——— МОРСКАЯ БИОЛОГИЯ ——

УДК 595.34:591.1(262.5)

КОПЕПОДЫ *OITHONA SIMILIS* И *OITHONA DAVISAE* – ДВЕ СТРАТЕГИИ ЭКОЛОГО-ФИЗИОЛОГИЧЕСКОЙ АДАПТАЦИИ В ЧЕРНОМ МОРЕ

© 2016 г. Е.С. Губарева, Л.С.Светличный

Институт биологии южных морей им. А.О. Ковалевского, Севастополь e-mail: ehubareva@mail.ru Поступила в редакцию 22.05.2014 г. После доработки 24.03.2015 г.

Для сравнительной оценки адаптивного потенциала двух видов циклопоидных копепод Черного моря, аборигенной *Oithona similis* и недавно вселившейся *Oithona davisae*, исследовали их соленостную толерантность, энергетический обмен, а также плавучесть и скорости пассивного погружения и плавания. Оба вида проявили черты морской эвригалинности, однако диапазон потенциальной галотолерантности *O. davisae* оказался существенно шире (5–55‰). Энергетический обмен, двигательная активность, средняя плотность тела и скорость пассивного погружения при одинаковой температуре у *O. davisae* оказались достоверно выше, чем у *O. similis*. Обсуждается связь физиологических и поведенческих параметров с особенностями экологии этих видов.

DOI: 10.7868/S0030157416020088

Мелкие циклопоиды широко распространены в водах Мирового океана и часто по численности преобладают над другими группами копепод [32]. Некоторые авторы считают, что одной из причин процветания копепод рода *Oithona* являются сравнительно низкие траты энергии на дыхание [11] и воспроизводство [37].

До конца 80-х гг. XX века Черное море населяли два вида эпипланктонных ойтонид — эвритермный Oithona nana Giesbrecht, 1893 и холодолюбивый Oithona similis Claus, 1866. O. nana исчезла из планктонного сообщества Черного моря в 1989 г., почти сразу после вселения в него гребневика — вселенца Mnemiopsis leidyi [6, 7].

После появления в Черном море гребневика Beroe ovata, питающегося преимущественно M. leidyi, и установления баланса между двумя этими видами гребневиков, в Севастопольской бухте в 2001 г. появился новый вид ойтон, распространившийся в последующее десятилетие по всему мелководному шельфу Черного моря [1, 8, 19]. Первоначально он был идентифицирован как Oithona brevicornis Giesbrecht, 1891 [3], но впоследствии, после проведения дополнительных исследований, определен как Oithona davisae Ferrari и Orsi, 1984 [31].

О. davisae является теплолюбивым [34] представителем эстуарных ойтонид западной Индо-Пацифики [12]. В настоящее время признано, что распространение *О. davisae* в другие регионы Мирового океана происходило путем переноса с балластными водами судов из полносоленых морей в распресненные эстуарии и бухты [3, 14, 25].

O. similis (в отличие от O. davisae) является холодолюбивым видом, распространенным в бореальных и умеренных водах северных и южных широт Мирового океана [2, 35] при температурах от -1.6 до 15°С [23]. В Черном море в летнее время этот вид обитает в холодных слоях открытых зон моря при температуре около 8°С [5], приближаясь к берегу в зимний период. O. similis отличается от O. davisae большей обводненностью тела, что, вероятно, обусловлено особенностями обитания в более глубоких и менее продуктивных слоях моря [36]. Видовой диапазон соленостной толерантности O. similis варьирует от 7-16% в Балтийском море [13] до 38.8‰ в южной Адриатике [20], однако, согласно Ковалеву [4], черноморская популяция O. similis отличается стеногалинностью, поскольку в проведенных им экспериментах все особи погибали после быстрого понижения или повышения солености на 8‰ относительно типичной для Черного моря солености 18‰.

Чтобы определить адаптационный потенциал черноморских ойтонид *O. similis* и *O. davisae*, мы исследовали влияние постепенного, ступенчатого изменения солености различной продолжительности на выживаемость самок в многосуточных экспериментах. Поскольку адаптация к абиотическим и биотическим параметрам отражается на физических параметрах тела и активности животных, нами были выполнены сравнительные исследования энергетического обмена, плотности тела, скорости пассивного опускания и активного плавания этих близкородственных видов.

МАТЕРИАЛЫ И МЕТОДЫ

Соленостная толерантность. Влияние солености на выживаемость черноморских O. similis и *О. davisae* исслеловали в феврале-марте 2012 г. По 20-30 активных самок без яйцевых мешков, пойманных в Севастопольской бухте при 17.5%, помещали в 3-5 прозрачных чашек объемом 100 мл, наполненных фильтрованной морской водой с соленостью 18%, и подвергали ступенчатому понижению или повышению солености в течение 4-8 ч со скоростью 1-3% ч⁻¹ (в зависимости от диапазона изменения солености). Морскую воду с повышенной или пониженной соленостью получали, разбавляя черноморскую воду (18%) дистиллированной водой или добавляя искусственную морскую соль. Соленость морской воды определяли при помощи кондуктометра НАСН "SensIon 5" и солемера "pIONeer 65". В соответствии с предварительно установленными нами разными порогами чувствительности к солености, конечная соленость для O. similis составляла 11, 15, 25, 27 и 30‰, а для *O. davisae* – 3, 5, 12, 30, 35, 40 и 45‰. После достижения конечной солености в воду с животными добавляли в избытке водоросли Oxyrrhis sp. и экспериментальные чашки с O. similis помещали в холодильник, где копепол солержали при 8°С и искусственном освещении (12 ч: 12 ч), а чашки с O. davisae оставляли при комнатной температуре 22-24°С, периодически заменяя воду на свежую и добавляя корм. Параллельно этим были поставлены контрольные опыты при постоянной солености 18%. В связи с разной переносимостью исследованными видами лабораторного содержания длительность экспозиции при конечной солености составляла 11-18 сут в экспериментах с *O. similis* и 18-29 сут – с O. davisae. Диапазон соленостной толерантности копепод оценивали, исходя из величин медианной летальной солености LS₅₀ в период с 5 по 9 сутки экспозиции. В отдельных экспериментах копепод подвергали равномерному повышению солености за счет естественного испарения воды в чашках с животными и кормом. В течение 6 суток у O. similis соленость повышали от 18 до 40%(8°С), а у О. davisae – от 18 до 55‰ (22–24°С). Экспозиции при конечной солености составляли 14 и 23 сут соответственно для O. similis и O. davisae.

Энергетический обмен. Скорость дыхания (R, мкгO₂ инд⁻¹ ч⁻¹) рачков была определена методом закрытых респирометров, в качестве которых были использованы шприцы объемом 2.0 мл. 20 активно плавающих самок *O. similis* или 60–80 самок *O. davisae* (в 10 повторностях), предварительно выдержанных в течение часа в фильтрованной морской воде (ФМВ) при 20°С и 18‰, осторожно переносили пипеткой в наполненные ФМВ и имеющие вставки из мельничного сита (100 мкм) перед сливным отверстием опытные шприцы, ко-

торые соединяли при помощи коротких (2 см) силиконовых трубок с контрольными шприцами. содержащими только ФМВ. Для того, чтобы получить одинаковую начальную концентрацию кислорода и возможной неконтролируемой взвеси, воду в опытных и контрольных шприцах несколько раз обменивали между собой. После этого шприцы разъединяли, закрывали пробками и помещали в термостат с постоянной температурой 20°С. Инкубационный период составлял около 3 ч. Количество потребленного рачками кислорода определяли по разнице его концентрации в контрольных и опытных шприцах в конце экспозиции. Концентрацию кислорода в шприцах вычисляли как среднюю, определенную по трем порциям воды (~0.2 мл), вводимым шприцами в измерительную камеру переменного объема, расположенную непосредственно над мембраной люминесцентного датчика кислорода Hach LDOTM. Другие методические детали, касающиеся измерения концентрации кислорода и определения скорости дыхания копепод, описаны ранее [28, 30].

Плотность тела. Средняя плотность тела копепод (ρ_b , г/см³) была определена по скорости пассивного опускания (U, см/с) особей, анестезированных 1 : 5000 раствором MS-222 Sandoz [29], в соответствии с эмпирическим уравнением:

$$\rho_{\rm b} = \rho_{\rm w} (1 + c\pi v d_{\rm pr} U/8gV_{\rm b}),$$

где *с* – гидродинамический коэффициент формы; *v* – коэффициент кинематической вязкости, cm^2/c ; d_{pr} – ширина цефалоторакса, см; *g* – ускорение силы тяжести, cm/c^2 ; V_b – объем тела, см³.

Гидродинамические коэффициенты формы были рассчитаны по эмпирическим уравнениям, описывающим три основных типа ориентации тела рачков при пассивном опускании [29]: головным концом вниз, со сложенными вдоль тела антеннами (BP I), абдоменом вниз с распростертыми антеннами (BP II), горизонтально, дорзальной частью тела вниз с распростертыми антеннами (BP III). Соответствующие уравнения имеют вид: $c = 2.27 L_{an} L_{pr} / d_{pr}^2 + 52.8$ (BP I), c == $5.1L_{\rm an}L_{\rm pr}/d_{\rm pr}^2$ + 70.9 (ВР II) и *c* = $6.17L_{\rm an}L_{\rm pr}/d_{\rm pr}^2$ + + 72.4 (ВР III), где $L_{\rm an}$ – длина одной антенны, $L_{\rm pr}$ – длина цефалоторакса. Чтобы свести к минимуму влияние тепловой конвекции воды, скорость опускания анестезированных копепод измеряли во внутренней трубке (с диаметром 1 см) прямоточного холодильника Либиха. В расчетах плотности тела использовали среднюю величину скорости опускания, определенную для каждой особи 5-6 раз по мере опускания в трубке на 20 см. Всего было исследовано 12 особей O. similis и 20 O. davisae.

Рис. 1. Влияние пониженной (а – 11‰, 1 и 15‰, 2) и повышенной (б – 27‰, 3 и 30‰, 4) солености на выживаемость *Oithona similis* ($\pm \sigma$). Контрольный эксперимент отмечен сплошной линией и незаштрихованными кружками.

Объем тела $V_{\rm b}$ обоих видов рассчитали по формуле:

$$V_{\rm b} = 0.47 L_{\rm tot}^{0.21} l_{\rm pr}^{0.93} d_{\rm pr}^{1.86},$$

где L_{tot} — общая длина тела, см. [29]. Плотность морской воды была рассчитана в соответствии с температурой и соленостью с помощью Океанологического калькулятора 2.1 В.С. Архипкина.

Плавательная активность. Среднюю скорость (U_s, см/с) скачкообразного плавания ойтон (характерного для этих копепод способа перемещения, в том числе – при захвате пищи) определяли по формуле: $U_s = FS$, где F -средняя частота скачков, Гц; S – средняя дистанция между позициями копепод до и после каждого скачка, см. Среднюю скорость одного скачка рассчитали как $U_s = SD^{-1}$, где D – продолжительность скачка, с. Указанные параметры измерили при помощи видеосъемки движения 6-8 особей каждого вида в кюветах с размерами 2 × 1.5 × 0.7 см при помощи цифровой камеры Nikon 1 V1, оснащенной микрообъективом. Видеосъемка осуществлялась в проходящем рассеянном свете светодиода GU5.3 с частотой 30 кадров c^{-1} для определения среднего количества скачков в течение 5 мин и с частотой 1200 кадров c^{-1} в течение 3 с для определения дистанции и продолжительности отдельных скачков. Около 20 скачков для каждого вида анализировались покадрово. Для оценки степени достоверности обнаруженных различий применялся *t*-критерий Стьюдента. Результаты статистической обработки представлены в виде средних величин и их стандартных отклонений.

РЕЗУЛЬТАТЫ

Влияние солености на выживаемость Oithona similis и Oithona davisae. В контрольном эксперименте при 18‰ более 90% особей O. similis coxpaняли жизнеспособность в течение первых трех лней. после чего количество выживших особей плавно снижалось до 45 ± 17 на 11 день экспозиции и $30 \pm 21\%$ на 18 сут (рис. 1). После ступенчатого понижения и повышения солености в течение 8 ч до критических величин соответственно 11 и 30% (при которых рачки не погибали в первые сутки эксперимента), смертность O. similis coставляла 50% уже на 3-й день экспозиции и менее 20% особей этого вида выдерживали 11–12-суточную экспозицию. При соленостях 15 и 27‰ достоверные различия выживаемости в опыте и контроле проявились только в первый день и в период с 8 по 12 сут экспозиции.

О. davisae в целом лучше переносила лабораторное содержание, чем *О. similis*. При 18‰ в течение 12 сут выживало более 94% самок этого вида и даже на 29-е сут контрольного эксперимента доля выживших копепод составляла $38 \pm 17\%$ (рис. 2).

При критических соленостях, составивших у *O. davisae* 3 и 45‰, 50% смертность наступала на 3-е сут, так же, как и в экспериментах с *O. similis*, хотя до 20% особей выживали в течение 16 суток после изменения солености. Достоверные отличия от контроля отмечены в течение всей экспозиции при соленостях 12 и 35‰.

В экспериментах с очень медленным и плавным повышением солености в течении 6 суток (путем естественного испарения воды) от 18 до 40‰ у O. similis и от 18 до 55‰ у O. davisae более 50% самок этих копепод выживали при конечной

Рис. 2. Влияние пониженной (а – 3‰, 1 и 12‰, 2) и повышенной (б – 35‰, 3 и 45‰, 4) солености на выживаемость *Oithona davisae* (± σ). Контрольный эксперимент отмечен сплошной линией и незаштрихованными кружками.

солености в последующие 10 сут, тогда как максимальная продолжительность жизни отдельных особей достигала соответственно 14 и 23 сут (рис. 3).

Энергетический обмен, плотность тела, скорости погружения и плавания Oithona similis и Oithona davisae. Сравнительные данные о скорости дыхания, плотности тела и параметрах пассивного и активного перемещения в воде представлены в табл. 1. При 20°С скорость дыхания O. davisae (0.0044 ± 0.0017 мкг O² экз⁻¹ ч⁻¹) достоверно не отличалась (p > 0.05) от скорости дыхания O. similis (0.0035 ± 0.00109 мкг O² экз⁻¹ ч⁻¹), несмотря на то, что вес тела O. similis почти в 3 раза превышал вес тела O. davisae. Средняя плотность тела O. davisae (1.054 ± 0.008 г/см³) оказалась достоверно (p << 0.001) выше, чем у O. similis (1.028 ± 0.0044 г/см³), так же, как и скорость пассивного погружения, в то время как средние скорости активного плавания были близки.

ОБСУЖДЕНИЕ

Соленостная толерантность Oithona similis и Oithona davisae. В экспериментах Ковалева [4], применившего прямой перенос самок O. similis из обычной для Черного моря воды с соленостью 18‰ в воду с отличающейся соленостью, диапазон соленостной толерантности этого вида, определенный в соответствии с величинами медианной летальной солености LS₅₀, составил примерно 14— 22‰. При ступенчатом изменении солености, выполненном нами в течение 8 ч, диапазон соленост-

Рис. 3. Выживаемость *Oithona davisae* (a, *1*) и *Oithona similis* (б, *2*) в течение и после 6-дневного повышения солености (пунктирная линия) соответственно от 18 до 55‰ и от 18 до 40‰.

ОКЕАНОЛОГИЯ том 56 № 2 2016

Рис. 4. Диапазон соленостной толерантности *Oithona similis* (1) и *Oithona davisae* (2). Горизонтальной пунктирной линией показан уровень LS_{50} ($\pm \sigma$).

ной толерантности самок этого вида увеличился до 12–27‰ (рис. 4).

Поскольку при еще более медленном, многосуточном изменении солености верхний предел соленостной толерантности, основанный на LS_{50} , расширился до 40‰ (рис. 3), можно заключить, что *O. similis* в Черном море является условно стеногалинным видом, способным акклимироваться к любой природной солености морской воды.

Галотолерантность O. davisae до сих пор не исследовалась. Известно, что соленость воды в местах исхолного обитания этого вила (внутренние воды Японии) составляет 28.6-32.3% [34], тогда как в эстуариях Сан-Франциско O. davisae была найдена при соленостях от 12 до 19‰ [12, 18]. В наших опытах в среднем 50% самок O. davisae, обитавших в прибрежных водах Черного моря с соленостью 17-18‰, выживало в период с 5 по 9 сутки после ступенчатого изменения солености со скоростью 1-3% ч⁻¹ в диапазоне от 5 до 40%(рис. 4), а при плавном изменении солености в режиме естественного выпаривания диапазон потенциальной соленостной толерантности увеличился до 55‰, что указывает на широкую эвригалинность этого вида.

Энергетический обмен, плотность тела, скорости погружения и плавания. Наиболее полные сравнительные данные об энергетическом обмене копепод рода Oithona представлены в статье Кастеллани и др. [11]. Приведенные в ней максимальные величины интенсивности дыхания O. similis и O. davisae при температурах около и выше 20°С (0.42-0.68 мклО₂ мкгС⁻¹ сут⁻¹) были в 8 раз ниже теоретически ожидаемых величин интенсивности дыхания каланоидных копепод с такой же углеродной массой тела, рассчитанных по формуле, выведенной авторами [11] с использованием откорректированных ими табличных величин дыхания копепод. взятых из работы Икеда и др. [16]. По мнению авторов [11], это подтверждает предположение [24] об энергетической

Таблица 1. Сравнительная характеристика скорости дыхания, параметров тела и скоростей пассивного и активного перемещения *Oithona davisae* и *Oithona similis* при $20 \pm 1^{\circ}$ C ($\pm \sigma$)

Параметри	Вид	
Параметры	Oithona davisae	Oithona similis
Общая длина тела, мм	0.511 ± 0.031	0.78 ± 0.057
Длина цефалоторакса, мм	0.279 ± 0.030	0.45 ± 0.025
Ширина цефалоторакса, мм	0.132 ± 0.007	0.206 ± 0.012
Сырой вес тела, мг	0.00288 ± 0.0004	0.0116 ± 0.0106
Скорость дыхания, мкг O^2 экз ⁻¹ ч ⁻¹	0.0044 ± 0.0017	0.0035 ± 0.00109
Интенсивность дыхания, мкг O_2 мг $^{-1}$ ч $^{-1}$	1.54 ± 0.64	0.311 ± 0.029
Плотность тела, г/см ³	1.054 ± 0.008	1.028 ± 0.0044
Удельная плавучесть, $q = ho_{ m w} - ho_{ m b} / ho_{ m b}$	-0.0406	-0.0163
Скорость пассивного опускания, см/с	0.037 ± 0.0048	0.0237 ± 0.0042
Частота прыжков, мин ⁻¹	41.2 ± 15.1	8.5 ± 4.7
Количество непрерывных локомоторных актов в одном прыжке	1.19 ± 0.2	4.2 ± 3.0
Длительность одного локомоторного акта, с	0.0095 ± 0.0024	0.0088 ± 0.0024
Дистанция локомоторного акта, см	0.054 ± 0.014	0.092 ± 0.017
Средняя дистанция прыжка, см	0.065 ± 0.023	0.369 ± 0.274
Средняя скорость плавания в течение 1 мин, см/с	0.055 ± 0.02	0.051 ± 0.030

ОКЕАНОЛОГИЯ том 56 № 2 2016

Вид	T(°C)	Углеродный вес, мкгС экз ⁻¹	Интенсивность дыхания, мклО ₂ мкгС ⁻¹ сут ⁻¹	Источник
Oithona nana	24.3-25.1	0.25-0.27	0.35-0.48	[9]
Oithona davisae	5-30	0.23	0.51-0.68	[15]
Oithona davisae	25	0.23	0.56	[22], цитировано по [11]
Oithona davisae	20	0.19	0.77	Рассчитано по [16]
Oithona davisae	20	0.19*	0.42 ± 0.16	Наши данные
Oithona similis	20	0.39*	0.16 ± 0.05	Наши данные
Oithona similis	20	0.51	0.62	Рассчитано по [16]
Oithona similis	20	0.36	0.55-0.64	[21]
Oithona similis	25	0.5-0.6	0.423	[11]

Таблица 2. Интенсивность дыхания на единицу углеродного веса (мкл O_2 мкг C^{-1} сут⁻¹) копепод Oithona nana, Oithona davisae и Oithona similis по нашим и литературным данным

* Рассчитано по [34].

обусловленности глобального распространения ойтон в Мировом океане. Наши данные, полученные при 20°С и приведенные к углеродному весу копепод (табл. 2), оказались близки величинам, полученным в работе [11] для O. davisae (0.42 ± ± 0.16 мклО₂ мкгС⁻¹ сут⁻¹) и значительно ниже для *O. similis* $(0.16 \pm 0.05 \text{ мклO}_2 \text{ мкгC}^{-1} \text{ сут}^{-1})$. Интересно. что теоретически ожилаемая интенсивность дыхания каланоидных копепод с такой же углеродной массой тела, рассчитанная нами непосредственно по формуле Икеда и др. [16], выведенной им для 20°С, оказалась близка интенсивности дыхания O. davisae (табл. 2). Это ставит под сомнение принципиальность различия скоростей метаболизма циклопоидных и каляноидных копепод не только в связи с неточностью широкомасштабных экстраполяций данных по дыханию, но и в силу широких вариаций интенсивности энергетического обмена одноразмерных особей.

По нашему мнению, у O. similis и O. davisae почти трехкратное различие скоростей энергетического обмена обусловлено разной экологической специализацией. В масштабах вертикальной структуры аэробного слоя Черного моря O. similis можно считать батипланктонным видом, обитающим в холодном перемешанном слое [5] и лишь зимой проникающим в прибрежные районы моря. Большую часть времени эти сильно обводненные копеподы "парят" с широко расправленными антеннами, опушенными длинными щетинками, периодически совершая резкие подскоки. Низкая потребность в кислороде и невысокая двигательная активность O. similis могут быть обусловлены адаптацией к пониженным температуре и концентрации корма. По типу питания O. si*milis* является типичным засадчиком, захватывающим активно плавающие среднеразмерные одиночные клетки гетеротрофных флагеллят и

инфузорий [21, 26, 17, 38]. У О. similis, обитающих у побережья Дании, при температуре 15°С скорость пассивного погружения составляет 0.009 см/с, средняя частота бросковых движений варьирует в пределах 5-8.4 мин⁻¹, а их дистанция изменяется от 0.17 до 0.23 см [26]. В наших экспериментах параметры активного плавания O. similis оказались близки этим данным (табл. 1), тогда как скорость гравитационного опускания (0.024 см/с) в среднем была в 2.7 раза выше, вероятно, в связи с более высокой температурой воды в эксперименте. При этом отношение средних скоростей активного плавания (0.051 см/с) и пассивного опускания, отражающее потенциальную способность копепод сохранять положение в столбе воды, оказалось у черноморских самок O. similis достаточно высоким (2.1), главным образом благодаря очень низкой средней плотности тела (1.028 ± ± 0.0044 г/см³), которая у других черноморских копепод достигает 1.05–1.07 г/см³ [27, 29].

В отличие от O. similis, O. davisae является эпипланктонным теплолюбивым видом, развивающимся в прибрежных эвтрофированных регионах моря [10, 34]. Как и другие мелководные копеподы [29], O. davisae обладает более высокой средней плотностью тела (1.054 ± 0.008 г/см³) и, как следствие, более высокой (несмотря на меньшие размеры тела) скорость гравитационного опускания (0.037 см/c), что компенсируется у этого вида более высокой двигательной активностью, связанной не столько с сохранением положения в толще воды (отношение скоростей плавания и пассивного опускания у них составляет 1.5), сколько с постоянным поиском пищи. Ее рацион составляют мелкие гетеротрофные жгутиковые [33], доля которых резко возросла в прибрежных зонах Черного моря в последние десятилетия [19]. O. davisae совершает более короткие скачки (что, вероятно, обусловлено большей доступностью пищи), но в 4.8 раза более частые, что объясняет в 3 раза более высокую удельную скорость потребления кислорода у этого вида.

Таким образом, хотя циклопоидные копеподы O. similis и O. davisae являются типично эвригалинными морскими видами, недавно вселившаяся в Черное море O. davisae имеет более широкую потенциальную соленостную толерантность, обусловленную эстуарным образом жизни, в связи с которым она обладает большей плотностью тела, проявляет большую двигательную активность и удельную скорость потребления кислорода, величина которой сопоставима с теоретически ожидаемой интенсивностью дыхания каланоидных копепод.

Работа выполнена при финансовой поддержке проекта EC PERSEUS № 287600 и РФФИ (проект № 14-45-01576).

СПИСОК ЛИТЕРАТУРЫ

- 1. Алтухов Д.А., Губанова А.Д. Oithona brevicornis Giesbrecht в Севастопольской бухте в октябре 2005-марте 2006 гг. // Морск. экол. журн. 2006. Т. 5. № 2. С. 32.
- Дворецкий В.Г., Дворецкий А.Г. Биология и роль Oithona similis в зоопланктоне морей Арктики / Ред. Макаревич П.Р. Мурман. мор. биол. ин-т Кольского науч. центра РАН. Апатиты: Изд. КНЦ РАН, 2011. 349 с.
- Загородняя Ю.А. Oithona brevicornis в Севастопольской бухте – случайность или новый вселенец в Черное море? // Экология моря. 2002. Т. 61. С. 43.
- Ковалев А.В. Выживание некоторых пелагических копепод Черного и Средиземного морей в воде различной солености // Гидробиол. журн. 1966. Т. 11. № 1. С. 43–48.
- 5. *Ковалев А.В.* Размерный состав планктонных Сорерода на разных глубинах Черного моря // Гидробиол. журн. 1967. Т. 3. № 3. С. 74–77.
- 6. *Ковалев А.В.* Почему копепода *Oithona nana* Giesbr. исчезла из планктона Черного моря в конце 80-х годов XX столетия? // Морск. экол. журн. 2007. Т. 6. № 1. С. 43.
- 7. Ковалев А.В., Заика В.Е., Островская Н.А. и др. Мпетіорзія тссгадуі Мауег, 1900 — новый обитатель Черного моря // Гидробиол. журн. 1994. Т. 30. № 3. С. 104—107.
- Селифонова Ж.П. Oithona brevicornis Giesbrecht (Сорероda: Cyclopoida) в зоопланктоне портов северовосточного шельфа Черного моря // Биология внутренних вод. 2009. № 1. С. 33–35.
- Atienza D., Calbet A., Saiz E. et al. Trophic impact, metabolism, and biogeochemical role of the marine cladoceran *Penilia avirostris* and the co-dominant copepod *Oithona nana* in NW Mediterranean coastal waters // Mar. Biol. 2006. V. 150. P. 221–235.
- 10. *Beltrão R., Monde M., Ueda H.* Characteristics and regional classification of the copepod community in Ariake Bay with note on comparison with three decades ago // J. of Oceanography. 2011. V. 67. № 1. P. 47–58.

- Castellani C., Robinson C., Smith T., Lampitt R.S. Temperature affects respiration rate of Oithona similis // Mar. Ecol. Prog. Ser. 2005. V. 285. P. 129–135.
- Ferrari F., Orsi J. Oithona davisae, new species, and Limnoithona sinensis (Burkckhard, 1912) (Copepoda: Oithonidae) from the Sacramento-San Joaquin Estuary, California // J. of Crustacean Biology. 1984. V. 4. № 1. P. 106–126.
- Hansen F.C., Mollmann C., Schutz U., Hinrichsen H-H. Spatio-temporal distribution of Oithona similis in the Bornholm Basin (Central Baltic Sea) // J. Plankton Res. 2004. V. 26. № 6. P. 659–668.
- 14. *Hirakawa K*. New records of the North Pacific coastal planktonic copepods, *Acartia omorii* (Acartiidae) and *Oithona davisae* (Oithonidae) from southern Chile // Bulletin of Marine Science. 1988. V. 42. P. 337–339.
- Hiromi J., Nagata T., Kadota S. Respiration of the small planktonic copepod Oithona davisae at different temperatures // Bull. Plankton Soc. Jpn. 1988. V. 35. P. 143–148.
- Ikeda T., Kanno Y., Ozaki, K., Shinada A. Metabolic rates of epipelagic marine copepods as a function of body mass and temperature // Mar. Biol. 2001. V. 139. P. 587–596.
- Kiørboe T., Visser A.W. Predator and prey perception in copepods due to hydromechanical signals // Mar. Ecol. Prog. Ser. 1999. V. 179. P. 81–95.
- Lougee L.A., Bollens S.M., Avent S.R. The effects of haloclines on the vertical distribution and migration of zooplankton // J. Exp. Mar. Biol. Ecol. 2002. V. 278. P. 111–134.
- 19. *Mihneva V., Stefanova K.* The non-native copepod *Oi-thona davisae* (Ferrari F.D. and Orsi, 1984) in the Western Black Sea: seasonal and annual abundance variability // BioInvasions Records. 2013. V. 2. № 2. P. 119–124.
- 20. *Miloslavic M., Lucic D., Njire J. et al.* Zooplankton composition and distribution across coastal and off-shore waters off Albania (Southern Adriatic) in late spring // Acta Adriat. 2012. V. 53. № 2. P. 165–180.
- 21. *Nakamura Y., Turner J.T.* Predation and respiration by the small cyclopoid copepod *Oithona similis*. How important is feeding on ciliates and heterotrophic flagellates? // J. Plankton Res. 1997. V. 19. № 9. P. 1275–1288.
- 22. *Nakata K., Nakane T.* Respiration of plankton in the Mikawa Bay // Pollut. Control. 1987. V. 22. P. 281–294.
- Nielsen T.G., Møller E.F., Satapoomin S. et al. Egg hatching rate of the cyclopoid copepod Oithona similis in arctic and temperate waters // Mar. Ecol. Prog. Ser. 2002. V. 236. P. 301–306.
- Paffenhöfer G.A. On the ecology of marine cyclopoid copepods (Crustacea, Copepoda) // J. Plankton Res. 1993. V. 15. P. 37–55.
- 25. Saiz E., Calbet A., Broglio E., Mari P. Effects of smallscale turbulence on copepods: The case of Oithona davisae // Limnol. Oceanogr. 2003. V. 48. № 3. P. 1304– 1311.
- Svensen C., Kiørboe T. Remote prey detection in Oithona similis: hydromechanical versus chemical cues // J. Plankton Res. 2000. V. 22. № 6. P. 1155–1166.

ОКЕАНОЛОГИЯ том 56 № 2 2016

- Svetlichny L.S., Hubareva E.S., Arashkevich E.G. Physiological and behavioural response to hypoxia in active and diapausing copepodites Stage V Calanus euxinus // Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 1998. V. 52. P. 507–519.
- Svetlichny L.S., Hubareva E.S., Erkan F., Gucu A.G. Physiological and behavioral aspects of *Calanus euxinus* females (Copepoda, Calanoida) during vertical migration // Mar. Biol. 2000. V. 137. P. 963–971.
- Svetlichny L., Hubareva E., Khanaychenko A. Calanipeda aquae dulcis and Arctodiaptomus salinus: an exceptionally euryhaline osmoconformers as evident from mortality, oxygen consumption and mass density patterns // Mar. Ecol. Prog. Ser. 2012a. V. 470. P. 15–29.
- Svetlichny L., Khanaychenko A., Hubareva E., Aganesova L. Partitioning of respiratory energy and environmental tolerance in *Calanipeda aquaedulcis* and *Arctodiaptomus salinus* // Estuarine, Coastal and Shelf Science. 2012b. V. 114. P. 199–207.
- Temnykh A., Nishida Sh. New record of the planktonic copepod Oithona davisae Ferrari and Orsi in the Black Sea with notes on the identity of "Oithona brevicornis" // Aquatic Invasions. 2012. V. 7. P. 425–431.
- 32. *Turner J.T.* The importance of small planktonic copepods and their roles in pelagic marine food webs // Zoological Studies. 2004. V. 43. № 2. P. 255–266.

- Uchima M., Hirano R. Swimming behavior of the marine copepod Oithona davisae: internal control and search for environment // Mar. Biol. 1988. V. 99. P. 47–56.
- Uye S.-I., Sano K. Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet // Mar. Ecol. Prog. Ser. 1995. V. 118. P. 121–128.
- Wend-Heckmann B. Oithona similis (Copepoda: Cyclopoida) a cosmopolitan species? Dissertation. 2013. Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften – Dr. rer. Nat-Am Fachbereich Biologie/Chemie der Universität Bremen.
- Yunev O.A., Moncheva S., Carstensen J. Long-term variability of vertical chlorophyll a and nitrate profiles in the open Black Sea: eutrophication and climate change // Mar. Ecol. Prog. Ser. 2005. V. 294. P. 95–107.
- Zamora-Terol S., Saiz E. Effects of food concentration on egg production and feeding rates of the cyclopoid copepod Oithona davisae // Limnol. Oceanogr. 2013. V. 58. № 1. P. 376–387.
- Zamora-Terol S., Nielsen T.G., Saiz E. Plankton community structure and role of Oithona similis on the western coast of Greenland during the winter-spring transition // Mar. Ecol. Prog. Ser. 2013. V. 483. P. 85–102.

Copepods Oithona similis and Oithona davisae: Two Adaptive Strategies for the Black Sea Environment

E. S. Hubareva, L. S. Svetlichny

Salinity tolerance, respiration rate, mass density, sinking and swimming speeds of two cyclopoid copepods of the Black Sea, indigenous *Oithona similis* and new invader *Oithona davisae* were studied in the laboratory. Both species were considered to be marine euryhaline copepods, however, *O. davisae* could tolerate a broader salinity range (5–55‰) than *O. similis*. Mean mass density, respiration rate, sinking and swimming speeds at the same temperature in *O. davisae* were significantly higher than in *O. similis*, probably due to the different ecological peculiarities of the studied species.