https://doi.org/10.29296/25419218-2020-01-01

© Коллектив авторов, 2020 УДК 615,2/.3.011.17.07

Ложноположительные результаты определения бактериальных эндотоксинов в лекарственных средствах: применение блокатора β-глюканов

О.В. Шаповалова, Н.П. Неугодова, Г.А. Сапожникова

Научный центр экспертизы средств медицинского применения МЗ РФ, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2

СВЕДЕНИЯ ОБ АВТОРАХ

Шаповалова Ольга Владимировна – ведущий эксперт лаборатории фармакологии, Испытательный центр экспертизы качества лекарственных средств Научного центра экспертизы средств медицинского применения (НЦЭСМП) МЗ РФ. Тел.: +7 (495) 625-43-48, доб. 64-81. E-mail: shapovalova@expmed.ru. *ORCID*: 0000-0003-0305-7769

Неугодова Наталия Петровна – начальник лаборатории фармакологии, Испытательный центр экспертизы качества лекарственных средств НЦЭСМП МЗ РФ, кандидат биологических наук. Тел.: +7-(495) 625-43-48, доб. 64-85. E-mail: neugodova@ expmed.ru. *ORCID:* 0000-0001-8615-952X

Сапожникова Галина Алексеевна – ведущий эксперт лаборатории фармакологии, Испытательный центр экспертизы качества лекарственных средств НЦЭСМП МЗ РФ.Тел.: +7 (495) 625-43-48, доб. 64-85. E-mail: sapozhnikova@expmed.ru. *ORCID: 0000-0003-0379-5980*

РЕЗЮМЕ

Введение. При оценке качества лекарственных средств (ЛС) по показателю «Бактериальные эндотоксины» в ферментативную реакцию с лизатом амебоцитов наряду с бактериальными эндотоксинами вступают и β-глюканы. Это приводит к получению ложноположительных результатов в ЛАЛ-тесте (Limulus amebocyte lysate), что создает серьезную проблему для определения пирогенных примесей.

Выделяют 2 основных источника происхождения β-глюканов в лекарственных препаратах: наличие вспомогательных веществ в составе препарата (например, кармеллоза натрия, кроскарбоксиметилцеллюлоза натрия) и технологические примеси действующего вещества на стадии получения ЛС.

Цель исследования – изучение потенцирующего (усиливающего) влияния β-глюканов в испытаниях на наличие бактериальных эндотоксинов, поиск и выбор способа его устранения.

Материал и методы. Объекты исследования – лекарственные препараты «Бетаметазон, суспензия для инъекций 7 мг/мл» и «Инозин, раствор для внутривенного введения 20 мг/мл». Для проведения ЛАЛ-теста в модификациях гель-тромб и хромогенный кинетический использовали эндотоксин-специфичный буфер (блокатор β-глюканов).

Результаты. Рассмотрены основные причины возникновения «ложных» результатов: потенцирование (усиление) реакции ЛАЛ-реактива с бактериальными эндотоксинами из-за наличия β-глюканов в препаратах. Разработаны методики по устранению факторов, мешающих проведению ЛАЛ-теста, во избежание получения ложноположительных результатов.

Заключение. Разработаны методические подходы к предотвращению влияния потенцирующего (усиливающего) мешающего фактора на результаты ЛАЛ-теста.

Ключевые слова: бактериальные эндотоксины, мешающие факторы, ложноположительные результаты, β-глюканы.

Для цитирования: Шаповалова О.В., Неугодова Н.П., Сапожникова Г.А. Ложноположительные результаты определения бактериальных эндотоксинов в лекарственных средствах: применение блокатора β -глюканов. Фармация, 2020; 69 (1): 5–9. https://doi.org/10/29296/25419218-2020-01-01

FALSE-POSITIVE RESULTS OF THE DETERMINATION OF BACTERIAL ENDOTOXINS IN DRUGS: THE USE OF A β-GLUCAN BLOCKER O.V. Shapovalova, N.P. Neugodova, G.A. Sapozhnikova

Research Center for Examination of Medical Products, Ministry of Health of the Russian Federation; 8, Petrovsky Boulevard, Build. 2, Moscow 127051, Russian Federation

INFORMATION ABOUT THE AUTHORS

Shapovalova Olga Vladimirovna – leading expert of Laboratory of Pharmacology, Scientific Centre for Expert Evaluation of Medicinal Products. Tel.: +7 (495) 625-43-48, доб. 64-81. E-mail: shapovalova@expmed.ru. ORCID: 0000-0003-0305-7769

Neugodova Natalia Petrovna – head of Laboratory of Pharmacology, Scientific Centre for Expert Evaluation of Medicinal Products. PhD in Biological Sciences. Tel.: +7 (495) 625-43-48, доб. 64-85. E-mail: neugodova@expmed.ru. ORCID: 0000-0001-8615-952X

Sapozhnikova Galina Alekseevna – leading expert of Laboratory of Pharmacology, Scientific Centre for Expert Evaluation of Medicinal Products.Tel.: +7 (495) 625-43-48, доб. 64-85. E-mail: sapozhnikova@expmed.ru. ORCID: 0000-0003-0379-5980

SUMMARY

Introduction. Assessment of the quality of drugs in terms of the indicator «Bacterial Endotoxins» has shown that along with the latter, β -glucans undergo enzymatic reaction with amebocyte lysate. This leads to false positive results in the (Limulus amebocyte lysate) LAL test, which poses a serious problem in the determination of pyrogenic impurities.

There are 2 main sources of β -glucans in drugs: 1) excipients in the composition of a drug (for example, carmellose sodium, cross-linked sodium carboxymethylcellulose) and 2) technological impurities of the active ingredient at the drug production stage.

Objective: to investigate the potentiating (reinforcing) effect of β -glucans in tests for bacterial endotoxins, to search and select a method for its elimination.

Material and methods. The investigation objects were agents: Betamethasone, injectable suspension (7 mg/ml), and Inosine, injectable solution (20 mg/ml). Endotoxin-specific buffer (β -glucan blocker) was used to carry out the LAL test in gel-clot and chromogenic kinetic modifications.

Results. The investigators considered the main causes of false results: potentiation (reinforcement) of a reaction of the LAL reagent with bacterial endotoxins due to the presence of β -glucans in the agents. Procedures were developed to eliminate the factors interfering with the LAL test in order to avoid false-positive results.

Conclusion. Methodological approaches were elaborated to prevent the influence of a potentiating (reinforcing) interfering factor on the results of the LAL test

Key words: bacterial endotoxins, interfering factors, false positive results, β -glucans.

For citation: Shapovalova O.V., Neugodova N.P., Sapozhnikova G.A. False-positive results of the determination of bacterial endotoxins in drugs: the use of a β -glucan blocker. Farmatsiya (Pharmacy), 2020; 69 (1): 5–9. https://doi.org/10/29296/25419218-2020-01-01

Введение

 Γ люкан представляет собой молекулу полисахарида из мономеров D-глюкозы (в отличие от гликанов, где мономером может являться не только D-глюкоза), связанных гликозидными связями, и рассматривается как патоген-ассоциированные молекулярные структуры, которые могут быть получены многими прокариотическими и эукариотическими организмами [1]. В структуре этой цепочки глюкоза находится в 2 положениях – «1» и «3» (1 \rightarrow 3)- β -D-глюканы (β -глюканы).

Главным образом, β-глюканы содержатся в дрожжах и других фунгальных организмах. Известно более 50 β-глюканов, из которых наиболее изучены ламинаран (бурые водоросли), курдлан (бактерии), зимозан (дрожжи), а также такие β-глюканы, как лентинан, склероглюкан, крестин, шизофиллан, пахиман, пахимаран, лехинан, изолехинан, пустулан, транслам, полученные из разных источников сырья.

Многие свойства β-глюканов и бактериальных эндотоксинов (БЭ) схожи, поскольку оба соединения термостабильны. Глюканы, как и БЭ, приводят в ЛАЛ-тесте к положительной реакции (in vitro), но не вызывают пирогенную лихорадку у кроликов (in vivo) даже в дозах, в 2000 раз превышающих пороговые уровни БЭ. Поэтому глюканы не относятся к пирогенам [1, 2]. Но β-глюканы

вступают в ферментативную реакцию с лизатом амебоцитов наряду с БЭ, что приводит к получению ложноположительных результатов в ЛАЛ-тесте и создает серьезную проблему при оценке качества ЛС по показателю «Бактериальные эндотоксины».

Защитный механизм амебоцитов мечехвоста эффективен не только против грамотрицательных бактерий, но и против грибов. Следовательно, подобная реакция является ответом на грибковую инфекцию, которая включает каскад реакций свертывающей системы. β-глюканы запускают фактор фермента протеазы G, тогда как БЭ активируют фактор фермента C. Однако в обоих случаях результатом является образование белка коагулина [3, 4].

Выделяют 2 основных источника происхождения β-глюканов в лекарственных препаратах: наличие вспомогательных веществ в составе препарата, например, кармеллозы натрия, кроскарбоксиметилцеллюлозы натрия (далее Na-KMЦ); технологические примеси на стадии получения ЛС [5]. Na-KMЦ используется в инъекционных препаратах, как правило, в качестве пролонгатора действия лекарственных веществ. Данное вспомогательное вещество может присутствовать в лиофилизате или в растворителе к нему [6].

Во втором случае, примеси глюканов образуются в ЛС в процессе его изготовления. Так, на-

пример, в лекарственном препарате инозина потенциальными источниками глюканов могут быть исходные вещества, используемые для его получения. Ведь процесс производства инозина включает стадии выращивания штамма Bacillus subtilis в культуральной жидкости на основе глюкозы, содержащей дрожжевой экстракт в качестве источника ростовых факторов и дополнительного источника азота (например, дрожжи).

Другая причина возникновения примесей β-глюканов в ЛС на стадии их производства – это фильтрация через мембраны из ацетата целлюлозы [7]. Для эффективного процесса очистки и удаления загрязнений используется целлюлоза в качестве исходной фильтрующей матрицы, которую пропитывают фильтрующими и другими добавками. Именно целлюлоза может быть источником β-глюканов [8].

Цель настоящего исследования – изучение потенцирующего (усиливающего) влияния β-глюканов в испытаниях на наличие БЭ, поиск и выбор способа его устранения.

Материал и методы

В качестве объектов исследования были выбраны лекарственные препараты, потенцирующие реакцию ЛАЛ-реактива с БЭ: «Бетаметазон, суспензия для инъекций 7 мг/мл» (далее – Бетаметазон), в составе которого есть вспомогательное вещество – Nа-КМЦ, и «Инозин, раствор для внутривенного введения 20 мг/мл» (далее – Инозин) с технологическими примесями β-глюканов.

Были использованы фармакопейные методы исследования: ЛАЛ-тест в модификациях гельтромб тест (методы A, B) и хромогенный кинетический тест (Метод D) [9]. Применялись сле-

дующие реактивы: наборы ЛАЛ-реактивов с контрольным стандартом эндотоксина (КСЭ) с чувствительностью 0,03 ЕЭ/мл (ЕЭ – единицы эндотоксина) для методов А, В и для метода D с пределом обнаружения от 0,005 ЕЭ/мл; вода для ЛАЛ-теста, эндотоксин – специфичный буфер (блокатор β-глюканов).

В исследовании использовали суховоздушный нагревательный прибор для инкубации при темпера-

туре 37°C, фотоколориметр для микропланшетов со специальным программным обеспечением, автоматические дозаторы с переменным и фиксированным объемом 10 мкл, 20-200 мкл и 100-1000 мкл и наконечники к ним, вихревую мешалку, рН-метр, секундомер, штативы для пробирок, микропланшеты 96-луночные, круглодонные пробирки с диаметром 13 и 10 мм. Все реактивы и материалы соответствовали требованиям ОФС 1.2.4.0006.15 «Бактериальные эндотоксины» Государственной фармакопеи XIII издания (ГФ РФ XIII) [9], что подтверждалось сертификатами анализа. Определение БЭ и исследование на наличие мешающих факторов выполняли с учетом характеристик, представленных в табл.1.

Результаты и обсуждение

В испытаниях с помощью метода A (качественный анализ) образцы Бетаметазона выдержали испытания в максимально допустимом разведении (МДР) 1:5600. В растворах Инозина, разведенных в МДР, наблюдался плотный гель, что свидетельствовало о положительной реакции или за счет наличия БЭ и/или β-глюканов.

Исследование мешающих факторов продолжили с помощью метода В, для чего готовили ряды двукратных разведений в воде для ЛАЛ-теста и оценивали результат после инкубации испытуемых растворов с ЛАЛ-реактивом. В 1-м случае ЛАЛ-реактив разводили водой для ЛАЛ-теста, во 2-м – эндотоксин-специфичным буфером. Результаты свидетельствуют о наличии мешающих факторов в растворе испытуемого ЛС в разведении, не превышающем значение МДР (раствор А) [10] испытуемых препаратов и возможности их устранения (табл. 2, 3).

Таблица 1

Характеристики испытуемых образцов для анализа с помощью ЛАЛ-теста

Table 1

Characteristics of test samples for analysis using the LAL test

Наиме- нование препарата	рН основного раствора	Норма предельного содержания БЭ	Максимально допустимое разведение		
			методы A, B (λ*=0,03)	метод D (λ*=0,005)	
Бетаметазон	7,3	175 ЕЭ/мл	5600	35000	
Инозин	7,1	5 ЕЭ/мл	160	1000	

Примечание. λ^* – чувствительность используемого ЛАЛ-реактива. **Note.** λ^* – sensitivity of the LAL reagent used.

Таблица 2

Результаты количественного определения препарата «Бетаметазон» методом В

Table 2
Results of quantitative determination of Betamethasone by Assay B

Наиме-	Кратность разведений испытуемого раствора препарата					
нование препарата	1:2	1:4	1:8	•••	1:700	1:1400
Бетаметазон (раствор А)	Результаты испытаний с ЛАЛ-реактивом, разведенным в воде для ЛАЛ-теста					
	+	+	+	+	+	-
	Результаты испытаний с ЛАЛ-реактивом, разведенным в эндотоксин-специфичном буфере					
	-	-	-	-	-	-

Примечание. Здесь и в табл. 3 обозначение конечного результата гель-тромб теста: плюс (+) – наличие геля; минус (–) – отсутствие геля.

Note. Here and in Table 3, the final result of the gel-clot test is designated as follows: plus (+) is the presence of the gel; minus (–) is the absence of the gel.

Таблица 3

Результаты количественного определения препарата «Инозин» методом В

Table 3

Results of quantitative determination of Inosine by Assay B

Наиме- нование препарата	Кратность разведений испытуемого раствора препарата					
	1:2	1:4	1:8		1:160	1:320
Инозин (раствор А)	Результаты испытаний с ЛАЛ-реактивом, разведенным в воде для ЛАЛ-теста					
	+	+	+	+	+	+
	Результаты испытаний с ЛАЛ-реактивом, разведенным в эндотоксин-специфичном буфере					
	-	-	-	-	-	-

Таблица 4

Результаты испытаний препаратов «Бетаметазон» и «Инозин» методом D

Table 4

Betamethasone and Inosine test results by Assay D

Препарат, разведение	Используемый реактив	Раствор А (содержание БЭ)	Раствор В (50-200%)
Бетаметазон, разведение 1:700	ЛАЛ-реактив разведен в воде для ЛАЛ-теста	43,96 ЕЭ/мл	214%
	ЛАЛ-реактив разведен в эндотоксин- специфичном буфере	Менее 3,5 ЕЭ/мл	65%
Инозин, разведение 1:160	ЛАЛ-реактив разведен в воде для ЛАЛ-теста	9,22 ЕЭ/мл	261%
	ЛАЛ-реактив разведен в эндотоксин- специфичном буфере	Менее 0,5 ЕЭ/мл	67%

В испытаниях с ЛАЛ-реактивом, разведенным водой для ЛАЛ-теста, установлено, что наличие мешающих факторов в образцах Бетаметазона можно устранить с помощью разведения водой для ЛАЛ-теста, начиная с кратности 1:1400. Результаты испытаний образцов Инозина оценивались как ложноположительные, так как содержание БЭ составило более 10 ЕЭ/мл при норме 5 ЕЭ/мл.

Потенцирование (усиление) реакции гелеобразования не наблюдалось в образцах препаратов при использовании ЛАЛ-реактива, разведенного эндотоксинспецифичным буфером, в разведении 1:2 и выше до значения МДР. В пробирках с раствором испытуемого ЛС (раствор А) гель не образовывался. Результаты испытания подтверждают, что ЛАЛ-реактив, разведенный с помощью специфичного буфера, не восприимчив к действию глюканов, что позволяет достоверно оценить качество образцов на наличие БЭ.

В опытах с использованием хромогенного кинетического метода получены идентичные результаты. В испытаниях без эндотоксинспецифичного буфера (табл. 4) значения концентраций БЭ в растворах положительного контроля образцов (раствор В) Бетаметазона и Инозина составили 214 и 261% от установленной концентрации БЭ в растворе с учетом добавленного КСЭ. Превышение допустимого диапазона значений для раствора В (50-200%) свидетельствует о потенцировании (усилении) ферментативной реакции.

Заключение

Для определения содержания БЭ в ЛС, способных потенцировать (усиливать) ферментативную реакцию с ЛАЛ-реактивом, следует использовать буферный раствор, который блокирует реакционную систему фактора G. Кроме того, можно применять ЛАЛ-реактив, у которого удален фактор G, реагирующий с глюканами [9]. Использование данных специфичных реактивов в ЛАЛ-тесте позволяет исключить ложноположительные результаты. Таким образом можно избежать завышенных результатов, искажающих представление о качестве, вплоть до признания продукции недоброкачественной по показателю «Бактериальные эндотоксины».

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов

Conflict of interest

The authors declare no conflict of interest

Литература/References

- 1. Bohn J.A., BeMille J.N. (1–>3)- β -d-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydrate Polymers, 1995; 28(1): 3–14.
- 2. FinkelmanM.(1,3)- β -D-Glucan: Biological Properties and Implications for LAL Testing LAL UPDATE, 2005; 22 (2): 1 6.
- **3.** Sandle T. Pharmaceutical product impurities: considering beta glucans. [Electronic resource] Access mode: http://www.americanpharmaceuticalreview.com/Featured-Articles/152953-Pharmaceutical-Product-Impurities-Considering-Beta-Glucans/

- **4.** Williams K. Endotoxins Pyrogens, LAL Testing and Depyrogenation third Edition (Drugs and the Pharmaceutical Sciences), 2007: 198.
- **5**. Barton C., Vigor K., Scott R., Jones P.,Lentfer H., Bax H., Josephs D., Karagiannis S., Spicer J.Beta-glucan contamination of pharmaceutical products: How much should we accept? [Electronic resource] Access mode:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069311/#
- 6. Жилякова Е.Т., Попов Н.Н., Новикова М.Ю., Новиков О.О., Халикова М.А., Казакова В.С. Изучение физико-химических и технологических характеристик натрий карбоксиметилцеллюлозы с целью создания пролонгированных лекарственных форм с жидкой дисперсионной средой. [Электронный ресурс]. Режим доступа: http://dspace.bsu.edu.ru/bit-stream/123456789/12393/1/Zhilyakova_Izuchen_Fiziko.pdf. / [Zhilyakova E.T., Popov N.N., Novikova M.Yu., Novikov O.O., Khalikova M.A., Kazakova V.S. Study of physico-chemical and technological characteristics of sodium carboxymethylcellulose in order to create prolonged dosage forms with liquid dispersion medium. [Electronic resource] Access mode: http://dspace.bsu.edu.ru/bitstream/123456789/12393/1/Zhilyakova_Izuchen_Fiziko.pdf. / (in Russian).]
- 7. Белясова Н.А. Микробиология. Минск: Высшая школа, 2012: 246. [Belyasova N. Microbiology. Minsk: Enter. SHK., 2012: 246 (in Russian)].
- **8.** Dobrovolskaia M. A., Neil S. Handbook of Immunological Properties of Engineered Nanomaterials. Vol. 1, 2013: 86 87.
- **9.** Государственная фармакопея Российской Федерации XIII изд., 2015: 956 973. [State Pharmacopoeia of the Russian Federation XIII ed., 2015: 956–73 (in Russian)].

Поступила 19 января 2019 г. **Received** 19 January 2019

Принята к публикации 21 июня 2019 г. **Accepted** 21 June 2019