——— МОРСКАЯ БИОЛОГИЯ ——

УДК 574.583:578(26:98)+579

ВИРУСЫ, БАКТЕРИИ И ГЕТЕРОТРОФНЫЕ НАНОФЛАГЕЛЛЯТЫ В ПЛАНКТОНЕ МОРЯ ЛАПТЕВЫХ

© 2016 г. А. И. Копылов¹, А. Ф. Сажин², Е. А. Заботкина¹, А. В. Романенко¹, Н. Д. Романова², П. Р. Макаревич³, М. П. Венгер³

¹Институт биологии внутренних вод им. И.Д. Папанина РАН, пос. Борок ²Институт океанологии им. П.П. Ширшова РАН, Москва ³Мурманский морской биологический институт КНЦ РАН, Мурманск *e-mail: kopylov@ibiw.yaroslavl.ru* Поступила в редакцию 21.10.2015 г. После доработки 26.12.2015 г.

Рассматриваются результаты определения концентрации и функциональных характеристик вирусов, бактерий и гетеротрофных нанофлагеллят, впервые полученные в море Лаптевых в августе– сентябре 2014 г. Численности бактерий, вирусов и гетеротрофных нанофлагеллят варьировали в пределах (110.1–828.4) × 10³ кл/мл, (384.2–2932.8) × 10³ частиц/мл и 108–651 кл/мл, соответственно. Суточная продукция бактериопланктона колебалась от 4.2 до 381.7 × 10³ кл/мл, составляя в среднем 117.6 × 10³ кл/мл. Методом электронной трансмиссионной микроскопии впервые установлено, что частота видимых инфицированных клеток бактерий изменялась от 0.2 до 2.0% (в среднем 0.8%) от N_B . Вирус-индуцированная смертность бактерий составила, в среднем, 6.3%, варьируя от 1.4 до 16.9% продукции бактериопланктона. Выедание бактерий гетеротрофными нанофлагеллятами превышало их гибель в результате вирусного лизиса. Гетеротрофные нанофлагелляты, потребляя бактерий, одновременно поглощали значительное количество вирусов, находившихся на поверхности и внутри бактериальных клеток.

DOI: 10.7868/S0030157416050051

введение

Микробные сообщества (МС) и микробная "петля" являются важной составной частью морских планктонных трофических сетей [4]. Главным компонентом МС являются гетеротрофные бактерии, через которые проходит половина или более общего потока углерода в планктонных трофических сетях пресноводных и морских экосистем [15]. Планктонные вирусы и гетеротрофные нанофлагелляты (ГНФ) во многих морских экосистемах являются основными потребителями бактериопланктона. Когда бактериальные клетки выедаются простейшими, вещество и энергия поступают на более высокие уровни трофической сети. Когда же они лизируются вирусами, вещество и энергия не поступают на высшие трофические уровни, а остаются в пределах вирусной "петли" и усваиваются не инфицированными бактериями [4, 29, 31]. Пространственно-временное распределение концентрации и особенности функционирования бактериопланктона, адаптированного к существованию при низких температурах воды, рассматривались для ряда районов Арктики [1, 9, 19, 20]. Структурно-функциональные характеристики планктонных вирусов и простейших, обитающих в арктических водах, исследованы в меньшей степени [6, 24-28]. Однако для большинства районов Арктики, в том числе моря Лаптевых, данные о функционировании планктонных микробных сообществ отсутствуют, что и определило цель работы. Задачей нашего исследования было определение структурно-функциональных параметров вириопланктона (численность, размерный состав, частота видимых инфицированных клеток и вирус-индуцированная смертность бактерий. продукция). бактериопланктона (численность, биомасса, продукция), и гетеротрофных нанофлагеллят (численность, биомасса), а также выяснение значения вирусов и гетеротрофных нанофлагеллят в регулировании численности и продукции бактерий в море Лаптевых.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследования проводили на НИС "Миргород" с 27 августа по 3 октября 2014 г. Пробы воды отбирали на станциях № 1–3 в Усть-Оленекском районе (УО), на станциях № 4–6 в Усть-Ленском районе (УЛ), а также на станциях № 7–11 в Анисинско-Новосибирском районе (АН) (рисунок). Пробы отбирали с 2–3-х горизонтов батометрами

Карта-схема расположения станций.

Нискина объемом 5 или 10 л. Температура воды в толще воды на исследованных станциях изменялась от -1.79°С до +5.23°С. Соленость воды в Усть-Оленекском районе находилась в пределах 28.81–33.79‰, в Усть-Ленском - 27.62–33.75‰, в Анисинско-Новосибирском - 24.71–34.84‰. Самые низкие величины солености воды отмечены на поверхности, наиболее высокие – на глубине 270 м.

Для учета общей численности вирусов, бактерий и гетеротрофных нанофлагеллят 50 мл воды непосредственно после отбора проб фиксировали нейтральным раствором формальдегида (конечная концентрация в пробе 1%) и заливали в полистироловые флаконы для последующей обработки. Пробы хранили в темноте при температуре +4°С. Общую численность бактерий определяли под люминесцентным микроскопом Leica DM 5000В при увеличении ×1000, после предварительного окрашивания проб флуорохромом DAPI (4,6-диамидино-2-фенилиндол) [23]. Бактериальная сырая биомасса вычислялась, исходя из объема бактериальных клеток, с использованием

Таблица 1. Температура воды (T, °C), удельная скорость роста (μ , ч⁻¹), доля делящихся клеток (n, % от общей численности бактериопланктона), продолжительность деления бактериальной клетки (τ , ч)

Станция	Горизонт, м	Т	μ	п	τ
1	0	4.25	0.0114	3.0	1.8
1	20	3.80	0.0216	3.7	1.2
4	0	4.20	0.0168	2.0	0.8
4	20	2.99	0.0170	1.7	0.7
7	20	0.10	0.0034	3.9	8.0
10	0	2.43	0.0293	3.9	0.9

программы анализа изображений "Ітаде Scope Color". Бактериальную биомассу в углеродных единицах вычисляли в соответствии с объемами бактериальных клеток, основываясь на формуле: фг С/кл = $133.754V^{0.438}$, где фг С/кл – содержание углерода (фемтограммы) в клетке, а V – объем клетки, мкм³ [8].

Продукцию планктонных бактерий рассчитывали как произведение численности или биомассы бактериопланктона и удельной скорости роста бактерий (µ). В шести случаях определяли в фильтрованных через мембранный фильтр с размером пор 1 мкм пробах воды. Пробы экспонировали в условиях близких к *in situ* в течение 24 часов. Удельную скорость роста бактерий (µ, час⁻¹) находили по формуле: $\mu = \ln N_t - \ln N_o/t$, где N_o и N_t – начальная и конечная численность бактериопланктона, кл/мл, t – время экспозиции, ч (табл. 1).

Удельную скорость роста бактериопланктона определяли, используя величины доли делящихся клеток (*n*) и продолжительности деления клеток бактерий — интервала от начала деления до расхождения клеток (τ) [2, 3, 7].

Для микроорганизмов с асинхронным делением (микроорганизмы, не проявляющие регулярной суточной периодичности деления, считаются размножающимися асинхронно) существует простая модель, связывающая долю делящихся клеток со временем генерации [2, 7]: $g = \tau/n$, где g – время генерации, τ – продолжительность деления (в тех же единицах времени), n – доля делящихся клеток.

Используя известное уравнение $\mu = \ln 2/g$, где $\mu -$ удельная скорость роста популяции, получаем $\mu = n \ln 2/\tau$. По полученным экспериментальным путем значениям удельной скорости роста и доли делящихся клеток были рассчитаны величины продолжительности деления бактериальных клеток (табл. 1).

Для расчета удельной скорости роста на горизонтах, где температура воды была выше $+1^{\circ}$ С, продолжительность деления бактериальных клеток в Усть-Оленекском районе принимали равную 1.6 ч, в Усть-Ленском и Анисинско-Новосибирском районах – 1 ч, а на горизонтах с температурой воды менее $+1^{\circ}$ С – 8 ч. Коэффициент использования усвоенной пищи на рост принимали равным 0.27 [20].

Вирусные частицы учитывали методом эпифлуоресцентной микроскопии с использованием флуорохрома SYBR Green I и фильтров из оксида алюминия Anodisc (Wathman) с диаметром пор 0.02 мкм [22]. На каждом фильтре просчитывали не менее 400 вирусных частиц. Содержание углерода в 1 вирусной частице принимали равным 0.055 фемтограмм вирус⁻¹ [26]. Фильтры с бактериями и вирусами просматривали при увеличении ×1000 под эпифлуоресцентным микроскопом Olympus BX51 (Япония) с системой анализа изображений Cell-F.

Для определения частоты видимых инфицированных вирусами гетеротрофных бактерий (Frequency of visibly infected cells (FVIC), % от общего количества бактерий) и среднего количества зрелых фагов в инфицированных бактериях (Burst size (BS), частиц/кл) использовали метод электронной трансмиссионной микроскопии. Вирусы и бактерии осаждали центрифугированием при 100000 g (35000 об/мин) в течение 2 ч с использованием ультрацентрифуги ОРТІМА L-90k (Beckman Coulter, США) на никелевые сеточки плотностью 400 мешей (400 отверстий на 1 дюйм), покрытые пиолоформом с угольным напылением. Сеточки просматривали в электронном микроскопе JEM 1011 (Jeol, Япония) при увеличении в ×50000-150000. На каждом препарате просматривали не менее 800 клеток бактерий. Для расчета доли всех инфицированных клеток гетеротрофных бактерий (Frequency of infected cells (FIC), % от общего количества гетеротрофных бактерий) использовали уравнение FIC = 7.1 FVIC - 22.5 FVIC² [11]. Гибель бактериопланктона, вызванную вирусным лизисом (Viral-mediated mortality of bacteria (VMB), %), определяли по формуле VMB = $= (FIC + 0.6FIC^2)/(1 - 1.2FIC)$ [11]. В данном методе предполагается, что численность бактериальных популяций остается постоянной, т.е. продукция бактерий равна их смертности. Количество бактерий, погибающих в результате вирусного лизиса (VIM), оцениваемое в кл/(мл сут) или мг С/(M^3 сут), рассчитывали как VIM = VMB × P_B , где *P_B* – продукция бактериопланктона. Продукцию вириопланктона (P_{ν} , частиц/(мл сут)) рас-считывали по уравнению $P_{\nu} = BS \times VIM$, где VIM – в кл/(мл сут). Время оборота численности вирусов получали делением величины их численности на величину продукции. Количество поступающего в окружающую водную среду в процессе вирусного лизиса бактериопланктона легкоусвояемого органического вещества лизированных бактериальных клеток в мг С/(M^3 сут) находили по разнице, как VIM и P_V . Полученные величины, по-видимому, несколько завышены, так как в расчетах не учтены величины энергетических трат вирусов на синтез белков капсида и процессы репликации нуклеиновых кислот. Такие данные до сих пор не известны и отсутствуют в литературе.

Численность гетеротрофных нанофлагеллят (N_{HNF}) определяли с использованием флуорохрома примулин и черных ядерных фильтров с диаметром пор 0.2 мкм [13]. Препараты просматривали при увеличении 1000 раз под эпифлуоресцентным микроскопом Olympus BX51 (Япония) с

системой анализа изображений. Содержание органического углерода в сырой биомассе гетеротрофных нанофлагеллят принимали равным 22% [12]. Усвояемость пищи у ГНФ принимали равной 0.7.

При установлении корреляционных зависимостей между параметрами был использован ранговый коэффициент корреляции Спирмена для уровня значимости 0.05.

РЕЗУЛЬТАТЫ

Численность (N_B) и биомасса (B_B) бактериопланктона в исследованных районах моря Лаптевых колебались в широких пределах, достигая наибольших значений в Анисинско-Новосибирском районе в поверхностном горизонте (табл. 2). Средний объем бактериальных клеток изменялся от 0.021 до 0.045 мкм³, при среднем значении 0.032 ± 0.001 мкм³. Величины N_B и B_B , в среднем для столба воды, соответственно, составили в Усть-Оленекском районе $371.46 \pm 33.42 \times 10^3$ кл/мл и 6.76 \pm 0.96 мг С/м³, в Усть-Ленском 419.18 \pm $\pm 46.30 \times 10^3$ кл/мл и 6.40 ± 1.87 мг С/м³. Близкие величины были получены в Анисинско-Новосибирском районе: 306.03 ± 60.15 × 10³ кл/мл и 5.57 \pm 1.11 мг С/м³. Между значениями температуры воды и N_R наблюдалась слабая положительная корреляция (R = 0.28, p = 0.05). Делящиеся клетки бактерий были обнаружены на всех глубинах (табл. 2). Удельная скорость роста бактериопланктона при температуре воды +1.04-5.23°C составила 0.16-0.83 сут⁻¹ (в среднем 0.39 ± 0.04 сут⁻¹), и при температуре воды ниже +1°C - 0.04- 0.08 сут^{-1} , (в среднем $0.06 \pm 0.01 \text{ сут}^{-1}$). Продукция бактериопланктона (Р_в) достигала наиболее высоких значений в поверхностном горизонте Анисинско-Новосибирского района (табл. 2). Величины суточной P_B, в среднем для столба воды, составили в Усть-Оленекском районе (105.64 ± ± 15.52) × 10³ кл/мл или (1.90 ± 0.31) мг С/м³, в Усть-Ленском (140.82 \pm 22.12) \times 10³ кл/мл или (2.47 ± 0.21) мг С/м³, и в Анисинско-Новосибирском - (91.92 ± 29.52) × 10³ кл/мл или 2.20 ± $\pm 0.69 \text{ Mg} \text{ C/m}^3$.

Численность вириопланктона (N_V) в пелагиали исследованных участков моря колебалась от 384.2 × 10³ частиц/мл до 2932.8 × 10³ частиц/мл, при среднем значении (1622.3 ± 157.6) × 10³ частиц/мл (табл. 3). Отношение N_V/N_B менялось от 1.6 до 13.3, составляя в среднем 5.5 ± 0.7 (табл. 3). Между N_B и N_V прослеживалась слабая положительная связь (R = 0.32, p = 0.05). Величина N_V , в среднем для столба воды, в Усть-Оленекском районе ((1878.5 ± 347.0) × 10³ частиц/мл) была выше, чем аналогичные показатели в Усть-Ленском

КОПЫЛОВ и др.

Станция	Горизонт, м	<i>T</i> , °C	N _B	B _B	P _B		Ø
					10 ³ кл/мл	мг C/м ³	n, %
			Усть-Оленек	ский район			
2	0	3.07	351.35	8.63	76.7	1.88	2.1
3	24	1.04	369.52	7.95	111.7	2.40	2.9
	0	3.10	376.06	6.72	70.4	1.26	1.8
2	10	2.86	222.55	2.81	55.5	0.70	2.4
	60	1.69	449.82	5.37	116.6	1.39	3.5
1	0	4.25	499.23	10.51	136.6	2.88	3.0
1	20	3.80	331.73	5.36	172.0	2.78	3.7
	·		Усть-Ленск	сий район			
(0	2.29	313.38	5.17	136.88	2.26	2.1
6	12	3.21	458.72	8.57	143.12	2.80	1.5
4	0	4.20	485.43	7.05	195.72	2.84	2.3
4	20	2.99	214.55	4.83	87.54	1.97	2.7
	·	Анис	инско-Новос	ибирский ра	йон		
9	0	3.51	219.64	4.29	101.21	1.98	2.5
	15	2.9	226.54	3.68	66.87	1.09	1.6
	0	5.23	551.80	10.10	458.21	8.39	3.5
8	17	1.39	237.81	3.30	101.02	1.40	2.3
	33	0.28	462.90	6.66	32.22	0.46	3.4
7	0	2.44	172.04	5.17	28.49	0.86	0.9
/	20	0.10	218.55	3.95	17.83	0.32	3.9
10	0	2.43	142.52	3.59	100.22	2.52	2.6
10	30	1.65	203.84	3.85	89.53	1.71	2.4
	0	2.49	828.42	15.80	381.74	7.28	2.5
11	70	-1.79	298.30	4.74	21.48	0.34	1.8
	270	0.96	110.09	1.67	4.23	0.06	1.8

Таблица 2. Температура воды (T, °C), численность (N_B , 10³ кл/мл), биомасса (B_B , мг C/м³), суточная продукция (P_B) бактериопланктона и доля делящихся клеток бактерий (n, % N_B)

((1553.7 ± 344.0) × 10³ частиц/мл) и в Анисинско-Новосибирском ((1495.7 ± 202.7) × 10³ частиц/мл) районах. В то же время отношение N_V/N_B в Анисинско-Новосибирском районе (6.1) было выше, чем в других участках моря (4.2–5.3).

Количество бактерий с прикрепленными к их клеткам вирусными частицами (N_{BV}) в море Лаптевых менялось от 16.96 × 10³ до 219.53 × 10³ кл/мл, составляя, в среднем, (56.73 ± 8.74) × 10³ кл/мл. Доля N_{BV} от общей численности бактериопланктона (N_{BV}/N_B) варьировала в меньших пределах (8.7–26.5%), составляя, в среднем, 16.4 ± 1.0%. На поверхности одной бактериальной клетки присутствовало от 1 до 11 вирусных частиц. Диаметр капсид прикрепленных вирусов колебался от 18 до 184 нм, но большинство прикрепленных виру-

сов имели размер капсид менее 60 нм. Численность вирусов, прикрепленных к бактериальным клеткам (N_{VB}), колебалась от 23.2 × 10³ частиц/мл до 393.0 × 10³ частиц/мл, при средней величине (87.5 ± 16.1) × 10³ частиц/мл. Отношение N_{VB}/N_V менялось в пределах 1.5–24.4%, составляя в среднем 6.1 ± 1.0% (табл. 3).

Диаметр капсид обнаруженных свободных планктонных вирусов колебался от 16 до 531 нм. Средние же размеры капсид вирусных частиц на исследованных акваториях моря Лаптевых колебались в пределах 55–98 нм (73 ± 5 нм). В составе вириопланктона, в 57% случаев наиболее многочисленной группой были фаги размером 60–100 нм, в 26% — фаги размером 40–60 нм, в 17% — фаги размером менее 40 нм. В 13 пробах воды (57%) бы-

ОКЕАНОЛОГИЯ том 56 № 6 2016

Станция	Горизонт, м	N_{V} ,	N_V/N_B	N _{BV}		N _{VB}			
		10 ³ частиц/мл		10 ³ кл/мл	% N _B	10 ³ ч/мл	$\% N_V$		
Усть-Оленекский район									
2	0	905.8	2.6	47.43	13.5	64.0	7.1		
3	24	2913.9	7.9	46.93	12.7	81.2	2.9		
	0	2001.2	5.3	77.09	20.5	101.8	5.1		
2	10	2271.3	10.2	39.39	17.7	52.8	2.3		
	60	1525.0	3.4	94.91	21.1	123.4	8.1		
1	0	2932.8	5.9	104.84	21.0	185.6	6.3		
1	20	599.3	1.8	50.42	15.2	59.5	9.9		
			Усть-Ленс	кий район					
(0	783.7	2.5	31.96	10.5	47.5	6.1		
6	12	1948.7	4.2	74.31	16.2	121.9	6.3		
4	0	2289.3	4.7	42.23	8.7	54.5	2.4		
4	20	1193.2	5.6	38.83	18.1	65.2	5.5		
		Аниси	инско-Ново	сибирский ра	йон				
9	0	602.9	2.7	52.05	23.7	80.7	13.4		
	15	1415.1	6.2	37.83	16.7	52.2	3.7		
	0	2213.7	4.0	56.84	10.3	70.5	3.2		
8	17	1560.3	6.6	34.24	14.4	54.8	3.5		
	33	2708.8	5.9	61.57	13.3	78.2	2.9		
7	0	2289.3	13.3	23.57	13.7	35.1	1.5		
/	20	1193.2	5.5	52.23	23.9	80.4	6.7		
10	0	1884.0	13.2	16.96	11.9	35.6	1.9		
10	30	1567.0	7.7	27.11	13.3	42.6	2.7		
	0	1334.9	1.6	219.53	26.5	393.0	24.4		
11	70	795.5	2.7	56.98	19.1	75.8	9.5		
	270	384.2	3.5	17.61	16.0	23.2	6.0		

Таблица 3. Численность вириопланктона (N_V) , численность бактерий с прикрепленными вирусами (N_{BV}) и численность вирусов, прикрепленных к бактериям (N_{VB})

ли зарегистрированы крупные фаги размером от 200 до 531 нм, т.е. их размер был сопоставим с та-ковым у бактериальных клеток.

В итоге, в среднем для всех исследованных участков моря, вклад вирусов, входящих в размерные группы 20–40, 40–60, 60–100, 100–150, 150–200 и более 200 нм в общую численность вириопланктона составил, соответственно, 19.3 \pm 4.0%, 25.9 \pm 3.2%, 36.9 \pm 3.1%, 12.4 \pm 2.1%, 4.0 \pm \pm 0.8% и 1.5 \pm 0.3%.

Частота видимых инфицированных вирусами бактерий (FVIC), т.е. доля в общей численности бактериопланктона клеток, содержащих внутри зрелые фаговые частицы, менялась от 0.2 до 2.0% (в среднем $0.8 \pm 0.1\%$), достигая максимального значения в поверхностном горизонте Анисин-

3 ОКЕАНОЛОГИЯ том 56 № 6 2016

ско-Новосибирского района моря (табл. 4). Величина FVIC, в среднем, в Усть-Оленекском районе равнялась $0.5 \pm 0.1\%$, в Усть-Ленском — $1.0 \pm \pm 0.3\%$, в Анисинско-Новосибирском — $0.9 \pm 0.2\%$. Судя по нашим данным, вирусы в неодинаковой степени инфицировали гетеротрофных бактерий различной морфологии. Общее число зараженных вирусами клеток было представлено: 41.3% палочками, 32.6% кокками, 18.1% вибрионами и 8.0% нитевидными бактериями.

Количество фагов в инфицированных бактериальных клетках (BS) в среднем на пробу воды существенно различалось на разных станциях и глубинах, составляя в среднем 18 ± 5 фагов/клет-ку (табл. 4). В исследованных районах моря максимальная и средняя для всех инфицированных бактерий величины BS составили, соответствен-

Таблица 4. Частота видимых инфицированных клеток бактерий (FVIC, % от N_B), частота всех инфицированных клеток бактерий (FIC, % от N_B), смертность бактерий, вызванная вирусным лизисом, (VMB, % от P_B) и количество зрелых бактериофагов внутри инфицированных бактерий (BS, фагов/клетку)

Станция	Горизонт, м	FVIC	FIC	VMB	BS			
Усть-Оленекский район								
3	0	0.7	4.9	5.4	32 ± 12			
	24	0.5	3.5	3.7	38 ± 16			
	0	0.5	3.5	3.7	11 ± 4			
2	10	0.3	2.1	2.2	9			
	60	0.2	1.4	1.4	21			
1	0	1.0	6.9	7.8	22 ± 15			
1	20	0.5	3.5	3.7	5±0.5			
Усть-Ленский район								
(0	0.3	2.1	2.2	5			
0	12	0.8	5.5	6.1	13 ± 7			
4	0	1.0	6.9	7.8	10 ± 4			
4	20	1.7	11.4	14.1	12 ± 5			
Анисинско-Новосибирский район								
0	0	1.7	11.4	14.1	22 ± 20			
9	15	1.2	8.5	9.9	17 ± 5			
	0	0.3	2.1	2.2	8			
8	17	0.7	4.9	5.4	9 ± 1			
	33	0.3	2.1	2.2	111			
7	0	1.0	6.9	7.8	7 ± 3			
/	20	0.5	3.5	3.7	7 ± 1			
10	0	2.0	13.3	16.9	8 ± 1			
	30	1.1	7.5	8.6	7 ± 3			
11	0	1.2	8.5	9.9	18 ± 6			
	70	0.3	2.1	2.2	12			
	270	0.5	3.5	3.7	14 ± 7			

но, в Усть-Оленекском — 53 и 20 \pm 5 фагов/клетку, в Усть-Ленском — 23 и 10 \pm 2 фагов/клетку, в Анисинско-Новосибирском — 111 и 20 \pm 8 фагов/клетку.

Вирус-индуцированная смертность бактериопланктона (VMB) в период проведения работ в целом оказалась невысокой и в среднем для всех станций определялась величиной $6.3 \pm 0.9\%$ (табл. 4). Средняя величина VMB в Усть-Оленекском районе ($4.0 \pm 0.8\%$) была существенно ниже, чем на других акваториях моря ($7.6 \pm 2.5\%$ и $7.2 \pm 1.4\%$).

Суточная гибель бактерий в кл/(мл сут) и в мг С/(м³ сут) (VIM) значительно варьировала, составляя, в среднем, $(6.06 \pm 1.06) \times 10^3$ кл/(мл сут) (диапазон колебаний – $(0.16-16.94) \times 10^3$ кл/(мл сут)) и 145 ± 35 мкг С/(м³ сут) (диапазон колебаний – 2–721 мкг С/(м³ сут)). Средняя величина VIM в Усть-Оленекском, Усть-Ленском и Анисинско-Новосибирском районах составила, соответственно: 4.39 ± 1.2 кл/(мл сут) и 86 ± 27 мкг С/(м³ сут), 9.84 ± 2.64 кл/(мл сут) и 180 ± 49 мкг С/(м³ сут), 5.77 ± 1.62 кл/(мл сут) и 168 ± 62 мкг С/(м³ сут).

Продукция вириопланктона (P_{ν}) на горизонтах с температурой воды более +1°С менялась в пределах (10.98–313.94) × 10³ частиц/(мл сут) (в среднем (99.40 ± 1.85) × 10³ частиц/(мл сут)), а время оборота численности вириопланктона (T) колебалось от 1.4 до 206.8 сут (в среднем 39.0 ± ± 12.1 сут). На глубинах с температурой воды менее +1°С данные параметры составили: (2.24–78.81) × 10³ частиц/(мл сут) (в среднем (22.83 ± 18.67) × 10³ частиц/(мл сут)) и 34.4–258.3 сут (в среднем 151.3 ± 46.2 сут).

Численность (N_{HNF}) и биомасса (B_{HNF}) гетеротрофных нанофлагеллят существенно отличались как между станциями, так и на разных глубинах одной станции, составляя, в среднем, соответственно, 296 ± 34 кл/мл и 1.63 ± 0.17 мг С/м³. Объем клеток ГНФ менялся в меньшей степени, составляя, в среднем, 27 ± 2 мкм³ (табл. 5). Величина N_{HNF} оказалась на три порядка ниже таковой бактериопланктона, а B_{HNF} составляла 1.6-63.3% (в среднем 24.4 \pm 4.0%) биомассы бактериопланктона. Между N_{HNF} и N_B обнаружена высокая положительная корреляция (R = 0.63, p = 0.05). В некоторых образцах воды обнаружены вирусные частицы размером более 0.2 мкм ((5.0-76.0) × $\times 10^3$ частиц/мл, в среднем для 15 проб воды $(34.8 \pm 5.5) \times 10^3$ частиц/мл), которые, потенциально, могут потребляться ГНФ. Однако отношение численности крупных вирусных частиц к численности гетеротрофных нанофлагеллят было низким (табл. 5).

ОБСУЖДЕНИЕ

Общая биомасса (B_{MC}) бактерий, вирусов и ГНФ в исследованных участках моря Лаптевых изменялась от 2.02 до 18.58 мг С/м³ (при среднем значении 7.80 ± 0.76 мг С/м³), причем минимальная и максимальная величины находились на глубоководной станции в поверхностном и придонном горизонтах. Величины B_{MC} для исследованных акваторий немного снижались к центру моря: в Усть-Оленекском районе – 8.73 ± 0.87 мг С/м³, в Усть-Ленском – 7.86 ± 1.62 мг С/м³, в Анисинско-Новосибирском – 7.07 ± 1.3 мг С/м³.

В исследованных акваториях моря Лаптевых величины численности (в среднем (336.93 \pm 34.3) ×

Станция	Горизонт	N_{HNF}	V	B _{HNF}	N_B/N_{HNF}	$N_{V0.2}/N_{HNF}$	
Усть-Оленекский район							
	0	328	22	1.50	1071	0	
3	24	246	34	1.84	1502	300	
	0	157	38	1.31	2395	0	
2	10	352	23	1.78	632	0	
	60	400	26	2.29	1125	67	
1	0	283	21	1.31	1764	268	
1	20	651	21	3.01	510	42	
		Усть	Ленский район				
(0	204	28	1.26	1536	90	
0	12	424	20	1.86	1082	0	
4	0	644	25	3.54	754	0	
4	20	144	25	0.79	1490	0	
Анисинско-Новосибирский район							
0	0	189	27	1.12	1162	106	
9	15	275	34	2.06	824	148	
	0	523	23	2.65	1055	52	
8	17	314	17	1.17	757	0	
	33	235	36	1.86	1970	269	
7	0	176	22	0.85	978	195	
1	20	157	35	1.21	1393	278	
10	0	96	43	0.91	1485		
	30	80	20	0.35	2548	417	
11	0	472	26	2.70	1755	41	
	70	245	34	1.83	1218	58	
	270	108	14	0.33	1019	46	

Таблица 5. Численность (N_{HNF} , кл/мл), средний объем клетки (V, мкм³), биомасса (B_{HNF} , мг С/м³) гетеротрофных нанофлагеллят

Примечание. $N_{V0.2}$ – численность вирусов с диаметром капсид ≥ 0.2 мкм.

 $\times 10^{3}$ кл/мл) и биомассы (6.08 ± 0.65 мг С/м³) бактериопланктона оказались близкими к таковым в мелководном районе (соответственно, (198.1-61.6) × × 10³ кл/мл и 6.87–1.22 мг С/м³), но были выше, чем в глубоководном районе (соответственно, (73.3-15.6) × 10³ кл/мл и 1.77-0.37 мг С/м³) Карского моря [6]. В других арктических морях (Баренцевом, Беринговом) обнаружена более высокая численность бактериопланктона [1, 19, 27]. Средний объем бактериальных клеток оказался ниже, чем этот показатель в глубоководном районе Карского моря -0.050 ± 0.004 мкм³ (диапазон 0.02-0.190 мкм³) и Баренцевом море 0.055 ± ± 0.003 мкм³ (диапазон 0.014-0.093 мкм³) [1, 6]. Величины удельной скорости роста бактериопланктона в море Лаптевых, полученные в настоящей работе, при температуре воды 1.04-5.23°С -

0.16–0.83 сут⁻¹, в среднем 0.39 ± 0.04 сут⁻¹, оказались ниже таковых величин, полученных в Карском море методом с использованием ¹⁴С-лейцина (0.26–1.38 сут⁻¹, в среднем 0.49 ± 0.15 сут⁻¹) при температуре воды 1.4–5.8°С [20] и методом с использованием антибиотиков (0–2.08 сут⁻¹, в среднем 0.57 ± 0.15 сут⁻¹) при температуре воды 0.5–5.3°С [6]. Продукция бактериопланктона в открытых районах моря Лаптевых (в среднем 2.15 ± ± 0.42) была соизмерима с таковой в мелководном районе, но была немного выше бактериальной продукции в глубоководном районе (среднее 1.21–0.39) Карского моря [6].

Численность планктонных вирусных частиц (V) и отношение численности бактериопланктона к численности вириопланктона (N_V/N_B) в море

Лаптевых в августе-сентябре 2014 г. находились внутри диапазона величин $N_V((0.1-64.1) \times 10^6$ частиц/мл) и N_V/N_B (0.8–70.0), обнаруженных в других районах Арктики [1, 6, 14, 18, 19, 26, 27].

В море Лаптевых, также как и в Карском море в составе вириопланктона преобладали вирусы с диаметром капсид 60-100 нм (36.9 ± 3.1%) и 40-60 нм (25.9 ± 3.2%) [6]. Анализ размерного состава прикрепленных к поверхности бактериальных клеток вирусов, показал, что в море Лаптевых диаметр капсид вирусов-бактериофагов колебался от 18 до 184 нм, причем, чаще преобладали частицы размером менее 60 нм. В море Лаптевых между численностью бактериопланктона и общей численностью вириопланктона обнаружена лишь слабая положительная корреляция, но наблюдалась более сильная положительная корреляция между численностью бактерий и численностью вирусных частиц размером 20-60 нм -R = 0.48, p = 0.05.

Количество бактерий, содержащих внутри клеток видимые частицы вирусов ($0.8 \pm 0.1\%$ от общей численности бактерий), и вирус-индуцированная смертность бактерий ($6.3 \pm 0.9\%$ от суточной продукции бактериопланктона) в море Лаптевых оказались выше величин данных параметров, обнаруженных в водах центральной Арктики, открытых районах Карского моря [6, 26], близкими и ниже, чем в прибрежных водах Карского моря, Беринговом и Чукотском морях, море Баффина [5, 6, 21, 27].

Численность ГНФ в море Лаптевых была невысокой и находилась в пределах величин N_{HNF} , обнаруженных в других районах Арктики — от 40—1900 кл/мл [5, 24, 28, 30]. Отношение N_B/N_{HNF} в этих районах, чаще всего, было более 1000.

Шерр с соавторами [24] с использованием флуоресцентно-меченных бактерий (метод uptake FLB) установили, что в центральной Арктике скорость осветления воды $\Gamma H \Phi$ размером 2–10 мкм, составила 2.5-5.6 нл/(клетку ч), а скорость потребления бактерий – 0.16–1.0 кл/(экз ч). Другие исследователи [28] определили, что в бухте Франклина скорость потребления бактерий в декабре-мае при температуре воды от -1.5 до -1.7° С варьировала в пределах 1.3-14.8 (в среднем, 4.7 (зимой) и 9.5 (весной) кл/(экз ч)), при этом скорость осветления воды (СОВ) была выше 10 нл/(экз ч) [28]. Полученные результаты свидетельствовали, что величины СОВ ГНФ в холодных арктических водах близки к величинам СОВ ГНФ, обитающих в более теплых водах умеренных широт [4]. Руководствуясь этим фактом, мы допустили, что в водах Арктики, также как в умеренных широтах, один гетеротрофный жгутиконосец в час осветляет объем воды, равный 10⁵ объема его тела [16]. Расчеты показали, что в исследованном районе моря ГНФ питались бактериями со скоростью 0.2-2.2 клетки/(экз ч). В итоге, сообществом гетеротрофных нанофлагеллят моря Лаптевых в период наших исследований могло выедаться в сутки $(0.40-24.4) \times 10^3$ кл/мл (в среднем (6.90 ± 1.27) × 10³ кл/мл) или 0.01-0.47 мг С/м³ (в среднем 0.121 ± 0.022 мг С/м³), что составляло 1.1-30.4% (в среднем $8.3 \pm 0.2\%$) суточной пролукции бактериопланктона и превышало гибель бактерий в результате вирусного лизиса. Однако в 8 из 23 исследованных проб воды вирус-индуцированная смертность бактерий была выше, чем их потребление ГНФ. Таким образом, в среднем для исследованных районов моря Лаптевых. на более высокий трофический уровень поступало значительно большее количество органического вещества бактерий (15 станций из 23), чем оставалось в пределах вирусной "петли" (8 станций). Суммарный вклад вирусов и гетеротрофных нанофлагеллят в элиминацию бактериопланктона варьировал от 5.2 до 32.6% (в среднем $14.6 \pm 1.1\%$) суточной бактериальной продукции.

В центральной Арктике в верхнем 10-метровом слое воды в июле—сентябре выедание бактерий ГНФ составило 4.1-31.7% (в среднем 14.1%) продукции бактериопланктона, определенной с использованием ³Н-тимидин, или 1.1-23.2% (в среднем 6.7%) продукции бактериопланктона, полученной с использованием ³Н-лейцина [24]. В бухте Франклина ГНФ зимой потребляли $152 \pm 159\%$, а весной – $31 \pm 26\%$ продукции бактериопланктона [28]. Андерсен и Ривкин [10] полагают, что в полярных областях выедание бактериопланктона простейшими достигает максимальных значений зимой, а летом и в начале осени, с увеличением в планктоне концентрации фотосинтезирующих микроорганизмов, снижается.

Стюарт с соавторами [27] полагают, что в Арктике значение вирусов в смертности бактериопланктона может быть эквивалентно или даже превышать их выедание гидробионтами. Например, в придонных водах бухты Баффина гибель бактерий в результате вирусного лизиса существенно выше их потребления ГНФ, что объясняется низкой численностью простейших [30].

Экспериментальными исследованиями установлено, что гетеротрофные нанофлагелляты способны потреблять свободные вирусные частицы, но в очень небольшом количестве [17]. Повидимому, ГНФ способны извлекать из воды только крупные вирусые частицы. В море Лаптевых свободные вирусы с размером капсид, равным и более 0.2 мкм, были обнаружены на 15 из 23 исследованных станций. Их численность находилась в пределах 5.00–63.11 × 10³ частиц/мл. Используя величины скорости осветления воды, мы получили, что ГНФ могли потреблять крупные вирусные частицы со скоростью 0.2–6.0 частиц/(экз сут), а количество потребленных сообществом ГНФ свободных вирусов составило $0.02-1.48 \times 10^3$ (в среднем (0.63 ± 0.11) × 10³) частиц/(мл сут). Значительно большее количество вирусов могло поступать на более высокий трофический уровень при питании ГНФ инфицированными бактериями и бактериями с прикрепленными к их клеткам вирусными частицами. По нашим расчетам в море Лаптевых скорость потребления ГНФ внутриклеточных фагов и прикрепленных к бактериальным клеткам вирусов составила, соответственно, $0.20-37.30 \times 10^3$ (в среднем (5.28 ± 1.65) × 10³) частиц/(мл сут) и $0.08-11.58 \times 10^3$ (в среднем (1.78 ± 0.49) $\times 10^3$) частиц/(мл сут). В итоге суммарное потребление ГНФ свободных вирусов и вирусов, ассоциированных с бактериями, составило 0.30-49.44 (в среднем 7.47 ± 2.12) × 10⁶ частиц/(мл сут) или 1.3-77.2 (в среднем 14.9 ± 4.1)% суточной P_{ν}

В процессе питания ГНФ бактериями, а также вирусного лизиса бактерий в водную среду поступает "мертвое" органическое вещество (ОВ) в виде неусвоенного ГНФ органического вещества потребленных бактерий и остатков лизированных бактерий, которое может повторно использоваться активно функционирующими бактериями. В первом случае ОВ выделялось со скоростью 3-141 (в среднем 36 ± 7) мкг С/(м³ сут), во втором – 2-632 (в среднем 124 ± 29) мкг С/(м³ сут). В итоге, суммарное количество "мертвого" ОВ, поступающего в водную толщу, составило 5-773 (в среднем 159 \pm 34) мкг С/(м³ сут), что обеспечивало 0.7-3.9 (в среднем 2.1 ± 0.2) % суточных потребностей бактериопланктона в ОВ. Таким образом, образующееся в процессе питания ГНФ бактериями и вирусного лизиса "мертвое" органическое вещество в период исследований в море Лаптевых было слабо заметным дополнительным источником питания для активно функционирующих бактерий.

ЗАКЛЮЧЕНИЕ

Величины численности, биомассы и продукции бактериопланктона в море Лаптевых оказались близки к таковым в других арктических морях, наблюдаемым в аналогичный период года (конец лета—начало осени).

Планктонные вирусы были самым многочисленным компонентом микробного сообщества моря Лаптевых, их численность превышала численность бактериопланктона, в среднем, в 3.8 раза. Кроме свободных вирусных частиц, значительное количество вирусов было прикреплено к клеткам бактерий. Зараженность бактерий вирусами и смертность бактерий в результате вирусного лизиса значительно колебались, а средние величины оказались выше таковых, полученных для других открытых районов Арктики. Гетеротрофные нанофлагелляты были важным компонентом микробного сообщества, составляя, в среднем, 24.4% биомассы бактериопланктона. Расчет скорости питания ГНФ бактериями показал, что выедание бактериопланктона сообществом ГНФ превышало вирус-индуцированную смертность планктонных бактерий в 1.3 раза.

Кроме того, в море Лаптевых гетеротрофные нанофлагелляты, потребляя бактерий, содержащих вирусы на поверхности и внутри клеток, принимают существенное участие в контроле над численностью и продукцией планктонных вирусов.

Работа выполнена при финансовой поддержке РФФИ (проекты № 14-04-00130a, № 14-05-00028a, № 14-05-10055_K, № 14-05-31367 мол_а) и РНФ (проект № 14-50-00095, лабораторная обработка материалов).

СПИСОК ЛИТЕРАТУРЫ

- 1. Венгер М.П., Широколобова Т.И., Макаревич П.Р., Водопьянова В.В. Вирусы в пелагиали Баренцева моря // Докл. РАН. 2012. Т. 446. № 3. С. 345-349.
- Заика В.Е., Макарова Н.П. Время генерации, продолжительность деления и доля делящихся клеток у двух видов микроорганизмов // Биология моря. Киев: Наукова думка, 1975. Вып. 33. С. 119–121.
- 3. Заика В.Е., Макарова Н.П. Частота делящихся микроорганизмов как показатель интенсивности их размножения // Гидробиологический журнал. 1989. Т. 25. № 5. С. 32–38.
- Копылов А.И., Косолапов Д.Б. Микробная "петля" в планктонных сообществах морских и пресноводных экосистем. Ижевск: КнигоГрад, 2011. 332 с.
- 5. Копылов А.И., Косолапов Д.Б., Заботкина Е.А. и др. Планктонные вирусы, гетеротрофные бактерии и нанофлагелляты в пресных и морских прибрежных водах бассейна Карского моря (Арктика) // Биология внутренних вод. 2012. № 3. С. 15–24.
- Копылов А.И., Сажин А.Ф., Заботкина Е.А., Романова Н.Д. Вириопланктон Карского моря: влияние вирусов на смертность гетеротрофных бактерий // Океанология. 2015. Т. 55. № 4. С. 620–629.
- Макарова Н.П. Метод расчета времени генерации по доле делящихся микроорганизмов // Биология моря. Киев: Наукова думка, 1975. Вып. 33. С. 116–118.
- 8. *Романова Н.Д., Сажин А.Ф.* Взаимосвязь между объемом бактериальных клеток и содержанием в них углерода // Океанология. 2010. Т. 50. № 4. С. 556–565.
- Сажин А.Ф., Романова Н.Д., Мошаров С.А. Бактериальная и первичная продукция в водах Карского моря // Океанология. 2010. Т. 50. № 5. С. 801–808.
- Anderson M.R., Rivkin R.B. Seasonal patterns in grazing mortality of bacterioplankton in polar oceans: a bipolar comparison // Aquat. Microbial. Ecol. 2001. V. 23. P. 195–206.

- Binder B. Reconsidering the relationship between virally induced bacterial mortality and frequency of infected cells // Aquat. Microbial. Ecol. 1999. V. 18. P. 207–215.
- Børsheim K.Y., Bratbak G. Cell volume to carbon conversion factors for bacterivorous Monas sp. enriched from seawater // Marine Ecology Progress Series. 1987. V. 36. P. 171–175.
- Caron D.A. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy and comparison with other procedures // Appl. Environ. Microbiol. 1983. V. 46. № 2. P. 491–498.
- Clasen J.L., Brigden S.M., Payet J.P., Fenchel T. Ecology of heterotrophic microflagellates. II. Bioenergetics and growth // Marine Ecology Progress Series. 1982. V. 8. P. 225–231.
- Cole J.J., Findley S., Pace M.L. Bacterial production in fresh and saltwater ecosystems: a cross-system overview // Marine Ecology Progress Series. 1988. V. 43. P. 1–10.
- Fenchel T. Ecology of heterotrophic microflagellates. II. Bioenergetics and growth // Marine Ecology Progress Series. 1982. V. 8. P. 225–231.
- Gonzalez J.M., Suttle C.A. Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion // Marine Ecology Progress Series. 1993. V. 94. P. 1–10.
- Hodges L.R., Bano N., Hollibaugh J.T., Yager P. Illustraing the importance of particulate organic matter to pelagic microbial abundance and community structure an Arctic case study // Aquat. Microb. Ecol. 2005. V. 40. P. 217–227.
- Howard-Jones M.H., Ballard V.D., Allen A.E. et al. Distribution of bacterial biomass and activity in the marginal ice zone of the central Barents Sea during summer // J. of Marine Systems. 2002. V. 38. P. 77–91.
- Meon B., Amon R.M.W. Heterotrophic bacterial activity and fluxes of dissolved free amino acids and glucose in the Arctic rivers Ob, Yenisei and the adjacent Kara Sea // Aquat. Microb. Ecol. 2004. V. 37. P. 121–135.
- 21. Middelbore M., Nielsen T.G., Biorsen P.K. Viral and bacterial production in the North Water in situ mea-

surements batch-culture experiments and characterization of a viral-host system // Deep-Sea Res. 2002. V. 49. P. 5063–5079.

- Noble R.T., Fuhrman J.A. Use of SYBR Green for rapid epifluorescence count of marine viruses and bacteria // Aquat. Microb. Ecol. 1998. V. 14. P. 113–118.
- 23. *Porter K.G., Feig Y.S.* The use DAPI for identifying and counting of aquatic microflora // Limnol. Oceanogr. 1980. V. 25. № 5. P. 943–948.
- Sherr E.B., Sherr B.F., Fessenden L. Heterotropic protists in the central Arctic Ocean // Deep-Sea Res. 1997. V. 44. P. 1665–1682.
- Sherr E.B., Sherr B.F., Wheeler P.A., Thompson K. Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean // Deep-Sea Res. I. 2003. V. 50. P. 557–571.
- Steward G.F., Fandino L.B., Hollibaugh J.T. et al. Microbial biomass and viral infections of heterotrophic prokaryotes in the sub-surface layer of the central Arctic Ocean // Deep-Sea Res. I. 2007. V. 54. P. 1744–1757.
- Steward G.F., Smith D.C., Azam F. Abundance and production of bacteria and viruses in the Bering and Chukchi seas // Marine Ecology Progress Series. 1996. V. 131. P. 287–300.
- Vaque D., Guadavol O., Peters F. et al. Seasonal changes in planktonic bacterivory rates under the ice-covered coastal Arctic Ocean // Limnol. Oceanogr. 2008. V. 53. № 6. P. 2427–2438.
- 29. Weinbauer M.G. Ecology of prokaryotic viruses // FEMS Microbiol. Rev. 2004. V. 28. № 2. P. 127–181.
- Wells L.E., Deming J.W. Significance of bacterivory and viral lysis in bottom waters of Franklin Bay, Canadian Arctic, during winter // Aquat. Microb. Ecol. 2006. V. 43. P. 209–221.
- Wommack K.E., Colvell R.R. Viruses in aquatic ecosystems // Microbiol. Mol. Biol. Rev. 2000. V. 64. P. 69–114.

Viruses and Heterotrophic Microorganisms in Plankton of the Laptev Sea

A. I. Kopylov, A. F. Sazhin, E. A. Zabotkina, A. V. Romanenko, N. D. Romanova, P. R. Makarevich, M. P. Wenger

The data on concentration and functional characteristics of bacteria, viruses and heterotrophic nanoflagellates (*HNF*) were obtained in the Laptev Sea in August–September 2014. The number of bacteria (N_B), the number of viruses and heterotrophic nanoflagellyat ranged respectively (110.1–828.4) × 10³ cells/mL, (384.2–2932.8) × 10³ particles/mL and 108–651 cells/mL. The daily production of bacterioplankton ranged from 4.2 to 381.7 × 10³ cells/mL (mean 117.6 × 10³ cells/mL). By using transmission electron microscopy techniques, the frequency of visible bacteria infected cells ranged from 0.2 to 2.0% (average 0.8%) of the N_B. Virus-induced mortality of bacteria was, on average, 6.3%, ranging from 1.4 to 16.9% of bacterial production. During the study of bacteria grazing *HNF* were higher than their death as a result of viral lysis. *HNF* consuming bacteria simultaneously absorbs a significant amount of virus present on the surface and within the bacterial cells.