<u>ΥCΠΕΧИ ΦИЗИЧЕСКИХ НАУК</u>

К 100-ЛЕТИЮ СО ДНЯ РОЖДЕНИЯ В.Л. ГИНЗБУРГА

КОНФЕРЕНЦИИ И СИМПОЗИУМЫ

О структуре параметра порядка в высокотемпературных сверхпроводниках на основе железа

Т.Е. Кузьмичёва, А.В. Муратов, С.А. Кузьмичёв, А.В. Садаков, Ю.А. Алещенко, В.А. Власенко, В.П. Мартовицкий, К.С. Перваков, Ю.Ф. Ельцев, В.М. Пудалов

Описаны синтез, характеризация и комплексное исследование монокристаллов Ba-122 с различным замещением и различными температурами сверхпроводящего перехода. С использованием пяти взаимодополняющих экспериментальных методик изучения сверхпроводящих свойств Ba-122 получен набор самосогласованных данных. Главный качественный вывод проведённых авторами исследований: сосуществование двух сверхпроводящих конденсатов с различным по силе электрон-бозонным взаимодействием. Две щели, открывающиеся на различных листах поверхности Ферми, не обращаются в нуль в плоскости $k_x k_y$ и имеют симметрию расширенного s-волнового типа. При этом двухзонная модель достаточна для описания основных параметров сверхпроводящего состояния. Умеренное межзонное взаимодействие, а также существенная роль ненулевого кулоновского отталкивания в описании двухщелевого сверхпроводящего состояния пниктидов бария не противоречат реализации s⁺⁺-модели.

Ключевые слова: многощелевые сверхпроводники, пниктиды железа, теплоёмкость, лондоновская глубина проникновения, андреевская спектроскопия, оптика

PACS numbers: 74.25.-q, 74.25.nd, 74.25.Ha, 74.45.+c, 74.70.Xa

DOI: https://doi.org/10.3367/UFNr.2016.10.038002

Содержание

- 1. Введение (450).
- 2. Синтез и характеризация (451).
- 3. Магнитные свойства в сильных полях (453).
- 4. Теплоёмкость (454).
- 5. Оптическая спектроскопия (455).

Т.Е. Кузьмичёва, А.В. Муратов, А.В. Садаков, В.А. Власенко, В.П. Мартовицкий, Ю.Ф. Ельцев. Физический институт

им. П.Н. Лебедева РАН,

Ленинский просп. 53, 119991 Москва, Российская Федерация E-mail: kute@sci.lebedev.ru

С.А. Кузьмичёв. Московский государственный университет им. М.В. Ломоносова, физический факультет,

Ленинские горы 1, стр. 2, 119991 Москва, Российская Федерация; Физический институт им. П.Н. Лебедева РАН,

Ленинский просп. 53, 119991 Москва, Российская Федерация Ю.А. Алешенко. Физический институт им. П.Н. Лебедева РАН, Ленинский просп. 53, 119991 Москва, Российская Федерация; Национальный исследовательский ядерный университет "МИФИ", Каширское шоссе 31, 115409 Москва, Российская Федерация К.С. Перваков. Физический институт им. П.Н. Лебедева РАН, Ленинский просп. 53, 119991 Москва, Российская Федерация; International Laboratory of High Magnetic Field and Low Temperatures, ul. Gajowicka 95, 53-421 Wroclaw, Poland

В.М. Пудалов. Физический институт им. П.Н. Лебедева РАН, Ленинский просп. 53, 119991 Москва, Российская Федерация; Национальный исследовательский университет "Высшая школа экономики",

ул. Мясницкая 20, 101000 Москва, Российская Федерация

Статья поступила 7 декабря 2016 г.

- Спектроскопия внутренних многократных андреевских отражений (455).
- 7. Измерение первого критического поля (458).
- 8. Обсуждение (459).
- 9. Заключение (461).

Список литературы (461).

1. Введение

Неклассическая сверхпроводимость квазидвумерных соединений на основе железа, открытых в 2008 году [1], стала, безусловно, ключевой темой физики конденсированного состояния. Пниктиды и селениды железа, демонстрирующие критические температуры сверхпроводящего перехода T_c до 56 К в объёмном SmOFeAs [2] и до 100 К в монослое FeSe [3], а также высокие критические поля, порядка 200 Тл, [4] могут найти широкое практическое применение [5, 6]. Большинство этих материалов является антиферромагнитными металлами с волной спиновой плотности в стехиометрическом составе, переходя в сверхпроводящее состояние при электронном или дырочном допировании. Исключениями являются хорошо известное соединение LiFeAs [7], а также недавно открытое ThNOFeAs, стехиометрические фазы которых немагнитны. Последнее соединение схоже по структуре с оксиарсенидами (так называемая система 1111) и имеет $T_{\rm c} \approx 30$ К, сравнимую с $T_{\rm c}$ оксиарсенидов [8]. Отметим, что эти сверхпроводники обладают достаточно низкими энергиями Ферми. Так, например, для "ведущей" зоны вблизи точки Г типичная энергия Ферми, отсчитанная от дна зоны, порядка 0,2 эВ [9].

© Т.Е. Кузьмичёва, А.В. Муратов, С.А. Кузьмичёв, А.В. Садаков, Ю.А. Алещенко, В.А. Власенко, В.П. Мартовицкий, К.С. Перваков, Ю.Ф. Ельцев, В.М. Пудалов 2017

Среди многообразия синтезированных сверхпроводников на основе железа представители бариевых семейств, такие как $BaFe_{2-x}Ni_xAs_2$, $Ba_{1-x}K_xFe_2As_2$ (обозначаемые как Ва-122), оказались наиболее привлекательными для исследователей ввиду их умеренной критической температуры, до 38 К, а также возможности относительно легко выращивать большие и качественные монокристаллы этих соединений с различным замещением. Расчёты зонной структуры [10] показали, что уровень Ферми пересекают несколько зон, образованных 3d-орбиталями железа, формируя на уровне Ферми цилиндры, слабо гофрированные в с-направлении: дырочные вокруг Г-точки и электронные вокруг М-точки в зоне Бриллюэна. Существование нескольких сверхпроводящих конденсатов и соответствующих им зон запрещённой энергии (так называемых сверхпроводящих щелей) при температурах ниже Тс в железосодержащих материалах уже не подвергается сомнению [11, 12].

Для описания фундаментального механизма образования куперовских пар в сверхпроводниках на основе железа предложены три основные теоретические модели. Одна из них, s⁺⁺-модель, предсказывает сильное внутризонное спаривание, а также наличие двух конкурирующих взаимодействий — посредством спиновых флуктуаций и орбитальных флуктуаций, усиленных фононами [13, 14]. Такая конкуренция может привести к появлению анизотропии (зависимости от угла в импульсном пространстве) или даже нулей параметра порядка по некоторым направлениям [14]. Напротив, s[±]-модель основана на спаривании посредством спиновых флуктуаций. Основную роль должно играть межзонное взаимодействие, а волновые функции конденсатов, образующихся на разных листах поверхности Ферми, находятся в противофазе, что формально означает выполнение неравенства $\Delta_L \Delta_S < 0$, где Δ_L — величина большой щели, а *∆*_S — малой. Поскольку матричный элемент взаимодействия между конденсатами $V_{\rm LS} < 0$, то при обмене магнонами это даёт притяжение. Нестинг между электронными и дырочными ферми-поверхностями приводит также к магнитному резонансу (появлению пика динамической спиновой восприимчивости на векторе нестинга при определённой энергии) [15, 16].

Модель, рассматривающая формирование так называемых спиновых и зарядовых суперстрайпов (фазовое расслоение на наномасштабах), предсказывает резкое увеличение Тс, вызванное резонансом фешбаховского типа при приближении края зоны к уровню Ферми (переход Лифшица). Эта модель также предлагает учитывать для конденсата куперовских пар переходный режим между стандартной для классических изотропных сверхпроводников конденсацией Бардина-Купера-Шриффера (БКШ) с колоссальным перекрытием пар и бозеэйнштейновской конденсацией, при которой пары частиц почти не перекрываются [9]. Поскольку для железосодержащих сверхпроводников приближение квазиклассичности ($\hbar\omega_{\rm D} \gg 2\Delta$) не выполняется, а средний размер куперовских пар уже приближается к величине их перекрытия, подобный теоретический подход представляется достаточно адекватным.

Предполагаемое появление плоских зон наблюдалось в экспериментах с использованием фотоэмиссии с угловым разрешением (ARPES — Angle-Resolved Photoemission Spectroscopy) в системе 1111 [17], что соответствует так называемым протяжённым особенностям Ван Хова,

тов [18]. кти Каждая из рассмотренных моделей предполагает определённую структуру сверхпроводящей щели и набор других параметров сверхпроводящего состояния. Несмотря на интенсивные исследования в течение вось-

Несмотря на интенсивные исследования в течение восьми лет, экспериментальные данные остаются противоречивыми и не позволяют сделать однозначных выводов о механизме спаривания. Ни одна из моделей так и не получила надёжного экспериментального подтверждения, и ключевые проблемы остались нерешёнными. Например, значения характеристического отношения БКШ $2\Delta/k_{\rm B}T_{\rm c}$ в сверхпроводниках семейства Ва-122, экспериментально определённые различными методами в разных работах, различаются в шесть раз [19-33] (в качестве обзора см. [12, 34]). Возможная причина такого разброса предположительно состоит в сильной анизотропии щелей в k_z-направлении, "размывающей" их амплитуды, определённые объёмными методами, а также заметной чувствительности сверхпроводящих свойств к качеству поверхности. Температурные зависимости щелей, измеренные в [28, 29] с помощью спектроскопии точечных контактов (Point Contact Andreev Reflection — PCAR), свидетельствуют о сильном внутризонном взаимодействии. В ряде экспериментов по неупругому рассеянию нейтронов [35-38] сообщалось о наблюдении довольно резкого "магнитного резонанса", что свидетельствует в пользу s^{\pm} -модели [15, 16]. Тем не менее интенсивность и форма экспериментально наблюдаемого пика динамической магнитной восприимчивости, по оценкам работ [13, 14], не соответствует предсказаниям s^{\pm} -модели, а влияние примесей должно негативно сказываться на стабильности состояния со спариванием s[±] [13, 39]. Отсутствие нестинга, выявленное в ARPES-экспериментах [7], и сильное внутризонное взаимодействие, оценённое на основе прямых измерений температурных зависимостей щелей [34, 40], можно считать косвенными подтверждениями s⁺⁺-модели. С другой стороны, близость перехода Лифшица, наблюдение большой сверхпроводящей щели, открывающейся на дырочной цилиндрической поверхности Ферми меньшего объёма [7, 17], фазового расслоения на наномасштабах и резонанса фешбаховского типа [41, 42] говорят в пользу существования суперстрайпов.

которые могут образовываться в квазидвумерных ма-

териалах. Тем самым для описания высоких T_c и боль-

ших величин *Д* (достигающих ~13 мэВ) может быть

применена теория Абрикосова, предложенная для купра-

Из проведённого выше краткого обзора следует, что решающую роль в установлении симметрии спаривания и нахождении способов повышения критической температуры могут сыграть надёжные экспериментальные данные. В настоящей статье описан синтез, характеризация и комплексное исследование монокристаллов Ba-122 с различным замещением и различными T_c . С использованием пяти взаимодополняющих экспериментальных методик изучения сверхпроводящих свойств Ba-122 получен набор согласованных данных.

2. Синтез и характеризация

Монокристаллы общего состава $BaFe_{2-x}Ni_xAs_2$ с различной концентрацией допирующего никеля и критической температурой сверхпроводящего перехода до $T_c = 20$ К были выращены раствор-расплавным методом кристаллизации вещества в собственном флюсе

Рис. 1. (а) Дифрактограммы монокристаллов $BaFe_{2-x}Ni_xAs_2$ с концентрациями x = 0,09 (нижний спектр) и x = 0,1 (верхний спектр). На вставке показан фрагмент рентгеновского спектра в двумерной окрестности пика (006). (б) Зависимость сопротивления от температуры в окрестности сверхпроводящего перехода. (в) Энергодисперсионный (EDX) спектр монокристалла $BaFe_{1,92}Ni_{0,08}As_2$. (г) Изображение кристалла $BaFe_{1,92}Ni_{0,08}As_2$ размером 1,5 × 0,8 мм², полученное в электронном микроскопе.

(self-flux technique). Поскольку многие реагенты, участвующие в синтезе, окисляются на воздухе, взвешивание всех реагентов проводилось в перчаточном боксе с контролируемой атмосферой аргона. Металлический Ва и прекурсоры FeAs и NiAs высокой чистоты, предварительно полученные из элементов твердофазным синтезом, смешивали в молярном соотношении 1:5(2 - x): 5x, помещали в корундовый тигель и запаивали в кварцевую ампулу с остаточным давлением 0,2 бар в аргоновой атмосфере. Далее ампулу нагревали до температуры 1200 °С и выдерживали в течение 12 ч, при этом происходила реакция

$$Ba + (2 - x) FeAs + xNiAs = BaFe_{2-x}Ni_xAs_2$$

Длительное время выдержки обусловлено необходимостью завершения реакции образования требуемой фазы и гомогенизацией расплава, поскольку диффузия допирующей фазы $BaNi_2As_2$ в основную фазу $BaFe_2As_2$ происходит в основном за счёт конвекции и лимитируется вязкостью среды. После выдержки ампулу охлаждали до температуры 1150 °С и начинали процесс кристаллизации расплава в температурном градиенте при охлаждении до 1050 °С со скоростью 2 °С в час. По достижении указанной температуры жидкий флюс декантировали переворачиванием ампулы.

Выращенные монокристаллы достигали размера $4 \times 2 \times 0.2$ мм³. На рисунке 1а показана дифрактограмма, полученная на дифрактометре ДРОН-2.0 с изогнутым графитовым монохроматором, монокристаллов BaFe_{2-x}Ni_xAs₂ с концентрациями x = 0.09 (нижний спектр) и x = 0,1 (верхний спектр). На спектрах присутствуют только пики, соответствующие 122-фазе, что говорит о высоком качестве полученных монокристаллов. Для определения наличия двойникования и разориентации блоков в монокристалле были измерены кривые качания и двумерные области вблизи рефлекса (006) на дифрактометре Panalytical X'Pert Pro MRD Extended. Фрагмент рентгеновского спектра в двумерной окрестности пика (006) приведён на вставке к рис. 1а. В окрестности рефлекса (006) имеется только один пик, что говорит об отсутствии блоков с различной ориентацией в монокристалле. Наличие высокоинтенсивных нерасщеплённых дифракционных пиков (рис. 1а) говорит о высоком качестве полученных монокристаллов и однородном распределении замещающего никеля в объёме кристалла. Элементный анализ методом энергодисперсионной спектроскопии (Energy-Dispersive X-ray spectroscopy — EDX) показал, что соотношение элементов в полученных монокристаллах Ba: Fe: Ni: As составляет 1,06:1,91:0,09:1,95 (рис. 1в), что соответствует шихтовому составу. Изображение монокристалла $BaFe_{1,92}Ni_{0,08}As_2$, полученное с помощью электронного микроскопа, приведено на рис. 1г.

3. Магнитные свойства в сильных полях

Измерения необратимости намагниченности M(H, T) на вибрационном магнетометре и магнитной восприимчивости $\chi'(H, T)$ проводились с использованием системы PPMS-9 (Physical Properties Measurement System 9) в полях до 9 Тл с ориентацией поля вдоль оси с. Стандартная скорость изменения магнитного поля составляла 100 Э с⁻¹. На температурных зависимостях магнитной восприимчивости (рис. 2a) монокристалла BaFe_{1.92}Ni_{0.08}As₂ хорошо виден чёткий узкий сверхпроводящий переход, указывающий на существование единственной сверхпроводящей фазы с критической температурой $T_{\rm c} \approx 19$ К. При дальнейшем увеличении концентрации никеля Тс уменьшается. Для передопированного кристалла с концентрацией x = 0,18 и $T_{\rm c} \approx 9,3$ К зависимости магнитной восприимчивости вблизи сверхпроводящего перехода в различных полях показаны на рис. 26. Ширина перехода $\Delta T_{\rm c} \approx 1.4$ К по измерению восприимчивости (рис. 26) и по измерению сопротивления (рис. 1б) демонстрирует структурное совершенство и однородность сверхпроводящих свойств в объёме монокристалла.

Из данных измерения петель намагниченности построена зависимость плотности критического тока J_c от поля при различных температурах для недодопированного образца монокристалла $BaFe_{1,92}Ni_{0,08}As_2$ (рис. 2в). Аналогичного вида зависимость была получена на оптимально допированных кристаллах. Линейное поведение в области I (до 100-150 Э при температуре жидкого гелия) в основном связывают с так называемым режимом пиннинга одиночных вихрей. С увеличением поля до 0,5 Тл наблюдается степенно́е поведение, $J_{\rm c} \sim H^{-\alpha}$; таким образом, режим II соответствует увеличению количества вихрей в объёме образца и началу их взаимодействия. Показатель степени принимает значения $0,37 < \alpha < 0,43$, немного меньшие теоретического предсказания $\alpha = 5/8$ для сильных центров пиннинга. Это различие может указывать на существование небольшого количества протяжённых дефектов и рассеянных слабых центров пиннинга [43]. Наличие области III с примерно постоянной критической плотностью тока, $J_{\rm c}(H) \sim {\rm const}$, судя по всему, вызвано сосуществованием больших и малых центров пиннинга, которые вместе захватывают и удерживают, подобно клетке, магнитные вихри. Сильный пиннинг магнитных вихрей разрушается в области IV, и на фоне плавления вихревой решётки достаточно быстро уменьшается Jc. Нарисунке 2г приведена нормированная сила пиннинга $f_{\rm p} = F_{\rm p}/F_{\rm pmax}$ как функция нормированного поля $h = H/H_{irr}$, измеренная при различных температурах. Критерием определения поля необратимости *H*_{irr} выбрано обращение плотности критического тока в нуль ($J_{\rm c} \rightarrow 0$). Из рисунка видно, что в поле H||c кривые $f_p(h, T)$ сливаются в одну. Используя модель Дью-Хьюза [44], в которой $f_{\rm p}(h,T) \sim$ $h^{p}(1-h)^{q}$, получаем значения коэффициентов p = 1,64

Рис. 2. Температурная зависимость магнитной восприимчивости в полях до 9 Тл (а) в немного недодопированном монокристалле $BaFe_{1,92}Ni_{0,08}As_2$ и (б) в передопированном $BaFe_{1,82}Ni_{0,18}As_2$ с $T_c \approx 9,3$ К. (в) Критическая плотность тока J_c как функция магнитного поля H (по данным работы [40]). (г) Нормированная сила пиннинга $f_p = F_p/F_{pmax}$ как функция нормированного поля $h = H/H_{irr}$ при различных температурах. На вставке приведена петля намагничивания при T = 7 К.

и q = 3,43 для монокристалла BaFe_{1,92}Ni_{0,08}As₂. Согласно этой модели, полученный пик $h^p = 0,32$ указывает на преобладание сильных точечных центров пиннинга. Ещё одним подтверждением наличия сильного объёмного пиннинга является высокая симметрия петли намагничивания при температурах, близких к T_c , что также говорит об отсутствии значительного количества магнитных примесей в монокристалле (см. вставку на рис. 2г).

4. Теплоёмкость

Теплоёмкость измерялась методом тепловой релаксации с помощью PPMS-9 (Quantum Design) в температурном диапазоне 2-200 К. Ключевой, но в то же время трудоёмкой проблемой, возникающей при анализе экспериментальных данных, является отделение электронного вклада, содержащего информацию о сверхпроводящих свойствах, от решёточного вклада в теплоёмкость. Проблема заключается в том, что решёточная часть не может быть измерена непосредственно. Для преодоления этой трудности прибегают к так называемому приближению соответствующих состояний (corresponding states approximation) [45]. Суть этого приближения состоит в использовании решёточной теплоёмкости соединения, близкого по составу к исследуемому, но не испытывающего ни структурного, ни магнитного переходов. В случае семейства Ва-122 этого можно добиться, взяв стехиометрическое соединение BaFe₂As₂ (испытывающее магнитный переход при температуре 140 К) и подобрав соответствующие замещение и уровень допирования. Для того чтобы учесть изменение параметров решётки на несколько процентов, вызванное вариацией допанта или его концентрации, используются масштабирующие коэффициенты, близкие к единице. Примером таких несверхпроводящих немагнитных соединений, близких к Ва_{0,67}K_{0,33}Fe₂As₂, могут быть Ва(Fe_{0,847}Co_{0,153})₂As₂ [46], Ba(Fe_{0,88}Mn_{0,12})₂As₂ [47], BaFe_{1,75}Ni_{0,25}As₂ [48].

Математически приближение соответствующих состояний выражается следующим образом:

$$C_{\text{tot}}^{\text{SC}}(T) = C_{\text{exp}}(T) = C_{\text{e}}^{\text{SC}}(T) + AC_{\text{lat}}^{\text{nSC}}(BT)$$

где $C_{\text{tot}}^{\text{SC}}(T)$ — полная теплоёмкость, соответствующая экспериментальным данным $C_{\exp}(T)$, $C_e^{\text{SC}}(T)$ — электронная часть, $C_{\text{lat}}^{\text{nSC}}(T)$ — решёточная часть несверхпроводящего немагнитного соединения, A и B — масштабирующие коэффициенты. При температурах, превышающих критическую, $C_e^{\text{SC}}(T)$ может быть представлена как $\gamma_n T$. Подбор коэффициентов A и B осуществляется методом наименьших квадратов с учётом сохранения энтропии:

$$\int_0^{T_c} \frac{C_e}{T} \, \mathrm{d}T = \int_0^{T_c} \gamma_n \, \mathrm{d}T.$$

Теплоёмкость сверхпроводящего конденсата в свою очередь может быть рассчитана в рамках БКШ-модели [49], однако для 122-соединений предпочтительнее рассматривать электронный вклад в рамках феноменологической двухзонной α-модели [50]. Последняя представляет теплоёмкость двухзонного сверхпроводника как сумму парциальных вкладов каждой из зон с учётом весовых коэффициентов. Подгоночными параметрами

Рис. 3. (В цвете онлайн). Температурная зависимость н*б*р Мированной на температуру теплоёмкости монокристалла Ba_{0,67}K_{0,33}Fe₂As₂ в нулевом поле. Красной штриховой линией показана модельная зависимость теплоёмкости, полученная методом приближения соответствующих состояний из решёточной теплоёмкости Ba(Fe_{0,88}Mn_{0,12})₂As (BFMA). На вставке — нормированная электронная часть теплоёмкости сверхпроводящего конденсата $C_{\rm es}/T\gamma_n$, аппроксимированная однозонной БКШ-моделью (штриховая кривая) и двухзонной α-моделью (сплошные кривая). (По данным работы [51].)

α-модели служат характеристические отношения БКШ $\alpha_1 = 2\Delta_1/k_BT_c$, $\alpha_2 = 2\Delta_2/k_BT_c$ и весовой коэффициент φ_1 ($\varphi_i = \gamma_i/\gamma_n$, γ_i — вклад *i*-й зоны в теплоёмкость в нормальном состоянии, $\varphi_2 = 1 - \varphi_1$), которые определяются методом наименьших квадратов.

Для измерения теплоёмкости от большого монокристалла $Ba_{1-x}K_xFe_2As_2$ (x = 0,33, $T_c = 36,5$ K), который использовался во всех проведённых исследованиях, был отколот кусок массой 1,93 мг. Экспериментальная температурная зависимость теплоёмкости в нулевом магнитном поле показана на рис. 3. При температурах, стремящихся к нулю, зависимость C(T)/T может быть представлена аналогично закону Дебая: $C(T)/T = \gamma(0) + \beta T^2$ [51], причём C(T)/T стремится к нулю при T = 0 и не проявляет никаких особенностей в низкотемпературной части (например, возрастания при наинизших температурах или аномалии Шотки), что свидетельствует о высоком качестве образца.

В диапазоне температур 36-37 К на теплоёмкости C(T) хорошо виден резкий пик, сопровождающий сверхпроводящий переход (см. рис. 3). Ширина пика около 1 К, при этом скачок теплоёмкости составляет $\Delta C/T =$ $= 119 \text{ мДж моль}^{-1} \text{ K}^{-2}$. Для разделения вкладов решёточной и электронной составляющих теплоёмкости мы использовали теплоёмкость Ba(Fe_{0,88}Mn_{0,12})₂As₂ [48], поскольку для него доступны данные о теплоёмкости в наиболее широком диапазоне температур. Как видно из рис. 3, обработка в рамках приближения собственных состояний даёт хорошее согласие между экспериментальными данными и данными, полученными модификацией решёточной теплоёмкости Ba(Fe_{0,88}Mn_{0,12})₂As₂. На вставке рис. 3 показана нормированная электронная теплоёмкость сверхпроводящего конденсата $C_{\rm es}/T\gamma_n$ (подробнее см. [51]), аппроксимированная разными теоретическими моделями. При обработке однозонной моделью с изотропным параметром порядка наилучший результат получается при характеристическом отношении $2\Delta/k_{\rm B}T_{\rm c}=3,7$, однако данная модель оказывается недостаточной для описания сверхпроводящих свойств Ва(К)-122: соответствующая теоретическая теплоёмкость C(T) (штриховая линия на вставке рис. 3) не описывает характерного плеча на зависимости теплоёмкости $C_{\rm es}/T\gamma_n$, наблюдаемого при $T/T_{\rm c} \sim 0.3 - 0.5$. Вместе с тем феноменологическое двухзонное приближение (а-модель, красная кривая на вставке рис. 3) хорошо согласуется с экспериментальными данными. Расхождение экспериментальной зависимости теплоёмкости C(T) и её теоретической аппроксимации не превышает 5 %, или 4 м $\bar{Д}$ ж моль⁻¹ K⁻², что находится в пределах погрешности измерений и в относительных единицах составляет менее 1 % измеренного значения Сехр. Используя двухзонную модель, мы оценили амплитуды и характеристические отношения щелей: $\alpha_1 = 2\Delta_1/k_{\rm B}T_{\rm c} =$ = 1,6 ± 0,1 (Δ_1 = (2,5 ± 0,2) мэВ), α_2 = 2 Δ_2/k_BT_c = 7,2 ± 0,2 $(\Delta_2 = = (11, 3 \pm 0, 3)$ мэВ), а также весовой коэффициент $\varphi_1 = 0.58 \pm 0.02.$

5. Оптическая спектроскопия

Оптическая спектроскопия является одним из основных методов исследования электродинамических свойств сверхпроводников [52, 53]. Глубина проникновения порядка нескольких сотен нанометров позволяет измерять объёмные свойства материала, в частности величину сверхпроводящей щели.

В случае однозонного сверхпроводника с изотропной щелью электромагнитное излучение с энергией, меньшей величины сверхпроводящей щели 2Δ , не может быть поглощено образцом. Это приводит к тому, что действительная часть комплексной оптической проводимости σ при $T \ll T_c$ стремится к нулю при частотах ниже частоты, соответствующей удвоенной величине сверхпроводящей щели 2Δ , а отражение в свою очередь стремится к единице. Таким образом, в окрестности частоты, соответствующей 2Δ , в оптическом отклике имеется особенность. Например, для монокристаллического объёмного образца наблюдается пик в спектре относительного отражения $R(T)/R(T > T_c)$.

В наших экспериментах ввиду малой площади поверхности образца $Ba_{1-x}K_xFe_2As_2$ (x = 0,33), недостаточной для проведения точных измерений коэффициента отражения [51], мы использовали метод оценки величины щели, описанный в работе [54]. Этот метод, основанный на измерении относительного отражения $R(T)/R(T > T_{\rm c})$, позволяет минимизировать возможные изменения положения образца при изменении температуры, которые могут приводить к систематическим ошибкам в зависимости коэффициента отражения $R(\omega)$. Для однозонного сверхпроводника s-типа нормированное отражение $R(T \ll T_c)/R_N$ (где R_N — отражение в нормальном состоянии при температуре около $T_{\rm c}$) имеет максимум, соответствующий 2*Д*. Для двухзонного сверхпроводника максимум проявляется в диапазоне между величинами двух щелей и он смещён в сторону той щели, которая даёт основной вклад в коэффициент отражения. Инфракрасные (ИК) измерения были проведены нами с использованием фурье-спектрометра Bruker Optics IFS-125HR.

На рисунке 4 приведены нормированные зависимости коэффициента отражения R(T)/R(T = 40 K), измеренные при температурах T = 5-50 K. Как видно, нормированное отражение R(T)/R(40 K) начинает возрастать

Рис. 4. Зависимости нормированного коэффициента отражения R(T)/R(40 K) для Ba_{0.67}K_{0.33}Fe₂As₂, измеренные при T = 5-45 K. (Данные из работы [51].)

при температурах ниже T_c , поскольку для сверхпроводника с изотропной щелью коэффициент отражения достигает единицы при энергиях $\hbar\omega < 2\Delta$. Следовательно, положение наблюдаемого при частоте $\approx 160 \text{ сm}^{-1}$ (19,8 мэВ) пика может быть использовано в качестве оценки большой сверхпроводящей щели: $\Delta_L \approx 10$ мэВ [25–27, 47]. Энергия малой щели находится вне диапазона наших ИК-измерений. Особенность нормированного отражения при частоте около 250 см⁻¹, хорошо заметная при различных температурах, возможно, вызвана ИК-активной фононной модой E_u , соответствующей колебаниям Fe(ab)-As(-ab) [55]. Данная мода проявляется во многих соединениях типа AFe₂As₂, где A = Ca, Sr, Eu, Ba.

6. Спектроскопия внутренних многократных андреевских отражений

Спектроскопия многократных андреевских отражений (Multiple Andreev Reflection Effect — MARE) — уникальный метод прямого измерения сверхпроводящего параметра порядка [56-58]. В баллистическом [59] контакте высокой прозрачности (порядка 95 %) сверхпроводникнормальный металл-сверхпроводник (SnS), диаметр которого 2а не превышает длины свободного пробега носителей *l*, реализуется эффект многократных андреевских отражений. При этом на вольтамперной характеристике (ВАХ) возникает избыточный ток при малых смещениях (так называемый пьедестал, или "фут") и появляется субгармоническая щелевая структура (СГС). Для SnS-контакта высокой прозрачности СГС является серией минимумов динамической проводимости при смещениях $V_n = 2\Delta/en$, где Δ — амплитуда сверхпроводящей щели, e — элементарный заряд, n = 1, 2, ... порядковый номер особенности [60-63]. Уникальным преимуществом исследования SnS-контактов является возможность прямого определения величины щели из положений её субгармоник при любых температурах 0 < T < T_c, что было показано в теоретических работах [60, 63]. Это даёт возможность не только непосредственного измерения температурных зависимостей щелей, но и определения локальной критической температуры (Тс перехода контактной области в нормальное состояние) для корректной и более точной оценки важнейшего параметра сверхпроводника — характеристического отношения $2\Delta/k_{\rm B}T_{\rm c}$. Очевидно, что в двухщелевом сверхпроводнике на dI(V)/dV-характеристике должны наблюдаться две СГС, соответствующие каждой из щелей.

Наличие угловой зависимости параметра порядка в *k*-пространстве (анизотропии) кардинальным образом изменяет форму андреевских особенностей [58, 64, 65]. Изотропной щели (случай полной s-волновой симметрии) соответствуют резкие интенсивные минимумы динамической проводимости, обладающие симметричной формой, в то время как в случае d-волновой симметрии или полностью анизотропной (имеющей нули по некоторым направлениям в k-пространстве) s-волновой симметрии параметр порядка даёт слабовыраженные и асимметричные по форме минимумы. Анизотропная щель с симметрией типа $\cos(4\theta)$ в $k_x k_v$ -плоскости импульсного пространства (что, по всей вероятности, реализуется в Ва-122-сверхпроводниках [14, 15]) при транспорте квазичастиц вдоль с-направления вызывает появление дублетных особенностей на dI(V)/dV-спектрах туннельных контактов [66]. Дублет представляет собой два соединённых аркой минимума, положения которых соответствуют верхнему и нижнему экстремальным значениям для углового cos (4*θ*)-распределения щели [58].

SnS-контакты создавались нами в монокристаллах Ва-122 с помощью техники "контакт на микротрещинах" (break-junction) [58, 67]. Кристалл в форме прямоугольной пластинки монтировался на пружинящий столик (поверхность которого была параллельна ab-плоскости) с помощью четырёх контактов, после чего охлаждался до T = 4,2 К. В атмосфере инертного газа прецизионно регулируемый изгиб столика раскалывал образец: в объёме кристалла формировались два сверхпроводящих берега, разделённые областью слабой связи. Образовывался так называемый ScS-контакт, где "с" обозначает слабую связь (constriction). Судя по форме ВАХ, полученных на Ва-122-контактах [62], слабая связь обычно выступала в роли тонкого слоя нормального металла. По соотношению между диаметром контакта и длиной свободного пробега носителей заряда создаваемые контакты являлись баллистическими, что дало возможность наблюдать эффект многократных андреевских отражений [40, 60-63, 68]. Поскольку в использованной нами конфигурации сверхпроводящие берега контакта скользят друг по другу в ав-плоскости, а не разводятся, криогенные сколы остаются чистыми и не деградируют в ходе эксперимента, при этом можно формировать до нескольких десятков SnS-контактов с различными размерами, сопротивлением и прозрачностью. Таким образом, исследуя один и тот же образец, мы имели возможность набирать значительную статистику данных для исключения влияния размерных эффектов и получения надёжных, воспроизводимых результатов.

Другое уникальное свойство, присущее только технике "break-junction", — создание естественных стопочных ScSc-...-S-контактов [40, 51, 56–58, 68] в слоистых сверхпроводниковых материалах, которые обычно расслаиваются вдоль *ab*-плоскостей с образованием террас и ступенек вдоль *c*-направления, где реализуется эффект внутренних многократных андреевских отражений (Intristic MARE — IMARE). Схожий по природе с внутренним эффектом Джозефсона [69] эффект внутренних андреевских отражений впервые наблюдался в купратах, а позднее — во всех слоистых сверхпроводниках (в качестве обзора см. [58]). Стопочный SnS-контакт можно представить в виде цепочки т последовательно соединённых эквивалентных SnS-контактов, тогда смещение СГС на dI(V)/dV-спектре такой стопки будет больше в mраз по сравнению с таковым для одиночного SnS-контакта: $V_n = 2\Delta m/en$, где n, m = 1, 2, ... Очевидно, что для определения величины сверхпроводящей щели и числа контактов в стопке необходимо собрать статистику спектров и найти целые числа *m*, при нормировке на которые оси смещений положения андреевских особенностей на I(V)- и dI(V)/dV-характеристиках для различных стопок совпадут между собой, а также с позицией СГС на спектре одиночного SnS-контакта. Поскольку стопка является частью естественной структуры кристалла, вклад от объёмных свойств в проводимость такой стопки в несколько раз превышает вклад от поверхностных [40, 57, 58]. Таким образом, внутренняя андреевская спектроскопия — единственный на сегодня метод прямого исследования объёмных сверхпроводящих параметров порядка локально (в пределах контактной области диаметром 10-50 нм) [58]. Методика измерений подробно описана в работах [58, 70].

На рисунке 5 показана ВАХ с избыточным током, характерная для SnS-контакта высокой прозрачности. Спектры динамической проводимости (воспроизведены данные из работы [68]) соответствуют двум SnS-контактам, полученным в двух монокристаллах $Ba_{0.65}K_{0.35}Fe_2As_2$ из одной закладки (детали синтеза и характеризации приведены в [71, 72]). Локальная критическая температура этих контактов составляет $T_C^{local} = 34$ К. На dI(V)/dV-спектрах видны чёткие, хорошо воспроизводящиеся дублетные щелевые особенности при смещениях, соответствующих удвоенной большой щели, $2\Delta_L \approx 12$ –

Рис. 5. Вольтамперная характеристика I(V) (левая ось ординат) и спектры динамической проводимости (правая ось ординат) для SnS-андреевских контактов с локальной критической температурой $T_c = 34$ К, измеренные в монокристалле $Ba_{0,65}K_{0,35}Fe_2As_2$ при T = 4,2 К. Дублетные минимумы анизотропной большой щели $\Delta_L = 6-8$ мэВ (диапазон значений отражает угловую зависимость величины щели в k-пространстве) и субгармоники малой щели $\Delta_S \approx 1,7$ мэВ отмечены чёрными вертикальными отрезками и стрелками соответственно. На вставке приведена температурная зависимость большой щели (кружки), для сравнения сплошной кривой показана однощелевая БКШ-образная зависимость. (По данным работ [51, 68].)

16 мэВ. На нижнем спектре (см. рис. 5) разрешена вторая субгармоника — дублет при смещениях $V \approx \Delta_{\rm L}/e \approx$ $\approx \pm (6-8)$ мВ (диапазон значений соответствует границам дублета). Ширина дублетов динамической проводимости, по всей вероятности, отражает величину анизотропии большой щели в $k_x k_y$ -плоскости импульсного пространства. С другой стороны, минимумы, соответствующие внешнему экстремуму щели, имеют меньшую интенсивность, чем минимумы для её внутреннего экстремума. Возможно, это связано с более сложным, чем $\Delta_{\rm L}(\theta) \sim 0.5[1 + A\cos{(4\theta)}], A < 1$, угловым распределением большой щели в k-пространстве. СГС малой щели видна на нижнем спектре, где присутствуют первая, при $V_1 \approx \pm 3,4$ мВ, и вторая, при $V_2 \approx \pm 1,7$ мВ, субгармоники. Возможная анизотропия малой щели пока остаётся предметом дальнейших исследований. Используя формулу для СГС, легко получить величины двух щелей: $\Delta_{\rm L} \approx 6-8$ мэВ (примерно 25%-ная анизотропия в $k_x k_y$ -плоскости) и $\Delta_{\rm S} \approx 1,7$ мэВ. На вставке показана температурная зависимость большой щели (её внешнего экстремума).

В монокристаллах $BaFe_{2-x}Ni_xAs_2$ с замещением железа никелем, оптимально допированных [40], также наблюдалась анизотропия большой щели. На рисунке 6 для сравнения показаны нормированные dI(V)/dV-спектры двух стопочных SnS-контактов, последовательно созданных в одном и том же образце посредством механической перестройки [40]. Вид dI(V)/dV-характеристик схож: соответствующие SnS-контакты, по-видимому, образовались в одной и той же области криогенного скола. В процессе прецизионного изменения кри-

Рис. 6. (В цвете онлайн.) Нормированные спектры динамической проводимости стопочных SnS-андреевских структур с локальной критической температурой $T_c = 19$ К (m = 10 контактов в стопке, нижняя dI(V)/dV-характеристика; m = 9 контактов, T = 4,2 и 8 К, верхние dI(V)/dV, полученные в монокристалле BaFe_{1.9}Ni_{0.1}As₂. Дублетные андреевские минимумы, соответствующие анизотропной большой щели $\Delta_L(4,2$ К) = 3,2-4,4 мэВ и малой щели $\Delta_S(4,2$ К) = 1,6 мэВ, показаны чёрными вертикальными отрезками и стрелками. На вставке приведены BAX этих контактов при T = 4,2 К. (По данным работы [40].)

визны столика точка касания двух криогенных сколов, по всей вероятности, сместилась на соседнюю террасу, таким образом, число активных слоёв (число контактов в стопке) изменилось от m = 10 (верхний спектр) до m = 9(нижний спектр). На рисунке 6 оси смещений этих кривых были нормированы (делением) на соответствующие целые номера т; после такой нормировки положение основных особенностей динамической проводимости совпало. ВАХ I(V) этих контактов приведены на вставке рис. 6. Значительный избыточный ток вблизи нулевого смещения говорит об андреевском режиме с высокой прозрачностью. При этом сопротивление контактов достаточно велико для обеспечения баллистического транспорта [59] и, следовательно, наблюдения внутренних многократных андреевских отражений. Первый и второй дублетные минимумы СГС большой щели отмечены чёрными вертикальными линиями. В соответствии с формулой для СГС дублет с n = 2, расположенный при $V_2 \approx \pm (3,2-4,4)$ мВ, ровно в два раза у́же, чем наблюдаемая при $V_1 \approx \pm (6,4-8,8)$ мВ особенность с n = 1, соответствующая удвоенной большой щели. Таким образом, амплитуда большой щели варьируется в пределах $\Delta_{\rm I} \approx 3.2 - 4.4$ мэВ, в зависимости от угла в *k*-пространстве, т.е. имеет примерно 30%-ную анизотропию, аналогично таковой для большой щели в BKFA [68]. Основные (n = 1) субгармоники малой щели отмечены на рис. 6 стрелками. Эти минимумы более интенсивны, чем структура, обусловленная большой щелью, а их положение не соответствует предсказываемому для третьей субгармоники $\Delta_{\rm L}$ (ожидаемой при $V_3 \approx \pm (2,2-2,9)$ мВ согласно формуле для СГС). Поэтому данные минимумы, которые несколько перекрываются с положением V_2 , определяют малую щель $\Delta_{\rm S} \approx 1.6$ мэВ.

Для того чтобы окончательно убедиться в том, что отмеченные стрелками особенности составляют независимую от Δ_L СГС, можно посмотреть, как изменится вид этого спектра при повышении температуры. Для контакта, спектр которого показан светло-зелёной кривой, $T \approx 4,2$ К (средняя кривая), приведена эволюция спектра при температуре $T \approx 8,0$ К (верхняя кривая). Видно, что отмеченные стрелками особенности быстрее сдвигаются в сторону меньших смещений, а их амплитуда драматически убывает при повышении Т всего примерно в два раза. Напротив, субгармоникам от \varDelta_L такое поведение не присуще. Отметим также, что минимумы при $V \approx$ $\approx \pm 1,2$ мВ, наблюдаемые на обеих характеристиках, не соответствуют второй субгармонике малой щели, и они могут быть объяснены как начало области пьедестала при малых смещениях.

Измерения спектров динамической проводимости SnS-контактов в диапазоне температур от 4,2 К до T_c дали возможность непосредственно получить температурные зависимости параметров порядка, показанные на рис. 7. Стоит отметить, что дублетная структура субгармоник Δ_L наблюдается при температурах вплоть до T_c , при этом анизотропия большой щели слабо варьируется в пределах 33 ± 3 % (рис. 76). Температурные поведения внутреннего и внешнего экстремумов большой щели схожи: $\Delta_L(T)$ проходит немного ниже однозонной БКШобразной зависимости (штрихпунктирная кривая на рис. 7). В то же время зависимость малой щели отличается: на $\Delta_S(T)$ сильнее выражен прогиб, характерный для наведённой в широком интервале температур сверхпроводимости за счёт эффекта близости в k-простран-

Рис. 7. (а) Температурные зависимости большой щели (её внешнего и внутреннего экстремумов, сплошные кружки) и малой щели (внешнего экстремума, полые кружки) в BaFe_{1,9}Ni_{0,1}As₂. Температурная зависимость среднего значения большой щели показана квадратами. БКШ-образная зависимость Δ_L^{max} показана штрихпунктирной кривой. Теоретические зависимости $\Delta_{L,S}(T)$, рассчитанные на основе двухзонной модели Москаленко и Сула, показаны сплошными кривыми. (б) Температурная зависимость анизотропии большой щели, оценённой как $1 - \Delta_L^{min} / \Delta_L^{max}$.

стве. Тем не менее ход $\Delta_{\rm S}(T)$ нельзя объяснить наведением объёмного параметра сверхпроводящего порядка $\Delta_{\rm L}$ на поверхность скола: зависимость, полученная из SnS-андреевских спектров стопочного контакта, отражает лишь объёмные свойства материала. Различие в температурном поведении $\Delta_{\rm L}(T)$ и $\Delta_{\rm S}(T)$, очевидно, указывает, что соответствующие особенности на dI(V)/dVспектрах демонстрируют свойства двух независимых сверхпроводящих конденсатов.

Оказывается, что полученные в эксперименте $\Delta_{L,S}(T)$ могут быть описаны простой двухзонной моделью, основанной на системе уравнений Москаленко и Сула с перенормированным БКШ-интегралом [73, 74]. Эта система уравнений определяет характер температурных зависимостей двух щелей при различных наборах констант электрон-бозонного взаимодействия $\lambda_{ij} = V_{ij}N_j$, где i, j = L, S (здесь и далее индекс S соответствует эффективной зоне с малой щелью, индекс L — зоне с большой щелью); V_{ii} — матричные элементы взаимодействия, N_j — нормальная плотность состояний на уровне Ферми. В качестве "ведущей" щели было взято среднее значение $\Delta_{\rm L}(T)$, его температурная зависимость показана на рис. 7 квадратами. Для численной аппроксимации экспериментальных данных БКШ-образной двухзонной моделью было взято значение энергии Дебая $\hbar\omega_{\rm D} =$ = 20 мэВ [75], а в качестве подгоночных параметров отношение плотностей состояний в двух эффективных зонах $N_{\rm S}/N_{\rm L}$ и отношение силы внутризонного и межзонного взаимодействий $\sqrt{V_{\rm L}V_{\rm S}}/V_{\rm LS}$. Детали процедуры аппроксимации температурных зависимостей щелей этой моделью приведены в [76, 77]. Отметим только, что процедура аппроксимации не позволяет установить

знак межзонных констант $\lambda_{i\neq j}$, при этом сами четыре величины λ_{ij} — это не полные (включающие в себя учёт кулоновского отталкивания μ^*), а эффективные константы, $\lambda_{ij} = \lambda_{ij}^{\text{Full}} - \mu_{ij}^*$.

Полученные нами теоретические значения $\Delta_{L,S}(T)$ (сплошные кривые на рис. 7) типичны для случая сильного внутризонного и умеренного межзонного взаимодействий. Отклонение зависимости $\Delta_L(T)$ от характерной зависимости однозонного БКШ-типа можно объяснить влиянием "слабой" зоны с большей плотностью состояний на уровне Ферми. Из-за ненулевого межзонного взаимодействия обе щели обращаются в нуль при одной и той же критической температуре T_c^{local} .

Несмотря на сложную структуру параметра порядка в Ва-122, экспериментально наблюдаемое поведение щелей качественно согласуется с предсказаниями простой двухзонной модели. Следовательно, используя величины параметров, оценённые с помощью аппроксимации, можно сделать важные выводы об особенностях сверхпроводящего состояния Ва-122. Прежде всего следует отметить, что "собственная" сверхпроводимость зон с малой щелью (в гипотетическом случае исчезновения межзонного взаимодействия $V_{\rm LS} = 0$) стремится к БКШ-пределу слабой связи: по нашим оценкам, характеристическое отношение $2\Delta_S/k_BT_c^S \approx 3.5$ (где T_c^S – "собственная" критическая температура Д_S-конденсата при $V_{LS} = 0$). Оценённый нами набор абсолютных величин констант связи $\lambda_{LL} \approx 0.37$, $\lambda_{SS} \approx 0.23$, $|\lambda_{LS}| \approx 0.07$, $|\lambda_{\rm SL}| \approx 0.02$ при предположении нулевого кулоновского отталкивания, $\mu^* = 0$, принимаемого в s[±]-моделях [15, 16], приводит к экстремально высоким отношениям плотностей состояний в зонах, $N_{\rm S}/N_{\rm L} \approx 3.5$, и крайне слабому межзонному взаимодействию, $\sqrt{V_{\rm L}V_{\rm S}}/V_{\rm LS} \approx 7.3$, что противоречит идее s[±]-спаривания. Однако если предположить наличие конечного кулоновского отталкивания, $\mu_{ii}^* \approx 0.13$, то мы получим следующий набор полных констант связи: $\lambda_{LL} \approx 0.50, \lambda_{SS} \approx 0.36, |\lambda_{LS}| \approx 0.2, |\lambda_{SL}| \approx 0.15.$ В этом случае плотность состояний в эффективной "слабой" зоне в 1,5 раза превышает N_L "ведущей" зоны, что качественно согласуется с результатами расчёта зонной структуры [78], а внутризонное спаривание в 2,7 раза эффективней межзонного. Таким образом, умеренное кулоновское отталкивание существенно для описания двухщелевого состояния железосодержащих пниктидов.

7. Измерение первого критического поля

Метод определения первого критического поля по кривым намагниченности основывается на определении точки отклонения зависимости M(H) от линейной $M(H) \sim H$, соответствующей началу проникновения вихрей в объём образца. Измерения намагниченности были проведены с использованием сквид-магнитометра MPMS-XL7 (Quantum Design).

Кривая намагниченности в окрестности *H*_{c1} может быть представлена в виде

$$M(H) = \begin{cases} aH + b , & H < H^* \\ aH + b + c(H - H^*)^2 , & H > H^* \end{cases}$$

Для всех точек H^* , в которых была измерена намагниченность, определяются параметры a, b и c (b соответствует незначительному отклонению намагниченности от нуля при нулевом поле) для наилучшего соответствия

Рис. 8. Температурная зависимость нормированной плотности сверхпроводящих носителей для $Ba_{0,67}K_{0,33}Fe_2As_2$ с $T_c \approx 37$ К и её аппроксимация однозонной (пунктирная кривая) и двухзонной (сплошная кривая) моделями. Парциальные вклады каждой из зон показаны штриховыми кривыми. (По данным работы [51].)

экспериментальным данным. Далее определяется коэффициент корреляции модели и экспериментальных данных, который имеет максимум на зависимости от H^* ; положение максимума соответствует H_{c1} .

Ввиду того что в Ва_{1-x}K_xFe₂As₂ глубина проникновения λ (~ 100-200 нм) оказывается много большей длины когерентности $\xi \sim (2-2,5)$ нм (подробнее см. [79]), для данного соединения справедлива локальная модель Лондона. В этом случае нормированная плотность сверхпроводящих носителей выражается как

$$\bar{\rho}_{\rm S}^0(T) = \frac{\lambda_{ab}^2(0)}{\lambda_{ab}^2(T)} \approx \frac{H_{\rm cl}(T)}{H_{\rm cl}(0)}$$

Полученная температурная зависимость нормированной плотности сверхпроводящих носителей для монокристалла $Ba_{0,67}K_{0,33}Fe_2As_2$ с $T_c \approx 37$ К показана на рис. 8 [51].

В свою очередь для однозонного сверхпроводника [80]

$$\bar{\rho}_{\rm S}^0(T) = 1 + 2 \int_{\mathcal{A}(T)}^{\infty} \frac{\partial f}{\partial E} \frac{E \, dE}{\sqrt{E^2 - \mathcal{A}^2(T)}}$$

где $f = \exp \left[E/(k_{\rm B}T) + 1 \right]$ — функция Ферми, $\Delta(T)$ — температурная зависимость щели по БКШ, $E^2 = \varepsilon^2 + \Delta^2(T)$, E — полная энергия, ε — одночастичная энергия относительно поверхности Ферми. При обработке экспериментальных данных параметрами данной модели являются $H_{\rm cl}(0)$ и $\alpha = 2\Delta(0)/(k_{\rm B}T_{\rm c})$.

Обработка экспериментальных данных первого критического поля в рамках однозонной БКШ-модели [80] представлена на рис. 8. Видно, что применение однозонной модели не приводит к качественному описанию результатов. Следующим шагом было применение феноменологической двухзонной α-модели [80, 81], в которой

$$\bar{\rho}_{\rm S}^{\,0}(T) = \varphi \bar{\rho}_{\rm S1}^{\,0}(T) + (1-\varphi) \,\bar{\rho}_{\rm S2}^{\,0}(T) \,,$$

где $\bar{\rho}_{S1}^0(T)$ и $\bar{\rho}_{S2}^0(T)$ — соответствующие нормированные сверхпроводящие плотности конденсатов с весовыми вкладами φ и 1 – φ . Данная обработка требует исполь-

зования четырёх параметров: характеристических отношений БКШ $\alpha_1 = 2\Delta_1(0)/(k_BT_c), \alpha_2 = 2\Delta_2(0)/(k_BT_c),$ весового вклада φ одной из зон и $H_{c1}(0)$. Данная двухзонная модель хорошо описывает экспериментальные данные (см. рис. 8). Из подгонки получены следующие значения щелей: $\Delta_L(0) = (11,5 \pm 0,5)$ мэВ, $\Delta_S(0) =$ $= (2 \pm 0,35)$ мэВ ($\varphi = 0,46 \pm 0,02$) и $2\Delta_L(0)/(k_BT_c) =$ $= 6,9 \pm 0,3, 2\Delta_S(0)/(k_BT_c) = 1,2 \pm 0,2$. Величина $H_{c1}(0)$ составила 25,5 Э. Важно отметить, что определённая величина $H_{c1}(0)$ — это величина критического поля данного конкретного образца без учёта размагничивающего фактора, однако, поскольку в расчёте используется его нормированное значение, для обработки важна лишь форма зависимости $H_{c1}(T)$.

8. Обсуждение

Как известно, определяемые в эксперименте свойства сильноанизотропных материалов (в нашем случае обладающих квазидвумерной структурой) чувствительны ко многим факторам, как внутренним, так и внешним, а также влиянию условий эксперимента. Современное состояние теоретического описания физики многощелевых сверхпроводников пока ещё не достигло необходимого уровня. Очевидно, что для исследования сложной многощелевой структуры параметра порядка в сверхпроводниках семейств Ва-122 требуется комплексный подход. Только сравнивая выводы, полученные по результатам локальных и нелокальных, объёмных и поверхностных методик, можно получить надёжный фундамент для объяснения особенностей физики новых ВТСП-материалов.

Результаты измерений теплоёмкости, первого критического поля и SnS-андреевской спектроскопии установили существование двух независимых объёмных параметров порядка. Амплитуда большой щели, определённая в оптических исследованиях, близка к значениям, полученным интегрально по всему образцу ($H_{c1}(T), C(T)$) и локально (MARE, IMARE). Объёмная природа щелей не вызывает сомнений: амплитуды Δ_L и Δ_S , полученные на одиночных SnS-контактах (MARE) и естественных стопочных SnS-контактах (MARE), воспроизводятся и не зависят от размера и сопротивления контакта, а температурные зависимости $H_{c1}(T), C(T)$ и $\Delta_{L,S}(T)$ хорошо описываются двухзонной моделью. Большинство ARPES-исследований [19, 20, 22, 23] также подтверждает наличие двух щелей с различной амплитудой.

На рисунке 9 представлена зависимость характеристических отношений БКШ, определённых в наших экспериментах (символы красного цвета) в соединениях $Ba_{1-x}K_xFe_2As_2$ и $BaFe_{2-x}Ni_xAs_2$, а также приведённых в литературе, в том числе для 122-арсенидов других составов. Величина анизотропии щелей в k_xk_y -плоскости, определённая в исследованиях спектров SnS-контактов, обозначена вертикальными отрезками. ARPES-результаты измерений [19–24, 27] (треугольники), измерений первого критического поля [32, 68], теплоёмкости [30, 31], мюонной (μ SR) [23] и оптической [33] спектроскопии (квадраты) дают значительный разброс величин $2\Lambda_L/(k_BT_c) \approx 4,2-7,5$. Причинами такого разногласия могут быть следующие факторы:

а) локальные (туннельные методы, андреевская спектроскопия, ARPES) и нелокальные (посредством экспериментального определения H_{c1} , C(T) и по данным

Рис. 9. (В цвете онлайн.) Зависимость характеристических отношений БКШ для большой щели (закрашенные символы) и малой щели (соответствующие пустые символы) от критической температуры для кристаллов семейства Ва-122 различного состава. Данные, полученные нами, представлены кружками; величина анизотропии щелей в $k_x k_y$ -плоскости, определённая методом SnS-спектроскопии, показана вертикальными отрезками. Результаты ARPES-исследований [7, 19–24, 27] (треугольники), результаты по измерениям C(T), мюонной и оптической спектроскопии и $H_{cl}(T)$ [30–33, 68] (квадраты) приведены для сравнения.

ИК-спектроскопии) измерения параметра порядка, очевидно, дают различные значения $2\Delta/(k_{\rm B}T_{\rm c})$ в случае неоднородности образца;

б) на результаты методов, усредняющих щель по объёму кристалла, может также влиять характерная для сверхпроводников с сильной связью зависимость сверхпроводящего параметра порядка от энергии, вводимая в рамках теории Элиашберга. Туннельные, андреевские и оптические методы при этом разрешают так называемое пороговое значение $\varDelta_{\rm edge}$, в то время как среднее значение щели по энергии, определённое объёмными техниками, может быть "смещено" в сторону как больших, так и меньших значений (в зависимости от соотношения вкладов пар с Re $\varDelta(\omega) > \varDelta_{edge}$ или Re $\varDelta(\omega) < \varDelta_{edge}$). В пользу этого предположения говорит тот факт, что $2\Delta_{\rm L}/(k_{\rm B}T_{\rm c})$, определённые нами методами оптической и андреевской спектроскопии, наиболее близки между собой, в то время как характеристические отношения, полученные в H_{c1} - и C(T)-экспериментах, оказались выше;

в) вариация параметра порядка существует не только в $k_x k_y$ -плоскости, но и вдоль k_z -направления, как обсуждается, например, в [14]. О нелинейной зависимости $\Delta_L(k_z)$ говорит, в частности, периодическое изменение Δ_L при вариации энергии излучения в ARPES-измерениях [20]. В этом случае в исследованиях объёмными методиками (измерения H_{c1} , C(T)) будет наблюдаться усреднённая по k_z -направлению величина щели, отличная от наблюдаемой с помощью методик, работающих с поверхностью (ИК-спектроскопия, спектроскопия точечных контактов);

г) отличие сверхпроводящих свойств поверхности от свойств объёмного кристалла, искажающее результаты методик, чувствительных к состоянию поверхности;

д) нетривиальное угловое распределение щели в $k_x k_y$ -плоскости, отличное от широко обсуждаемого в литературе $\Delta(\theta) \sim 0.5[1 + A\cos{(4\theta)}]$ (где θ — угол в

 $k_x k_y$ -плоскости, A < 1), которое может затруднять интерпретацию щелевых особенностей.

Тем не менее результаты, полученные с помощью пяти экспериментальных техник в наших исследованиях, для соединений класса Ва-122 неплохо согласуются между собой:

1. Наши данные подтверждают отсутствие точек нулей в угловом распределении большой щели в $k_x k_y$ -плоскости для оптимально допированных (Ba, K)Fe₂As₂ с $T_c = 34-36,5$ К и Ba(Fe, Ni)₂As₂ с $T_c \approx 18$ K.

2. Характеристическое отношение $2 \Delta_{\rm L} / (k_{\rm B} T_{\rm c}) \approx$ $\approx 5,5-7,2$, существенно превышающее БКШ-предел 3,5, является следствием сильной связи в "ведущих зонах"; для малой щели малость отношения $2\Delta_{\rm S}/(k_{\rm B}T_{\rm c}) \approx 1,2-1,6$ обусловлена тем, что "собственная" критическая температура $T_c^S \Delta_S$ -зон (в гипотетическом случае нулевой межзонной связи) далека от общей Т_с для соединения, а сверхпроводимость этих зон имеет наведённый характер при $T > T_c^S$. В этих зонах с малой щелью, несмотря на их квазидвумерность, реализуется слабая сверхпроводимость с "собственным" характеристическим отношением, близким к 3,5. Важно отметить, что в железосодержащих оксипниктидах, по нашим оценкам, взаимодействие в зонах с малой щелью сильнее: в среднем $2\Delta_{\rm S}/(k_{\rm B}T_{\rm c}^{\rm S}) \approx 4$ [34, 77, 82]. Тем не менее слабая сверхпроводимость Д_S-зон в Ba-122 не уникальна: "собственная" сверхпроводимость трёхмерного π-конденсата в диборидах магния [76, 77] также стремится к БКШ-пределу. Вопрос сравнения свойств "слабых" зон в известных двухщелевых сверхпроводниках — диборидах магния и железосодержащих соединениях — безусловно, является интересным и требует отдельного теоретического рассмотрения.

3. Характеристические отношения щелей, определённые в SnS-андреевских экспериментах на монокристаллах с замещением бария калием и железа никелем в широком диапазоне критических температур, также согласуются между собой. Степень анизотропии большой щели остаётся примерно постоянной. Данные пяти использованных методик показывают, что оба параметра порядка изменяются практически линейно с изменением $T_{\rm c} \approx 18 - 34$ К: возрастанию критической температуры в 1,9 раза в (Ba, K)Fe₂As₂ соответствует примерно двукратное увеличение амплитуд обеих щелей по сравнению с таковыми в $Ba(Fe, Ni)_2As_2$. Следовательно, подобные вариации состава (электронное замещение (Ва, К) изменяет структуру слоёв-спейсеров, в то время как дырочное замещение (Fe, Ni) влияет непосредственно на сверхпроводящие блоки кристаллической решётки) не оказывают существенного влияния на фундаментальный механизм сверхпроводимости в арсенидах 122. Подобный скейлинг $\Delta_{L,S}$ и T_c отмечен нами ранее в железосодержащих пниктидах семейства 1111 и 11-селенидах [34]. Анизотропия малой щели в $k_x k_y$ -плоскости нами не наблюдалась, как и большинством исследователей. В единственной работе, в которой она была замечена, использовалась ARPES [21]. Этот вопрос требует дополнительного экспериментального исследования.

Мы показали, что, несмотря на многоорбитальный характер и наличие как минимум трёх взаимодействующих зон на уровне Ферми, простой двухзонной модели достаточно не только для качественного, но и для количественного описания температурных зависимостей основных параметров: большой и малой щелей, электронной теплоёмкости и первого критического поля. Согласно нашим оценкам две эффективные зоны (в которых при температурах $T < T_c$ образуются конденсаты со щелями Δ_L и Δ_S) взаимодействуют относительно слабо. Значение T_c определяется в основном сильной связью в "ведущих" зонах, при этом ненулевое кулоновское отталкивание является существенным фактором корректного описания двухщелевого состояния Ва-122. Таким образом, наши экспериментальные данные расходятся с предсказаниями первоначальной s[±]-модели, основанной на сильном межзонном спаривании [15], но не противоречат реализации s⁺⁺-состояния [13, 14].

9. Заключение

Нами подробно изучены монокристаллы высокотемпературных сверхпроводников класса Ba-122 — BaFe_{2-x}Ni_xAs₂ и Ba_{1-x}K_xFe₂As₂ с дырочным и электронным допированием соответственно. Несмотря на различие в типе допирования, оба материала обладают схожими сверхпроводящими свойствами. Высококачественные монокристаллы Ba(Fe, Ni)₂As₂ с различными концентрациями никеля и критическими температурами до $T_c \approx 21$ К были выращены с помощью метода раствора в расплаве собственных компонентов (self-flux). Характеризация показала наличие единственной сверхпроводящей фазы и однородность сверхпроводящих свойств кристаллов.

Исследования структуры сверхпроводящего параметра порядка проведены пятью различными взаимодополняющими методами. Измерения теплоёмкости и первого критического поля дали информацию об объёмных свойствах материала, с помощью внутренней андреевской спектроскопии были проведены прямые локальные измерения объёмных параметров сверхпроводящего состояния, в то время как свойства поверхности исследовались методами оптической спектроскопии и эллипсометрии. Тем не менее результаты, полученные этими методами, неплохо согласуются между собой. Главный качественный вывод наших исследований сосуществование двух компонентов сверхпроводящего конденсата с различным по силе электрон-бозонным взаимодействием. Две щели, открывающиеся на различных листах поверхности Ферми, не обращаются в нуль в плоскости $k_x k_y$ и имеют симметрию расширенного s-волнового типа, что согласуется с данными ARPES.

Полученные различными методами количественные данные о структуре сверхпроводящего параметра порядка могут быть суммированы следующим образом:

а) для оптимальных $Ba_{1-x}(K_x)Fe_2As_2$ амплитуда большой щели составляет $\Delta_L(0) = 8-11,3$ мэВ с анизотропией порядка 30 % в $k_x k_y$ -плоскости, а малой щели — $\Delta_S(0) = 1,7-2,5$ мэВ;

б) полученные в $Ba_{1-x}(K_x)Fe_2As_2$ и $Ba(Fe_{1-x}Ni_x)_2As_2$ характеристические отношения щелей $2\Delta_L/(k_BT_c)$ являются близкими между собой и заметно превышают предел слабой связи вследствие довольно сильного электрон-бозонного взаимодействия в зонах с большой щелью. Схожесть структуры параметра порядка указывает на неизменность механизма сверхпроводимости в этих соединениях, несмотря на разные типы замещения и различные T_c ;

в) амплитуды большой и малой щелей, электронная теплоёмкость и первое критическое поле убывают с возрастанием температуры по закону, отличному от однозонного БКШ-образного типа. При этом двухзонная модель является достаточной для описания основных параметров сверхпроводящего состояния;

г) умеренное межзонное взаимодействие, а также существенная роль ненулевого кулоновского отталкивания в описании двухщелевого сверхпроводящего состояния пниктидов бария не противоречат реализации s⁺⁺-модели.

Благодарности. Авторы выражают благодарность М.М. Коршунову, М. Abdel-Hafiez, Y. Chen, П.Д. Григорьеву за полезные обсуждения и предоставленные материалы. Т.Е.К., А.В.М., А.В.С., В.А.В. и Ю.Ф.Е. благодарят за финансовую поддержку грантом РНФ № 16-12-10507. С.А.К., Ю.А.А., К.С.П. и В.М.П. выражают благодарность за поддержку грантом РНФ № 16-42-01100. Ю.А.А. благодарит за поддержку Программу повышения конкурентоспособности Национального исследовательского ядерного университета "МИФИ".

Список литературы

- 1. Kamihara Y et al. J. Am. Chem. Soc. 130 3296 (2008)
- 2. Fujioka M et al. Appl. Phys. Lett. 105 102602 (2014)
- 3. Ge J-F et al. *Nature Mater.* **14** 285 (2015)
- Khlybov E P et al. Письма в ЖЭТФ 90 429 (2009); JETP Lett. 90 387 (2009)
- 5. Paglione J Phys. Canada 67 85 (2011)
- 6. Pervakov K S et al. Supercond. Sci. Technol. 26 015008 (2013)
- 7. Borisenko S V et al. *Symmetry* **4** 251 (2012)
- 8. Wang C et al. J. Am. Phys. Soc. 138 2170 (2016)
- 9. Bianconi A Nature Phys. 9 536 (2013)
- 10. Singh D J Physica C 469 418 (2009)
- 11. Paglione J, Greene R L Nature Phys. 6 645 (2010)
- 12. Seidel P Supercond. Sci. Technol. 24 043001 (2011)
- 13. Onari S, Kontani H Phys. Rev. Lett. 103 177001 (2009)
- 14. Saito T, Onari S, Kontani H Phys. Rev. B 88 045115 (2013)
- 15. Maiti S, Chubukov A V Phys. Rev. B 87 144511 (2013)
- Κορшунов M M *VΦH* 184 882 (2014); Korshunov M M *Phys. Usp.* 57 813 (2014)
- 17. Charnukha A et al. Sci. Rep. 5 10392 (2015)
- 18. Abrikosov A A Physica C 341-348 97 (2000)
- 19. Ding H et al. Europhys. Lett. 83 47001 (2008)
- 20. Evtushinsky D V et al. Phys. Rev. B 89 064514 (2014)
- 21. Evtushinsky D V et al. Phys. Rev. B 87 094501 (2013)
- 22. Aswartham S et al. Phys. Rev. B 85 224520 (2012)
- 23. Khasanov R et al. Phys. Rev. Lett. 102 187005 (2009)
- 24. Evtushinsky D V et al. Phys. Rev. B 79 054517 (2009)
- 25. Charnukha A et al. Phys. Rev. B 84 174511 (2011)
- 26. Shan L et al. Phys. Rev. B 83 060510(R) (2011)
- 27. Evtushinsky D V et al. Phys. Rev. B 89 064514 (2014)
- 28. Daghero D et al. Rep. Prog. Phys. 74 124509 (2011)
- 29. Samuely P et al. Physica C 469 507 (2009)
- 30. Hardy F et al. Europhys. Lett. 91 47008 (2010)
- 31. Pramanik A K et al. Phys. Rev. B 84 064525 (2011)
- 32. Ren C et al. *Physica C* **469** 599 (2009)
- 33. Perucchi A et al. Eur. Phys. J. B 77 25 (2010)
- 34. Кузьмичёва Т Е и др. *УФН* **184** 888 (2014); Kuzmicheva T E et al. *Phys. Usp.* **57** 819 (2014)
- 35. Park J T et al. Phys. Rev. Lett. 107 177005 (2011)
- 36. de la Cruz C et al. *Nature* **453** 899 (2008)
- 37. Shamoto S et al. *Phys. Rev. B* 82 172508 (2010)
- 38. Wakimoto S et al. J. Phys. Soc. Jpn. 79 074715 (2010)
- 39. Efremov D V et al. Phys. Rev. B 84 180512(R) (2011)
- 40. Kuzmicheva T E et al. J. Supercond. Novel Magn. 29 3059 (2016)
- 41. Ricci A et al. *Phys. Rev. B* **91** 020503(R) (2015)
- 42. Caivano R et al. Supercond. Sci. Technol. 22 014004 (2009)

- 43. Haberkorn N et al. Solid State Commun. 231-232 26 (2016)
- 44. Dew-Hughes D Philos. Mag. 30 293 (1974)
- 45. Stout J W, Catalano E J. Chem. Phys. 23 2013 (1955)
- 46. Hardy F et al. *Phys. Rev. B* **81** 060501(R) (2010)
- 47. Popovich Pet al. Phys. Rev. Lett. 105 027003 (2010)
- 48. Abdel-Hafiez M et al. *Phys. Rev. B* **91** 024510 (2015)
- Padamsee H, Neighbor J E, Shifman C A J. Low Temp. Phys. 12 387 (1973)
- 50. Bouquet F et al. Europhys. Lett. 56 856 (2001)
- 51. Muratov A V et al., arXiv:1612.05540
- 52. Basov D N, Timusk T Rev. Mod. Phys. 77 721 (2005)
- 53. Dressel M et al. *IEEE J. Select. Topics Quantum Electron.* 14 399 (2008)
- 54. Palmer L H, Tinkham M Phys. Rev. 165 588 (1968)
- 55. Schafgans A A et al. *Phys. Rev. B* 84 052501 (2011)
- 56. Ponomarev Ya G, Uk K K, Lorenz M IOP Conf. Ser. 167 241 (2000)
- 57. Kuzmicheva T E et al. Europhys. Lett. 102 67006 (2013)
- 58. Кузьмичев С А, Кузьмичева Т Ε *ΦΗΤ* **42** 1284 (2016); Kuzmichev S A, Kuzmicheva T E *Low Temp. Phys.* **42** 1008 (2016)
- 59. Шарвин Ю В *ЖЭТФ* **48** 984 (1965); Sharvin Yu V *Sov. Phys. JETP* **21** 655 (1965)
- 60. Octavio M et al. Phys. Rev. B 27 6739 (1983)
- 61. Arnold G B J. Low Temp. Phys. 68 1 (1987)
- 62. Averin D, Bardas A Phys. Rev. Lett. 75 1831 (1995)
- 63. Kümmel R, Gunsenheimer U, Nicolsky R Phys. Rev. B 42 3992 (1990)

- 64. Devereaux T P, Fulde P Phys. Rev. B 47 14638(R) (1993)
- Кузьмичев С А и др. Письма в ЖЭТФ 98 816 (2013); Kuzmichev S A et al. JETP Lett. 98 722 (2013)
- 66. Bok J, Bouvier J Physica C 274 1 (1997)
- 67. Moreland J, Ekin J W J. Appl. Phys. 58 3888 (1985)
- 68. Abdel-Hafiez M et al. Phys. Rev. B 90 054524 (2014)
- 69. Nakamura H et al. J. Phys. Soc. Jpn. 78 123712 (2009)
- 70. Ponomarev Ya G et al. Phys. Rev. B 79 224517 (2009)
- 71. Shan L et al. Nature Phys. 7 325 (2010)
- 72. Luo Q et al. Supercond. Sci. Technol. 21 125014 (2008)
- 73. Москаленко В А ФММ 8 522 (1959)
- 74. Suhl H, Matthias B T, Walker L R Phys. Rev. Lett. 3 552 (1959)
- 75. Rettig L et al. New J. Phys. 15 083023 (2013)
- Кузьмичев С А, Кузьмичева Т Е, Чесноков С Н Письма в ЖЭТФ 99 339 (2014); Kuzmichev S A, Kuzmicheva T E, Tchesnokov S N JETP Lett. 99 295 (2014)
- 77. Kuzmichev S A et al. J. Supercond. Novel Magn. 29 1111 (2016)
- 78. Mazin I I, Schmalian J Physica C 469 614 (2009)
- 79. Ren C et al. Phys. Rev. Lett. 101 257006 (2008)
- 80. Carrington A, Manzano F Physica C 385 205 (2003)
- 81. Luo H G, Xiang T Phys. Rev. Lett. 94 027001(2005)
- Кузьмичева Т Е, Кузьмичев С А, Жигадло Н Д *Письма в ЖЭТФ* 99 154 (2014); Kuzmicheva T E, Kuzmichev S A, Zhigadlo N D *JETP Lett.* 99 136 (2014)

On the structure of the superconducting order parameter in high-temperature Fe-based superconductors

 $\textbf{T.E. Kuzmicheva}^{(1)}, \textbf{A.V. Muratov}^{(1)}, \textbf{S.A. Kuzmichev}^{(2,1)}, \textbf{A.V. Sadakov}^{(1)}, \textbf{Yu.A. Aleshchenko}^{(1,3)}, \textbf{V.A. Vlasenko}^{(1)}, \textbf{V.P. Martovitsky}^{(1)}, \textbf{K.S. Pervakov}^{(1,4)}, \textbf{Yu.F. Eltsev}^{(1)}, \textbf{V.M. Pudalov}^{(1,5)}$

⁽¹⁾ Lebedev Physical Institute, Russian Academy of Sciences, Leninskii prosp. 53, 119991 Moscow, Russian Federation

⁽²⁾ Lomonosov Moscow State University, Faculty of Physics, Leninskie gory 1, str. 2 119991 Moscow, Russian Federation

⁽³⁾ National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow, Russian Federation

⁽⁴⁾ International Laboratory of High Magnetic Field and Low Temperatures, ul. Gajowicka 95, 53-421 Wroclaw, Poland

⁽⁵⁾ National Research University Higher School of Economics, ul. Myasnitskaya 20, 101000 Moscow, Russian Federation

E-mail: ⁽¹⁾ kute@sci.lebedev.ru

This paper discusses the synthesis, characterization, and comprehensive study of Ba-122 single crystals with various substitutions and various T_c 's. The paper uses five complementary techniques to obtain a self-consistent set of data on the superconducting properties of Ba-122. A major conclusion of the authors work is the coexistence of two superconducting condensates differing in the electron-boson coupling strength. The two gaps that develop in distinct Fermi surface sheets are nodeless in the $k_x k_y$ -plane and exhibit s-wave symmetry, the two-band model represents a sufficient data description tool. A moderate interband coupling and a considerable Coulomb repulsion in the description of the two-gap superconducting state of barium pnictides favor the s⁺⁺-model.

Keywords: multi-gap superconductors, iron pnictides, specific heat, London penetration depth, Andreev spectroscopy, optics

PACS numbers: 74.25.-q, 74.25.nd, 74.25.Ha, 74.45.+c, 74.70.Xa

Bibliography - 82 references

Uspekhi Fizicheskikh Nauk 187 (4) 450-462 (2017)

DOI: https://doi.org/10.3367/UFNr.2016.10.038002

Received 7 December 2016

Physics – Uspekhi 60 (4) (2017)

DOI: https://doi.org/10.3367/UFNe.2016.10.038002