УДК 551.243(571.54)

ВАРИАЦИИ ПОЛЕЙ НАПРЯЖЕНИЙ ТУНКИНСКОГО РИФТА (ЮГО-ЗАПАДНОЕ ПРИБАЙКАЛЬЕ)

© 2007 г. О. В. Лунина, А. С. Гладков, С. И. Шерман

Институт земной коры СО РАН, 664033, Иркутск, ул. Лермонтова, 128 Поступила в редакцию 30.05.2005 г.

На основании детального изучения трещиноватости реконструированы поля напряжений и проанализированы особенности их распределения в пределах Тункинского рифта, расположенного на юго-западном фланге Байкальской рифтовой зоны. Показано, что вариации полей напряжений закономерны и обусловлены сложным морфоструктурным и разломно-блоковым строением изученной территории. Формирование рифта происходило в условиях косого, по отношению к его оси, СЗ-ЮВ регионального растяжения на фоне существования трех разнонаправленных тектонических границ древнего заложения (Саянской, Байкальской и Тувино-Монгольской). Это привело к развитию нескольких эшелонированных локальных бассейнов и приподнятых межвпадинных перемычек, наличию сдвиговой компоненты движений по разломам, мозаичному распределению полей напряжений разных типов, определяемых вариациями ориентировок их главных векторов. Раскрытию впадин способствовали поля напряжений более низкого иерархического ранга с субмеридиональной ориентировкой оси растяжения. Существенное усложнение поля напряжений происходит в западной части Тункинского рифта в районе Туранского и Мондинского бассейнов, где по мере приближения к озеру Хубсугул имеют место трансформирующие движения, играющие значительную роль в раскрытии серии рифтогенных впадин меридионального простирания на территории Монголии. Сделан вывод, что на протяжении всего развития с олигоцена Тункинский рифт не испытывал многоэтапных изменений напряженного состояния, за исключением фазы сжатия в позднем миоценераннем плиоцене, которая может быть связана с эффектом континентальной коллизии Евразийской и Индостанской плит. После этого Тункинский рифт продолжил тектоническое развитие в режиме растяжения со сдвигом.

ВВЕДЕНИЕ

Исследованию полей напряжений в последние годы придается большое значение. Они играют определяющую роль в контролировании многих геолого-геофизических процессов. Установлено [23, 35], что пять основных типов напряженного состояния верхней части литосферы Земли (сжатие, растяжение, сдвиг, растяжение со сдвигом и сжатие со сдвигом) определяют геодинамические режимы регионов, характер тектонических движений коры, условия формирования разрывов различных рангов, индивидуальные соотношения их параметров и особенности проявления сейсмичности. Проведенные в последние десятилетия исследования [5, 25, 32, 33, 35 и мн. др.] показали, что для относительно "однородных" по типу напряженного состояния регионов характерны вариации полей напряжений более низкого иерархического уровня. Это связано с существенным различием в длительности развития разломных структур и действия разных по масштабу напряжений. В формах геологического летоисчисления наиболее "короткоживущими" и изменчивыми являются локальные поля напряжений. Знания об их вариациях важны при тектонических и прогностических построениях, особенно для регионов, развивающихся в сложных геодинамических обстановках.

Тункинский рифт (рис. 1), распложенный на юго-западном фланге Байкальской рифтовой зоны, является одной из проблемных площадей. Здесь устанавливаются поля напряжений всех типов с разными ориентировками их главных осей как по геолого-структурным данным [7, 15, 22], так и по механизмам очагов землетрясений [3, 11]. Интерпретация таких разнотипных решений неоднозначная. Появление новых данных каждый раз способствует определенному пересмотру взглядов на происхождение и эволюцию Тункинского рифта. Его рассматривали как структуру, стабильно развивающуюся в условиях растяжения со сдвигом при доминирующей роли СЗ-ЮВ растяжения [22, 24], или как зону континентального трансформного разлома [34], обеспечивающего раскрытие Байкальского и Хубсугульского рифтов. В последние годы наличие разнотипных полей напряжений в регионе объясняют многоэтапной эволюцией напряженного состояния юго-западного фланга Байкальской рифтовой зоны от транстенсионного и сдвигового режимов до транспрессионного [15]. В частности, для Тункинского рифта авторами упомянутой работы выделяется шесть типов полей напряжений,

I – достоверные (a) и предполагаемые (b) региональные разломы; 2 – достоверные (a) и предполагаемые (b) локальные разломы; 3 – сбросы (a), сдвиги (b), взбросы (в); 4 – зоны повышенной дислоцированности пород; 5 – направление и угол падения разлома; 6 – впадины, заполненные кайнозойскими отложениями (a); выходы кристаллического фундамента (б).

ВАРИАЦИИ ПОЛЕЙ НАПРЯЖЕНИЙ ТУНКИНСКОГО РИФТА

Рис. 2. Схема расположения точек наблюдения и их номера *I* – точки наблюдения в рыхлых неоген-четвертичных отложениях (*a*) и докайнозойских коренных породах (*б*); 2 – основные региональные разломы

которые сменяли один другой с олигоцена до современного этапа.

Нами предпринята попытка провести анализ распределения полей напряжений относительно различных структурных элементов Тункинского рифта, особенностей его разломно-блокового строения и расположения в общей структуре Байкальской рифтовой зоны. Под структурными элементами рифта понимаются различные его составные части, такие, как локальные впадины, заполненные кайнозойскими осадками, приподнятые межвпадинные перемычки (отроги) и плечи рифта, которые представляют собой хребты, обрамляющие рифтовые бассейны. Главная цель анализа - выявить такие закономерности в пространственном распределении полей напряжений разных типов и изменениях ориентировки их осей, которые позволят ответить на вопрос, действительно ли с олигоцена напряженное состояние в Тункинском рифте менялось несколько раз или его вариации являются локальными и определяются структурными факторами. В настоящей работе для изучения полей напряжений использовалась тектоническая трещиноватость, встречающаяся повсеместно в выходах скальных пород и рыхлых отложениях.

ГЕОЛОГО-СТРУКТУРНАЯ ОБСТАНОВКА

Тункинский рифт простирается в субширотном направлении более чем на 200 км от оз. Байкал до оз. Хубсугул (см. рис. 1). Он наложен на высокометаморфизованные консолидированные структурно-вещественные комплексы верхнего архея и протерозоя, а его впадины заполнены олигоцен-четвертичными осадочными отложениями [31]. Местами обнажаются щелочные базальты неогенового и четвертичного возраста [16]. Ложе рифта на севере сочленяется с поднятием Тункинских гольцов, достигающих абсолютных высот 3000–3200 м, а на юге сравнительно плавно переходит в склон хребта Хамар-Дабан с отметками до 2400–2600 м. Рифтовую долину составляют локальные впадины (Быстринская, Торская, Тункинская, Туранская, Хойтогольская, Мондинская) и межвпадинные перемычки (Зуркузунская, Еловская, Ниловская, Туранская, Харадабанская), разделяющие их. Последние занимают промежуточный относительно поднятия плечей и днища впадин ярус с абсолютными отметками 1400–1600 м.

71

Разломно-блоковое строение Тункинского рифта и прилегающей территории определяется разрывными нарушениями четырех направлений: субширотного, северо-восточного, северо-западного и субмеридионального (см. рис. 1). Среди них крупнейшими дизъюнктивами являются Тункинский и Южно-Тункинский разломы, ограничивающие северный и южный борта рифта. Первый, имеющий в плане дугообразную форму, ярко выражен в рельефе и представляет собой левосторонний сдвиго-сброс [24]. На восточном окончании он сближается с зоной Главного Саянского взбросо-сдвига. Южно-Тункинский разлом морфологически проявлен значительно хуже, но прослеживается по геолого-структурным наблюдениями в виде эшелонированных широтных сегментов. Наши данные свидетельствуют преимущественно сбросовых, сдвиговых и комбинированных (сдвиго-сбросовых, сбросо-сдвиговых) смещениях по Южно-Тункинскому разлому [7, 24]. Вместе с тем, существует мнение, что Мондинский сегмент разлома на современном этапе развития представляет собой взбросо-сдвиг [1].

Внутри рифтовой долины главную роль играют северо-восточные и субширотные разрывные нарушения. В межвпадинных перемычках наряду с ними хорошо проявлены разломы северо-запад-

ЛУНИНА и др.

Рис. 3. Диаграммы трещиноватости и ориентировок векторов главных нормальных напряжений для локальных впадин Тункинского рифта

Используется проекция верхней полусферы, размер окна – 10. Изолинии плотности максимумов проведены с 1.5% с шагом 1%. Стрелками внутри диаграмм показаны направления преимущественных разбросов в максимумах трещиноватости, указывающие на сопряженность систем трещин по методике П.Н. Николаева [13]. Пары сопряженных систем трещин обозначены римскими цифрами. Под каждой диаграммой в соответствии с таблицей 1 приведены номер по порядку (в скобках), номер точки наблюдения и количество замеров (*n*). На диаграммах ориентировок векторов главных нормальных напряжений: 1 – ось сжатия, 2 – промежуточная ось, 3 – ось растяжения

Рис. 3. Окончание

ного простирания, а в горном обрамлении они доминируют. Субширотные разрывы имеют широкое распространение на всей территории, в то время как меридиональные по сравнению со всеми остальными наименее развиты. Поскольку все эти дизъюнктивы (см. рис. 1) отчетливо проявлены в рельефе и/или в тектонических деформациях отложений плейстоцен-голоценового возраста [7, 8], их можно считать активными на позднекайнозойском этапе. Кроме того, в Тункинских гольцах зафиксированы надвиги постсреднемиоценового возраста [24]. В целом в разломно-блоковом

ГЕОТЕКТОНИКА № 3 2007

Рис. 4. Диаграммы трещиноватости и ориентировок векторов главных нормальных напряжений для межвпадинных перемычек Тункинского рифта

Номер по порядку (в скобках) под каждой диаграммой соответствует номеру в таблице 2. Остальные пояснения см. в подписи к рис. 3

строении территории отчетливо проявлена унаследованность Тункинским рифтом элементов древней структуры Саяно-Байкальского складчатого пояса, в частности, разломов, простирание которых совпадает с Саянским тектоническим швом рифейского возраста [10], обрамляющим Сибирскую платформу с юго-запада. Таким образом, при развитии рифта формировались, главным образом, дизъюнктивы субширотного и северо-восточного направлений, а северо-западные разрывы вовлекались в активизацию [8].

Из приведенного краткого обзора можно видеть, что Тункинский рифт имеет сложное внутреннее строение, которое необходимо учитывать при анализе разнородных полей напряжений и соответствующих геодинамических построениях.

ПЕРВИЧНЫЕ ДАННЫЕ И ИСПОЛЬЗУЕМЫЕ МЕТОДЫ

Для изучения полей тектонических напряжений в пределах Тункинского рифта была создана сеть точек наблюдений, в которых проведено детальное изучение трещиноватости и зон разрывных нарушений (рис. 2). Сбор и обработка информации проводились с помощью методов и подходов, применяемых в тектонофизике при изучении разрывов разного масштаба [18, 22] и использо-

Scan&OCR Иркутская ОГУНБ им. И.И. Молчанова-Сибирского. 2016 ГЕОТЕКТОНИКА № 3 2007

Рис. 4. Окончание

ванных нами ранее [7–9]. Основой для реконструкции осей главных нормальных напряжений служили массовые замеры трещин, сделанные в породах разного возраста и состава. Каждый из них включал, как правило, 100 измерений, которые в дальнейшем использовались для построения диаграмм трещиноватости. При этом в древних кристаллических породах изучались только "свежие" на вид сколы, не залеченные минеральным веществом, нередко несущие следы подви-

Рис. 5. Диаграммы трещиноватости и ориентировок векторов главных нормальных напряжений для северного плеча Тункинского рифта

Номер по порядку (в скобках) под каждой диаграммой соответствует номеру в таблице 3. Остальные пояснения см. в подписи к рис. 3

жек в виде зеркал скольжения (часто со штрихами и бороздами), а также смещений маркеров. В рыхлых позднекайнозойских отложениях во внимание принимались только те трещины, чье тектоническое происхождение не вызывало сомнений. Их главные особенности – системность, прямолинейность и закономерное расположение в пространстве относительно друг друга [21]. Таким образом, при полевых исследованиях мы старались собрать информацию о наиболее молодых разрывных деформациях, связанных с развитием Тункинского рифта, хотя нельзя полностью исключать возможность попадания в массовые замеры более древних трещин.

Реконструкция полей напряжений основана на исходном положении о взаимосвязи между формирующимися сопряженными тектоническими разрывами и направлениями главных нормальных напряжений [2]. Для установления сопряженности систем сколов проводился анализ диаграмм массовых замеров трещин (рис. 3, 4, 5, 6) методом П.Н. Николаева [13], который основан на существовании закономерных (направленных в противоположные стороны) разбросов у максимумов трещиноватости, возникающих в результате действия однородного поля напряжений. Нами использовались только те пары сопряженных систем трещин, которые образовывались в условиях хрупкой деформации, т.е. когда разброс у сопряженных максимумов на диаграммах трещиноватости согласно методу П.Н. Николаева направлен из острого угла в тупой. В случае наличия нескольких таких сопряженных пар в одной точке наблюдения в дальнейшем анализе участвовали две, имеющие наибольшую интенсивность. Аналогичный методологический подход был применен в предыдущей работе [9]. Следует отметить, что в ряде случаев сопряженные системы трещин устанавливались при прямых геологических наблюдениях, исходя из известных критериев [2], а затем заверялись статистическим методом П.Н. Николаева [13].

Дальнейшие построения заключались в том, что линия пересечения двух сопряженных плоскостей скалывания совпадает с направлением действия промежуточного вектора напряжений (σ_2), ось главного сжимающего напряжения (σ_1) – с направлением биссектрисы острого угла между трещинами, ось главного растягивающего напряжения (σ_3) – с направлением биссектрисы тупого угла [2]. Тип поля напряжений определялся, исходя из соотношений углов наклона главных нормальных осей напряжений относительно горизонта [22]:

растяжение:	$\sigma_1 = 61 - 90^{\circ}$	$\sigma_2 = 0 - 30^\circ$	$\sigma_3 = 0 - 30^\circ$
растяжение со сдвигом:	$\sigma_1 = 31 - 60^\circ$	$\sigma_2 = 31 - 60^\circ$	$\sigma_3 = 0-30^\circ$
сдвиг:	$\sigma_1 = 0-30^\circ$	$\sigma_2 = 61 - 90^\circ$	$\sigma_3 = 0-30^\circ$
сжатие со сдвигом:	$\sigma_1=030^\circ$	$\sigma_2 = 31 - 60^\circ$	$\sigma_3 = 31 - 60^\circ$
сжатие	$\sigma_1 = 0 - 30^\circ$	$\sigma_2 = 0 - 30^\circ$	$\sigma_3 = 61 - 90^{\circ}$

Таким образом, в результате реконструкций для 102 точек наблюдений получено 124 решения о поле напряжений.

Рис. 5. Окончание

АНАЛИЗ ПОЛУЧЕННЫХ ДАННЫХ

Все фактические данные и результаты реконструкций представлены на рис. 3–6 и в таблицах 1–3. Точки наблюдений по местоположению были от-

ГЕОТЕКТОНИКА № 3 2007

Рис. 6. Диаграммы трещиноватости и ориентировок векторов главных нормальных напряжений для южного плеча Тункинского рифта

Номер по порядку (в скобках) под каждой диаграммой соответствует номеру в таблице 3. Остальные пояснения см. в подписи к рис. 3

несены к тому или иному структурному элементу рифта. При этом для впадин оставлены только те решения, которые были получены по трещинам,

измеренным в кайнозойских осадках и вулканических породах. Решения, восстановленные по замерам разрывов в коренных породах, обнажающихся

Рис. 6. Окончание

на границе впадины и хребта или впадины и отрога, были отнесены соответственно к хребту или отрогу. Далее мы попытались провести всесторонний анализ распределения полей напряжений в зависимости от их типов и ориентировок осей с углами наклона 0–30° относительно горизонта.

Особенности распределения полей напряжений разных типов в структурных элементах рифта

Для сопоставления частоты встречаемости полей напряжений разных типов в Тункинском рифте были рассчитаны их процентные соотноше-

ž	Ň	-odulli	Долго-	Тип	Bospacr	Co	пряже	енные		, y ₁	, го.	33 C	3.	¹ 2 0	2. Q	0	_	Тип поля
п/п	Т.Н.	ra, °	та, °	пород/осадков	пород/осадков	a3.,)	тол, °	a3., Ju °	гол, °		0	3 Jr	ол, ас	a, yrd	ол, аз	; yrc	л, на	апряжений
1					Мондинска	ая впа	дина			-								
-	A44701	51.683	101.065	Валунно-галеч- ные отложения	Плейстоцен-голоцен	0	20	091	80	=	66 1	20	<u></u>	76 3	3 26	2	C D	астяжение о сдвигом
						160	80	110	80	- -	t9 3	15 1	1	35 7	9 22	5	0	двиг
5	49205	51.699	100.863	Пески	Поздний плейстоцен-го- лоцен, < 40000 лет	160	80	305	09	<u>~</u>	52	44 1	0 57	12 3	<u>×</u>	1 50	<u>a v</u>	астяжение о сдвигом
m	49206	51.688	100.909	Песчано-валунно- галечные	Поздний плейстоцен-го- лоцен, <40000 лет	40	70	300	70	13	88	60	5 35	20 6	0 17	0 3	0	двиг
4	50101	51.675	101.076	Валунно-галеч- ные отложения	Плейстоцен-голоцен	0	50	170	75	35	56 1	74 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	32	9 31	8 7	P P	астяжение
		_	_	_	Хойтогольс	кая ві	адина		-		-		-	-	i.		·	
5	45201	51.698	101.525	Пески, супеси, суглинки	Голоцен, 1900 лет	140	80	190	80	11	6t 3	45 1	1	55 7	9 25	5	0	двиг
9	Q0104	51.667	101.646	Галечные отло- жения	Поздний плейстоцен, 29300 лет	120	80	285	50	4	52	13 1	5 2(07 1	4 33	9 6	9 P	астяжение
		_		_	Туранска	я впа	ина	-	2	đ	5	-	-	5	-	-		
L	O44902	51.633	101.289	Галечные и обло-	Плейстоцен-голоцен	130	55	290	102	14	58 2	66	8 2	07 1	<u>~</u>	1 2	0 P	астяжение
				мочные отложения		15	50	185	70	6	51 1	89	0	98	8 32	6 6	P P	астяжение
x	045001	51.619	101.571	Базальты	Поздний кайнозой	160	70	340	70	11	01 0 01 0	40	0 4	100	00	0 - 0 6 -		астяжение
0	45504	51 665	101 674	Ватунники базаль-	Позпний плиоцен	00	0,08	320	00	01 0	+ c	25	. c	04	- 4 - 4	1 0	ч <u>ч</u> 9 (астяжение
		200-12	10.101	TOBOFO COCTABA, FA-	7.87 млн. лет, плейсто-		8		2	\ \	1	;	i ,				Ö	о сдвигом
				лечные отложения	цен-голоцен											1		
10	45301	51.645	101.731	Галечники, пес-	Плейстоцен, 58000 лет	200	80	310	85	10	11	45	<u>6</u>	42		12	0 0	двиг
11	45302	51.657	101.777	ки, суглинки Валунно-галеч-	Плейстоцен-голоцен	200	80	320	50	16	75	74	7 2	01 4	3	50 4	2 P	астяжение
1	45602	51 667	101 824	ные отложения Песчано-валунно-	Плейстонен-голонен	130	70	230	80	'n	48	66	-	64 6	90	5	0 0 0	о сдвигом Сдвиг
1				галечные отложения. суглинки			2)	:								
					Тункинск	ая впа	цина	-	-	-	-	-	-	-	-	-	-	
13	50302	51.667	102.00	Суглинки	Голоцен, 9800-9300 лет	0	60	80	80	21	80 2	220	2	3 06	80 31		8	Двиг
14	47502	51.697	102.174	Суглинки, супеси	Поздний плейстоцен-го-	140	80	210	80	14	69	355	2	75	8 26	55	0	Двиг
				C	Jouen, <40000 Jier	c	u T	301	u r		00	0	<	00	0	0	<u>р</u>	onnownood
0	4/505	91./16	102.200	Супеси, суглинки	1103днии плеистоцен-го- лоцен, <40 000лет	0	C	C/1	<i>c</i> /	1	00	0/	>	00	7 7	0	ч 	астяжение
16	47602	51.714	102.282	Пески, суглинки, супеси	Поздний плейстоцен-го- лоцен, <40000 лет	20	30	210	80	14	70	207	5 2	66	2	9 0t	4 P	астяжение

Таблица 1. Фактические данные и результаты реконструкций полей напряжений для впадин Тункинского рифта

Scan&OCR Иркутская ОГУНБ им. И.И. Г. Образов ОСПАКА ского № 13 2007

ЛУНИНА и др.

ВАРИАЦИИ ПОЛЕЙ НАПРЯЖЕНИЙ ТУНКИНСКОГО РИФТА

$\sigma_2 \left[\begin{array}{c c} \sigma_1 & \sigma_1 \end{array} \right] \left[\begin{array}{c c} T_{MII} & T_{MIII} & T_{MIII} \end{array} \right]$	угол, аз., угол, напряжени	23 82 67 Растяжение	5 140 64 Растяжение	57 148 32 Растяжение	0 310 65 Растяжение	35 195 55 Растяжение	0 150 80 Растяжение	8 325 73 Растяжение	14 0 65 Растяжение	13 243 76 Растяжение	0 330 85 Растяжение	18 215 72 Растяжение	14 184 73 Растяжение	7 244 81 Растяжение	•	20 57 70 Растяжение	7 298 78 Растяжение		46 268 44 Растяжение co слвигом	0 180 61 Растяжение	71 330 19 Сдвиг
σ_2	a3., 。	276	39	316	220	15	240	83	237	85	240	35	42	107		237	61	-	06	90	150
σ3	угол, °	5	25	9	25	0	10	15	20	5	5	0	10	٢		0	10	-	-	29	0
σ3	a3., °	184	307	54	130	285	330	175	142	354	150	305	309	17		327	152	-	359	0	240
yrol,	0	33	70	58	70	50	40	71	62	31	40	32	83	53		43	40		32	62	63
-	-	6	10	13	14	19	16	12	8	16	10	10	x	x		6	×		13	16	17
51e	угол, °	80	80	70	30	70	80	70	40	80	65	75	60	57		70	09		78	30	80
кенн	a3., °	190	310	260	310	90	330	170	310	357	330	310	320	193	a	320	335		167	180	210
сист	угол, °	70	30	80	80	70	09	40	80	70	75	75	40	70	нидан	70	80	ина	80	88	80
0	a3., °	357	120	30	130	399	150	ξ	150	170	150	120	115	20	кая вг	155	150	цвпал	10	0	90
Возраст порол/осалков		Поздний плейстоцен-го-	Голоцен, 920–1415 лет		Поздний плейстоцен-го- лоцен. <40000 лет	Поздний плейстоцен-голо- цен, <40000 лет со спвигом	Поздний плейстоцен-го- лоцен, <40000 лет	Поздний плиоцен-плей-	стоцен, 2.4-0.8 млн.лет Поздний плейстоцен- го-	лоцен, <40000 лет Голоцен, <3000 лет		Быстринсі	Поздний плиоцен	Поздний плиоцен	Торская	Поздний плейстоцен-го- лоцен, <40000 лет	Поздний плейстоцен-го- лоцен, <40000 лет	Поздний плейстоцен-го- лоцен, <40000 лет			
Tun	пород/осадков	Суглинки, супеси пески	Супеси, суглинки,	пески	Суглинки	Суглинки, супеси	Пески, суглинки	Пески	Лёсы, пески	Суглинки	Базальты	Суглинки	Валунные	отложения		Конгломераты	Конгломераты		Суглинки	Суглинисто-пес- чаные отложения	Суглинисто-пес- чаные отложения
Долго-	Ta, č	102.348	102.438		102.484	102.521	102.566	102.611	102.633	102.655	102.478	102.212	102.358			103.479	103.497		103.046	103.103	103.139
-oquIII	Ta, č	51.704	51.715		51.724	51.717	51.710	51.705	51.714	51.706	51.840	51.70	51.901			51.747	51.714		51.805	51.805	51.805
Ň	Т.Н.	47603	47702		47704	47705	47801	47803	47804	43301	50401	Q0201	49001			44303	44403		48002	48003	48004
Ň	п/п	17	18		19	20	21	22	23	24	25	26	27			28	29		30	31	32

Таблица 1. Окончание

6 ГЕОТЕКТОНИКА № 3 2007

r

Scan&OCR Иркутская ОГУНБ им. И.И. Молчанова-Сибирского. 2016

ния, представленные в виде круговых диаграмм (рис. 7). Эти диаграммы отображают вклад поля напряжений определенного типа в общую сумму полученных решений для каждого структурного элемента или его части. Результаты их анализа показывают следующее.

Во впадинах, в целом, превалирует растяжение (57%), менее проявлены растяжение со сдвигом (19%) и сдвиг (24%). Вклады этих типов напряженного состояния закономерно изменяются в отдельных бассейнах. Так, в собственно Тункинской впадине, которая находится в центре рифта (см. рис. 7, А) и является наибольшей по ширине и площади, процентное соотношение растяжения, растяжения со сдвигом и сдвига составляет 76/12/12, соответственно. В Быстринской впадине, расположенной наиболее близко к Байкальской котловине, это соотношение равно 100/0/0. В Торской впадине вклад сдвига заметно возрастает (34/33/33). Особенность расположения этой впадины заключается в том, что ее северный борт ограничивается запад-северо-западным сегментом Тункинского разлома, который в данном месте сближается с Главным Саянским сдвигом и трассируется параллельно ему (см. рис. 7, А). Сопоставимыми по вкладам растягивающих и сдвиговых напряжений являются также Туранский (37.5/25/37.5) и Хойтогольский (50/0/50) бассейны. В Мондинской впадине, замыкающей западную часть рифта, соотношения растяжения, растяжения со сдвигом и сдвига меняются карди-(20/40/40)И сдвиговый нально тип поля напряжений превалирует.

В межвпадинных перемычках встречаются все известные типы полей напряжений: растяжение (53%), растяжение со сдвигом (13%), сдвиг (19%), сжатие со сдвигом (6%), сжатие (9%). Однако чистое сжатие по имеющимся геолого-структурным данным устанавливается только для Еловской (56/11/11/0/22) и Зуркузунской (60/20/0/0/20) меж-впадинных перемычек. Для остальных отрогов эти же соотношения выглядят следующим образом: Харадабанский – 50/12.5/25/12.5/0, Туранский – 67/0/0/33/0, Ниловский – 43/14/43/0/0.

В северном и южном рифтовых плечах соотношения растяжения, растяжения со сдвигом, сдвига, сжатия со сдвигом и сжатия примерно одинаковые. В хребте Хамар-Дабан (46/21/25/4/4) по сравнению с Тункинским хребтом (55/15/22/4/4) отмечается чуть больше сдвиговой составляющей. В горном обрамлении по простиранию рифта также наблюдаются закономерные вариации напряженного состояния. Так, между Тункинским и Главным Саянским разломами поле напряжений представлено только сдвиговым типом (см. рис. 7, А). В районе Тункинской локальной впадины в одноименном хребте превалирует растяжение (67/16/17/0/0). На продолжении Нилов-

ского отрога наряду с растяжением существенный вклад в общее количество решений вносит сжатие (67/0/0/0/33). Севернее Мондинской впадины в предгорьях Тункинского хребта резко возрастает вклад сдвиговой составляющей (36/28/27/9/0).

В хребте Хамар-Дабан, на западном окончании рифта, поля напряжений представлены только сдвиговыми и переходными типами (0/60/20/20/0). Далее, в центральной части изучаемой структуры появляется чистое растяжение (54/8/38/0/0). Вблизи Еловского отрога и Торской впадины в южном горном обрамлении отмечается сжатие (43/14/29/0/14). Южнее Быстринской впадины поле напряжений представлено только растяжением.

Приведенные данные показывают, что в распределении локальных полей напряжений разного типа в Тункинском рифте наблюдаются определенные закономерности, обусловленные его сложной внутренней структурой. Во-первых, на фоне преобладания растяжения и сдвига редкие решения, соответствующие сжатию и сжатию со сдвигом встречаются только в межвпадинных перемычках и плечах рифта. Во-вторых, по сравнению со смежными бассейнами в межвпадинных перемычках поле напряжений имеет более мозаичный характер. Такие различия в распределении полей напряжений в разных структурных элементах отчасти могут быть связаны с разным возрастом трещиноватости в молодых осадках впадин и в древнем фундаменте. Однако, как показывает анализ ориентировок главных осей напряжений и механизмы очагов землетрясений, приведенные ниже, эти различия скорее обязаны большей неоднородности строения кристаллических массивов, которая вызывает значительные вариации напряженного состояния в их пределах. В-третьих, растяжение доминирует вблизи Байкальской котловины и в центральной, наиболее широкой, части Тункинского рифта, причем как во впадинах, так и в горном обрамлении. В четвертых, существенное усложнение поля напряжений и увеличение сдвиговой составляющей происходит в западной части изученной площади в районе Туранского и Мондинского бассейнов (см. рис. 7), которые значительно вытянуты в широтном направлении. По-видимому, вдоль этого сегмента рифта и далее на запад, по мере приближения к оз. Хубсугул, имеют место трансформирующие движения, приводящие к раскрытию серии рифтогенных впадин меридионального простирания на территории Монголии.

Итоговое соотношение вкладов растяжения, растяжения со сдвигом, сдвига, сжатия со сдвигом и сжатия в формирование разрывной сети Тункинского рифта составляет 53/17/23/3/4, соответственно (см. рис. 7, Б). Сопоставление этих результатов с исследованиями, проведенными для крупных раз-

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>	044601 A44601	14,	Ta,	пород/осадков	a3°	VTOT 9	0 00	VTOT 0		0	0		0	C	0 00	0 1044	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-0 ~ ~ ~	044601 A44601					inn - f	d3.,	JA Very			a3., č	yгол, °	a3., ^v	yron, '	a3.,	yrou,	напряжений
$ \begin{array}{[c]c c c c c c c c c c c c c c c c c c c$	-0 04 v	044601 A44601				Xa	радаба	нская	межвп	адинна	адэп кі	Mbl4K8						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 m 4 m	100++V	1/9.15	101.201	Кварциты	240	50	67	63	12	67	64	2	154	2	283	82	Растяжение
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>ω</u> 4 ν		7/0.10	C70.101	Кварциты	190	70	67	47	19	82	215	13	115	36	321	51	Растяжение со спвигом
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	04 W	11001	21212	10101	C	190	20	270	60	19	72	48	31	245	58	143	×	Сжатие со сдвигом
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	t v t	10044A	0/0.10	101.214	Сланцы	180	70	0	4	11	99	181	13	91	-	354	LL	Растяжение
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S	A44802	4/0.1c	101.238	Известняки	17	63	180	40	10	78	10	12	102	10	231	75	Растяжение
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	с	044001	19913	20101		55	80	320	75	6	88	97	ε	357	71	188	18	CIBHT
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		044701	/00.10	\$7.101	Мраморы	20	09	195	50	6	70	18	15	108	4	233	84	Растяжение
6 A45404 51.66 101.664 Therical, crantul, and the field, crantul, service 7 30 50 17 30 50 25 350 6 240 6 Perspace (a) 56 240 60 12 51 155 24 80 65 240 60 12 51 155 24 156 101.601 Tpanurus 23 30 10 25 30 17 30 26 240 0 26 240 0 26 240 0 26 240 6 Perspace 10 45401 51.671 101.693 Tpanurus.rpano 13 70 290 70 26 30 17 20 6 Camme cocquance 11 45601 51.677 101.831 Tpanuro-rreficia 30 60 16 70 13 70 20 8 31 13 77 220 6 Camme cocquance 61 Camme cocquac						330	20	210	80	10	99	181	9	281	61	88	28	CIBHL
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	10121 V	101				Гуранс	кая ме	жвпад	инная	перемь	ЧКа						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 1	A42404	060.10	101.664	І нейсы, сланцы	80	80	80	50	17	30	260	25	350	0	80	65	Растяжение
8 3-34-50.2 31.603 [01.604] [Daumtai 120 80 180 60 12 51 330 34 150 56 240 0 Carmeter comments 9 45401 51.70 101.607 [Fabrourai 120 80 170 20 77 20 0 Cuant 11 47202 51.677 101.830 [Ineticiai 40 65 170	- 0	10001	199.10	101.631	Граниты	23	33	175	80	6	71	185	24	88	15	328	61	Растяжение
9 45403 51.693 101.679 Граниты, трано- циориты 130 70 26 45 300 0 210 26 30 64 Растяжение 1 45401 51.70 101.693 таюриты, трано- лиориты 130 70 26 45 30 0 210 26 30 64 Растяжение 1 45601 51.670 101.831 Гранито-тнейсы 90 80 170 26 45 30 61 Растяжение 1 47202 51.677 101.832 Гранито-тнейсы 30 60 130 70 14 83 265 27 28 36 61 Растяжение 1 47302 51.680 101.870 Гнейсы 40 70 130 70 84 175 22 36 61 Растяжение 1 47302 51.680 101.870 Гнейсы 30 60 130 177 22 <t< td=""><td>×</td><td>\$45502</td><td>51.665</td><td>101.604</td><td>Граниты</td><td>120</td><td>80</td><td>180</td><td>60</td><td>12</td><td>51</td><td>330</td><td>34</td><td>150</td><td>56</td><td>240</td><td>0</td><td>CWATUE CO CIRUTOM</td></t<>	×	\$45502	51.665	101.604	Граниты	120	80	180	60	12	51	330	34	150	56	240	0	CWATUE CO CIRUTOM
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	20121				-	Чиловс	кая ме	жвпад	инная	перемь	ычка		_				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	45403	51.693	101.679	Граниты, грано-	130	20	290	70	26	45	300	0	210	26	30	64	Растяжение
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	45401	51.70	101.693	диориты Габбро-диаба-	06	80	170	80	16	79	310	13	130	77	220	0	Слвиг
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	15701			зы, диабазы)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	= =	10024	1/9.16	101.831	Гнейсы	0	60	160	70	13	54	170	5	78	20	273	69	Растяжение
$ \begin{bmatrix} 13 \\ 17202 \\ 51.677 \\ 10.826 \\ 51.672 \\ 51.680 \\ 101.856 \\ 101.856 \\ Fueñceu \\ 101.856 \\ Fueñceu \\ 102.755 \\ Fueñceu \\ 102.831 \\ Fueñceu \\ 100 \\ 300 \\ 55 \\ 77 \\ 45 \\ 12 \\ 101 \\ 88 \\ 38 \\ 71 \\ 161 \\ 11 \\ 25 \\ 71 \\ 40 \\ 102 \\ 10 \\ 300 \\ 78 \\ 77 \\ 20 \\ 10 \\ 300 \\ 78 \\ 77 \\ 20 \\ 10 \\ 300 \\ 78 \\ 77 \\ 20 \\ 10 \\ 88 \\ 38 \\ 71 \\ 161 \\ 11 \\ 25 \\ 71 \\ 161 \\ 12 \\ 71 \\ 161 \\ 15 \\ 68 \\ 10 \\ 370 \\ 70 \\ 370 \\ 70 \\ 370 \\ 70 \\ 370 \\ 70 \\ $	7	4/201	699.10	101.771	Гранито-гнейсы	40	65	110	70	11	64	256	27	65	63	164	4	Спвиг
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						300	60	150	70	8	58	136	S	228	29	36	. 19	Растажение
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	n r	4/202	51.677	101.820	Гнейсы	40	70	130	70	14	83	265	27	85	59	175		Cubir
$ \begin{bmatrix} 5 & 50403 & 51.777 & 102.755 \\ 5 & 50501 & 51.765 & 102.755 \\ 102.845 & 102.755 \\ Fhericesi & 150 & 80 & 330 & 60 & 16 & 40 & 50 & 17 & 12 & 240 & 77 & 22 & 69 & 240 & 265 & 88 & 47 & 12 & 242 & 60 & 230 & 88 & 47 & 12 & 242 & 60 & 14 & 58 & 272 & 16 & Cummer concentrates in concentrates in$	4	47302	51.680	101.856	Гнейсы	30	60	155	60	12	80	182	; C	66	30	512	215	Сдриг Растателние со спригом
15 50403 51.777 102.755 Сланцы 160 60 37 37 20 88 147 12 240 17 22 69 Раслужение 17 5.0501 51.755 102.755 Гнейсы 150 80 330 60 16 40 150 146 58 Pacryskenue 17 478001 51.745 102.755 Гнейсы 150 80 320 55 245 60 15 72 255 242 60 122 58 330 80 Pacryskenue Cumun 20 50.404 51.794 102.834 Cnanuus 163 77 350 50 12 53 13 165 Pacryskenue 20 47902 51.754 102.834 Cananuus 80 77 20 168 7 7 310 75 Pacryskenue 20 47902 51.754 102.834 Dasanbrbi <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Еловси</td><td>ая мея</td><td>КВПАЛИ</td><td>нная п</td><td>еремы</td><td>чка</td><td>)</td><td>2</td><td>}</td><td>2</td><td>5</td><td>и астимство со сдвигом</td></td<>							Еловси	ая мея	КВПАЛИ	нная п	еремы	чка)	2	}	2	5	и астимство со сдвигом
$ \begin{bmatrix} 16 & 50501 & 51.765 & 102.845 & Frence_1 & 150 & 80 & 330 & 60 & 16 & 40 & 150 & 10 & 240 & 0 & 330 & 80 & Factometric for the field of the fie$	15	50403	51.777	102.755	Сланцы	160	09	307	37	20	88	147	12	240	17	10	60	Decementation
17 47901 51.74s 102.794 Граноднориты 60 265 80 7 47 253 10 349 30 146 58 Растяжение со сди 18 47806 51.73 102.755 Гнейсы 170 80 245 60 15 88 38 71 161 11 254 15 Сматие 20 300 55 50 10 88 38 71 161 11 254 15 Сматие 20 47902 51.759 102.834 Cланцы 80 70 255 30 10 80 77 20 168 5 271 69 Растяжение со сди 20 47902 51.753 102.834 Сланцы 20 30 55 7 45 120 16 Растяжение 21 48902 51.753 102.834 Газальты 120 80 30 55 210 0	16	50501	51.765	102.845	Гнейсы	150	80	330	60	16	40	150	10	240		330	80	рестамение
18 47806 51.73 102.755 Гнейсы 170 80 245 60 16 72 25 242 60 125 166 14 75 7 319 75 Pacryskehle 20 47902 51.794 102.802 Сланцы 163 77 350 50 12 53 166 14 75 7 319 75 Pacryskehle 20 47902 51.754 102.834 Сланцы 80 70 250 30 10 80 77 20 168 5 271 69 Pacryskehle 21 48902 51.754 102.826 Базальты 120 80 77 20 168 5 271 69 Pacryskehle 21.753 102.816 12 30 55 7 45 120 12 210 0 55 271 69 Pacryskehle 21 48902 51.736	1/1	47901	51.745	102.794	Гранодиориты	60	60	265	80	7	47	253	10	349	30	146	85	Растяжение со спригом
19 50404 51.794 102.802 Cnahulu 90 30 245 60 15 88 38 71 161 11 254 15 Cwattle 20 47902 51.759 102.834 Cnahulu 80 77 350 50 12 53 166 14 75 7 319 75 Pacryskehne 20 47902 51.759 102.834 Cnahulu 80 70 250 30 10 80 77 20 168 5 271 69 Pacryskehne 21 48902 51.7534 102.834 120 80 300 55 7 45 120 12 210 0 300 78 Pacryskehne 21 48902 51.736 103.418 Fheňch 170 20 340 40 9 71 166 15 28 6 10 72 Pacryskehne 23	10	4/800	51./3	102.755	Гнейсы	170	80	245	60	16	72	25	25	242	60	122	16	Слвиг
19 50404 51./94 102.802 Сланцы 163 77 350 50 12 53 166 14 75 7 319 75 Растяжение 20 47902 51.759 102.834 Сланцы 80 70 250 30 10 80 77 20 168 5 271 69 Растяжение 21 48902 51.759 102.834 Сланцы 80 300 55 7 45 120 12 210 0 300 78 Растяжение 21 48902 51.7534 102.826 50 350 20 6 40 80 77 20 78 Растяжение 23 44401 51.736 103.418 Гнейсы 170 340 40 12 71 166 15 72 Растяжение 23 44401 51.726 103.418 Гнейсы 170 30 40 12<	9					90	30	245	60	15	88	38	71	161	11	254	15	Сжатие
20 47902 51.7534 102.834 Сланцы 80 70 250 30 16 80 77 20 168 5 271 69 Растяжение 21 48902 51.7534 102.826 Базальты 120 80 300 55 7 45 120 12 78 Растяжение 21 48902 51.7534 102.826 Базальты 120 80 300 55 7 45 120 12 78 Растяжение 22 43602 51.736 103.418 Гнейсы 170 20 340 40 9 71 166 15 258 6 10 72 Растяжение 23 44401 51.726 103.418 Гнейсы 170 70 340 40 12 71 166 15 72 Растяжение 23 44401 51.726 103.418 Гнейсы 170 370 9	50	20404	10.794	102.802	Сланцы	163	LL	350	50	12	53	166	14	75	2	319	75	Растяжение
21 48902 51.7534 102.826 Базальты 120 80 55 7 45 120 12 210 0 300 78 Растяжение 22 43602 51.736 103.418 Гнейсы 170 20 350 20 6 40 80 90 260 0 350 7 78 Pacтяжение 22 43602 51.736 103.418 Гнейсы 170 70 340 40 9 71 166 15 258 6 10 74 Pacтяжение 23 44401 51.726 103.418 Гнейсы 170 70 340 40 12 71 166 15 72 Pacтяжение 24 44401 51.726 103.418 Гнейсы 170 60 340 60 12 72 Pacтяжение 24 44402 51.744 103.417 Конгломераты 170 60 230	107	206/4	6C/.IC	102.834	Сланцы	80	70	250	30	10	80	77	20	168	S	271	69	Растяжение
22 43602 51.736 103.418 Гнейсы 170 20 350 20 6 40 80 90 260 0 350 0 Cжатие 23 44401 51.726 103.418 Гнейсы 170 70 340 40 9 71 166 15 258 6 10 74 Pacrяжение 23 44401 51.726 103.418 Гнейсы 170 70 340 40 12 71 161 15 68 10 72 Pacrяжение 24 44402 51.726 103.418 Гнейсы 170 60 340 60 14 61 345 0 255 9 75 Pacrяжение 25 A19001 51.744 103.417 Конгломераты 170 60 290 60 15 83 320 0 72 Pacrяжение 25 A19001 51.744 103.417 Конгломераты 170 60 220 30 8 59 120 84 300 6 210 0 Cwarue	7 17	48902	51.7534	102.826	Базальты	120	80	300	55	2	45	120	12	210	0	300	78	Растяжение
22 43602 51.736 103.418 Гнейсы 3уркузунская межвпадинная перемычка 23 44401 51.726 103.418 Гнейсы 170 70 340 40 9 71 166 15 258 6 10 74 Растяжение 23 44401 51.726 103.420 Граниты 155 70 350 40 12 71 166 15 68 10 72 Растяжение 24 44402 51.717 103.418 Гнейсы 170 60 340 60 14 61 345 0 255 9 75 81 Растяжение 25 A19001 51.744 103.417 Конгломераты 170 60 290 60 15 83 320 0 230 41 50 49 Растяжение 25 A19001 51.744 103.417 Конгломераты 170 60 220 30 8 59 120 84 300 6 210 0 Сматие 56 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>170</td><td>20</td><td>350</td><td>20</td><td>9</td><td>40</td><td>80</td><td>06</td><td>260</td><td>0 0</td><td>350</td><td>0</td><td>Сжатие</td></td<>						170	20	350	20	9	40	80	06	260	0 0	350	0	Сжатие
22 43602 51.736 103.418 Гнейсы 170 70 340 40 9 71 166 15 258 6 10 74 Растяжение 23 44401 51.726 103.420 Граниты 155 70 350 40 12 71 161 15 68 10 72 Растяжение 24 44402 51.717 103.418 Гнейсы 170 60 340 60 14 61 345 0 255 9 75 81 Растяжение 25 A19001 51.744 103.417 Конгломераты 170 60 290 60 15 83 320 0 230 41 50 49 Растяжение 25 A19001 51.744 103.417 Конгломераты 170 60 220 30 8 59 120 84 300 6 210 0 Схалие						3y	ркузун	ская м	ежвпа	цинная	перем	ычка	-	_	,	-)	
23 44401 51.726 103.420 Граниты 155 70 350 40 12 71 161 15 68 10 307 72 Растяжение 24 44402 51.717 103.418 Гнейсы 170 60 340 60 14 61 345 0 255 9 75 81 Растяжение 25 A19001 51.744 103.417 Конгломераты 170 60 290 60 15 83 320 0 255 9 75 81 Растяжение 25 A19001 51.744 103.417 Конгломераты 170 60 290 60 15 83 320 0 230 41 50 49 Растяжение 20 30 8 59 120 84 300 6 210 0 Сжатие	22 4	43602	51.736	103.418	Гнейсы	170	70	340	40	6	71	166	15	258	9	10	74	растатори
24 44402 51.717 103.418 Гнейсы 170 60 340 60 14 61 345 0 255 9 75 81 Растяжение 25 A19001 51.744 103.417 Конгломераты 170 60 290 60 15 83 320 0 230 41 50 49 Растяжение 26 30 30 8 59 120 84 300 6 210 0 Сжатие	23 4	44401	51.726	103.420	Граниты	155	70	350	40	12	11	161	5	89	10	307	5	Dacrevenue
25 А19001 51.744 103.417 Конгломераты 170 60 15 83 320 0 230 41 50 49 Растяжение со сдви 20 30 220 30 8 59 120 84 300 6 210 0 Сжатие	24 4	44402	51.717	103.418	Гнейсы	170	60	340	60	14	61	345	0	255	6	75	2 1 8	Растажение
20 30 220 30 8 59 120 84 300 6 210 0 Cwarue	25	A19001	51.744	103.417	Конгломераты	170	60	290	09	15	83	320	0	230	41	205	40	Dacrewanne co criminou
	-				0	20	30	220	30	8	59	120	84	300	9	210	20	састажение со сдригом Сжатие

Таблица 2. Фактические данные и результаты реконструкций полей напряжений для межвпадинных перемычек Тункинского рифта

ГЕОТЕКТОНИКА № 3 2007

Scan&OCR Иркутская ОГУНБ им. И.И. Молчанова-Сибирского. 2016

Табл	ица 3. Ф	актичес	кие данн	ые и результаты реконс	струкц	ий пол	еи на	южк	чгд им	нлеча	ем тун	КИНСК	ого рис	рта			
N.	Š	Широ-	Долго-	TT	Сопря	женн	не сист	embi	-	Угол,	σ_3	σ3	σ_2	σ_2	σ1	$\sigma_{\rm l}$	Тип поля
u/п	т.н.	ra, °	та, °	и ин пород/осадков	a3., ° J	тол, °	a3., ° <u>1</u>	/гол, °	,	0	a3., ° J	TOJ, °	a3., ° J	лол, ^о	a3., ° y	гол, °	напряжений
					Тунки	нский	xpe6e	T – Mo	ндинсн	кая впа	адина						
-	A4-3	51.717	100.79	Мраморы	250	80	113	67	15	53	271	2	172	50	9	39	Растяжение со сдвигом
2	49102	51.672	101.056	Сланцы	70	80	180	70	13	75	36	9	139	64	303	25	Сдвиг
с	49103	51.672	101.025	Кварциты и сланцы	09	80	170	80	15	72	205	0	115	73	295	17	Сдвиг
4	A44702	51.673	101.091	Диориты с жилами	90	80	197	73	13	LL	54	4	155	68	322	22	Сдвиг
				пегматита	06	80	340	30	14	89	112	29	5	28	240	48	Растяжение со сдвигом
S	A44703	51.668	101.118	Кварциты	190	50	20	30	23	06	190	2	100	0	10	85	Растяжение
9	O44801	51.667	101.127	Кварциты	70	50	290	60	10	<i>7</i> 9	271	2	4	26	170	64	Растяжение
5	044803	51.674	101.172	Мраморы	95	70	190	65	13	86	321	32	149	58	53	ю	Сжатие со сдвигом
					95	70	335	70	12	71	305	0	35	54	215	36	Растяжение со сдвигом
×	44603	51.68	101.178	Кварциты	10	60	180	70	17	51	185	5	94	10	300	78	Растяжение
6	44602	51.68	101.183	Суглинки с обломками	115	80	310	55	20	47	122	13	28	17	247	69	Растяжение
					Тунк	ински	i xpe6	T - Ty	нкинсі	кая впа	адина						
10	40901	51.923	102.439	Мраморы	160	70	330	70	13	41	335	0	245	13	65	LL	Растяжение
				-	20	30	240	80	12	77	227	26	327	19	88	57	Растяжение со сдвигом
11	41001	51.919	102.391	Мраморы	193	47	350	80	12	57	0	17	264	20	127	64	Растяжение
12	49002	51.923	102.450	Мраморы	170	80	350	09	16	40	170	10	260	0	350	80	Растяжение
13	49004	51.925	102.449	Мраморы	185	80	357	09	13	41	181	10	273	10	48	75	Растяжение
14	49006	51.927	102.449	Мраморы	145	70	310	70	15	43	317	0	227	20	47	70	Растяжение
15	49008	51.928	102.449	Мраморы	180	70	290	80	24	75	324	9	221	64	57	25	Сдвиг
16	49011	51.932	102.449	Гнейсы	120	80	190	60	35	68	332	24	192	60	70	17	Сдвиг
17	49013	51.934	102.449	Гнейсы	10	40	200	50	34	06	195	5	286	5	09	83	Растяжение
18	40204	51.927	102.424	Мраморы	310	60	170	50	20	62	329	5	236	26	70	64	Растяжение
19	40401	51.931	102.407	Гнейсы	0	09	160	50	14	72	351	5	82	14	241	75	Растяжение
20	40506	51.943	102.420	Мраморы	180	60	290	70	20	84	323	9	226	50	58	39	Растяжение со сдвигом
	_	-	_	Тункин	нский х	ребет	– Нил	овская	межв	падинь	ная пер	embiy	Ka				
21	2301	51.809	101.683	Диориты	20	60	210	0L	6	51	205	5	296	10	90	78	Растяжение
22	2303	51.867	101.688	Гнейсы	90	70	240	50	16	99	LL	10	171	23	324	64	Растяжение
23	2403	51.844	101.631	Мраморы, Гнейсы	10	50	193	33	6	83	183	81	281	1	11	6	Сжатие
	_		_		Ty	нкинсі	сий хро	e6er-	Торска	ая впа,	цина						
24	40001	51.861	103.082	Гнейсы и пегматиты	240	70	170	70	23	65	25	24	205	66	115	0	Сдвиг

ЛУНИНА и др.

84

Scan&OCR Иркутская ОГУНБ им. И.И. Молчанова-Сибирского. 2016. $\stackrel{100}{\mathrm{No}}3 = 2007$

Ň	ş.	-odulli	Долго-	Тип порол/осанков	Сопр	ннэжв	ые сис	темы	-	Угол,	σ_3	σ ³	σ_2	σ_2	d ¹	ď	Тип поля
п/п	Т.Н.	Ta, °	та, °		a3., °	угол, °	a3., °	угол, °	-	o	a3., °	yгол, °	a3., °	угол, °	a3., °	угол, °	напряжений
				Хребет Хал	мар-Да	бан –	Туран	ская ві	тадина								
25	A44902	51.63	101.288	Гнейсы	140	70	260	70	8	71	290	0	200	54	20	36	Растяжение со сдвигом
					10	70	290	80	18	77	149	19	352	69	242	×	Сдвиг
26	44501	51.641	101.465	Мраморы	70	80	310	55	17	72	97	14	351	47	199	39	Растяжение со сдвигом
27	A45001	1	I	Гнейсы, гнейсо-граниты	50	50	170	80	17	75	196	17	89	43	302	42	Растяжение со сдвигом
28	A45002	51.608	101.554	Гнейсы, гранито-Гнейсы	06	60	190	50	14	78	316	47	149	42	53	٢	Сжатие со сдвигом
				~	Kpe6er	· Xama	р-Даб	ан – Ту	НКИН	ская вп	адина			-			
29	43002	51.626	102.093	Граниты	160	70	345	70	10	40	342	0	72	7	252	83	Растяжение
					160	70	240	70	12	74	20	25	200	65	290	0	Сдвиг
30	43101	51.583	102.25	Гранито-гнейсы	0	70	170	70	13	41	175	0	85	13	265	LL	Растяжение
					140	80	270	70	12	58	116	9	214	56	22	32	Растяжение со сдвигом
31	43201	51.63	102.363	Диориты	290	80	190	80	17	82	330	0	240	75	09	15	Сдвиг
32	43202	51.608	102.363	Граниты	0	40	180	70	10	70	180	15	90	0	360	75	Растяжение
33	43203	51.589	102.338	Гнейсы	200	70	305	80	25	80	341	9	238	65	74	24	Сдвиг
34	43204	51.579	102.341	Пегматоидные	æ	80	200	50	6	52	10	15	276	16	141	68	Растяжение граниты
					110	70	150	70	16	37	310	21	130	69	220	0	Сдвиг
35	43302	51.701	102.708	Гнейсы	180	33	0	09	12	87	0	13	90	0	180	LL	Растяжение
					60	70	340	70	14	74	200	25	20	65	290	0	Сдвиг
36	43303	51.704	102.736	Граниты	140	50	295	60	15	74	307	15	215	17	53	72	Растяжение
					0	70	175	40	12	70	358	15	89	ю	191	75	Растяжение
					Xpe6	ет Хал	иар-Да	бан-	Горск	ая влад	цина						
37	43401	51.657	102.863	Граниты	225	80	310	80	16	83	87	13	267	LL	357	0	Сдвиг
38	43402	51.645	102.878	Гранито-гнейсы	20	70	210	40	24	71	24	15	292	9	180	74	Растяжение
39	43403	51.674	102.892	Гранито-гнейсы	170	80	325	50	13	55	159	15	256	23	38	62	Растяжение
40	43404	51.643	102.913	Гнейсы	130	80	340	40	Ξ	65	142	21	44	20	273	60	Растяжение со сдвигом
41	43405	51.682	102.894	Гранито-гнейсы	20	40	190	50	П	90	330	83	104	S	195	S	Сжатие
42	43501	51.73	102.887	Гнейсы	50	70	240	22	31	88	53	24	321	4	223	99	Растяжение
43	43502	51.729	102.864	Гнейсы	180	80	305	70	16	62	153	9	253	59	09	30	Сдвиг
				X	ребет	Xamal	о-Даба	$H - B_{b}$	стрин	ская ві	тадина	-	-		-		
44 44	44301	51.666	103.536	Пегматиты	10	55	200	65	15	61	195	S	286	×	75	80	Растяжение
45	44302	51.664	103.541	Диопсидовые метасо-	0	09	170	32	31	88	356	15	88	4	193	74	Растяжение
				матиты	90	50	270	80	10	50	270	15	180	0	90	75	Растяжение
Прин	лечание: (обозначе	ние / и т.н	г. см. в таблине 1. Возраст п	00/11/000	SUKOR	ила №	61_8	0-45 "	OPAŬUO	nn -ñoc	- Nº 0 -	тайатт	-пець	nellono	Ппол	VIJUPET TEL - VAE

ВАРИАЦИИ ПОЛЕЙ НАПРЯЖЕНИЙ ТУНКИНСКОГО РИФТА

ГЕОТЕКТОНИКА № 3 2007

Таблица 3. Окончание

Scan&OCR Иркутская ОГУНБ им. И.И. Молчанова-Сибирского. 2016

Рис. 7. Круговые диаграммы, показывающие вклад поля напряжений определенного типа в общую сумму полученных решений: А – для разных структурных элементов рифта; Б - для всего Тункинского рифта Условные обозначения см. на рис. 1

Scan&OCR Иркутская ОГУНБ им. И.И. Модинава Сибинского. 2016 2007

ломных зон Центральной Азии [17], позволяет отнести Тункинский рифт к структуре, развивающейся в обстановке растяжения со сдвигом.

Ориентировка осей главных нормальных напряжений

Большое значение при изучении напряженного состояния имеет пространственная ориентировка осей главных нормальных напряжений. В Тункинском рифте на фоне превалирования СЗ-ЮВ растяжения их направление весьма разнообразно [3, 7, 11, 15, 22]. Мы провели детальный анализ полученных нами ориентировок осей главных нормальных напряжений, расположенных в плоскости горизонта. Основой явились розы-диаграммы, построенные отдельно для впадин, межвпадинных перемычек, горных поднятий и всего рифта в зависимости от типа поля напряжений (рис. 8).

Рассматривая в целом весь рифт, в решениях, соответствующих чистому растяжению, можно увидеть преобладание субмеридионального и СЗ-ЮВ направлений σ_3 (оси растяжения), причем первое доминирует (см. рис. 8). Розы-диаграммы простираний σ₃ для этого типа поля напряжений отчасти подобны для всех структурных элементов. Примечательно почти идеальное сходство роз-диаграмм, построенных для северного и южного плечей Тункинского рифта, где оси растяжения направлены преимущественно субмеридианально. Во впадинах, где измерения трещин проводились, главным образом, в отложениях позднего плейстоцена и голоцена, наряду с субмеридиональной отмечается СЗ-ЮВ ориентировка σ₃, меняющаяся в пределах 290–340°. В межвпадинных перемычках с некоторыми вариациями проявляются оба упомянутых тренда.

В решениях, отвечающих растяжению в сочетании со сдвигом, в целом превалирует СЗ-ЮВ направление σ_3 , хотя очевидны вариации осей в разных структурных элементах (см. рис. 8). Главной особенностью является доминирование субмеридиональной ориентировки σ_3 во впадинах и отрогах, СЗ-ЮВ – в плечах рифта. Кроме того, в этом типе поля напряжений отмечаются решения с субширотным простиранием σ_3 .

В сдвиговых полях напряжений оси растяжения и сжатия весьма нестабильны в ориентировках. СЗ-ЮВ направление σ_3 прослеживается во всех структурных элементах и согласуется с общим региональным полем напряжений. В межвпадинных перемычках или вблизи них, а также в районе Туранской и Мондинской впадин отмечается субширотное, продольное Тункинскому рифту, простирание σ_3 (рис. 9, В и см. рис. 8). В таком сдвиговом поле напряжений формируются и активизируются северо-восточные и северо-западные разрывы. Очевидный вопрос вызывают решения с СВ-ЮЗ направлением σ_3 , которые изредка встречаются и в других типах напряженного состояния. Определенно можно полагать, что такие поля напряжений не группируются в отдельный этап, который мог бы отражать какой-то длительный временной отрезок развития Тункинского рифта. Об этом свидетельствует их проявление как в древних породах (см. рис. 4–6), так и в отложениях верхнего плейстоцена и голоцена (см. рис. 3).

Среди всех реконструированных решений четыре относятся к сжатию в сочетании со сдвигом и пять – к чистому сжатию. В первом типе поля напряжений оси сжатия имеют преимущественно СВ-ЮЗ ориентацию, во втором - ССВ-ЮЮЗ (см. рис. 8). В межвпадинных перемычках вариации в направлениях о1 существенны, но каждый из лучей на розах-диаграммах представляет только одно решение. Два решения, отвечающие сжатию, с σ₁ = 350° и 210° (см. рис. 4, табл. 2, № 21 и 25), были получены в миоценовых базальтах (Еловский отрог) и плиоценовых конгломератах (Зуркузунская перемычка). Скорее всего, оба отражают фазу сжатия, которая имела место в позднем миоцене-плиоцене и разделяла две стадии развития Байкальской рифтовой зоны [6]. Остальные немногочисленные решения сжатия и сжатия со сдвигом, полученные по замерам в древних коренных породах, могут относиться как к эпизоду сжатия на границе миоцена и плиоцена, так и к древнему дорифтовому этапу развития территории. Кроме того, они могут отражать и локальные флуктуации действующего в позднем кайнозое регионального поля напряжений.

Проведенный анализ позволяет выделить две главные особенности. Во-первых, разноориентированные оси напряжений устанавливаются по замерам трещиноватости в рыхлых отложениях, возраст которых в большинстве точек наблюдений во впадинах позднеплейстоцен-голоценовый (см. решения, полученные для впадин на рис. 3, 8 и табл. 1). Следовательно, решения с подобным пространственным положением векторов главных нормальных напряжений в древних кристаллических породах могут быть также отнесены к данному возрастному интервалу. Во-вторых, отмечается некоторая зависимость ориентировки оси растяжения от типа поля напряжений и его проявления в том или ином структурном элементе рифта. Так, например, в решениях растяжения субмеридиональная ориентировка оз несколько превалирует над СЗ-ЮВ, а в решениях растяжения со сдвигом – наоборот (см. рис. 8). Субширотное простирание σ_3 наиболее часто встречается в решениях сдвига и растяжения со сдвигом и, главным образом, вблизи межвпадинных перемычек.

В целом, обобщенная роза-диаграмма ориентировок горизонтальных осей растяжения пока-

ЛУНИНА и др.

Рис. 8. Розы-диаграммы ориентировок осей главных нормальных напряжений в структурных элементах Тункинского рифта

зывает значительное преобладание решений с субмеридиональным и СЗ-ЮВ направлением (см. рис. 8). В соответствии с ней все реконструированные поля напряжений были разделены на четыре группы в зависимости от ориентировки σ_3 (см. рис. 9) и подверглись дальнейшему анализу.

Рис. 9. Схемы распределения полей напряжений с различными ориентировками осей растяжения в точках наблюдения: А – северо-западными, Б – субмеридиональными, В – субширотными, Г – северо-восточными *l* – оси растяжения с углами наклона 0–30° (*a*) и 31–60° (б); 2 – оси сжатия с углами наклона 0–30° (*a*) и 31–60° (б)

Относительная интенсивность полей напряжений с разной ориентировкой оси растяжения

Оценка величин действующего поля напряжений геолого-структурными методами в силу ряда общеизвестных причин сталкивается с большими трудностями. В данной работе с определенной долей условности используется понятие "относительная интенсивность" поля напряжений, кото-

рое позволяет нам приблизиться к количественной оценке величин напряжений, реконструированных по трещиноватости. Основываясь на известной связи между приложенными нагрузками, возникающими напряжениями и деформациями, нами рассчитывался показатель относительной интенсивности (I) поля напряжений, определяемый по степени деформированности пород трешинами сопряженных систем (табл. 1-3). В качестве такого показателя использовалась сумма плотностей максимумов этих систем, снимаемых с диаграмм трещиноватости (см. рис. 3-6). При этом поскольку плотность каждого сопряженного максимума выражена в процентах от общего количества замеренных в обнажении трещин, влияние механических свойств и структуры пород на используемый показатель минимально и не сопоставимо с воздействием напряженного состояния, которое приводит к формированию сопряженных систем трещин определенных направлений. Это можно видеть и из таблиц 1-3, в которых приводятся сведения о типе пород в точках наблюдения и значение І. Полученные таким образом данные позволили построить схемы распределения относительной интенсивности поля напряжений (рис. 10) с различными ориентировками осей растяжения согласно выделенным на обобщенной розе-диаграмме секторам (см. рис. 8). В основе схем лежит численное значение относительной интенсивности поля, рассчитанное для каждой точки наблюдения, что позволило представить их в изолиниях. В случае отсутствия решения с определенной ориентировкой оси растяжения точке придавалось значение 0.

Построенные схемы, в отличие от рис. 9, на котором представлены фактические данные в точках наблюдения, дают возможность наглядно представить области распространения полей напряжений с СЗ-ЮВ (290-350°), субмеридиональной (351-10°), субширотной (71-100°) и СВ-ЮЗ (11-70°) ориентировками оз, а также их относительную интенсивность. Обращает на себя внимание, что выделенные области, лишь незначительно перекрывая одна другую, заполняют почти весь Тункинский рифт, вследствие чего получается определенная мозаика поля напряжений. Области распространения полей напряжений с СЗ-ЮВ ориентировкой оси растяжения занимают наибольшую площадь и в той или иной степени захватывают все структурные элементы рифта (см. рис. 10, А). Для них же характерны наибольшее максимальное и среднеарифметическое значения интенсивности поля напряжений. В западной половине Тункинского локального бассейна поля напряжений с СЗ-ЮВ ориентировкой σ₃ перекрываются полями напряжений с субмеридиональным и СВ-ЮЗ направлениями σ₃, которые в данном конкретном месте характеризуются большей интенсивностью (см. рис. 10, Б и 10, Г).

На этом участке указанные направления в точках наблюдения отличаются одно от другого не более чем на 10°. Они, хотя и были отнесены к разным секторам на розе-диаграмме (рис. 8), оказались сближенными в пространстве. Это позволяет отнести два облака на рис. 10, Б и 10, Г к одной области распространения полей напряжений с субмеридиональным направлением оси растяжения. Характерно, что локальная смена ориентировки σ_3 с СЗ-ЮВ на субмеридиональную происходит на границе крупного регионального разлома ССЗ простирания (см. рис. 1 и 10).

Другое белое "пятно" на рис. 10, А наблюдается в Торской впадине. Частично оно перекрывается областью распространения более интенсивного поля напряжений с СВ-ЮЗ направлением оз. Учитывая, что Торскую впадину с севера ограничивает запад-северо-западный сегмент Тункинского разлома (см. рис. 1), можно с большой долей вероятности предполагать, что подобное локальное изменение ориентации главных нормальных напряжений обусловлено "приспособлением" векторов напряжений к ранее существующей крупной тектонической границе. При действии только однородного СЗ-ЮВ растяжения в такой структурной ситуации вряд ли было возможно образование довольно широкого, практически изометричного, Торского бассейна, который мы видим сегодня. Отчасти раскрытие бассейна обеспечивали и поля напряжений растяжения и растяжения со сдвигом с субмеридиональной ориентировкой оз, которые образуют область повышенной интенсивности в северо-западной части Торской впадины (см. рис. 10, Б). В пользу "структурной зависимости" вариаций напряженного состояния свидетельствует и то, что на южной границе этого бассейна и в предгорьях хребта Хамар-Дабан области распространения полей напряжений с СЗ-ЮВ ориентировкой приобретают основное значение и характеризуются наибольшими величинами.

На рис. 10, В хорошо видно, что решения с субширотным направлением оз имеют узколокальное проявление вблизи Еловской, Туранской и Ниловской межвпадинных перемычек. Для этих полей напряжений отмечается невысокая интенсивность. Возможно, они возникают периодически на границе локального бассейна и приподнятого отрога с более сложным разломно-блоковым строением. В то же время действие продольного к Тункинскому рифту горизонтального растяжения (в решениях сдвига и растяжения со сдвигом) усиливается при приближении к озеру Хубсугул, приуроченного к меридиональной границе Тувино-Монгольского микроконтинента. На западном замыкании рифта существенное усложнение напряженного состояния выражается не только в разнообразии полей напряжений разных типов,

Scan&OCR Иркутская ОГУНБ им. И.И. Молчанова-Сибирского. 2016 ГЕОТЕКТОНИКА № 3 2007

ВАРИАЦИИ ПОЛЕЙ НАПРЯЖЕНИЙ ТУНКИНСКОГО РИФТА

Рис. 10. Схемы распределения относительной интенсивности полей напряжений с различными ориентировками осей растяжения: А – северо-западными, Б – субмеридиональными, В – субширотными, Г – северо-восточными

но и в направлениях их главных горизонтальных осей. Только там, на относительно небольшом по площади участке в районе Мондинской впадины, реализовались поля напряжений со всеми возможными ориентировками σ_3 (см. рис. 9).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Результаты наших исследований показывают, что значительные вариации в ориентировках осей главных нормальных напряжений и разно-

ГЕОТЕКТОНИКА № 3 2007

Scan&OCR Иркутская ОГУНБ им. И.И. Молчанова-Сибирского. 2016

образие типов напряженного состояния в Тункинском рифте являются закономерными и обусловлены, главным образом, его внутренним строением и расположением в общей структуре Байкальской рифтовой зоны. Еще в 80-х годах было установлено [22], что на фоне преобладающего СЗ-ЮВ растяжения и СВ-ЮЗ сжатия локальные поля напряжений на юго-западном фланге Байкальской рифтовой зоны характеризуются большим разбросом в направлениях оз и о1. Это явление объяснялось влиянием местных факторов. Более поздние исследования в Тункинской системе впадин также показали большое разнообразие типов деформирования земной коры [15], однако авторы цитированной работы отмечают, что большинство полученных стресс-тензоров характеризует режимы сдвига и транспрессии. Ими выделеэтапов эволюции напряженного но шесть состояния земной коры в Тункинском рифте, которые сменяли друг друга с конца олигоцена до настоящего времени [15]. В настоящей работе, основанной на 124 решениях, 35 из которых реконструированы по замерам трещин в отложениях возрастом от 7.87 млн. до 3000 лет, показано, что большинство полей напряжений относится к типам растяжения, сдвига и растяжения со сдвигом. Следует отметить, что этот вывод согласуется с данными, представленными в работе [29]. Многочисленные находки сбросовых смещений разных амплитуд в плейстоцен-голоценовых отложениях [7, 19] также подтверждают преобладание растяжения в позднем кайнозое, а не сжатия.

Ранее были сделаны общие замечания о влиянии крупных разломов на напряженное состояние юго-западного фланга Байкальской рифтовой зоны [22, 24]. В настоящей работе мы провели детальный анализ особенностей распределения полей напряжений, который стал возможен благодаря большому количеству фактических данных в разновозрастных отложениях, собранных в различных структурных элементах рифта. Полученные результаты свидетельствуют, что приблизительно со второй половины плиоцена в Тункинском рифте не было кардинальных изменений напряженного состояния, которые охватывали бы временные интервалы, длительность которых сопоставима с плейстоценом и/или голоценом. Более убедительным кажется существование фазы сжатия ССВ направления в позднем миоценераннем плиоцене со смятием части отложений в пологие складки во многих впадинах Байкальской рифтовой зоны [6] и образованием надвигов в Тункинских гольцах [24]. Пожалуй, только эту фазу можно рассматривать как значимый этап изменения поля напряжений регионального уровня для юго-западного фланга, который охватил достаточно продолжительный временной интервал и обширную территорию. В этот же этап укладываются некоторые из реконструирован-

2007

Scan&OCR Иркутская ОГУНБ им. И.И. Молчанова-Сибирского. 2016 ГЕОТЕКТОНИКА № 3

ЛУНИНА и др.

ВАРИАЦИИ ПОЛЕЙ НАПРЯЖЕНИЙ ТУНКИНСКОГО РИФТА

Рис. 12. Итоговая схема траекторий главных нормальных напряжений растяжения и сжатия (A), сопоставленная с картой разломно-блокового строения Тункинского рифта (Б)

1-3 – траектории главных векторов: 1 – растяжения с углами наклона $0-30^\circ$; 2 – сжатия с углами наклона $0-30^\circ$; 3 – сжатия с углами наклона $31-60^\circ$; 4 – разломы; 5 – впадины, заполненные осадочными отложениями (*a*), выступы кристаллического фундамента (δ)

ных решений. Проявление регионального сжатия может быть связано с эффектом континентальной коллизии Евразийской и Индостанской плит, начало которой относят к рубежу 50-55 млн. лет [26, 27]. Учитывая временные оценки начала деформаций в северном Тянь-Шане (11 млн. лет) [26] и в зонах основных разломов Азии, таких, как Алтын-Таг и Кунь-Лунь (20–25 млн. лет) [27], которые расположены значительно южнее, можно полагать, что влияние коллизии на Байкальскую рифтовую зону могло отразиться значительно позднее. По расчетам К.Г. Леви [4], этот эффект мог проявиться не ранее, чем 10-12 млн. лет назад, а данные, обобщенные Н.А. Логачевым [6], свидетельствуют, что сжатие в Байкальской рифтовой зоне, отделявшее медленную и быструю стадии рифтинга, было 5-7 млн. лет назад. В остальном изменения напряженного состояния в Тункинском рифте имеют кратковременный, импульсный и локальный характер. Об этом свидетельствуют и механизмы очагов землетрясений, известные для рассматриваемой территории [3, 7, 11, 12, 28] (рис. 11). Большинство из них отвечает растяжению со сдвигом с СЗ-ЮВ направлением оз, хотя имеют место и другие решения, в которых субгоризонтальная оз имеет субмеридиональное или субширотное направление. Следует отметить землетрясения с взбросовым механизмом очага, эпицентры которых находятся в западной части Тункинского рифта. Они связаны, главным образом, с разломами СЗ направления, которые доминируют в определенных структурных элементах. Судя по механизмам очагов землетрясений, напряженное состояние в отдельных частях Тункинского рифта изменяется в пределах нескольких лет или даже года. Возникает вопрос: почему в Тункинском рифте наблюдаются такие значительные флуктуации поля напряжений, ведь в центральной части Байкальской рифтовой зоны оно считается более стабильным [11]?

Наиболее очевидной причиной может быть то, что формирование Тункинского рифта происходило в неблагоприятных условиях для реализации СЗ-ЮВ регионального растяжения. Его восточное окончание приурочено к рифейскому узлу тройного сочленения, находившемуся у южного клиновидного выступа Сибирского палеоконтинента (рис. 3.10 на с. 36 в работе [10]), ветвями ко-

ГЕОТЕКТОНИКА № 3 2007

торого были северо-западный Саянский, северовосточный Байкальский (в районе начала Тункинского рифта он имеем широтное простирание) и субмеридиональный Тувино-Монгольский древние швы. Вероятно, позднее был сформирован субширотный Тункинский разлом, время образования которого относят к раннему палеозою [24]. Предшествующая кайнозойскому рифтообразованию структура на юго-западном фланге Байкальской рифтовой зоны еще более усложнилась последующими тектоническими движениями вплоть до мелового периода. Таким образом, даже после пенепленизации, перед началом формирования морфоструктурного комплекса Байкальской рифтовой зоны, на месте будущего Тункинского рифта в земной коре сохранились три крупнейшие тектонические границы. Ни одна из них не удовлетворяла беспрепятственной реализации регионального СЗ-ЮВ растяжения в такой мере, чтобы образовался нормальный почти ортогональный рифт, подобный Байкальскому. Такие условия привели к формированию сложной морфоструктуры Тункинского рифта с множеством различных бассейнов и приподнятых отрогов и мозаичному (по типам и ориентировкам) распределению локальных полей напряжений. Наибольшее усложнение поля напряжений происходит на западном замыкании Тункинского рифта, где осевая линия Байкальской рифтовой зоны резко разворачивается к меридиональному направлению, приспосабливаясь к ранее существующей тектонической границе.

Проведенный анализ и имеющиеся данные позволили построить итоговую схему траекторий действия главных нормальных напряжений растяжения и сжатия (рис. 12, А), которая была сопоставлена с картой разломно-блокового строения Тункинского рифта (см. рис. 12, Б). Устанавливается, что изменение ориентировки осей исходного СЗ-ЮВ поля напряжений происходит в узлах пересечения разломов и на участках сложного строения разрывной сети, которые отмечаются, главным образом, в межвпадинных перемычках вблизи границ с локальными впадинами рифта. Зачастую можно видеть поворот траекторий вблизи окончаний закартированных разломов. В местах разряженной разрывной сети векторы напряжений сохраняют свое исходное направление. Подобные изменения первоначально однородного поля напряжений, связанные с наличием или возникновением нового разрыва, доказаны экспериментальными работами [14]. Закономерные вариации поля напряжений в пространстве и независимость построения схем разломно-блокового строения и траекторий действия главных нормальных напряжений являются еще одним подтверждением того, что изменения напряженного состояния в Тункинском рифте предопределены структурными факторами.

ЗАКЛЮЧЕНИЕ

Представленные результаты реконструкций напряженного состояния Тункинского рифта и их анализ позволяют сделать следующие основные выводы:

1. Распределение полей напряжений разных типов и изменения ориентировок их главных векторов имеют закономерный характер и обусловлены сложным морфоструктурным и разломноблоковым строением Тункинского рифта.

2. Развитию рифта и в особенности раскрытию впадин способствовали локальные поля напряжений с субмеридиональной ориентировкой σ₃. Для южных и северных границ межвпадинных перемычек характерно возникновение локальных полей напряжений с субширотным направлением σ₃.

3. Растяжение и сдвиг превалируют в Тункинском рифте, хотя соотношения полей напряжений разных типов могут изменяться в различных структурных элементах. Сжатие и сжатие со сдвигом отмечаются только в межвпадинных перемычках и горном обрамлении рифта.

4. По сравнению с соседствующими локальными бассейнами поле напряжений в приподнятых отрогах имеет более мозаичный характер. Его существенное усложнение происходит в западной части изученной площади в районе Туранского и Мондинского бассейнов, где по мере приближения к озеру Хубсугул имеют место трансформирующие движения, определяющие раскрытие серии рифтогенных впадин субмеридионального простирания на территории Монголии.

5. В целом, формирование структуры рифта происходило в условиях косого по отношению к оси рифта СЗ-ЮВ регионального растяжения на фоне существования трех разнонаправленных тектонических границ древнего заложения (Саянской, Байкальской и Тувино-Монгольской). Это привело к развитию нескольких эшелонированных бассейнов и приподнятых межвпадинных перемычек, наличию сдвиговой компоненты движений по разломам (иногда значительной), мозаичному распределению полей напряжений разных типов и локальному изменению ориентировки их главных осей.

6. На протяжении всего развития с олигоцена Тункинский рифт не испытывал многоэтапных изменений напряженного состояния, за исключением фазы сжатия в позднем миоцене – раннем плиоцене (5–7 млн. лет назад), которая охватила и другие впадины Байкальской рифтовой зоны [6]. Ее проявление может быть связано с эффектом континентальной коллизии Евразийской и Индостанской плит, который мог проявиться не ранее, чем 10–12 млн. лет назад [4]. После этой фазы сжатия Тункинский рифт продолжил тектоническое развитие в режиме растяжения со сдвигом. Представленный взгляд на проблему приближает нас к пониманию особенностей не всегда однозначного проявления современного напряженного состояния, сведения о котором поступают в основном от определений фокальных механизмов очагов землетрясений. Новые данные о региональном и локальных полях напряжений и ориентировках их главных векторов дают основания полагать, что в кайнозойской истории Тункинского рифта не было существенных изменений тектонического режима, за исключением фазы сжатия в постсреднемиоценовое время.

Авторы искренне благодарны д-ру геол.-мин. наук М.Г. Леонову и д-ру геол.-мин. наук В.Г. Трифонову за плодотворное обсуждение рукописи.

Работы проведены при частичной финансовой поддержке СО РАН (комплексный интеграционный проект СО РАН-2006-6.13), РФФИ (проекты 04-05-64348, 04-05-64148), а также фондов Президента РФ (грант MK-1645.2005.5) и INTAS (грант 05-109-4383).

СПИСОК ЛИТЕРАТУРЫ

- Аржанникова А.В., Ларрок К., Аржанников С.Г. К вопросу о голоценовом режиме деформаций в районе западного окончания системы Тункинских впадин (юго-западный фланг Байкальской рифтовой зоны) // Геология и геофизика. 2003. Т. 44. № 4. С. 373–379.
- Гзовский М.В. Основы тектонофизики. М.: Недра, 1975. 536 с.
- Голенецкий С.И. Сейсмичность района Тункинских впадин на юго-западном фланге Байкальского рифта в свете инструментальных наблюдений второй половины XX века // Геология и геофизика. 1998. Т. 39. № 2. С. 260–270.
- Леви К.Г., Язев С.А., Задонина Н.В., Бердникова Н.Е., Воронин В.И., Глызин А.В., Куснер Ю.С. Современная геодинамика и гелиогеодинамика. Иркутск: Изд-во ИрГТУ, 2002. 182 с.
- 5. *Леонов Ю.Г.* Напряжения в литосфере и внутриплитная тектоника // Геотектоника. 1995. № 6. С. 3–21.
- Логачев Н.А. История и геодинамика Байкальского рифта // Геология и геофизика. 2003. Т. 44. № 5. С. 391–406.
- Лунина О.В., Гладков А.С. Разломная структура и поля напряжений западной части Тункинского рифта // Геология и геофизика. 2004. Т. 45. № 10. С. 1235–1247.
- Лунина О.В., Гладков А.С. Разломная структура Тункинского рифта – отражение процесса косого растяжения // Докл. АН. 2004. Т. 398. № 4. С. 516–518.
- Лунина О.В. Разрывные системы и поля напряжений южной части рифта Мертвого моря // Геотектоника. 2005. № 2. С. 52–65.
- Мац В.Д., Уфимцев Г.Ф., Мандельбаум М.М., Алакиши А.М., Поспеев А.В., Шимараев М.Н., Хлыстов О.М. Кайнозой Байкальской рифтовой впадины: Строение и геологическая история. Но-

восибирск: Изд-во СО РАН, филиал "Гео", 2001. 252 с.

- 11. Мельникова В.И., Радзиминович Н.А. Механизм очагов землетрясений Байкальского региона за 1991–1996 годы // Геология и геофизика. 1998. Т. 39. № 11. С. 1598–1607.
- Мельникова В.И., Радзиминович Н.А. Очаговые параметры землетрясений Байкальского региона в 2003 г. // Современная геодинамика и опасные природные процессы в Центральной Азии. Иркутск: ИЗК СО РАН–ИрГТУ, 2004. С. 197–201.
- Николаев П.Н. Методика тектонодинамического анализа / Под ред. Н.И. Николаева. М.: Недра, 1992. 295 с.
- 14. Осокина Д.Н., Цветкова Н.Ю. Изучение локального поля напряжений и прогноз вторичных нарушений в окрестностях тектонических разрывов и в очагах землетрясений с учетом третьего главного напряжения // Поля напряжений и деформаций в литосфере. М.: Наука, 1979. С. 163–184.
- Парфеевец А.В., Саньков В.А., Мирошниченко А.И., Лухнев А.А. Эволюция напряженного состояния земной коры Монголо-Байкальского подвижного пояса // Тихоокеанская геология. 2002. Т. 21. № 1. С. 14–28.
- Рассказов С.В., Логачев Н.А., Брандт И.С., Брандт С.Б., Иванов А.В. Геохронология и геодинамика позднего кайнозоя: (Южная Сибирь–Южная и Восточная Азия). Новосибирск: Наука, 2000. 288 с.
- Семинский К.Ж. Тектонофизические закономерности деструкции литосферы на примере Гималайской зоны сжатия // Тихоокеанская геология. 2001. Т. 20. № 6. С. 17–30.
- Семинский К.Ж., Гладков А.С., Лунина О.В., Тугарина М.А. Внутренняя структура континентальных разломных зон. Прикладной аспект. Новосибирск: Изд-во СО РАН, Филиал "Гео", 2005. С. 293.
- Уфимцев Г.Ф., Перевалов А.В., Резанова В.П., Кулагина Н.В., Мащук И.М., Щетников А.А., Резанов И.Н., Шибанова И.В. Радиотермолюминесцентное датирование четвертичных отложений Тункинского рифта // Геология и геофизика. 2003. Т. 44. № 3. С. 226–232.
- Уфимцев Г.Ф., Шибанова И.В., Кулагина Н.В., Мащук И.М., Перевалов А.В., Резанова В.П., Фогт Т., Игнатова Н.В., Мишарина В.А. Верхнеплейстоценовые и голоценовые отложения Тункинского рифта (Южное Прибайкалье) // Стратиграфия. Геологическая корреляция. 2002. Т. 10. № 3. С. 90–99.
- 21. *Чернышев С.Н.* Трещины горных пород. М.: Наука, 1983. 240 с.
- 22. Шерман С.И., Днепровский Ю.И. Поля напряжений земной коры и геолого-структурные методы их изучения. Новосибирск: Наука, 1989. 158 с.
- Шерман С.И., Лунина О.В. Новая карта напряженного состояния верхней части литосферы Земли // Докл. АН. 2001. Т. 378. № 5. С. 672–674.
- 24. Шерман С.И., Медведев М.Е., Ружич В.В., Киселев А.И., Шмотов А.П. Тектоника и вулканизм

юго-западной части Байкальской рифтовой зоны. Новосибирск: Наука, 1973. 136 с.

- Andeweg B., De Vicente G., Cloetingh S., Giner J., Munoz Martin A. Local stress fields and intraplate deformation of Iberia: variations in spatial and temporal interplay of regional stress sources // Tectonophysics. 1999. Vol. 305. P. 153–164.
- Bullen M. E., Burbank D.W., Garver J.I., Abdrakhmatov K. Ye. Late Cenozoic tectonic evolution of the northwestern Tien Shan: New age estimates for the initiation of mountain building // Bulletin of Geological Society of America. 2001. Vol. 113. № 12. P. 1444–1559.
- Chemenda A.I., Burg J.-P., Mattauer M. Evolutionary model of the Himalaya-Tibet system: geopoem based on new modeling, geological and geophysical data // Earth and Planetary Science Letter. 2000. Vol. 174. P. 397–409.
- Delouis B., Deverchere J., Melnikova V., Radziminovich N., Loncke L., Larroque C., Ritz J.F., San'kov V. A reappraisal of the 1950 (Mw 6.9) Mondy earthquake, Siberia, and its relationship to the strain pattern at the south-western end of the Baikal rift zone // Terra Nova. 2002. Vol. 14. № 6. P. 491–500.
- 29. Delvaux D., Moeys R., Stapel G., Petit C., Levi K., Miroshnichenko A., Ruzhich V., San'kov V. Paleostress reconstruction and geodynamics of the Baikal region,

Central Asia. Part 2. Cenozoic rifting // Tectonophysics. 1997. Vol. 282. P. 1–38.

- Geological excursion to Baikal and Tunka rift basins. Guidebook of Third Annual Meeting: Rifting in intracontinental setting: Baikal rift system and other continental rifts / Ed. Logatchev N.A. Irkutsk-Tervuren, 1999. 32 p.
- Logatchev N., Zorin Y. Evidence and causes of the twostage development of the Baikal rift zone // Tectonophysics. 1987. Vol. 143. P. 225–234.
- Papadopoulos G.A., Kondopoulou D.P., Leventakis G.-A., Pavlides S.B. Seismotectonics of the Aegean region // Tectonophysics. 1986. Vol. 124. P. 67–84.
- 33. *Richardcon R.M.* Ridge forces, absolute plate motions and the intraplate stress field // J. Geophys. Res. 1992. Vol. 97. № B8. P. 11739–11748.
- Sherman S.I. Fault and tectonic stresses of the Baikal rift System // Tectonophysics. 1992. Vol. 208. P. 297–307.
- 35. Zoback M.L. First- and second-order patterns of stress in the lithosphere: the world stress Map project // Geophys. Res. 1992. Vol. 97. № 8B. P. 11703–11728.

Рецензенты: В.Г. Трифонов, М.Г. Леонов

Variations of Stress Fields in the Tunka Rift of the Southwestern Baikal Region

O. V. Lunina, A. S. Gladkov, and S. I. Sherman

Institute of the Earth's Crust, Siberian Division, Russian Academy of Sciences, ul. Lermontova 128, Irkutsk, 664033 Russia

e-mail: lounina@crust.irk.ru

Abstract—The stress fields in the Tunka Rift at the southwestern flank of the Baikal Rift Zone are reconstructed and analyzed on the basis of a detailed study of fracturing. The variation of these fields is of a systematic character and is caused by a complex morphological and fault—block structure of the studied territory. The rift was formed under conditions of oblique (relative to its axis) regional NW—SE extension against the background of three ancient tectonic boundaries (Sayan, Baikal, and Tuva—Mongolian) oriented in different directions. Such a geological history resulted in the development of several en echelon arranged local basins and interbasinal uplifted blocks, the strike-slip component of faulting, and the mosaic distribution of various stress fields of a lower hierarchical rank with a near-meridional tension axis. The stress field in the western Tunka Rift near the Mondy and Turan basins is substantially complicated because the transform movements, which are responsible for the opening of the N–S-trending rift basins in Mongolia, become important asLake Hövsgöl is approached. It is concluded that, for the most part, the Tunka Rift has not undergone multistage variation of its stress state since the Oligocene, the exception being a compression phase in the late Miocene and early Pliocene, which could be related to continental collision of the Eurasian and Indian plates. Later on, the Tunka Rift continued its tectonic evolution in the transtensional regime.

Слано в набор 08.02.2	007 г. Под	писано к печати 17.04.2007 г.	Формат (бумаги 60 × 88 ¹ / ₈
Цифровая печать	Усл. печ. л. 12.0	Усл. кротт. 3.6 тыс.	Учизд. л. 12.1	Бум. л. 6.0
	Тираж 28	7 экз. Зак. 12	20	
	Учредители: Российска	я академия наук, Геологический	и институт РАН	

Издатель: Академиздатцентр "Наука", 117997 Москва, Профсоюзная ул., 90 Оригинал-макет подготовлен МАИК "Наука/Интерпериодика"

Отпечатано в ППП "Типеская откноризтская юруне окклалиние вы ворокого. 2016