ний // Основные проблемы сейсмотектоники. - М.: Наука, 1986. - С.171-177.

Солоненко В.П., Демьянович М.Г., Авдеев В.А. Инженерная сейсмогеология Северс-Муйской межрифтовой перемычки // Геол. и геофиз. - 1°34. - № 4. - С.3-16.

Хромовских В.С. Сравнительная сейсмогеология активизированных в кайнозое древних платформ и молодых складчатых поясов Евразкатского континента // Основные проблемы сейсмотектоники. -М.: Наука, І.36. - С.178-182.

Nikolaev V.V., Semenov R.M. Correlation between the Baikal rifting and structures of the Central Asian orogen related to seismicity. - In book: International Symposium DLPCR, China, 1985, p.119.

С.И.Шерман, А.Н.Адамсвич, А.А.Бабичев, С.А.Борняков, В.D. Буддо, Ю.И.Днепровский, К.Г.Леви, А.И.Мирошниченко, В.А. Саньков, К.Ж.Семинский, В.А.Трусков

ДИНАМИКА РАЗВИТИЯ ГЛУВИННЫХ РАЗЛОМОВ (ТЕКТОНОФИЗИЧЕСКИЙ АНАЛИЗ)

В геологической литературе устоялось мнение о том, что глубинные разломы играют весомую роль в локализации и контролировании шигокого комплекса геологических процессов, практическим вениом которых является рудоотложение в первом случае и сейсмичность - во втором. При детализации исследований эти бесспорные, основанные на богатом фактическом материале выводы существенно уточняются. В частности, размещение рудных объектов или минеральных источников вдоль протяженных глубинных разломов неравномерное и нередко выходит за пределы осевой линим дизъюнитивов. Связанные с разломами эпицентры сильных землетрясений "хаотически" располагаются вдоль зоны их динамического влияния. Ситуация становится более сложной при ее дополнительном анализе в координате времени. Нет фактов о четкой связи между напряженным состоянием коры, началом зарождения и развития систем трещин, перерождением их в локальные и региональные разломы и одновременно протекающими сопутствующими процессами. Геология оперирует чаще всего конечными данными, прежде всего, о результатах сложного развития разломов как части деструктивного процесса в пространстве. Из-за чрезвичайной длительности этого процесса критерий временной последовательности событий "выпадает", и этим создаются трудно преодолимые препятствия при полытке, например, прогноза временной закономерности землетрясений, контролируемых развитием конкретного глубинного разлома.

Методы исследования

Для ответов на коренные вопросы, возникающие при детальном прогнозе геологических явлений, контролируемых дизъмнктивеми, надо иметь полное представление о динамике развития глубинного разлома и области его динамического влияния в течение всего периода формирования. Для пополнения необходимых сведений можно использовать экспериментальные методы. В ссчетанию с детальными геологическими работами они дают возможность восстановить временную последовательность развития внутренней структуры временную последовательность развития внутренней структуры зоны разлома и прокоррелировать синхронно протекающие процессы. Такое комплексное исследование динамики развития глубинных разломов проводится в лаборатории тектонофизики Института земной коры [Перман и др., 1985, 1986; Перман, 1986 и др.].

Геологическое изучение внутренней структуры разломов и прилегащих к ним областей проведено в Байкальской рифтовой зоне
и в ряде районов Средней Азии, преимущественно в зоне сочленения Памира и Тянь-Шаня. Избранные регионы характеризуруся принципиально разными режимами геодинамического развития. Первый отражает захономерности деструкции при растяжении литосферы, второй - при сжатии. Оба региона имеют разветрленную сеть разломней тектоники, сейсмически активны в настоящее время и отличавтся непростой неотектонической структурой, вызванной сложным
характером неотектонических движений [Геология и сейсмичность..,
1984].

Экспериментальное изучение процессов разломообр вования проведено на несерийной установке "Разлом", изготовленной в Иркутском филиале опытного завода СО АН СССР. На ней с применением тензостанции и системы тензодатчиков исследовано поле сдвиговых деформаций. Связанные с разломообразованием акустические эффекты как аналоги землетрясений на модели изучены с применением акустического комплекса АК-I4 прои водства ГДР. Теоретической основой экспериментов явилось развиваемое авторами представление об упруго-вязко-пластичном поведении земной коры

при формировании сетки разломов. В качестве модельного материала применялась бурая глина, деформация которой при малой скорости приложения нагрузки соответствует поведению упруго-пластичного тела. С этой целью свойства глины как модельного материала были специально изучены [Семинский,1986]. В процессе проведения опытов изменялись условия нагружения и скорости деформирования, что имитировало вариации геодинамических режимов; менялись вязкости модельного материала и толщина (мощность) слоя в модели, которые позволяли приближаться по ведущим параметрам к изменениям реальной геологической среды по составу горных пород и размерам объектов. Условия проведения опытов и подобия определямись критерием-комплекси $C_{\eta} = C_{\rho} C_{L} C_{T}$, который связывает отношения C_{η} — вязкости, C_{ρ} — плотности, C_{L} — размеров и C_{T} — времени в природной ситуации и при моделировании [Перман и др., 1933].

Результаты полевых и экспериментальных работ

Развитие разломов представляет собой сложный длительный и многоэтапный процесс. Это означает, что зародившаяся трещина растет, удлиняется и углубляется, и увеличение этих главных ее параметров пропорционально степени тектонической активности и времени действия сил. На определенном этапе нагружения отдельные трещины группируются в линейные системы повышенной трещиноватости, образуя локальные разломы. Процесс автомодельно развивется при объединении локальных разломов в региональные, а последних, в свою очередь, в генеральные. Проследить за ходом деталей такого преобразования геологическими методами нельзя. В природной обстановке на современном срезе геология фиксирует одну из "мгновенных" картин. Сопоставление разных регионов дает возможность судить об усложнении разломной тектоники от одного геологического периода к другому, а также выяснить специфику развития разломов в зависимости от тектонических режимов.

Полевые исследования в упомянутых выше регионах подтвердили их коренное отличие по преобладающим морфолого-генетическим типам разломов: в первом регионе преобладают сбросы в сочетаним со сдвигами, во втором - вэбросы и надвиги, также в сочетонии со сдвигами. Вывод легко прогнозирующийся. При переходе на количественную или полуколичественную базу сравнения были обнаружены более существенные признаки различия. Они выражаются, в частности, в распределении плотности разрывов. При расчете параметра плотности были использованы палетки с изменяющимся диаметром окна, соизмеримым с мощностью земной коры в каждом конкретном регионе. В Байкальской рифтовой зоне выделяются две "линии" концентрации плотности разломов. Одна из них проходит по осевой части рифтовой зоны, другая является хордой дуги, образуемой центральной частью рифтовой зоны и ее северо-восточным флангом. Участки повышенной плотности разрывов образуют линейные зоны. Распределение плотности разломов во втором из сравниваемых регионов равномерно-пятнистое, причем связь в прострачстве участков повышенной трещиноватости - пятен - со структурами региона несколько завуалирована, а в некоторых областях - практически отсутствует. Можно констатировать по геологическим данным принципиальное различие в деструкции земной коры в условиях растяжения и сжатия. В пергом - это развитие относительно редко расположенных линейных полей повышенной трещиноватости, соответствующих зилющим трещинам отрыва в экспериментах при разрушении материалов на отрыв. Во втором случае - это равномерное по площади сгущение и разрежение систем прежде всего сколовых по генезису разрывов, соответствующих предшествующей разрушению стадии квазипластического течения материала в экспериментах при сжатии образцов. Предварительное заключение говорит о том, что общая плотность тэктонических разрывов в зонах континентально коллизии (сжатия) выше и равномернее, чем в рифтовых зонах. В рассматриваемых регионах процесс деструкции ицет дискретно. К сожалению, геологические методы не дают возможности проследить его закономерности.

Геолого-структурными методами изучается напряженное состояние коры зон континентальной коллизии и рифтогенеза. Установлено принципиальное сходство напряженного состояния коры в Байкальской рифтовой зоне, полученное по анализу механизмов очагов землетрясений с магнитудой более 5,5 и геолого-структурными методами. В деталях степень соответствия не вседу адекватна: она различна на флангах и центральной части, замысловата в местах сочленения разломов. Это говорит о том, что стадии развития разломов в разных по структуре местах единой Байкальской рифтовой зоны различны, что выражается и в процессах сейсмичности, сопутствующих разломообразованию. К настоящему времени геолого-структ

турными методами изучено напряженное состояние земной коры и в зонах коллизии. Их результаты еще нуждеются в детальном обсуждении. Изложенные факты необходимо учитывать при корреляции материалов по разломной тектонике с другими геолого-геофизическими параметрали.

Изучение континентальных рифтовых зон выявило связь плотности разломов со скоростями и типами неотектонических движений. Продолжается выяснение подобных соотношений в регионах континентальной кол...ями.

Экспериментальные работы по исследованию развития разрывов позволили выделить две стадии этого процесса: стадию пластического течения без видимы следов разрывообразования и деструктивную стадию, в рамках которой происходит формирование систем приразломных разрывных нарушений. Последние образуют область активного динамического влияния разломов. Ширина этой области зависит от способа нагружения, вязности модельного материала и скорости приложения нагружни. Самое существенное воздействие на ширину приразломной зоны оказывает мощность слоя, вовлеченного в деформирование. Остановка опыта и повторное приложение нагружим не ведут к расширению области динамического влияния. Таким образом, представления геологов о том, что ширина зон разломов во многом связана с их активизацией, экспериментально не подтверждаются.

Эксперименты позволяют проследить за деталями динамики развития крупного разлома во времени. Здесь мы обратим внимание на два важных вывода. Первый из них связан с характером распределения в пределах зоны формирующейся структуры опережающих разрывов, которые предвествуют появлению магистрального шва. Они в течение всего времени формирования глубинного разлома развиваются неравномерно. Поля максимумов и минимумов их плотности, чередуясь, располагаются примерно на одинаковых расстояниях другот друга по простиранию зоны разлома, причем абсолютные значения плотности неодинаковы в каждый конкретный момент времени. Область распространения активных опережающих разрывов не сохраняет своего первоначального положения, а мигрирует в пределах зоны формирующейся структуры. При этом активное крыло (крыло, к которому приложена нагрузка) будет более раздробленным, так как большую часть времени развития дизъюнктива область рас-

пространения опережающих разрывов находится в его пределах. Таким образом, динамика структурообразования в зоне влияния глубинного разлома обусловила большую перспективность активного крыла в отношении локализации рудных полей, связанных с разрывными структурами. Это необходимо учитывать при проведении поисковых работ, так как в ряде случаев с определенными концентрациями опережающих разрывов связана локализация оруденения трещинного типа.

Второй вывод связан с распределением полей сдвиговых деформаций и насательных напряжений в области активного динамического виряния среза. Их интенсивность также изменяется не телько вкрест, но и по простиранию разлома. В ходе тензометрического исследования деформации модельного материала в поперечном сечении по глубине зоны среза обнаружены явления миграции поля скоростей сдвиговых деформаций вкрест или по диагонали к оси формирующегося разлома и от сснования модели к ее поверхности. Миграции имеют колебательный характер. Выдвинута гипотеза о наличии подобных явлений с периодом (согласно теории подобия) 10⁴—10⁶ лет при формировании зон крупных сдвигов в земной коре.

Для выяснения закономерностей процессов, сопутствующих разломообразованию, на специальной установке были изучены изменения нагрузки на модели в период ранговых перестроек внутренней
струитуры приразломной области. Анализ кривых "нагрузка-деформация" в сопоставлении с наблюдениями на модели стадийности
структурного преобразования приразломной зожи показал, что скачки в изменении нагрузки согласуются со стадийностью ранговых
перестроек. Таким образом, несмотря на стабильный характер энергетического источника и прилагаемых к модели сил, деформация
в модели распределяется дискретно в соответствии с неравномерным развитием внутренней структуры области динамического влияния разлома.

Метод акустической эмиссии, примененный в этих же экспериментах, показал соответствие аппроксимирующей кривой распределения плотности импульсов акустической эмиссии, излучаемых развивающимся разломом, стадиям его развития, выраженным изменениями кривой "нагрузка-деформация".

Формирование крупных разломов литосферы не является одно актным процессом. Геологическая летопись нередко хорошо фикси-

рует периодичность развития разломов, их активизацию. При этом геология однозначно отмечает, что в каждый последующий этап тектонической активизации вовлекается не вся развитая на местности сетка разломов.

Для поньмания причин "мэбирательной" активизации разломов проведена тесретическая оценка условий нарушения "прочности" тел с трещинеми в сдвиговом и раздвиговом полях напряжений. Установлено, что разломы и зоны их сочлененей при прочих равных обстоятельствех более устойчивы в условиях растягивающего поля напряжений по сравнению со сдвиговым. Например, сбросы в центральной части Байкальской рифтовой зоны потенциально сейсмически менее активны го ср. мению с аналогичными разломами, расположенными на флангах. Это объясняется различными полями современных напряжений в коре в разных частях Байкальской рифтовой зоны. Таким образом, динамика развития разломов во многом определяется их положением в структуре геотектенической области. Только по геологическим данным сделать подобное заключение об этом сложном процессе было бы трудно.

Заключение

Совместный анализ геологических и экспериментальных данных по динамиче развития глубинных разломов раскрывает многие до сих пор завуалированные формы этогс не простого деструктивного процесса. При постоянном тектоническом режиме, неизменном источнике напряжений и стабильном региональном поле напряжений крупные разломы развиваются дискретно. Связанные с ними геолого-геофизические события, в большинстве своем, носят дискретный в пространстве и времени характер. Их закономерности на современном уровне требований необходимо изучать только комплексом методов [Шерман, 1986].

Большое внимание в последние годы привлекает динамика развытия внутри- и межплитных глубинных разломов (межплитных границ) литосферы и эх внутренняя структура. Эколюцию межплитных границ необходимо рассматрывать как сложный физический процесс, объединяющий собственно деформацию упруго-пластичного материала, его разрушение (разное в гипо-, мезо- и катазонах), излучение упругих волн, и как следствие всего, изменение физических полей. При стабильной нагрузке, иначе - однотипном тектоническом режиме, формирование внутренней структуры межплитных разломов идет дискретно и синхронизируется с неравномерно протекающими сопутствующими актами. Отсюда, часто искомые при тектонофизическом анализе корреляционные связи между разломными структурами и сейсмическими явлениями могут быть стабильными или переменными даже в рядом расположенных районах единого сейсмического пояса. Все зависит от стадин развития конкретных структур. В подобных случаях степень тесноты корреляционных связей - высокую или низкую - нельзя использовать для прогноза или, наоборот, для пессымистических выводов о невозможности расшифровать взаимссвязь структур и процессов. Необходимо при детальных исследованиях конкретизировать ситуацию и четко увязывать стадию развития разломов, их внутренною структуру, ориентацию по отношению к современному полю напряжений с синхронно протекающими другими геологическими нвлениями. Устойчивый, консервативный, характер в динамике развития добых разрывных структур носит лишь их ориентировка и то в координатах, жестко связанных с конкретным континентом.

Современная постановка очень многих задач в геологии практически сводится и прогнозу структур или явлений. Решение их в принципе возможно при детальных исследованиях на базе количественных методов, применяемых при полевых геологических и экспериментальных работах. Особенно плодотворно комплексное применение геологических и экспериментальных методов в разломной тектонике. Разломообразование в коре и литосфере Земли необходимо рассматривать как сложный геологический процесс, гишь отдельные стороны которого хорошо изучены в настоящее время.

JИТЕРАТУРА

Геология и сейсмичность зоны ВАМ. Неотектоника / Отв.ред. Н.А.Логачев. - Новосибирск: Наука, 1984. - 207с.

Семинский К.Ж. Структурно-механические свойства глинистой пасты как модельного материала в тектонических экспериментах. - Иркутск: ИЗК СО АН СССР, 1986. - 130с. - Рук.деп.в ВИНИТИ, № 5762-886.

Шерман С.И. Разломообразование в литосфере, типы деструктивных зон и сейсмичность // Основные проблемы сейсмотекточики.
— М.: Наука, 1986. — С.39-48.

Шерман С.И., Адамович А.Н., Мирошниченко А.И. Условия акти-

визации зон сочленений разломов // Геол.и геофиз. - 1986. - № 3. - C.10-18.

Перман С.И., Ворняков С.А., Буддо В.D. Области динамического влияния разломов. - Новосибирск: Наука, 1983. - II2c.

Шерман С.И., Борняков С.А., Буддо В.D., Трусков В.А., Бабичев А.А. Моделирование механизма образования сейсмоактивных разломов в упруго-вязкой среде // Геол.и геофиз. — 1985. — № 10. — С.9—19.

В.М.Кочетков, Л.А.Мишарина, А.В.Солоненко, Н.С.Боровик

ПАРАМЕТРЫ ОЧАГСЭ И НЕКОТОРЫЕ ОСОБЕННОСТИ ПРОЯВЛЕНИЯ ЗЕМЛЕТРЯСЕНИЙ МОНГОЛО-БАЙКАЛЬСКОГО РЕГИОНА

В 1981-1985 гг. лабораторией сейсмологии (совместно с габораторией сейсмогеологии) завершены работы по систематизации и уточнению сведений о сейсмичности территории Монгольской Народной Республики за период с начала н.э. по 1981 гсд. Результаты этих исследований вошли в комплекс данных, обеспечивших основу для составления ногой карты общего сейсмического районирования территории МНР масштаба 1:2500000, и отражены в коллективной монографии [Землетрисения...,1985]. В соответствующих ее разделах представлены унифицированный сьодный каталог землетрясений, подробные описания ряда сильных толчков, а также материалы, карактеризующие различные стороны сейсмического процесса на рассматриваемой территории: карты епицентров, данные о сейсмическом режиме, пооторяемости землетрясений, сейсмической активности и механизмах очагов.

Исследования напряжений и подвижек в очагах землетрясений, регистрируемых в Прихубсугульском районе Северной Монголии (внлючая приграничные районы Тувинской АССР), привели и результатам, позволившим внести уточнения в существовавшие до этого представления о положении юго-западной границы Байкальской рифтовой зоны (БРЗ) [Землетрясения..., 1985; Мишарина и др., 1983].

Результаты выполненных определений механизма очагов показали, что для большинства очагов землетрясений Прихубсугулья характерна довольно пологая ориентация осей напряжений сжатия. Елизгоризонтальные направления осей напряжений растижения в