УДК 544.2;544.032

Влияние условий получения иерархических цеолитов SnAl-BEA на их кислотность и каталитическую активность в тандем-процессе получения 4-метоксибензил-1-метилпропилового эфира

М. Н. Курмач¹, Н. А. Попович¹, П. И. Кириенко¹, П. С. Яремов¹, О. Ю. Хижун², А. В. Андреев³, А. В. Швец¹

¹ Институт физической химии им. Л. В. Писаржевского НАН Украины просп. Науки, 31, Киев 03028, Украина. E-mail: mazinator3710@ukr.net

² Институт проблем материаловедения им. И. Н. Францевича НАН Украины ул. Академика Кржижановского, 3, Киев 03680, Украина

³ Киевский национальный университет имени Тараса Шевченко ул. Васильковская, 90, Киев 03022, Украина

Получены иерархические SnAl-силикатные цеолиты структурного типа BEA, обладающие кислотными центрами Льюиса (до 130 мкмоль/г) и Бренстеда (до 330 мкмоль/г), концентрация которых по данным электронной спектроскопии диффузного отражения и рентгенофотоэлектронной спектроскопии возрастает с увеличением заряда гидрофильной части используемых темплатов, а также содержания Al^{3+} и Sn⁴⁺. В каталитическом тандем-процессе в присутствии полученных цеолитов достигается селективность по 4-метоксибензил-1-метилпропиловому эфиру 89—99 % и конверсия анисового альдегида 36 %.

Ключевые слова: иерархические цеолиты, SnAl-BEA, структуронаправляющий агент, кислотные центры, реакция Меервейна — Понндорфа — Верлея.

Оловосиликатные цеолиты проявляют высокую каталитическую активность в ряде процессов с участием карбонильных соединений, к примеру в окислении кетонов по Байеру — Виллигеру [1—3], восстановлении альдегидов и кетонов по Меервейну — Понндорфу — Верлею (МПВ) [1, 4] и др. [5]. Иерархические цеолитные катализаторы обладают как большой внешней поверхностью (подобно ММС), так и наличием кристаллической цеолитной структуры [6], что обеспечивает более высокую производительность в процессах превращения объемных субстратов в сравнении с микропористыми цеолитами и ММС [1, 3].

Одним из направлений модифицирования оловосиликатных цеолитов и ММС является создание материалов, обладающих высокой концентрацией кислотных центров Бренстеда (БКЦ), путем увеличения содержания терминальных Sn-OH-групп [7] (слабых кислотных центров Бренстеда), а также генерирование мостиковых ОН-групп при введении в кристаллическую решетку ионов трехвалентных элементов, в первую очередь алюминия [7, 8]. Подобные материалы могут быть использованы как катализаторы в ряде многостадийных процессов (превращение глюкозы в 5-гидроксиметилфурфурол [9] или получение несимметричных эфиров из альдегидов [10, 11]), для осуществления которых необходимо наличие на поверхности катализатора бифункциональных центров: кислотно-основных и окислительно-восстановительных.

Целью настоящей работы является установление влияния строения темплата и состава реакционной среды (PC) для синтеза иерархических цеолитов SnAl-BEA на их адсорбционные и кислотные характеристики, а также каталитическую активность в процессе двухстадийного получения 4-метокси-

Образец	СНА	Si/Sn		Si/Al		c	C	V	V	V
		PC	По данным ЭДА	PC	По данным ЭДА	3 _{БЭТ} , 2 · $^{-1}$	$M^2 \cdot \Gamma^{-1}$	$^{\nu_{\Sigma}},$ cm ³ ·r ⁻¹	^{и мезо,} см ³ ·г ⁻¹	^{<i>v</i>} _{микро} , см ³ ·г ⁻¹
Sn-MTW6	3	100	112		_	200	70	0,19	0,11	0,08
SnAl-BEA2-75/20	1	75	60	20	8	370	240	1,06	0,99	0,07
SnAl-BEA4-120/20	2	120	63	20	19	535	231	0,75	0,63	0,12
SnAl-BEA4-75/23	2	75	55	23	20	600	220	0,86	0,69	0,17
SnAl-BEA4-75/20	2	75	58	20	18	650	265	0,97	0,82	0,17
SnAl-BEA4-75/17	2	75	54	17	14	665	219	1,31	1,14	0,17
SnAl-BEA4-55/20	2	55	43	23	16	615	230	0,80	0,64	0,16
SnAl-BEA6-75/20	3	75	61	20	17	600	200	1,08	0,92	0,16

Таблица 1

Состав РС и результаты низкотемпературной адсорбции азота синтезированных образцов SnAl-BEA

бензил-1-метилпропилового эфира путем восстановления 4-метоксибензальдегида (анисового альдегида) 2-бутанолом по реакции МПВ с последующим превращением полученного спирта в несимметричный эфир.

Синтез иерархических цеолитов SnAl-BEA проводили, используя модифицированную методику [12]. При этом использовали три структуронаправляющих агента (СНА) — поличетвертичные аммонийные соли (Gemini-ПАВ), синтезированных по методике [13, 14] (схема 1). В водный раствор, содержащий СНА и гидроксид натрия, последовательно добавляли источники алюминия (Al₂(SO₄)₃·18H₂O в случае СНА-1 или изопропоксид алюминия в случае СНА-2 $SnCl_4 \cdot 5H_2O$, тетраэтоксиортосилан И CHA-3), (ТЭОС) и этиловый спирт. Состав РС описывался мольным соотношением 23SiO₂ : (0,2-0,4)SnO₂ : $(0-1,3)Al_2O_3$: $(6,1-6,6)Na_2O$: 1,2CHA: $1706H_2O$: 192EtOH. РС выдерживали при перемешивании 16 ч при 65 °C и 20 сут при 150 °C (последний этап проводили в закрытых стальных автоклавах, оборудованных тефлоновыми стаканами). Осадок отфильтровывали, промывали дважды водой и сушили при 90 °С. Удаление темплатов из цеолитов проводили при температуре 600 °C в течение 5 ч (скорость нагревания 5 °С/мин).

Для получения H-формы цеолитов детемплатированные цеолиты обрабатывали 1 М раствором хлорида аммония при 40 °C в течение 24 ч, отмывали и прокаливали при 600 °C (2 ч) непосредственно перед исследованиями их кислотности и каталитической активности. Указанная температура активации выбрана с целью повышения степени превращения кислотных центров Бренстеда (образованные из-за введения в структуру Al^{3+}) в кислотные центры Льюиса, активные в первой стадии процесса. Обозначения образцов (SnAl-BEA*x-y/z*, где *x* — количество аммонийных групп в молекуле CHA; *у* и *z* — мольное соотношение Si/Sn и Si/Al в PC соответственно) и результаты химического анализа полученных цеолитов приведены в табл. 1.

Схема 1. Поличетвертичные аммонийные соли (Gemini-ПАВ), использовавшиеся для синтеза иерархических цеолитов SnAl-BEA.

Фазовый состав полученных образцов исследовали методом рентгеновской дифракции с использованием дифрактометра ДРОН-3М с CuK_{α} -излучением в диапазоне углов $2\theta = 3^{\circ}$ —45° и шагом $2\theta = 0.03^{\circ}$. Степень кристалличности оценивали по

Рис. 1. Дифрактограммы (*a*), изотермы адсорбции азота (δ) и распределение мезопор по размерам (*в*) для иерархических цеолитов: *I* — Sn-MTW; *2* — SnAl-BEA2-75/20; *3* — SnAl-BEA4-75/20; *4* — SnAl-BEA6-75/20.

интегральной интенсивности рефлексов при $2\theta = 7.5^{\circ}$ и 22,5°. В качестве эталона приняты интегральные интенсивности указанных рефлексов, характерные для крупнокристаллических Al-BEA и Al-MTW. Адсорбционные характеристики образцов изучали методом низкотемпературной ад(де)сорбции азота («Sorptomatic 1990»). На основании анализа изотерм адсорбции рассчитаны структурно-сорбционные характеристики полученных цеолитов: удельную поверхность определяли по методу БЭТ, удельную внешнюю поверхность и объем микропор — по методу *t*-кривой, объем и диаметр мезопор — по методу Барнетта — Джойнера — Халенды, а объем мезопор — по методу Саито — Фоли. Элементный анализ проводили с использованием энергодисперсионной приставки Link Systems к сканирующему электронному микроскопу «РЭММА-202М». Изучение координационного состояния ионов Sn⁴⁺ в кристаллической решетке SnAl-BEA проводили методами электронной спектроскопии диффузного отражения (ЭСДО), а также рентгенофотоэлектронной спектроскопии (РФЭС). В первом случае использовали спектрометр «Specord M40» («Carl Zeiss», Германия), а во втором — прибор «SPECS», оборудованный полусферическим анализатором PHOIBOS 150 («Surface Nano Analysis Company», Германия). Спектры РФЭС измеряли в камере прибора «UHV-Analysis-System» при остаточном давлении менее 6.10-8 Па с использованием источника рентгеновского MgK_{α} -излучения (E =1253,6 эВ) при постоянном задерживающем потенциале 35 эВ. Кислотные свойства определяли методом ступенчатой десорбции пиридина (Ру) и 2,6-ди-*трет*-бутилпиридина как спектральных зондов с ИК-спектроскопическим контролем («Spec-

[15]. Полученные образцы тестировали в каталитическом процессе восстановления 4-метоксибензальдегида (1) 2-бутанолом в 4-метоксибензиловый спирт (2) по МПВ (стадия I) с последующим превращением последнего в присутствии избытка 2-бутанола в 4-метоксибензил-1-метилпропиловый эфир (3) (стадия II, схема 2): 2-бутанол

trum One», «Perkin Elmer»). Методика расчета

концентрации кислотных центров описана в работе

Схема 2. Схема получения 4-метоксибензил-1-метилпропилового эфира.

Для проведения каталитического эксперимента активированный (600 °C, 2 ч) цеолитный катализатор (50 мг) помещали в реактор с раствором анисового альдегида (1,25 ммоль) в 2-бутаноле (4 г, 43,49 ммоль). Мольное соотношение 2-бутанол/анисовый альдегид составляло ~35, как внутренний стандарт использовали 1,3,5-триметилбензол. Реакционную смесь термостатировали при 95 °C на глицериновой бане при интенсивном перемешивании (150 об/мин). Через 4 ч после начала процесса реагенты и продукты анализировали с исполь-

Рис. 2. ЭСДО в УФ и видимой области (*a*), рентгенофотоэлектронные (Sn3*d*) (*b*) и ИК-спектры адсорбированного пиридина (*b*, 1400—1650 см⁻¹; *c*, 1430—1470 см⁻¹ (после десорбции пиридина при 423 К)) и 2,6-ди-*трет*-бутилпиридина (*d*) на иерархических SnAl-BEA: *I* — SnAl-BEA2-75/20; *2* — SnAl-BEA4-120/20; *3* — SnAl-BEA4-75/20; *4* — SnAl-BEA4-55/20; *5* — SnAl-BEA6-75/20.

зованием газового хроматографа («Кристаллюкс 4000М», «Метахром», РФ), оборудованного пламенно-ионизационным детектором и капиллярной колонкой (HP-FFAP, 50 м×0,32 мм).

На рис. 1, *а* приведены типичные дифрактограммы для иерархических SnAl-силикатных цеолитов BEA и Sn-силикатного MTW. Формирование структуры MTW наблюдается в отсутствие источников Al³⁺ в PC или при незначительной его концентрации (Si/Al > 60). В диапазоне концентраций алюминия в PC Si/Al = 10—60 наблюдается образование единой фазы цеолита структурного типа BEA.

Образование фаз МТW и BEA при использовании указанных темплатов ранее наблюдалось для ZrAl-силикатных систем [12], что обусловлено наличием в используемых темплатах ароматических и пиперидиновых фрагментов [14]. На дифрактограмме SnAl-BEA2-75/20 (рис. 1, а, кривая 2), полученного с использованием СНА-1 с двумя аммонийными группами, наблюдаются слабо выраженные рефлексы при $2\theta = 7,5^{\circ}$ и 22,5°, что свидетельствует о низкой степени кристалличности. Подобные дифрактограммы цеолитов ВЕА наблюдали ранее как для алюмосиликатных [16], так и ZrAl-силикатных образцов [12], последние, несмотря на низкую степень кристалличности, характеризовались высокими адсорбционными характеристиками. Образец SnAl-BEA2-75/20 (табл. 1) характеризуется высокими значениями удельной внешней поверхности и объема мезопор, что косвенно может свидетельствовать о формировании цеолитных материалов, похожих на нанослои цеолита ВЕА, приведенных в работах [14, 16]. SnAl-силикатные цеолиты BEA, полученные с использованием СНА-2 и СНА-3,

характеризуются более высокой степенью кристалличности в сравнении с SnAl-BEA2-75/20. В работах [14, 16] показано, что при использовании СНА-2 и СНА-3 образуются губки цеолитов ВЕА, состоящие из цеолитных наночастиц, близких к округлой форме, с размерами до 30 нм. Мезопоры в таких системах образуются преимущественно за счет межкристаллитных полостей и существенного уменьшения размеров кристаллитов в сравнении с крупнокристаллическими, что обусловливает их невысокую дефектность в сравнении с цеолитами, полученными с использованием СНА-1. В случае нанослоев уменьшение кристалличности может быть обусловлено увеличением дефектности структуры и увеличением доли аморфной фазы, образованной при использовании двухазотистых СНА.

Необходимо отметить, что содержание олова и алюминия (табл. 1) в конечном образце, определенное по данным энергодисперсионного анализа (ЭДА), значительно выше в сравнении с РС, что обусловлено более высокой растворимостью соединений кремния в сильнощелочных средах в сравнении с соединениями олова и алюминия.

Для всех исследуемых образцов SnAl-BEA характерны изотермы адсорбции азота IV типа типичные для пористых материалов с комбинированной микро- и мезопористостью (рис. 1, б). Анализ изотерм указывает на присутствие микропор со средним диаметром ~0,7 нм, что характерно для цеолитов структурного типа ВЕА, а также мезопор диаметром 5-30 нм. Стоит отметить, что для образцов характерно широкое распределение мезопор по размеру, что может быть обусловлено неоднородностью размера кристаллитов. Для цеолитов, полученных с использованием СНА-2 и СНА-3, объем микропор варьируется в диапазоне 0,12—0,17 см³/г (табл. 1) и практически не зависит от типа темплата и концентрации источников олова и алюминия в РС. Максимальный объем мезопор для таких материалов составляет 1,1 см³/г.

В спектрах ЭСДО в УФ- и видимой области для исследуемых цеолитов (рис. 2, *a*) наблюдаются полосы поглощения при 220, 275 и 303 нм. Для тетраэдрических ионов Sn⁴⁺, находящихся в кристаллической решетке цеолита, характерна полоса поглощения около 200—220 нм [17]. Полосу поглощения с максимумом при длине волны >250 нм обычно относят к ионам Sn⁴⁺ в октаэдрическом окружении. Стоит отметить, что для цеолитов, полученных с использованием разных CHA, соотношение «каркасного» и «внекаркасного» Sn⁴⁺ существенно различается (значение определялось как соотношение интегральных интенсивностей полос поглощения при 220 и при 275 нм). Для цеолита

SnAl-BEA2-75/20 (рис. 2, кривая 1) полоса поглощения при 220 нм слабо выражена, ионы Sn⁴⁺ находятся преимущественно в виде SnO₂. Последнее, вероятно, обусловлено уменьшением степени кристалличности полученного образца вследствие как образования аморфной фазы (в аморфных оловосиликатах и оксиде олова ионы Sn⁴⁺ находятся преимущественно в октаэдрическом окружении), так и довольно высокой дефектности структуры цеолитов при использовании СНА-1. Подобную картину наблюдали в случае ZrAl-силикатных цеолитов, полученных в работе [12]. В случае цеолитов, полученных с использованием СНА-2 и СНА-3, полоса поглощения для тетраэдрических ионов Sn⁴⁺ является более выраженной, а «внекаркасного» олова — менее интенсивной. Для серии SnAl-силикатных BEA, полученных с использованием СНА-2 (рис. 2, кривые 2-4), наименее выраженная полоса поглощения при 220 нм наблюдается для SnAl-BEA4-120/20 (кривая 2), который характеризуется наименьшим содержанием олова. С увеличением содержания последнего наблюдали уменьшение интенсивности полосы поглощения, отвечающей «внекаркасному» оксиду олова (полоса поглощения при 275 нм).

На рис. 2, б приведены РФЭ-спектры $Sn3d_{5/2}$ (с разложением на компоненты согласно функции Войта) для иерархических цеолитов SnAl-BEA, полученных с использованием СНА-2. Пик с энергией связи 488,3 эВ соответствует 3d_{5/2}-фотоэлектронам тетраэдрических ионов Sn⁴⁺, встроенных в кристаллическую решетку цеолита [18]. Менее интенсивная компонента с 484,9 эВ отвечает энергии связи 3d_{5/2}-фотоэлектронов в SnO₂ и ее можно рассматривать как суперпозицию полос 486 и 484,1 эВ, отвечающих Sn⁴⁺ и Sn⁰, образованному при восстановлении поверхностных кластеров оксида олова рентгеновским излучением [19]. С увеличением концентрации источников олова в РС синтеза цеолитов наблюдается увеличение доли тетраэдрических ионов Sn⁴⁺ в исследуемых образцах, о чем свидетельствует существенное увеличение площади пика при 488,3 эВ. Увеличение соотношения «каркасного» и «внекаркасного» олова в образцах с уменьшением соотношения Si/Sn согласуется с результатами УФ-спектроскопии.

Тип и концентрацию кислотных центров в иерархических цеолитах SnAl-BEA изучали методом ИК-спектроскопии с использованием пиридина и 2,6-ди-*трет*-бутилпиридина в качестве спектральных зондов (рис. 2, $e - \partial$ и табл. 2). В спектрах поглощения пиридина (рис. 2, e) присутствуют полосы поглощения при 1548 и 1638 см⁻¹, отвечающие наличию пиридиниевого иона, образующегося при взаимодействии пиридина с протонами

	Кон	центрация кисло					
Образец	Брен	нстеда*	Льюі	aca**	Конверсия альлегила 1 . %	Селективность	
	Ру	2,6-ДТБП	1451 см ⁻¹ (Sn)	1456 см ⁻¹ (Al)		10 oqupj 0, 70	
Sn-MTW6	0	0	50	0	9	18	
Al-BEA4-20	100	50	0	120	6	>99	
SnAl-BEA2-75/20	142	61	20	59	10	>99	
SnAl-BEA4-120/20	151	65	40	56	15	>99	
SnAl-BEA4-75/23	144	43	44	40	19	>99	
SnAl-BEA4-75/20	164	69	43	37	20	>99	
SnAl-BEA4-75/17	206	85	39	95	26	>99	
SnAl-BEA4-55/20	224	109	47	67	36	89	
SnAl-BEA6-75/20	200	107	57	42	23	>99	

Таблица 2

Кислотные характеристики исследуемых	образцов SnAl-BEA	и выход эфира 3 в их присутствии
--------------------------------------	-------------------	----------------------------------

* Концентрация кислотных центров рассчитана по десорбции пиридина и 2,6-ДТБП при температуре 423 К; ** концентрация рассчитана по величине интегральной интенсивности компоненты при 1456 см⁻¹ для Al-содержащих и 1451 см⁻¹ для Sn-содержащих ЛКЦ.

БКЦ. Полосы поглощения при 1451 и 1456 см⁻¹ (рис. 2, г) отвечают взаимодействию пиридина с ЛКЦ, образованными ионами Sn⁴⁺ [20] и Al³⁺ [21] соответственно. Полоса поглощения при 1446 см⁻¹ обусловлена присутствием физически адсорбированного пиридина [22]. Стоит отметить, что полосы поглощения при 1456 и 1548 см⁻¹ наблюдаются в ИК-спектрах и после десорбции пиридина при температуре 350 °C, в то время как полоса поглощения при 1451 см⁻¹ практически отсутствует. Последнее может свидетельствовать о разной силе кислотных центров, образованных Sn⁴⁺ и Al³⁺, при этом доля сильных ЛКЦ и БКЦ в полученных образцах довольно высокая. В спектрах адсорбированного 2,6-ди-трет-бутилпиридина (2,6-ДТБП, рис. 2, д) присутствуют полосы поглощения, соответствующие его протонированной форме (1531 и 1615 см⁻¹) и координационным комплексам с ЛКЦ (1466 см⁻¹). Цеолитные материалы характеризуются достаточно высокой концентрацией сильных кислотных центров Бренстеда (98—150 мкмоль/г, что составляет более 50 % от общего числа центров). Доступность БКЦ для объемных молекул рассчитана на основании отношения концентрации поверхностных центров (определенных из адсорбции 2,6-ДТБП) к общей концентрации БКЦ (определенных методом адсорбции пиридина). Показано, что доступность БКЦ для таких молекул варьируется в пределах 30-54 %.

При увеличении содержания Al^{3+} в PC для синтеза цеолитов (Si/Al от 23 до 17 при Si/Sn = 75) и использовании CHA-2 наблюдается повышение концентрации БКЦ (табл. 2), в том числе локализованных на внешней поверхности (определяемых по 2,6-ДТБП), что обусловлено генерированием мостиковых OH-групп при внедрении Al^{3+} в кристаллическую решетку. При увеличении содержания источника олова в PC более чем в 2 раза отношение Si/Sn в конечном образце цеолита изменяется от 63 до 43, при этом возрастает концентрация БКЦ и ЛКЦ, образованных вследствие введения Sn⁴⁺ в кристаллическую решетку цеолита.

Концентрация кислотных центров в исследуемых цеолитах зависит не только от содержания каркасообразующих элементов в PC, но и от структуры используемого темплата. Для серии образцов SnAl-BEA-75/20, полученных с использованием различных темплатов при близком соотношении Si/Sn (58—61), соотношение Si/Al отличается в два раза. Несмотря на более высокое содержание Al в образце SnAl-BEA2-75/20 содержание БКЦ было наименьшим в серии, что может быть обусловлено образованием «внекаркасных» соединений алюминия. С увеличением заряда темплата, используемого для синтеза цеолита, наблюдается также увеличение содержания БКЦ, а также ЛКЦ, образованных введением в кристаллическую решетку цеолита ионов Sn⁴⁺.

Результаты исследования каталитической активности синтезированных образцов представлены в табл. 2. В случае цеолита Sn-MTW конверсия альдегида достигала 9 %, а основным продуктом превращения являлся спирт 2. Все исследованные иерархические цеолиты SnAl-BEA проявили более высокую каталитическую активность в процессе получения эфира 3 из альдегида 1 в сравнении с иерархическим Al-BEA. Можно предположить, что на оловосодержащих ЛКЦ (которые более активны в исследуемом процессе в сравнении с алюмосодержащими) протекает первая стадия процесса, а для прохождения второй стадии необходимы БКЦ, которыми в данном случае выступают мостиковые ОН-группы, образованные при введении в кристаллическую решетку цеолита ионов Al³⁺. С увеличением концентрации оловосодержащих ЛКЦ, наблюдаемом при изменении заряда темплата в ряду CHA-1 → CHA-3, возрастает и каталитическая активность цеолитов: конверсия 4-метоксибензальдегида возрастает с 10 % (для SnAl-BEA2-75/20, полученного с использованием двухазотистого СНА-1) до 23 % (для SnAl-BEA6-75/20, полученного с использованием шестиазотистого СНА-3). Подобное влияние строения темплата на морфологию, адсорбционные свойства и изоморфное включение гетероэлемента в кристаллическую решетку, а также увеличение активности цеолитов в тандем-процессе превращения анисового альдегида в 4-метоксибензил-1-метилпропиловый эфир наблюдалось нами ранее и для цеолитов ZrAl-силикатных BEA [12].

Увеличение содержания Al³⁺ в PC для синтеза цеолитов (при использовании СНА-2 как темплата и соотношении Si/Sn = 75) также способствует повышению каталитической активности цеолитов: конверсия увеличивается с 19 % (Si/Al = 23) до 26 % (Si/Al = 17). Как показано выше методами ЭСДО и РФЭС, при увеличении содержания источника олова в РС (Si/Sn в диапазоне от 120 до 55, CHA-2 при Si/Al = 20) наблюдается увеличение доли тетраэдрических ионов Sn⁴⁺, встроенных в кристаллическую решетку цеолита. Подобная зависимость наблюдалась и в случае постсинтетического введения олова в структуру цеолита ВЕА [23]. Более высокая концентрация алюмосодержащих ЛКЦ и БКЦ свидетельствует о более полном внедрении Sn⁴⁺ в кристаллическую решетку цеолита. В результате в присутствии SnAl-BEA4-55/20 достигается самая высокая (в условиях данного эксперимента) конверсия 4-метоксибензальдегида, при которой, однако, наблюдается снижение селективности.

Таким образом, с использованием поличетвертичных аммонийных солей в качестве темплатов получены иерархические цеолиты SnAl-BEA, характеризующиеся высокой концентрацией ЛКЦ и БКЦ. Показано, что увеличение заряда гидрофильной части темплата, а также содержания Al³⁺ и Sn⁴⁺ в реакционной смеси способствуют получению цеолитов с большей концентрацией ЛКЦ, что, в свою очередь, способствует повышению каталитической активности в процессе образования 4-метоксибензил-1-метилпропилового эфира из анисового альдегида и 2-бутанола.

Литература

- Al-Nayili A., Yakabi K., Hammond C. // J. Mater. Chem. A. — 2016. — 4. — P. 1373—1382.
- Corma A., Nemeth L. T., Renz M., Valencia S. // Nature. 2001. — 412. — P. 423—425.
- Prech J., Arroyo Carretero M., Čejka J. // ChemCatChem. — 2017. — 9, N 15. — P. 3063—3072.
- 4. *Corma A., Domine M. E., Nemeth L., Valencia S.* // J. Amer. Chem. Soc. 2002. **124**. P. 3194—3195.
- *Reddy K. R., Suresh M., Kantam M. L. et al.* // Ind. and Eng. Chem. Res. — 2014. — 53. — P. 18630—18636.
- Choi M., Na K., Kim J. et al. // Nature. 2009. 461. P. 246—249.
- Wang L., Zhang J., Wang X. et al. // J. Mater. Chem. A. 2014. — 2. — P. 3725.
- Dijkmans J., Dusselier M., Gabriëls D. et al. // ACS Catal. — 2015. — 5. — P. 928—940.
- Li L., Ding J., Jiang J.-G. et al. // Chinese J. Catal. 2015.
 36. P. 820—828.
- Climent M. J., Corma A., Iborra S. // ChemSusChem. 2009. — 2. — P. 500—506.
- Corma A., Renz M. // Angew. Chem. 2007. 119. P. 302—304.
- Курмач М. Н., Попович Н. О., Кириенко П. И. и др. // Теорет. и эксперим. химия. — 2017. — 53, № 2. — С. 114—120. — [Theor. Exp. Chem. — 2017. — 53, N 2. — Р. 122—129 (Engl. Transl.)].
- Курмач М. Н., Яремов П. С., Цырина В. В. и др. // Теорет. и эксперим. химия. — 2015. — 51, № 4. — С. 211—218. — [Theor. Exp. Chem. — 2015. — 51, № 4. — Р. 216—223 (Engl. Transl.)].
- 14. *Cho K., Na K., Kim J. et al.* // Chem. Mater. 2012. 24. — P. 2733—2738.
- 15. Emeis C. A. // J. Catal. 1993. 141. P. 347—354.
- 16. *Конышева К. М., Бойчук Т. Н., Швец О. В.* // Теорет. и эксперим. химия. 2016. **52**, № 2. С. 89—95. [Theor. Exp. Chem. 2016. **52**, N 2. Р. 90—96 (Engl. Transl.)].
- Li P., Liu G., Wu H. et al. // J. Phys. Chem. C. 2011. 115. — P. 3663—3670.
- Tang B., Dai W., Wu G. et al. // ACS Catal. 2014. 4. — P. 2801—2810.
- Pachamuthu M. P., Shanthi K., Luque R., Ramanathan A. // Green Chem. — 2013. — 15. — P. 2158—2166.

- Ouyang X., Hwang S.-J., Xie D. et al. // ACS Catal. 2015. — 5. — P. 3108—3119.
- 21. *Lønstad Bleken B.-T., Mino L., Giordanino F. et al.* // Phys. Chem. Chem. Phys. 2013. **15**. P. 13363.
- 22. Barakov R., Shcherban N., Yaremov P. et al. // Micropor. and Mesopor. Mater. 2017. 237. P. 90—107.
- 23. *Popovych N. O., Kyriienko P. I., Millot Y. et al.* // Micropor. and Mesopor. Mater. 2018. **268**. P. 178—188.
 - Поступила в редакцию 13 ноября 2018 г. В окончательном варианте 29 января 2019 г.

Вплив умов одержання ієрархічних цеолітів SnAl-BEA на їх кислотність і каталітичну активність у тандем-процесі одержання 4-метоксибензил-1-метилпропілового ефіру

М. М. Курмач¹, Н. О. Попович¹, П. І. Кирієнко¹, П. С. Яремов¹, О. Ю. Хижун², О. В. Андресв³, О. В. Швець¹

¹ Інститут фізичної хімії ім. Л. В. Писаржевського НАН України просп. Науки, 31, Київ 03028, Україна. Е-mail: mazinator3710@ukr.net

² Інститут проблем матеріалознавства ім. І. М. Францевича НАН України вул. Академіка Кржижановського, 3, Київ 03680, Україна

³ Київський національний університет імені Тараса Шевченка вул. Васильківська, 90, Київ 03022, Україна

Одержано ієрархічні SnAl-силікатні цеоліти структурного типу BEA, що мають кислотні центрі Льюїса (до 130 мкмоль/г) і Бренстеда (до 330 мкмоль/г), концентрація яких за даними електронної спектроскопії дифузного відбиття та рентгенофотоелектронної спектроскопії зростає зі збільшенням заряду гидрофильной частини використовуваних темплатів, а також вмісту Al^{3+} і Sn⁴⁺. У каталітичному тандем-процесі в присутності одержаних цеолітів досягається селективність по 4-метоксібензіл-1-метілпропіловому ефіру 89—99% і конверсія анісової альдегіду 36 %.

Ключові слова: ієрархічні цеоліти, SnAl-BEA, структуроспрямовуючий агент, кислотні центри, реакція Меєрвейна — Понндорфа — Верлея.

Influence of Conditions of SnAl-BEA Hierarchical Zeolite Synthesis on Their Acidity and Catalytic Activity in Tandem Process for the Preparation of 4-Methoxybenzyl-sec-butyl Ether

M. M. Kurmach¹, N. O. Popovych¹, P. I. Kyriienko¹, P. S. Yaremov¹, O. Y. Khyzhun², O. V. Andreev³, O. V. Shvets¹

¹ L.V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine Nauky Ave., 31, Kyiv 03028, Ukraine. E-mail: mazinator3710@ukr.net

² Institute for Problems of Materials Science, National Academy of Sciences of Ukraine Krzhyzhanovskogo St., 3, Kyiv 03680, Ukraine

³ Taras Shevchenko National University of Kyiv Vasylkivska St., 90, Kyiv 03022, Ukraine

Hierarchical SnAl-silicate zeolites of the structural type BEA were obtained with acid Lewis (up to 130 μ mol/g) and Brønsted (up to 330 μ mol/g) centers, the concentration of which according to diffuse reflectance and X-ray photoelectron spectroscopy data increases, as well as the content of Al^{3+} and Sn^{4+} . In the catalytic tandem process in the presence of the obtained zeolites, selectivity for 4-methoxybenzyl-sec-butyl ether 89%-99% is achieved and anise aldehyde conversion is 36%.

Key words: hierarchical zeolites, SnAl-BEA, structure-directing agents, acid sites, Meerwein-Ponndorf-Verley reaction.