——— МОРСКАЯ БИОЛОГИЯ ——

УДК 581.526.325:528.88(262.54)

ПРОСТРАНСТВЕННОЕ РАСПРЕДЕЛЕНИЕ И СЕЗОННАЯ ДИНАМИКА КОНЦЕНТРАЦИИ ХЛОРОФИЛЛА "а" В АЗОВСКОМ МОРЕ ПО ДАННЫМ СПУТНИКОВЫХ СНИМКОВ СПЕКТРОМЕТРА MERIS

© 2018 г. В. В. Сапрыгин^{1,} *, С. В. Бердников¹, В. В. Кулыгин¹, Л. В. Дашкевич¹, Л. М. Местецкий²

¹Южный научный центр РАН, Ростов-на-Дону, Россия ²Московский государственный университет им. М.В. Ломоносова, факультет вычислительной математики и кибернетики, Москва, Россия *e-mail: vlad_rostov@inbox.ru

Поступила в редакцию 23.08.2016 г. После доработки 19.01.2017 г.

Представлены результаты оценки концентрации хлорофилла "а" в Азовском море по данным снимков спектрометра MERIS за 2002–2012 гг. Проведено сравнение экспедиционных данных подспутниковых спектрофотометрических измерений и оценок по космическим снимкам MERIS. Впервые представлены рассчитанные по снимкам средние месячные поля концентрации хлорофилла "а" в Азовском море за период наблюдений сканера MERIS. Выявлены особенности пространственновременно́го распределения хлорофилла "а" по акватории. Отмечены сезонные отличия значений концентрации хлорофилла "а" в Азовском море по снимкам MERIS и литературным источникам. А именно: летне-осенний период развития фитопланктона, по сравнению с весенним, продолжительнее по числу дней и характеризуется более высокими значениями концентрации хлорофилла "а" на всей акватории моря.

DOI: 10.1134/S0030157418050131

введение

Исследование пространственной изменчивости верхнего слоя океана в различных географических районах является актуальной задачей современной океанологии. Решение этой задачи имеет важное практическое значение для развития комплексного мониторинга океанов и морей с помощью дистанционных методов. В последние десятилетия спутниковые данные о цвете океана все шире используются для оценок биологической продуктивности морских акваторий, контроля их экологического состояния. При этом основным показателем является концентрация *хлорофилла "а"* (хл "а") – основного фотосинтетического пигмента фитопланктона. Для этого широко используются эмпирические соотношения (связи) хл "а" и спектральных характеристик восходящего излучения моря.

Разработанные к настоящему времени "универсальные" (широко применяемые для Мирового океана) алгоритмы оценки хл "а" по данным дистанционного зондирования Земли из космоса нуждаются в корректировке для учета региональных особенностей морей, для которых они используются [9]. Особенно это касается так называемых "вод II типа" [30] – высокопродуктивных и мутных прибрежных, внутренних вод и эстуариев, где фитопланктон является не единственным фактором, определяющим их оптические свойства.

Воды Азовского моря относят ко II типу и применяемые в настоящее время алгоритмы оценки хл "а" по данным спутниковых сканеров цвета для его акватории приводят к ошибочным результатам [31].

Считается, что в Азовском море хл "а" адекватно отражает сезонные и пространственные изменения биомассы фитопланктона [1, 14], поэтому, рассматривая динамику и особенности ее пространственного распределения, можно судить об изменениях, происходящих с фитопланктонным сообществом. Вместе с тем, доступные нам опубликованные данные по хл "а" в экосистеме Азовского моря обрывочны, методически разнородны. Систематические исследования проводятся с 1992 г. [1], но результаты опубликованы в очень сжатом виде.

С 2008 г. в ходе экспедиционных исследований, проводимых Южным научным центром РАН и Институтом аридных зон ЮНЦ РАН, были предприняты систематические измерения хл "а" в Азовском море для калибровки и последующей

Рис. 1. Районирование Азовского моря.

Районы открытой части Азовского моря: 1 – центральный, 2 – Прикерченский, 3 – западный, 4 – северный, 5 – восточный, 6 – Темрюкский;

районы ТЗ: 7 – западный, 8 – центральный, 9 – восточный;

полые кружки – станции подспутниковых наблюдений в 2008–2010 гг.

верификации предложенных ранее алгоритмов дешифрирования спутниковых снимков [22, 24].

На основе данных спектрометра MERIS (MEdium Resolution Imaging Spectrometer [21]) и судовых измерений в Азовском море в 2008–2009 гг. были разработаны двух- и трехканальные алгоритмы для определения хл "а", подробное описание которых рассмотрено в работах [11, 23, 25, 26, 32–34]. Верификация алгоритмов базировалась на данных подспутниковых экспедиционных наблюдений (рис. 1), выполненных в 2008–2010 гг. в Таганрогском заливе (T3) и открытых районах Азовского моря (CM) [34].

В [22, 31] показано, что разработанные для Азовского моря и калиброванные при помощи синтетических модельных данных и судовых спектрометрических измерений в озерах штата Небраска алгоритмы дают близкие оценки хл "а"; последние также применяли для точной оценки хл "а" в Чесаликском заливе (США) и озере Кинерет (Израиль) [35]. В [31] было показано, что использованный в настоящей работе двухканальный алгоритм определения хл "а" дает наиболее точную оценку для мутных вод Азовского моря в сравнении со стандартными алгоритмами.

В настоящей работе представлены результаты оценки хл "а" в Азовском море по данным снимков спектрометра MERIS за все время его работы на орбите (2002—2012 гг.). Впервые представлены рассчитанные по снимкам среднемесячные поля хл "а" в Азовском море для современного периода.

МАТЕРИАЛ И МЕТОДЫ

Исходными данными являются архивные снимки спектрометра MERIS за период с июля 2002 г. по апрель 2012 г. [28], предоставленные Европейским космическим агентством (ESA). Всего было отобрано 847 снимков, покрывающих акваторию Азовского моря полностью или частично. Обработка производилась с помощью программного продукта BEAM (the Basic ENVISAT and ERS (A) ATSR and MERIS toolbox). Преимущество использования снимков MERIS для определения хл "а" – возможность охватить всю акваторию Азовского моря одновременно, наличие информации по излучению на длине волны около 708 нм и достаточно высокое для сканеров цвета пространственное разрешение (260 × 290 м). Для оценок хл "а" использовались снимки второго уровня обработки с учетом атмосферной коррекции. Особенности их обработки описаны в [29].

Наибольшее количество снимков относится к летнему календарному сезону, несколько меньше в весенний и осенний периоды, снимки за зим-

			4					Район	HbI OTK	рытоў	й часть	4 A30B(CKOLO) ваом	CM)								
Цe	нтраль	ный ()	№ 1)	Прик	нәһдә:	ский	(Nº 2)	3а	падны	ıň (№	3)	Ce	верны	й (№	(+	Boc	точнь	ıň (№	5)	Тем	piokci	лий (N	5 ()
вмиє	весна	отэп	осенр	вмиє	весна	отэп	осенр	вмиє	весна	OTOR	осенр	вмие	весна	отэц	осенр	вмие	весна	отэп	осенр	вмие	весна	отэп	осенр
8.6	1	19.5	I	I	I	15.5	7.4	Ι	Ι	28	I	4.2	I	9.7	1	1	I	10.6	I	I	Ι	9.7	I
5.5	16.6	8.9	12.4	5.5	20.1	7.3	11.7	I	16.5	6.6	9	I	15.5	10	7.3	I	11	10.1	6.5	3.8	7.9	8.1	10.3
11.5	9.6	11.2	16.8	8	8.8	11.3	10.3	8	8.6	9.1	8.3	6	12	11.4	13.7	19.7	11	9.2	10.6	8.4	9.8	11.1	15
9.2	18.4	10.4	18.4	7.3	17	9.6	9.3	6.4	13.9	10.4	14.2	7	11.8	14.5	21.7	I	10.8	12.6	16.1	8.4	12.5	9.1	9.9
20.7	9.6	10.1	30.4	10.8	12.1	10.2	22.3	5.3	12.5	6.6	6	I	10	11.7	24.7	6.3	9.9	21.9	42.7	15.6	9.6	15.4	64.6
18.2	9.7	17.3	26.6	16.4	7	12.2	13.2	14.7	8.1	14.4	18.1	17	14.1	18.6	29.3	17.7	9.7	19.4	23.7	16	6.2	14.3	18.4
10.5	8.4	11.6	15.6	12.4	9.4	11.7	9.6	10.2	7.7	11.3	10.5	10.5	8.7	13.1	16.8	8	9.1	13.4	16.3	6	6.2	9.4	11.8
11.4	4.9	13	15.6	9.5	6.9	12.3	13.4	9.1	5.5	9.8	10.6	7.2	7.7	11.1	15.2	17.4	6.8	11.7	17	11.6	3.3	18.6	16.3
20.4	11.8	12	16.5	13.8	8.4	12.1	10.5	Ι	9.1	9.5	8.4	26.1	13.9	13.9	15.8	28.1	17.9	11	12.7	14.9	10.9	18.3	16.2
10.3	6.8	12.9	11.7	8.8	8	13.3	11.5	6.9	7.7	10.4	6.8	11.2	7.6	11.3	8.4	11.1	7.1	11.2	13.2	6	10	9.6	9.9
I	11.3	Ι	Ι	Ι	5.9	I	Ι	8.7	5.2	Ι	I	9.5	11	I	I	I	18.4	I	Ι	Ι	7.1	I	Ι
12.6	10.7	12.7	18.2	10.3	10.4	11.6	11.9	8.7	9.5	11.6	10.2	П	11.2	12.5	17	15.5	11.2	13.1	17.6	10.7	8.4	12.4	19.2
			Pař	iohbi	Гаганг	JOLCKC	го зал	ИВа				Ë	аганрс	огский		0T	крыта	и час	ΓÞ	Ч	исло с	нимкс	В
e	ападні	ый (№	(2)	Цен	тралы	ный (.	N <u>o</u> 8)	Bo	нното	ый (N⁰	5 9)		залив	(T3)		Азовс	KOTO N) вdov	CM)		ME	RIS	
вмие	весна	отэп	осенр	вмие	весна	отэп	осенр	вмиє	весна	отэп	осенр	вмие	весна	отэп	осенр	вмие	весна	отэп	осенр	вмие	весна	отэп	осенр
Ι	Ι	37.1	Ι	I	Ι	Ι		Ι	I	Ι	I	I	I	37.1	I	6.8	I	16.2	7.4	1	0	2	2
I	23.7	20.8	23.8	Ι	29.4	27.6	37.4	Ι	23.7	30.7	37	I	25.5	25.0	30.9	5.2	15.0	8.7	9.0	1	6	16	14
18.3	16.9	28.1	41.7	24.2	23.1	34.5	40.2	22.4	22.1	24.4	25.9	21.0	20.0	29.4	38.0	10.7	10.1	10.5	12.9	8	32	35	20
I	22.4	37.9	43.4	I	25.1	33.8	31.5	I	18.6	31.0	22.3	I	22.5	35.2	35.3	7.8	14.4	11.5	16.5	15	29	48	28
Ι	17.2	46.2	51.2	32.4	27.0	55.7	51.9	I	18.8	40.2	35.3	32.4	20.7	48.1	48.2	12.6	10.6	12.4	29.6	6	32	48	16
23.9	26.0	58.3	48.9	21.2	27.1	63.8	45.7	14.4	26.6	50.6	37.0	21.1	26.5	58.5	45.5	17.0	9.8	16.8	23.4	6	33	37	19
20.2	18.7	47.5	44.0	32.0	28.0	62.8	42.1	Ι	44.4	57.6	33.6	25.0	26.9	54.5	41.3	10.1	8.4	12.0	14.3	12	18	42	24
22.2	18.6	48.6	59.3	39.0	25.1	68.0	59.0	38.1	31.8	54.2	43.2	30.9	23.4	56.0	55.9	11.1	6.0	12.2	14.8	6	29	41	23
22.9	16.6	45.4	54.5	15.2	26.1	75.6	53.1	I	46.5	70.8	45.2	19.8	25.7	60.3	52.2	22.2	12.5	12.3	13.7	5	29	39	14
17.2	15.3	34.9	44.5	25.3	21.2	80.1	62.8	Ι	48.2	84.9	46	20.5	23.9	59.6	50.7	9.8	7.5	11.7	10.3	10	22	40	19
I	21.8	Ι	Ι	I	28.7	I	I	I	I			I	24.6	I	I	9.1	10.7	I	I	4	7	0	0
\$ 20.8	19.7	40.5	45.7	27.0	26.1	55.8	47.1	25.0	31.2	49.4	36.2	24.4	24.0	46.4	44.2	11.1	10.5	12.4	15.2	80	240	348	179

Таблица 1. Распределение по годам и сезонам числа обработанных снимков MERIS и средней хл "a" (мг/м³) в приповерхностном слое Азовского моря по данным сканера MERIS по районам (в соответствии с пис. 1)

ОКЕАНОЛОГИЯ

том 58 № 5

2018

ПРОСТРАНСТВЕННОЕ РАСПРЕДЕЛЕНИЕ И СЕЗОННАЯ ДИНАМИКА

753

Примечание. (--) нет данных, (*) для спутниковых снимков здесь приведено их общее число по сезонам.

ние месяцы представлены единичными экземплярами (табл. 1).

Расчеты хл "а" (мг/м³) в Азовском море по снимкам спектрометра MERIS выполнялись при помощи разработанного двухканального алгоритма [34] по формуле (1):

хл "a" = 61.324[
$$R_{rs}^{-1}(665) \times R_{rs}(708)$$
] – 37.94, (1)

где $R_{rs}(665)$ — коэффициент спектральной яркости (КСЯ) около максимума поглощения хл "а" в красном диапазоне спектра на 665 нм (7 канал MERIS), а $R_{rs}(708)$ представляет собой пик коэффициента спектральной яркости около 708 нм (9 канал MERIS).

Расчет проводили в 5 этапов:

 исключали пиксели, для которых процедура атмосферной коррекции приводила к отрицательным значениям КСЯ на длине волны 490 нм;

 исключали пиксели, распознанные стандартными алгоритмами как суша, облака, лед или дымка;

 – для оставшихся пикселей вычисляли хл "а" по формуле (1);

 исключали пиксели, в которых рассчитанные значения хл "а" оказались отрицательными;

- значения хл "а", большие 150 мг/м³, заменяли на 150 (максимальную величину, измеренную спектрофотометрическим методом за 2008– 2010 гг.).

Для исключения выбросов, обусловленных, по-видимому, ошибками атмосферной коррекции, полученные поля хл "а" подвергались процедуре фильтрации на основе разработанного алгоритма [2], опирающегося на данные наблюдений *in situ*.

Подспутниковые измерения для определения хл "а", положенные в основу разработанного алгоритма, проводили экстрактным спектрофотометрическим методом. На борту судна пробы фильтровали для осаждения клеток фитопланктона. Фильтры высушивали в эксикаторе в присутствии силикагеля и хранили при температуре -4°С на борту судна, а на берегу – при температуре -18°C для последующей обработки в лаборатории. Использовали стекловолокнистые фильтры диаметром 47 мм и размером пор 0.7 мкм. Определение концентрации фотосинтетических пигментов проводили в соответствии с [5] на спектрофотометре "Nicolet Evolution 300". Хл "a" pacсчитывали по трихроматическому алгоритму без подкисления. Углекислый барий и углекислый магний не применяли.

Для целей настоящей работы каждый снимок, после вычисления хл "а", осредняли согласно схеме районирования (рис. 1), которая является упрощенной версией классического районирования Азовского моря [3]. Границы районов ТЗ, а также Темрюкского, Прикерченского и центрального районов СМ оставлены без изменений. При этом для СМ были выделены районы: северный (объединены три северных района СМ в район 4 на рис. 1), западный (объединены два западных района СМ — в район 3) и восточный (объединены два восточных района СМ — в район 5). Такие изменения обусловлены общностью гидрометеорологических условий для развития фитопланктона в выделенных районах [7, 18, 19]. В результате для девяти районов Азовского моря были рассчитаны стандартные статистические показатели хл "а" по данным снимков спектрометра MERIS.

Для количественного сравнения хл "а" в разных районах моря рассчитаны средние значения для каждого месяца рассматриваемых лет. Расчет проводился при условии, что области, для которых имелись рассчитанные значения хл "а", в сумме превышали 50% площади района (рис. 1). Затем были рассчитаны средние значения хл "а" для каждого календарного сезона по годам для каждого района (табл. 1).

Для построения среднемноголетних месячных полей распределения хл "а" в 2002—2012 гг. Азовское море было разделено на квадраты размером 10×10 км. Сначала для каждого месяца каждого года рассчитывались среднемесячные значения в узлах регулярной сетки по формуле (2):

$$x_{j}^{ym} = \frac{\sum_{i \in I_{j}^{ym}} w_{ij} \cdot x_{i}}{\sum_{i \in I_{j}^{ym}} w_{ij}}, \quad w_{ij} = e^{-\left(\frac{d_{ij}}{r}\right)^{2}}, \quad (2)$$

где x_j^{ym} – среднее месячное значение хл "а" в *j*-м узле сетки, *m* – индекс месяца (1–12), *y* – индекс года (2002–2012); x_i – значения хл "а" в ячейках

дешифрированных спутниковых снимков; I_j^{ym} — множество ячеек спутниковых снимков, удаленных от *j*-го узла сетки не более чем на расстояние r = 30 км и приходящихся на месяц года, с соответствующим индексом *ym*; d_{ij} — расстояние от *j*-го узла сетки до *i*-й ячейки спутникового снимка со значением хл "а", км.

Затем рассчитывались среднемноголетние значения за период 2002–2012 гг.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Представленные на рис. 2 графики хл "а" по данным космических снимков MERIS для T3 (8 район) в сопоставлении с данными экспедиционных наблюдений за период 2008—2010 гг. дают основания считать, что полученные оценки могут быть использованы для характеристики пространственно-временной изменчивости хл "а" в

Рис. 2. Оценка хл "а" по судовым измерениям (1) и спутниковым снимкам (2 – стандартное отклонение и среднее значение) на примере центрального района T3 (\mathbb{N} 8).

Азовском море в рассматриваемый период. Для других районов моря имеются аналогичные графики, которые представлены на сайте [27].

По данным спутниковых съемок в акватории Азовского моря за 2002–2012 гг. можно выделить два ежегодно повторяющихся пика (весенний и летне-осенний) в развитии фитопланктона (и следующие за ними периоды депрессии). Их продолжительность и сроки наступления в зависимости от районов моря различны. Весенний пик соответствует массовому развитию диатомового комплекса фитопланктона, его начало и продолжительность зависит от ледовой обстановки и температурных условий предшествующей зимы [16]. По данным спутниковых наблюдений в ТЗ и северном районе моря весенний максимум хл "а" наблюдается обычно на месяц позже, чем в СМ (рис. 3), вероятно это связано с более поздним прогревом поверхностного слоя и сходом льда в северной части Азовского моря. Хл "а" в морских водах в разных районах начинает расти в февраленачале апреля после чего, по мере прогрева водной толщи и завершения развития ранневесениего комплекса фитопланктона, достигает минимальных значений в конце апреля-июне.

Второй пик развития фитопланктонного сообщества Азовского моря, связанный с бурным ростом теплолюбивых видов и цветением цианопрокариот [16], наблюдается в августе—сентябре практически одновременно в ТЗ и СМ. При этом высокие хл "а" могут наблюдаться в отдельных районах, как в июле, так и в октябре, и даже в ноябре (например, в ноябре 2009 г. в 8 районе средняя хл "а" составила 61 мг/м³). В СМ фитопланктон продолжает годовой цикл развития дольше, чем в ТЗ, так как его акватория позднее покрывается льдом. Исходя из двух обобщающих работ по фитопланктону Азовского моря [10, 16], интенсивность весеннего максимума развития фитопланктона оценивалась значительно выше осеннего с вкладом в годовую биомассу более 30%.

Вместе с тем, в работе [13] мы впервые обратили внимание, что сложившиеся представления о преимуществе весеннего пика цветения над летне-осенним не соответсвуют действительности в современный период. Наличие такого большого массива информации о хл "а" по спутниковым снимкам дало возможность поставить задачу выявления нелинейного тренда во временно́м распределении хл "а" и его анализа с целью проверки доминирующего в литературе положения о сезонной динамике хл "а" [12]. Для описания нелинейного тренда мы используем многочлен пятой степени, определенный на периоде времени в один год с марта по ноябрь:

Рис. 3. Сезонная изменчивость средних значений хл "а" (мг/м³) открытых районов Азовского моря (*1*) и Таганрогского залива (*2*) в 2002–2012 гг.

$$Q(z) = b_0 + b_1 z + b_2 z^2 + b_3 z^3 + b_4 z^4 + b_5 z^5, \qquad (3)$$

где z — номер дня в году в выбранном периоде, $Q(z) - x\pi$ "a", мг/м³. Выбор полинома пятой степени обосновывается тем, что он в общем случае имеет четыре локальных экстремума (два минимума и два максимума). Поэтому с его помощью можно описать график изменения хл "a" в течение года — наличие двух максимумов (весной и в конце лета—осенью) и двух минимумов (зимой и в конце весны — начале лета). Коэффициенты полинома b_0 , ..., b_5 можно вычислить по конкретным рядам данных для любых точек акватории с помощью метода наименьших квадратов. Полученные графики Q(z) позволяют определить временно́е распределение пиков цветения.

Обозначим z_{\min} — номер дня в году, в который функционал Q(z) достигает весенне-летнего минимума, и z_{\max} — номер дня, в который он достигает летне-осеннего максимума, Q_{\min} и Q_{\max} — их соответствующие значения. Весенний максимум обозначим через $Q_{l\max}$, а день, в который он достигается, через $z_{l\max}$.

Для оценки введенных величин использован следующий метод:

 – случайным образом выбираем на акватории ТЗ 1000 точек (пикселей спутникового снимка);

— для каждой точки методом наименьших квадратов находим коэффициенты $b_0, ..., b_5$ полинома Q(z);

 вычисляем точки экстремума, попадающие в интервал с марта по ноябрь;

— выбираем z_{\min} как день, когда Q(z) принимает минимальное значение, z_{\max} — максимальное значение;

– если многочлен Q(z) имеет точку локального максимума левее z_{min} , то она будет являться z_{lmax} , т.к. при существовании весеннего максимума он опережает весенне-летний минимум;

— применяем этот подход для вычисления значений z_{\min} , z_{lmax} , z_{max} для всех 11 лет из интервала 2002—2012 гг. для всех отобранных точек;

— для каждой из полученных величин z_{\min} , z_{lmax} , z_{max} и соответствующих значений Q(z) строим гистограмму ее распределения (рис. 4).

Анализ гистограмм (рис. 4) показывает, что для всех представленных распределений критерий Шапиро-Уилка при уровне значимости 0.05 отклоняет гипотезу нормальности, но вид распределений позволяет говорить о наиболее вероятной области значений.

Полученные гистограммы численно показывают локализацию моды распределений (а также диапазоны вариации экстремальных значений) хл "а":

 весеннего максимума, при его существовании (59.2% случаев), в начале апреля;

 весенне-летнего минимума в конце апреляначале мая;

Рис. 4. Гистограммы номеров дней z_{min} – весеннего минимума (a), z_{max} – летне-осеннего максимума (b), z_{lmax} – весеннего максимума (д) и соответствующих им значений (б, г, е, соответственно) полинома (3), аппроксимирующего сезонный ход хл "а" Таганрогского залива в период с марта по октябрь за весь период спутниковых наблюдений MERIS.

ОКЕАНОЛОГИЯ том 58 № 5 2018

Годы	Зима	Весна	Лето	Осень
	Открь	птые районы Азовского	о моря	
2008	_	_	_	$\frac{9.3 \pm 6.8 \ (n = 19)}{1.2 - 22.2}$
2009	$\frac{5.6 \pm 0.8 (n = 13)}{4.5 - 7.2}$	$\frac{3 \pm 1.7 \ (n = 26)}{1.1 - 7.4}$	_	_
2010	_	_	$\frac{6.2 \pm 4.7 \ (n = 15)}{0.3 - 17.1}$	$\frac{10.5 \pm 4.9 \ (n = 12)}{4.3 - 22.9}$
		Таганрогский залив		
2008	_	-	$\frac{30.5 \pm 16.3 \ (n = 70)}{8.3 - 63.8}$	$\frac{38.0 \pm 14.7 \ (n = 26)}{10.4 - 63.1}$
2009	$\frac{33.8 \pm 19.3 \ (n = 13)}{14.6 - 73.4}$	$\frac{22 \pm 8.9 \ (n = 24)}{9.4 - 44.7}$	$\frac{37.5 \pm 21.1 \ (n = 27)}{11.0 - 71.3}$	$\frac{54.8 \pm 20.5 \ (n = 36)}{7.8 - 96.1}$
2010	$\frac{20.6 \pm 14.6 \ (n = 12)}{9.7 - 61.4}$	$\frac{11 \pm 3.8 \ (n = 17)}{6.9 - 16.7}$	$\frac{73.2 \pm 26.5 \ (n = 95)}{18.0 - 149.5}$	$\frac{47.6 \pm 12.8 \ (n = 16)}{25.9 - 73.5}$

Таблица 2. Хл "а" в Азовском море по данным судовых измерений, мг/м³

Примечание. Числитель: среднее значение ± стандартное отклонение, (*n* – количество измерений); знаменатель: минимальные и максимальные значения.

– летне-осеннего максимума в середине августа;
– локального весеннего максимума хл "а"
(Q_{Imax}) – 25–30 мг/м³.

— весенне-летнего минимума хл "а" (Q_{\min}) — 10—20 мг/м³,

— летне-осеннего максимума хл "а" (Q_{max}) — 90 мг/м³.

Анализ полученных гистограмм показывает, что данные числа имеют хорошую степень локализации. Более того, $Q_{lmax} < Q_{max}$ почти для всех рассчитанных Q(z), что позволяет пересмотреть сложившееся представление о превосходстве весеннего пика цветения фитопланктона над летнеосенним.

Таким образом, по нашим оценкам на основе спутниковых снимков MERIS за 2002–2012 гг., летне-осенний период развития фитопланктона продолжительнее весеннего и характеризуется более высокими значениями хл "а" на всей акватории моря. За десять лет спутниковых наблюдений исключение составили только два случая, когда первый пик развития фитопланктона был более мощным: весной 2010 года в акватории СМ (районы 1, 3, 4 и 5) и марте 2008 г. в ТЗ (район 9).

Данные спутников позволяют получить более детальную картину для всего моря одновременно и с гораздо большей регулярностью наблюдений. Также полученные результаты могут свидетельствовать о климатически обусловленных изменениях, происходящих в экосистеме Азовского моря в современный период.

Ранее считалось, что "процессы жизнедеятельности всех групп и видов водорослей затухают в преддверии биологической зимы... Зима характеризуется не только низкой биомассой фитопланктона, но и весьма бедным качественным составом водорослей" цитата по [16, стр. 56]. Однако это представление следует пересмотреть в связи с результатами экспедиций на ледоколах в зимний период [8], опубликованными данными [15], данными спутниковых наблюдений (рис. 3, табл. 1) и судовыми спектрофотометрическими измерениями хл "а" (табл. 2).

В случае мягкой зимы первый пик развития фитопланктона в СМ может приходиться на февраль, после чего вспышки развития в календарную весну не произойдет (пример, зима 2008/09 г.) или она будет слабо выражена (весна 2011 г.) (рис. 3). На основе проведенного анализа спутниковой информации выявлена тенденция к повышению средних месячных значений хл "а" в ТЗ за весь период наблюдений (рис. 3) и смещение весеннего пика развития фитопланктона на несколько недель к началу года, обусловленные, по-

Рис. 5. Карты пространственного распределения хл "а" (мг/м³) по сезонам по данным сканера MERIS за десять лет наблюдений.

видимому, наблюдающимся потеплением моря [4, 20].

Средние величины хл "а" в ТЗ превышают таковые в СМ во все месяцы года (за единичными исключениями), в большинстве случаев – в несколько раз (табл. 2, рис. 3). С 2002 по 2006 гг. зоны максимальных значений хл "а" в ТЗ наблюдались в 7 и 8 районах, с 2007 г. – отмечено их смещение на восток к устью р. Дон. Возможно, это связано с наблюдаемым ростом солености Азовского моря [6, 20] и соответственно смещением зоны, наиболее благоприятной для развития цианопрокариот. В СМ наибольшие значения хл "а" наблюдаются как в прибрежных зонах, заливах, так и в его центральной части. Отмечено повышение хл "а" в СМ с начала периода наблюдений в 2002 г. с резким пиком в 2006г. и последующим спадом (рис. 3), что возможно, связано с динамикой солености моря в этот период.

ОКЕАНОЛОГИЯ том 58 № 5 2018

Максимальные за 10 лет наблюдений средние месячные хл "а" составили (табл. 2):

– в СМ (сентябрь 2006 г.) – в 6, 5, 2 и 1-м районах соответственно 74.6; 47.0; 39.7; 37.3 мг/м³ при среднем значении по морю осенью 29.6 мг/м³;

– в ТЗ (август 2011 г.) в 8 и 9 районах соответственно 109.8 и 101.5 мг/м³, при среднем значении летом в заливе 66.6 мг/м³.

Распределение хл "а" по снимкам MERIS в акватории Азовского моря имеет пятнистую структуру, что соответствует результатам непрерывных измерений флуориметрическим методом в работе [17]. Для пространственного распределения средней за рассматриваемый период хл "а" по месяцам (рис. 5) характерны следующие особенности. На протяжении года в западном секторе моря наблюдаются более низкие значения хл "а" в сравнении с центральным и восточным. Это объясняется отсутствием в западной части моря стока крупных рек и соответственно более низким уровнем содержания биогенных веществ.

В декабре—январе в СМ хл "а" соответствует $5-10 \text{ мг/м}^3$, минимальные значения (меньше 5 мг/м^3) отмечены у Арабатской стрелки. Локальные максимумы (до 30 мг/м³) наблюдаются в центральном районе ТЗ. В феврале акваторию СМ занимает зона с хл "а" $10-15 \text{ мг/м}^3$, которая сменяется в марте локальным минимумом (менее 10 мг/м^3) над наиболее глубокими районами моря.

В весенний пик развития фитопланктона максимумы хл "а" отмечаются в восточном районе T3, зона минимума располагается в западной и центральной частях акватории СМ. В период апрельской депрессии практически все СМ занимает зона с хл "а" 5–10 мг/м³. Локальные минимумы (менее 5 мг/м³) отмечаются в его юго-восточной и северо-западной частях. В это же время в вершине T3 наблюдаются значения хл "а" более 30 мг/м³. В мае по картам можно проследить заток через Керченский пролив вод из Черного моря, благоприятствующих массовому развитию здесь диатомовых водорослей, площадь зоны с хл "а" менее 10 мг/м³ в СМ сокращается.

В июне зона депрессии в СМ расширяется, наблюдаются локальные минимумы хл "а" (менее 5 мг/м³). В это же время в центральном районе T3 по мере прогрева вод отмечается начало летнего развития фитопланктона с локальным максимумом в районе Беглицкой косы (более 45 мг/м³). Рост биомассы фитопланктона продолжается в июле с достижением летнего максимума в августе (более 70 мг/м³) в центральном районе ТЗ. В июле-августе в СМ значения хл "а" находятся в пределах 10-20 мг/м³, за исключением более продуктивного юго-восточного прибрежья. Максимум хл "а" в СМ (до 25 мг/м³ и более) отмечен в сентябре в центральной и юго-восточной его части. В сентябре-октябре в ТЗ наблюдается постепенное снижение значений хл "а" с сохранением локального максимума в его центральном районе со смещением в направлении косы Кривой. В октябре-ноябре в восточной и центральной частях СМ значения хл "а" находятся в пределах 10-20 мг/м³, локальные минимумы отмечаются в западной части СМ.

Таким образом, по результатам проведенной работы на основе спутниковых снимков сканера MERIS за период 2002–2012 гг. и данных экспедиционных исследований выявлены особенности пространственно-временно́го распределения хл "а" в Азовском море. Показано, что в начале XXI века летне-осенний период развития фитопланктона по сравнению с весенним продолжительнее по числу дней и характеризуется более высокими значениями на всей акватории моря. Выявлена тенденция к повышению средних месячных значений хл "a" в T3 за весь период наблюдений и смещение весеннего пика на несколько недель к началу года, обусловленные, по-видимому, наблюдающимся потеплением моря. Средние величины хл "a" в T3 превышают таковые в CM во все месяцы года (за единичными исключениями), в большинстве случаев — в несколько раз. Отмечено смещение зоны максимальных хл "a" в T3 к устью р. Дон с 2007 г., возможно в связи с отмечающимся повышением солености моря.

Полученные результаты могут свидетельствовать о существенных изменениях, происходящих в экосистеме Азовского моря начале XXI века, вероятно обусловленных изменениями климата.

Работа выполнена при поддержке гранта РФФИ № 15-05-0854 и в рамках Госзаданий ЮНЦ РАН № госрегистрации 01201450487 и 01201363188.

СПИСОК ЛИТЕРАТУРЫ

- Александрова З.В., Баскакова Т.Е. Оценка тенденций химических основ биологической продуктивности Азовского моря // Основные проблемы рыбн. хоз-ва и охраны рыбохоз. водоемов Азово– Черноморского бассейна (2000–2001 гг.). Сб. научн. тр. АзНИИРХа. Ростов-на-Дону, 2002. С. 26–37.
- Бердников С.В., Сапрыгин В.В., Поважный В.В. и др. Сезонная динамика и пространственное распределение концентрации хлорофилла "а" в Азовском море в 2008–2010 гг. по данным судовых наблюдений и дистанционного зондирования сканером MERIS / Азовское море, Керченский пролив и предпроливные зоны в Черном море: проблемы управления прибрежными территориями для обеспечения экологической безопасности и рационального природопользования / Ред. Матишов Г.Г., Иванов В.А. Ростов н/Д: Изд-во ЮНЦ РАН, 2012. С. 58–71.
- Гидрометеорологический справочник Азовского моря / Под ред. Аксенова А.А. Л: Гидрометеорологическое изд., 1962. 856 с.
- 4. Гинзбург А.И., Костяной А.Г., Шеремет Н.А. Черное и Азовское моря: сравнительный анализ изменчивости температуры поверхности (1982–2009 гг., спутниковая информация) // Современные проблемы дистанц. зондирования Земли из космоса. 2011. Т. 8. №. 4. С. 209–218.
- ГОСТ 17.1.04.02.—90 Вода. Методика спектрофотометрического определения хлорофилла а. М.: Изд-во стандартов, 1990. 16 с.
- Дашкевич Л.В., Кулыгин В.В., Бердников С.В. Многолетнее изменение средней солености Азовского моря: данные наблюдений и модельный расчет // Экология. Экономика. Информатика (7–12 сентября 2014) Сб. статей в 2 т. Т.1: Системный анализ и моделирование экономических и экологических систем. Ростов н/Д: Изд. ЮФУ. 2014. С. 175–182.

- Дашкевич Л.В. Анализ многолетней изменчивости температурного режима вод открытой части Азовского моря с использованием геоинформационных технологий и математического моделирования: Дис. канд. географ. наук. Мурм. морской биол. ин-т КНЦ РАН, 2008. 164 с.
- Ковалева Г.В., Поважный В.В., Золотарева А.Е. и др. Ледовое сообщество микроводорослей в Таганрогском заливе Азовского моря // Океанология. 2014. Т. 54. № 5. С. 659-664.
- 9. Копелевич О.В., Буренков В.И, Шеберстов СВ. Разработка и использование региональных алгоритмов для расчета биооптических характеристик морей России по данным спутниковых сканеров цвета // Современные проблемы дистанционного зондирования Земли из космоса. 2006. Т. 3. №2. С. 99–105.
- Макаревич П.Р. Планктонные альгоценозы эстуарных экосистем: Баренцево, Карское и Азовское моря / Мурм. морской биол. ин-т КНЦ РАН. М.: Наука, 2007. 223 с.
- Матишов Г.Г., Поважный В.В., Бердников С.В. и др. Оценки концентрации хлорофилла "а" и первичной продукции в Азовском море с использованием спутниковых данных // Докл. РАН. 2010. Т. 432. № 4. С. 563–566.
- 12. Огнева Д.С., Местецкий Л.М., Сапрыгин В.В. и др. Анализ сезонной динамики хлорофилла в водах Таганрогского залива по спутниковым данным // Экология. Экономика. Информатика (7–12 сентября 2014) Сб. статей в 2 т. Т. 2: Геоинф. технологии и космический мониторинг. Азовское море, Керченский пролив и предпроливные зоны в Черном море: проблемы управления прибрежными территориями для обеспечения экологической безопасности и рационального природопользования. Изучение изменчивости окружающей среды и выявление наиболее опасных гидромет. ситуаций в зимний период. Ростов н/Д: Изд. ЮФУ, 2014. С. 308–313.
- Сапрыгин В.В. Изучение распределения хлорофилла-а в Азовском море по данным дистанционного зондирования Земли из космоса и результатам судовых измерений: Дис. канд. географ. наук. Мурм. морской биол. ин-т КНЦ РАН, 2011. 125 с.
- Студеникина Е.И., Сафронова Л.М., Губина Г.С. Содержание хлорофилла и особенности его распределения в Азовском море // Осн. проблемы рыб. хоз-ва и охраны рыбохоз. водоемов Аз.—Черномор. бассейна (1996—1997 гг.). Сб. научн. тр. АзНИИРХ. Ростов н/Д, 1998. С. 104—112.
- Теренько Г.В. Современное состояние фитопланктонного сообщества Украинского сектора Азовского моря в декабре 2009 г. // Наук. записки Тернопільськ. нац. пед. університету ім. В. Гнатюка. Сер. Біологія. 2010. № 3 (44). С. 275–277.
- Студеникина Е.И., Алдакимова А.Я., Губина Г.С. Фитопланктон Азовского моря в условиях антропогенных воздействий. Ростов н/Д: Эверест, 1999. 175 с.

- Шавыкин А.А., Бердников С.В., Сапрыгин В.В., Вербицкий Р.Е. Непрерывные измерения океанологических параметров в приповерхностном слое Таганрогского залива. 1. Определение хлорофилла а флуориметрическим методом // Вестник Южного научного центра. 2010. Т. 6. № 3. С. 37–46.
- Atlas of Climatic Changes in Nine Large Marine Ecosystems of the Northern Hemisphere (1827–2013) / Eds. Matishov G.G. et al. NOAA Atlas NESDIS 78, U.S. Government Printing Office, Washington, D.C., 2014. 131 p.
- Climatic Atlas of the Sea of Azov 2008 / Matishov G., Matishov D., Gargopa Yu., Dashkevich L., Berdnikov S., Kulygin V. et al. / Eds. Matishov G. et al. NOAA Atlas NESDIS 65, U.S. Gov. Print. Office, Washington, 2008. 148 p.
- Dashkevich L.V., Berdnikov S.V. Climatic changes and salinity of the Sea of Azov for 100 years // 16th International Multidisciplinary Scientific GeoConference SGEM 2016, www.sgem.org, SGEM 2016 Conference Proceedings, 30 June–6 July, 2016. B. 3. V. 2. P. 719– 726. ISBN 978-619-7105-62-9, ISSN 1314-2704.
- Delwart S., Bourg Lu Radiometric calibration of MERIS // SPIE Proceedings. 2011. V. 8176. P. 817613– 817613.
- Gilerson A., Gitelson A., Zhou J. et al. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands // Optics Express. 2010. V. 18(23). P. 24109–24125.
- Gitelson A., Gurlin D., Moses W., Yacobi Y. Remote estimation of chlorophyll-a concentration in inland, estuarine, and coastal waters // Advances in environmental remote sensing: sensors, algorithms and applications / Ed. Weng Q. CRC Press, Taylor and Francis Group. 2011a. P. 449–478.
- Gitelson A.A., Dall'Olmo G., Moses W. et al. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation // Remote Sens. Environ. 2008. V. 112. P. 3582–3593.
- 25. *Gitelson A.A., Gao B.C., Li R.R., Berdnikov S.V., Saprygin V.V.* Estimation of chlorophyll-a concentration in productive turbid waters using a Hyperspectral Imager for the Coastal Ocean — the Azov Sea case study // Environmental Research Letters. 2011b. V. 6. № 2. (6 pp.) doi 10.1088/1748-9326/6/2/024023
- Gurlin D., Gitelson A.A., Moses W.J. Remote estimation of chl-a concentration in turbid productive waters— Return to a simple two-band NIR-red model? // Remote Sensing of Environment. 2011. V. 115 (12). P. 3479–3490.
- 27. http://atlas.iaz.ssc-ras.ru/corgbook/biogene/chla.html.
- 28. https://earth.esa.int.
- MERIS Product Handbook. European Space Agency. Issue 3.0, Aug. 2011. [online] Available at http://envi-sat.esa.int/handbooks/meris/CNTR.html [Accessed 12 January 2017].
- Morel A., Prieur L. Analysis of variations in ocean color // Limnology and Oceanography. 1977. V. 22. № 4. P. 709–722.

ОКЕАНОЛОГИЯ том 58 № 5 2018

- Moses W.J. Satellite-based estimation of chlorophyll-a concentration in turbid productive waters, PhD dissertation, University of Nebraska-Lincoln, Lincoln, NE. 2009.
- 32. Moses W.J., Gitelson A.A., Berdnikov S., Povazhnyy V. Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—successes and challenges // Environ. Res. Lett. 2009b. V. 4. № 4 (8 pp.) doi 10.1088/1748-9326/4/4/045005
- 33. *Moses W.J., Gitelson A.A., Berdnikov S., Povazhnyy V.* Satellite estimation of chlorophyll-a concentration using the red and NIR bands of MERIS—the Azov Sea

case study // IEEE Geosci. Remote Sens. Lett. 2009a. V. 6. № 4. P. 845–849.

- Moses W.J., Gitelson A.A., Berdnikov S.V. et al. Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters – the Azov Sea case study // Remote Sens. of Environment. 2012. V. 121. P. 118-124.
- Yacobi Y.Z., Moses W.J., Kaganovsky S. et al. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study // Water Research. 2011. V. 45 (7). P. 2428–2436.

Spatial Distribution and Seasonal Dynamics of Chlorophyll-a Concentration in the Sea of Azov based on Satellite Images by MERIS Spectrometer

V. V. Saprygin, S. V. Berdnikov, V. V. Kulygin, L. V. Dashkevich, L. M. Mestetskiy

Results of chlorophyll-a concentration (Cchl-a) estimation in the Sea of Azov based on satellite imagery by MERIS spectrometer for 2002-2012 period are presented. Two-band NIR-red algorithm developed earlier [34] was used to calculate Cchl-a. Comparison of sea-truth spectrophotometric Cchl-a measurements and MERIS remote estimates is presented. For the first time monthly average Cchl-a maps are presented based on MERIS satellite data for its lifetime period. The features of Cchl-a spatial-temporal distribution were identified. Differences between Cchl-a seasonal dynamics in the Sea of Azov presented in literature and derived from MERIS data were marked out: summer-autumn phytoplankton growth period is longer than the spring one and it's characterized by higher Cchl-a values throughout the entire sea.

762