——— МОРСКАЯ ГЕОЛОГИЯ ——

УДК 551.352:553.32

ИССЛЕДОВАНИЕ СКОРОСТЕЙ ПЕЛАГИЧЕСКОЙ СЕДИМЕНТАЦИИ В ЗАВИСИМОСТИ ОТ ХАРАКТЕРИСТИК МАРГАНЦЕВЫХ МИКРОКОНКРЕЦИЙ

© 2017 г. В. Н. Свальнов¹, П. А. Ивлиев², Т. Н. Алексеева¹

¹Институт океанологии им. П.П. Ширшова РАН, Москва, Россия

² Московский государственный университет им. М.В. Ломоносова, геологический факультет, Москва, Россия e-mail: tania@blackout.ru

Поступила в редакцию 31.03.2015 г. После доработки 29.09.2016 г.

При изучении разрезов колонок из северной тропической зоны Тихого океана (Северо-Восточная котловина) выявлено, что пелагические осадки представлены четвертичными окисленными бес-карбонатными глинисто-радиоляриевыми, радиоляриево-глинистыми илами, миопелагическими глинами, иногда обогащенными радиоляриями, доплейстоценовыми миопелагическими и эвпелагическими глинами, цеолитово-глинистыми осадками, цеолититами. В них определены параметры марганцевых микроконкреций (МК) –гранулометрический и вещественный состав, число, масса и распределение. Эти данные позволили рассчитать относительные скорости седиментации (*V*о) в разрезах. При этом за основу принимали оценку абсолютной скорости (*V*) накопления верхнего (гомогенного) слоя колонки (возраст около 5 тыс. лет). Значения относительных скоростей седиментации, позволяют считать, что масса микроконкреций (Рмк), показатели средней массы единичной МК (Рмк/ Nмк), массы фракции осадка (Рфр) > 0.05 мм и число МК в массе осадка (Рмк/Рос) отражают тренды вариаций темпов пелагической седиментации.

DOI: 10.7868/S0030157417020204

Разнообразные методики определения темпов накопления нелитифицированных океанских осадков, отобранных гравитационными трубками [8, 10], обусловлены физико-химической неравновесностью среды в жидких, полужидких и мягких илах (стадии седиментогенеза и диагенеза), в которых микровосстановительные условия могут сосуществовать (хотя бы кратко) с условиями окислительными.

Сильно обводненные (влажность до 95%) илы легко перемещаются даже слабыми сейсмическими возмущениями и придонными течениями, обогащаются переотложенным материалом, включая более древние микрофоссилии и несвойственные конкретной точке дна эдафогенные минералы.

Кроме того, в пелагических глинах (особенно в эвпелагических) часто отсутствуют определимые биогенные остатки, поэтому относительно недавняя история их формирования остается во многом неясной.

Основными критериями литологического расчленения пелагических толщ неоген-четвертичных (древнее 1520 тыс. лет) осадков могут служить: заметные изменения окраски, состава и плотности осадков, а также наличие перерывов, характер границ раздела, текстурные и структурные особенности, выявленные ранее закономерности строения разрезов, подтвержденные данными биостратиграфии и магнитостратиграфии [3–5].

В Индийском и Тихом океанах в основании вскрытого гравитационными трубками пелагического разреза залегают окисленные, существенно аутигенные "немые" эвпелагические глины, главными составляющими которых являются новообразованные смектиты, цеолиты, марганцевые микроконкреции и костный детрит [3, 13, 14].

Выше по разрезу эвпелагические глины постепенно или с заметным перерывом перекрываются окисленными аутигенно-терригенными миопелагическими глинами. Наиболее древние (*миоценовые*) разновидности этих глин также заметно обогащены аутигенными образованиями — цеолитами, смектитами, целестобаритом, МК, однако они содержат определимые остатки планктонных организмов с опаловым или карбонатным скелетом. За пределами приэкваториального пояса биогенного кремненакопления в Индийском и Тихом океанах возраст миопелагических глин постепенно уменьшается по мере приближения к обрамлению, а местами они залегают на поверхности дна, т.е. формируются в современных условиях. Основу четвертичных миопелагических глин составляют терригенные обломочные и глинистые минералы, нередко встречается в них примесь радиолярий и диатомей, возможны остатки планктонных фораминифер и кокколитофорид; аутигенные минералы (цеолиты, смектиты, МК) только изредка становятся осадкообразующими.

Вверх по разрезу миопелагические глины постепенно сменяются радиоляриево-глинистыми илами.

Как правило, вскрытый четвертичный миопелагический разрез завершают глинисто-радиоляриевые осадки, нередко включающие слои этмодискуссовых (диатомовых) илов [1, 4, 9–12].

Выше уровня критической глубины карбонатонакопления (КГК) кровлю разреза венчают кокколитово-фораминиферовые осадки.

В соответствии с циркумконтинентальной зональностью четвертичной седиментации прослеживается постепенный фациональный переход пелагических отложений в гемипелагические. В основном разрез здесь представлен терригенными гемипелагическими восстановленными глинами, в разной степени обогащенными кремнистыми и карбонатными остатками, однако их поверхностный слой толщиной 1—50 см обычно довольно интенсивно окислен. Находки гемипелагических глин среди пелагических осадков не только подтверждают постепенность фациальных переходов, но и свидетельствуют об эпизодическом формировании в пелагиали терригенных турбидитов сверхдальнего разноса.

Исследование дночерпательных монолитов в Индийском и Тихом океанах [3, 5] позволило детализировать литостратиграфию самой молодой (поздний плейстоцен—голоцен) части осадочной толщи. По физическим параметрам (цвет, влажность, пористость, объемная масса), степени переработки бентосными организмами, а также по интенсивности диагенетических процессов, практически все монолиты толщиной до 25 см удается расчленить на три слоя, которые хорошо согласуются с этапами седиментогенеза и раннего диагенеза в литогенетической структуре пелагических областей [3].

Самый верхний слой (I) толщиной до 15 см обычно имеет однородную коричневую окраску и представлен гомогенными полужидкими илами. Ниже залегают (слой II) более плотные осадки (толщина прослоя до 13 см), фоновая коричневая окраска которых осложнена довольно редкими коричневыми и темно-коричневыми округлыми пятнами — ходами илоедов, заполненными вышележащими осадками. Местами проявлены желтовато-коричневые пятна неясных очертаний, иногда наблюдаются дендритовидные скопления оксигидроксидов марганца — продуктов

раннедиагенетического перераспределения элементов в слабовосстановительной среде. В этом слое встречаются и открытые ходы илоедов.

В основании вскрытого дночерпательного разреза обычно залегают мраморовидные осадки (слой III), характеризующиеся наибольшими цветовыми контрастами. Фоновая окраска нередко затушевана многочисленными желтовато-коричневыми, серыми, коричневыми, желтоватосерыми линзами, неотчетливыми пятнами, округло-удлиненными ходами илоедов. Центральная часть заполняющего ходы осадка обычно коричневая, а внешний ободок осветлен до коричневато-желтого цвета. Вмещающий же осадок, как правило, более темноокрашенный. Все это свидетельствует о довольно интенсивном диагенетическом перераспределении элементов в микроусловиях восстановительной среды, когда миграция прежде всего марганца к периферии следов жизнедеятельности бентосных организмов приводит к обесцвечиванию осадка.

Кроме суждения о диагенетических процессах, выделенные слои I–III несут литостратиграфическую нагрузку. Изучая осадки, полученные коробчатыми дночерпателями (высота 40 см) в экваториальной части Тихого океана, Бергер [15] предложил генерализованную стратиграфию по илоедам. Она основана на большом разнообразии зарывающихся организмов и окраске осадков.

В верхней части монолитов он выделил перемешанный слой (mixed layer) толщиной 5–7 см, гомогенезированный благодаря интенсивной переработке мелкими организмами. В этом слое, отвечающем слою I нашей литостратиграфии [3], преобладают открытые каналы небольшого диаметра (менее 1 мм), облегчающие взаимодействие между наддонной и поровой водой. Присутствуют ходы большого диаметра (около 1 см), хотя время их существования, по-видимому, короткое из-за подвижности сильно обводненных осадков поверхностного слоя.

Следующий, переходный перемешанный слой (mixed layer transition) толщиной 5–7 см, соответствующий слою II, описанному выше, отчасти сходен с перемешанным гомогенным слоем, но он не имеет обильных открытых тонких каналов. Осадки этого слоя более плотные и в них обычно наблюдается какое-то количество открытых крупных каналов. В целом же слой характеризуется комковатым перемешиванием (lumpy mixing).

Ниже выделяются плотные осадки переходной зоны (transition zone; толщина слоя 10–20 см), которые отличаются максимальными цветовыми контрастами (см. характеристику слоя III), предположительно вызванными критическими окислительно-восстановительными условиями по отношению к железу и марганцу в сочетании с гетерогенностью концентраций органического вещества и скоростями окислительно-восстановительных реакций. Несмотря на глубину залегания, переходная зона является местом деятельности илоедов, о чем свидетельствуют редкие открытые каналы. По мнению Бергера, наибольшее число ходов илоедов, которые в конечном счете будут законсервированы, формируется именно в переходной зоне вследствие перемешивания осадков крупными животными в течение длительного времени. Эта зона интересна еще и тем, что она несет информацию о дегляциальной (конец оледенения) стадии, когда (16–10 тыс. лет назад) в океане происходили резкие изменения условий седиментации [15].

В основании вскрытого коробчатыми дночерпателями разреза (на глубине 20–40 см от поверхности дна) выделяется древний слой (historical layer), который наблюдается и в колонках, поднятых грунтовыми трубками. Этот слой имеет причудливые цветовые контрасты, вызванные, по-видимому, химическим восстановлением и миграцией вверх пигментов [15]. По-существу, здесь нет открытых ходов. Вероятно, они медленно уничтожаются вследствие деформации осадков и постепенно убывающих цветовых контрастов.

Таким образом, интенсивность процессов биотурбации, выраженная в текстурных и геохимических характеристиках осадков, служит надежным критерием при литологической стратификации самых верхних слоев разрезов. Более того, вслед за абсолютными датировками Бергера мы считаем, что возраст слоев I и II (без разделения) – голоценовый (около 10 тыс. лет), а формирование слоя III происходило 10-16 тыс. лет назад. Опираясь на реперные определения возраста осадков и допушение, что слой I формировался около 5 тыс. лет [15], нетрудно рассчитать относительные темпы седиментации (или определить вариативный тренд), учитывая отношения различных показателей осадков верхнего (гомогенного) слоя к аналогичным характеристикам осадков каждого нижележащего слоя. Решая обратную задачу, можно оценить возраст осадков всего вскрытого непрерывного разреза, опираясь на литостратиграфию и сходные (в среднем) относительные темпы седиментации.

Цель данного сообщения — определить тренды относительных скоростей осадкообразования в северной низкопродуктивной зоне Тихого океана, исследуя распределение и другие параметры марганцевых микроконкреций в разрезах с ярко выраженным гомогенным слоем.

Материал и методы исследования описаны в статье посвященной осадкам без верхнего гомогенного слоя этого же района (станции 3922, 3923, 3940-3) [8]. Общие расчеты приведены в таблице.

Приведенные в таблице средние величины параметров МК и разных типов осадков свидетель-

ствуют, что при одинаковом объеме всех влажных проб (8 см³) массы сухих осадков уменьшаются в ряду миопелагическая глина (МГ) → цеолитовоглинистый осадок (ЦГ) \rightarrow эвпелагическая глина $(\Im\Gamma) \rightarrow$ цеолитит (Ц) \rightarrow древняя миопелагическая глина (МПГ) \rightarrow миопелагическая глина, обогашенная радиоляриями (МГр) → глинисто-радиоляриевый ил, обогащенный диатомеями (ГРд) \rightarrow → радиоляриево-глинистый ил (РГ) → глинисторадиоляриевый ил (ГР). Повышенное содержание фракции осадка > 0.05 мм, а также массы и числа МК характерны для МГ и ЭГ (максимум), ЦГ, Ц, МПГ. Микроконкреции размером 0.5-0.25 мм преобладают в РГ и МГ, а ЭГ, ЦГ и Ц заметно обогащены фракцией МК 0.25-0.1 мм (>48%). Относительно высокой массой обладают единичные МК в РГ и МГр и Ц. Вклад микроконкреций нарастает в ряду $\Gamma P_{\mathcal{I}} \rightarrow M\Gamma p \rightarrow \Gamma P \rightarrow P\Gamma \rightarrow \Pi \rightarrow$ $\rightarrow M\Gamma \rightarrow M\Pi\Gamma \rightarrow \Im\Gamma$, что вполне согласуется с полученными ранее данными [6].

Среди множества предложенных авторами характеристик осадков и марганцевых микроконкреций, несомненно, можно выделить наиболее информативные и второстепенные, но детали такой упрощенной классификации зависят в конечном счете от цели и конкретных задач исследования. В нашем случае предпочтение отдано тем показателям МК, которые могут надежно обосновать тренды относительных скоростей седиментации в разрезах пелагических осадков.

Для оценки таких скоростей воспользуемся стратификацией верхних 15–25 см осадочной толщи по степени биотурбации и абсолютным датировкам [2, 6, 7, 15]. Зная мощность гомогенного слоя (возраст около 5 тыс. лет) или суммарного голоценового слоя осадков (возраст 10 тыс. лет), можно определить абсолютную скорость седиментации (V) за соответствующий отрезок времени. Дальнейшая оценка относительных скоростей (Vo) проводилась по алгоритму

$$Vo = \frac{X_1}{X_2}V,$$

где X_1 — параметр верхнего горизонта осадков, X_2 — то же, каждого нижележащего слоя, V — абсолютная скорость седиментации, Vо — скорость относительная (т.е. относительно верхнего слоя).

Поскольку разброс величин, полученных путем сравнения различных показателей, весьма существенный, в качестве опорных выбраны сходные значения скоростей, вычисленные с учетом параметров средней массы единичной МК (Рмк/Nмк), массы всей фракции осадка (Рфр) больше 0.05 мм, колличества МК в массе осадка (Рмк/Рос) и массы всех МК размером больше 0.05 мм (Рмк), хотя рассматриваются соотношения и других параметров.

Xai	пакте	пистики	марга	анцевых	микі	поконк	пений
maj	μακισ	ристики	mapre	апцевыл	WINK	POKOIIK	реции

океанология

том 57

<u>№</u> 3

2017

				WV	шт.	Соотнош	ение фраки	ций MK > (0.05мм, %				
Горизонт, см	Тип осадка*	Масса сухого осадка** (Poc), г	Масса фракции (Рфр) > 0.05 мм, г	Масса МК > 0.05 м (Рмк), г	Число МК (Nмк),	>0.5	0.5-0.25	0.25-0.1	0.1-0.05	Масса одной МК (Рмк/Nмк), мкг	№К/Vво, шт./см ³	Ммк/Рос, ш⊤./г	Вклад МК в осдок (Рмк/Рос), %
1	2	3	4	5	6	7	8	9	10	11	12	13	14
				Стан	нция 3903 (13°59.9' c.1	ш., 112°31.2′	з.д.; гл. 39	70 м)				
5-7	ГРд	2.569	0.0002	0.0001	140	0	65	30	5	0.7	17.5	54.5	0.004
15-17	ГР	2.371	0.0012	0.0004	119	0	61	31	8	3.4	14.9	50.2	0.017
20-22	РΓ	1.533	0.0033	0.0031	1161	1.6	1.6	64.5	32.3	2.7	145.1	757.3	0.202
30-32	РΓ	2.074	0.0011	0.0004	28	0	40	50	10	14.3	3.5	13.5	0.019
40-42	РΓ	2.077	0.0005	0.0001	129	0	30	60	10	0.8	16.1	62.1	0.005
60-62	РΓ	1.798	0.0005	0.0001	14	0	60	32	8	7.1	1.8	7.8	0.006
70-72	РГ	2.831	0.0003	0.0001	6	0	85	15	0	16.7	0.8	2.1	0.004
150-152	МΓр	2.241	0.0001	0.0001	4	0	85	15	0	25.0	0.5	1.8	0.004
160-162	МΓр	2.173	0.0005	0.0002	10	0	75	25	0	20.0	1.3	4.6	0.009
170-172	МΓр	2.531	0.0014	0.0010	167	12	61	26	1	6.0	20.9	66.0	0.040
210-212	РΓ	2.302	0.0003	0.0001	3	0	80	20	0	33.3	0.4	1.3	0.004
230-232	МΓр	2.537	0.0008	0.0004	24	0	75	25	0	16.7	3.0	9.5	0.016
240-242	МΓр	2.603	0.0012	0.0003	30	24	50	24	2	10.0	3.8	11.5	0.012
270-272	МΓр	2.902	0.0012	0.0003	61	0	62	36	2	4.9	7.6	21.0	0.010
280 - 282	РΓ	2.785	0.0018	0.0002	4	0	60	40	0	50.0	0.5	1.4	0.007
290-292	РΓ	2.864	0.0013	0.0006	35	0	70	30	0	17.1	4.4	12.2	0.021
310-312	РΓ	2.691	0.0003	0.0002	58	22	56	22	0	3.4	7.3	21.6	0.007
330-332	МΓр	3.277	0.0007	0.0003	136	0	64	35	1	2.2	17.0	41.5	0.009
340-342	МΓр	2.801	0.0009	0.0001	25	0	40	60	0	4.0	3.1	8.9	0.004
350-352	МΓр	2.568	0.0007	0.0001	15	37	37	24	2	6.7	1.9	5.8	0.004
360-362	МΓр	2.794	0.0011	0.0005	159	15	25	59	1	3.1	19.9	56.9	0.018
380-382	РΓ	2.951	0.0024	0.0003	81	0	60	35	5	3.7	10.1	27.4	0.010
385-387	РΓ	2.565	0.0009	0.0004	19	0	48	50	2	21.1	2.4	7.4	0.016

СВАЛЬНОВ и др.

-

OF					м	IIT.	Соотнош	ение фраки	ций MK > (0.05мм, %				
(ЕАНОЛОГИЯ тог	Горизонт, см	Тип осадка*	Масса сухого осадка** (Рос), г	Масса фракции (Рфр) > 0.05 мм, г	Масса МК > 0.05 м (Рмк), г	Число МК (Nмк), 1	>0.5	0.5-0.25	0.25-0.1	0.1-0.05	Масса одной МК (Рмк/Nмк), мкг	№к/Vво, шт./см ³	Ммк/Рос, шт.∕г	Вклад МК в осдок (Рмк/Рос), %
м 57	1	2	3	4	5	6	7	8	9	10	11	12	13	14
_					Стан	ция 3905 (13°30.0' с.ш	1., 1170 50.8	′ з.д.; гл. 41	80 м)			L	
№ 3	5-7	МΓ	2.677	0.0011	0.0009	514	20	20	59	1	1.8	64.3	192.0	0.034
N)	10-12	МΓ	2.660	0.0005	0.0003	46	48	38	76	1	6.5	5.8	17.3	0.011
2017	20-22	МΓ	3.057	0.0004	0.0004	78	30	40	30	1	5.1	9.8	25.5	0.013
	30-32	МΓ	3.183	0.0005	0.0002	65	36	36	27	1	3.1	8.1	20.4	0.006
	40-42	МΓ	2.213	0.0005	0.0004	34	47	35	17	1	11.8	4.3	15.4	0.018
	50-52	МΓ	2.562	0.0007	0.0004	30	46	31	3	1	13.3	3.8	11.7	0.016
	60-62	МΓ	3.18	0.0009	0.0004	140	0	20	77	3	2.9	17.5	44.0	0.013
	70-72	МΓ	2.274	0.0012	0.0008	459	0	8	80	12	1.7	57.4	201.8	0.035
	80-82	МΓ	2.658	0.0007	0.0001	123	0	24	73	3	0.8	15.4	46.3	0.004
	90-92	МΓ	3.106	0.0011	0.0007	72	31	43	26	1	9.7	9.0	23.2	0.023
	100-102	МΓ	2.758	0.0005	0.0003	374	0	36	60	4	0.8	46.8	135.6	0.011
	110-112	МΓ	2.694	0.0012	0.0011	500	0	25	70	5	2.2	62.5	185.6	0.041
	140-142	МΓ	2.737	0.0002	0.0001	1	0	0	0	100	100.0	0.1	0.4	0.004
	150-152	МΓ	1.988	0.0002	0.0001	1	0	0	0	100	100.0	0.1	0.5	0.005
	170-172	МΓ	2.386	0.0007	0.0002	37	0	60	39	1	5.4	4.6	15.5	0.008
	180-182	МΓ	2.162	0.0007	0.0006	158	6	86	8	1	3.8	19.8	73.1	0.028
	190-192	МΓ	2.708	0.0011	0.0009	219	5	75	20	1	4.1	27.4	80.9	0.033
	200-202	МΓ	2.837	0.0008	0.0001	80	0	79	18	3	1.3	10.0	28.2	0.004
	220-222	МΓ	3.127	0.0001	0.0001	1	0	0	100	0	100.0	0.1	0.3	0.003
	230-232	МΓ	2.667	0.0253	0.0085	1392	15	17.6	51.8	15.3	6.1	174.0	521.9	0.319
	240-242	МΓ	2.651	0.0122	0.0118	676	41	42.4	9.3	7.6	17.5	84.5	255.0	0.445
	250-252	МΓ	2.935	0.0018	0.0015	479	23	40	35	2	3.1	59.9	163.2	0.051
	260-262	МΓ	3.435	0.0012	0.0011	401	17	12	59	2	2.7	50.1	116.7	0.032
	270-272	МΓ	2.768	0.0001	0.0001	9	0	34	66	0	11.1	1.1	3.3	0.004

ИССЛЕДОВАНИЕ СКОРОСТЕЙ ПЕЛАГИЧЕСКОЙ СЕДИМЕНТАЦИИ

				WV	, mr.	Соотнош	ение фракі	ций MK > (0.05мм, %				
Горизонт, см	Тип осадка*	Масса сухого осадка** (Рос), г	Масса фракции (Рфр) > 0.05 мм, г	Масса МК > 0.05 м (Рмк), г	Число МК (Nмк), 1	>0.5	0.5-0.25	0.25-0.1	0.1-0.05	Масса одной МК (Рмк/Nмк), мкг	№К/Vво, шт./см ³	Ммк/Рос, шт./г	Вклад МК в осдок (Рмк/Рос), %
1	2	3	4	5	6	7	8	9	10	11	12	13	14
280-282	МΓ	3.068	0.0009	0.0005	187	32	21	44	3	2.7	23.4	61.0	0.016
290-292	ЭГ	2.902	0.0081	0.0072	2274	4.2	5.6	56.9	33.3	3.2	284.3	783.6	0.248
300-302	ЭГ	3.616	0.0116	0.0111	2760	0.5	1.8	58.5	39.2	4.0	345.0	763.3	0.307
310-312	ЭГ	3.982	0.0113	0.0104	2656	2.9	15.4	57.7	24	3.9	332.0	667.0	0.261
330-332	ЭГ	3.516	0.0103	0.0091	2600	1.1	12.1	67.8	19.8	3.5	325.0	739.5	0.259
350-352	ЭГ	3.681	0.0055	0.0028	801	0	25	42.9	32.1	3.5	100.1	217.6	0.076
370-372	ΜΠΓ	2.694	0.0051	0.0047	1833	21	4.3	49.8	27.6	2.6	229.1	680.4	0.174
				Стан	нция 3922 (15°10.4' с.ш	ı., 126°01.3′	з.д.; гл. 443	30 м)				
10-12	ЭГ	5.234	0.0338	0.0031	1065	9.7	9.7	41.9	38.7	2.9	133.1	203.5	0.059
15-17	ЭГ	5.184	0.0298	0.0061	1702	8.3	8.4	55	28.3	3.6	212.8	328.3	0.118
20-22	ЭГ	5.088	0.0268	0.0072	1812	5.6	11.1	59.7	23.6	4.0	226.5	356.1	0.142
25-27	ЭГ	5.179	0.0289	0.0076	2102	15	11.8	59.2	13.2	3.6	262.8	405.9	0.147
45-47	ЦГ	4.842	0.0102	0.0029	892	0	3.4	62.1	34.5	3.3	111.5	184.2	0.060
50-52	ЦГ	4.022	0.0202	0.0057	1482	0	8.8	66.7	24.5	3.8	185.3	368.5	0.142
60-62	ЦГ	4.490	0.0026	0.0001	27	0	32.0	60.0	8.0	3.7	3.4	6.0	0.002
90-92	ЦГ	4.195	0.0033	0.0002	178	0	48	49	3	1.1	22.3	42.4	0.005
100-102	ЦГ	4.019	0.0022	0.0003	38	0	56	42	2	7.9	4.8	9.5	0.007
110-112	ЭГ	3.593	0.0006	0.0001	5	0	57	29	14	20.0	0.6	1.4	0.003
120-122	ЭГ	3.803	0.0015	0.0001	13	0	63	32	5	7.7	1.6	3.4	0.003
130-132	ЭГ	4.578	0.0014	0.0001	10	0	55	27	18	10.0	1.3	2.2	0.002
140-142	ЭГ	3.754	0.0009	0.0001	4	0	0	95	5	25.0	0.5	1.1	0.003
170-172	ΜΠΓ	4.168	0.0036	0.0001	5	0	80	20	0	20.0	0.6	1.2	0.002
180-182	ΜΠΓ	2.398	0.0025	0.0011	548	0	18.2	63.6	18.2	2.0	68.5	228.5	0.046
240-242	ΜΠΓ	1.895	0.0051	0.0001	78	0	66	25	9	1.3	9.8	41.2	0.005
270-272	ЭГ	2.892	0.0081	0.0001	9	0	75	25	0	11.1	1.1	3.1	0.003
290-292	ЭГ	2.654	0.0085	0.0001	37	29	37	29	5	2.7	4.6	13.9	0.004

океанология

том 57

N₂ 3

2017

СВАЛЬНОВ и др.

0					WW	IIT.	Соотнош	ение фракі	ций MK > (0.05мм, %				
КЕАНОЛОГИЯ то	Горизонт, см	Тип осадка*	Масса сухого осадка** (Рос), г	Масса фракции (Рфр) > 0.05 мм, г	Масса МК > 0.05 м (Рмк), г	Число МК (Nмк), 1	>0.5	0.5-0.25	0.25-0.1	0.1-0.05	Масса одной МК (Рмк/Nмк), мкг	Мик/Vво, шт./см ³	Nмк/Рос, шт./г	Вклад МК в осдок (Рмк/Рос), %
м 57	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	300-302	ЭГ	3.016	0.0096	0.0002	130	24	48	24	4	1.5	16.3	43.1	0.007
Ä	320-322	Ц	3.701	0.0071	0.0001	18	0	77	16	7	5.6	2.3	4.9	0.003
ω	330-332	Ц	4.408	0.0111	0.0001	37	0	37	67	6	2.7	4.6	8.4	0.002
20	340-342	Ц	3.418	0.0115	0.0002	114	0	37	67	6	1.8	14.3	33.4	0.006
17	370-372	Ц	4.088	0.0091	0.0001	39	0	46	46	8	2.6	4.9	9.5	0.002
	380-382	Ц	4.266	0.0074	0.0003	11	0	50	50	0	27.3	1.4	2.6	0.007
	390-392	Ц	4.266	0.0081	0.0019	567	0	47	47	6	3.4	70.9	132.9	0.045
	400-402	Ц	3.247	0.0048	0.0001	19	0	49	43	8	5.3	2.4	5.9	0.003
	410-412	Ц	4.109	0.0014	0.0001	4	0	58	42	0	25.0	0.5	1.0	0.002
	420-422	Ц	2.966	0.0013	0.0001	4	0	75	21	4	25.0	0.5	1.3	0.003
					Ста	нция 3923 (16°30.4' c.u	ш.,126°00.7′	з.д.; гл. 451	0м)				
	10-12	МΓ	3.992	0.0014	0.0008	241	12	50	37	1	3.3	30.1	60.4	0.020
	20-22	МΓ	3.102	0.0197	0.0001	74	25	50	25	1	1.4	9.3	23.9	0.003
	30-32	МΓ	4.291	0.0006	0.0003	144	24	48	24	4	2.1	18.0	33.6	0.007
	40-42	МΓ	4.346	0.0004	0.0003	78	21	56	21	2	3.8	9.8	17.9	0.007
	80-82	МΓ	3.995	0.0014	0.0007	239	15	51	32	2	2.9	29.9	59.8	0.018
	130-132	ЭГ	4.807	0.0703	0.0022	1055	0	13.6	50	36.4	2.1	131.9	219.5	0.046
	160-162	ЭГ	5.071	0.0146	0.0025	1041	8	16	48	28	2.4	130.1	205.3	0.049
	230-232	Ц	5.409	0.0104	0.0101	2828	0	4	71	25	3.6	353.5	522.8	0.187
	330-332	Ц	5.541	0.0036	0.0029	912	0	6.9	58.6	30.5	3.2	114.0	164.6	0.052
	350-352	ЦГ	4.923	0.0008	0.0003	262	18	45	36	1	1.1	32.8	53.2	0.006
	370-372	ЦГ	4.481	0.0004	0.0001	19	37	37	25	1	5.3	2.4	4.2	0.002
		II			Стані	ция 3940-3	(19°58.5' c.1	ш., 125°56.9	9′ з.д.; гл. 4	620 м)				
	10-12	МΓ	5.064	0.0006	0.0003	36	51	23	24	2	8.3	4.5	7.1	0.006
7*	20-22	МΓ	6.995	0.0006	0.0002	25	40	32	27	1	8.0	3.1	3.6	0.003

475

				W	IIIT.	Соотнош	ение фракі	ций MK > (0.05мм, %				
Горизонт, см	Тип осадка*	Масса сухого осадка** (Poc), г	Масса фракции (Рфр) > 0.05 мм, г	Масса МК > 0.05 м (Рмк), г	Число МК (Nмк), 1	>0.5	0.5-0.25	0.25-0.1	0.1-0.05	Масса одной МК (Рмк/Nмк), мкг	№К/Vво, шт./см ³	№К/Рос, шт./г	Вклад МК в осдок (Рмк/Рос), %
1	2	3	4	5	6	7	8	9	10	11	12	13	14
30-32	МΓ	5.333	0.0012	0.0001	38	0	65	32	3	2.6	4.8	7.1	0.002
60-62	МΓ	5.398	0.0002	0.0001	16	0	47	48	5	6.3	2.0	3.0	0.002
70-72	МΓ	5.407	0.0004	0.0003	201	14	36	45	5	1.5	25.1	37.2	0.006
80-82	МΓ	5.659	0.0006	0.0002	103	40	28	28	4	1.9	12.9	18.2	0.004
90-92	МΓ	5.729	0.0003	0.0002	96	27	36	30	3	2.1	12.0	16.8	0.003
100-102	МΓ	5.447	0.0012	0.0007	239	38	26	34	5	2.9	29.9	43.9	0.013
110-112	МΓ	4.885	0.0007	0.0005	243	29	28	26	17	2.1	30.4	49.7	0.010
125-127	МΓ	6.857	0.0009	0.0005	350	14	30	46	10	1.4	43.8	51.0	0.007
135-137	МΓ	6.104	0.0011	0.0008	604	14	28	46	12	1.3	75.5	99.0	0.013
140-142	МΓ	5.302	0.0048	0.0017	974	0	17.6	35.3	47.1	1.7	121.8	183.7	0.032
150-152	МΓ	5.503	0.0007	0.0002	150	22	34	34	10	1.3	18.8	27.3	0.004
165-167	МΓ	5.704	0.0013	0.0009	464	10	40	50	10	1.9	58.0	81.3	0.016
170-172	МΓ	5.931	0.0017	0.0014	998	0	21.4	35.7	42.9	1.4	124.8	168.3	0.024
180-182	МΓ	6.315	0.0011	0.0005	317	20	36	34	10	1.6	39.6	50.2	0.008
200-202	МΓ	5.701	0.0041	0.0037	1577	8.1	2.7	59.5	29.7	2.3	197.1	276.6	0.065
210-212	МΓ	6.072	0.0033	0.0029	1381	0	1.7	69	29.3	2.1	172.6	227.4	0.048
220-222	МΓ	5.942	0.0044	0.0039	2047	0	1.3	56.4	42.3	1.9	255.9	344.5	0.066
240-242	МΓ	3.674	0.0268	0.0002	78	20	37	37	6	2.6	9.8	21.2	0.005
270-272	МΓ	5.805	0.0041	0.0032	1288	0	4.7	59.4	35.9	2.5	161.0	221.9	0.055
300-302	МΓ	4.623	0.0073	0.0066	2116	0	6.8	69.7	23.5	3.1	264.5	457.7	0.143
310-312	МΓ	5.304	0.0076	0.0071	1565	0	7	71.8	21.2	4.5	195.6	295.1	0.134
320-322	МΓ	5.218	0.0062	0.0058	1491	0	3.4	91.4	5.2	3.9	186.4	285.7	0.111
330-332	ЭГ	5.623	0.0072	0.0069	2297	0	1.5	24.2	4.3	3.0	287.1	408.5	0.123
340-342	ЭГ	4.937	0.0068	0.0064	1744	0	4.7	87.5	7.8	3.7	218.0	353.3	0.130
350-352	ЭГ	4.746	0.0106	0.0097	1726	0	8.2	80.4	11.4	5.6	215.8	363.7	0.204
370-372	ЭГ	5.562	0.0058	0.0053	1306	0	3.8	75.5	20.7	4.1	163.3	234.8	0.095

океанология

том 57

N₂ 3

2017

СВАЛЬНОВ и др.

OK					WW	IIIT.	Соотнош	ение фракі	ций MK > (0.05мм, %				
ЕАНОЛОГИЯ том	Горизонт, см	Тип осадка*	Масса сухого осадка** (Рос), г	Масса фракции (Рфр) > 0.05 мм, г	Масса МК > 0.05 м (Рмк), г	Число МК (Nмк), 1	>0.5	0.5-0.25	0.25-0.1	0.1-0.05	Масса одной МК (Рмк/Nмк), мкг	№К/Vво, шт./см ³	Ммк/Рос, шт./г	Вклад МК в осдок (Рмк/Рос), %
1 57	1	2	3	4	5	6	7	8	9	10	11	12	13	14
マ					Станц	ия 3940—14	4 (19°56.4' c	с.ш., 126°01	.9′ з.д.; гл. 4	4565м)				
0 3	5-7	МΓ	5.081	0.0002	0.0002	102	0	26	66	8	2.0	12.8	20.1	0.004
	15-17	МΓ	5.747	0.0001	0.0001	40	0	53	43	4	2.5	5.0	7.0	0.002
2010	25-27	МΓ	5.335	0.0001	0.0001	51	0	35	60	5	2.0	6.4	9.6	0.002
7	45-47	МΓ	6.305	0.0001	0.0001	4	0	0	85	15	25.0	0.5	0.6	0.002
	55-57	МΓ	6.078	0.0002	0.0001	35	0	60	36	4	2.9	4.4	5.8	0.002
	60-62	МΓ	6.119	0.0003	0.0002	64	34	34	26	6	3.1	8.0	10.5	0.003
	65-67	МΓ	5.581	0.0002	0.0001	41	46	31	18	5	2.4	5.1	7.3	0.002
	75-77	МΓ	5.26	0.0002	0.0002	28	18	63	13	2	7.1	3.5	5.3	0.004
	80-82	МΓ	5.184	0.0001	0.0001	43	43	33	22	2	2.3	5.4	8.3	0.002
	95-97	МΓ	5.346	0.0002	0.0001	9	0	55	37	8	11.1	1.1	1.7	0.002
	100-102	МΓ	3.143	0.0001	0.0001	14	0	49	49	4	7.1	1.8	4.5	0.003
	110-112	МΓ	5.027	0.0001	0.0001	12	0	64	32	4	8.3	1.5	2.4	0.002
	120-122	МΓ	5.831	0.0001	0.0001	22	40	27	30	3	4.5	2.8	3.8	0.002
	135-137	МΓ	5.969	0.0003	0.0001	75	27	37	27	9	1.3	9.4	12.6	0.002
	140-142	МΓ	5.938	0.0006	0.0004	206	28	20	48	4	1.9	25.8	34.7	0.007
	150-152	МΓ	5.983	0.0002	0.0001	103	17	44	34	5	1.0	12.9	17.2	0.002
	170-172	МΓ	4.994	0.0008	0.0008	944	0	0	37.5	62.5	0.8	118.0	189.0	0.016
	180-182	МΓ	4.883	0.0016	0.0013	921	0	0	30.8	69.2	1.4	115.1	188.6	0.027
	190-192	МΓ	5.219	0.0011	0.0009	895	0	11.1	44.4	44.5	1.0	111.9	171.5	0.017
	200-202	МΓ	4.899	0.0022	0.0022	1476	0	9	50	40.9	1.5	184.5	301.3	0.045
	220-222	МΓ	5.452	0.0031	0.0031	1904	0	6.7	73.3	20.0	1.6	238.0	349.2	0.057
	230-232	МΓ	5.702	0.0034	0.0034	2096	0	8.8	61.8	29.4	1.6	262.0	367.6	0.060
	240-242	МΓ	5.395	0.0024	0.0024	1310	0	0	66.7	33.3	1.8	163.8	242.8	0.044
	250-252	МΓ	5.281	0.0064	0.0057	2956	0	0.9	59.6	39.5	1.9	369.5	559.7	0.108
	260-262	МΓ	3.244	0.0012	0.0009	750	0	5.6	33.3	61.1	1.2	93.8	231.2	0.028

ИССЛЕДОВАНИЕ СКОРОСТЕЙ ПЕЛАГИЧЕСКОЙ СЕДИМЕНТАЦИИ

Таблица.	Окончание

				WV	, IIIT.	Соотнош	ение фраки	ций MK > (0.05мм, %				
Горизонт, см	Тип осадка*	Масса сухого осадка** (Poc), г	Масса фракции (Рфр) > 0.05 мм, г	Масса МК > 0.05 м (Рмк), г	Число МК (Nмк),	>0.5	0.5-0.25	0.25-0.1	0.1-0.05	Масса одной МК (Рмк/Nмк), мкг	№К/Vво, шт./см ³	Ммк/Рос, шт./г	Вклад МК в осдок (Рмк/Рос), %
1	2	3	4	5	6	7	8	9	10	11	12	13	14
280-282	МΓ	5.376	0.0034	0.0031	1455	0	0	66.7	33.3	2.1	181.9	270.6	0.058
290-292	МΓ	5.766	0.0068	0.0052	2491	0	0	63.5	36.5	2.1	311.4	432.0	0.090
300-302	МΓ	5.795	0.0052	0.0048	2051	0	1.0	70.8	28.2	2.3	256.4	353.9	0.083
310-312	МΓ	5.965	0.0051	0.0048	2065	0	2.1	61.8	36.1	2.3	258.1	346.2	0.080
320-322	МΓ	5.659	0.0051	0.0048	2053	0	2.1	47.9	50.0	2.3	256.6	362.8	0.085
360-362	МΓ	5.489	0.0038	0.0031	1278	0	2.9	64.7	32.4	2.4	159.8	232.8	0.056
Среднее	ΓP(1)***	2.371	0.0012	0.0004	119	0	61	31	8	3.4	14.9	50.2	0.017
ПО 6 малам	ГРд(1)	2.569	0.0002	0.0001	140	0	65	30	5	0.7	17.5	54.5	0.004
6 колон- кам	PΓ(11)	2.406	0.0012	0.0005	140	2.1	53.7	38	6.1	15.5	17.5	83.1	0.027
	MΓ(85)	4.579	0.0025	0.0015	573	12.9	27.7	43.9	16.1	7.2	71.7	119.6	0.034
	MΓp(10)	2.643	0.0009	0.0003	63	8.8	57.4	32.9	0.9	9.9	7.9	22.8	0.013
	ЭГ(22)	4.246	0.0142	0.0045	1234	4.9	22.0	51.2	18.7	6.0	154.3	287.2	0.104
	ЦГ(7)	4.425	0.0057	0.0014	414	7.9	32.9	48.7	10.6	3.7	51.8	95.4	0.032
	Ц(11)	4.129	0.0070	0.0010	414	0.0	44.3	48.1	9.1	9.6	51.8	80.7	0.028
	МПΓ(4)	2.789	0.0041	0.0015	616	5.3	42.1	39.6	13.7	6.5	77.0	237.8	0.057

* Осадки: ГР– глинисто-радиоляриевый ил, ГРд – то же, обогащенный диатомеями, РГ–радиоляриево-глинистый ил, МГ– миопелагическая глина, МГр – то же, обогащенная радиоляриями, ЭГ– эвпелагическая глина, ЦГ– цеолито-глинистый осадок, Ц – цеолитит, МПГ – древняя миопелагическая глина. ** Объем влажного осадка (Vво) всюду 8 см.³

*** В скобках – число проб.

СВАЛЬНОВ и др.

В случае отсутствия в колонке слоев с надежной стратификацией (природная неполнота разреза, потери при опробовании ударной грунтовой трубкой и др.) определение относительных скоростей осадконакопления невозможно, однако, взяв за основу любой самый верхний горизонт разреза, удается оценить тенденцию относительного изменения во времени того или иного параметра.

На ст. 3903 толщина гомогенного слоя I достигает 14 см, что соответствует абсолютной скорости седиментации (V) 28 мм/1000 лет.

В колонке 3905 при мощности слоя I около 2 см *V* = 4 мм/1000 лет [6, 15].

На ст. 3940-14 голоценовые осадки (сумма слоев I и II) составляют 9 см, т.е. *V* = 9 мм/1000 лет.

Таким образом, для оценки относительных скоростей формирования осадков (*V*0) по различным независимым параметрам были использованы колонки 3903, 3905 и 3940-14, тогда как данные по другим трем разрезам (станции 3922, 3923, 3940-3) послужили основой для выявления вариаций этих же параметров, исключая *V*0 [8, 10].

Ст. 3903 интересна тем, что она расположена на северо-восточной периферии радиоляриевого пояса биогенного кремненакопления с относительно высокими темпами седиментации (см. таблицу) [3, 10]. Вскрытый разрез мощностью 398 см представлен переслаивающимися кремнисто-глинистыми илами, вмещающими железомарганцевые конкреции, и миопелагическими глинами (рис. 1).

По комплексу характеристик в колонке 3903 визуально выделяются несколько экстремумов, на наш взгляд, свидетельствующих о замедлении темпов седиментации, т.е. о благоприятных условиях формирования МК (гор. 20-22, 170-172, 330-332, 360-362 см). Более достоверную аргументацию палеоокеанологических событий можно получить из представлений об относительных скоростях осадконакопления. Как было отмечено выше, абсолютная скорость формирования гомогенного слоя осадков (V) на ст. 3903 составляет 28 мм/1000 лет. После подсчета отношения каждого показателя верхнего (гомогенного) слоя к соответствующему параметру любого нижележащего горизонта осадков (в статье данные не приводятся) необходимо и достаточно полученные частные (безразмерные коэффициенты) умножить на 28, оценив относительную скорость седиментации (мм/1000 лет) – Vo. Результаты этой процедуры в сочетании с данными таблицы приведены на рис. 1.

Вычисленные значения *V*о варьируют в широких пределах – 0.4–1307 мм/1000 лет, однако статистически преобладают скорости до 30 мм/1000 лет, соответствующие изменениям параметров: вес осадка – Рос, вес фракции размером >0.05 мм – Рфр > 0.05 мм, вес микроконкреций размером >0.05 мм — Рмк > 0.05 мм, вес единичной микроконкреции — Рмк/Nмк, весовой вклад микроконкреций в осадок — Рмк/Рос.

Неоднозначные величины получены для показателей Nмк, Nмк/Vво (Vво – число МК в единице объема осадка), Nмк/Poc. Наблюдаемые экстремумы Ио приурочены к медленно накапливаюшимся миопелагическим глинам (гор. 20-22. 170-172, 330-332, 360-362 см), т.е. литологически объяснимы. Что касается относительно высоких Ио (гор. 0-7, 40-42, 150-152, 210-212 см и др.). то они согласуются как с более интенсивным накоплением кремнисто-глинистых илов по сравнению с миопелагическими глинами, так и с предположением о локальном поступлении дополнительного осадочного материала в район ст. 3903 за счет гравитационных потоков разного генезиса, включая взвесь придонных антарктических вод.

Таким образом, оценка Vo по множеству показателей свидетельствует, что осадки колонки 3903 сформировались в относительно спокойной обстановке, когда эпизодически усиливалась биопродуктивность планктона с кремневым скелетом, постепенно приближая смену миопелагических глин радиоляриево-глинистыми и глинисто-радиоляриевыми илами. Других значимых палеоокеонологических событий в пределах ст. 3903, по-видимому, не было.

Ст. 3905 (как и ст. 3903) находится в пределах северо-восточной периферии приэкваториального радиоляриевого пояса (см. таблицу), о чем свидетельствует маломощный гомогенный поверхностный слой глинисто-радиоляриевых илов, вмещающих железомарганцевые конкреции (рис. 2). В основном же полученная колонка длинной 392 см сложена окисленными глинами плейстоценовыми МГ, плейстоцен-миоценовыми ЭГ и древними МПГ [3, 10].

При мощности гомогенных осадков (слой I) около 2 см абсолютная скорость накопления их (V) составляет 4 мм/1000 лет [3, 15]. В зависимости от величин безразмерных коэффициентов (отношение параметров слоя I и нижележащих горизонтов), умноженных на 4, были подсчитаны по совокупности характеристик осадков и МК относительные темпы седиментации (Vо) на ст. 3905.

При большом разбросе величин *V*о (0.1–2402 мм/1000 лет) статистически преобладают относительные скорости до 10 мм/1000 лет (с учетом всех параметров, кроме Nмк/Vво).

Максимальные значения Vo, включая Nмк/Vвo, характерны для плейстоценовых МГ – гор. 140–142, 150–152, 220–222, 270–272 см. Ис-ключение составляет лишь параметр Рмк/Nмк, расчет по которому выявил нестандартные горизонты повышенной скорости Vo – 80–82, 100–102, 200–202 см.

I–4 – Осадки: *I* – глинисто-радиоляриевый ил, 2 – то же, обогащенный диатомеями, 3 – радиоляриево-глинистый ил, 4 – миопелагическая глина, обогащённая радиоляриями; 5 – железомарганцевая конкреция и ее фрагмент; 6, 7 – граница раздела: 6 – постепенная, 7 – резкая. **Рис. 1.** Строение осадочной толщи на ст. 3903 и относительные скорости седиментации – Vo (мм/1000 лет).

ОКЕАНОЛОГИЯ том 57 № 3 2017

ОКЕАНОЛОГИЯ том 57 № 3 2017

Наиболее благоприятные условия образования МК (низкие величины Vo) были, вероятно, при накоплении доплейстоценовых ЭГ и МПГ. Вполне возможно, что отмеченное выше эпизодическое нарастание скорости формирования МГ связано с разгрузкой в районе ст. 3905 тонкой взвеси замедленных антарктических глубинных вод.

Ст. 3940-14 расположена в биологически непродуктивной зоне (см. таблицу), поэтому вскрытый разрез мощностью 375 см, сложен плейстоценовыми окисленными миопелагическими глинами. включающими железомарганиевые конкреции как на разделе вода-дно, так и погребенные (рис. 3). На этой станции голоценовые осадки (сумма слоев I и II) [3, 15] составляют 9 см. т.е. *V* = 9 мм/1000 лет. В литологически однородной колонке 3940-14 относительная скорость накопления миопелагических глин (Vo) по комплексу параметров колеблется в пределах 0.3-285 мм/1000 лет, при этом в интервале разреза 0-152 см существенно преобладают повышенные значения Ио (10-285 мм/1000 лет), тогда как ниже по колонке (гор. 152-375 см) наблюдаются устойчиво низкие величины Ио (0.3-5.0-10.0 мм/1000 лет).

Таким образом, нижняя часть вскрытого разреза на ст. 3940-14 сформировалась в условиях постоянно малых Vo, благоприятных для роста МК. Позднее (до современности) неоднократно происходили пульсации параметров среды, связанные с вариациями климата и гидродинамики антарктических придонных вод в южной части Тихого океана, которые, постепенно замедляясь при движении на север, интенсивно освобождались от взвеси в районе ст. 3940–14.

В исследованных колонках (3903, 3905, 3940-14; см. таблицу, рис. 1—3) подсчитаны вариации и тренды относительных темпов осадконакопления (*V*0), исходя из абсолютной скорости (*V*) формирования приповерхностных слоев I и II [3, 15].

Полученные для разных параметров величины Vo (средние и экстремальные) оказались статистически близкими, что позволило выявить фоновые и аномальные горизонты осадков, высказать предположения об условиях их накопления.

ЗАКЛЮЧЕНИЕ

Комплексное исследование пелагических осадков низкопродуктивной зоны Северо-Восточной котловины Тихого океана позволило обосновать методику оценки относительных скоростей осадконакопления (Vo) и выявления трендов вариаций ряда параметров.

Фундаментом методики послужили известные представления об абсолютных темпах формирования приповерхностных слоев осадочной толщи (*V*), а также обратная зависимость между числом,

ОКЕАНОЛОГИЯ том 57 № 3 2017

массой, другими характеристиками марганцевых микроконкреций и V различных вещественно-генетических типов глубоководных отложений. При известных величинах V для литологических слоев I и II на станциях 3903, 3905, 3940-14 были определены не только вариации Vo (тренды), но и палеоокеанологически значимые уровни снижения или роста Vo, связанные, по-видимому, с климатическими событиями и динамикой антарктических придонных вод — дополнительного источника тонкодисперсной взвеси для образования пелагических глин.

Таким образом, очевидно, что разброс величин Vo, полученных путем сравнения различных показателей осадков и МК, весьма существенный, однако сходные значения Vo, вычисленные с учетом параметров Рмк/Nмк (средняя масса единичной микроконкреции), Рфр >0.05мм (вес фракции более 0.05мм), Рмк/Рос (весовой вклад микроконкреций в осадок) и Рмк (массы микроконкреций), позволяют считать именно эти показатели в основном отражающими тренды относительных темпов пелагического осадконакопления (Vo). Опираясь на собственные цели и задачи, возможные последователи вправе ограничивать себя в выборе предложенных параметров.

Интерпретация результатов выполнена при финансовой поддержке РНФ (проект № 14-50-00095).

СПИСОК ЛИТЕРАТУРЫ

- 1. Горшков А.И., Свальнов В.Н., Сивцов А.В. и др. Минеральный состав марганцевых микроконкреций Гватемальской котловины // Океанология.1996. Т.36. № 3. С. 112–118.
- Ивлиев П.А., Свальнов В.Н., Алексеева Т.Н. К методике расчета относительных скоростей пелагической седиментации // Осадочные бассейны, седиментационные и постседиментационные процессы в геологической истории. Материалы VII Всероссийского литологического совещания (Новосибирск, 28–31 октября 2013 г.). Новосибирск: ИНГГ СО РАН, Т. 1. С. 367–370.
- Свальнов В.Н. Динамика пелагического литогенеза. М.: Наука, 1991. 256 с.
- Свальнов В.Н. Литология и стратиграфия // Железо-марганцевые конкреции центральной части Тихого океана. М.: Наука, 1986. С. 36–67.
- Свальнов В.Н. Литостратиграфия // Железо-марганцевые конкреции Центральной котловины Индийского океана. М.: Наука, 1989. С. 96–97.
- Свальнов В.Н. Океанские марганцевые микроконкреции как индикатор условий седиментации // Тихоокеанская геология. 2001. Т. 20. № 6. С. 57–69.
- 7. *Свальнов В.Н.* Четвертичное осадкообразование в восточной части Индийского океана. М.: Наука, 1983. 192 с.
- 8. Свальнов В.Н., Алексеева Т.Н., Ивлиев П.А. Характеристики марганцевых микроконкреций как ин-

дикаторы условий седиментации в пелагических осадках. // Океанология. 2016.Т. 56. № 1. С. 146–153.

- 9. Свальнов В.Н., Горшков А.И., Успенская Т.Ю. и др. Минералогия марганцевых микроконкреций. Сообщение 1. Биологически непродуктивные зоны Мирового океана // Литология и полез. ископаемые. 1997. № 5. С. 458-469.
- Свальнов В.Н., Ивлиев П.А., Алексеева Т.Н. Влияние характеристик марганцевых микроконкреций на вариации относительных скоростей пелагической седиментации // Геология морей и океанов: Материалы XX Международной научной конференции (Школы) по морской геологии. М.: ГЕОС, 2013. Т 2. С. 313-317.
- 11. Свальнов В.Н., Ляпин А.Б., Новикова З.Т. Марганцевые микроконкреции. Сообщение 1. Общая характеристика и распределение в пелагических

осадках // Литология и полезн. ископаемые. 1991. № 3. С. 3–20.

- 12. *Свальнов В.Н., Ляпин А.Б., Новикова З.Т.* Марганцевые микроконкреции. Сообщение 2. Состав и происхождение // Литология и полез. ископаемые. 1991. № 4. С. 32–50.
- Свальнов В.Н., Новикова З.Т., Казакова В.П. Состав крупноалевритовой фракции осадков // Железомарганцевые конкреции Центральной котловины Индийского океана. М.: Наука, 1989. С. 127–134.
- 14. Свальнов В.Н., Успенская Т.Ю., Горшков А.И. и др. Минералогия марганцевых микроконкреций. Сообщение 2. Биологически продуктивные зоны Индийского и Тихого океанов // Литология и полезн. ископаемые. 1997. № 6. С. 636–648.
- Berger W.H. The bantic interface of deep-sea carbonates: A three-tiered sequence controlled by depth of deposition // The dinamic environment of the ocean floor. Toronto: Lexington Books, 1982. P. 95–114.

Research Pelagic Sedimentation Rates Depending on the Characteristics of Manganese Microconcretions

V. N. Svalnov, P. A. Ivliev, T. N. Alekseeva

In the study of sections of columns from the northern tropical Pacific (North-East Basin) revealed that pelagic sediments are the Quaternary oxidized uncarbonatic clay and radiolarian, radiolarian-clayey silt, clay miopelagic, sometimes enriched radiolarians prior to pleystotsen miopelagic and evpelagic clays, zeolite-clay sediments zeolitits. They are certain parameters micronodules manganese – particle size and composition, number, weight and distribution-determination. These data allowed us to calculate the relative sedimentation velocity (V_0) in sections. At the same time shall be based on an assessment of the absolute velocity (V) of the upper storage (homogeneous) layer column (age 5 thousand years). The values of the relative rates of sedimentation, the allow-by assume that indicators RMK/Nmk, RDF > 0.05 mm, RCC/grew and mass microconodules (RCC), the reflection-zhayut variation trends of rates of pelagic sedimentation.