——— МОРСКАЯ ГЕОЛОГИЯ ——

УДК 551.461.8;550.47;551.583

РЕГИОНАЛЬНЫЕ ОСОБЕННОСТИ ИЗМЕНЕНИЙ ПАЛЕОПРОДУКТИВНОСТИ ОХОТСКОГО МОРЯ В ПОЗДНЕМ ПЛЕЙСТОЦЕНЕ И ГОЛОЦЕНЕ

© 2016 г. А. А. Босин, С. А. Горбаренко

Тихоокеанский океанологический институт им. В.И. Ильичева ДВО РАН, Владивосток e-mail: bosin@poi.dvo.ru, gorbarenko@poi.dvo.ru

> Поступила в редакцию 18.06.2014 г. После доработки 13.10.2014 г.

Было изучено изменение содержания хлорина (продукта распада хлорофилла "a") в 11 кернах донных отложений из разных частей Охотского моря. Полученные данные показывают изменения палеопродуктивности данного моря на протяжении последних 160 тыс. лет, от окончания морской изотопной стадии (МИС) 6 до настоящего времени. Выявлена общая закономерность изменения палеопродуктивности для всего Охотского моря. Во время межледниковий (МИС 5е и 1) продуктивность была повышенной, а в периоды, соответствующие оледенениям, – пониженной, вероятно, вследствие более продолжительного в году покрова морских льдов. Отмечены особенности изменения продуктивности во времени в восточной части моря, более подверженной влиянию входящих тихоокеанских вод.

DOI: 10.7868/S0030157416020027

ВВЕДЕНИЕ

Изменения климата в прошлом изучаются уже не первый десяток лет, однако на сегодняшний день палеоокеанология не может полностью объяснить все механизмы возникновения и развития глобальных и региональных природных процессов. Актуальным остается вопрос о том, как именно изменения климата влияют на продуктивность морских бассейнов, включая и окраинные дальневосточные моря.

Выявление региональных особенностей глобальных осцилляций климата позволяет полнее оценить общую картину природных процессов. Высокая чувствительность среды Охотского моря к глобальным и региональным изменениям климата в совокупности с высокой скоростью седиментации делают данный регион перспективным для детальных исследований палеосреды [1–7, 13, 15, 17, 22–28, 38, 39, 42, 43].

За последние десятилетия палеопродуктивность Охотского моря изучалась как при помощи микропалеонтологических [2, 3, 13, 15, 17, 42, 43], так и геохимических методов [1, 5, 8, 28, 38]. Выделены периоды максимальной продуктивности во время голоцена и оптимума последнего межледниковья (МИС 1 и МИС 5е соответственно), а во время оледенений (МИС 5d-2 и МИС 6) в связи с более суровыми ледовыми условиями уменьшалась продуктивность. Одним из методов оценки первичной палеопродуктивности является анализ содержания хлорина в осадке. Несмотря на механизмы перемешивания в осадках, изменения концентрации хлорина отражают колебания первичной продуктивности, хотя на данный момент точно не известно, является ли связь линейной. Использование хлорина в четвертичных морских осадках как индикатора первичной палеопродуктивности продемонстрировали работы Харриса с соавторами [30, 31], оно опробовано и в Охотском море [1, 6, 8, 21, 25, 35].

В данной работе сделана попытка выделить региональные особенности изменений первичной продукции на фоне глобальных колебаний климата с помощью хлоринового анализа 11 кернов из разных частей Охотского моря с установленными ранее возрастными шкалами.

МАТЕРИАЛЫ И МЕТОДЫ

В работе использовались материалы 11 колонок донных осадков Охотского моря, отобраных в ходе 28-го рейса на НИС "Академик М.А. Лаврентьев", 25-го рейса на НИС "Академик А. Несмеянов", российско-японского рейса MR 06-04 на НИС "Mirai", российско-японского рейса YK07-12 на НИС "Yokosuka", российско-германского рейса в рамках программы КОМЕХ на НИС "Sonne", рейса в рамках программы

Рис. 1. Карта расположения станций отбора 11 кернов донных осадков и схема поверхностных течений в Охотском море.

КОМЕХ на НИС "Маршал Геловани" (рис. 1, таблица) [16, 19, 29, 40].

Пробы на анализ содержания хлорина в кернах отбирались каждые 1–2 см, навеска в 1 г экстрагировалась в 90% растворе ацетона, оптическая плотность экстракта определялась на спектрофотометрах SHIMADZU UV-1650PC и UV-3600, затем из полученных данных рассчитывалась концентрация хлорина в осадке по отработанной методике [1, 8]. Данный метод для морских отложений был предложен Харрисом и Максвелом [30], а впоследствии стал одним из стандартных методов в палеоокеанологии. В предыдущих работах авторов была показана зависимость содержания хлорина в поверхностных осадках от первичной продукции Охотского моря, а также взаимосвязь колебаний содержания хлорина в охотоморских осадках и изменений климата, как на глобальном, так и на региональном уровне [1, 8].

При построении моделей возрастных шкал изученных колонок использован комплекс стратиграфических методов, включающий абсолютные радиоуглеродные датировки (AMS), результаты анализа изотопного состава кислорода планктонных (*Neogloboquadrina pachyderma* sin.) и бентосных (*Uvigerina auberiana*, *U. peregrina*) фора-

БОСИН, ГОРБАРЕНКО

Название станции	Координаты			Глубица отбора, м
	долгота	широта	Длина керна, см	тлубина бтобра, м
LV 28-34-2	146°48′	53°52′	969	1431
LV 28-40-5	147°11′	51°20′	803	1312
LV 28-41-5	149°03′	51°39′	710	1114
LV 28-43-5	152°18′	51°54′	635	839
LV 28-44-4	153°06′	52°03′	825	681
PC-06R	150°05′	53°17′	1825	1142
PC-07R	149°13′	51°17′	1734	1256
SO 178-11-5	146°13′	51°14′	1748	1182
GC-1A	149°13′	51°17′	541	1250
Ge 99-10	146°08′	48°19′	775	1335
934	150°41 ′	48°33′	510	2195

Расположение станций	отбора 11 к	ернов донных	осадков в	Охотском мор)e
		•			

минифер (δ^{18} O), положение датированных пепловых прослоев, цветовые характеристики осадка (b*), корреляцию изменения магнитной восприимчивости осадков и изменения интенсивности геомагнитного поля Земли, ряд геохимических и других методов [4-7, 10, 22-27]. В качестве индикатора интенсивности морских льдов и ледового разноса определялась весовая доля крупной фракции осадка более 63 мкм и менее 2 мм, которая аккумулируется на дне моря при таянии морских льдов [4]. В результате в изученных колонках осадков были определены границы МИС с возрастами по [36]. Возраст осадков в пределах стадий линейно интерполирован. На рис. 2 в качестве примера представлена возрастная модель колонки донных осадков MR 06-04 PC-07R. В дальнейшем длина керна была пересчитана из метров в тысячи лет согласно полученным возрастным моделям. Временное разрешение изученных кернов в среднем варьировалось от 32 до 250 лет/см. Для расчета кривой среднего содержания хлорина в 11 охотоморских колонках концентрация хлорина в каждом керне была интерполирована с дискретностью в 100 лет и проведена стандартная процедура линейной нормировки от 0 до 1 по формуле:

$$Ni = (Xi - X_{\min}) / (X_{\max} - X_{\min}),$$

где Ni — нормированное значение; Xi, X_{\min} и X_{\max} — соответственно текущее, минимальное и максимальное значения в рассматриваемом ряде данных.

РЕЗУЛЬТАТЫ

Проведено сравнение распределения содержания хлорина в донных отложениях 11 кернов из разных районов Охотского моря, соответствующих рассматриваемому периоду. В результате получена общая кривая изменений содержания хлорина в осадках изученного региона (рис. 3).

МИС 6 (соотносится с предпоследним оледенением) достигают только четыре керна, но во всех этих колонках на протяжении всей стадии наблюдаются сравнительно невысокие содержания хлорина. К концу МИС 6 (130 т. л. н.) концентрация хлорина в осадке опускается практически до нуля.

МИС 5 (130-74 т. л. н.) представлена в семи колонках осадков, пять из которых охватывают ее полностью. В начале МИС 5 (подстадия 5е, 130-117 т. л. н., оптимум последнего межледниковья) содержание хлорина резко увеличивается в несколько десятков раз. Затем происходит быстрое непродолжительное снижение концентрации хлорина. После окончания подстадии 5е концентрация хлорина вновь понижается, хотя и не так значительно как во время МИС 6. На всем протяжении подстадии 5d (117–105 т. л. н.) содержание хлорина остается минимальным для МИС 5. В подстадии 5с и 5b (105-85 т. л. н.) содержание хлорина сильных колебаний не испытывает и остается повышенным, но не достигает значений подстадии 5е. Подстадия 5а (85-74 т. л. н.) начинается с резкого скачка содержания хлорина, а затем на протяжении всей подстадии его содержание постепенно снижается.

МИС 4 (74–59 т. л. н.) наблюдается в осадках восьми колонок. На всем протяжении стадии резких колебаний содержания хлорина практически не наблюдается, но на границах с МИС 5 и 3 концентрации минимальны. Во второй половине данной стадии имеется непродолжительный пик в концентрации хлорина с максимумом около 64 т. л. н., но в среднем содержание хлорина в осадке заметно ниже, чем в МИС 5.

ОКЕАНОЛОГИЯ том 56 № 2 2016

Рис. 3. Нормализованные значения содержания хлорина в осадках за последние 160 тыс. лет, осредненные для 11 кернов (серая линия). Стеки LR04 по записям δ^{18} O бентосных фораминифер, NGRIP – δ^{18} O ледового керна Гренландии, Sanbao Cave – δ^{18} O сталагмитов из пещер на территории Китая (черная линия) [34, 45].

МИС 3 (59–28.5 т. л. н.) отражена в 10 колонках осадков. В первой половине МИС 3 происходит постепенное повышение содержания хлорина, и на протяжении всей стадии оно остается на высоком уровне, большем, чем в МИС 4. На протяжении всей стадии наблюдаются кратковременные колебания концентрации хлорина. На обобщенной кривой большинство подобных колебаний четко не выражены из-за некоторой неточности возрастных моделей для отдельных осадочных кернов.

МИС 2 (28.5–11.7 т. л. н.) представлена во всех кернах. Граница стадий МИС 3 и МИС 2 по содержанию хлорина четко не выделяется. Во второй половине МИС 2 происходит небольшое повышение его концентрации, а затем значительное понижение, причем минимальные значения сохраняются до конца стадии. В конце стадии наблюдается резкое и значительное увеличение содержания хлорина с последующим резким, но непродолжительным спадом, соответствующее максимуму последнего оледенения, похожие события наблюдаются в самом начале МИС 5. МИС 1 (началась 11.7 т. л. н., соответствует голоцену) изучена в 9 колонках осадков, два керна не рассматриваются из-за недостаточного количества осадочного материала для исследования. В самом начале МИС 1 отмечается резкое и значительное возрастание концентрации хлорина, после которого вплоть до современных осадков содержание хлорина в осадке остается высоким, хотя и с довольно значительными колебаниями.

ОБСУЖДЕНИЕ

Полученные кривые изменений содержания хлорина в осадках отражают региональные особенности глобальных колебаний климата и продуктивности Охотского моря в позднем плейстоцене—голоцене. Были обнаружены общие хронологические закономерности изменения содержания хлорина в охотоморских осадках, несмотря на небольшие региональные различия.

МИС 6 и 5d-2 соответствуют предпоследнему и последнему оледенениям. Сравнительно низкие значения содержания хлорина в это время

свидетельствуют о неблагоприятных климатических условиях для развития первичной продукции. Первичная продуктивность была подавлена, в первую очередь, из-за суровых ледовых условий, которые значительно сокращали вегетационный период, и уменьшения инсоляции [5, 23, 25, 39]. На усиление формирования морского льда во время оледенений влияло снижение температур и усиление зимних муссонов [4, 45], также вследствие опускания уровня моря снижается отепляющее влияние вод Японского моря, поступающих с течением Соя. В то же время при холодных и аридных климатических условиях значительно снижались речной сток и поступление биогенных элементов с суши [33]. Даже в период максимального оледенения ледяной покров на большей части Охотского моря в летнее время разрушался, а ЮВ часть Охотского моря оставалась свободной ото льда значительную часть года, достаточную для развития фитопланктона [4, 39]. В конце МИС 6 и МИС 2 во всех колонках хорошо прослеживается минимум продуктивности, по времени совпадающий с холодными событиями Хайнриха Н11 и Н1 соответственно [32, 44], в то же время на азиатском континенте отмечены максимальные значения активности зимних муссонов, а два четко выраженных пика продуктивности 64 и 84 т. л. н., вероятно, соответствуют выделенным в Гренландии теплым Дансгор-Ошгер межстадиалам 18 и 21 соответственно [24, 37]. Большинство кратковременных теплых и холодных событий на общей кривой выражены слабо вследствие невысокой детальности моделей возрастных шкал изученных колонок. Условно принимается, что между датированными отметками в возрастных моделях скорость осадконакопления постоянна, что не всегда соответствует действительности.

На границе стадий 6/5 и 2/1 во время дегляциаций наблюдаются резкие "всплески" биопродуктивности. Подстадия 5е начинается с резкого возрастания первичной продукции. Первый пик продуктивности приходится на интервал 130-128 т. л. н. Затем происходит довольно резкий спад содержания хлорина в осадке на интервале 128-125 т. л. н. 125 т. л. н. начинается второй максимум биопродуктивности, достигая максимума 121 т. л. н. Продуктивность остается очень высокой до окончания подстадии 5е. М.С. Бараш с коллегами [3] при изучении ЮВ части Охотского моря разделили оптимум последнего межледниковья (подстадию 5е) на две части: раннюю (127-121 т. л. н.) с большим содержанием фораминифер и позднюю (121-117 т. л. н.) с подавляющим преобладанием кремнистых микрофоссилий. При этом авторы отмечали, что повышенное биогенное осадконакопление началось на 2-2.5 тыс. лет позже начала МИС 5 [2, 3]. По нашим данным именно на этот период времени приходится первый пик продуктивности. Вероятно, он был вызван бурным расцветом кокколитофорид, плохо сохраняющихся в донных отложениях, и поэтому не был определен микропалеонтологическими методами.

В начале МИС 1 два максимальных пика первичной продукции отмечены в период дегляциации (14.5-9.8 т. л. н.), согласующиеся с изменениями характеристик палеопродуктивности, полученными ранее для северо-западной части Тихого океана, Берингова и Охотского морей [5, 23] (рис. 4). Первый максимум продуктивности, в период с 14.5 по 12.7 т. л. н., был вызван климатическим потеплением Беллинг-Аллеред, происходящим одновременно с первым ДО межстадиалом Гренландии [18]. Это событие в северном полушарии сопровождалось резким поднятием уровня моря, вызванным быстрым таянием ледниковых щитов (терминация 1А). В это же время усиливалось вертикальное перемешивание промежуточных и глубинных вод в северной части Тихого океана. что в свою очередь вызывало увеличение поступления питательных веществ в приповерхностный слой воды и стимулировало развитие первичной продукции [21, 41]. Минимум в характеристиках палеопродуктивности 12.7-11.5 т. л. н. соответствует похолоданию поздний дриас. Второй пик продуктивности и потепления климата начинается с 11.5 т. л. н. и продолжается в течение терминации 1В. Трансгрессия моря сопровождалась увеличением поступления биогенных элементов с суши. В это же время усиливалась стратификация приповерхностного слоя в теплое время года [15, 17, 26, 27, 39]. Эти факторы привели к бурному развитию фитопланктона. В первую очередь, интенсивно развивался карбонатный фитопланктон, особенно кокколитофориды. После терминации 1В постепенно начинает увеличиваться доля диатомовых водорослей, достигая максимума примерно 5.5 т. л. н. В дальнейшем, во вторую половину голоцена, диатомеи играют доминирующую роль в развитии фитопланктона [9, 13].

После терминаций во время межледниковий биопродуктивность несколько понижалась, но оставалась сравнительно высокой по отношению к периодам оледенений. Вероятно, это было связано с сокращением притока терригенного материала при снижении темпов трансгрессии моря. В то же самое время усиление активности муссонов привело к увеличению поставки биогенных элементов с континента, в том числе и с речным выносом [22, 39, 42]. Условия формирования первичной продукции во второй половине голоцена были близки к современным. Большая часть биогенных элементов поступает в приповерхностный слой во время зимнего перемешивания верхнего слоя воды с нижележащими водами, поступающими преимущественно из Тихого океана и обогащенными питательными веществами. Ве-

Рис. 4. Нормализованные значения содержания хлорина в осадках за последние 20 тыс. лет, осредненные для 11 кернов (черная линия) и в колонке LV 28-44-4 (серая линия), отобранной из восточной части моря.

сеннее таяние льдов, а в западной части моря и влияние речного стока, приводит к стратификации приповерхностного слоя, обогащенного питательными веществами, что создает условия для весеннего цветения диатомовых водорослей [8, 11, 12, 14]. В летний период продуктивность Охотского моря падает, но остается высокой в областях апвеллинга, а осенью наблюдается второй пик цветения, преимущественно за счет развития карбонатного фитопланктона, не такой интенсивный как весенний [15, 20]. Поздней осенью и зимой формирование ледяного покрова подавляет развитие первичной продукции на большей части Охотского моря. В юго-восточную часть моря через Курильские проливы поступают обогащенные биогенными элементами теплые тихоокеанские воды, сдерживающие развитие морских льдов и обеспечивающие высокую продуктивность фитопланктона в вегетационный период. В ЮВ части Охотского моря отсутствует ярко выраженный пик первичной продуктивности в период, соответствующий Терминации 1А (рис. 4).

выводы

Изменения продуктивности чутко реагируют как на глобальные, так и на региональные климатические изменения. На протяжении последних 160 тыс. лет в охотоморских осадках обнаружены общие хронологические закономерности изменения содержания хлорина, отражающие колебания климата. Во время межледниковий палеопродуктивность была повышенной, а в оледенения — пониженной. Изменения содержания хлорина в осадках, несмотря на количественные различия, происходят сходным образом на всей акватории Охотского моря. В ЮВ части изученного региона изменения продуктивности во время дегляциации и голоцена значительно отличаются, вероятно, из-за воздействия тихоокеанских вод, заходящих через северные Курильские проливы.

Работа выполнена при финансовой поддержке грантов РФФИ (№ 12-05-31339 мол_а, № 13-05-00296 и № 14-05-31364 мол_а) и гранта Президента РФ (МК-3466.2012.5).

СПИСОК ЛИТЕРАТУРЫ

- 1. Босин А.А., Захарков С.П., Горбаренко С.А. Отражение современного распределения первичной продукции в донных осадках Охотского моря // Океанология. 2010. Т. 50. № 2. С. 194–202.
- 2. Бараш М.С., Бубенщикова Н.В., Казарина Г.Х. и др. О палеоокеанологии центральной части Охотского моря в течение последних 200 тыс. лет (по микропалеонтологическим данным) // Океанология. 2001. Т. 41. № 5. С. 755–767.
- 3. Бараш М.С., Чеховская М.П., Бибо Н. и др. О четвертичной палеокеанологии юго-восточной части Охотского моря по литологии и планктонным фораминиферам // Океанология. 2005. Т. 45. № 2. С. 273–285.
- 4. Василенко Ю.П., Горбаренко С.А., Цзоу Ц. Ледяной покров Охотского моря в позднеплейстоценовом

оледенении и голоцене // Вестн. ДВО РАН. 2011. № 2. С. 70–77.

- Горбаренко С.А., Гольдберг Е.Л. Оценки изменения первичной продукции Охотского и Берингова морей и северо-западной части Тихого океана за максимум последнего оледенения и голоцен // Докл. РАН. 2005. Т. 405. № 5. С. 673–676.
- 6. Горбаренко С.А., Харада Н., Малахов М.И. и др. Тысячелетние осцилляции климата и среды Охотского моря за последние 190 тысяч лет в связи с глобальными изменениями // Докл. РАН. 2008. Т. 423. № 3. С. 389–392.
- Горбаренко С.А., Чеховская М.П., Соутон Дж.Р. О палеосреде центральной части Охотского моря во время последнего оледенения голоцена // Океанология. 1998. Т. 38. № 2. С. 305–308.
- Захарков С.П., Босин А.А., Горбаренко С.А. Содержание хлорина в морских осадках как индикатор палеопродуктивности // Вестн. ДВО РАН. 2007. № 1. С. 52–58.
- Лапшина В.И. Внутрисезонная и межгодовая динамика в количественном распределении сетного фитопланктона в Охотском море и прикурильских водах океана // Изв. ТИНРО. 1996. Т. 119. С. 120– 148.
- Малахов М.И., Горбаренко С.А., Малахова Г.Ю. и др. Влияние климатических факторов и напряженности геомагнитного поля на остаточную намагниченность морских донных отложений // Вестн. СВНЦ ДВО РАН. 2007. № 4. С. 14–30.
- Налетова И.А., Сапожников В.В., Метревели М.П. Особенности распределения первичной продукции в летний период и оценка суммарной продукции в Охотском море // Комплексные исследования экосистемы Охотского моря. М.: ВНИРО, 1997. С. 98–103.
- Сорокин Ю.И. Первичная продукция в Охотском море // Комплексные исследования экосистемы Охотского моря. М.: ВНИРО, 1997. С. 103–110.
- 13. Цой И.Б., Обрезкова М.С., Артемова А.В. Диатомеи поверхностных осадков Охотского моря и северозападной части Тихого океана // Океанология. 2009. Т. 49. № 1. С. 141–150.
- 14. Шунтов В.П. Биология дальневосточных морей. Владивосток: ТИНРО, 2001. Т. 1. 580 с.
- Abelmann A., Nimmergut A. Radiolarians in the Sea of Okhotsk and their ecological implication for paleoenvironmental reconstructions // Deep-Sea Res. II. 2005. V. 52. P. 2302–2331.
- Biebow N., Hutten E. (Eds.). Cruise Reports: KOMEX I and II: RV "Professor Gagarinsky, cruise 22 and RV "Akademik M.A. Lavrentyev", cruise 28. GEOMAR Report, 1999. 188 p.
- Bubenshchikova N., Nurnberg D., Lembke-Jene L. et al. Living benthic foraminifera of the Okhotsk Sea: Faunal composition, standing stocks and microhabitats // Marine Micropaleontology. 2008. V. 69. P. 314–333.
- Dansgaard W., Johnson S.J., Claussen H.B. et al. Evidence of general instability of past climate from a 250 kyr ice-core record // Nature. 1993. V. 364. P. 218–220.
 - ОКЕАНОЛОГИЯ том 56 № 2 2016

- Dullo W.-Chr., Biebow N., Georgeleit K. (Eds.). Cruise Report: KOMEX III: RV "Sonne", cruise 178. GEOMAR Report, 2004. 125 p.
- Gladyshev S., Martin S., Riser S. et al. Dense water production on the northern Okhotsk shelves: comparison of ship-based spring–summer observations for 1996 and 1997 with satellite observations // J. of Geoph. Res. 2000. V. 105. P. 26281–26299.
- Gebhardt H., Sarnthein M., Grootes P.M. et al. Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V // Paleoceanography, 2008. 23. PA4212, doi: 10.1029/2007PA001513
- 22. Gorbarenko S.A. Stable isotope and lithologic evidence of Late Glacial and Holocene oceanography of the Northwestern Pacific and its marginal seas // Quaternary research. 1996. № 46. P. 230–250.
- Gorbarenko S.A., Goldberg E.L., Kashgarian M. et al. Millennium Scale Environment Changes of the Okhotsk Sea during Last 80 kyr and Their Phase Relationship with Global Climate Changes // J. of Oceanography. 2007. V. 63. P. 609–623.
- 24. Gorbarenko S.A., Nuernberg D., Derkachev A.N. et al. Magnetostratigraphy and tephrochronology of the upper Quaternary sediments in the Okhotsk Sea: implication of terrigenous, volcanogenic and biogenic matter supply // Marine Geology. 2002. V. 183. P. 107–129.
- Gorbarenko S.A., Southon J.R., Keigwin L.D. et al. Late Pleistocene Holocene oceanographic variability in the Okhotsk Sea: geochemical, lithological and peleontological evidence // Palaeogeography, Palaeoclimatology, Palaeoecology. 2004. V. 209. P. 281–301.
- Gorbarenko S.A., Khusid T.A., Basov I.A. et al. Glacial– Holocene environment of the southeast Okhotsk Sea: evidence from geochemical and paleontological data // Palaeogeography, Palaeoclimatology, Palaeoecology. 2002. V. 177. P. 237–263.
- Gorbarenko S.A., Psheneva O.Yu., Artemova A.V. et al. Paleoenvironment changes in the NW Okhotsk Sea for the last 18 thousand years by micropaleontologic, geochemical, and lithological data // Deep-Sea Res. I. 2010. V.57. P. 797–811.
- Harada N., Ahagon N., Sakamoto T. et al. Rapid fluctuation of alkenone temperature in southwestern Okhotsk Sea during past 120 kyr // Global and Planetary Change. 2006. V. 53. P. 29–46.
- Harada N. (Eds.). Cruise Reports: RV "Mirai, cruise MR 06-04 Leg 1 and 2. JAMSTEC Report, 2006. 250 p.
- 30. *Harris P.G., Maxwell J.R.* A novel method for the rapid determination of chlorin concentrations at high stratigraphic resolution in marine sediments // Organic Geochemistry. 1995. V. 23. № 9. P. 853–856.
- Harris P.G., Zhao M., Rosell-Mele A. et al. Chlorin accumulation rate as a proxy for Quaternary marine primary productivity // Nature. 1996. V. 383. P. 63–65.
- 32. *Heinrich H*. Origin and consequences of cyclic ice rafted in the Northeast Atlantic ocean during the past 130000 years // Quaternary Res. 1988. V. 29. P. 142–152.
- Hovan S.A., Rea D.K., Pisias N.G. Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments // Paleoceanography. 1991. V. 6. P. 349–370.

- 34. Lisiecki L.E., Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ¹⁸O records // Paleoceanography. 2005. V. 20. PA1003 doi: 10.1029/2004 PA001071.
- Mayewski P.A., Meeker L.D., Twicker M.S. et al. Major features and forcing of high latitude northern hemisphere atmospheric circulation over the last 110000 years // J. of Geoph. Res. 1997. V. 102. P. 26345–26366.
- 36. *Martinson D.G., Pisias N.G., Hays J.D. et al.* Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy // Quaternary Res. 1987. V. 27. № 1. P. 1–29.
- McManus J.F., Bond G.C., Broecker W.S. et al. Highresolution climate records from the North Atlantic during the last interglacial // Nature. 1994. V. 371. P. 326–329.
- Nürnberg D., Tiedemann R. Environmental change in the Sea of Okhotsk during the last 1.1 million years // Paleoceanography. 2004. V. 19. PA4011 doi: 10.1029/2004 PA001023.
- 39. Sakamoto T., Ikehara M., Uchida M. et al. Millennialscale variations of sea-ice expansion in the southwestern part of the Okhotsk Sea during the past 120 kyr: age model and ice-rafted debris in IMAGES Core MD01-2412 // Global and Planetary Change. 2006. V. 53. P. 58–77.

- Sakamoto T., Sakai T., Iijima K. (Eds). Cruise Reports: RV "Yokosuka, cruise YK 07-12 JAMSTEC Report, 2007. 274 p.
- 41. Sarnthein M., Kiefer T., Grootes P.M. et al. Warmings in the far northwestern Pacific promoted pre-Clovis immigration to America during Heinrich event 1 // Geology. 2006. V. 34. № 3. P. 141–144; doi: 10.1130/G22200.1
- 42. Seki O., Ikehara M., Kawamura K. et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr // Paleoceanography. 2004. V. 19. PA1016. doi: 10.1029/2002PA000808. P. 1–18.
- Shiga K., Koizumi I. Latest Quaternary oceanographic changes in the Okhotsk Sea based on diatom records // Marine Micropaleontology. 2000. V. 38. P. 91–117.
- 44. van Kreveld S.A., Knappertsbusch M., Ottens J. et al. Biogenic carbonate and ice rafted debris (Heinrich layer) accumulation in deep-sea sediments from a Northeast Atlantic piston core // Marine Geology. 1996. V. 131. P. 21–46.
- 45. Wang L., Sarnthein M., Erlenkeuser H. et al. East-Asian monsoon climate during the Late Pleistocene: Highresolution sediment records from the South China Sea // Marine Geology. 1999. V. 156. P. 243–282.

Regional Peculiarities of Primary Paleo-Productivity Changes in the Sea of Okhotsk in the Late Pleistocene and Holocene

A. A. Bosin, S. A. Gorbarenko

Variations of chlorin (derivates of chlorophyll "a" decomposition) content were studied in 11 sediment cores in different parts of the Sea of Okhotsk. The data obtained show marine paleo-productivity changes in the last 160 kyr, from the end of marine isotopic stage (MIS) 6 up to the present time. General regularity of paleo-productivity changes was revealed for the whole Sea of Okhotsk. During the interglacial periods (MIS 5e and 1), the productivity increased, but during the glacial epoch (MIS 5d-2) it decreased. Regional features of paleo-productivity oscillations were revealed in the studied area.