УДК 544.47:544.344

Паровой риформинг этанола на ферритах

Л. Ю. Долгих, И. Л. Столярчук, Л. А. Старая, Ю. И. Пятницкий

Институт физической химии им. Л. В. Писаржевского НАН Украины просп. Науки, 31, Киев 03028, Украина. E-mail: ldolgykh@inphyschem-nas.kiev.ua

Обобщены результаты исследований авторов процесса парового риформинга этанола (ПРЭ) на наноразмерных ферритах шпинельной структуры MFe_2O_4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn). На ферритах Mg, Mn и Fe получены наибольшие значения выхода целевого продукта — водорода. На наноразмерном $MnFe_2O_4$ достигнут близкий к стехиометрическому выход H_2 . Предложена вероятная схема механизма ПРЭ, сочетающая окислительно-восстановительные и кислотно-основные стадии.

Ключевые слова: этанол, паровой риформинг, оксидные катализаторы, водород.

Паровой риформинг этанола (ПРЭ) представляет собой перспективный способ получения водорода из возобновляемого сырья для дальнейшего использования водорода в качестве моторного топлива или в топливных ячейках. При полном превращении этанола в процессе ПРЭ по реакции

$$C_2H_5OH + 3H_2O = 2CO_2 + 6H_2$$
 (I)

водород образуется как из этанола (50 % мол.), так и из воды (50 % мол.), что делает процесс особенно привлекательным. Важно также, что при использовании в ПРЭ получаемого из растительного сырья биоэтанола не происходит накопления диоксида углерода в атмосфере, поскольку выделение CO_2 в реакции (I) полностью компенсируется его расходованием при росте растений.

Согласно обзорам [1-5] исследованию парового риформинга посвящено большое число работ, при этом в большинстве из них для осуществления ПРЭ использовались нанесенные металлические катализаторы. Лишь ограниченное число катализаторов другого типа изучалось в этой реакции, среди них простые и сложные оксиды. В работе [6] исследованы каталитические свойства MgO, Al₂O₃, ZnO, V₂O₅, La₂O₃, CeO₂ и Sm₂O₃. Большинство изученных простых оксидов проявили активность по отношению к превращению этанола. При этом продукты парового риформинга этанола наблюдались на оксидах V2O5, La₂O₃, CeO₂ и Sm₂O₃ (оксиды металлов с переменной валентностью), обладающих окислительно-восстановительными свойствами. Наиболее эффективным оказался оксид с редокс-свойствами — ZnO. Высокую эффективность в реакции ПРЭ демонстрировали сложные оксиды со структурой шпинели MAl_2O_4 (M = Cu, Zn или Ni) [7]. В работе [8] исследованы каталитические свойства сложных оксидов NiM₂O₄ (M = Al, Mn, Fe). Шпинель NiAl₂O₄ проявила высокую активность и селективность при 823 К; кристаллическая структура NiAl₂O₄ оставалась практически неизменной в условиях реакции, тогда как шпинели NiMn₂O₄ и NiFe₂O₄ разрушались в той или иной степени [8]. Катализаторы на основе перовскитов La_2NiO_4 , $LaFe_vNi_{1-v}O_3$ и $LaCo_{1-x}Zn_xO_3$ также оказались достаточно активными и селективными, хотя и разрушались в ходе катализа [9, 10]. Высокую активность в реакции ПРЭ проявляет катализатор на основе гидротальцита кобальта [11]; примечательно, что только следы металлического кобальта были идентифицированы после реакции, т. е. кобальт в окисленном состоянии является активной частицей в смешанном оксидном катализаторе. Высокую эффективность в процессе ПРЭ показали катализаторы $Fe_x Co_{3-x}O_4$, для которых при x > 0,15 не обнаружены фазы металлов после катализа [12].

В настоящей работе обобщены результаты наших исследований процесса парового риформинга этанола на сложных оксидных катализаторах — ферритах MFe_2O_4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) [13—21]. Образцы ферритов Mn, Co и Ni были приготовлены термическим разложением гетероядерных комплексов [MFe₂O(CH₃COO)₆(H₂O)₃]·2H₂O (M = Mn, Co, Ni) по методике [22]. Согласно данным ПЭМ и РФА исходные образцы состояли из наночастиц соответствующих ферритов со средним диаметром около 8 нм и узким распределением частиц по размерам

Рис. 1. Температурные зависимости выхода водорода на нанокатализаторах NiFe₂O₄ (*l*), CoFe₂O₄ (*2*), MnFe₂O₄ (*3*), полученных методом термического разложения гетероядерных комплексов (*a*), и на катализаторах CuFe₂O₄ (*l*), FeFe₂O₄ (*2*), MnFe₂O₄ (*3*), MgFe₂O₄ (*4*), ZnFe₂O₄ (*5*), полученных методом соосаждения (δ).

[15]. Феррит марганца был приготовлен также методом соосаждения, как и ферриты Fe, Mg и Zn [15, 21]. По данным электронографии в исходных образцах, приготовленных данным методом, установлено наличие кристаллических фаз соответствующих ферритов шпинельной структуры.

Исследование каталитических свойств ферритов в процессе ПРЭ проводили в проточном кварцевом реакторе при мольном соотношении $H_2O/C_2H_5OH = 19 (2,7 \% мол. C_2H_5OH, 50 \% мол. H_2O, остальное N_2), которое близко к соотношению вода/этанол в биоэтаноле, полученном ферментацией биомассы, и скорости потока реакционной смеси 0,17 моль/ч. Все полученные ферриты проявили каталитическую активность в процессе ПРЭ. На рис. 1,$ *а*и*б*представлены температурные зависимости выхода водорода для ферритных катализаторов. Выход водорода принимался равным 100 %, если на 1 моль подаваемого в реактор этанола образовывалось 6 моль

водорода в соответствии со стехиометрией реакции (I).

В ходе катализа химический состав ферритов Mg, Mn, Fe и Zn не претерпевал изменения [13, 20, 21] (происходило лишь спекание наночастиц ферритов), тогда как ферриты Co, Ni и Cu восстанавливались частично или полностью до соответствующих металлов под воздействием реакционной смеси [15, 18, 21].

Максимальный выход водорода (94,6 %) отмечен для наноразмерного $MnFe_2O_4$, полученного разложением гетероядерного комплекса, при 650 °C (рис. 1, *a*). Второй по величине выход водорода (84,3 %) достигнут на $MnFe_2O_4$, полученном соосаждением, при 550 °C (рис. 1, δ). Не исключено, что на этом катализаторе может быть достигнут более высокий выход при повышении температуры катализа, поскольку выход водорода имеет тенденцию к увеличению при возрастании температуры, как видно из рис. 1, δ .

Основными побочными продуктами, которые наблюдались при ПРЭ на ферритах, были ацетальдегид, ацетон и оксиды углерода. Исключение составили ферриты никеля и кобальта, при катализе на которых не наблюдался ацетон. Образование побочных продуктов снижает выход водорода. Полученные нами и литературные данные [1, 3, 23, 24] позволяют предположить следующую схему превращения этанола на ферритах в процессе ПРЭ (рис. 2, индекс «а» обозначает адсорбированное состояние).

Представленная схема включает целевую реакцию (I) и реакции образования основных побочных продуктов:

$$C_2H_5OH = CH_3CHO + H_2, \tag{II}$$

$$2C_2H_5OH + H_2O = CH_3COCH_3 + CO_2 + 4H_2$$
, (III)

$$2CH_3CHO + H_2O = CH_3COCH_3 + CO_2 + 2H_2, (IV)$$

$$CH_3CHO + 3H_2O = 2CO_2 + 5H_2.$$
 (V)

При повышенных температурах наблюдалось также образование CO на NiFe₂O₄ (550—700 °C), CoFe₂O₄ (600—700 °C) и MnFe₂O₄ (700 °C), на других

Рис. 2. Схема превращения этанола на ферритах.

Рис. 3. Схема вероятного механизма дегидрирования этанола в ацетальдегид на ферритах.

ферритах выделение СО не зафиксировано. К числу побочных продуктов относятся и углеводороды С₁—С₃, которые в большинстве случаев образовывались в относительно небольших количествах.

Механизм процесса ПРЭ в целом сочетает два типа механизмов: окислительно-восстановительный и кислотно-основный [19-21]. Окислительно-восстановительный механизм убедительно подтверждается данными, полученными для ферритов FeFe₂O₄ и NiFe₂O₄ в работах [25, 26]. В этих работах процесс ПРЭ проводили путем попеременной подачи паров этанола и воды на ферритный катализатор при 450 °C. Времена подачи реагентов на катализатор варьировали от 1 ч до 2 мин. В ходе длительной восстановительной стадии цикла (1 ч) конверсия этанола была близка к 100 %, продуктами были СО₂, Н₂, также CO, H₂O, CH₄, углерод и ацетон (наблюдался в первые 10—15 мин). В атмосфере этанола ферриты восстанавливались с образованием металлических железа и никеля. При последующей окислительной стадии под воздействием паров воды структура ферритов восстанавливалась. Кроме водорода, на этой стадии наблюдалось также образование СО и СО2, как результат взаимодействия молекул воды с поверхностным углеродом. Циклическая подача паров этанола и воды при коротких временах взаимодействия (опыты проведены для FeFe₂O₄ [26]) не приводила к изменению структуры феррита. Такой результат служит важным аргументом в пользу существования окислительно-восстановительного механизма в процессе ПРЭ на ферритах в стационарных условиях.

Вместе с тем отдельные реакции процесса ПРЭ могут включать стадии кислотно-основного характера. К такой реакции можно отнести реакцию дегидрирования этанола в ацетальдегид (II). Схема вероятного гетеролитического механизма реакции на ферритах показана на рис. 3. Основные черты механизма заимствованы из работ [27—29], в которых обоснован механизм дегидрирования пропана в пропилен на одиночных центрах M^{II} (M = Zn, Co, Fe) в матрице SiO₂.

Поверхностные катионы металлов в ферритах проявляют свойства льюисовских кислотных центров, анионы кислорода — основных центров. Взаимодействие этанола с кислотно-основной парой центров приводит к гетеролитическому расщеплению связи О–Н в этаноле с образованием этокси интермедиата, локализованного на ионе металла (кислотный центр Льюиса), и протона, локализованного на поверхностном ионе кислорода (основный центр).

В следующей стадии происходит β-отщепление гидридного иона H⁻ от C–H-связи в этокси частице со связыванием H⁻ с поверхностным ионом металла и десорбцией молекулы ацетальдегида. Замыкает каталитический цикл рекомбинация гидридного иона и протона с образованием молекулы водорода в газовой фазе.

Такой механизм вероятен, по нашему мнению, для ферритов Mg, Mn, Fe и Zn, химический состав которых не изменялся под влиянием реакционной смеси в процессе ПРЭ. Менее вероятным он представляется для феррита CuFe2O4. Этот феррит оказался намного более активным и селективным в отношении ацетальдегида по сравнению с другими исследованными ферритами [18, 21]. На нем при начальной температуре каталитических опытов 300 °С выход ацетальдегида составил 90 %, что ненамного уступает термодинамически возможному выходу. Высокая активность CuFe₂O₄, возможно, связана с легко протекающими обратимыми переходами Cu²⁺↔Cu⁺ на поверхности феррита меди и, таким образом, реализуется гомолитический (редокс) механизм превращения этанола в ацетальдегид. В любом случае феррит меди можно отнести к перспективным катализаторам практически важной реакции дегидрирования этанола в ацетальдегид.

Десорбция ацетальдегида, наиболее вероятно, включает промежуточное образование адсорбированной частицы $CH_3CHO_{(a)}$, которая дает начало последующим реакционным путям в процессе ПРЭ, в частности превращению в ацетон по механизму альдольной конденсации, подобному следующему механизму для оксидных катализаторов, предложенному в работе [30] и подтвержденному в работах [31, 32]:

$$2CH_{3}-CHO_{(a)} + O_{(s)} \leftrightarrow$$

$$\leftrightarrow CH_{3}-CH(OH)-CH_{2}-COO_{(a)} + H_{(a)}, \quad (VI)$$

$$CH_{3}-CH(OH)-CH_{2}-COO_{(a)} + H_{(a)} \leftrightarrow$$

$$\leftrightarrow CH_{3}-CO-CH_{3} + CO_{2} + H_{2}, \quad (VII)$$

16 0/		Селективность, %			
Конверси	я этанола, %	CH ₃ COCH ₃	CO ₂	CH ₃ CHO	H ₂
		· ·		· · ·	
FeFe ₂ O ₄	88,7	71,3	24,3	2,9	32,7
Fe ₂ O ₃	91,2	72,6	23,2	1,1	31,3
Равновесие	100	74,21	24,74	1,05	33,16

Экспериментальные и равновесные величины конверсии этанола и селективности по продуктам при 400 °C

Рис. 4. Температурная зависимость селективности по ацетону на ферритах $FeFe_2O_4$ (1), $MnFe_2O_4$ (2), $MgFe_2O_4$ (3) и $ZnFe_2O_4$ (4).

где O_(s) — поверхностный кислород кристаллической решетки феррита.

Альдольная конденсация катализируется, как известно, кислотами или основаниями; в случае процесса ПРЭ на ферритах конденсация протекает с участием кислотных или основных поверхностных центров катализатора. Суммарный процесс превращения ацетальдегида или этанола в ацетон включает также редокс-реакции с участием поверхностного кислорода. Удаление поверхностного кислорода в стадии (VI) приводит к образованию поверхностных кислородных вакансий. Убыль кислорода компенсируется взаимодействием воды с восстановленными поверхностными центрами по реакции (VIII), как это наблюдалось для CeO₂ [31] и некоторых других катализаторов [32]:

$$\mathrm{H}_{2}\mathrm{O} + \Box_{(s)} \leftrightarrow \mathrm{O}_{(s)} + \mathrm{H}_{2}, \qquad (\mathrm{VIII})$$

где $\Box_{(s)}$ обозначает поверхностные кислородные вакансии.

Более детально кислородная вакансия может быть представлена как $[Fe^{2+}\Box Fe^{2+}]_{(s)}$, которая превращается по реакции (VIII) в $[Fe^{3+}O^{2-}Fe^{3+}]_{(s)}$. Заметим также, что реакция (VIII) играет важную роль в процессе ПРЭ, поскольку с ее помощью можно получить до 50 % мол. водорода из такого дешевого сырья, как вода.

Кислородные вакансии появляются в ферритах не только при образовании ацетона, но и как результат восстановления поверхностных ионов металлов другими газообразными органическими соединениями или их фрагментами ($CH_{3(a)}, CH_{2(a)}, CO_{(a)}$) и водородом — главным восстановительным агентом при повышенных температурах. Суммарная восстановительная стадия в процессе ПРЭ может быть представлена как

$$CH_3CH_2OH + 3O_{(s)} \leftrightarrow 2CO_2 + 3\Box_{(s)} + 3H_2.$$
 (IX)

Концентрация кислородных вакансий в ферритах может изменяться в определенных пределах без изменения кристаллической фазы феррита, однако, если она становится слишком большой, кристаллическая фаза разрушается, как это наблюдалось для ферритов NiFe₂O₄, CoFe₂O₄ и CuFe₂O₄.

Селективность по ацетону представлена на рис. 4 для не подвергавшихся восстановлению в ходе катализа ферритов $MgFe_2O_4$, $MnFe_2O_4$, $FeFe_2O_4$ и $ZnFe_2O_4$.

Как видно из рис. 4, селективность по ацетону с ростом температуры проходит через максимум. С учетом общей схемы превращения этанола (рис. 2) это указывает на осуществление процесса ПРЭ через последовательные превращения

$$CH_3CH_2OH \leftrightarrow CH_3CHO \leftrightarrow CH_3COCH_3 \leftrightarrow CO_2, H_2$$

или, что особенно характерно для FeFe₂O₄, по реакционному пути

$$CH_3CH_2OH \leftrightarrow CH_3COCH_3 \leftrightarrow CO_2, H_2$$

(т. е. без промежуточного образования ацетальдегида в газовой фазе).

Максимальная селективность по ацетону наблюдалась на FeFe₂O₄ при 400 °C (рис. 4). В соответствии со стехиометрией реакции (III) предельная величина селективности по ацетону равна 75 % и по CO_2 — 25 %, так как 3/4 молекул этанола превращаются в ацетон и 1/4 в CO_2 . Как видно из табл. 1, экспериментальные значения селективности по ацетону и CO_2 для FeFe₂O₄ при 400 °C близки к их теоретическим значениям, как и селективность по водороду; это же наблюдалось для оксида железа Fe₂O₃ по данным [16, 19] (в ходе процесса ПРЭ Fe₂O₃ превращался в FeFe₂O₄).

Для сравнения в табл. 1 приведены равновесные значения конверсии этанола и селективности по продуктам, рассчитанные для реакции превращения этанола в ацетальдегид и ацетон при использованном в экспериментах составе исходной реакционной смеси 2,7 % мол. C_2H_5OH , 50 % мол. H_2O , остальное N_2 . Полученные результаты свидетельствуют, что каталитическая реакция превращения этанола в ацетон достаточно близка к ее равновесию и дальнейшее превращение ацетона в CO_2 и H_2 еще сильно заторможено при 400 °C.

Можно также заключить, что оксиды железа проявили себя как перспективные катализаторы получения ацетона (попутно и водорода) из этанола в определенных условиях.

Выше 400 °C становится все более существенным с ростом температуры вклад превращения ацетона в CO_2 и H_2 как в случае $FeFe_2O_4$, так и $MgFe_2O_4$, $MnFe_2O_4$, $ZnFe_2O_4$ (при уменьшении селективности по ацетону селективности по CO_2 и H_2 возрастают) [21].

Для ферритов MnFe₂O₄, MgFe₂O₄ и FeFe₂O₄ были получены наибольшие и близкие значения выхода водорода при максимальной температуре опытов 550 °С, как видно из рис. 1, б. Поскольку магний относится к металлам с постоянной валентностью, близость выхода водорода на MnFe₂O₄ и MgFe₂O₄ указывает на ключевую роль в каталитическом действии ферритов в процессе ПРЭ ионов Fe³⁺, способных к редокс-переходам в окислительно-восстановительных парах Fe³⁺↔Fe²⁺. Ионы железа, по крайней мере частично, локализованы в октаэдрических позициях в структуре ферритов, а согласно [34-36] поверхность оксидов шпинельной структуры состоит в основном из мест октаэдрической координации и их каталитическая активность определяется именно октаэдрическими катионами.

Природа металла в составе феррошпинелей существенно влияет на способность к восстановлению катионов Fe³⁺ кристаллической решетки шпинели, что подтверждается полученными нами данными по термопрограммированному восстановлению водородом [21]. Для феррита Mn наблюдалось самое низкое значение температуры максимума восстановления

Таблица 2

Температуры максимумов десорбции диоксида углерода $T_m^{CO_2}$ и аммиака $T_m^{NH_3}$ в ходе ТПД-СО₂ и ТПД-NH₃ с поверхности ферритных катализаторов

Катализатор	$T_{m1}^{\rm CO_2}, ^{\circ}{ m C}$	$T_{m2}^{\rm CO_2}$, °C	$T_m^{\mathrm{NH}_3}, ^{\mathrm{o}}\mathrm{C}$
FeFe ₂ O ₄	99	150	372
MnFe ₂ O ₄	115	188	260
MgFe ₂ O ₄	121	203	205
ZnFe ₂ O ₄	86	_	185

(характеризующей прочность связи кислорода с поверхностью катализатора) в ряду изученных ферритов. Следовательно, $MnFe_2O_4$ может легче отдавать кислород для окисления поверхностных органических промежуточных соединений и селективность по наиболее окисленному продукту реакции CO_2 и водороду для $MnFe_2O_4$ выше по сравнению с другими ферритами.

Как известно, распределение продуктов процесса парового риформинга этанола зависит также от кислотно-основных свойств катализаторов [37—39]. Согласно [40—42] селективность по альдегидам тесно связана с силой основных центров на поверхности оксидов при наличии достаточного количества слабых поверхностных кислотных центров; последние играют ключевую роль в дегидрировании спиртов. Представленная выше на рис. 3 схема вероятного механизма для ферритов согласуется со сделанными в литературе выводами о важной роли как основных, так и кислотных центров при дегидрировании этанола в ацетальдегид.

Данные, полученные методом термопрограммированной десорбции CO₂ (ТПД-CO₂) по методике [21], свидетельствуют о наличии на поверхности ферритов основных центров (табл. 2). Десорбционные максимумы с температурой $T_{m1}^{CO_2}$ в интервале 86—121 °C могут быть отнесены к десорбции CO₂ со слабых основных центров, при этом нельзя полностью исключить вклад десорбции физически адсорбированного CO₂. Температуры максимумов десорбции $T_{m2}^{CO_2}$ в интервале 150—203 °C характеризуют основные центры средней силы.

Для изученных нами стабильных в катализе ферритов при низких конверсиях этанола (300 °C) наименьшей селективностью по ацетальдегиду обладает $FeFe_2O_4$. Заметим, что этот феррит характеризуется наибольшей силой поверхностных кислотных центров среди изученных ферритов. По данным,

полученным нами методом термопрограммированной десорбции аммиака (ТПД-NH₃) согласно методике [21], температура максимума десорбции NH₃, характеризующая силу кислотных центров, для FeFe₂O₄ существенно превышает $T_m^{NH_3}$ для других ферритов (табл. 2). Высокой начальной селективностью по ацетальдегиду обладают ферриты Zn и Mg, имеющие относительно слабые кислотные центры, что подтверждается низкими значениями $T_m^{NH_3}$ в ряду изученных ферритов.

При увеличении температуры до 400 °С возрастает конверсия этанола и ацетальдегида в ацетон, при этом наибольшая селективность по ацетону достигается для ферритов $FeFe_2O_4$ и $MnFe_2O_4$ (рис. 4). Реакция альдольной конденсации включает промежуточное образование карбанионных интермедиатов, локализованных на паре кислотный центр — основный центр.

Более высокую селективность по ацетону в процессе парового риформинга этанола на $FeFe_2O_4$ и $MnFe_2O_4$ можно объяснить наличием на их поверхности основных центров достаточной силы и кислотных центров, которые по своей силе превосходят кислотные центры ферритов Zn и Mg, что показано нами методами TПД-CO₂ и TПД-NH₃.

Окислительно-восстановительные сталии в процессе ПРЭ на ферритах свойственны в первую очередь реакциям паровой конверсии этанола (I), ацетальдегида (V) и ацетона в H₂ и CO₂, которые протекают через образование поверхностных частиц СН_{*x*(*a*)}, СО_(*a*) и других промежуточных соединений [23, 43]. Как отмечалось выше, при не слишком высоких температурах (до 550 °C) на всех ферритах, за исключением ферритов Со и Ni, которые в ходе ПРЭ восстанавливались до металлов, не наблюдалось образование СО в газовой фазе. Отсутствие СО можно связать с тем, что адсорбированные частицы СО гораздо быстрее окисляются в CO_2 ($CO_{(a)} + O_{(s)} \rightarrow$ СО₂), чем десорбируются. Очевидно также, что ферриты Mg, Mn, Fe, Cu и Zn относительно малоактивны в реакции водяного сдвига, в противном случае наблюдалось бы появление СО за счет реакции СО2 + Н₂ ↔ СО + Н₂О (согласно термодинамическим расчетам для принятых в настоящей работе условий [5] равновесное содержание СО в продуктах реакции ПРЭ становится заметным выше 400 °С).

В заключение кратко суммируем полученные результаты. Ферриты Mn, Fe и Mg проявляют высокую каталитическую активность в процессе получения водорода паровым риформингом этанола. На MnFe₂O₄ достигнут близкий к стехиометрическому выход водорода 94,6 % (5,68 моль H₂/моль исходного этанола) при 650 °C. На ферритах Mg, Mn, Fe, Cu и Zn возможно осуществление процесса ПРЭ при полном

превращении этанола без образования СО, что является важным показателем при дальнейшем использовании водорода в низкотемпературных топливных элементах. Феррит меди является перспективным катализатором получения ацетальдегида из этанола, а феррит железа (Fe₂O₄) — ацетона. Эти катализаторы могут быть использованы, в частности, в двухстадийных каталитических процессах, включающих промежуточное образование ацетальдегида или ацетона. Механизм парового риформинга этанола на ферритах включает как окислительно-восстановительные, так и кислотно-основные стадии. Для достижения высокой селективности процесса необходим определенный баланс окислительно-восстановительных и кислотно-основных свойств оксидного катализатора.

Авторы выражают благодарность И. В. Василенко за помощь в синтезе катализаторов и за исследование образцов методами РФА, электронографии и ПЭМ. Работа выполнена при финансовой поддержке целевой комплексной программы научных исследований НАН Украины «Фундаментальные аспекты возобновляемо-водородной энергетики и технологий топливных ячеек».

Литература

- 1. Sun J., Wang Y. // ACS Catal. 2014. 4. P. 1078—1090.
- Haryanto A., Fernando S., Murali N., Adhikari S.// Energy Fuels. — 2005. — 19. — P. 2098—2106.
- Vaidya P. D., Rodrigues A. E. // Chem. Eng. J. 2006. 117. — P. 39—49.
- Ni M., Leung D. Y. C, Leung M. K. H. // Int. J. Hydrogen Energy. — 2007. — 32. — P. 3238—3247.
- Пятницкий Ю. И., Долгих Л. Ю., Столярчук И. Л., Стрижак П. Е. // Теорет. и эксперим. химия. — 2013. — 49, № 5. — С. 265—283. — [Theor. Exp. Chem. — 2013. — 49, N 5. — Р. 277—297 (Engl. Transl.)].
- Llorca J., Piscina P. R., Sales J. et al. // Chem. Commun. — 2001. — P. 641—642.
- Barroso M. N., Gomez M. F., Arrua L. A. et al. // Catal. Lett. — 2006. — 109. — P. 13—19.
- Muroyama H., Nakase R., Matsui T. et al. // Int. J. Hydrogen Energy. — 2010. — 35. — P. 1575—1581.
- Li Z., Yi W., Qun H. // Trans. Nonferrous Met. Soc. China. — 2009. — 19. — P. 1444—1449.
- Chen S. Q., Liu Y. // Int. J. Hydrogen Energy. 2009. 34. — P. 4735—4746.
- Espinal R., Taboada E., Molins E. et al. // Appl. Catal. B. — 2012. — 127. — P. 59— 67.
- de la Pena O'Shea V. A., Nafria R., Ramurez de la Piscina P. et al. // Int. J. Hydrogen Energy. — 2008. — 33. — P. 3601—3606.
- Столярчук И. Л., Долгих Л. Ю., Василенко И. В. и др. // Теорет. и эксперим. химия. — 2012. — 48, № 2. — С.

119—125. — [Theor. Exp. Chem. — 2012. — **48**, N 2. — P. 129—134 (Engl. Transl.)].

- Пятницкий Ю. И., Долгих Л. Ю., Столярчук И. Л., Стрижак П. Е. // Теорет. и эксперим. химия. — 2013. — 49, № 2. — С. 99—103. — [Theor. Exp. Chem. — 2013. — 49, N 2. — Р. 109—114 (Engl. Transl.)].
- Долгих Л. Ю., Столярчук И. Л., Василенко И. В. и др. // Теорет. и эксперим. химия. — 2013. — 49, № 3. — С. 172—177. — [Theor. Exp. Chem. — 2013. — 49, N 3. — Р. 185—192 (Engl. Transl.)].
- Долгих Л. Ю., Столярчук И. Л., Старая Л. А. и др. // Теорет. и эксперим. химия. — 2014. — 50, № 4. — С. 244—247. — [Theor. Exp. Chem. — 2014. — 50, N 4. — Р. 245—249 (Engl. Transl.)].
- Столярчук И. Л., Долгих Л. Ю., Василенко И. В. и др. // Альтернативные источники сырья и топлива: сб. научн. тр. НАН Беларуси, Ин-т химии новых материалов / Ред. В. Е. Агабеков, К. Н. Гусак, Ж. В. Игнатович. — Минск : Беларуская навука, 2014. — Вып. 1. — С. 186—196.
- Долгих Л. Ю., Столярчук И. Л., Старая Л. А. и др. // Теорет. и эксперим. химия. — 2015. — 51, № 4. — С. 225—229. — [Theor. Exp. Chem. — 2015. — 51, № 4. — Р. 230—235 (Engl. Transl.)].
- Dolgykh L. Yu., Stolyarchuk I. L., Staraya L. A. et al. // Adsorp. Sci. and Technol. — 2015. — 33, N 6—8. — P. 715—721.
- Столярчук И. Л., Долгих Л. Ю., Василенко И. В. и др. // Теорет. и эксперим. химия. — 2016. — 52, № 4. — С. 244—248. — [Theor. Exp. Chem. — 2016. — 52, N 4. — Р. 246—251 (Engl. Transl.)].
- Dolgikh L. Yu., Pyatnytsky Y. I., Strizhak P. E. // Bioethanol and beyond: Advances in production process and future directions / Ed. M. Brienzo. — New York : Nova Sci., 2018. — Ch. 14. — P. 381—427.
- Василенко И. В., Гавриленко К. С., Котенко И. А. и др. // Теорет. и эксперим. химия. — 2007. — 43, № 5. — С. 323—329. — [Theor. Exp. Chem. — 2007. — 43, N 5. — Р. 353—358 (Engl. Transl.)].
- Mattos L. V., Jacobs G., Davis B. H., Noronha F. B. // Chem. Rev. — 2012. — 112. — P. 4094—4123.
- Ramirez de la Piscina P., Homs N. // Chem. Soc. Rev. 2008. — 37. — P. 2459—2467.

Паровий риформінг етанолу на феритах

- Trevisanut C., Mari M., Millet J. M. M., Cavani F. // J. Hydrogen Energy. — 2015. — 40. — P. 5264—5271.
- Trevisanut C., Bosselet F., Cavani F., Millet J. M. M. // Catal. Sci. and Technol. — 2015. — 5. — P. 1280—1289.
- Schweitzer N. M., Hu B., Das U. et al. // ACS Catal. 2014. — 4. — P. 1091—1092.
- Hu B., Getsoian A., Schweitzer N. M. et al. // J. Catal. 2015. — 322. — P. 24—37.
- Hu B., Schweitzer N. M., Zhang G. et al. // ACS Catal. 2015. — 5. — P. 3494—3503.
- Elliott D. J., Pennella F. // J. Catal. 1989. 119. P. 359—367.
- Nishiguchi T., Matsumoto T., Kanai H. et al. // Appl. Catal. A. — 2005. — 279. — P. 273—277.
- 32. Inui K., Kurabayashi T., Sato S. // J. Catal. 2002. **212**. P. 207.
- 33. *Charkendorff I., Niemantsverdriet W.* Concepts of modern catalysis and kinetics. Weinheim : Wiley-VCH, 2003.
- Jacobs J. P., Maltha A., Reitjes J. G. H. et al. // J. Catal. 1994. — 47. — P. 294—300.
- 35. Ramankutty C. G., Sugunan S. // Appl. Catal. A. 2001. — 218. — P. 39—51.
- Ramankutty C. G., Sugunan S., Thomas B. et al. // J. Mol. Catal. A. — 2002. — 187. — P. 105—117.
- Song H., Zhang L., Ozkan U. S. // Top. Catal. 2012. —
 55. P. 1324—1331.
- Garbarino G., Wang C., Valsamakis I. et al. // Appl. Catal. B. — 2015. — 174/175. — P. 21—34.
- 39. Busca G. // Chem. Rev. 2010. **110**. P. 2217—2249.
- 40. *Kibby C. L., Hall W. K. //* J. Catal. 1973. **29**. P. 144—159.
- Tanabe K., Misono M., Ono Y., Hattori H. New solid acids and bases. — Tokyo : Kodansha-Elsevier, 1989.
- 42. *Canesson P., Blanchard M.* // J. Catal. 1979. **42**. P. 205—212.
- Sutton J. E., Guo W., Katsoulakis M. A. et al. // Nature Chem. — 2016. — 8. — P. 331—337.

Поступила в редакцию 16 июня 2018 г. В окончательном варианте 25 июня 2018 г.

Л. Ю. Долгіх, І. Л. Столярчук, Л. О. Старая, Ю. І. Пятницький

Інститут фізичної хімії ім. Л. В. Писаржевського НАН України просп. Науки, 31, Київ 03028, Україна. E-mail: ldolgykh@inphyschem-nas.kiev.ua

Узагальнено результати досліджень авторів процесу парового риформінгу етанолу (ПРЕ) на нанорозмірних феритах шпінельної структури MFe_2O_4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn). На феритах Mg, Mn i Fe одержано найбільші значення виходу цільового продукту — водню. На нанорозмірному $MnFe_2O_4$ досягнуто близький до стехіометричного вихід H_2 . Запропоновано ймовірну схему механізму ПРЕ, що поєднує окисно-відновні і кислотно-основні стадії.

Ключові слова: етанол, паровий риформінг, оксидні каталізатори, водень.

Steam Reforming of Ethanol on Ferrites

L. Y. Dolgikh, I. L. Stolyarchuk, L. A. Staraya, Y. I. Pyatnitsky

L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine Nauky Ave., 31, Kyiv 03028, Ukraine. E-mail: ldolgykh@inphyschem-nas.kiev.ua

Author's results of the study of ethanol steam reforming (ESR) on nanosized ferrites of the spinel structure MFe_2O_4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) are summarized. On Mg, Mn, and Fe ferrites, the highest yields of the target product hydrogen were obtained. On nanosized $MnFe_2O_4$ close to the stoichiometric H_2 yield was achieved. Probable scheme of the mechanism of ESR, which combines redox and acid–base stages, is proposed.

Key words: ethanol, steam reforming, oxide catalysts, hydrogen.