

ice particles in, 1 
Hydrodynamic drag force 

decoupling of, 161 
Hydrodynamics 

of ice particles, 43-109 
fall attitude of, 43-44 
numerical scheme, 49-53 
previous studies of, 44-45 

Hydrometeors 
categories of, 201 
conical 

mathematical expressions describing, 
30-43 

cross-sectional area of, 36-37 
normal to direction of fall, 39-41 

physical properties of, 36-37 
surface of revolution of 

area of, 38-39 
volume of, 37 

Hypocenter accuracy 
and catalog quality, 265-266 

Hypocenter location errors 
function of magnitude, 289 

Ice 
Chinese ideograms representing, 1 

Ice colunms 
aerosol particle collection efficiency, 178-188 
aerosol particles captured by 

collection efficiency of, 184-186 
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collection efficiency 
vs. crystal length, 192, 195 

flow past 
streak pattern of, 55 

Ice crystals 
aerosol collection efficiency of 

comparison of, 181-187 
aggregation and sedimentation of, 224 
capacitance 

coefficients and powers for, 203 
ice crystal mass, 244 

in cirrus clouds, 1 
in clouds 

generating model samples of, 14-15 
collecting supercooled droplets 

coUision efficiency, 137-152 
physics and mathematics, 138-140 

collectors, 143 
convergence feature, 117-119 
diffusional growth rate, 203 
evolution of, 197-246 
exact hexagonal plate 

approximating, 11-13 
geometric design of, 2 
growth 

falling vs. stationary, 109 
growth rate, 117 
habit 

cirrus cloud layer, 216-217 
IR heating rate 

cold-stable case, 243 
warm-stable case, 242 

mass 
ice crystal capacitance, 244 
power-law relationship for, 207 

mean size of pristine ice 
cold-stable case, 239 
warm-stable case, 238 

plates 
and aerosol particle collision, 183 

power law relationships for, 202 
refractive index, 211 
rim 

capture site, 169 
shapes of, 46 
solar heating rate 

cold-stable case, 241 
warm-stable case, 240 

supercooled droplets 
coUisional efficiency, 110 

three-dimensional shapes of 
mathematical expressions describing, 

18-30 
transparent, 210 
types of, 46 

cold-stable case, 237 
total ice water content of, 236-237 
warm-stable case, 236 

uniqueness of, 2 
Ice mycrodynamics, 1-7 
Ice needles 

collection efficiency 
vs. crystal length, 191, 195 

Ice particles 
in Ancient China 

historical notes on, 3-6 
in atmosphere, 1-7 
cross-sectional area of 

calculation of, 25 
damaging crops, 4-5 
flow fields, 109 
growth 

methods, 109 
hydrodynamics of, 43-109 

fall attitude of, 43-44 
numerical scheme, 49-53 
previous studies of, 44-45 
unsteady flow fields, 45-49 

location of, 1-2 
personal perspective of, 1-2 
shapes of 

classification of, 8-9 
size distribution vs. size-shape distribution, 

7-9 
in Taiwan, 2 

Ice plates 
aerosol particle collection efficiency, 

178-188 
aerosol particles captured by 

collection efficiency of, 184-186 
collecting aerosol particles 

efficiencies, 164-171 
Ice refraction 

imaginary index of, 211 
real index of, 211 

Ice spheres, 216-217 
Ice water content (IWC) 

for simulations 
profiles of, 246 

vertical profiles, 220 
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Incompressible flow past ice crystals 
Navier-Stokes equations, 126 

Inertial impaction 
precipitation scavenging, 

153-154 
Infinite cylinders 

vs. finite cylinders, 149-150 
Initial profiles 

definition, 213 
Inner boundary 

vapor density distribution, 110 
Integral transformation method. 111 
IR heating rates 

cirrus cloud profiles of, 223 
cold-stable case profiles of, 234 
cold-unstable case profiles of, 228 
horizontally averaged 

cold-stable case, 243 
warm-stable case, 242 

profiles of, 227 
warm-stable case profiles of, 231 

IWC 
for simulations 

profiles of, 220, 246 
Izmit M7.4 earthquake, 277 
Izmit M7.4 main shock, 292 

Landers earthquake, 279 
main shocks, 282 
seismicity rate, 279 
spatial distribution, 282 

Landers 1992 earthquake, 292 
Landers M7.3 earthquake, 274p 
Landers sequence 

PAH, 283 
Laplace equation. 111 
Large ice crystals 

zigzag fall attitudes of, 46 
Large raindrops, 30 
Latent heating rate 

cirrus cloud profiles of, 223 
cold-stable case profiles of, 234 
cold-unstable case profiles of, 228 
profiles of, 227 
warm-stable case profiles of, 231 

Liang Empire, 3 
Limiting ellipse, 32 
Linear collision efficiency 

definition, 140 
Local air velocity vector, 126 
Location errors 

influence, 296 
Long Valley, 271 

Japan, 293. See also individual names of areas 
descending slab, 281 

Jia Si-shie, 4-5 

K 

Kanto-Tokai 
asperity mapped, 292 

Katmai, 271 
Kern County earthquake 

Z?-value changes, 284 
Kilauea rift zone, 271 
Knight, Charles, 41 
Knight, Nancy, 2 
Knudsen number, 162 
Kobe 

spatial distribution, 282 

M 

M71. Hector Mine earthquakes, 
279 

MADT,201,207 
Magnitude 

bimodal distributions, 290-291 
Magnitude of completeness 

estimating, 261-263 
mapping, 265-266 
minimum, 264f 

Magnitude scales, 267-269 
differences, 289 

Magnitude stretches 
identification, 267 

Magnus, Albertus, 3 
Magnus, Olaus, 3 
Magono-Lee classification 

of ice particle shapes, 8-9 
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Main shock 
Izmit M7.4, 292 
Landers earthquake, 282 
M7.1 1999 Hector Mine, 282 
M7.3 1002 Landers, 282 
Morgan Hill 

Z?-value changes, 284 
post and pre-main shock comparison, 261 
precursory changes of ^-values, 285-286 

Mammoth Mountain, 271 
^-value changes, 284 
differential b-vaiue cross section, 285f 

Mapping 
active magma chambers 

seismogenic crust, 291 
Alaska 

map of central and interior, 268f 
asperity 

Kanto-Tokai, 292 
maxima in local earthquake probability, 

291-292 
Middle Mountain, 292 
San Jacinto-Elsinore, 292 

^-values 
case studies, 271-284 
geothermal fields, 271-273 
vs. not mean magnitude, 295 
seismotectonics, 261 
subducting slabs, 281 
subduction volcanism, 293 
volcanoes, 271-273 

earthquake 
spatial variability of frequency, 259-296 

earthquake probability 
temporal changes, 279-280 

magnitude of completeness 
minimum, 265-266 

Morgan Hill 
differential fe-value, 286f 

seismicity, 269 
seismicity parameters 

variability, 274p 
seismotectonics 

spatially /^-values, 261 
subducting slabs, 281 
subduction volcanism 

anomalously high ^-values, 293 
temporal changes 

earthquake probability, 279-280 
volcanoes, 271-273 

Map view 
sampling volumes, 269 

Marshall-Palmer distribution 
for raindrops, 201 

Massless tracer particles 
for flow past 

streak pattern of, 55 
Massless tracer streaks 

for hexagonal plate flow past, 99-100 
Mass-weighted terminal velocity 

warm-unstable profiles of, 222 
Mathematical expressions 

describing conical graupel 
shape of, 30-31 

describing conical hydrometeors, 30-43 
describing hailstones 

shape of, 30-31 
describing three-dimensional shapes 

of ice crystals, 18-30 
Mathematical formula 

for two-dimensional cross section, 31-32 
Maximum likelihood method, 262f, 

270-271 
Mc 

estimation techniques, 263 
offshore catalogs, 265 

Mean ventilation coefficients, 134 
calculation, 129 
Reynolds number, 136 

Mexican subduction zone, 292 
M7.1 1999 Hector Mine 

main shocks, 282 
Microphysics model 

cirrus cloud, 201-207 
radiation module 

Unks between, 210 
Middle Mountain, 274p 

asperity mapped, 292 
image of asperity, 274p, 276 

Mixed boundary problem. 111 
Mixed-habit ice crystals, 15-16 
Mixing ratio 

self-collection process, 204-205 
M7.3 1002 Landers 

main shocks, 282 
M7.3 Landers earthquakes, 279 
Model domain, 218 
Model samples 

of ice crystals 
in clouds, 14-15 
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Modified anomalous diffraction theory 
(MADT), 201, 207 

Modified Omori law, 281, 282 
Momentum equation formulation 

vs. streamfunctions, 45-46 
Montserrat, 271 
Morgan Hill 

differential Z -̂value map, 286f 
spatial distribution, 282 

Morgan Hill main shock 
^-value changes, 284 

MountSt. Helens, 271 
Moving crystals 

flow fields, 123-124 
vs. stationary, 123-124 

Mt. Redoubt, 271 
Mt. Spurr, 271 

N 

Navier-Stokes equations, 45 
incompressible flow past ice crystals, 

126 
nonuniform grids for, 50-51 
of unsteady flow fields 

around nonspherical ice particles, 
46-48 

New Zealand. See also individual names 
of areas 

subduction zones, 293 
Non-sound-wave related variables 

cirrus model, 219 
Nonspherical collectors 

collision efficiency 
defined, 140-143 

Nonspherical ice particles 
unsteady flow fields around 

Navier-Stokes equations, 46-48 
physics and mathematics of, 45-49 
streamfunctions vs. momentum equation 

formulation, 45-46 
unsteady flow features, 48-49 

North Anatolian fault, 277 
Northridge 

spatial distribution, 282 
Nucleation 

precipitation scavenging, 153 
Numbers 

vs. constant radius, 294-295 

Numerical scheme, 49-53 
Numerics 

of model, 218-219 

O 

Oblate spheroid of ice 
Reynolds number of, 165 

Off-Ito volcano, 271 
Off-Izu volcano 

^-value changes, 284 
Offshore catalogs 

Mc, 265 
Omori law, 281,282 
Optical properties 

of clouds, 8 
Oracle bones 

of Shang Dynasty, 1 
Orchard burner, 5 
Outer boundary 

vapor density distribution, 110 

Parkfield data set, 262f 
Particles 

with circular and elliptical cross sections 
three-dimensional expression of, 41 

Particle scavenging 
by ice crystal plates, 169 

Particle streaks 
for perturbed flow past 

short cylinders, 59-61, 63 
Particle trajectory, 158 
Perturbation fields, 48-49 
Perturbed flow past 

short cylinders 
computed particle streaks for, 

59-61, 63 
Phoretic effects 

aerosol particles and ice crystals, 170 
Phoretic forces 

by ice crystal plates, 169 
precipitation scavenging, 154-156 

Photochemical smog 
aerosol particles, 153 

Photographs 
of ice crystals, 2 
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Physical processes perturbing ^-values, 
287-288 

Planar hexagonal ice crystals 
three-dimensional mathematical expression 

describing, 18-26 
two-dimensional characterization of, 

13-17 
Platelike ice crystals 

surface charge on, 164-165 
Plates 

vs. broad-branch crystal, 100 
ice crystal capacitance, 244 
IR heating rate 

cold-stable case, 243 
warm-stable case, 242 

mean size of pristine ice 
cold-stable case, 239 
warm-stable case, 238 

solar heating rate 
cold-stable case, 241 
warm-stable case, 240 

total ice water content, 236 
Poem 

on snowflake shape, 3 
Poisson equation, 53 
Polygons, 14 
Post-main-shock 

pre-main shock comparison, 261 
Potential distribution 

charged circular cylinder 
vs. charged prolate spheroid, 122 

Potential fields 
cylinders 

calculation, 115 
distribution, 117 

Power law relationship, 259 
Precipitation scavenging 

physical mechanisms, 153-155 
Pre-main shock 

post-main-shock comparison, 261 
Pressure fields 

finite cylinders 
flow past, 87-89 

Pristine ice crystals, 201 
Probabilistic aftershock hazard (PAH), 283 

assessment, 282 
Prolate spheroids 

field distributions, 119 
Pyramidal wake 

flow of, 56 

QUICK, 51-52 

R 

Radiating dendrites 
angle between branches of 

normalized frequency of occurrence of, 27 
generation of, 29 

Radiation 
cirrus clouds, 197-198 

Radiation module 
microphysics module 

links between, 210 
Radiative heating rates 

calculation of, 207 
Radiative transfer model, 207-211 

bands in, 206-207, 208-209 
Radius 

vs. constant numbers, 294-295 
Radius of aerosol particle 

vs. coUision efficiency, 166-168 
Raindrops 

large, 30 
Rayleigh absorption 

absorption coefficients for, 207 
Re 

vs. strouhal number 
for flow past cylinders, 62 

Rectangle 
equation closely approximating, 21 
equation describing 

in Cartesian coordinates, 21 
Refractive index 

ice crystal, 211 
Regional to global scales 

spatial variations of b, 283-284 
Reynolds number, 45 

broad-branch crystal, 128 
columnar ice crystals, 127 
computed mean ventilation coefficients, 

136 
drag coefficients as function of, 105 

for flow past hexagonal plates, 108 
hexagonal ice plates, 128 
of oblate spheroid of ice, 165 
of snow crystals, 159 

Rift zone of Kilauea, 271 
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Rigid spheres 
flow past 

studies of, 44 
Riming cutoff, 150-152 
Riming process, 44, 109 
Rosettes 

bullet, 216-217 
ice crystal capacitance, 244 
IR heating rate 

cold-stable case, 243 
warm-stable case, 242 

mean size of pristine ice 
cold-stable case, 239 
warm-stable case, 238 

solar heating rate 
cold-stable case, 241 
warm-stable case, 240 

three-dimensional mathematical expressions 
describing, 26-30 

total ice water content, 236 

San Andreas fault, 274p, 276 
^-values and depth, 280f 
cross-sectional view, 270f 
FMD, 276f 

San Jacinto-Elsinore 
asperity mapped, 292 
fault system 

earthquake catalog, 277 
Scavenging by snow crystals 

of aerosol particle, 158 
experimental setup for 

schematic of, 189 
Scavenging efficiency 

of rain and snow 
comparison of, 179-180 

temperature, 176-178 
Schmidt number 

of water, 159 
Seismically active volumes, 289 
Seismicity 

changes, 292 
mapping, 269 
parameters 

maps of variability, 274p 
Seismotectonics 

spatially mapping Z7-values, 261 

Self-collection process 
mixing ratio, 204-205 

Series expansion method. 111 
Shang Dynasty 

oracle bones of, 1 
Shape-independence statement 

of snow crystals, 161 
Shapes 

of conical graupel 
mathematical expressions describing, 

30-31 
of falling raindrops, 30-31 
of hailstone 

mathematical expressions describing, 
30-31 

of ice particles 
classification of, 8-9 

Shock. See Aftershock; Main shock 
Short column 

flow past 
computed flow fields for, 67-80 

Short cylinders 
perturbed flow past 

computed particle streaks for, 
59-61,63 

Side surface 
charge density distributions, 116 

Significance 
vs. spatial resolution, 264-265 

Simulation study 
design of, 211-218 

Size distribution, 8 
Size of ice crystals 

horizontally averaged distribution mean 
cold-stable case profiles of, 233 
cold-unstable profiles of, 226 
warm-stable case profiles of, 230 
warm-unstable profiles of, 222 

horizontally averaged mean 
cold-stable case profiles of, 239 
warm-stable case profiles of, 238 
warm-unstable profiles of, 222 

SMOSS, 9 
Snow 

Chinese ideograms representing, 1 
formation of, 6 

Snow crystals 
boundary conditions of, 160-161 
collection kernel of, 160, 162 
in cumulonimbus clouds, 1 
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photographs of, 2 
shape of 

historical notes on, 3-4 
Snowflakes 

hexagonal shape of 
explanation of, 4 
historical notes on, 3-4 
poem about, 3 
textbook about, 3-4 

Software 
availability, 296 

Solar heating rates 
cirrus cloud profiles of, 223 
cold-stable case profiles of, 234 
cold-unstable case profiles of, 228 
horizontally averaged 

cold-stable case, 241 
warm-stable case, 240 

profiles of, 227 
warm-stable case profiles of, 231 

Solar spectrum 
bands in, 206-207 

SOR method, 53 
Sound-wave related variables 

cirrus model, 219 
Spatial dendrites 

three-dimensional mathematical expressions 
describing, 26-30 

Spatially mapping ^-values 
seismotectonics, 261 

Spatial resolution 
vs. significance, 264-265 

Spatial variability of b, 259-296 
Spheres 

collision geometry, 141 
ice crystal capacitance, 244 
IR heating rate 

cold-stable case, 243 
warm-stable case, 242 

mean size of pristine ice 
cold-stable case, 239 
warm-stable case, 238 

solar heating rate 
cold-stable case, 241 
warm-stable case, 240 

total ice water content, 236 
Spherical coordinates representation, 

23-24 
Stable 

description of, 213 

Standard successive over relaxation (SOR) 
method, 53 

Statically stable atmosphere, 213 
Static stability 

cirrus cloud layers, 212 
Stationary broad-branch crystals 

growth rate 
computation, 128 

Stationary columnar ice crystal 
vapor density field, 129 
vapor diffusion fields, 110-124 

Stationary ice column 
water vapor density distribution, 130 

Stationary ice crystals 
V5. moving, 123-124 
temperature, 122 
vapor density fields, 122 

Stationary snow crystal 
of arbitrary shape, 158 

Stefan flow 
precipitation scavenging, 154 

Stellar crystals 
collection efficiency 

vs. crystal diameter, 193, 195 
Stokes-Cunningham slip correction factor, 162 
Stokes number 

vector particle velocity, 194 
Streak pattern 

of massless tracer particles 
for flow past, 55 

Streamfunctions 
vs. momentum equation formulation, 

45-46 
Stressing rate 

Z7-values, 287 
Strouhal number 

vs. Re 
for flow past cylinders, 62 

Subducting slabs 
mapping Z?, 281 

Subduction volcanism 
mapped by anomalously hig ^-values, 293 

Sublimation, 202 
Successive modification of simple shapes 

(SMOSS), 9 
Supercooled droplets 

ice crystals 
coUisional efficiency, 110 

Surface charge 
on platelike ice crystals, 164-165 
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Surface of revolution 
area of 

of hydrometeors, 38-39 
Surface pressure distribution 

finite cylinder, 82-83 
Surface vorticity 

angular distributions of, 84 
for finite cylinders flow past, 85-86 

Synthetic distribution, 263 

Taiwan 
ice particles in, 2 

Tectonic regimes 
case studies 

Z7-values, 271-284 
Temperature 

moving crystals, 123-124 
scavenging efficiency, 176-178 
stationary ice crystal, 122 

Terrestrial spectrum 
bands in, 208-209 

Thermal infrared heating 
cirrus cloud layers, 212 

Thermophoresis 
ice crystal surface, 175 

Thermophoretic forces, 157, 158 
Three-dimensional configurations 

collision efficiency, 140-141 
Three-dimensional expressions 

of conical particles 
with circular and elliptical cross 

sections, 41 
describing spatial dendrites and rosettes, 

26-30 
Three-dimensional shapes 

of ice crystals 
mathematical expressions describing, 

18-30 
Tohoku region of Japan 

magnitude shift, 266-267 
Tokai-Kanto 

earthquake catalog, 277 
Total diabatic heating rate 

cold-stable case profiles of, 234 
warm-stable case profiles of, 231 

Total variation-diminishing (TVD) scheme, 
201 

Tracer particle trajectories 
for cylinder flow past, 65-66 

Trajectory 
of aerosol particle, 169 
analysis 

of charged ice crystal, 170 
droplet 

unsteady flow determination, 142-143 
model, 156 

physics and mathematics, 156-158 
particle, 158 

Tropical storms 
ice particles in, 1 

Tropospheric clouds 
general circulation model (GCM), 198 

Turbulence 
precipitation scavenging, 155 

TVD scheme, 201 
Two-dimensional characterization 

of planar hexagonal ice crystals, 13-17 
Two-dimensional cross section 

mathematical formula for, 31-32 
Two-dimensional shapes 

of hexagonal ice crystals 
mathematical expression describing, 

9-11 
Typhoons 

ice particles in, 1 

U 

Unique physical interpretation 
of anomalies, 288 

Unstable 
description of, 213 

Unsteady flow 
droplet trajectory 

determination, 142-143 
Unsteady flow features 

of nonspherical ice particles 
unsteady flow fields around, 48-49 

Unsteady flow fields 
around nonspherical ice particles 

Navier-Stokes equations, 46-48 
physics and mathematics of, 45-49 
streamfunctions vs. momentum equation 

formulation, 45-46 
unsteady flow features, 48-49 

past hexagonal ice plates, 95-99 
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Vapor density 
distribution 

boundary conditions, 110 
moving crystals, 123-124 
stationary columnar ice crystal, 129 
stationary ice crystal, 122 

Vapor density gradient 
diffusional growth 

crystal surface, 110 
Vapor diffusion fields 

stationary columnar ice crystal, 110-124 
Vapor flux density, 117 
Velocity 

of broad-branch crystal flow past, 101-104, 
106-109 

of hexagonal ice plate flow past, 90-94 
horizontally averaged mass-weighted terminal 

cold-stable case profiles of, 233 
cold-unstable profiles of, 226 
warm-stable case profiles of, 230 

Ventilation 
cirrus cloud layers, 217-218 

Ventilation coefficients, 134, 204 
broad-branch ice crystals, 125 
calculation, 129 
determination, 125 
eddy shedding, 128 
falling columnar ice crystals, 125 
falling hexagonal ice plates, 125 
falling ice crystals, 124-137 
of ice crystals, 201 
Reynolds number, 136 
scavenging, 159 

Ventilation effect, 109, 124, 242 
diffusional growth, 137 

Ventilation factor 
for Brownian flux, 159 

Vertical motions 
cirrus model, 218 

Volcanoes. See also individual names of 
^-value mapping, 271-273 

Volume 
calculation of, 248-249 
conical 

closed-form expression of, 249-251 
of hydrometeors, 37 

Vorticity 
surface 

angular distributions of, 84 
for finite cylinders flow past, 85-86 

W 

Waldvogel, Albert, 41 
Warm 

description of, 213 
Warm-stable case 

cirrus cloud, 215 
cirrus clouds, 228-235 

Warm-unstable case 
cirrus clouds, 220-224 
cirrus profiles, 214 
domain-averaged ice water content, 245 

Water droplets 
aerosol collection efficiency of, 

178-188 
comparison of, 181-187 

and aerosol particle collision, 182,183 
Water vapor density distribution 

falling broad-branch crystal, 133 
falling ice column, 131-132 
stationary ice column, 130 

Wei Dynasty, 4-5 
Western Han Dynasty, 3 
White 
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PLATE. 1. Three-dimensional images of the fe-value distribution beneath and adjacent to volca-
noes. Red color mark volumes producing disproportionally more small earthquakes than the normal 
crust (blue to green). (A) Mt, St. Helens, Washington; (B) Mt. Redoubt, Alaska; (C) Mammoth 
Mountain, California. (From Weimer, S. McNutt, S. R., and Wyss, M. (1998). California, Geophys. 
J. Int. 134, 412. With permission.); (D) Mt. Etna, Italy. (From Murru, M., Montuori, M., Wyss, M., 
and Privatera, E., Geophys, Res. Lett. 26, 2555, 1999. Reproduced with permission of American 
Geophysical Union.); (E) the South Flank and Kaoiki regions near Kilauea, Hawaii. (From Wyss, M. 
et al. (2001) /. Volcanol. Geotherm. Res. 106, 32.) 





A) 

1.2 1.4 1.6 

120 E b-value 

i(f 
b=0.77 • / - 0.03 

A 

b=2.05*/-0.05 

^B 

"V 

icp-^ 
5 6 
Magnitude 

1 ^ ^ î̂  
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PLATE. 2. Maps of the variability of seismicity parameters. (A) Cross section of the Parkfleld seg-
ment of the San Andreas fault showing the variation of /7-value (top), «-value (middle), and the local 
recurrence time for an M6 main shock, calculated from a and b (bottom). The asperity beneath 
Middle Mountain, defined by the two largest earthquakes during the observation period (stars) is 
clearly defined by the TL plot. (B) The stability of the Z?-value pattern along the Parkfield segment of 
the San Andreas fault is demonstrated by mapping it in cross section for four consecutive periods, 
each ending at the time indicated as the start of the next one, with the last period ending in January 
2000. The contrast between the creeping segment (high Z?-values) and the asperity exists in all peri-
ods. (C) The minimum magnitude of complete reporting in central and northern California varies 
from M < 1 in (between San Francisco and Parkfield and in Long Valley) to M > 3 off shore. The inset 
shows two examples of local frequency magnitude distributions in the locations marked by A and B. 
(D) The variation of b with depth in southern California measured by the ratio of b above and below 
a 5-km depth. In most areas, /7-values decrease with depth (red), but in some the opposite trend is 
found (blue). Areas with not enough earthquakes in either top or bottom to establish a significant 
change are shown in gray. (From Gerstenberger, M., Weimer, S., and Giardini, D., Geophys. Res. Lett. 
28, 58, 2001. Reproduced by permission of American Geophysical Union.) (E) From the change of 
the seismicity parameters due to the Landers M7.3 earthquake of 1992, a change in the local proba-
bility for major earthquakes is calculated (frame C). The background parameters were estimated from 
the period 1981 - 1992.4; the new parameters, from 1993 - 1999.7. The change in the a-value (meas-
ured by the standard deviate Z in frame A) together with the change in the /?-value (frame B) result 
in an estimated increase in probability that is largest for the northern part of the source volume of the 
subsequent M7.1 earthquake at Hector Mine (frame C). (From Wyss, M., and Wiemer, S., Science, 
290, 1336, 2000. Reproduced by permission of American Geophysical Union.) 



PLATE. 3. Maps of ^-value variations on various local scales that can be interpreted to reflect dif-
ferences in either stress level or degree of heterogeneity. (A) Variations of /7-values in the aftershock 
sequences of the Ml3 Landers and M7.1 Hector Mine earthquakes (red: high Z?-values -1.5). Black 
lines indicate the areas ruptured in the two main shocks; triangles mark the epicenter. Low Z?-values 
are found outside the actual ruptured areas. (B) Anomalies of high Z?-values (red) in a cross section 
of the deep seismic zone and the crust beneath northeastern Japan correlate with the ends of a low Vs 
velocity channel (gray) in the mantle wedge above the slab, suggesting that material generated at a 
150-km depth in the upper part of the slab ascends along an inclined path to the arc volcanoes (tri-
angles). Arrows show assumed flow directions. Typically sampling radii are /? = 20 km. (From Wyss, 
M., Hasegawa, A., and Nakajima, / , Geophys. Res. Lett. 28, 1820, 2001. Reproduced by permission 
of American Geophysical Union.) (C) Regional Z?-value map (typically R = 300 km) of the Himalayas 
and adjacent areas, Anomalies of high ^-values are observed at the two apexes formed by the impact 
of India on the Asian continent, where stress orientations vary rapidly as a function of space. White 
lines are based on a numerical model of the stress trajectories. Contrasting frequency-magnitude dis-
tributions from regions A and B are shown at the right of the map. (D) maps of the local recurrence 
time along the San Jacinto fault in southern California, based on small earthquakes recorded during 
1981-1999, are compared with the rupture extent of historic main shocks that occurred during 1895 
- 1966. Thick blue lines delineate the extents of ruptures estimated from seismic signal analyses and 
macroseismic and surface rupture evidence. Circles mark epicenter of after- and foreshocks. The pos-
itive correlation suggests that asperities associated with main shocks may be mapped by anomalies 
in short local recurrence times (blue). (From Wyss, M., Schorlemmer, D., and Wiemer, S., J. 
Geophys. Res. 105, 7836, 2000. With permission.) 
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