——— ХИМИЯ МОРЯ ——

УДК 550.47:504.054:582.272

ОПРЕДЕЛЕНИЕ ПОРОГОВЫХ КОНЦЕНТРАЦИЙ МЕТАЛЛОВ В ВОДОРОСЛЯХ-ИНДИКАТОРАХ ПРИБРЕЖНЫХ ВОД СЕВЕРО-ЗАПАДНОЙ ЧАСТИ ЯПОНСКОГО МОРЯ

© 2016 г. Е. Н. Чернова^{1, 2}, С. И. Коженкова¹

¹Тихоокеанский институт географии ДВО РАН, Владивосток ²Дальневосточный федеральный университет, Владивосток e-mail: elena@tig.dvo.ru, svetlana@tig.dvo.ru Поступила в редакцию 12.01.2015 г.

Рассчитаны фоновые концентрации Fe, Mn, Cu, Zn, Pb, Cd, Ni в талломах массовых видов водорослей-индикаторов родов *Fucus, Silvetia, Sargassum, Cystoseira* из северо-западной части Японского моря за период 1987–2008 гг. В качестве верхнего порогового уровня фоновой концентрации металла использовали значение медианы плюс две медианы абсолютных отклонений от медианы (Me + 2MAD). Нижний пороговый уровень фоновой концентрации, совпадающий с физиологически необходимым количеством элемента, — это медиана из 15% минимальных значений выборки минус двойная медиана абсолютных отклонений от медианы (Me₁₅–2MAD₁₅). Диапазон Me₁₅ ± 2MAD₁₅ рассматривали как природно-фоновый диапазон концентраций.

DOI: 10.7868/S0030157416030023

введение

Важным этапом разработки и реализации стратегии комплексного управления прибрежными зонами является создание системы показателей – индикаторов устойчивого природопользования и развития прибрежных зон разных типов. В настоящее время в разных странах ведутся исследования по выработке комплекса индикаторов, которые могут использоваться для оценки состояния среды, динамики и взаимодействия экосистем всех уровней, степени техногенного воздействия на экосистемы и т.д. Индикатор – это такой параметр (или значение), который характеризует явление или процесс, позволяет судить о состоянии или изменении экономической, социальной или экологической переменных, а также в определенной степени оценивать в каком направлении следует ожидать их развития [8].

Среди методов оценки экологического состояния морских прибрежных вод важное значение имеют методы биологического мониторинга, и в частности использование бурых водорослей макрофитов, являющихся аккумулирующими индикаторами загрязнения среды тяжелыми металлами. Изучение экологического состояния акваторий на основе данного метода позволяет одновременно решать несколько задач:

 изучать пространственную изменчивость содержания различных элементов в морской среде и выявлять основные источники загрязнения; – оценивать масштабы влияния хозяйственной деятельности на морскую среду;

 выявлять долговременные изменения качества морской среды, делать экологический прогноз с учетом различных сценариев развития экономики и реализации природоохранных мероприятий, обосновывать необходимость принятия тех или иных мер по охране окружающей среды;

 – определять районы возможной добычи массовых видов бурых водорослей, используемых в технических, медицинских и пищевых целях;

 выявлять акватории, пригодные для марикультуры и участки побережья, требующие дополнительных мер по улучшению их экологического состояния.

Использование бурых водорослей в целях мониторинга качества среды ведется с 70-х годов ХХ столетия [10, 18, 20, 21]. Однако проблемой осуществления биоиндикации тяжелых металлов в водной среде при помощи организмов является отсутствие статистически определенных узаконенных предельных величин концентраций данных элементов, при превышении которых следует говорить о загрязнении ими акватории или местообитания. Чтобы определить степень загрязнения макрофитов конкретного местообитания, исследователи рассчитывают, как правило, величины кратности превышения концентраций микроэлементов в объекте биоиндикации над таковыми в аналогичном образце с фоновыми уровнями элементов - обычно наименьшими концентрациями, обнаруженными для данной акватории. Для прибрежных вод Японского моря за фоновые принимали концентрации микроэлементов в организмах, обитающих в наиболее удаленных от источников загрязнения районах [2, 4].

В настоящее время для определения диапазона фоновых концентраций элементов в компонентах абиотической среды и организмах из определенного, геохимически однородного пространства, исследователи используют статистические величины: либо среднюю арифметическую, при условии нормально распределенных данных, либо среднюю геометрическую, при условии логнормального распределения, плюс-минус одно или два стандартных отклонения [25, 27]. В качестве пороговой концентрации применяют также величину 85-го процентиля (P₈₅) [19]. В последнее время для расчета фоновых значений элементов рекомендуют использовать непараметрическую величину, не зависящую от типа распределения данных – медиану концентраций, плюс-минус величина, равная двойной медиане абсолютных отклонений от медианы (double Median of the Absolute Deviations): Me \pm 2MAD [7, 9, 25].

Целью данной работы было определить современный (80–90-е годы XX и первое десятилетие XXI столетия) биогеохимический фон металлов в массовых видах бурых водорослей-индикаторов родов *Fucus*, *Silvetia*, *Sargassum*, *Cystoseira* из северозападной части Японского моря, установить пороговые концентрации Fe, Mn, Zn, Cu, Cd, Pb, Ni, а также выделить природную составляющую содержания этих металлов из общего биогеохимического фона в данных видах водорослей.

МАТЕРИАЛЫ И МЕТОДЫ

Материалом послужили выборки данных по содержанию микроэлементов в массовых видах бурых водорослей – представителей семейств Sargassaceae (Cystoseira crassipes, Sargassum miyabei, Sargassum pallidum) и Fucaceae (Fucus evanescens, Silvetia babingtonii) — биоиндикаторах соединений металлов в морской среде. Образцы водорослей собирали в июле-августе 1987, 1995, 1996, 1998, 2001-2004, 2008 гг. вдоль морского побережья Приморского края со 115 станций (рис. 1). Саргассумы (S. miyabei и S. pallidum) отобраны в акватории зал. Петра Великого на юге и вдоль восточного побережья Приморского края на север до зал. Ольги; фукус (*F. evanescens*) – от б. Киевка на север вдоль восточного побережья края до м. Олимпиады, цистозира (C. crassipes) и сильвеция (S. babingtonii) — вдоль всей береговой линии Приморья. С одного места отбирались 3-5 экземпляров произраставших видов водорослей, талломы отмывались от взвеси морской водой, очищались от эпифитов, высушивались при температуре 85°С, из них составлялась объединенная проба.

Далее пробы гомогенизировались, навески проб минерализовались азотной кислотой марки о.с.ч. в 3-х повторностях. Определение металлов проводилось атомно-абсорбционным методом на приборах Hitachi 180-70, Shimadzu 6800 с пламенным и электротермическим с графитовой трубкой (Pb) атомизаторами. Ошибка определения для содержания железа, марганца, меди, цинка и кадмия – 10%, свинца, никеля – до 30%. Контроль точности определения концентраций металлов проводился по анализу стандартных образцов (СДО-1, NIST-2976, NIES-9(Sargasso)). Контроль загрязнения реактивов проводился с помощью холостых проб, включаемых в партию подготавливаемых к анализу образцов. Все концентрации определены для сухой массы водорослей.

В расчетах, кроме собственных, использованы данные коллег, полученные по тем же методикам, на том же обрудовании и опубликованные ранее [11, 12, 23].

Участие в выборке данных разных лет является необходимостью, так как большая протяженность побережья Приморского края и отсутствие вдоль его территории программы, аналогичной "Mussel Watch", осуществляемой Национальным Комитетом по проблемам Океана и Атмосферы CIIIA (Program of the U.S. National Oceanic and Atmospheric Administration – NOAA), не позволили отобрать пробы макрофитов с одних точек, равномерно разнесенных по побережью в течение ограниченного времени. За несколько десятков лет был накоплен сравнительно большой статистический материал, который позволяет нивелировать межгодовые отличия в накоплении микроэлементов макрофитами и получить интегральные усредненные значения концентраций металлов для будущих биоиндикационных работ.

Для статистического анализа содержания металлов в талломах бурых водорослей были обработаны выборки из 44 проб *C. crassipes*, 19 проб *F. evanescens*, 97 проб *S. miyabei*, 72 проб *S. pallidum* и 34 проб *S. babingtonii*. Ряд определений Pb, Ni и Cd пришлось выбраковать в связи с тем, что полученные концентрации в силу технических причин оказались завышенными.

Описательная статистика осуществлена в программе "Excel", нормальность распределения концентраций или логарифмов концентраций металлов проверяли по критическим коэффициентам асимметрии и эксцесса [6]. После выбраковки статистических выбросов, не вошедших в диапазон нормального или логнормального распределения, для оставшейся выборки рассчитывали величины Me ± 2MAD. Верхней пороговой концентрацией считали Me + 2MAD. Для выделения нижнего фонового порога концентрации

Рис. 1. Карта-схема станций отбора проб бурых водорослей в северо-западной части Японского моря. *1* – зал. Посьета, *2* – Славянский залив, *3* – Амурский залив, *4* – Уссурийский залив, *5* – зал. Стрелок, *6* – зал. Восток, *7* – зал. Находка, *8* – б. Киевка, *9* – зал. Ольги. САБЗ – Сихотэ-Алинский Государственный Природный Биосферный заповедник. Точками указаны места отбора проб.

элемента в водорослях (понимаемого нами как минимальный физиологический уровень) были рассчитаны значения $Me_{15}-2MAD_{15}$ для 15% наименьших значений в выборке. Диапазон $Me_{15} \pm$

 ± 2 МАD₁₅ принимается нами как физиологически необходимое количество элемента в водорослях, сравнимое с собственно природно-фоновым диапазоном, с минимальным участием антропо-

ОКЕАНОЛОГИЯ том 56 № 3 2016

генного пресса, по сравнению с фоновым диапазоном, рассчитанным с помощью Me ± 2MAD, который включает антропогенную составляющую [14].

Для выявления и количественной оценки влияния различных факторов на накопление тяжелых металлов бурыми водорослями, данные были подвергнуты факторному анализу методом главных компонент (МГК) пакета программ STATISTICA 6.0.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Фоновая концентрация элемента в живых организмах представляет собой сумму физиологически необходимого количества и некоторого нетоксичного избытка, накопленного из окружающей среды с регионально-фоновым содержанием микроэлементов [15, 16], к которому организмы адаптированы. Особи даже одного вида, взятые из одного и того же места обитания, могут различаться по содержанию микроэлементов, что связано с генетической неоднородностью популяции и с наличием в ее составе некоторого процента как гипо-, так и гиперконцентраторов химических элементов [24]. В связи с этим фоновая концентрация микроэлемента в живых организмах, как и в абиотических природных объектах, должна находиться в некотором диапазоне величин. Нижний порог этого диапазона должен соответствовать минимальному физиологически необходимому количеству для биофильных элементов (Си, Zn, Ni, Fe и Mn) и нулевой концентрации для токсичных элементов (Pb, Cd), а верхний – пороговой величине концентрации элемента в организме, к которой вид адаптировался в данных геохимических условиях, но после превышения которой у части популяции происходит срыв физиологических механизмов [1].

Биологическая потребность представителей конкретного вида в том или ином элементе закреплена генетически. Тем не менее, обитая в определенных условиях среды биоиндикаторы аккумулируют такое количество тяжелых металлов, которое отражает геохимическую специфику данного района Мирового океана. Таким образом, способность аккумулировать тяжелые металлы — есть проявление одновременного действия внутренних (генотип, биохимический состав и др.) и внешних (сорбция, удельная поверхность, форма нахождения и количество металла в морской среде) факторов [10].

Анализ распределения химических элементов в почвах и в пресноводных моллюсках [7, 25] показал, что для определения фонового диапазона концентрации металла в компонентах среды и биоте, независимо от типа распределения значений в выборке, подходит медиана (Ме) плюс-минус двойная величина медианы абсолютных отклонений от медианы (Me \pm 2MAD). Статистические выбросы влияют на медиану в меньшей степени, чем на среднее значение.

Хотя при определении фоновых диапазонов концентраций металлов этим методом тип распределения данных не имеет значения [7, 25], проверка соответствия концентраций или их логарифмов нормальному распределению бывает необходима для отбраковки наиболее высоких значений — статистических выбросов, не характерных для фоновых районов, которые в условиях сложной динамики морской среды не могут быть выявлены физико-географическими методами.

Распределение концентраций Ni и трансформированных в десятичные логарифмы концентраций Fe, Mn, Cu, Zn и Pb в водорослях западной части Японского моря соответствовало нормальному распределению, согласно сравнению коэффициентов эксцесса и асимметрии с критическими табличными значениями [6] при исключении из выборки некоторых выбросов. Например, для приведения логарифмов концентраций Zn всех видов водорослей к нормальному распределению, из них были исключены данные, полученные для водорослей из б. Рудной (*C. crassipes, F. evanescens, S. babingtonnii*), а также для района свалки г. Владивостока (Уссурийский зал. – *S. miyabei, S. pallidum*).

Диапазоны фоновых концентраций металлов (Me \pm 2MAD) без экстремальных значений, экстремальные и пороговые значения, а также некоторые другие показатели представлены в табл. 1–3. Как видно, верхние пороговые концентрации фонового диапазона Me \pm 2MAD близки или несколько ниже величины 85-го процентиля, используемого в качестве пороговой величины в программах "Mussel Watch" [19].

Статистические расчеты фоновых концентраций Fe, Mn, Cu, Zn, Pb и Ni по формуле Me \pm \pm 2MAD хорошо согласуются с фактическим материалом, т.е. на станциях, где действительно наблюдается поступление загрязняющих веществ, содержание металлов в талломах водорослей в несколько раз превышают расчетные значения фона. Однако для Cd эта ситуация не характерна. Нередко концентрации Cd в растениях из "чистых" мест равны или даже выше, чем в загрязненных акваториях. Особенно заметно это для саргассумов (табл. 4).

Проверка соответствия концентраций Cd или их логарифмов нормальному распределению для пяти исследуемых видов водорослей выявила значительное смещение показателей ассиметрии и эксцесса. Попытка привести данные к нормальному распределению путем сокращения выборки за счет высоких концентраций (на 30%) сопро-

ОПРЕДЕЛЕНИЕ ПОРОГОВЫХ КОНЦЕНТРАЦИЙ МЕТАЛЛОВ

	Показатель									
Вид	$Av \pm St$	Min–Max Me ± 2MAD		$\begin{array}{c c} Me_{15} \pm & \underline{\Phi}_{OH} \\ \pm 2MAD_{15} & \overline{\Phi}_{OH}[7] \end{array}$		P ₈₅	п			
Fe										
C. crassipes	65 ± 28	25–150 (204–5417)	57 ± 24	37 ± 8	<u>19–81</u> 40–80	85	36			
F. evanescens	77 ± 44	40–182 (372)	61 ± 39	40 ± 1	<u>39–100</u> 40–90	154	18			
S. miyabei	501 ± 477	54-2722	353 ± 393	116 ± 37	79–746 40–100	838	97			
S. pallidum	319 ± 703	40-4397	317 ± 355	92 ± 31	<u>61–672</u> 20–100	799	72			
S. babingtonnii	58 ± 51	13-258	44 ± 10	20 ± 7	$\frac{13-54}{30-50}$	106	34			
Mn										
C. crassipes	9 ± 3	5–18 (26–903)	9 ± 3	6 ± 1	<u>5-12</u> 5-10	11	31			
F. evanescens	55 ± 36	8-129	59 ± 10	9 ± 1	<u>8–69</u> 10–50	<u>8-69</u> 10-50 85				
S. miyabei	484 ± 770	9–5863	266 ± 448	16 ± 13	<u>3-714</u> <u>40-100</u> 813		97			
S. pallidum	157 ± 338	6–1435	168 ± 287	21 ± 9	1 ± 9 $\frac{12-455}{10-50}$ 673		72			
S. babingtonnii	18 ± 30	2-175	13 ± 10	2 ± 1	<u>1–33</u> 5–15	23	32			

Таблица 1. Некоторые статистические показатели и фоновый диапазон концентраций Fe и Mn в бурых водорослях северо-западной части Японского моря, мкг/г сух. массы

Примечание. Av \pm St – среднее \pm стандартное отклонение; Min–Max – диапазон концентраций, используемый при расчете фоновых значений, в скобках – аномальные значения (статистический выброс), не вошедшие в выборку для расчета фонового диапазона; $P_{85} - 85$ -й процентиль; *n* – величина выборки.

вождалась снижением уровней статистических расчетных величин.

С целью выявления особенностей накопления Сd бурыми водорослями из северо-западной части Японского моря был проведен факторный анализ данных (табл. 5). Этот метод выделил две главные компоненты (ГК), влияющие на содержание металлов в *C. crassipes, S. miyabei* и *S. babingtonii*, и три ГК для *F. evanescens* и *S. pallidum*. ГК1 положительно коррелирует с накоплением Zn, Pb и Cu и в меньшей степени с содержанием других элементов, имеет положительные значения на станциях в кутовых частях заливов (бухт) и вбли-

ОКЕАНОЛОГИЯ том 56 № 3 2016

зи выпусков сточных вод, поэтому может рассматриваться как общая антропогенная и терригенная нагрузка на морскую среду, аналогично результатам ранее проведенного факторного анализа в отношении выборки *Ulva fenestrata* из зал. Петра Великого [5].

Кадмий чаще всего выделяется в отдельную ГК (табл. 5, рис. 2), либо с Mn (*C. crassipes*), либо с Cu и Zn (*S. babingtonii*). Таким образом, существуют некие объективные причины специфического накопления Cd макрофитами, которые приводят к нарушению нормального распределения данных в выборке и нередко более высоким

ЧЕРНОВА, КОЖЕНКОВА

	Показатель									
Вид	$Av \pm St$	Min–Max	Me ± 2MAD	$\begin{array}{c} Me_{15} \pm \\ \pm 2MAD_{15} \end{array}$	<u>Фон</u> Фон[7]	P ₈₅	п			
Zn										
C. crassipes	30.1 ± 16.5	11.3–95.8 (225)	26.1 ± 16.6	15.9 ± 0.9	<u>15.0–42.7</u> <u>10–30</u>	45.3	43			
F. evanescens	51.4 ± 31.8	20.0–130 (215–915)	43.0 ± 37.0	20.2 ± 0.4	<u>19.8–80.0</u> 20–60	77.0	15			
S. miyabei	17.8 ± 6.4	8.8–40.8 (42–49)	16.6 ± 7.3	10.7 ± 1.8	8.9–23.9 10–15	22.6	95			
S. pallidum	16.3 ± 7.8	5.1–40.0 (112–129)	14.5 ± 9.3	7.1 ± 0.9	<u>6.2–23.8</u> <u>10–20</u>	24.1	70			
S. babingtonnii	33.0 ± 21.0	10.0–104 (123–412)	24.0 ± 15.0	15.0 ± 11.0	<u>4.0–39.0</u> <u>15–30</u>	<u>.0–39.0</u> 15–30 47.0				
			С	u						
C. crassipes	2.8 ± 1.3	1.1–6.2 (14–236)	2.4 ± 1.2	1.3 ± 0.4	$\frac{0.9-3.6}{10-30}$	4.6	41			
F. evanescens	3.0 ± 1.9	1.0-8.9	2.5 ± 1.6	1.3 ± 0.4	$\frac{0.9-4.1}{20-60}$	4.8	19			
S. miyabei	3.2 ± 1.8	1.1–10.2 (11–18)	2.9 ± 1.8	1.5 ± 0.2	<u>1.3-4.7</u> <u>10-15</u>	4.2	93			
S. pallidum	2.5 ± 1.9	0.9-8.9 (12.4–176)	2.3 ± 1.6	1.1 ± 0.2	<u>0.9–3.9</u> 10–20	4.4	65			
S. babingtonnii	2.8 ± 2.0	0.5-9.2	2.2 ± 1.3	1.0 ± 0.2	$\frac{0.8-3.5}{15-30}$	4.5	34			

Таблица 2. Некоторые статистические показатели и фоновый диапазон концентраций Zn и Cu в бурых водорослях северо-западной части Японского моря, мкг/г сух. массы

Примечание. Обозначения см. табл. 1.

концентрациям Cd в растениях из "чистых" мест, по сравнению с антропогенно-нарушенными местообитаниями.

Общеизвестно, что величина терригенного стока, определяемая природными процессами и антропогенным воздействием, является важным фактором, влияющим на уровень концентраций металлов в водорослях. В зоне смешения морских и пресных вод наблюдается повышение содержания тяжелых металлов в гидробионтах в связи с вкладом пресных вод, обогащенных микроэлементами [13, 17]. С продвижением к мористым участкам уровни содержания металлов, как в воде, так и в организмах снижаются, за исключением кадмия. Так, сравнение микроэлементного состава бурых водорослей из внешних и внутренних частей фьердов западной Гренландии показало, что на фоне уменьшения концентраций различных металлов в тканях макрофитов по направлению к открытым водам, количество Cd в растениях из более мористых районов выше, чем во внутренних частях заливов [26]. Такие закономерности прослеживаются не только в фоновых, но и в импактных районах [22], но причины этого явления до конца не выяснены. Возможно, оно обусловлено сменой формы существования Cd и, соответственно, доступности для макрофитов. Известно, что в мористой части возрастает количество биогенной взвеси, имеющей большее сродство к кадмию, и уменьшается количество терригенной взве-

ОКЕАНОЛОГИЯ том 56 № 3 2016

ОПРЕДЕЛЕНИЕ ПОРОГОВЫХ КОНЦЕНТРАЦИЙ МЕТАЛЛОВ

	Показатель									
Вид	$Av \pm St$	Min–Max	$Me \pm 2MAD$	$\begin{array}{c} Me_{15} \pm \\ \pm 2MAD_{15} \end{array}$	<u>Фон</u> Фон[7]	P ₈₅	п			
Pb										
S. miyabei	2.8 ± 3.1	0.06-18.8	1.7 ± 2.1	0.3 ± 0.4	$\frac{0-3.8}{5-9}$	2.6	61			
S. pallidum	2 ± 3.7	0.1–14.3 (34–114)	2.4 ± 3.1	3.1 0.3 ± 0.4 $\frac{0-5.5}{3-10}$		7.4	43			
			N	li						
C. crassipes	3.2 ± 1.5	1.5-7.6	2.8 ± 1.4	1.6 ± 0.3	$\frac{1.3-4.2}{2-3}$	4.8	33			
S. miyabei	2.4 ± 1.0	0.2-5.2	2.3 ± 1.3	1.2 ± 0.4	0.8-3.6	3.6	81			
S. pallidum	2.0 ± 1.1	0.5–4.5 (5.6–6.2)	2.0 ± 1.8	0.6 ± 0.2	$\frac{0.4-3.8}{2-3}$	3.2	57			
			С	d						
C. crassipes	2.4 ± 0.8	1.2-4.7	2.2 ± 1.0	1.5 ± 0.1	$\frac{1.4-3.2}{1-3}$	3.2	44			
F. evanescens	2.5 ± 1.9	1-7.8	1.8 ± 1.3	1.1 ± 0.3	$\frac{0.8-3.1}{1-4}$	5.0	19			
S. miyabei	1.6 ± 1.7	0.6-4.5	1.6 ± 1.3	0.8 ± 0.1	$\frac{0.7-2.9}{2-3}$	1.8	94			
S. pallidum	1.2 ± 0.8	0.5-4.0	1.1 ± 0.6	0.6 ± 0.1	$\frac{0.5-1.7}{1-3}$	2.0	65			
S. babingtonnii	1.3 ± 1.2	0.1-7.0	1.1 ± 0.5	0.3 ± 0.1	$\frac{0.2 - 1.6}{1 - 2}$	1.8	34			

Таблица 3. Некоторые статистические показатели и фоновый диапазон концентраций Pb и Ni в бурых водорослях северо-западной части Японского моря, мкг/г сух. массы

Примечание. Обозначения см. табл. 1.

си [17]. Другой возможной причиной увеличения содержания Cd в гидробионтах из мористых районов является поступление металла с водами апвеллинга [3].

Таким образом, в современной науке существуют разные точки зрения о причинах повышенного накопления кадмия в гидробионтах из мористых районов и однозначно трактовать причины выделения Cd в отдельную ГK при проведении факторного анализа затруднительно. В табл. 3 представлены диапазоны фоновых концентраций Cd в разных видах бурых водорослей из северозападной части Японского моря, рассчитанные по формуле Me ± 2MAD без приведения выборки в соответствие с нормальным распределением.

ОКЕАНОЛОГИЯ том 56 № 3 2016

Верхний фоновый уровень кадмия для *C. crassipes* составил 3.2, *F. evanescens* – 3.1, *S. miyabei* – 2.9, *S. pallidum* – 1.7, *S. babingtonnii* – 1.6 мкг/г сух. массы.

Фоновый диапазон концентраций микроэлементов в биоте конкретной акватории, рассчитанный как Me ± 2MAD, — это суммарная оценка природной и антропогенно-обусловленной геохимической ситуации. Для сравнения природных биогеохимических особенностей двух акваторий — Японского и Белого морей — мы использовали минимальные концентрации металлов в выборках гидробионтов [15, 16], представляющие собой сумму физиологически необходимого количества элемента и минимального количества, получен-

ЧЕРНОВА, КОЖЕНКОВА

	"Чистые" районы		"Грязные" районы				
станция	дата	Cd	станция	дата	Cd		
		Sargassu	m pallidum				
Б. Калевала	08.2003	1.26 ± 0.69	Амурский зал., б. Федорова	08.1995 07.2002	$\begin{array}{c} 0.67 \pm 0.01 \\ 0.92 \pm 0.30 \end{array}$		
О. Большой Пелис	08.1995	2.14 ± 0.03	Амурский зал., м. Токаревского	08.1995 07.2002	$1.06 \pm 0.04 \\ 1.93 \pm 0.44$		
О. Путятина, юг	08.2004	2.13 ± 0.30	Зал. Славянка, б. Славянка, кут	07.2002	1.15 ± 0.20		
Зал. Восток, м. Елизарова	07.1995	1.48 ± 0.05	Прол. Босфор Восточный, б. Улисс	07.2002	1.60 ± 0.70		
Зал. Находка, м. Петровского	07.1995	1.07 ± 0.02	Уссурийский зал., район свалки "Горностай"	07.2002	1.04 ± 0.01		
Б. Киевка, о. Второй	08.2004	2.14 ± 1.11	Уссурийский зал., м. Зеленый	08.2004	1.01 ± 0.22		
		Sargassi	ım miyabei				
О. Антипенко	08.2003	2.46 ± 0.30	Амурский зал., м. Кузнецова	08.1995	0.79 ± 0.03		
Амурский зал., п-ов Янковского	07.2002	3.58 ± 0.40	Амурский зал., м. Токаревского	08.1995 07.2002	$0.84 \pm 0.06 \\ 2.85 \pm 0.68$		
О. Рейнеке	07.2002	1.30 ± 0.13	Уссурийский зал., б. Горностай	08.2004	0.87 ± 0.21		
О. Путятина, юг	08.2004	1.79 ± 0.29	Зал. Стрелок, б. Абрек	08.2004	0.94 ± 0.10		
Зал. Восток, м. Пещурова	07.2002 07.2003 07.2004	$\begin{array}{c} 2.12 \pm 0.42 \\ 1.59 \pm 0.20 \\ 2.05 \pm 0.18 \end{array}$	Зал. Восток, б. Гайдамак	07.2002 07.2003 07.2004	$\begin{array}{c} 2.17 \pm 0.53 \\ 0.63 \pm 0.07 \\ 1.43 \pm 1.02 \end{array}$		
Б. Киевка, о. Второй	08.2003 08.2004	$\begin{array}{c} 2.89 \pm 0.21 \\ 1.77 \pm 0.15 \end{array}$	Зал. Находка, м. Астафьева	07.1995 07.2003 07.2004	$\begin{array}{c} 1.06 \pm 0.06 \\ 1.82 \pm 0.53 \\ 1.21 \pm 0.48 \end{array}$		

Таблица 4. Примеры концентраций Cd в водорослях из '	"чистых" и "грязных	" районов у побережья Приморског
края, мкг/г сух. массы		

Таблица 5. Матрица факторных нагрузок концентраций тяжелых металлов в талломах бурых водорослей из северо-западной части Японского моря

	Сем. Sargassaceae								Сем. Fucaceae			
Металл	C. cra	C. crassipes S. m		iyabei	bei S. pallidum			F. evanescens			S. babingtonii	
	ГК1	ГК2	ГК1	ГК2	ГК1	ГК2	ГК3	ГК1	ГК2	ГК3	ГК1	ГК2
Fe	0.96	0.03	0.83	-0.18	0.56	-0.20	0.64	-0.02	0.98	0.09	0.01	0.83
Mn	0.21	0.76	0.64	-0.31	0.12	0.14	0.88	0.75	0.53	-0.27	0.18	0.83
Cu	0.96	0.11	0.79	0.26	0.96	0.02	0.04	0.92	0.04	0.17	0.70	0.44
Zn	0.98	0.10	0.84	0.06	0.77	-0.19	0.42	0.90	-0.24	0.30	0.91	0.20
Cd	-0.17	-0.85	-0.21	-0.81	-0.13	0.93	-0.03	0.31	0.08	0.93	0.87	-0.20
Pb	0.98	0.04	0.82	0.31	0.93	0.03	-0.09	н.д.	н.д.	н.д.	н.д.	н.д.
Ni	0.79	-0.16	0.66	-0.60	0.50	0.62	0.36	н.д.	н.д.	н.д.	н.д.	н.д.
Процент*	65.0	18.0	49.0	20.0	49.0	20.0	15.0	51.0	26.0	17.0	48.0	27.0

Примечание. Жирным выделены значения коэффициентов корреляции, достоверных при P = 0.01.

*Процент изменчивости, описываемый ГК.

ного из среды с регионально-фоновыми концентрациями. Данный метод оказался достаточно информативным, но статистически уязвимым. В то же время, при расчете нижнего порогового уровня фоновых концентраций микроэлементов в выборке с использованием Me-2MAD эта величина иногда оказывается ниже нуля даже для физиологически значимых элементов (Fe и Mn), имеющих широкий природный размах концентраций (табл. 1), что не соответствует действительности.

Чтобы вылелить собственно приролные фоновые концентрации микроэлементов в гидробионтах, а также точнее определить их нижний пороговый уровень, следует использовать величину, полученную на основе статистической оценки выборочных данных. В качестве диапазона, включающего физиологически необходимое количество микроэлемента в тканях макроводорослей и природный фоновый уровень концентраций металлов, отражающий минимальный вклад антропогенных источников, мы предлагаем использовать диапазон Me₁₅ ± 2MAD₁₅ – медиана концентраций микроэлементов, рассчитанная на основе 15% наименьших значений, плюс-минус двойная медиана абсолютных отклонений от медианы (табл. 1–3). При этом величина Me₁₅–2MAD₁₅ является нижним пороговым уровнем фоновых концентраций [14], поскольку она близка к минимальной концентрации микроэлемента в гидробионтах в условиях данного региона, не равна нулю и не принимает отрицательных значений (табл. 1-3). Исключение составляет Pb, но этот металл не является биологически значимым и его минимальная концентрация может стремиться к нулю.

Определенные с помощью $Me_{15} \pm 2MAD_{15}$ величины природно-фоновых концентраций Fe, Mn, Cu, Zn хорошо соотносятся с полученными эмпирическим путем и опубликованными ранее [4]. Для Cd, Pb и Ni вычисленные значения "природного фона" оказались ниже, чем эмпирически найденные.

ЗАКЛЮЧЕНИЕ

Рассчитаны фоновые концентрации Fe, Mn, Cu, Zn, Cd в выборках пяти видов, Pb и Ni – соответственно для двух и трех видов бурых водорослей из северо-западной части Японского моря за период 1987–2008 гг. Верхний пороговый уровень, предельный для фонового диапазона, рассчитан как Me+2MAD; нижний, представляющий собой физиологически необходимый уровень элемента, – как Me₁₅–2MAD₁₅. Диапазон Me₁₅ \pm 2MAD₁₅ предлагается принять за природно-фоновый диапазон концентраций элемента, не измененный антропогенным влиянием.

Рис. 2. Факторные нагрузки концентраций металлов в *S. miyabei*. Метод вращения: квартимакс.

Учитывая в дальнейших биоиндикационных исследованиях полученные нами природно-фоновые значения микроэлементов Fe, Mn, Zn, Cu, Pb, Cd и Ni можно с большей долей достоверности определять природные геохимические особенности морских прибрежных акваторий; учет пороговых величин фоновых концентраций в водорослях позволит оценить с их помощью степень антропогенного влияния на акватории.

Авторы благодарят инженеров-аналитиков Лаборатории геохимии ТИГ ДВО РАН А.М. Плотникову, Г.А. Власову, Т.Л. Примак за помощь в пробоподготовке и при анализе материала.

Работа выполнена при финансовой поддержке РНФ (грант № 14-50-00034).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ермаков В.В., Тютиков С.Ф. Геохимическая экология животных. М.: Наука, 2008. 315 с.
- Кавун В.Я. Микроэлементный состав массовых видов митилид северо-западной части Тихого океана в связи с условиями существования: Автореф. дис. ... канд. биол. наук. Владивосток: ИБМ, 1991. 24 с.
- 3. *Кавун В.Я., Христофорова Н.К., Шулькин В.М.* Микроэлементный состав тканей мидии съедобной из прибрежных вод Камчатки и Северных Курил // Экология. 1989. № 3. С. 53–58.
- Коженкова С.И. Мониторинг состояния прибрежно-морских вод Приморья по содержанию тяжелых металлов в бурых водорослях: Автореф. дис. ... канд. биол. наук. Владивосток: Изд-во ДВГУ, 2000. 24 с.
- Коженкова С.И., Чернова Е.Н., Шулькин В.М. Микроэлементный состав зеленой водоросли Ulva fenestrata из залива Петра Великого Японского моря // Биология моря. 2006. Т. 32. № 5. С. 346–352.
- Лакин Г.Ф. Биометрия: Учеб. пособие для биол. спец. Вузов. 4-е изд. М.: Высш. шк., 1990. 352 с.

- 7. Лукашев Д.В. Метод расчета фоновых концентраций тяжелых металлов в мягких тканях двустворчатых моллюсков для оценки загрязнения р. Днепр // Биология внутренних вод. 2007. № 4. С. 97–106.
- Прибрежно-морское природопользование: теория, индикаторы, региональные особенности. Владивосток: Дальнаука, 2010. 308 с.
- Симоконь М.В. Загрязнение донных отложений Уссурийского залива металлами и металлоидами // Уссурийский залив: современное состояние, ресурсы и перспективы природопользования. Материалы международной научно-практической конференции. Владивосток: Изд-во Дальневост. ун-та, 2009. С. 35–38.
- Христофорова Н.К. Биоиндикация и мониторинг загрязнения морских вод тяжелыми металлами. Л.: Наука, 1989. 192 с.
- 11. Христофорова Н.К., Маслова Л.М. Сравнительная оценка загрязнения тяжелыми металлами морских прибрежных вод Атлантики и западной Пацифики по минеральному составу фукусовых водорослей // Биология моря. 1983. № 1. С. 3–11.
- Христофорова Н.К., Нгуен Хыу Зинь, Шулькин В.М. и др. Сравнение минерального состава саргассовых водорослей Японского и Южно-Китайского моря // Биология моря. 1983. № 3. С. 48–54.
- Христофорова Н.К., Шулькин В.М., Кавун В.Я., Чернова Е.Н. Тяжелые металлы в промысловых и культивируемых моллюсках залива Петра Великого. Владивосток: Дальнаука, 1994. 296 с.
- 14. Чернова Е.Н. Определение фоновых концентраций металлов в бурой водоросли Sargassum pallidum из северо-западной части Японского моря // Биология моря. 2012. Т. 38. № 3. С. 249–256.
- 15. Чернова Е.Н., Христофорова Н.К. Сравнительная оценка микроэлементного состава мидий Японского и Белого морей // Проблемы региональной экологии. 2008. № 1. С. 64–69.
- 16. Чернова Е.Н., Христофорова Н.К., Гонохов А.П. К вопросу о фоновых концентрациях микроэлементов в гидробионтах окраинных морей и островов открытого океана // Проблемы морской палеоэкологии и биогеографии в эпоху глобальных

изменений. Комплексные исследования природы архипелага Шпицберген. М.: ГЕОС, 2009. Вып. 9. С. 177–188.

- Шулькин В.М. Металлы в экосистемах морских мелководий. Владивосток: Дальнаука, 2004. 279 с.
- Bryan G.W., Hummerstone L.G. Brown seaweeds as an indicator of heavy metals in estuaries in south-west England //J. Mar. Biol. Assoc. U. K. 1973. V. 53. P. 705– 720.
- Cantillo A.Y. Comparison of results of Mussel Watch Programs of the United States and France with worldwide Mussel Watch studies // Mar. Pollut. Bull. 1998. V. 36. № 2. P. 712–717.
- Fowler S.W. Use of macroalgae as a reference material for pollution monitoring and specimen banking // Monit. Environ. Mater. Specimen Banking. Proc. Int. Workshop, 1978. The Hague, Neth. 1979. P. 247–260.
- Fuge R., James K.H. Trace metal concentration in Fucus from the Bristol Channel // Mar. Poll. Bull. 1974. V. 5. № 1. P. 9–12.
- Johansen P., Hansen M.M. et al. Marine organisms as indicators of heavy metal pollution experience from 16 years of monitoring at a lead zinc mine in Greenland // Chemistry and Ecology. 1991. V. 5. P. 35–55.
- Khristoforova N.K., Przhemenetskaya V.F. Sargassaceae as promoting objects for sanitary mariculture // Proc. of the Intern. Symp. "Earth-Water-Humans". Kanazawa. Japan. (30 May-1 June 1999). 1999. P. 335–341.
- Lobel P.B., Wright D.A. Frequency distribution of zinc concentrations in the common mussel, Mytilus edulis (L.) // Estuaries. 1983. V. 6. № 2. P. 154–159.
- Reinmann C., Filzmoser P., Garrett R.G. Background and threshold critical comparison of methods of determination // Sci. of the Total Env. 2005. V. 346. P. 1–16.
- Riget F, Johansen P, Asmund G. Baseline levels and natural variability of elements in three seaweed species from west Greenland // Mar. Poll. Bull. 1997. V. 34. № 3. P. 171–176.
- Second Summary of data on Chemical Contaminants in Sediments from the National Status and Trends Program. NOAA Technical memorandum NOS OMA 59. Rockville, Maryland, April 1991. 162 p.

Definition of the Threshold Concentrations of Trace Metals in Seaweeds of the North-Western Sea of Japan

E. N. Chernova, S. I. Kozhenkova

The background concentration ranges of trace metals (Fe, Mn, Cu, Zn, Pb, Cd, and Ni) in seaweeds belonging to the *Fucus*, *Silvetia*, *Sargassum*, *Cystoseira* genera from the Sea of Japan over the period from 1987 to 2008 were estimated. The upper threshold of background concentration range was assumed as Me+2MAD (median value plus double median of absolute deviations from the median). The lower threshold value corresponding to the physiological norm of the trace metal was $Me_{15} - 2MAD_{15}$ (a median of the 15% of minimum values minus double median of the absolute deviations from the median). The range $Me_{15} \pm 2MAD_{15}$ was considered as the natural background range.