УДК 541.138, 541.64, 544.653, 546.73

Влияние условий формирования на активность Co-N-C-электрокатализаторов на основе поли-*м*-фенилендиамина в процессе восстановления кислорода

Е. А. Парийская, Д. О. Мазур, Я. И. Курысь, В. Г. Кошечко, В. Д. Походенко

Институт физической химии им. Л. В. Писаржевского НАН Украины просп. Науки, 31, Киев 03028, Украина. E-mail: o.ustavytska@gmail.com

Показано, что использование в качестве источника азота смеси м-фенилендиамина с персульфатом аммония, вместо предварительно полученного полимера — поли-м-фенилендиамина, позволяет упростить формирование пиролизированных Co-N-C-электрокатализаторов реакции восстановления кислорода и обеспечивает повышение их активности в кислом электролите за счет присутствия в составе Co₉S₈. Установлено, что замена ацетиленовой сажи на оксид графена при формировании композитов данного типа приводит к увеличению электрохимически активной площади поверхности катализатора и, как следствие, к улучшению его токовых характеристик.

Ключевые слова: Со-N-С-электрокатализаторы, восстановление кислорода, поли-*м*-фенилендиамин, карбонизация, восстановленный оксид графена.

Реализация процесса восстановления кислорода в устройствах для преобразования и хранения энергии, таких как низкотемпературные топливные ячейки и металл-воздушные источники тока, требует применения электрокатализаторов [1]. Учитывая, что преимущества наиболее распространенного и эффективного электрокатализатора указанного процесса платины — нивелируются ее высокой стоимостью и ограниченностью ресурсов [2], особое внимание в последние годы уделяется поиску электрокатализаторов реакции восстановления кислорода (РВК), не содержащих благородных металлов [1-4]. В частности как перспективная альтернатива традиционным электрокатализаторам РВК на основе Pt pacсматриваются так называемые Me-N-C-катализаторы (Ме = Fe и/или Co), которые, как правило, получают высокотемпературной обработкой различных азотсодержащих органических соединений, наноразмерных углеродных материалов и солей железа (и/или кобальта) [1, 3-6].

Азотсодержащие сопряженные полимеры (N-СП) как источники азота, а часто и углерода, для Me-N-C-катализаторов имеют важное преимущество, поскольку за счет своей макромолекулярной струк-

туры позволяют обеспечить равномерное распределение атомов азота в частично графитизированной углеродной матрице [6]. В подавляющем большинстве использование N-СП при получении Me-N-С-катализаторов ограничивается полианилином (ПАни) или полипирролом (ППи), причем в качестве предшественника азота, наряду непосредственно с ПАни или ППи [7-11], часто используется смесь анилина или пиррола с окислителем [6, 12-14]. Полимеризация соответствующего мономера может начинаться уже в процессе приготовления реакционной смеси и полностью завершаться при умеренных температурах на начальных стадиях термообработки, поэтому и при таком подходе источником азота при получении Me-N-С-композитов в процессе последующей карбонизации является N-CП. Использование смеси мономер — окислитель позволяет упростить процедуру формирования электрокатализаторов данного типа за счет отсутствия стадии предварительного получения полимера.

Перспективными представителями N-СП для создания Me-N-C-катализаторов PBK являются полифенилендиамины, которые по сравнению с их структурным аналогом — ПАни — являются более

насыщенными атомами азота, а также обладают большей термостабильностью, что способствует меньшей потере азота в процессе их пиролиза [15, 16]. Ранее при создании Fe-N-С-катализаторов РВК были успешно использованы как предварительно полученные поли-м-, поли-о- и поли-п-фенилендиамины [16—19], так и соответствующие мономеры совместно с персульфатом аммония (ПСА) [20]. В отличие от Fe-N-С-катализаторов, для получения Со-N-С-электрокатализатора РВК применялся только поли-о-фенилендиамин [19], а возможность карбонизации смеси, содержащей комбинацию фенилендиамина, соли кобальта и окислителя, при формировании Со-N-С-электрокатализатора в литературе до сих пор не рассматривалась, хотя известно [16], что полимеризация о-, м- и п-фенилендиаминов в присутствии, например, ПСА является достаточно эффективной.

Учитывая это, в настоящей работе нами изучена возможность получения Со-содерщащих N-C-электрокатализаторов PBK с использованием в качестве предшественника азота как предварительно полученного поли-*м*-фенилендиамина (ПмФДА), так и смеси *м*-фенилендиамина с ПСА, а также замены традиционно используемого углеродного компонента — ацетиленовой сажи на оксид графена. Рассмотрено влияние использовавшихся при формировании Со-N-C-композитов компонентов реакционной смеси и соотношений между ними на состав таких электрокатализаторов и их активность в PBK в кислом электролите.

Экспериментальная часть

В работе использовали *м*-фенилендиамин («Acros Organics», 99+ %), $(NH_4)_2S_2O_8$ («Sigma Aldrich», 98 %), Co $(NO_3)_2$ · $6H_2O$ («Aldrich», >98 %), высокодисперсную ацетиленовую сажу с насыпной плотностью 80—120 г/л («Alfa Aesar», 99,9+ %), графитовый порошок («Alfa Aesar», 99,9+ %), графитовый порошок («Alfa Aesar», 99 %) — все без дополнительной очистки, а также водные растворы H_2SO_4 , приготовленные из фиксаналов. Оксид графена (ОГ) в виде водной дисперсии получали жидкофазной эксфолиацией оксида графита, синтезированного по модифицированному методу Хаммерса [21], а ПмФДА в виде порошка был получен согласно [22].

Со-N-С-композиты, где в качестве донора азота использовали предварительно полученный полимер — ПмФДА, обозначенные далее как Со-_{пол}N-С, получали по аналогии с методикой [23]. Гомогенизацию смеси ПмФДА, ацетиленовой сажи и Со(NO₃)₂·6H₂O в 1 М водном растворе HCl проводили путем ультразвукового диспергирования. При этом массовое соотношение полимер : сажа варьировалось от 1 : 5 до 5 : 1 при неизменном содержании $Co(NO_3)_2 \cdot 6H_2O$ (10 % Со от суммарной массы ПмФДА и сажи в реакционной смеси). После гомогенизации (~5—10 мин) смесь упаривали и проводили термообработку сухого остатка в трубчатой печи в токе аргона при 800 °C (2 ч; скорость нагрева образца ~5 °C/мин). Полученные путем карбонизации композиты Co-_{пол}N-C обрабатывали 0,05 M H_2SO_4 (80 °C, 3 ч), затем на фильтре промывали водой (до pH \approx 7) и высушивали в сушильном шкафу при 90 °C.

Композиты Со-_{мон-ок}N-С и Со-_{мон-ок}N-_{ОГ}С получали минуя стадию предварительного синтеза полимера — ПмФДА. В этом случае гомогенизации подвергали смесь, содержащую мономер (*м*-фенилендиамин) и ПСА, при мольном соотношении 1 : 2, а также Co(NO₃)₂·6H₂O (10 % Со от суммарной массы мономера и углеродного материала в реакционной смеси), ацетиленовую сажу (в случае Со-_{мон-ок}N-С) или водную дисперсию (1 мг/мл) ОГ (в случае Со-_{мон-ок}N-_СС) в 1 М НСІ. Массовое соотношение мономер : углеродный материал в обоих случаях составляло 5 : 1. Реакционную смесь перед упариванием оставляли на воздухе на 24 ч. Дальнейшее упаривание смеси, карбонизацию и очистку композитов Со-_{мон-ок}N-С и Со-_{мон-ок}N-_С.

Морфологию полученных композитов изучали методами сканирующей электронной микроскопии (СЭМ) (микроскоп «Теscan Mira 3 LMU»; ускоряющее напряжение 10 кВ), а также просвечивающей электронной микроскопии (ПЭМ) (микроскоп ПЭМ-125К, «Selmi»; ускоряющее напряжение 100 кВ). Порошковые дифрактограммы измеряли на дифрактометре «D8 ADVANCE» («Bruker») при использовании фильтрованного Co K_{α} -излучения ($\lambda = 0,179$ нм). Содержание азота в полученных материалах определяли с использованием С,Н,N-анализатора «Carlo Erba 1106», а кобальта — методом рентгенофлуоресцентной спектрофотометрии с использованием прибора EDX3600H («Skyray Instrument»).

Циклические вольтамперограммы (ЦВА) регистрировали с помощью компьютеризированного комплекса на базе потенциостата ПИ-50-1.1 с использованием неразделенной электрохимической ячейки (рабочий электрод — дисковый стеклоуглеродный (GC) с видимой площадью поверхности 0,03 см²; вспомогательный — платиновая проволока; электрод сравнения — Ag/AgCl в 3 M NaCl). Все значения потенциалов в работе приведены относительно обратимого водородного электрода (RHE), $E_{(RHE)} = E_{(Ag/AgCl)} + 0,202$ В + 0,059pH. Для использовавшегося в качестве электролита 0,05 M водного раствора $H_2SO_4 E_{(RHE)} = E_{(Ag/AgCl)} + 0,26$ В.

Электрокатализатор	$E_{\rm onset}$, мВ	<i>Е</i> _{max} , мВ	Содержание N, %	Содержание Со, %
Со- _{пол} N(1)-С(5)	500	240	<0,30	0,05
Со- _{пол} N(1)-C(1)	775	660	0,56	Нет данных
Со- _{пол} N(2)-С(1)	780	660	2,31	0,38
Со- _{пол} N(5)-С(1)	780	680	2,78	0,86
Со- _{мон-ок} N(5)-С(1)	790	700	2,40	9,11
$\text{Co-}_{\text{MOH-OK}} N(5){O\Gamma} C(1)$	800	660	4,58	2,72

Содержание азота и кобальта в Со-N-С-электрокатализаторах, а также установленные для них в РВК значения потенциалов начала восстановления кислорода (*E*_{onset}) и максимума каталитического тока (*E*_{max})

Регистрацию ЦВА во всех случаях проводили с начальной разверткой потенциала в катодную область из точки, которая соответствовала потенциалу разомкнутой цепи. Скорость сканирования потенциала составляла 5 мВ/с. Перед модификацией GC-электрод полировали суспензиями алмазных частиц (1,0 мкм) и наночастиц Al₂O₃ (0,05 мкм) с последующей ультразвуковой очисткой в смеси вода этанол (1:1 об.) и затем в дистиллированной воде. Для формирования на рабочем электроде каталитического слоя с помощью ультразвука диспергировали 2 мг соответствующего композита и 8 мкл 5 % спиртового раствора нафиона («Aldrich») в 48 мкл С₂Н₅ОН, после чего 2 мкл дисперсии наносили на поверхность электрода с дальнейшим высушиванием на воздухе.

Каталитическую активность полученных материалов характеризовали значениями потенциалов начала восстановления кислорода — E_{onset} и потенциала, при котором наблюдали максимум каталитических токов — Е_{тах}, а также кривыми электрокаталитического восстановления кислорода — зависимостью разницы катодных плотностей токов в ЦВА, записанных в деаэрированном и насыщенном кислородом электролите, от потенциала. В ряде случаев (если указано) в ЦВА и кривых электрокаталитического восстановления кислорода токи были нормированы на электрохимически активную площадь поверхности модифицированных электродов, которую по аналогии с методом отношений емкостей [24] оценивали с использованием соотношения S/S₀ = C/C_0 , где C и C_0 (мк Φ) — емкость двойного электрического слоя соответственно модифицированного и немодифицированного GC-электрода, которую определяли методом электрохимической импедансной спектроскопии [25] с ипользованием прибора «µAUTOLAB III/FRA2» («ECO CHEMIE»); S и S_0 (см²) — электрохимически активная площадь поверхности соответственно модифицированного и

немодифицированного GC-электрода, допуская, что S₀ равна геометрической площади поверхности немодифицированного GC-электрода.

Исследование кинетики PBK на полученных электрокатализаторах проводили на вращающемся дисковом электроде (RDE, «Autolab) в комплексе с потенциостатом PGSTAT302N («Autolab»). Измерения проводили в стандартной трехэлектродной ячейке при 20 °С, используя в качестве электролита 0,05 M H_2SO_4 . Поляризационные кривые регистрировали при скоростях вращения дискового электрода 676, 1521, 2704, 4225, 6084 об/мин. Измеренные токи нормировали на геометрическую площадь поверхности электрода (0,07 см²).

Результаты и обсуждение

Проведенная нами по аналогии с [23] термообработка ПмФДА с ацетиленовой сажей (при массовом соотношении 1:5) и нитратом кобальта приводит к композиту Со-_{пол}N(1)-С(5). В этом случае соотношение между компонентами в подвергаемой карбонизации смеси соответствовало часто использующемуся при получении непиролизированных металл-полимерных электрокатализаторов РВК, в частности нанокомпозита на основе ПмФДА, Со и ацетиленовой сажи [26]. В результате проведенных электрохимических исследований установлена активность Со-_{пол}N(1)-С(5) в РВК (таблица, рис. 1, *a*), которая, однако, является невысокой даже по сравнению с полученным в отсутствие термообработки металл-полимерным аналогом [26], что может быть обусловлено невысоким содержанием азота в Со-_{пол}N(1)-С(5) (таблица), а следовательно, и С/Со-N_r-центров, на которых происходит адсорбция, активация и каталитические превращения кислорода [5]. Поскольку при формировании такого гибридного электрокатализатора в условиях высокотемпературной обработки происходит значительное разрушение полимера, для адекватного количества азота, кото-

Рис. 1. *а* — Циклические вольтамперограммы (ЦВА) GC-электродов, модифицированных Co-_{пол}N(1)-C(5) (*1*), Co-_{пол}N(1)-C(1) (*2*), Co-_{пол}N(2)-C(1) (*3*) и Co-_{пол}N(5)-C(1) (*4*) в деаэрированной (штриховая линия) и насыщенной кислородом (сплошная линия) 0,05 M H₂SO₄; δ — ЦВА GC-электродов, модифицированных Co-_{пол}N(5)-C(1) (*1*) и Co-_{мон-ок}N(5)-C(1) (*2*) в присутствии кислорода; *в* — ЦВА GC-электрода, модифицированного Co-_{мон-ок}N(5)-_C(1) в деаэрированной (*1*) и насыщенной кислородом (*2*) 0,05 M H₂SO₄; ϵ — электрокаталитические кривые GC-электродов, модифицированных Co-_{мон-ок}N(5)-C(1) (*1*) и Co-_{мон-ок}N(5)-_{OF}C(1) (*2*); δ — хроноамперограмма GC-электрода, модифицированного Co-_{мон-ок}N(5)-_{OF}C(1) (*E* = 460 мВ). В ЦВА (δ , δ) и электрокаталитических кривых (ϵ) токи нормированы на электрохимически активную площадь поверхности электрода.

рый участвует в формировании таких центров, по-видимому, необходимо значительно большее содержание ПмФДА в реакционной смеси, чем в случае не подвергаемых термообработке металл-полимерных электрокатализаторов РВК.

Учитывая это, нами были получены электрокатализаторы Со-_{пол}N-С с массовым соотношением ПмФДА : сажа 1 : 1 — Со-_{пол}N(1)-С(1), 2 : 1 — Со-_{пол}N(2)-С(1) и 5 : 1 — Со-_{пол}N(5)-С(1). Увеличение массовой части ПмФДА в реакционной смеси приводит не только к повышению содержания азота в соответствующих Со-_{пол}N-С-электрокатализаторах (таблица), но и к анодному смещению E_{onset} и E_{max} (рис. 1, *a*; таблица), что подтверждает высказанные выше предположения. При этом резкое повышение активности катализатора в PBK наблюдается уже при переходе от Co-_{пол}N(1)-C(5) к Co-_{пол}N(1)-C(1), после чего заметное изменение в наблюдаемых величинах E_{onset} и E_{max} отсутствует, несмотря на существенное увеличение содержания в Co-_{пол}N(2)-C(1) и Co-_{пол}N(5)-C(1) азота и кобальта (таблица).

Как отмечалось выше, при получении катализаторов Co-N-C можно использовать как непосредственно N-СП, так и систему мономер — окислитель. Второй подход позволяет упростить процедуру синтеза Co-N-C-наноструктур. Однако присутствие в реакционной смеси в этом случае $(NH_4)_2S_2O_8$ и/или продукта его превращения в

Рис. 2. $a - CЭМ-изображение Co-_{MOH-OK}N(5)-C(1); \delta - ПЭМ-изображение Co-_{MOH-OK}N(5)-OFC(1); в - рентгеновские дифрактограммы Co-_{MOH-OK}N(5)-C(1) (1), Co-_{MOH-OK}N(5)-OFC(1) (2), а также Co₉S₈.$

результате окислительной полимеризации — (NH₄)₂SO₄ — может, по-видимому, приводить в процессе пиролиза к допированию углеродного носителя атомами серы, а также к образованию сульфидов кобальта, что может оказывать влияние на активность таких электрокатализаторов в PBK. Для выяснения влияния способа формирования на состав и электрохимические свойства Co-N-C-катализаторов на основе ПмФДА нами, наряду с композитом Co-_{пол}N(5)-C(1) (обладающим лучшими функциональными характеристиками в PBK среди рассмотренных выше Co-_{пол}N-C-электрокатализаторов), был получен его аналог с использованием подхода мономер — окислитель — Co-_{мон-ок}N(5)-C(1).

Как следует из данных, представленных в таблице, состав Со-_{пол}N(5)-C(1) и Со-_{мон-ок}N(5)-C(1) существенно отличается. Использование непосредственно полимера при получении Со-_{пол}N(5)-С(1) и других Со-_{пол}N-С-электрокатализаторов приводит к гибридным материалам, содержание кобальта в которых не превышает 1 % (таблица). В то же время при близком содержании азота В $Co_{IIOJ}N(5)-C(1)$ И Со-_{мон-ок}N(5)-С(1) содержание металла в последнем составляет более 9 % (таблица). Кроме того, в отличие от Co-_{пол}N(5)-C(1) или его аналога на основе полииндола [23], на микрофотографии СЭМ Со-_{мон-ок}N(5)-С(1), полученной в режиме регистрации вторичных электронов (рис. 2, а), среди углеродных наночастиц темного контраста проявляются изолированные наночастицы светлого контраста, очевидно отвечающие кобальтсодержащей фазе.

Причиной таких различий, по-видимому, является присутствие в Со-_{мон-ок}N(5)-C(1) сульфидов кобальта,

образующихся в условиях высокотемпературной обработки используемой нами реакционной смеси, содержащей ПСА и/или (NH₄)₂SO₄ [12]. Подтверждением такого предположения являются результаты исследований, проведенных методом рентгеновской дифракции. На приведенной на рис. 2, в дифрактограмме Со-_{мон-ок}N(5)-С(1) наряду с широкими линиями в области $2\theta = 30,1$ и 52,0, свидетельствующими о значительном вкладе графитоподобной фазы, проявляется серия рефлексов, обусловленных присутствием в карбонизированной матрице фазы Со₉S₈ (PDF 75-1621). Наиболее интенсивные пики при 20 = 17,9; 34,7; 36,4; 55,9 и 61,4 могут быть индексированы соответственно как кристаллические плоскости (111), (311), (222), (511) и (440) Со_оS₈ (PDF 75-1621).

Проведенное на основании данных циклической вольтамперометрии сравнение каталитической активности Со-_{мон-ок}N(5)-С(1) и Со-_{пол}N(5)-С(1) в РВК (рис. 1, б, таблица) дает основание сделать вывод о том, что применение при формировании гибридного электрокатализатора системы мономер — окислитель не только не уменьшает его активности, но и приводит к улучшению функциональных свойств в рассматриваемом процессе — анодному сдвигу E_{onset} и Е_{тах} на 10 и 20 мВ соответственно. Учитывая незначительные различия в содержании азота в рассматриваемых электрокатализаторах (таблица), можно предположить и соизмеримое количество каталитически активных С/Со-N_x-центров в них. Исходя из этого, наблюдаемое возрастание активности Со-_{мон-ок}N(5)-С(1), по-видимому, обеспечивается дополнительным влиянием присутствующего

в таком карбонизированном композите Co₉S₈, который, как известно [27], является эффективным электрокатализатором восстановления кислорода в кислом электролите.

Наряду с условиями формирования, варьирование углеродного компонента в Co-N-C-катализаторах также может влиять на их электрохимические свойства и приводить к изменению функциональных характеристик. Среди таких углеродных компонент для создания электрокатализаторов РВК привлекательными в последние годы являются графеновые материалы благодаря их высокой электропроводности и площади поверхности, сопротивлению к коррозии в процессе функционирования топливного элемента, а также способности обеспечивать равномерное распределение каталитически активных наночастиц [28]. Учитывая это, для выяснения влияния типа углеродной подложки на электрокаталитические характеристики Co-N-C-катализаторов на основе ПмФДА нами был получен аналог Со-_{мон-ок}N(5)-С(1), при формировании которого вместо ацетиленовой сажи использовали оксид графена — Со-_{мон-ок}N(5)-_{ОГ}C(1). На рис. 2, б приведено ПЭМ-изображение агрегированной частицы композита Co-_{мон-ок}N(5)-_{ОГ}C(1), на котором видна характерная для графенового материала слоистая структура, а также наличие на графеновых листах наночастиц темного контраста, относящихся, вероятно, к Со₉S₈.

Несмотря на одинаковые соотношения компонентов реакционной смеси и условия термообработки, состав полученного Со-_{мон-ок}N(5)-_{ОГ}C(1) существенно отличается от рассмотренного выше Со-_{мон-ок}N(5)-С(1) (таблица). Замена ацетиленовой сажи на ОГ при формировании гибридного композита приводит к увеличению содержания в нем азота (почти в 2 раза) с одновременным снижением кобальта (более чем в 3 раза). Невысокое содержание кобальта в Со-_{мон-ок}N(5)-_{ОГ}С(1) (на уровне 2 % мас.) подтверждает и характер спектра рентгеновской дифракции такого карбонизированного материала (рис. 2, в), где наиболее интенсивные из рефлексов, которые могут быть отнесены к фазе Co_0S_8 (2 θ = 34,7; 55,9 и 61,4), не проявляются на фоне четко выраженных широких полос, связанных с графитоподобной фазой, при $2\theta = 30,8$ и 50,8.

Как установлено нами в результате электрохимических исследований, замена ацетиленовой сажи на ОГ при формировании электрокатализатора приводит к резкому возрастанию каталитических токов (в ~7 раз) для Со-_{мон-ок}N(5)-_{ОГ}С(1) по сравнению с Со-_{мон-ок}N(5)-С(1) (рис. 1, *г*), что может быть связано с увеличением электрохимически активной площади его поверхности. В то же время

различия В составе $\text{Co-}_{\text{MOH-OK}}\text{N}(5)\text{-}\text{C}(1)$ И Со-_{мон-ок}N(5)-_{ОГ}C(1) существенно не влияют на E_{onset} , однако величина $E_{\rm max}$ для пиролизированного композита на основе ОГ сдвигается в катодную область на 40 мВ (рис. 1, в, г, таблица). На основании существенно большего содержания кобальта в Со-_{мон-ок}N(5)-С(1), а азота — в Со-_{мон-ок}N(5)-_{ОГ}С(1) можно предположить, что наряду с С/Со-N_r-центрами вклад в электрокаталитическую активность в РВК в случае композита Co-_{мон-ок}N(5)-C(1) преиму- Co_9S_8 , щественно вносит а В случае Со-_{мон-ок}N(5)-_{ОГ}C(1) нельзя исключить и наличие активных в PBK C/N,-центров, формирующихся при допировании азотом графеновых листов в процессе пиролиза на местах кислородсодержащих дефектов.

Одной из важных характеристик электрокатализаторов РВК является их способность к длительной работе. Методом хроноамперометрии нами установлено, что Со- $_{\rm мон-ок}$ N(5)-C(1) и Со- $_{\rm мон-ок}$ N(5)- $_{\rm OF}$ C(1) обладают достаточно высокой стабильностью в процессе их функционирования как электрокатализаторов РВК. В частности, как следует из данных, приведенных на рис. 1, ∂ , введение кислорода в электрохимическую систему с использованием Со- $_{\rm мон-ок}$ N(5)- $_{\rm OF}$ C(1) приводит к появлению каталитического тока восстановления кислорода, который после проработки катализатора (~0,5 ч) достигает стационарного состояния и не претерпевает снижения на протяжении ~2 ч до момента прекращения подачи кислорода.

Как известно [29], в кислых электролитах РВК может проходить по двум основным путям — прямому четырехэлектронному восстановлению кислорода с образованием воды ($O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$; $E_0 = 1,229$ В отн. RHE) или двухэлектронному восстановлению O_2 до перекиси водорода ($O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$; $E_0 = 0,67$ В отн. RHE). Возможно также непрямое четырехэлектронное восстановление кислорода, на первой стадии которого проходит восстановление кислорода до H_2O_2 , а на второй — последующее ее восстановление до воды ($H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$; $E_0 = 1,77$ В отн. RHE).

Для выяснения механизма протекания РВК на электрокатализаторах $\text{Co-}_{\text{MOH-OK}} N(5)$ -C(1) И Со-_{мон-ок}N(5)-_{ОГ}С(1) нами методом вращающегося дискового электрода (ВДЭ) проведены кинетические исследования в указанном процессе GC-электродов, модифицированных такими композитами. Ha рис. 3, а, б приведены поляризационные кривые, полученные в насыщенной кислородом 0,05 M H₂SO₄ при различных скоростях вращения GC-электродов, модифицированных $\text{Co-}_{\text{MOH-OK}}N(5)-C(1)$ И Со-_{мон-ок}N(5)-_{ОГ}C(1), характер которых свидетель-

Рис. 3. Поляризационные кривые, зарегистрированные при указанных скоростях вращения дискового электрода, модифицированного Со-_{мон-ок}N(5)-C(1) (*a*) и Со-_{мон-ок}N(5)- $_{O\Gamma}$ C(1) (*b*), а также зависимости Коутецкого — Левича (*b*) для Со-_{мон-ок}N(5)-C(1) (*l*), Со-_{мон-ок}N(5)- $_{O\Gamma}$ C(1) (*c*) и теоретически рассчитанные для n = 4 (*d*) и n = 2 (*d*).

ствует о протекании процесса в смешанном диффузионно-кинетическом режиме.

При потенциале электрода ниже 0,34 В на поляризационных кривых восстановления кислорода наблюдается появление предельного тока, указывающего на то, что диффузионный процесс становится доминирующей стадией электрокаталитической реакции. С увеличением скорости вращения электрода предельный ток возрастает вследствие увеличения скорости диффузии O₂ к поверхности электрода. Следует отметить, что плато диффузионного тока для Co-_{мон-ок}N(5)-C(1)-электрокатализатора является более выраженным по сравнению с таковым для Со-_{мон-ок}N(5)-_{ОГ}C(1), а при близких значениях плотности предельного тока поляризационные кривые для электрода GC/Co-_{мон-ок}N(5)-C(1) характеризуются более крутыми склонами в диффузионно-кинетической области по сравнению с GC/Co-_{мон-ок}N(5)-_{ОГ}C(1), что является предпочтительным для электрокатализатора PBK.

Число электронов (*n*), участвующих в электрохимическом восстановлении одной молекулы O_2 , а также значения констант скорости переноса электрона (*k*) рассчитаны нами на основании параметров поляризационных кривых РВК при различных скоростях вращения дискового электрода, модифицированного Со-_{мон-ок}N(5)-C(1) и Со-_{мон-ок}N(5)-_{ОГ}C(1), с использованием уравнения Коутецкого — Левича [30]:

$$\frac{1}{i} = \frac{1}{i_k} + \frac{1}{i_d} = \frac{1}{nFkC} + \frac{1}{0,62nFD^{2/3}\omega^{1/2}v^{-1/6}C},$$
 (1)

где *i* — плотность тока на дисковом электроде, A/см²; i_k и i_d — плотность кинетического и диффузионного тока соответственно, A/см²; *n* — количество электронов, участвующих в электрохимической реакции; k — константа скорости переноса электрона, см/с; ω — скорость вращения дискового электрода, рад/с; D — коэффициент диффузии кислорода, $2,3\cdot10^{-5}$ см²/с [31]; v — кинематическая вязкость электролита, 9,97·10⁻³ см²/с [32]; *C* — концентрация кислорода в электролите, 1,38·10⁻⁶ моль/см³ [32]; *F* число Фарадея, 96485 Кл/моль.

Зависимости в координатах Коутецкого — Левича (1/*i* — 1/ $\omega^{1/2}$) для электродов, модифицированных Со-_{мон-ок}N(5)-С(1) и Со-_{мон-ок}N(5)-_{ОГ}С(1) (при потенциале поляризации 0,3 В), а также теоретически рассчитанные по уравнению (1) для двух- и четырехэлектронного процессов восстановления кислорода приведены на рис. 3, в. Полученные зависимости для обоих катализаторов являются линейными, а их наклон, который определяется диффузионным током, в большей степени подобен таковому для зависимости, отвечающей 4-электронному процессу (рис. 3). Рассчитанное по уравнению (1) значение n для Со-_{мон-ок}N(5)-C(1) и $Co_{MOH-OK}N(5)_{O\Gamma}C(1)$ составляет соответственно 3,8 и 3,4. К сожалению, на основании результатов, полученных методом ВДЭ, нельзя однозначно сделать вывод о механизме РВК на указанных электрокатализаторах. Учитывая рассчитанные значения *п* можно предположить, что в обоих случаях имеет место параллельное протекание 2- и 4-электронного процессов с преобладанием последнего либо непрямой 4-электронный процесс, где H₂O₂ является интермедиатом, который далее восстанавливается до воды. Более высокое значение *n* в случае Со-_{мон-ок}N(5)-С(1) может быть связано с большим вкладом в активность такого катализатора Co_0S_8 , в значительном количестве присутствующего в его составе (таблица, рис. 2, в), который согласно теоретическим расчетам [27] способен обеспечивать кислом электролите прямое 4-электронное в восстановление кислорода. Кроме того, отрезки, отсекаемые экспериментальными зависимостями $f(1/\omega^{1/2})$ 1/i= для $\text{Co-}_{\text{MOH-OK}}N(5)-C(1)$ Со-_{мон-ок}N(5)-_{ОГ}С(1), на оси ординат согласно уравнению (1) позволяют также рассчитать константы скорости переноса электрона для каждого из образцов. Рассчитанные таким образом k составили соответственно 5,5·10⁻³ см/с для Со-_{мон-ок}N(5)-С(1) и 1,8·10⁻² см/с для Со-_{мон-ок}N(5)-_{ОГ}С(1).

Таким образом, путем высокотемпературной обработки ПмФДА (или м-фенилендиамина с ПСА), ацетиленовой сажи (или ОГ) и соли кобальта получены Co-N-C-электрокатализаторы РВК, для которых в 0,05 М H₂SO₄ присущи достаточно высокая активность ($E_{\text{onset}} \approx 780 - 800 \text{ мB}$, отн. RHE) и стабильность в процессе функционирования. Показано, что применение в реакционной смеси при формировании Со-N-С-композитов мономера с окислителем вместо предварительно полученного полимера не снижает активности таких электрокатализаторов в РВК, что позволяет избежать дополнительной стадии при получении такого типа материалов. Установлено, что тип углеродного компонента, использованного при получении электрокатализаторов (ацетиленовая сажа или ОГ), влияет на их состав и величину электрохимически активной площади поверхности, что приводит к различиям их электрохимических характеристик (n, E_{onset}, E_{max} , величина каталитического тока).

Насколько известно авторам, сравнительные исследования функциональных характеристик в РВК Ме-N-С-электрокатализаторов, полученных в одинаковых условиях, но при использовании в качестве источника азота либо непосредственно N-СП, либо системы соответствующий мономер — окислитель, в литературе отсутствуют. Сравнение же электрокаталитических свойств в РВК Ме-N-С-композитов, полученных ранее с помощью того или иного из двух указанных выше подходов, является затруднительным из-за различий в деталях их формирования.

Авторы выражают благодарность Павлу Новаку (Институт катализа и физико-химии поверхности им. Ежи Хабера, Краков, Польша), С. Н. Филоненко и В. С. Дядюну (Институт физической химии им. Л. В. Писаржевского) за помощь в проведении исследований. Работа выполнена при частичной финансовой поддержке целевой комплексной программы научных исследований НАН Украины «Фундаментальные аспекты возобновляемо-водородной энергетики и топливно-ячеечных технологий» (проект № 6), а также гранта Польской академии наук для стажировки молодых ученых (Е. А. Парийская) в Институте катализа и физико-химии поверхности им. Ежи Хабера.

Литература

- 1. Zhu Y. P., Guo C., Zheng Y., Qiao S.-Z. // Acc. Chem. Res. — 2017. — **50**, N 4. — P. 915—923.
- Sealy C. // Mater. Today. 2008. 11, N 12. P. 65—68.
- Dai L., Xue Y., Qu L. et al. // Chem. Rev. 2015. 115, N 11. — P. 4823—4892.
- Shao M., Chang Q., Dodelet J.-P., Chenitz R. // Chem. Rev. — 2016. — 116, N 6. — P. 3594—3657.
- Shen M., Wei C., Ai K., Lu L. // Nano Res. 2017. 10, N
 P. 1449—1470.
- Wu G., More K. L., Johnston C. M., Zelenay P. // Science. — 2011. — 332, N 6028. — P. 443—447.
- Feng W., Li H., Cheng X. et al. // Appl. Surf. Sci. 2012.
 258, N 8. P. 4048—4053.
- Oh H. S., Oh J. G., Roh B. et al. // Electrochem. Commun. — 2011. — 13, N 8. — P. 879—881.
- Jiang S., Zhu C., Dong S. // J. Mater. Chem. A. 2013. 1, N 11. — P. 3593—3599.
- 10. Hu Y., Zhao X., Huang Y. et al. // J. Power Sources. 2013. 225. P. 129—136.
- Yuan X., Zeng X., Zhang H.-J. et al. // J. Amer. Chem. Soc. — 2010. — 132, N 6. — P. 1754—1755.
- 12. *Wu G., Johnston C. M., Mack N. H. et al.* // J. Mater. Chem. — 2011. — **21**, N 30. — P. 11392—11405.
- Wu G., More K. L., Xu P. et al. // Chem. Commun. 2013.
 49, N 32. P. 3291—3293.
- Tran T., Singh K. P., Song M. Y. et al. // J. Mater. Chem. A. — 2016. — 4, N 22. — P. 8645—8657.
- Wang Q., Zhou Z.-Y., Lai Y.-J. et al. // J. Amer. Chem. Soc. — 2014. — 136, N 31. — P. 10882—10885.
- Li X.-G., Huang M.-R., Duan W., Yang Y.-L. // Chem. Rev. — 2002. — 102, N 9. — P. 2925—3030.
- Wang Y.-C., Lai Y.-J., Song L. et al. // Angew. Chem. 2015. — 127, N 34. — P. 10045—10048.
- Su X., Liu J., Yao Y. et al. // Chem. Commun. 2015. 51, N 93. — P. 16707—16709.
- Wang P., Ma Z., Zhao Z., Jia L. // J. Electroanal. Chem. 2007. — 611, N 1/2. — P. 87—95.
- Zhu Y., Zhang B., Liu X. et al. // Angew. Chem. Int. Ed. 2014. — 53, N 40. — P. 10673—10677.
- 21. Kovtyukhova N. I., Ollivier P. J., Martin B. R. et al. // Chem. Mater. — 1999. — **11**, N 4. — P. 771—778.

- 22. *Chan H. S. O., Ng S. C., Hor T. S. A. et al.* // Eur. Polym. J. 1991. **27**, N 11. P. 1303—1308.
- Курысь Я. И., Уставицкая Е. А., Мазур Д. О. и др. // Теорет. и эксперим. химия. — 2014. — 50, № 6. — С. 367—374. — [Theor. Exp. Chem. — 2015. — 50, N 6. — Р. 371—377 (Engl. Transl.)]
- *Трасатти С., Петрий О. А.* // Электрохимия. 1993. — 29, № 4. — С. 557—574.
- Orazem M. E., Tribollet B. Electrochemical impedance spectroscopy. — Hoboken, NJ : John Wiley & Sons, Inc., 2008.
- Kurys Ya. I., Ustavytska O. O., Koshechko V. G., Pokhodenko V. D. // Electrocatalysis. — 2014. — 6, N 1. — P. 117—125.
- Sidik R. A., Anderson A. B. // J. Phys. Chem. B. 2006. 110, N 2. — P. 936—941.

- Hu M., Yao Z., Wang X. // Ind. Eng. Chem. Res. 2017. —
 56, N 13. P. 3477—3502.
- Yeager E. // Electrochim. acta. 1984. 29, N 11. P. 1527—1537.
- Bard A. J., Faulkner L. R. Electrochemical methods: Fundamentals and applications. — New York : John Wiley & Sons, Inc., 2001.
- Wise D. L., Houghton G. // Chem. Eng. Sci. 1966. 21, N 11. — P. 999—1010.
- 32. Zagal J., Bindra P., Yeager E. // J. Electrochem. Soc. 1980. 127, N 7. P. 1506—1517.

Поступила в редакцию 12 октября 2018 г. В окончательном варианте 13 ноября 2018 г.

Вплив умов формування на активність Co-N-C-електрокаталізаторів на основі полі-*м*-фенілендіаміну в процесі відновлення кисню

О. О. Парійська, Д. О. Мазур, Я. І. Курись, В. Г. Кошечко, В. Д. Походенко

Інститут фізичної хімії ім. Л. В. Писаржевського НАН України просп. Науки, 31, Київ 03028, Україна. E-mail: o.ustavytska@gmail.com

Показано, що використання в якості джерела азоту суміші м-фенілендіаміну з персульфатом амонію, замість попередньо одержаного полімеру — полі-м-фенілендіаміну, дозволяє спростити формування піролізованих Co-N-C-електрокаталізаторів реакції відновлення кисню та забезпечує підвищення їх активності у кислому електроліті за рахунок присутності у складі Co₉S₈. Встановлено, що заміна ацетиленової сажі на оксид графену при формуванні композитів даного типу призводить до збільшення електрохімічно активної площі поверхні каталізатора та, як наслідок, до покращення його струмових характеристик.

Ключові слова: Со-N-С-електрокаталізатори, відновлення кисню, полі-*м*-фенілендіамін, карбонізація, оксид графену.

Influence of the Formation Conditions on the Activity of Co-N-C Electrocatalysts Based on Poly-*m*-phenylenediamine in the Process of Oxygen Reduction

O. O. Pariiska, D. O. Mazur, Ya. I. Kurys, V. G. Koshechko, V. D. Pokhodenko

L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine Nauky Ave., 31, Kyiv 03028, Ukraine. E-mail: o.ustavytska@gmail.com

It is shown that usage of mixture of m-phenylenediamine with ammonium persulfate instead of preliminary obtained polymer – poly-m-phenylenediamine, as nitrogen source, allows to simplify formation of pyrolized Co-N-C electrocatalysts of oxygen reduction reaction and provides enhancement of their activity in acidic electrolyte due to presence of Co_9S_8 in composition. It is established that replacement of acetylene black by graphene oxide during such type composite formation leads to increasing of electrochemically active surface area of catalyst and, as a result, to improvement of its current characteristics.

Key words: Co-N-C electrocatalysts, oxygen reduction, poly-m-phenylenediamine, carbonization, graphene oxide.