УДК 544.478.1

Влияние редокс- и кислотных свойств нанофазных катализаторов Ga—H-ZSM-5, модифицированных переходными металлами, на восстановление закиси азота метаном

Л. Борко (L. Borkó)¹, H. B. Власенко², Ж. Коппань (Zs. Koppány)¹, А. Бекк (A. Beck)¹, А. М. Пузий³

¹ Centre for Energy Research, MTA, P. O. Box 49, H-1525, Budapest 114, Hungary. E-mail: borko.laszlo@energia.mta.hu

² Институт физической химии им. Л. В. Писаржевского НАН Украины просп. Науки, 31, Киев 03028, Украина. E-mail: nvvlasenko@gmail.com

³ Институт сорбции и проблем эндоэкологии НАН Украины ул. Генерала Наумова 13, Киев 03164, Украина

> Установлено, что каталитическая активность металл-цеолитов состава M/Ga—H-ZSM-5 в реакции селективного восстановления закиси азота метаном определяется комплексным действием свободных кислотных центров цеолита и редокс-центров наночастиц оксидов переходных d-металлов. Показана связь каталитических свойств таких систем с их редокс- и кислотными характеристиками, полученными методами термопрограммированного восстановления водородом и квазиравновесной термодесорбции аммиака.

Ключевые слова: цеолиты, переходный металл, галлий, разложение N2O, восстановление N2O метаном.

Разложение в безопасные соединения закиси азота, обладающей потенциалом глобального потепления (GWP), в 296 раз превышающим соответствующий показатель для углекислого газа [1], является важной задачей защиты окружающей среды. Обычно удаление N₂O осуществляется путем его разложения. Более эффективным путем осуществления такого процесса является его проведение в присутствии метана и гетерогенных катализаторов. Исследование влияния CH₄ на разложение N₂O показало, что для эффективного прямого разложения N2O и его восстановления метаном необходимы катализаторы, содержащие переходные металлы и их соединения [2-4]. Для серии массивных оксидов металлов установлено, что протеканию восстановления N₂O до N₂ способствует высокая окислительно-восстановительная активность этих катализаторов [5]. Заметная активность относительно взаимодействия N2O + CH4 наблюдалась для ряда переходных металлов, нанесенных на ZSM-5, особенно Fe/ZSM-5, Pd/ZSM-5 и Pt/ZSM-5 [6].

Железосодержащие катализаторы, нанесенные на цеолит, проявляют высокую активность в окислении метана N₂O при более низких температурах, чем в окислении кислородом [7, 8]. Предполагается, что при разложении N₂O образуется активная форма поверхностного кислорода (α -кислород, O_{α}), отличная от образующегося из O₂. Такая форма поверхностного кислорода легко реагирует с CH₄ даже при комнатной температуре [5, 9]. Большинство публикаций объясняют активность металл-цеолитных катализаторов в разложении N₂O и его восстановлении метаном именно ролью O_{α}, в то время как кислотно-основные свойства катализаторов, особенно металл-цеолитов, почти не принимаются во внимание.

Между тем кислотно-основные свойства могут играть существенную роль в восстановлении N_2O метаном из-за кислотно-основного характера N_2O и промежуточных продуктов (метокси- и формиатных частиц), образование которых является ключевыми стадиями механизма реакции [10]. Следовательно, металлсодержащие цеолиты должны действовать в

[©] Л. Борко (L. Borkó), Н. В. Власенко, Ж. Коппань (Zs. Koppány), А. Бекк (A. Beck), А. М. Пузий, 2018

реакции восстановления закиси азота метаном как бифункциональные, окислительно-восстановительные и кислотно-основные катализаторы. Согласно [11] одновременное присутствие сильных кислотных центров и внекаркасных частиц оксида Ga в цеолите MFI обеспечивает сильную дегидрирующую способность катализаторов. При изучении реакции ароматизации пропана на цеолите Ga—H-ZSM-5 обнаружено, что предварительная обработка водородом увеличивает дисперсность галлия, обеспечивая близкое расположение галлийсодержащих частиц и бренстедовских центров цеолита, что приводит к повышению суммарной каталитической активности [12].

Разработка концепции комбинированного действия кислотно-основных и окислительно-восстановительных свойств катализаторов при окислении метана N_2O представлена в работе [13]. Установлено, что активные нанодисперсные Co-Zr-катализаторы, в которых суммарная концентрация кислотных центров невелика, обладают сильными кислотными центрами. При этом наиболее активный низкотемпературный катализатор характеризуется оптимальным размером частиц, окислительно-восстановительными и кислотными свойствами [14].

Ранее нами показано, что высокая активность катализатора Mo_xO_y/Ga —H-ZSM-5 в восстановительном превращении N_2O в присутствии CH₄ определяется совокупным действием Ga—H-ZSM-5, характеризующегося сильной кислотностью, и Мо, обладающего незаполненной *d*-орбиталью [15]. Настоящая работа посвящена выявлению связи активности каталитических систем M_xO_y/H -ZSM-5 и M_xO_y/Ga —H-ZSM-5 (M: Fe, Co, Ni, Ru, Pd, Ir, Pt) в процессе селективного восстановления N_2O метаном с их окислительно-восстановительными и кислотными свойствами.

Экспериментальная часть

В качестве исходного образца использовали цеолит H-ZSM-5 (Si/Al = 30, обменная емкость по NH₄⁺ 0,495 ммоль/г), фракция 0,25—0,5 мм. Ga—H-ZSM-5 получали жидкофазным ионным обменом с использованием раствора Ga(NO₃)₃·H₂O (17,5 % Ga, определяемого комплексонометрически) с перемешиванием в течение ночи и последующим центрифугированием. Процедуру повторяли трижды, используя влажный осадок и свежие растворы. Полученный материал затем промывали бидистиллированной водой и сушили в эксикаторе при комнатной температуре.

Катализаторы состава M_xO_y/H-ZSM-5 и M_xO_y/ Ga—H-ZSM-5 получали методом пропитки. Исходные цеолиты H-ZSM-5 или Ga—H-ZSM-5 добавляли в раствор солей металлов в бидистиллированной воде. Полученный осадок отфильтровывали, промывали, затем сушили на воздухе в течение ночи при 403 K и прокаливали в течение 1 ч при 773 K в смеси 5 % O_2 + 95 % He. Катализаторы H-ZSM-5, Ga—H-ZSM-5, M_xO_y /H-ZSM-5, M_xO_y /Ga—H-ZSM-5 обозначены соответственно HZ, GaHZ, MHZ и MGaHZ.

Содержание активных компонентов анализировали методом рентгеновской флуоресценции. Для характеристики кристаллических фаз применяли метод рентгеновской дифракции (РФА). Редокс-свойства катализаторов изучали методом температурно-программируемого восстановления водородом (ТПВВ). Измерения проводили в проточном реакторе с использованием 1 % об. Н₂ в Аг при скорости подъема температуры 20 К мин⁻¹ в интервале 298—1100 К на образцах, предварительно обработанных при 923 К в течение 1 ч одним из двух различных окислителей (O₂ или N₂O), а затем охлажденных до комнатной температуры в среде окислителя. Компоненты исходной смеси и продукты реакции анализировали с помощью детектора по теплопроводности (TCD) и квадрупольного масс-спектрометра Hiden HAL 02/100. Концентрацию и силу кислотных центров образцов определяли методом квазиравновесной термодесорбции аммиака (QETD-NH₃) [16]. Измерения QETD-NH₃ проводили с использованием термогравиметрической установки с кварцевыми пружинными весами Мак-Бэна в интервале температур 298-723 К в вакууме (остаточное давление 0,133 Па). Таким образом, условия эксперимента соответствовали адсорбции-десорбции при постоянном давлении, т. е. изобаре адсорбции. Распределение энергии адсорбции аммиака рассчитывали на основе данных QETD с использованием метода CONTIN [16]. Суммарную концентрацию кислотных центров рассчитывали на основе количества аммиака, адсорбированного на образце при 323 К. Концентрацию кислотных центров различной силы рассчитывали по количеству аммиака, адсорбированного на образце в соответствующих температурных интервалах. На основании литературных данных [17] можно заключить, что каталитическое разложение NH₃ на М-центрах в температурном диапазоне измерений QETD NH₃ не происходит, что исключает неточность оценки количества кислотных центров.

Реакции прямого разложения $\rm N_2O$ и восстановления $\rm N_2O$ метаном изучали в интервале температур 373—873 К с шагом 25 К в режиме стационарного потока. 100 мг катализатора располагали между двумя слоями кварцевой ваты в кварцевом микрореакторе (диаметр 6 мм). Реакционная смесь состава 19,8 % $\rm N_2O$ в He или стехиометрическая смесь 19,8 % $\rm N_2O$ и 4,9 % CH₄ в He вводилась в систему с расходом 50 см³·мин⁻¹ при атмосферном давлении. Входящие

газы и продукты реакций (CH₄, N₂O, N₂, O₂, CO₂, С₂₊-углеводороды) анализировали с помощью газового хроматографа «СНКОМРАСК СР 9002» с использованием колонки из плавленого кварца длиной 50 м (0,53 мм) со стационарной фазой CP-Al₂O₂/KCl (для анализа углеводородов) и колонки Carboxen 1006 PLOT длиной 30 м (0,53 мм) в температурно-программированном режиме для постоянных газов, подключенных соответственно к пламенно-ионизационному (FID) и TC-детектору. В продуктах обнаруживались только CO₂ и N₂ (H₂O удалялась перед анализом в осушительной колонке). Конверсию N2O и CH4 рассчитывали по разности концентраций в смеси до и после реактора. Величины конверсии по обоим реагентам были равны, что указывает на отсутствие существенного осаждения углерода вследствие разложения метана. Активность различных катализаторов характеризовалась по температуре 50 %-ной конверсии метана и N₂O.

Результаты и обсуждение

Образец GaHZ, полученный методом ионного обмена, содержал 0,17 % мас. Ga; концентрация *d*-металла M, нанесенного на HZ или GaHZ, составляла 3 % мас. Относительный атомный состав Ga и M в MGaHZ варьировался в диапазоне 2—8 и 92—98 % ат. соответственно. Спектры РФА показали, что в ходе ионного обмена с Ga, пропитки M и последующей прокалки структура цеолита H-ZSM-5 не разрушается. В образцах после прокалки не обнаружены кристаллические фазы металлов или их оксидов. Установлено, что в моно- и биметаллических образцах оксиды металлов Ga и M (Fe, Co, Ni, Ru, Pd, Ir, Pt) находятся преимущественно в форме аморфных наночастиц размером <2 нм.

В экспериментах по разложению N_2O образовывались только N_2 и O_2 . При использовании стехиометрической смеси N_2O + CH_4 в Не в составе продуктов реакции присутствовали N_2 , CO_2 и H_2O . Углеводороды C_{2+} или оксигенаты обнаружены не были. В качестве критерия для сравнения активности различных катализаторов выбрана температура достижения 50 % конверсии N_2O и CH_4 . Поскольку конверсия N_2O и CH_4 в реакции восстановления закиси азота метаном была практически одинаковой, далее для характеристики каталитической активности в этой реакции использована температура достижения 50 %-ной конверсии метана (T_{50}).

На рис. 1 приведено сравнение активности изученных катализаторов в реакциях разложения N_2O и взаимодействия N_2O + CH_4 . В случае Co-, Ru- и Ir-содержащих образцов как состава MHZ, так и MGaHZ, а также FeHZ, NiHZ и HZ величины конверсии в реакциях разложения N_2O и восстановления

Рис. 1. Сопоставление активности образцов в реакциях разложения N₂O и его восстановления метаном.

N₂O метаном (N₂O + CH₄) очень близки. Соответствующие точки на рис. 1 расположены вблизи условной штриховой линии, соответствующей равенству Т₅₀ в обеих реакциях. Полученные данные указывают на незначительное влияние метана на разложение N₂O. На других катализаторах (PdHZ и PtHZ, FeGaHZ, NiGaHZ, PdGaHZ, PtGaHZ) восстановление N2O метаном происходит при более низкой температуре, чем разложение N₂O. Наиболее сильное влияние метана отмечается в присутствии Pt-содержащих образцов (как PtHZ, так и PtGaHZ), активность которых в реакции восстановления N2O метаном значительно выше, чем в разложении N₂O. Следовательно, на этих катализаторах метан в наибольшей степени благоприятствует разложению N₂O. Наличие Ga в составе катализаторов увеличивало конверсию в реакции разложения N2O почти на всех изученных системах, за исключением NiGaHZ, активность которого была ниже, чем для NiHZ, а также Ru- и Pd-содержащих катализаторов, на активность которых Ga не оказывал существенного влияния. На всех катализаторах, за исключением образцов PdGaHZ и NiGaHZ, галлий оказывал влияние также на реакцию N₂O + CH₄. В наибольшей степени это влияние отмечается для образцов FeHZ, CoGaHZ и IrGaHZ.

Эксперименты по ТПВВ на катализаторах состава МНZ, MGaHZ, а также прокаленных при 773 К исходных образцах HZ и GaHZ проводили после предварительной окислительной обработки образцов в газовой смеси состава 5 % O_2 /Не или 5 % N_2O /Не. Как и следовало ожидать, на исходном образце HZ, не содержащем металл, способный к окислению/восстановлению, потребление H₂ после предварительной обработки O_2 не наблюдалось. Однако после окисления образца N_2O отмечено расходование водорода, которое можно было бы отнести к реакции H₂

Рис. 2. Профили ТПВВ при обработке водородом образцов металл-цеолитов после предварительного окисления в атмосфере $O_2(a)$ и $N_2O(\delta)$, распределение кислотных центров по концентрации (*в*) и по силе (*г*) для образцов на основе HZ и GaHZ, а также изменение спектра кислотности при введении в исходный цеолит (Z) галлия (GaZ), палладия (PdZ) и обоих металлов (PdGaZ) по данным CONTIN (∂).

с активными кислородными частицами, образующимися при взаимодействии HZ с N₂O [18].

Сложность процессов, протекающих в ходе обработки водородом предварительно окисленных образцов, обусловливает наличие нескольких пиков на ТПВВ-профилях металл-цеолитов (рис. 2, a, δ). С одной стороны, происходит восстановление некоторой части окисленного металла, с другой — реакция водорода с адсорбированными частицами кислорода, образованными при адсорбции O₂ или N₂O. Наличие нескольких форм кислорода, удаляющегося из металл-цеолитов, показано в работе [19], где обнаружено, что количество кислорода, десорбирующегося с поверхности металл-цеолитов в ходе термопрограммированной десорбции N_2O , больше, чем образованное из N_2O , вследствие удаления дополнительного кислорода, присутствующего в решетке. Количество различных поверхностных кислородных частиц зависит как от содержания металла в цеолите, так и от соотношения Si/Al.

На рис. 2, *a*, *б* приведены типичные профили ТПВВ для образцов состава МНZ и MGaHZ (на примере Со-содержащих образцов). Профили ТПВВ образцов, обработанных N₂O, имеют более сложный характер, чем обработанных O₂. Вероятно, это обусловлено наличием нескольких форм адсорбированного кислорода, образующегося из N_2O . Подобный факт отмечается, например, в работе [20], авторы которой заключили, что в процессе СКВ N_2O метаном могут участвовать различные формы кислорода: на катализаторах Co-MOR и Fe-MOR метан реагирует с моноатомным кислородом из N_2O , тогда как как на Ni-MOR в реакции с метаном участвуют как атомная форма кислорода (возникающая при восстановлении N_2O), так и молекулярный кислород.

В спектре ТПВВ СоНZ, обработанного кислородом (рис. 2, а), наблюдается один пик при 796 К. Для СоGaHZ положение пика ТПВВ изменяется незначительно (820 К). После обработки N₂O для CoHZ и СоGaHZ наблюдается два пика (рис. 2, б). В дополнение к пикам, появляющимся при 725 К для CoHZ и 750 К для CoGaHZ, появляются новые характерные низкотемпературные пики ТРПП при ~560 К для образцов CoHZ и CoGaHZ. Этот дополнительный пик по сравнению с образцами, обработанными кислородом, можно отнести к участку окислительно-восстановительного потенциала, происходящего от разложения N2O. Пики при 725 и 750 К соответствуют процессу восстановления биметаллических оксидов Со-Ga после предварительной обработки N₂O. Небольшое плечо на ТПВВ-профилях обработанных N₂O образцов при 690 К (образец CoHZ) и 680 К (CoGaHZ), по-видимому, соответствует частичному восстановлению Ga³⁺ в металлический Ga.

В таблице суммированы данные об относительном расходовании водорода, определяемом как поглощение H_2 , отнесенное к теоретическому потреблению H_2 , необходимого для полного восстановления M^{n+} (самой высокой степени окисления данного металла) до M^0 . Следует отметить, что расходование H_2 в случае исходных образцов HZ и GaHZ незначительно (менее 5 %) по сравнению с образцами, содержащими переходный металл. Расходование водорода на взаимодействие с активным поверхностным кислородом, образованным при обработке цеолита N_2O (35 мкмоль/г H_2), на порядок меньше расходования на восстановление металлов и их оксидов в образцах состава MHZ и MGaHZ (до 880 мкмоль/г).

Расходование водорода в ходе ТПВВ для большинства Ga-содержащих катализаторов (MGaHZ) ниже по сравнению с соответствующими образцами, не содержащими Ga (MHZ). Это отмечалось как для образцов, предварительно обработанных O_2 , так и обработанных N_2O . Отличное от этого поведение характеризует Pd-содержащие системы: после обработки в N_2O для PdGaHZ расходование H_2 было несколько выше, чем на PdHZ.

С другой стороны, после предварительной обработки в N₂O расходование водорода в большинстве

Металл	MHZ		MGaHZ	
	O ₂	N ₂ O	O ₂	N ₂ O
Fe	0,6	1,0	0,5	1,0
Co	0,5	0,9	0,4	0,4
Ni	0,6	0,7	0,7	0,6
Ru	0,7	0,7	0,4	0,4
Pd	0,7	0,7	0,4	0,8
Ir	0,9	0,9	0,7	0,7
Pt	0,6	0,8	0,3	0,3

Относительное расходование водорода в ходе ТПВВ на поверхности образцов, предварительно обработанных в атмосфере O₂ или N₂

случаев было выше, чем после предварительной обработки в O_2 . Это свидетельствует о большей реакционной способности кислорода, образуемого из N_2O , являющегося окислителем в реакции $N_2O + CH_4$. Такая тенденция отмечалась для большинства изученных M-содержащих катализаторов, а именно: после окисления образцов N_2O при последующем поглощении H_2 расходование водорода было больше, чем после окисления O_2 . Однако в случае NiGaHZ обнаружен незначительный противоположный эффект, а в случае RuHZ, IrHZ, PdHZ, а также RuGaHZ, IrGaHZ, PtGaHZ и CoGaHZ различие предварительной обработки (в N_2O или O_2) не вызвало существенных изменений в величинах относительного расходования водорода.

Введение переходных металлов в цеолиты существенно изменяет характер кислотного спектра, оказывая влияние не только на концентрацию, но и на силу и природу центров [21]. Показано, что введение металлов Fe, Ni, Ag (в виде оксидов или катионов) в состав цеолитов (H-BEA и H-MFI) ведет к снижению кислотности Бренстеда, и в то же время образуются новые кислотные центры Льюиса.

На рис. 2, *в*, *г* представлено распределение кислотных центров по концентрациям и по силе. Исходный цеолит HZ содержит три типа кислотных центров — слабые (*w*), средние (*m*) и сильные (*s*), в то же время введение Ga приводит к исчезновению слабокислотных центров: образец GaHZ содержит лишь центры средней силы и сильнокислотные. Большинство образцов MHZ и MGaHZ, как и цеолит HZ, содержат три типа кислотных центров — слабые, средние и сильные. Исключение составляет образец PdGaHZ, в котором, как и в исходном GaHZ, отсутствуют слабокислотные центры, а также FeGaHZ и NiGaHZ, в которых отсутствуют сильнокислотные центры.

Данные QETD аммиака, обработанные с применением метода CONTIN, наглядно показывают, как изменяется спектр кислотности цеолита (HZ) при введении Ga и d-металла. В качестве примера представлены профили распределения по силе кислотных центров образцов HZ, GaHZ, PdHZ и PdGaHZ (рис. 2, ∂). Видно, что введение Ga в HZ увеличивает энергию адсорбции аммиака для среднекислотных центров (E_m) с 76 до 82 кДж/моль, а для сильнокислотных (E_s) с 103,4 до 116,7 кДж/моль. Нанесение Pd на HZ и GaHZ уменьшает величину E_s до 96,7 и 95,2 кДж/моль соответственно. В то же время влияние *d*-металла на силу среднекислотных центров не столь существенно: при введении Pd в цеолит HZ величина Е_т увеличивается с 76,0 до 76,8 кДж/моль, а при введении Pd в GaHZ — с 82,9 до 84,1 кДж/моль.

Для всех остальных образцов указанная тенденция сохраняется: под влиянием d-металла (М) сила среднекислотных центров (E_m) исходных цеолитов (HZ и GaHZ) несколько увеличивается, а сильных кислотных центров (E_s) снижается (рис. 2, ∂). Степень ослабления кислотной силы зависит от окисленного состояния М в наночастицах M_xO_y , стабилизированных на кислотных центрах исходного цеолита.

Ранее мы установили, что кислотные центры имеют большое значение при образовании и стабилизации наночастиц оксидов M_xO_y и M_xO_y/Ga_2O_3 [18]. Кроме того, кислотно-основные свойства катализатора оказывают решающее влияние на важные стадии сложного реакционного механизма восстановления N_2O метаном, предложенного в работе [15], который, как предполагалось, имеет место также в системах MoGaHZ. Комплексные активные центры MGaHZ состоят из ядра $[Ga^{3+}O^{2-}]^+$, окруженного ионами M^{n+} , стабилизированными на сильных кислотных центрах. Следовательно, катализаторы MGaHZ представляют собой бифункциональные системы, содержащие катионы M и Ga и кислотные центры.

Сложный характер влияния окислительно-восстановительных, кислотно-основных и коллективных свойств в реакциях селективного окисления подробно обсуждался в работе [22]. В нашем случае сложность связана также с эффектом последовательной, многоуровневой модификации цеолита Ga переходным *d*-металлом. Исследования показали, что *d*-металлы в различной степени увеличивают активность (снижают T_{50}) исходных HZ и GaHZ как в разложении N₂O, так и в реакции восстановления N₂O метаном (рис. 1). Влияние Ga обусловлено модифицированием окислительно-восстановительных и кислотных свойств соответствующего катализатора MHZ. Оптимальный состав комплексных активных центров должен основываться на способности к

мягкому восстановлению переходных *d*-металлов гемиоксидом азота и более слабой кислотности систем MGaHZ по сравнению с GaHZ. Наличие Ga увеличивает кислотную силу MHZ, что способствует ослаблению связи $H-CH_3$ в молекуле метана. В работе [10] в ходе реакции на FeBEA наблюдались также интермедиаты — метокси-Fe-OCH₃ и формиатные Fe-OOCH-частицы. Образование формиатных частиц M-OOCH для реакции невыгодно [10]. Кислотная сила, индуцируемая Ga, способствует образованию M-CH₃, из которых на следующей стадии образуется M-OCH₃, а также препятствует образованию радикалов CH₂, CH и C.

Рассмотрим природу активных центров на примере FeGaHZ. Кислород гемиоксида азота сначала реагирует с $[Ga^+Z^-]$ с образованием $[Ga^{3+}O^{2-}Z^-]$, создавая «кислородный резервуар» в цеолите [23]. При этом образуется N₂. Если в системе нет метана (прямое разложение N₂O), на катализаторе состава MGaHZ (например, FeGaHZ) стадия превращения $[Fe^{3+}O^{2-}Z^-]$ в $[Fe^{2+}OH^-Z^-]$ является медленным процессом, аналогичным превращению $[Ga^{3+}O^{2-}Z^-]$ в Ga^+Z^- . Авторы [10, 24, 25] высказали предположение о существовании стабильного O_a («аккомодированного» кислорода, «ассоттовато судеп).

При наличии в системе CH_4 протекание реакции N_2O меняется. Каталитический процесс между N_2O и CH_4 происходит посредством многостадийного механизма на сложных активных центрах, включающих М и Ga в различных окисленных состояниях и цеолит Z [26]. По аналогии с механизмом, описанным для MoGaHZ в работе [15], ключевые стадии взаимодействия N_2O и CH_4 (на примере FeGaHZ) могут быть описаны следующим образом.

Восстановление закиси азота протекает на комплексном активном центре катализатора, включающем галлийсодержащий льюисовский кислотный центр [Ga³⁺O²⁻Z⁻] и металлсодержащий редокс-центр $[Fe^{2+}OH^{-}Z^{-}]$. В ходе этого превращения происходит взаимодействие метана с Fe-содержащим редоксцентром с образованием комплекса [$Fe^{3+}O^{2-}CH_{3}Z^{-}$], после чего в результате присоединения к этому комплексу кислорода N2O происходит образование метокси-комплекса [Fe³⁺O²⁻CH₃OZ⁻]. Образование продуктов и регенерация комплексного активного центра происходит в результате реакции указанного комплекса с N₂O посредством комплексного механизма переноса кислорода [26]. Влияние на каталитический процесс свободных галлийсодержащих кислотных центров $[Ga^{3+}O^{2-}Z^{-}]$, находящихся в окружении металл-оксидных частиц, заключается в ослаблении связи CH₃-H в молекуле метана.

Суммарная реакция может быть выражена следующим образом:

$$CH_4 + 4N_2O \rightarrow CO_2 + H_2O + 4N_2.$$

Таким образом, синергетический эффект Ga и M (d-металла) в H-ZSM-5 в реакции восстановления закиси азота метаном обусловлен образованием комплексного активного центра каталитического превращения, включающего металлсодержащие активные центры [Fe²⁺OH⁻Z⁻], в совокупности с сильными кислотными центрами [Ga³⁺O²⁻Z⁻]. Восстановление N₂O метаном в присутствии металл-цеолитных катализаторов описывается механизмом, предложенным в работе [26]. Роль Ga в составе M/Ga-H-ZSM-5 предположительно связана с его влиянием на редокс-свойства катализаторов. Влияние кислотности на суммарную реакцию окисления является косвенным. С одной стороны, она является стабилизирующим фактором самоорганизованного синтеза катализаторов, обеспечивая распределение металл-оксидных наночастиц вблизи кислотных центров и тем самым регулируя концентрацию поверхностных метокси- и формиатных интермедиатов, образующихся в ходе каталитической реакции. С другой стороны, кислотность является фактором, ослабляющим связь СН₃-Н в ходе взаимодействия метана с комплексным активным центром металлцеолитных катализаторов.

Полученные данные дают основание для целенаправленного подбора эффективных металл-цеолитных катализаторов прямого разложения и восстановления N₂O метаном. Среди изученных каталитических систем оптимальными для процесса разложения закиси азота являются RuGaHZ и IrGaH, а для восстановления N₂O метаном — Pt-содержащие системы как с участием Ga, так и без него.

Работа выполнена в рамках проектов ОТКА T-043521, K-101854 и венгерско-украинского проекта HAS/NASU-14/2010-2012, а также целевой комплексной программы фундаментальных исследований НАН Украины «Фундаментальные проблемы создания новых наноматериалов и нанотехнологий» (договор 29/18-Н).

Литература

- 1. Dubois J.-L. // Catal. Today. 2008. 99. P. 5—14.
- Noritaka M. Modern heterogeneous oxidation catalysis: design, reactions and characterization. — John Wiley & Sons, 2009.
- Chmielarz L., Kuśtrowski P., Kruszec M. et al. // J. Porous Mater. — 2005. — 12. — P. 183—189.
- Konsolakis M. // ACS Catal. 2015. 5. P. 6397—6421.

- Satsuma A., Maeshima H., Watanabe K. et al. // Catal. Today. — 2000. — 63. — P. 347—353.
- Shimokawabe M., Takahata N., Chaki T., Takezawa N. // React. Kinet. and Catal. Lett. — 2000. — 71. — P. 313—318.
- Panov G. I., Uriarte A. K., Rodkin M. A., Sobolev V. I. // Catal. Today. — 1998. — 41. — P. 365—385.
- Kameoka S., Nobukawa T., Tanaka Sh. et al. // Phys. Chem. Chem. Phys. — 2003. — 5. — P. 3328—3333.
- Dubkov K. A., Sobolev V. I., Panov G. I. // Kinet. and Catal. — 1998. — 39. — P. 72—79.
- Nobukawa T., Yoshida M., Kameoka S. et al. // J. Phys. Chem. B. — 2004. — 108. — P. 4071—4079.
- Choudhary V. R., Kinage A. K., Choudhary T. V. // Science. — 1997. — 275. — P. 1286—1288.
- Abdul Hamid S. B., Deruane E. G., Mériaudeau P. et al. // Catal. Today. — 1996. — 31. — P. 327—334.
- Орлик С. Н. // Кинетика и катализ. 2008. 49. С. 562—569.
- 14. Канцерова М. Р., Орлик С. Н., Казимиров В. Р. // Теорет. и эксперим. химия. — 2007. — 43, № 6. — С. 399—363. — [Theor. Exp. Chem. — 2007. — 43, N 6. — Р. 399—363 (Engl. Transl.)].
- Borkó L., Koppány Zs., Schay Z., Guczi L. // Catal. Today. — 2009. — 143. — P. 269—273.
- Vlasenko N. V., Kochkin Yu. N., Puziy A. M. // J. Mol. Catal. A. — 2006. — 253. — P. 192—197.
- 17. *Yin S. F., Xu B. Q., Yhou X. P., Au C. T. //* Appl. Catal. A. 2004. **277**. P. 1—9.
- Borkó L., Vlasenko N. V., Koppány Zs. et al. // 6th World congr. on oxidation catalysis: Abstr., Lille-France, Session A, 2009. — P. 128.
- Ates A., Reitzmann A., Waters G. // Appl. Catal. B. 2012. — 119/120. — P. 329—339.
- Pietrogiacomi D., Campa M. C., Occhiuzzi M. // Catal. Today. — 2014. — 227. — P. 116—122.
- 21. Bernardon C., Osman M. B., Laugel G. et al. // C. R. Chimie. 2017. **20**. P. 20—29.
- 22. Védrine J. C. // Top. Catal. 2002. **21**. P. 97—106.
- 23. Vereschchagin S. N., Kirik N. P., Shishkina N. N. et al. // Catal. Today. — 2000. — 61. — P. 129—136.
- Nobukawa T., Yoshida M., Kameoka S. et al. // Catal. Today. — 2004. — 93—95. — P. 791—796.
- Nobukawa T., Sugawara K., Okumura K. et al. // Appl. Catal. B. — 2007. — 70. — P. 342—352.
- Borkó L., Vlasenko N. V., Puziy A. M. et al. // 11th natural gas conversion symp., Abstr, Tromso, Norway, 2016. — P. 2.

Поступила в редакцию 24 мая 2018 г. В окончательном варианте 3 июля 2018 г.

Вплив редокс- і кислотних властивостей нанофазних каталізаторів Ga—H-ZSM-5, модифікованих перехідними металами, на відновлення закису азоту метаном

Л. Борко (L. Borky)¹, Н. В. Власенко², Ж. Коппань (Zs. Корра́пу)¹, А. Бекк (A. Beck)¹, О. М. Пузій³

¹ Centre for Energy Research,

MTA, P. O. Box 49, H-1525, Budapest 114, Hungary. E-mail: borko.laszlo@energia.mta.hu

² Інститут фізичної хімії ім. Л. В. Писаржевського НАН України просп. Науки, 31, Київ 03028, Україна. Е-mail: nvvlasenko@gmail.com

³ Інститут сорбції та проблем ендоекології НАН України вул. Генерала Наумова, 13, Київ 03164, Україна

> Встановлено, що каталітична активність метал-цеолітів складу М/Ga—H-ZSM-5 у реакції селективного відновлення закису азоту метаном визначається комплексною дією вільних кислотних центрів цеоліту і редокс-центрів наночастинок оксидів перехідних d-металів. Показано зв'язок каталітичних властивостей таких систем з їх редокс- і кислотними характеристиками, одержаними методами термопрограмованого відновлення воднем та квазірівноважної термодесорбції аміаку.

Ключові слова: цеоліти, перехідний метал, галій, розклад N₂O, відновлення N₂O метаном.

Effect of Redox and Acid Properties of Nanophase Catalysts Ga–H-ZSM-5 Modified by Transition Metals on the Reduction of Nitrous Oxide by Methane

L. Borkó, N. V. Vlasenko, Zs. Koppány, A. Beck, A. M. Puziy

¹ Centre for Energy Research,

MTA, P. O. Box 49, H-1525, Budapest 114, Hungary. E-mail: borko.laszlo@energia.mta.hu

² L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine Nauky Ave., 31, Kyiv 03028, Ukraine. E-mail: nvvlasenko@gmail.com

³ Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine Henerala Naumova St., 13, Kyiv 03164, Ukraine

It was established that catalytic activity of metal-zeolites M/Ga–H-ZSM-5 in the reaction of selective reduction of nitrous oxide by methane is determined by the complex action of free acid sites of zeolite and redox sites of nanoparticles of d-metal oxides. The relationship of catalytic properties of such systems with their redox and acid characteristics studied using thermo-programmed reduction and quasi-equilibrium thermal desorbtion of ammonia has been shown.

Key words: zeolites, transition d metal, gallium, N₂O direct decomposition, N₂O reduction by CH₄.