— ФИЗИКА МОРЯ —

УДК 551.465

ПОТОКИ АНТАРКТИЧЕСКОЙ ДОННОЙ ВОДЫ ЧЕРЕЗ РАЗЛОМЫ ЮЖНОЙ ЧАСТИ СЕВЕРО-АТЛАНТИЧЕСКОГО ХРЕБТА

© 2015 г. Е. Г. Морозов¹, Р. Ю. Тараканов¹, Н. И. Макаренко²

¹Институт океанологии им. П.П. Ширшова РАН, Москва ²Институт гидродинамики им. М.А. Лаврентьева СО РАН, Новосибирск e-mail: egmorozov@mail.ru Поступила в редакцию 21.05.2015 г.

Работа посвящена исследованию потоков донных вод антарктического происхождения в глубоководных разломах южной части Северо-Атлантического хребта. Осенью 2014 г. экспедиция на НИС "Академик Сергей Вавилов" провела измерения скоростей течений и термохалинных свойств донной воды в нескольких квазизональных разломах южной части Северо-Атлантического хребта, которые соединяют глубоководные части Западной и Восточной Атлантики: разломе Вима (10°50' с.ш.) и группе субэкваториальных разломов Долдрамс (8°15' с.ш.), Вернадского (7°40' с.ш.) и Безымянный (7°30' с.ш.). Оценки расхода Антарктической донной воды ($\theta < 2.0^{\circ}$ С) через эту группу по измерениям 2014 г. дали примерно 0.28 Св (1 Св = 10^{6} м³/с), что составляет около 25% от оценки переноса через разлом Вима 1.20 Св, полученной в ходе этой же экспедиции. Наиболее низкие значения температуры у дна среди всех исследованных разломов были зафиксированы в разломе Вима.

DOI: 10.7868/S003015741506012X

введение

В работе [4] было показано, что глубоководные котловины Северо-Восточной Атлантики заполняются донной водой антарктического происхождения через разлом Вима на 10°50′ с.ш. в Северо-Атлантическом хребте. В Атлантике эта вода обычно называется Антарктической донной водой (ААДВ) и в своем классическом определении [11] ограничивается сверху изолинией потенциальной температуры 2.0°С. В региональных исследованиях для этого ограничения используют и другие величины температуры, а также различные значения потенциальной плотности.

Факт проникновения ААДВ в Северо-Восточную Атлантику через разлом Вима подтвердила работа [5]. Однако прямых измерений течений в этом абиссальном канале практически не было. Расход потока ААДВ через этот разлом оценивался в нескольких работах [1, 3, 5, 8, 10] в диапазоне от 0 до 2.4 Св (1 Св = $10^6 \text{ м}^3/\text{с}$) (табл. 1). Считается, что восточный перенос донных вод через разлом Вима является доминирующим среди других разломов Северо-Атлантического хребта и определяет практически весь перенос донных вод в северные бассейны Восточной Атлантики [2, 6, 7, 10].

Исследования потока ААДВ в разломе Вима были начаты нами в 2006 г. Расход этой воды в тот год был оценен как 0.12–0.64 Св [1]. В 2014 г. мы снова провели измерения в разломе Вима и расширили область исследования на соседние разломы Долдрамс (08°15' с.ш.), Вернадского (07°40' с.ш.) и Безымянный (07°30' с.ш.).

В данной статье анализируются результаты измерений 2014 г., продолживших нашу серию из-

Авторы	Граница ААДВ, °С	Перенос, Св	Примечание	
Vangriesheim [10]	$\theta = 1.5^{\circ}$	0.05-0.46	Измерения на заякоренном буе	
McCartney et al. [5]	$\theta = 2.0^{\circ}$	2.08-2.24	Геострофический перенос;	
	$\theta = 1.5^{\circ}$	0.46	отсчетная поверхность $\theta = 2.17 - 2.43$ °C	
Fischer et al. [3]	$\theta = 2.0^{\circ}$	1.8-2.0	Комбинация геострофического расчета	
	Потенциальная плотность от 4000 дбар $\sigma_4 = 45.9$	2.1–2.4	и данных погружаемого профилографа LADCP на долготе 42° з.д.	
Rhein et al. [8]		1.1	Включение части нижней глубинной Северо-Атлантической воды и слоя ААДВ	
Демидов и др. [1]	$\theta = 1.8^{\circ} - 2.0^{\circ}$	0.12-0.64	Измерения LADCP	

Таблица 1. Распространение Антарктической донной воды через разлом Вима

Рис. 1. Топография дна в районах разломов южной части Северо-Атлантического хребта: Вима (а), Долдрамс, Вернадского и Безымянный (б). Точками показаны станции наших измерений (белые кружки – измерения 2014 г., серые кружки – 2006 г.), стрелки указывают вектора течений, а цифры – потенциальную температуру воды около дна. Штрихпунктирная линия показывает маршрут движения судна в 2014 г.

мерений в абиссальных каналах Атлантики [6] и давших начало подробным исследованиям в абиссальных каналах Северо-Атлантического хребта. Схема разломов и точки выполнения станций показаны на рис. 1. Координаты станций приведены в табл. 2.

Гидрологические измерения проводились профилографом температуры, солености и давления SBE-19-plus и акустическим профилографом течений LADCP (RDI Workhorse Sentinel 300 кГц). Станции зондирования выполнялись практически до дна (до 3–5 м от дна) с борта судна, сохранявшего свое положение в точке станции с точностью до 100 м.

РАЗЛОМ ВИМА (10°50' С.Ш.)

В 2006 г. была выполнена гидрологическая съемка в районе трех близко-расположенных главных седловин разлома Вима на 10°50′ с.ш. (рис. 1). Глубины седловин равны 4690, 4660 и 4660 м и находятся соответственно на долготах 41°02′, 40°55′ и 40°53′ з.д. [9]. В 2014 г. было прицельно выполнено шесть станций в этом же районе, которые были расставлены так, чтобы провести измерения в трех глубоководных каналах разлома для оценки переноса и структуры потока. По ходу экспедиций 2006 и 2014 гг. были проведены промеры дна и уточнено расположение абиссальных каналов. Измерения 2014 г. показали, что поток донных вод в разломе, направленный в Во-

Рис. 1. Продолжение.

сточную Атлантику, расщепляется на три струи, соответствующие каждому из упомянутых каналов (рис. 1a).

Самая северная струя проходит через канал, который располагается в северной стене разлома Вима и направлен на северо-восток. Его ширина — около 10 км по изобате 3950 м (во всех разломах их ширина оценивалась по изобатам, близким к глу-

бине залегания изотермы 2.0° C), а глубина — до 4350 м. Поперек этого канала в 2014 г. был выполнен гидрологический разрез из трех станций. Наши измерения показали, что минимальная потенциальная температура у дна здесь составляла 1.38° C, а скорости придонного течения в направлении на северо-восток достигали 18 см/с. Ядро с максимальной скоростью течения было сдвинуто вправо от направления потока, а ядро с мини-

	Таблица 2.	Координаты т	очек измерений в разломах в	ожной части Северо-Атланти	ческого хребта в октябре 2014 г
--	------------	--------------	-----------------------------	----------------------------	---------------------------------

Абиссальные каналы	Дата	Станция	Координаты точки подхода СТД ко дну	Нижний гори- зонт/глубина океа- на, м
Разлом Вима	08.10	2550	10°52.6′ с.ш., 41°07.3′ з.д.	4309/4315
(проход в северной стене)	09.10	2553	10°53.0′ с.ш., 41°08.5′ з.д.	4342/4347
	09.10	2554	10°55.1′ с.ш., 41°09.5′ з.д.	4309/4314
Разлом Вима (северный канал)	08.10	2551	10°47.4′ с.ш., 41°01.0′ з.д.	4683/4688
	08.10	2552	10°48.3' с.ш., 41°01.0' з.д.	4597/4602
Разлом Вима (южный канал)	09.10	2555	10°43.5′ с.ш., 41°05.5′ з.д.	4504/4510
Рифт между разломами Долдрамс и Вернадского	10.10	2556	07°56.5' с.ш., 38°01.9' з.д.	4327/4332
Разлом Вернадского	11.10	2557	07°43.3' с.ш., 37°25.0' з.д.	4623/4628
Безымянный разлом	11.10	2558	07°28.7′ с.ш., 36°59.1′ з.д.	4644/4648

ОКЕАНОЛОГИЯ том 55 № 6 2015

Рис. 2. Распределения скорости течений, см/с (а) и потенциальной температуры, °С (б) поперек главного абиссального канала разлома Вима. Темные тона показывают движение на восток. Цифры на верхней оси показывают номера станций, штрихи – их положение.

мальной температурой — влево (рис. 2). Оценка переноса ААДВ по измерениям LADCP через этот канал составила 0.08 Св.

В районе наших измерений в восточной части разлома Вима, где расположены три главные седловины, основной канал разлома широтного направления разделен подводным хребтом на северный и южный каналы. Над порогом северного канала в 2014 г. был выполнен поперечный разрез из двух станций (по 41°01.0' з.д.). Расстояние между станциями составляло около одной морской мили. Ширина канала в этом месте по изобате 3850 м около 7 км, а глубина – до 4690 м. Измерения показали, что минимальная потенциальная температура удна составляла 1.36°С, а скорости восточного придонного течения в этом канале достигали 34 см/с. Аналогично каналу в северной стене разлома, ядро максимальной скорости течения в северном канале было прижато вправо по направлению потока, а ядро минимальной температуры – влево. Расход ААДВ оценен в 0.86 Св.

Южный канал разлома оказался менее глубоким, чем северный. В нем была выполнена одна станция в районе седловины на 41°05.5' з.д. Ширина канала в районе измерений по изобате 3780 м близка к 4 км, а глубина – до 4500 м. Минимальная измеренная потенциальная температура у дна – 1.47°С. Скорости направленного на восток течения – до 30 см/с. Расход ААДВ оценен в 0.26 Св. Таким образом, суммарный перенос ААДВ через три абиссальных канала разлома Вима составил 1.20 Св. Эта оценка примерно в два раза больше, чем наша оценка по измерениям 2006 г. [1].

РАЗЛОМЫ ДОЛДРАМС (8°15' С.Ш.), ВЕРНАДСКОГО (07°40' С.Ш.) И БЕЗЫМЯННЫЙ (07°30' С.Ш.)

Измерения в разломах Долдрамс, Вернадского и Безымянный проводились из предположения, что потоки донной воды в них, обеспечивающие перенос ААДВ из Западной Атлантики в Восточную, не являются пренебрежимо малыми по сравнению с потоком в разломе Вима. Всего в районе указанной группы разломов в южной части Северо-Атлантического хребта было выполнено три станции.

Разломы Вернадского и Долдрамс соединяются рифтовой долиной почти меридионального направления. В этой долине была сделана одна станция (07°56.5′ с.ш., 38°01.9′ з.д.). Глубины над стенами долины – менее 3500 м. Ширина рифтовой долины в районе выполнения станции составляет около 7 км по изобате 3750, глубина – до 4330 м. Минимальная придонная потенциальная температура в рифтовой долине оказалась равной 1.70°С. Составляющая скорости придонного потока вдоль долины в северном направлении достигала 22 см/с. Расход ААДВ оценен в 0.28 Св в том же направлении.

Глубина над стенами разлома Вернадского в месте выполнения единственной станции составляет менее 3000 м. Глубина канала разлома достигает 4620 м, ширина в районе станции — около 9 км по изобате 3700 м. Минимальная измеренная потенциальная температура у дна составила 1.66°С. Придонное течение со скоростями до 10 см/с было направлено на северо-запад. Расход ААДВ оценен как 0.12 Св на запад.

Глубина над стенами Безымянного разлома в месте выполнения станции составляет менее 3500 м. Глубина канала разлома — до 4650 м, ширина — около 8 км по изобате 3700 м. Минимальная измеренная потенциальная температура у дна составила 1.51°С. Придонные течения были направлены на восток со скоростями, не превышающими 10 см/с. Расход ААДВ оценен как 0.17 Св на восток.

Конфигурация течений, которую мы выявили в группе южных разломов в Северо-Атлантическом хребте, очевидно, обусловлена сложной орографией рельефа дна района. Этот факт и соотношения расходов ААДВ на каждой станции в указанной группе разломов указывает на то, что поток ААЛВ, наблюдавшийся в рифтовой долине между разломами Долдрамс и Вернадского, по крайней мере. частично попадает сюда через Безымянный разлом, проходя сначала через рифтовую долину на 36°42' з.д., затем на запад по разлому Вернадского. Весьма вероятен и еще один, дополнительный путь. Донная вода может протекать по разлому Вернадского на восток непосредственно со стороны Запалной Атлантики. Таким образом, донная вода после прохождения ряда каналов с разнонаправленными потоками, в конце концов, через разлом Долдрамс попадает в Восточную Атлантику. Интенсивность этого потока в несколько раз меньше, чем через разлом Вима, но все же им нельзя пренебрегать.

ЗАКЛЮЧЕНИЕ

1. Расход потока ААДВ по измерениям 2014 г. в разломе Вима оценен как 1.20 Св. Эта величина примерно в два раза больше, чем показали наши измерения в 2006 г. Мы считаем, что указанное различие связано с недостаточным пространственным покрытием съемки 2006 г. станциями и не всегда точным попаданием выполненных станций этой съемки в самые глубокие места разлома.

2. Перенос ААДВ ($\theta < 2.0^{\circ}$ С) в северо-восточные бассейны Атлантики осуществляется через разлом Вима и группу глубоких южных разломов в Северо-Атлантическом хребте: Долдрамс, Вернадского, Безымянный. Согласно измерениям в 2014 г., поток ААДВ через южную группу разломов составляет 0.28 Св, что примерно в четыре раза меньше, чем перенос через разлом Вима. При этом наиболее холодная и плотная вода проходит через разлом Вима.

Работа (анализ и интерпретация данных) поддержана РНФ (проект № 14-50-00095).

СПИСОК ЛИТЕРАТУРЫ

- 1. Демидов А.Н., Добролюбов С.А., Морозов Е.Г., Тараканов Р.Ю. Перенос придонных вод через разлом Вима Срединно-Атлантического хребта // Докл. РАН. 2007. Т. 416. № 3. С. 395–399.
- 2. *Eittreim S.L., Biscaye P.E., Jacobs S.S.* Bottom-water observations in the Vema Fracture Zone // J. Geophys. Res. 1983. V. 88. № C4. P. 2609–2614.
- 3. *Fischer J., Rhein M., Schott F., Stramma L.* Deep water masses and transports in the Vema Fracture Zone // Deep-Sea Res. I. 1996. V. 43. № 7. P. 1067–1074.
- Mantyla A.W., Reid J.L. Abyssal characteristics of the World Ocean waters // Deep-Sea Res. 1983. V. 30. № 8. P. 805–833.
- McCartney M.S., Bennet S.L., Woodgate-Jones M.E. Eastward flow through the Mid-Atlantic ridge at 11° N and its influence on the abyss of the Eastern basin // J. Phys. Oceanogr. 1991. V. 21. № 8. P. 1089–1121.
- 6. *Morozov E., Demidov A., Tarakanov R., Zenk W.* Abyssal Channels in the Atlantic Ocean: Water Structure and Flows, Dordrecht: Springer, 2010. 266 p.
- Morozov E.G., Tarakanov R.Yu., van Haren H. Transport of AABW through the Kane Gap, tropical NE Atlantic Ocean // Ocean Sciences. 2013. V. 9. P. 825–835. doi 10.5194/os-9-825-2013.
- 8. *Rhein M., Stramma L., Krahmann G.* The spreading of Antarctic Bottom Water in the tropical Atlantic // Deep-Sea Res. I. 1998. V. 45. № 4–5. P. 507–527.
- 9. *Smith W.H.F., Sandwell D.T.* Global sea floor topography from satellite altimetry and ship depth soundings // Science. 1997. V. 277. P. 1956–1962. http://topex.ucsd.edu/cgi-bin/get_data.cgi.
- Vangriesheim A. Antarctic Bottom Water flow through the Vema Fracture Zone // Oceanol. Acta. 1980. V. 3. P. 199–207.
- Wüst G. Schichtung und Zirkulation des Atlantischen Ozeans / Ed. Defant A. Wissenschaftliche Ergebnisse, Deutsche Atlantische Expedition auf dem Forschungs – und Vermessungsschiff "Meteor" 1925–1927. Berlin. Walter de Gruyter & Co. 1936. Bd.6. Tl. 1. 411 p.

Flows of Antarctic Bottom Water through the Fractures of the Southern Part of the North Mid-Atlantic Ridge

E. G. Morozov, R. Yu. Tarakanov, N. I. Makarenko

We study the flows of bottom waters of the Antarctic origin in deep fracture zones of the southern part of the North Mid-Atlantic Ridge. In the autumn of 2014, the expedition onboard the R/V "Akademik Sergey Vavilov" carried out the measurements of currents and thermohaline properties of the bottom water in several quasi-zonal fractures of the southern part of the Northern Mid-Atlantic Ridge, which connect the deep basins of the West and East Atlantic: the Vema FZ and the group of sub-equatorial fractures: Doldrums (8°15′ N), Vernadsky (7°40′ N), and Nameless fracture (7°30′ N). The estimate of Antarctic Bottom Water ($\theta < 2.0^{\circ}$ C) transport through this group based on the measurements in 2014 is approximately 0.28 Sv (1 Sv=10⁶ m³ s⁻¹), which is close to 25% of the transport estimate through the Vema FZ (1.20 Sv) obtained in the same expedition. However, the coldest water propagates through the Vema FZ.