конструкционные

STRUCTURAL

MATERIALS

НАНОСТРУКТУРЫ

NANOSTRUCTURES

АНОСИСТЕМЫ: СИНТЕЗ, СВОЙСТВА, ПРИМЕНЕНИЕ

Статья поступила в редакцию 26.01.18. Ред. рег. № 2643-3

NANOSYSTEMS: SYNTHESIS, PROPERTIES, AND APPLICATION

The article has entered in publishing office 26.01.18. Ed. reg. No. 2642-3

УДК 539.234:546.261 ПРОЦЕССЫ РОСТА СУБЗЕРЕН И РАЗВИТИЕ МОРФОЛОГИИ ПРИ СИНТЕЗЕ ПЛЕНОК β-SiC НА (111)Si В АТМОСФЕРЕ МЕТАНА

В.О. Кузьмина¹, С.А. Солдатенко^{1,2}, А.А. Синельников³

¹ВУНЦ ВВС «ВВА имени профессора Н.Е. Жуковского и Ю.А. Гагарина» д. 54а, ул. Старых Большевиков, Воронеж, 394064, Россия тел.: +7(473)226-47-52; e-mail: vaiu@mil.ru ²Воронежский государственный технический университет д. 14, Московский пр., Воронеж, 394026, Россия тел.: +7(473)246-40-67; e-mail: pk@vorstu.ru ³Воронежский государственный университет д. 1, Университетская площадь, Воронеж, 394018, Россия тел.: +7(473)220-75-21; e-mail: office@main.vsu.ru

doi: 10.15518/isjaee.2018.22-24.096-106

Заключение совета рецензентов: 15.02.18 Заключение совета экспертов: 21.03.18 Принято к публикации: 12.04.18

Методами просвечивающей электронной микроскопии, дифракции быстрых электронов, атомно-силовой микроскопии и Оже-электронной спектроскопии проведены исследования фазового состава, ориентации, субструктуры и морфологии пленок, образующихся при импульсной фотонной обработке излучением ксеноновых ламп пластин кремния (111) Si в атмосфере метана. Установлено, что в диапазоне плотности энергии излучения (E_n) , поступающей на пластины толщиной 450 мкм за 3 с, от 267 Дж см⁻² до 284 Дж см⁻² на обеих поверхностях пластины как с облучаемой, так и с необлучаемой стороны образуются ориентированные нанокристаллические пленки β-SiC. При этом на облучаемой стороне синтез пленок осуществляется при возможном участии фотонной активации процессов (ИФО), а на обратной стороне – только термической активации (БТО). Показано, что с увеличением плотности энергии излучения в пленках β-SiC средний размер субзерен на облучаемой стороне возрастает с 4,2 нм ($E_p = 269 \ \text{Дж \cdot cm}^{-2}$) до 7,9 нм ($E_p = 284 \ \text{Дж \cdot cm}^{-2}$) и на необлучаемой стороне – с 3,9 нм до 7,0 нм соответственно. Шероховатость поверхности β-SiC с увеличением плотности энергии излучения принимает значения на облучаемой стороне от 19 нм (E_p = 269 Дж·см⁻²) до 60 нм (E_p = 284 Дж·см⁻²) и на необлучаемой стороне от 11 нм до 56 нм соответственно. На основании температурных зависимостей среднего размера зерна и шероховатости оценены кажущиеся энергии активации процессов. Энергия активации роста субзерен β-SiC практически не зависит от способа активации и составляет 1,3 эВ. Энергия активации развития шероховатости составляет при ИФО 2,5 эВ и при БТО 3,5 эВ.

Ключевые слова: импульсная фотонная обработка; быстрый термический отжиг; карбид кремния; ориентация; субструктура; морфология поверхности; энергия активации.

96

2018

Международный издательский дом научной периодики "Спейс

International Publishing House for scientific periodicals "Space"

^{*}Кузьмина В.О., Солдатенко С.А., Синельников А.А. Процессы роста субзерен и развитие морфологии при синтезе пленок β-SiC на (111)Si в атмосфере метана // Международный научный журнал «Альтернативная энергетика и экология» (ISJAEE), 2018;22-24:96-106.

GROWTH PROCESSES OF SUBGRAIN AND MORPHOLOGY EVOLUTION IN THE SYNTHESIS OF B-SIC FILMS AT (111) SI IN THE ATMOSPHERE OF METHANE

V.O. Kuzmina¹, S.A. Soldatenko^{1,2}, A.A. Sinelnikov³

 ¹Military Educational and Scientific Center
"Air Force Academy named after Professor N.E. Zhukovsky and Y.A. Gagarin"
54a Starye Bol'sheviki St., Voronezh, 394064, Russia tel.: +7(473) 226 47 52, e-mail: vaiu@mil.ru
²Voronezh State Technical University
14 Moskovskaya Av., Voronezh, 394026, Russia tel.: +7 (473) 246 40 67, e-mail: pk@vorstu.ru
³Voronezh State University
1 Universitetskaya Square, Voronezh, 394018, Russia tel.: +7 (473) 220 75 21, e-mail: office@main.vsu.ru

doi: 10.15518/isjaee.2018.22-24.096-106

Referred 15 February 2018 Received in revised form 21 March 2018 Accepted 12 April 2018

By the methods of transmission electron microscopy, high energy electron diffraction, atomic force microscopy, and Auger electron spectroscopy, the article studies the phase composition, orientation, substructure, and morphology of the films formed during pulsed photon treatment (PPT) by radiation of xenon lamps of silicon (111) Si substrates in an atmosphere of methane. We have established that in the range of the energy density of radiation (E_p) supplied to the substrate with a thickness of 0.45 µm for 3 s from 269 to 284 J cm⁻² the oriented nanocrystalline films are formed on both surfaces of the substrates both from the irradiated and non-irradiated side β -SiC thickness of about 150 nm. In this case, the synthesis of films on the irradiated side is carried out with the possible participation of photon activation of processes and on the reverse side – only by thermal activation (short-term heat treatment (SHT). With an increase in the energy density of radiation in β -SiC films, the average subgrain size on the irradiated side is shown to increase from 4.2 nm ($E_p = 269 \text{ J} \cdot \text{cm}^{-2}$) to 7.9 nm ($E_p = 284 \text{ J} \cdot \text{cm}^{-2}$) and on the non-irradiated side from 19 nm ($E_p = 269 \text{ J} \cdot \text{cm}^{-2}$) to 60 nm ($E_p = 284 \text{ J} \cdot \text{cm}^{-2}$) and on the non-irradiated side from 19 nm ($E_p = 269 \text{ J} \cdot \text{cm}^{-2}$) to 60 nm ($E_p = 284 \text{ J} \cdot \text{cm}^{-2}$) and on the non-irradiated side from 19 nm ($E_p = 269 \text{ J} \cdot \text{cm}^{-2}$) to 60 nm ($E_p = 284 \text{ J} \cdot \text{cm}^{-2}$) and on the non-irradiated side from 19 nm ($E_p = 269 \text{ J} \cdot \text{cm}^{-2}$) to 60 nm ($E_p = 284 \text{ J} \cdot \text{cm}^{-2}$) and on the non-irradiated side from 19 nm ($E_p = 269 \text{ J} \cdot \text{cm}^{-2}$) to 60 nm ($E_p = 284 \text{ J} \cdot \text{cm}^{-2}$) and on the non-irradiated side from 11 nm to 56 nm respectively. Based on the temperature dependences of the average grain size and roughness, we have estimated the apparent activation energies of the processes. The activation energy of subgrain β -SiC growth is practically independent o

Keywords: pulsed photon treatment; short-term heat treatment; silicon carbide; orientation; substructure; subgrain; surface morphology; roughness; activation energy.

Сергей Анатольевич Солдатенко Sergey Soldatenko

Сведения об авторе: канд. физ.-мат. наук, доцент кафедры физики ФГБОУ ВО «Воронежский государственный технический университет».

Образование: ФГБОУ ВО «Воронежский государственный технический университет» (1985 г.).

Область научных интересов: тонкие пленки; электронная микроскопия; структура материалов.

Публикации: 126. *h*-index 4 orcid.org/0000-0002-3041-9959 Research ID M-3218-2017 Publons publons.com/a/1609029/ Scopus Author ID 36889113900 **Information about the author:** Ph.D. in Physics and Mathematics, Assistant Professor, Voronezh State Technical University.

Education: Voronezh State Technical University, 1985.

Research interests: thin films; electron microscopy; the structure of materials.

Publications: 126.

International Scientific Journal for Alternative Energy and Ecology © Scientific Technical Centre «TATA», 2000-2018

Ø

Александр Алексеевич Синельников Alexandr Sinelnikov

Вероника Олеговна Кузьмина Veronika Kuzmina

Сведения об авторе: канд. физ.-мат. наук, директор Центра коллективного пользования научного оборудования ФГБОУ ВО «Воронежский государственный университет».

Образование: ФГБОУ ВО «Воронежский государственный технический университет» (1985 г.).

Область научных интересов: тонкие пленки; электронная микроскопия; структура материалов.

Публикации: 52. *h*-index 2

Scopus Author ID 56122193100

Сведения об авторе: науч. сотрудник Военного учебно-научного центра Военно-воздушных сил «Военновоздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина».

Образование: ФГБОУ ВО «Воронежский государственный университет» (2014 г.).

Область научных интересов: тонкие пленки; электронная микроскопия; структура материалов.

Публикации: 2. *h*-index 1; Scopus Author ID 57191344569 **Information about the author:** Ph.D. in Physics and Mathematics, director of the Center for Collective Use of Scientific Equipment, Voronezh State University.

Education: Voronezh State Technical University, 1985.

Research interests: thin films; electron microscopy; the structure of materials.

Publications: 52.

Information about the author: Researcher at the Military Educational and Scientific Center "Air Force Academy named after Professor N.E. Zhukovsky and Y.A. Gagarin".

Education: Voronezh State University, 2014.

Research interests: thin films; electron microscopy; the structure of materials.

Международный издательский дом научной периодики "Спейс'

Publications: 2.

International Publishing House for scientific periodicals "Space"

1. Введение

Карбид кремния (SiC) по праву называют полупроводниковым материалом электроники будущего. По совокупности полупроводниковых характеристик: высоким значениям подвижности электронов; критической напряженности поля пробоя, превышающей 2·10⁶ В/см; температуре Дебая 1 200 К; механической прочности; устойчивости к температурным, химическим и радиационным воздействиям, - в сочетании с большой шириной запрещенной зоны $(2,3 \div 3,3)$ в теплопроводностью $(3 \div 5)$ Вт/см·К) карбид кремния превосходит такие традиционные материалы, как кремний, германий и арсенид галлия (Si, Ge и GaAs). Монокристаллы SiC уже широко применяются для изготовления радиационностойких светодиодов, высокотемпературных силовых приборов, полевых транзисторов, туннельных диодов, счетчиков частиц высокой энергии. В частности, монокристаллы SiC позволяют значительно увеличить эффективность преобразования энергии в инверторах для солнечных батарей [1].

Широкому внедрению приборов на основе SiC препятствует сложность получения и стоимость высококачественных подложек, а также проблемы их легирования и плазмохимии.

В настоящее время вместо дорогостоящих монокристаллических подложек карбида кремния в микроэлектронике можно использовать эпитаксиальные гетероструктуры SiC/Si на кремниевой подложке. Практически все типы приборов могут быть реализованы на основе гетероструктур SiC/Si. Однако, вследствие большого структурного несоответствия решеток и различия коэффициентов термического расширения SiC и Si, кристаллическое совершенство эпитаксиального слоя SiC на Si уступает по качеству монокристаллической подложке, что отрицательно сказывается на электрофизических характеристиках приборов, тем не менее выгодное соотношение «цена – качество» и совместимость с кремниевой технологией делает массовое производство приборов на гетероструктуре SiC/Si рентабельным [2, 3].

В основе синтеза эпитаксиальных гетероструктур SiC/Si различными методами лежит простая реакция между атомами Si и C на поверхности эпитаксиального слоя продукта реакции SiC. Несмотря на элементарность химической реакции, твердофазный синтез пленки B-SiC включает в себя целую цепочку пространственно разделенных параллельно и последовательно протекающих процессов с различной энергией активации и временем релаксации, определяющих в конечном итоге не только ее кристаллическую структуру, но и ориентацию, субструктуру и морфологию. В связи с этим для оптимизации температурновременного режима твердофазного синтеза β-SiC на Si необходимо знание кинетических параметров процессов, наиболее важным из которых является кажущаяся энергия активации. Данные о ее значениях позволят установить действующие механизмы процессов твердофазного синтеза.

Цель данной работы заключается в оценке значений кажущейся энергии активации развития ше-

33

№ 22-24

(270-272)

роховатости поверхности и роста субзерен пленки β-SiC на Si в условиях импульсной фотонной обработки (ИФО) и быстрой термической обработки (БТО), а также в выявлении эффекта ИФО в активации синтеза SiC. В результате впервые показан эффект ИФО, проявляющийся в снижении энергии активации развития шероховатости по сравнению с БТО.

Список обозначений				
Буквы латинского алфавита				
β	Коэффициент пропорциональности			
<u>Буквы латинского с</u>	Буквы латинского алфавита			
а	Параметр кристаллической решётки, нм			
D	Средний размер субзерна, нм			
Ε	Плотность энергии излучения, Дж·см ²			
Р	Давление, Па			
R	Шероховатость			
Т	Температура, К			
Индексы нижние				
т	Плавление (melting)			
р	Импульс (pulse)			
рт	Импульс, плавление (pulse, melting)			
<u>Аббревиатуры</u>				
ACM	Атомно-силовая микроскопия			
БТО	Быстрая термическая обработка			
ДБЭ	Дифракция быстрых электронов			
ДУ	Дефект упаковки			
ИФО	Импульсная фотонная обработка			
ОЭС	Оже-электронная спектроскопия			
ПЭМ	Просвечивающая электронная микроскопия			

2. Теоретический анализ

International Publishing House for scientific periodicals "Space"

Для формирования гетероструктур SiC / моно-Si наибольшее распространение получили различные варианты химического газофазного осаждения [4-8] и молекулярно-лучевой эпитаксии [9]. Исследования показали, что для получения более совершенного слоя SiC на Si перед эпитаксией необходимо проводить операцию карбидизации поверхности кремния (синтез буферной эпитаксиальной гетероструктуры β-SiC/Si) [10]. Традиционный способ формирования буферной гетероструктуры β-SiC/Si заключается в следующем: непосредственно перед эпитаксией поверхность кремниевой подложки подвергается термической обработке или БТО при температуре 1 100÷1 350 °С в атмосфере с низким парциальным давлением углеродсодержащих газов; углерод, образующийся при пиролизе углеводорода, взаимодействует с кремнием, и на поверхности подложки формируется тонкий эпитаксиальный слой β-SiC. Толщина эпитаксиального карбидкремниевого слоя, полученного традиционными методами, обычно не превышает двух десятков нанометров, что недостаточно для реализации еще одного назначения гетероструктуры β-SiC/Si - способности демпфировать напряжения, возникающие при эпитаксиальном наращивании рабочих слоев SiC толщиной более 1 мкм [11]. Кроме того, температурный диапазон карбидизации поверхности кремния в большинстве случаев не совместим с режимами кремниевой технологии. Анализ работ последних лет

по данной тематике показывает, что ведутся исследования более низкотемпературных режимов карбидизации поверхности Si в основном путем подбора состава газовой атмосферы [12] и использования ассистирующего действия плазмохимических методов синтеза [13]. Возможности активации процессов синтеза β -SiC методом ИФО излучением мощных ксеноновых ламп, хорошо зарекомендовавшей себя при синтезе пленок силицидов металлов [14, 15] и карбида вольфрама [16], практически не исследованы.

3. Методика эксперимента

Синтез гетероструктур β-SiC/Si осуществляли методом ИФО полированных с двух сторон пластин кремния марки КДБ-10 ориентацией (111) толщиной 450 мкм в атмосфере метана. Перед помещением пластин Si в вакуумную камеру их поверхность обрабатывали в растворе $HF:H_2O = 1:1$, далее – в перекисноаммиачной смеси $H_2O_2:NH_4OH = 6:1$ и промывали в деионизованной воде. После установки пластин вакуумную камеру откачивали турбомолекулярным насосом до давления остаточной атмосферы 6.6.10⁻³ Па. Затем в камеру непрерывно подавали метан чистотой не менее 99,9 %, поддерживая рабочее давление 1,3·10⁻² Па. ИФО пластин проводили на установке УОЛП-1М излучением трех газоразрядных ксеноновых ламп ИНП 16/250 (спектральный диапазон $\lambda = 0,2 \div 1,2$ мкм), работающих в импульсном режиме (10⁻² с) бегущей волны пакетами импульсов. Длительность пакетов световых импульсов составляла 3 с,

Ð

при этом сила тока в лампах устанавливалась 128 А, 130 А, 132 А и 135 А, что соответствовало ряду плотности энергии, поступающей на образец: 269 Дж·см⁻², 273 Дж·см⁻², 277 Дж·см⁻²и 284 Дж·см⁻².

Облучение проводили с одной стороны, при этом исходили из того, что на облучаемой стороне синтез происходит при возможном участии фотонной активации процессов, а на необлучаемой стороне – только за счет термической активации.

Температуру синтеза на облучаемой стороне пластины для всех значений E_p рассчитывали методом интерполяции по двум известным точкам: температуры плавления эвтектики в системе Si-C ($T_m = 1$ 677 K) при $E_p = 284 \, \text{Дж \cdot см}^{-2}$ и пороговой температуры синтеза (T = 1 273 К) при $E_p = 240$ Дж·см⁻². В этом температурном интервале для кремниевых пластин толщиной менее 1 мм при ИФО секундного диапазона функция $T(E_p)$ хорошо интерполируется зависимостью $T = T_m(1 - \beta(1 - E_p/E_{pm}))1/4$, где T_p – температура плавления эвтектики Si-C; E_p – плотность энергии излучения в пакете импульсов; Epm – плотность энергии излучения при достижении температуры плавления; коэффициент пропорциональности $\beta = 4,31$ (определяется из условия T = 1 273 К при $E_p = 240$ Дж·см⁻¹). Температуру на необлучаемой стороне в этом же диапазоне E_p принимали на 5 К ниже согласно оценке, предложенной в монографии [17].

Кажущуюся энергию активации развития шероховатости поверхности и роста субзерен пленки SiC оценивали по температурной зависимости шероховатости R(T) и среднего размера субзерна D(T).

Ориентацию, структуру и субструктуру пленок SiC исследовали методами ПЭМ, ДБЭ и ДБЭО на электронном микроскопе Carl Zeiss Libra 120 и электронографе ЭГ-100. Образцы для ПЭМ-исследования готовили посредством отделения пленки SiC от кремниевой подложки в растворе HF : HNO₃ = 1:10.

Рельеф и шероховатость поверхности образцов исследовали методами ACM на атомно-силовом микроскопе (NT-MDT Solver P47).

Распределение элементов по толщине контролировали методом ОЭС с послойным ионным распылением на приборе ЭСО-3 с анализатором DESA-100.

4. Результаты и их обсуждение

Ранее в работах [18, 19] были определены режимы синтеза сплошных пленок β -SiC на Si методом ИФО пластин кремния в углеродсодержащей атмосфере. Установлено, что пороговое значение E_p для синтеза SiC составляет около 240 Дж·см⁻² при температуре облучаемой поверхности 1 273 К. Начиная с этого значения, на поверхности подложки Si формируются сплошные пленки SiC кубической модификации (3C) с параметрами кристаллической решетки a = 0,436 нм [20]. Для пленок характерна достаточно четкая двухосная текстура в трех симметрично эквивалентных позициях по ориентационному соотношению:

 $(111), [1\overline{10}]$ SiC II $(111), [1\overline{10}]$ Si. (1)

Кроме того, наряду с параллельной ориентацией (1) имеются зерна в двойниковой (180-градусной) ориентации и произвольно ориентированные зерна. В приповерхностную область выходят только эпитаксиально ориентированные кристаллиты вследствие их преимущественного роста. Субструктура пленок – нанокристаллическая с высокой плотностью дефектов упаковки (ДУ) и микродвойниковых прослоек. Высокая дисперсность пленок при хорошо выраженной текстуре обусловлена двухориентационной (с учетом 180-градусной позиции) эпитаксии, легкостью двойникования и образования дефектов упаковки.

Изменение давления (*P*) от $1,3\cdot10^{-2}$ Па до $5,3\cdot10^{-1}$ Па приводит к увеличению толщины пленки SiC, достигающей по данным растровой электронной микроскопии 70 нм на (111)Si при $E_p = 260$ Дж·см⁻² и $P = 5,3\cdot10^{-1}$ Па.

В настоящей работе для оценки энергии активации роста субзерен и развития шероховатости при синтезе пленок β-SiC методом ИФО были проведены исследования субструктуры и морфологии плёнок в зависимости от плотности энергии светового излучения.

На рис. 1 представлены электронограммы и распределение элементов по толщине (по данным Ожеспектроскопии) пленки β-SiC, синтезированной на облученной стороне (111)Si при $E_p = 269$ Дж·см⁻². Картины дифракции от пленок, полученных при более высоких Е_p и на необлученной стороне, аналогичны, что свидетельствует о сходстве их субструктуры и идентичности двухосной текстуры, отвечающей ориентационному соотношению (1). Из картины ДБЭО (рис. 16, зона съемки <110>Si) следует, что зерна, образующие двухосную текстуру как в параллельной, так и в двойниковой ориентации, выходят к поверхности пленки. Профиль распределения элементов по толщине (рис. 1в) свидетельствует о том, что в объеме пленки элементный состав однороден и соответствует стехиометрии SiC. В приповерхностной области содержится 53 % углерода, 37 % кремния и 10 % кислорода.

Международный издательский дом научной периодики "Спейс

22

ISJA

Đ-

Рис. 1 – Электронограмма на просвет (a), электронограмма на отражение (б) (x – рефлексы двойной дифракции; hkl' – отражения от кристаллитов в двойниковой позиции) и распределение элементов по толщине (в) (по данным Оже-спектроскопии) пленки β-SiC, синтезированной на облученной стороне (111)Si при *E_ρ* = 269 Дж см⁻² Fig. 1 – Electron diffraction pattern (a), reflection electron diffraction pattern (b) (x – reflections of double diffraction, hkl' - reflections from crystallites in the twin position), and element thickness distribution (s) (according to Auger spectroscopy) of the β -SiC film synthesized on the irradiated side of (111) Si at $E_p = 269 \text{ J} \cdot \text{cm}^3$

На рис. 2 и 3 представлены ПЭМ-изображения, характеризующие субструктуру пленок β-SiC, синтезированных на обеих сторонах пластины кремния. Как видно на рисунках, общей характеристикой пленок β-SiC, полученных при различных E_p, является их блочная мозаичная субструктура. Размеры субструктурных элементов (блоки субзерен, субзерна) монотонно возрастают с увеличением плотности энергии ИФО. Средний размер субзерна (D) определен из статистической обработки размеров областей когерентного рассеяния (не менее 300) на темнопольных изображениях, при этом погрешность не превышает 0,3 нм. Ослабление адсорбционного контраста, наблюдаемое по границам блоков, связано с уменьшением толщины пленки в окрестности межблочных границ.

Анализ контраста АСМ-изображений поверхности пленок, синтезированных на обеих сторонах пластины кремния (рис. 4), подтверждает вывод о блочности субструктуры пленок и о канавках по границам блоков, сделанный по данным ПЭМ.

Международный издательский дом научной периодики "Спейс"

Гистограммы распределения высоты, соответствующие АСМ-изображениям, характеризуются одномодальностью распределения высоты поверхности пленок, что свидетельствует об однородности их морфологии. На основе статистической обработки гистограмм определена шероховатость поверхности пленок. Сводные данные значений среднего размера субзерна и шероховатости поверхности пленок в зависимости от дозы облучения и соответствующей температуры с лицевой и обратной стороны по результатам ПЭМ и АСМ исследований представлены в табл. 1 и 2.

3

2018

Ð

SPAC

International Publishing House for scientific periodicals "Space"

International Scientific Journal for Alternative Energy and Ecology © Scientific Technical Centre «TATA», 2000-2018

Международный научный журнал «Альтернативная энергетика и экология» © Научно-технический центр «ТАТА», 2000-2018

100 nm

100 nm

ARE

15

Ð

№ 22-24

(270-272)

Таблица 1

Средний размер субзерна и размер блоков пленки SiC на Si в зависимости от температуры синтеза при ИФО и БТО

Table 1

Average subgrain size and block size of the SiC film on Si as a function of the synthesis temperature for IFO and BTO

ИФО							
<i>Е_p</i> , Дж∙см ⁻²	Т, К	$1/kT$, $3B^{-1}$	<i>D</i> , нм	Ln D	Размер блоков,		
269	1 573	7,38	4,2	1,44	35		
273	1 605	7,23	5,0	1,60	45		
277	1 637	7,09	6,0	1,79	60		
284	1 677	6,92	7,9	2,07	100		
БТО	•		·	•			
	1 568	7,40	3,9	1,35	30		
	1 600	7,25	4,2	1,42	35		
	1 632	7,11	5,4	1,68	50		
	1 672	6,94	7,0	1,95	90		
	•	•	•	•			

Таблица

Международный издательский дом научной периодики "Спейс"

Шероховатость поверхности пленки SiC на Si в зависимости от температуры синтеза при ИФО и БТО Table 2

Surface roughness of a SiC film on Si as a function of the synthesis temperature for IFO and BTO

ИФО							
<i>Е_p</i> , Дж•см ⁻²	<i>Т</i> , К	1/kT, 3B ⁻¹	<i>R</i> , нм	Ln R			
269	1 573	7,38	19	2,94			
273	1 605	7,23	27	3,29			
277	1 637	7,09	38	3,63			
284	1 677	6,92	60	4,09			
БТО							
	1 568	7,40	11	2,4			
	1 600	7,25	18	2,9			
	1 632	7,11	29	3,38			
	1 672	6,94	56	4,03			

На рис. 5 построены графические зависимости логарифма D и R от обратной температуры 1/kT (эВ⁻¹). Как видно на графиках, точки хорошо укладываются в линейные зависимости, соответствующие следующим значениям кажущейся энергии активации процессов: роста субзерен пленки β-SiC – 1.3 эВ. одинаковой для ИФО и БТО; развития шероховатости поверхности – 2,5 эВ при ИФО и 3,5 эВ при БТО. Из сравнения размеров субструктурных и морфологических элементов пленок β-SiC, синтезированных на лицевой (ИФО) и обратной (БТО) стороне подложек Si, следует, что их значения при ИФО выше, чем при БТО. Очевидно, что разница температур в 5 К на лицевой и обратной стороне не объясняет наблюдаемого различия, и эффект возможно связан с фотонной активацией синтеза. Более того, этот эффект проявляется и в снижении кажущейся энергии активации процесса развития шероховатости поверхности пленок, лимитированного механизмом поверхностной самодиффузии атомов кремния и углерода. В то же время на процесс роста размера субзерен фотонная активация практически не влияет.

Для установления преобладающих механизмов сложных процессов твердофазного синтеза необходимо сопоставить полученные значения кажущейся энергии активации с известными энергиями активации элементарных процессов. Например, известны следующие значения энергии активации: объемной диффузии по вакансионному механизму в монокристалле SiC для атомов C и Si при 1 600 K ($7 \div 8$ эВ) [21]; поверхностной диффузии ($4,5 \div 5,5$ эВ) [22] и скольжения дислокаций в поликристаллической пленке (1,7 эВ) [23]. Сопоставление показывает, что процесс развития шероховатости очевидно определяется поверхностной диффузией атомов C и Si, а процесс роста субзерен, по-видимому, лимитирован скольжением дислокаций.

155

№ 22-24

(270-272)

Рис. 5 – Графические зависимости: а – логарифма шероховатости от обратной температуры 1/kT (эВ⁻¹); *b* – среднего размера субзерна от обратной температуры 1/kT (эВ⁻¹) Fig. 5 – Graphical dependencies: a – the roughness logarithm on the reciprocal reduced temperature 1/kT (eV⁻¹); b – the average subgrain size on the reciprocal reduced temperature 1/kT (eV⁻¹)

Более низкие значения кажущейся энергии активации развития шероховатости по сравнению с энергией активации поверхностной диффузии, возможно, связаны с частичным согласованием элементарных актов поверхностной диффузии и химической реакции [24]. В случае роста субзерен заниженное значение энергии активации обусловлено нанокристалличностью пленки [25].

5. Заключение

Полученные значения кажущейся энергии активации (2,5 эВ при ИФО и 3,5 эВ при БТО) развития шероховатости тонкой пленки β-SiC при твердофазном синтезе на кремниевой подложке в углеродсодержащей атмосфере сопоставимы с энергией активации поверхностной самодиффузии (4,5 эВ) для монокристаллического карбида кремния. Этот факт позволяет предположить, что процесс развития шероховатости в основном определяется поверхностной самодиффузией. Более низкие значения кажущейся энергии активации развития шероховатости по сравнению с энергией активации поверхностной диффузии, возможно, связаны с частичным согласованием элементарных актов поверхностной диффузии и химической реакции.

Рост субзерен лимитирован механизмом скольжения дислокаций. Заниженное значение энергии активации (1,3 эВ) этого процесса по сравнению с известным значением для энергии активации скольжения дислокаций в поликристалле SiC (1,7 эВ) обусловлено нанокристалличностью пленки.

Эффект фотонной активации синтеза β-SiC проявляется: в большем значении размеров субструктурных и морфологических элементов на облучаемой стороне (4,2 нм и 7,9 нм) плёнки по сравнению с необлучаемой стороной (3,9 нм и 7,0 нм), а также в снижении кажущейся энергии активации развития шероховатости в 1,4 раза.

Результаты работы могут быть полезны при оптимизации режимов синтеза буферных гетероструктур β-SiC/Si для последующего создания эпитаксиальных гетероструктур широкозонных полупроводников (SiC, GaN, AlN), применяемых в оптоэлектронных и силовых приборах преобразования энергии.

Список литературы

[1] О'Нейл, М. Устройства на основе карбида кремния повышают КПД систем преобразования солнечной энергии [Текст] / М. О'Нейл // Силовая электроника. - 2009. - № 1. - С. 8-12.

[2] Лебедев, А.А. Вечнозеленый полупроводник [Текст] / А.А. Лебедев // Химия и жизнь. – 2006. – № 4. - C. 14-19.

Международный издательский дом научной периодики "Спейс

[3] Лучинин, В.В. Отечественный полупроводниковый карбид кремния: шаг к паритету [Текст] / В.В. Лучинин, Ю.Н. Таиров // Современная электроника. - 2009. - № 7. - C. 12-15.

[4] Cheng, L. Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si3N4/Si Substrates for Robust Microelectromechanical Systems Applications [Text] / L. Cheng [et al.] // Journal of Electronic Materials. - 2002. - Vol. 31. - No. 5. - P. 361-365.

[5] Chen, Y. Heteroepitaxial growth of 3C-SiC using HMDS by atmospheric CVD [Text] / Y. Chen // J. Mater. Sci. and Eng. - 1999. - Vol. 61-62. - P. 579-582.

[6] Hatanaka, Y. Experiments and analyses of SiC thin film deposition from organo-silicon by a remote plasma method [Text] / Y. Hatanaka // Thin Solid Films. - 2000. - No. 2. - P. 287-291.

[7] Ellison, A. Epitaxial growth of SiC in a chimney CVD reactor [Text] / A. Ellison // J. Cryst. Growth. -2002. - No. 1-3. - P. 225-238.

[8] Luo, M.C. Epitaxial growth and characterization of SiC on C-plane sapphire substrates by ammonia nitridation [Text] / M.C. Luo // J. Cryst. Growth. - 2003. – No. 1–2. – P. 1–8.

5 5

2018

195

Ð

[9] Attenberger, W. Structural and morphological investigations of the initial stages in solid source molecular beam epitaxy of SiC on (111)Si [Text] / W. Attenberger [et al.] // J. Materials Science and Engineering: B. -1999. - Vol. 61-62. - P. 544-548.

[10] Shimizu, H. Hetero-Epitaxial Growth of 3C-SiC on Carbonized Silicon Substrates [Text] / H. Shimizu, K. Hisada // Materials Science Forum. - 2003. - Vol. 433-436. - P. 229-232.

[11] Кукушкин, С.А. Синтез эпитаксиальных пленок карбида кремния методом замещения атомов в кристаллической решетке кремния [Текст] / С.А. Кукушкин, А.В. Осипов, Н.А. Феоктистов // Физика твердого тела. - 2014. - Т. 56. - В. 8. - С. 1457-1485.

[12] Ferro, G. 3C-SiC Heteroepitaxial Growth on Silicon: The Quest for Holy Grail [Text] / G. Ferro // Critical Reviews in Solid State and Materials Sciences. -2015. - No. 40. - P. 56-76.

[13] Bittencourt, C. Reaction of Si(100) with Silane-Methane Low-Power Plasma; SiC Buffer layer formation [Text] / C. Bittencourt // Journal of Applied Physics. -1999. - Vol. 86. - P. 4643-4648.

[14] Иевлев, В.М. Состав и структура силицидов образующихся при импульсной фотонной обработке пленок титана на монокристаллическом к аморфном кремнии [Текст] / В.М. Иевлев [и др.] // ФХОМ. -1997. – № 4. – C. 62–67.

periodicals "Space'

International Publishing House for scientific

[15] Иевлев, В.М. Твердофазный синтез силицидов при импульсной фотонной обработке гетеросистем Si-Me (Me: Pt, Pd, Ni, Mo, Ti) [Текст] / В.М. Иевлев, С.Б. Кущев, В.Н. Санин // ФХОМ. - 2002. -№ 1. - C. 27-31.

[16] Иевлев, В.М. Синтез силицидов иридия при импульсной фотонной обработке пленок металла на кремнии [Текст] / В.М. Иевлев [и др.] // Вестник ВГТУ, сер. Материаловедение. - 2002. - Вып. 1.11. -C. 87-93.

[17] Борисенко В.Е. Твердофазные процессы в полупроводниках при импульсном нагреве [Текст] / В.Е. Борисенко // Минск: Наука и техника. - 1992. - 247 с.

[18] Иевлев, В.М. Синтез наноструктурированных пленок SiC при импульсной фотонной обработке Si в углеродсодержащей среде [Текст] / В.М. Иевлев [и др.] // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. - 2009. - № 10. - C. 48-53.

[19] Кущев, С.Б. Синтез пленок SiC на Si при импульсной фотонной обработке и быстром термическом отжиге в углеродсодержащей среде [Текст] / С.Б. Кущев, С.А. Солдатенко // Международный научный журнал «Альтернативная энергетика и экология» (ISJAEE). - 2011. - № 7. - С. 18-22.

[20] Powder Diffraction File. Alphabetical Index Inorganic Compounds. Pensilvania: ICPDS, 1997.

[21] Bockstedte, M. Ab initio study of the migration of intrinsic defects in 3C-SiC [Text] / M. Bockstedte, A. Mattausch, O. Pankratov // Physical Review. - 2003. -B 68. - P. 205201-1-205201-17.

[22] Van Dijen, F. K. The Chemistry of the Carbothermal Synthesis of /3-SIC: Reaction Mechanism, Reaction Rate and Grain Growth [Text] / F.K. Van Dijen, R. Metselaar // Journal of the European Ceramic Society. - 1991. - No. 7. - P. 177-184.

[23] Pelleg, J. Springer International Publishing AG / J. Pelleg. – 2017. – 443 p.

[24] Синельников, Б.М. Модель электропроводности аморфных пленок карбида кремния с позиции фрактально-кластерной модели [Текст] / Б.М. Синельников [и др.] // Вестник Северо-Кавказского технического университета. - 2007. - № 1 (10). - С. 16-19.

[25] Pantea, C. Kinetics of SiC formation during high P T reaction between diamond and silicon [Text] / C. Pantea [et al.] // Diamond & Related Materials. - 2005. – No. 14. – P. 1611–1615.

References

[1] O'Neill M. Silicon carbide-based devices increase the efficiency of solar energy conversion systems (Ustroistva na osnove karbida kremniya povyshayut KPD sistem reobrazovaniya solnechnoy energii). Power electronics, 2009;(1):8-12 (in Russ.).

[2] Lebedev A.A. Evergreen semiconductor (Vechnozelenyi poluprovodnik). Chemistry and Life, 2006;(4):14-19 (in Russ.).

[3] Luchinin V.V., Tairov Yu.N. Domestic semiconductor silicon carbide: a step to parity (Otechestvennyi poluprovodnikovyi karbid kremniya: shag k paritetu). Modern electronics, 2009;(7):12-15 (in Russ.).

[4] Cheng L., Pan M., Scofield J., J.Steckl A. Growth and Doping of SiC-Thin Films on Low-Stress, Amor-Si **Substrates** Robust phous Si₃N₄ for Microelectromechanical Systems Applications. Journal of Electronic Materials, 2002;31(5):361-365.

[5] Chen Y. Heteroepitaxial growth of 3C-SiC using HMDS by atmospheric CVD. J. Mater. Sci. and Eng., 1999;61-62:579-582.

[6] Hatanaka Y. Experiments and analyses of SiC thin film deposition from organo-silicon by a remote plasma method. Thin Solid Films, 2000;(2):287-291.

2018

ISJA

[7] Ellison A. Epitaxial growth of SiC in a chimney CVD reactor. J. Cryst. Growth, 2002;(1-3):225-238.

[8] Luo M. C. Epitaxial growth and characterization of SiC on C-plane sapphire substrates by ammonia nitridation. J. Cryst. Growth, 2003;(1-2):1-8.

[9] Attenberger W., Lindner J., Cimalla V., Pezoldt J. Structural and morphological studies of the initial stages in a solid-state molecular beam epitaxy of SiC on (111) Si. J. Materials Science and Engineering: B, 1999:61-62:544-548.

[10] Shimizu H., Hisada K. Hetero-Epitaxial Growth of 3C-SiC on Carbonized Silicon Substrates. Materials Science Forum, 2003;433-436:229-232.

[11] Kukushkin S.A., Osipov A.V., Feoktistov N.A. Synthesis of epitaxial silicon carbide films by the substitution of atoms in the silicon lattice (Sintez epitaksial'nykh plenok karbida kremniya metodom zameshcheniya atomov v kristallicheskoy reshetke kremniya). **Physics** of the solid body, 2014;56(8):1457-1485 (in Russ.).

[12] Ferro G. 3C-SiC Heteroepitaxial Growth on Silicon: The Quest for Holy Grail. Critical Reviews in Solid State and Materials Sciences, 2015;(40):56-76.

[13] Bittencourt C. Reaction of Si (100) with Silane-Methane Low-Power Plasma; SiC Buffer layer formation. Journal of Applied Physics, 1999;86:4643-4648.

[14] Ievlev V.M., Rubtsov V.I., Kushchev S.B., Sarykalin V.N., Soldatenko S.A. Composition and structure of silicides formed by pulsed photonic processing of titanium films on a single crystal to amorphous silicon (Sostav i struktura silitsidov obrazuyushchikhsya pri impul'snoi fotonnoi obrabotke plenok titana na monokristallicheskom i amorfnom kremnii). FHOM, 1997;(4):62-67 (in Russ.).

[15] Ievlev V.M., Kushchev S.B., Sanin V.N. Solidphase synthesis of silicides during pulsed photonic processing of Si-Me heterostructures (Me: Pt, Pd, Ni, Mo, Ti) (Tverdofaznyi sintez silitsidov pri impul'snoi fotonnoi obrabotke geterosistem Si-Me (Me: Pt, Pd, N i, Mo, Ti)). FHOM, 2002;(1):27-31 (in Russ.).

[16] Ievlev V.M., Kushchev S.B., Rudneva I.G., Serbin O.V., Soldatenko S.A. Synthesis of iridium silicides for pulsed photonic processing of metal films on silicon (Sintez silitsidov iridiya pri impul'snoi fotonnoi obrabotke plenok metalla na kremnii). Bulletin of VSTU: Material Science, 2002;(1.11):87-93 (in Russ.).

[17] Borisenko V. E. Solid-State Processes in Semiconductors with Pulsed Heating (Tverdofaznye protsessy v poluprovodnikakh pri impul'snom nagreve). Minsk: Nauka i Tekhnika Publ., 1992; 247 p. (in Russ.)

[18] Ievlev V.M., Il'in V.S., Kushchev S.B., Soldatenko S.A., Lukin A.N., Belonogov Ye.K. Synthesis of nanostructured SiC films during pulsed photon processing of Si in a carbon-containing medium (Sintez nanostrukturirovannykh plenok SiC pri impul'snoi fotonnoi obrabotke Si v uglerodsoderzhashchei srede). Surface. X-ray, synchrotron and neutron studies, 2009;(10):48-53 (in Russ.).

[19] Kushchev S.B., Soldatenko S.A. Synthesis of SiC films on Si under pulsed photon processing and rapid thermal annealing in a carbon-containing medium (Sintez plenok SiC na Si pri impul'snoi fotonnoi obrabotke i bystrom termicheskom otzhige uglerodsoderzhashchei srede). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2011;(7):18-22 (in Russ.).

[20] Plowder Diffraction File. Alphabetical Index Inorganic. Pensilvania: ICPDS, 1997.

[21] Bockstedte M., Mattausch A., Pankratov O. Ab initio study of the migration of intrinsic defects in 3C-SiC. Physical Review, 2003;(B 68):205201-1-205201-17.

[22] Van Dijen F.K., Metselaar R. The Chemistry of the Carbothermal Synthesis of / 3-SIC: Reaction Mechanism, Reaction Rate and Grain Growth. Journal of the European Ceramic Society, 1991;(7):177-184.

[23] Pelleg J. Springer International Publishing AG. 2017; 443 p.

[24] Sinelnikov B.M. Tarala V.A., Kasharina L.A., Pichugin R.V., Mitchenko I.S. Model of electrical conductivity of amorphous silicon carbide films from the of a fractal-cluster model viewpoint (Model' elektroprovodnosti amorfnykh plenok karbida kremniya s pozitsii fraktal'no-klasternoi modeli). Bulletin of the North-Caucasian **Technical** University, 2007;1(10):16-19 (in Russ.).

[25] Pantea C., Voronin G.A., Zerda T.W., Zhang J., Wang L., Wang Y., Uchida T., Zhao Y. Kinetics of SiC formation during high P T reaction between diamond Diamond Related and silicon. ĸ Materials. 2005;(14):1611-1615.

Транслитерация по BSI

TATA

ISJA

Ð

International Scientific Journal for Alternative Energy and Ecology © Scientific Technical Centre «TATA», 2000-2018 № 22-24