УДК 551.465.7

О ВЛИЯНИИ ТЕМПЕРАТУРЫ ПОВЕРХНОСТИ ОКЕАНА НА ОБМЕН УГЛЕКИСЛЫМ ГАЗОМ С АТМОСФЕРОЙ

© 2015 г. Л. Н. Карлин¹, В. Н. Малинин¹, С. М. Гордеева^{1, 2}

¹ Российский государственный гидрометеорологический университет, Санкт-Петербург ²Санкт-Петербургский филиал Института океанологии им. П.П. Ширшова РАН, Санкт-Петербург e-mail: rector@rshu.ru, malinin@rshu.ru, gordeeva@rshu.ru Поступила в редакцию 04.06.2013 г., после доработки 07.04.2014 г.

Рассматривается влияние температуры поверхности океана (ТПО) на обмен углекислым газом с атмосферой (CO_2) в различных пространственно-временных масштабах, которое носит разнонаправленный характер. Исходными данными послужили среднемесячные значения потока CO_2 за период 1982—2011 гг. в узлах сетки 4° широты × 5° долготы и спутниковые данные о ТПО с 1 января 1982 г. по 31 декабря 2012 г. в узлах географической сетки $0.25^\circ \times 0.25^\circ$. Осуществлено построение статистических моделей оценки результирующего глобального потока CO_2 на основе данных об аномалиях ТПО. Показано, что изменения ТПО в экваториальной зоне являются главным регулятором межгодовых колебаний результирующего потока CO_2 в системе океан—атмосфера.

DOI: 10.7868/S0030157415010098

ВВЕДЕНИЕ

Как известно, Мировой океан является самым крупным резервуаром углерода на планете: его запасы более чем в 50 раз превосходят запасы углерода в атмосфере и в 15 раз — запасы углерода в экосистемах суши. В среднем Мировой океан поглощает 80 млрд. т С год⁻¹, а выделяет в атмосферу 78.4 млрд. т С год⁻¹ [10], т.е. он является активным поглотителем углекислого газа, тем самым ослабляя антропогенный парниковый эффект, обусловленный выбросами от сжигания ископаемого топлива и производства цемента, которые составляют примерно 8.3 млрд. т С год⁻¹.

В последние годы появились новые оценки результирующего потока СО2 на границе раздела океан-атмосфера. В обзорной работе [13] приводятся климатологические оценки годового потока СО₂, полученные как в результате прямых измерений, так и на основе математического моделирования углеродного цикла. Разброс оценок CO_2 находится в пределах от 1.8 Pg C год⁻¹ [11] до 2.4 Pg C год⁻¹ [9] при среднем значении 2.1 Pg C год⁻¹ (Pg C год⁻¹ = 10^{15} г C год⁻¹ = 1 млрд. т С год⁻¹ \approx ≈ 0.25 моль С м⁻² год⁻¹). Достаточно надежно известны также особенности географического распределения потока углекислого газа для среднемноголетних годовых условий [3, 15, 16]. Значительно хуже исследована межгодовая изменчивость потока СО₂, особенно в глобальном масштабе, поскольку до последнего времени отсутствовали обобщенные систематические данные за длительный период

времени со всей акватории Мирового океана, хотя начиная с 1960-х годов, количество измерений парциального давления СО2 (рСО2) в поверхностном слое океана увеличивалось экспоненциальными темпами. Обобщенная Такахаши (Takahashi) и его рабочей группой в 1997 г. база данных (http:// www.ldeo.columbia.edu/res/pi/CO2/carbondioxide/ pages/air sea ux 2009.html), которая тогда насчитывала около 200 тыс. измерений рСО₂, на сегодняшний день включает порядка 3 млн. измерений, собранных в период с 1970 по 2008 гг. Это позволило группе исследователей [12], проделавшим поистине гигантскую работу, осуществить расчет потоков углекислого газа в узлах географической сетки с пространственным разрешением 4° широты × 5° долготы с 1982 г. и создать глобальный архив, находящийся в свободном доступе на сайте AOML NOAA (http://cwcgom.aoml. noaa.gov/erddap/griddap/aomlcarbonfluxes.graph) [8].

Среднемесячные потоки CO_2 оценивались на основе диагностической модели аэродинамическим методом с использованием эмпирических внутригодовых соотношений между парциальным давлением CO_2 в поверхностном слое воды (pCO_{2SW}) и температурой поверхности океана (ТПО) [12]. Естественно, использование такого подхода не позволяет учитывать тонкий поверхностный микрослой толщиной порядка 100–200 мкм, температура которого может быть ниже ТПО на 2–3°C [6]. Кроме того, этот микрослой отличается от нижележащих слоев морской воды величиной pH [4]. Поэтому учет его характеристик необходим при более строгой

оценке потоков CO₂. Отметим также, что, помимо физического механизма газообмена, существует биологический, который заключается в том, что обитающие в поверхностном слое воды водоросли могут поглощать углекислый газ непосредственно из воздуха. Этот эффект, по сути "биологический насос", сложно учитывать в численных моделях газообмена, тем более для всего Мирового океана.

Однако, несмотря на приближенный характер модели [12], она довольно хорошо описывает физические закономерности поглощения (выделения) углекислого газа океаном, хотя несколько занижает величину результирующего потока, который в среднем за период 1982-2007 гг. оказался равным 1.5 млрд. т С год⁻¹. В работе [1] на основе усреднения потоков СО2 по данным архива [8] выполнен независимый расчет глобального результирующего потока CO₂ за период 1982-2011 гг. (рис. 1). Как и следовало ожидать, между [1] и [12] наблюдается очень хорошее соответствие результатов, максимальная погрешность составляет менее 3%. Из рис. 1 видно, что рассматриваемый период можно разделить на два относительно однородных промежутка времени с разнонаправленными тенденциями: первому из них (1982–1996 гг.) свойственно возрастание потока СО₂ из атмосферы в океан, в то время как второму (1997-2011 гг.) уменьшение потока СО₂. В первом случае величина тренда составляет Tr = -0.016 млрд. т С год⁻², а тренд описывает 24% дисперсии исходного ряда, во втором случае Tr = 0.022 млрд. т С год⁻² при коэффициенте детерминации $R^2 = 0.39$, т.е. оценки величин тренда довольно близки друг к другу. Если в ближайшие годы указанная тенденция сохранится, то 1997 г. можно будет считать переломным, после которого Мировой океан начинает превращаться в климатической системе из стабилизатора парникового эффекта в его ускоритель [1].

Температура поверхности океана является наиболее важным фактором, определяющим не только величину, но и направление потока CO_2 на поверхности океана. В частности, от ТПО почти полностью зависит растворимость углекислого газа в морской воде. С повышением температуры воды растворимость CO_2 снижается, а с понижением — повышается [17]. От пространственного распределения температуры зависит жизнедеятельность морских организмов, за счет которой возникают мощные источники и стоки CO_2 . Их действие обусловлено процессами поглощения CO_2 при фотосинтезе и, наоборот, его выделением при окислении органического вещества.

Если влияние ТПО на растворимость углекислого газа является понятным и однозначным, то связь биологических процессов с температурой и их взаимное влияние весьма сложно и многооб-

Рис. 1. Межгодовой ход результирующего глобального потока CO_2 на границе раздела океан—атмосфера за период 1982—2011 гг. в млрд. т С год⁻¹. *1* – по данным [1], *2* – по данным [12], *3* – линейный тренд.

разно. В общем случае распределение биомассы фитопланктона и его чистая первичная продукция определяются температурой воды, наличием света и питательных веществ (в первую очередь, азота и фосфора). Эти лимитирующие рост фитопланктона факторы в свою очередь подвергаются влиянию процессов циркуляции океана, динамики слоя перемешивания и апвеллинга [7]. В результате все факторы, оказывающие влияние на величину и направление потока CO₂, а также на особенности его пространственно-временной изменчивости, связаны между собой как прямыми, так и обратными зависимостями, которые при определенных условиях способны либо усиливать, либо подавлять эффект их совместного воздействия. В частности, температура поверхности океана, помимо прямого влияния на растворимость СО₂ в морской воде, оказывает опосредованное воздействие на величину чистой первичной продукции фитопланктона, которая тесно связана с процессами биологического потребления углерода, а, следовательно, с потоками СО₂ на поверхности раздела океан-атмосфера. В связи с этим представляется весьма важным выявление влияния ТПО на обмен углекислым газом с атмосферой в различных пространственно-временных масштабах.

В данной работе рассматриваются следующие задачи:

 – оценка влияния сезонных и межгодовых колебаний среднеширотных значений температуры поверхности океана на поток CO₂ на границе раздела океан–атмосфера;

 – оценка взаимосвязи глобальной ТПО и результирующего потока CO₂;

Рис. 2. Распределение среднемесячных среднеширотных значений потока CO₂ на границе раздела океан–атмосфера за период 1982–2010 гг. в моль/м² год [3]. Положительные значения – поток CO₂ направлен вверх (в атмосферу), отрицательные – вниз, проведена нулевая изолиния.

 построение статистических моделей оценки результирующего глобального потока CO₂ на основе данных о температуре поверхности океана.

ОЦЕНКА ВЛИЯНИЯ СЕЗОННЫХ И МЕЖГОДОВЫХ КОЛЕБАНИЙ СРЕДНЕШИРОТНЫХ ЗНАЧЕНИЙ ТПО НА ПОТОК СО₂

В данной работе среднемесячные значения потока CO₂, заимствованные из архива [8] за период 1982—2011 гг. в узлах сетки 4° широты × 5° долготы, усреднялись по 4-градусным широтным зонам Мирового океана. Суточные данные о ТПО брались с 1 января 1982 г. по 31 декабря 2012 г. в узлах географической сетки 0.25° × 0.25° из спутникового архива NOAA NCDC OISSTv.2 (http:// iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/. OISST/.version2/), важным достоинством которого является однородность временных рядов и высокая оперативность их получения. Суточные данные о ТПО вначале усреднялись за календарный месяц, а затем — по 4-градусным широтным зонам Мирового океана с учетом площадей.

На рис. 2 приводится распределение среднемесячных среднеширотных значений потока CO₂ на границе раздела океан—атмосфера за период

1982–2011 гг. в моль/м² год. Положительным значениям соответствует направление потока СО₂ вверх, в атмосферу, отрицательным - вниз, ко дну океана. Нетрудно видеть, что поток СО2 в приэкваториальных широтах (18° ю.ш.–14° с.ш.) направлен в атмосферу, при этом его максимальные значения отмечаются вблизи 8° ю.ш. В средних и высоких широтах результирующий поток СО₂ направлен в океан. В Южном полушарии Мирового океана наибольшее значение потока СО2 отмечается в зоне 38°-42° ю.ш., а в Северном полушарии он достигает абсолютного максимума в широтном поясе 66°-70° с.ш., т.е. вблизи границы Северной Полярной области. Низкая температура воды, интенсивный фотосинтез, большие скорости ветра и высокая щелочность вод, характерные для высоких широт Северной Атлантики, обуславливают мощный сток СО2 в океан на протяжении всего года, особенно в осенне-зимний период. В октябре поток СО2 достигает своего абсолютного максимума – 8 моль/м² год. Однако, вследствие малой площади океана в приполярной зоне и наличия льдов, вклад широтной зоны 66°-70° с.ш. в глобальный поток CO₂ является небольшим [3].

Расположенные в умеренных широтах районы Мирового океана в летний сезон имеют практически нулевой или небольшой положительный поток, тогда как в зимний сезон становятся мощной областью стока CO_2 . Это связано с тем, что зимой воды, переносимые к полюсам поверхностными течениями, охлаждаются, а весной и летом биологическое потребление CO_2 в некоторой степени компенсируется увеличением pCO_2 из-за повышения температуры воды.

Субтропические области, напротив, являясь областями слабого стока в зимний сезон, летом превращаются в сильный источник СО₂, что соответствует сезонному ходу ТПО [14]. Обращает на себя внимание хорошо выраженный сезонный ход потока СО₂ в южной полярной области. В зимний период (июль-октябрь) в результате интенсивного перемешивания водных масс и увеличения в верхнем слое океана концентрации СО₂ происходит его активное выделение в атмосферу, а с приходом лета, когда льды отступают, активное биологическое потребление углекислого газа при фотосинтезе снижает парциальное давление CO_2 в поверхностном слое воды ниже атмосферного уровня, тем самым формируя сток СО₂ в океан [16].

Для изучения сезонной изменчивости среднеширотных значений ТПО и потока CO₂ использовался классический гармонический анализ. На рис. 3 представлено меридиональное распределение амплитуды годовой гармоники и ее вклада в дисперсию исходного ряда среднеширотных значений ТПО и потока CO₂. Как и следовало ожи-

ОКЕАНОЛОГИЯ том 55 № 1 2015

дать, максимальные оценки годовой гармоники ТПО отмечаются в умеренных широтах обоих полушарий, а минимальные – вблизи экватора и в полярных широтах, покрытых льдом. Более сложный характер имеет распределение амплитуды годовой гармоники потока CO₂. Наибольшие значения ее смещены в районы субтропических широт обоих полушарий. Кроме того, локальный максимум потока СО2 отмечается в южной полярной области. При этом в Северном полушарии амплитуды годовых гармоник ТПО и потока СО2 в среднем почти в 2 раза выше, чем в Южном полушарии. Отметим, что подобное положение отмечается для большинства гидрометеорологических характеристик и объясняется неравномерным распределением площади континентов по полушариям. В приэкваториальных широтах (14° ю.ш.–10° с.ш.) их годовой ход отсутствует.

Полугодовая гармоника потока CO_2 существенна главным образом в умеренных широтах Северного полушария, причем в зоне $42^\circ - 50^\circ$ с.ш. ее величина превосходит амплитуду годовой гармоники. Однако максимальное превышение полугодовой гармоники над годовой отмечается в зоне $42^\circ - 46^\circ$ ю.ш., где годовая гармоника потока CO_2 фактически отсутствует.

На рис. 4 представлено меридиональное распределение фаз годовой гармоники ТПО и потока СО₂ в тех широтных зонах, где вклад годовой гармоники потока СО2 в дисперсию исходных временных рядов превышает 60%. Нетрудно видеть практически синхронную связь сезонной изменчивости ТПО и потока СО2 для тропических и субтропических широт обоих полушарий. Именно здесь влияние ТПО на поток СО₂ в сезонном масштабе времени представляется наибольшим. Противофазный характер связи сезонной изменчивости ТПО и потока СО2 отмечается в южной полярной области, где максимальным значениям ТПО соответствуют минимальные значения потока СО₂, что обусловлено главным образом мощными биологическими процессами (фотосинтез) в летний период (декабрь-март), которые, несмотря на рост ТПО, стимулируют сток СО₂ в океан [16].

Совершенно иной характер связи отмечается между средними годовыми среднеширотными значениями потока CO_2 и ТПО (рис. 5). Нетрудно видеть, что величина коэффициента корреляции r и его знак сильно меняются в зависимости от широты. Если для тропических и субтропических широт обоих полушарий в основном характерны высокие положительные коэффициенты корреляции (rдостигает 0.8), то в экваториальном поясе, а также в умеренных и высоких широтах коэффициенты корреляции имеют уже отрицательный знак. Наибольшие (по абсолютной величине) от-

Рис. 3. Меридиональное распределение амплитуды годовой гармоники (*1*) и ее вклада в дисперсию исходного ряда (*2*) усредненных по 4-градусным широтным зонам Мирового океана значений ТПО (а) и потока CO₂ (б) за период 1982–2011 гг.

Рис. 4. Меридиональное распределение фаз годовой гармоники ТПО и потока CO₂ в тех широтных зонах, где вклад годовой гармоники CO₂ в дисперсию исходных временных рядов превышает 60%. *1* – фаза гармоники ТПО, *2* – фаза гармоники потока CO₂, сдвинутая на 6 месяцев, *3* – фаза гармоники потока CO₂, *4* – вклад годовой гармоники потока CO₂ в дисперсию исходного временного ряда.

Рис. 5. Распределение выборочных коэффициентов корреляции *r* между среднеширотными среднегодовыми значениями ТПО и потоком CO₂ на границе раздела океан—атмосфера. Пунктирные линии обозначают уровень значимости *r* при $\alpha = 0.05$ ($|r_{\rm xp}| = 0.35$).

рицательные оценки *r* отмечаются в приполярных широтах. Абсолютный максимум наблюдается в широтной зоне $62^{\circ}-66^{\circ}$ с.ш. (*r* = -0.94).

Учитывая знакопеременный характер потока CO_2 , в табл. 1 представлена интерпретация значимых коэффициентов корреляции. В целях простоты они рассматриваются относительно повышения TПО. Как видно из табл. 1, реакция потоков углекислого газа на границе раздела океан—атмосфера на изменение ТПО имеет противоположные тенденции. С одной стороны, в умеренных и высоких широтах обоих полушарий при росте ТПО происходит увеличение потока CO_2 в океан, а в экваториальной зоне 6° с.ш.—10° ю.ш. — уменьшение потока CO_2 в атмосферу. С другой — в тропических и субтропических широтах при росте ТПО поток CO_2 в океан уменьшается, а в зоне 10°—18° ю.ш. поток CO_2 в атмосферу увеличивается. Достаточно очевидно, что распространенное мнение о безусловном усилении поглощения CO_2 океаном при уменьшении температуры воды не соответствует действительности.

ОЦЕНКА ВЗАИМОСВЯЗИ КОЛЕБАНИЙ ГЛОБАЛЬНОЙ ТЕМПЕРАТУРЫ ПОВЕРХНОСТИ ОКЕАНА И РЕЗУЛЬТИРУЮЩЕГО ПОТОКА СО₂

Усреднение по Мировому океану среднемесячных значений ТПО и потока CO_2 на границе раздела океан—атмосфера с учетом площадей 4-градусных широтных зон позволило получить "глобальные" временные ряды этих характеристик. Годовой ход климатических (1982–2011 гг.) оценок аномалий ТПО для Мирового океана (ΔT_{gl}) в основном повторяет их годовой ход в Южном полушарии, поскольку его акватория значительно

Таблица 1. Интерпретация значимых корреляционных связей среднеширотных среднегодовых значений ТПО и потока CO₂ на границе раздела океан—атмосфера

Широтная зона	Изменение ТПО	Изменение потока CO ₂
78°—42° с.ш.	Рост ТПО	Увеличение потока CO ₂ в океан
38°—14° с.ш.	Рост ТПО	Уменьшение потока CO ₂ в океан
6° с.ш.–10° ю.ш.	Рост ТПО	Уменьшение потока CO ₂ в атмосферу
10°—18° ю.ш.	Рост ТПО	Увеличение потока CO ₂ в атмосферу
18°-38° ю.ш.	Рост ТПО	Уменьшение потока CO ₂ в океан
42°-78° ю.ш.	Рост ТПО	Увеличение потока CO ₂ в океан

Рис. 6. Годовой ход усредненных по акватории Мирового океана среднемесячных значений аномалий ТПО (*1*) и потока CO₂ (*2*) за период 1982–2011 гг.

больше акватории Северного полушария (рис. 6). Максимальные значения ΔT_{gl} отмечаются в феврале, а минимальные – в октябре-ноябре. Поиному обстоит ситуация с результирующим ("глобальным") потоком CO₂ (*F*CO_{2(gl})), ибо годовой ход потоков СО2 на разных широтах существенно различен даже в пределах одного полушария. Наибольшие значения FCO_{2(gl)} наблюдаются в августе, а наименьшие – в декабре (рис. 6), что соответствует годовому ходу обмена углекислым газом между океаном и атмосферой в тропических и субтропических широтах Северного полушария, где годовая гармоника имеет максимальную амплитуду. Среднегодовая оценка за период 1982-2011 гг. составила $FCO_{2(gl)} = -0.37$ моль С м⁻² год⁻¹ = $= -1.48 \times 10^{15} \,\mathrm{r} \,\mathrm{C} \,\mathrm{rog}^{-1}$

Анализ частотной структуры указанных временных рядов за период 1982—2011 гг. показал, что значимыми на уровне $\alpha = 0.05$ являются только годовая и полугодовая гармоники. Вклад первой в дисперсию значений ΔT_{gl} и $FCO_{2(gl)}$ составляет соответственно 67 и 63%, а второй – 15 и 24%. Формирование полугодовых колебаний обусловлено главным образом противофазностью годовых гармоник ТПО и потока CO₂ в Северном и Южном полушариях. Таким образом, на долю случайных колебаний приходится всего лишь 13–18% исходной дисперсии временных рядов. При этом, если фазы полугодовой гармоники для ΔT_{gl} и $FCO_{2(gl)}$ совпадают, то годовая гармоника ΔT_{gl} опережает годовую гармонику потока $FCO_{2(gl)}$. По существу это означает, что в годовом ходе именно глобальные изменения ТПО стимулируют изменения результирующего потока CO₂.

На рис. 7 представлен межгодовой ход глобальных значений ТПО и результирующего потока СО₂ на границе раздела океан-атмосфера. Нетрудно видеть, что между этими рядами отмечается сложный характер связи. Так, если глобальному ряду ТПО присущ мощный линейный тренд (коэффициент детерминации $R^2 = 0.77$), показывающий рост ТПО со скоростью 0.013° С год⁻¹, то потоку СО₂ – нелинейный тренд, в соответствии с которым до 1997 г. FCO_{2(gl)} из атмосферы в океан увеличивался, а после него стал интенсивно уменьшаться. Если же рассматривать эти временные ряды в отклонениях от тренда, то проявляется отчетливая тенденция их противоположных колебаний (коэффициент корреляции r = -0.49). При этом положительной аномалии ТПО соответствует усиление поглощения СО₂ Мировым океаном, что связано с особенностями межгодовой изменчивости ТПО и потока СО₂ в умеренных и высоких широтах обоих полушарий (42°-78°) и в экваториальной зоне (6° с.ш. – 10° ю.ш.) (см. табл. 1).

Рис. 7. Межгодовой ход результирующего потока $CO_2(FCO_{2(gl)})$ на границе раздела океан—атмосфера (1) и глобальных значений ТПО (2) за период 1982—2011 гг. Приведены уравнения тренда, где t – время.

_	Предикторы		
Параметр модели	среднеширотные среднегодовые значения аномалий ТПО, модель (1)	среднегодовые значения аномалий ТПО в узлах сетки 4° широты × 5° долготы, модель (2)	
Коэффициент детерминации	0.86	0.82	
Станлартная ошибка молели, моль/(м ² гол)	0.015	0.015	

3

Таблица 2. Статистические параметры регрессионных моделей оценки результирующего потока *F*CO_{2(gl)} на границе раздела океан–атмосфера

ПОСТРОЕНИЕ СТАТИСТИЧЕСКИХ МОДЕЛЕЙ ОЦЕНКИ РЕЗУЛЬТИРУЮЩЕГО ПОТОКА СО₂ ПО ДАННЫМ О ТПО

Число переменных

=

Учитывая достаточно высокие корреляционные связи между ТПО и потоком CO₂, представляется возможным построение статистических моделей, позволяющих косвенным образом оценивать результирующий поток CO₂ ($FCO_{2(gl)}$) по спутниковым данным об аномалиях ТПО, несомненным достоинством которых, как уже подчеркивалось выше, является высокая оперативность их получения. Предварительно временной ряд $FCO_{2(gl)}$ был представлен в виде суммы двух компонент: нелинейного тренда, описывающего более 22% дисперсии исходного ряда, и отклонений от него $\delta FCO_{2(gl)}$, представляющих собой стационарную случайную последовательность. Вначале рассматривалась модель вида:

$$FCO_{2(gl)} = Tr + \delta FCO_{2(gl)} = = a_0 + a_1t + a_2t^2 + f([\Delta T_1], [\Delta T_2], ..., [\Delta T_m]),$$
(1)

где квадратные скобки означают усреднение по 4-градусным широтным зонам Мирового океана, m – число широтных зон (m = 39). Поскольку оценка трендовой компоненты не представляет каких-либо затруднений, то главной задачей построения модели (1) является отбор наиболее эффективных предикторов $[\Delta T_i]$, позволяющих с максимально возможной точностью описывать изменения $\delta FCO_{2(gl)}$, получаемых при исключении тренда из ряда FCO_{2(gl)}. Для этой цели использовалась многомерная линейная регрессия с пошаговым включением переменных и комплексный анализ основных статистических характеристик получаемых моделей [2]. Предварительно исходная выборка была разделена на зависимую (1982-2006 гг.) и независимую (2007-2011 гг.) части. По зависимой выборке рассчитывались статистические параметры и осуществлялось тестирование моделей. Независимые данные использовались для оценки их точности.

В результате расчетов в качестве оптимальной принята модель с 3-мя предикторами, имеющая коэффициент детерминации, равный $R^2 = 0.84$ и стан-

ОКЕАНОЛОГИЯ том 55 № 1 2015

дартную ошибку $\sigma_y = 0.015$ моль/м² год (табл. 2), которая значительно меньше стандартного отклонения исходного временного ряда $FCO_{2(gl)}$ ($\sigma_{FCO_2(gl)} = 0.036$ моль/м² год). Основным предиктором является широтная зона 2°-6° с.ш., вклад которой в изменчивость $FCO_{2(gl)}$ составляет 65% (коэффициент корреляции r = 0.81). Это даже несколько выше максимальной корреляции $FCO_{2(gl)}$ непосредственно с потоком CO_2 (с трендом), отмечающейся также в широтной зоне 2°-6° с.ш. и равной r = 0.78.

2

Сопоставление фактических и вычисленных по модели (1) оценок $FCO_{2(gl)}$ представлено на рис. 8. Нетрудно видеть, что хотя вычисленные значения $FCO_{2(gl)}$ имеют тенденцию к их некоторому завышению, однако систематическая ошибка мала — 0.017 моль/м² год, что составляет примерно 5% от средней величины $FCO_{2(gl)}$.

На следующем этапе была осуществлена проверка возможности оценки $FCO_{2(gl)}$ непосредственно по данным об аномалиях ТПО в квадратах 4° широты × 5° долготы. Отметим, что размеры площади таких квадратов достаточно велики,

Рис. 8. Сопоставление по независимой выборке (2007–2011 гг.) фактических и рассчитанных по моделям (1) и (2) оценок глобального потока CO_2 на границе раздела океан–атмосфера $FCO_{2(gl)}$. 1 – фактические значения $FCO_{2(gl)}$, 2 – вычисленные по модели (1) оценки $FCO_{2(gl)}$, 3 – вычисленные по модели (2) оценки $FCO_{2(gl)}$.

чтобы сглаживать мелкомасштабные флюктуации, ибо оптимальным масштабом пространственного осреднения при изучении крупномасштабной изменчивости гидрологических процессов в океане является географическая сетка 5° × 5° [5].

Исходная модель имеет вид:

$$FCO_{2(gl)} = a_0 + a_1t + a_2t^2 + f(\Delta T_1, \Delta T_2, ..., \Delta T_n),$$
(2)

где ΔT_i – значения аномалий ТПО в узлах сетки 4° широты × 5° долготы, n – число трапеций (m = = 1756). Как и в предшествующем случае, главной задачей является отбор эффективных предикторов. Однако определение оптимальной модели не составило труда: она содержит всего 2 предиктора, имеет коэффициент детерминации, равный $R^2 = 0.82$, и стандартную ошибку $\sigma_v = 0.015$ моль/м² год (табл. 2). Первым предиктором является временной ряд аномалий ТПО в трапеции 135°-140° з.д. и 2°-6° с.ш., расположенной в центре Тихого океана. Вклад этого предиктора в изменчивость FCO_{2(gl)} достигает 71%. Из сопоставления фактических и вычисленных по модели (2) значений FCO_{2(gl)} (рис. 8) следует, что расхождения носят преимущественно случайный характер, а среднеквадратическая ошибка составляет 6% от средней величины $FCO_{2(gh)}$.

Итак, спутниковые данные о ТПО позволяют косвенным образом с довольно высокой степенью точности и оперативности оценить результирующий поток CO₂ на границе раздела океан—атмосфера. При этом именно экваториальная зона выступает регулятором межгодовой изменчивости результирующего потока CO₂ на границе раздела океан—атмосфера.

ЗАКЛЮЧЕНИЕ

На основе анализа зонально-осредненных по 4-градусным широтным зонам Мирового океана значений потока СО₂ и спутниковых данных о ТПО выявлены особенности их меридионального распределения и оценена взаимосвязь характеристик их годовых гармоник. Показано, что в тропических и субтропических широтах обоих полушарий отмечается практически синхронная связь сезонной изменчивости ТПО и потока СО₂. Именно здесь влияние ТПО на поток СО₂ в сезонном масштабе представляется наибольшим. Противофазный характер связи сезонной изменчивости ТПО и потока CO₂ свойствен южной полярной области и обусловлен главным образом мощными биологическими процессами (фотосинтезом) в летний период (декабрь-март), которые, несмотря на рост ТПО в это время, стимулируют сток CO_2 в океан.

Ярко выраженные противоположные тенденции отмечаются во взаимосвязях среднегодовых среднеширотных значений ТПО и потока CO₂. С одной стороны, в умеренных и высоких широтах обоих полушарий при росте ТПО происходит увеличение потока CO_2 в океан, а в экваториальной зоне 6° с.ш.–10° ю.ш. – уменьшение потока CO_2 в атмосферу. С другой – в тропических и субтропических широтах при росте ТПО поток CO_2 в океан уменьшается, а в зоне 10° –18° ю.ш. поток CO_2 в атмосферу увеличивается. В связи с этим не соответствует действительности мнение о безусловном усилении поглощения CO_2 океаном при уменьшении температуры воды.

Вклад годовой гармоники в дисперсию среднемесячных глобальных значений ΔT_{gl} и $FCO_{2(gl)}$ составляет соответственно 67 и 63%, а полугодовой – 15 и 24%. Весьма важно, что годовая гармоника ΔT_{gl} опережает годовую гармонику потока $FCO_{2(gl)}$. По существу это означает, что в годовом ходе именно глобальные изменения ΔT_{gl} стимулируют изменения результирующего потока CO_2 .

Из межгодового хода FCO_{2(gl)} следует, что если до 1997 г. наблюдался рост поглощения океаном СО2, то затем наметилась тенденция к уменьшению FCO_{2(gl)}. Очевидно, что при сохранении указанной тенденции в ближайшие годы, 1997 г. можно будет считать переломным, после которого Мировой океан начнет превращаться в климатической системе из стабилизатора парникового эффекта в его ускоритель. При этом взаимосвязь годовых значений ΔT_{gl} и $FCO_{2(gl)}$ носит сложный характер. Тренды имеют разные знаки до 1997 г. и одинаковые после 1997 г. Если же рассматривать эти временные ряды в отклонениях от тренда, то проявляется отчетливая тенденция их противоположных колебаний (коэффициент корреляции r = -0.49). Это означает усиление поглощения СО₂ Мировым океаном при росте ТПО, которое, как показано выше, обусловлено особенностями межгодовой изменчивости ТПО и потока СО₂ в умеренных и высоких широтах обоих полушарий и в экваториальной зоне.

Учитывая высокие корреляционные связи между ТПО и потоком CO_2 , осуществлено построение статистических моделей, позволяющих косвенным образом с достаточно высокой точностью оценивать результирующий поток СО2 (FCO_{2(gl)}) по спутниковым данным об аномалиях ТПО. Первая модель основана на среднеширотных значениях аномалий ТПО и включает всего три предиктора, главным из которых является широтная зона 2°-6° с.ш., другая – аномалии ТПО в узлах сетки 4° широты × 5° долготы, в которой также главным предиктором служит квадрат в центре Тихого океана в зоне 2°-6° с.ш. Таким образом, именно ТПО в экваториальной зоне практически регулирует межгодовую изменчивость результирующего потока СО2 на границе раздела океан-атмосфера.

Работа выполнена в Российском государственном гидрометеорологическом университете при финансовой поддержке гранта Правительства РФ (Договор № 11.G34.31.0078) для поддержки исследований под руководством ведущих ученых.

СПИСОК ЛИТЕРАТУРЫ

- Карлин Л.Н., Малинин В.Н., Образцова А.А. Пространственно-временные изменения потока CO₂ в системе океан–атмосфера // Изв. РГО. 2012. Т. 144. Вып. 5. С. 27–36.
- Малинин В.Н., Гордеева С.М. Физико-статистический метод прогноза океанологических характеристик. Мурманск: ПИНРО, 2003. 164 с.
- Малинин В.Н., Образцова А.А. Изменчивость обмена углекислым газом в системе океан—атмосфера // Общество. Среда. Развитие. 2011. № 4. С. 220–226.
- Савенко В.С. Химия водного поверхностного микрослоя. Л.: Гидрометеоиздат, 1990. 184 с.
- 5. Степанов В.Н. Океаносфера. М.: Мысль, 1983. 270 с.
- Хунджуа Г.Г., Гусев А.М., Андреев Е.Г. и др. О структуре холодной поверхностной пленки океана и теплообмене океана с атмосферой // Изв. АН СССР. Физ. атм. и океана. 1977. Т. 13. № 7. С. 753–758.
- 7. *Behrenfeld M.* Climate-driven trends in contemporary ocean productivity // Nature. 2006. № 444. P. 752 755.
- 8. ERDDAP: AOML Monthly Global Carbon Fluxes dataset. URL: http://cwcgom.aoml.noaa.gov/erddap/griddap/aomlcarbonfluxes.graph, free.
- Gurney K.R., Law R.M., Denning A.S. et al. Towards robust regional estimates of CO₂ sources and sinks using

atmospheric transport models // Nature. 2002. № 415. P. 626–630.

- IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Eds. Stocker T.F. et al. New York: Cambridge university press, 2013. P. 465–570.
- Orr J.C. Modelling of Ocean Storage of CO₂ // The GOSAC Study, Report PH4/37, IEA Greenhouse Gas R&D Programme. 2004. 96 p.
- Park G.-H., Wanninkhof R., Doney S.C. et al. Variability of global net sea-air CO₂ fluxes over the last three decades using empirical relationships // Tellus. 2010. № 62B(5). P. 352–368.
- Sabine C.L., Feell R.A. The oceanic sink for carbon dioxide // Greenhouse Gas Sinks / Eds. Reay D. et al. UK, Oxfordshire: CABI Publishing, 2007. P. 31–49.
- Takahashi T., Olafsson J., Goddard J. et al. Seasonal variation of CO₂ and nutrients in the high-latitude surface oceans: a comparative study // Global Biogeochemistry Cycles. 1993. № 7. P. 843–878.
- Takahashi T., Sutherland S.C., Sweeney C. et al. Global sea-air CO₂ ux based on climatological surface ocean pCO₂, and seasonal biological and temperature effects // Deep-Sea Res. II. 2002. № 49. P. 1601–1622.
- 16. Takahashi T., Sutherland S.C., Wanninkhof R. et al. Climatological mean and decadal changes in surface ocean pCO₂, and net sea-air CO₂ flux over the global oceans // Deep-Sea Res. II. 2009. № 56. P. 554–577.
- Weiss R.F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas // Marine Chemistry. 1974. № 2. P. 203–215.

On the Influence of Sea Surface Temperature on Carbon Dioxide Exchange with Atmosphere

L. N. Karlin, V. N. Malinin, S. M. Gordeeva

The influence of sea surface temperature (SST) on the carbon dioxide (CO₂) exchange with atmosphere is considered on different spatial and temporal scales. The initial data were the 4° latitude × 5° longitude gridded monthly mean values of the CO₂ flux for the period of 1982–2011 and the SST satellite data from January 1, 1982 to December 31, 2012 at the $0.25^{\circ} \times 0.25^{\circ}$ nodes of the geographical grid. Statistical models were constructed to estimate the global net CO₂ flux on the basis of SST anomalies. The SST variations in the equatorial zone were shown to be the main governing factors of the inter-annual variations of net CO₂ flux at the ocean–atmosphere interface.