УДК 543.272.71

Платиносодержащие адсорбционно-полупроводниковые сенсоры на основе наноразмерного диоксида олова для детектирования метана

Л. П. Олексенко, Г. В. Федоренко, Н. П. Максимович

Киевский национальный университет имени Тараса Шевченко ул. Льва Толстого, 12, Киев 01033, Украина. E-mail: olexludmil@ukr.net

Установлено, что платиносодержащие адсорбционно-полупроводниковые сенсоры на основе наноразмерного диоксида олова, полученного золь-гель методом, обладают более высокой чувствительностью к CH₄, чем известные в литературе аналоги. Чувствительность сенсоров к метану зависит от содержания платины в их газочувствительном слое, что объясняется влиянием гетерогенно-каталитической реакции окисления CH₄, протекающей на поверхности сенсоров.

Ключевые слова: наноразмерные материалы Pt/SnO₂, адсорбционно-полупроводниковые газовые сенсоры, метан.

В настоящее время в технологических и бытовых целях широко используются токсичные и/или взрывоопасные газы, при работе с которыми необходим контроль их присутствия в окружающем воздухе. Для этой цели используются газоаналитические приборы с различными типами сенсоров, среди которых адсорбционно-полупроводниковые на основе SnO₂, полупроводника *n*-типа, представляются достаточно перспективными. Известно, что такие сенсоры имеют достаточно высокую чувствительность при сравнительно низком энергопотреблении, малых массе, габаритах и они способны функционировать в широком диапазоне температур окружающего воздуха (от -40 до +40 °C).

Основой адсорбционно-полупроводниковых сенсоров является полупроводниковый газочувствительный слой, на поверхности которого при нагревании сенсора в воздухе происходит хемосорбция кислорода [1]. Количество такого кислорода оказывает существенное влияние на электрическое сопротивление сенсора за счет локализации на атоме кислорода электронов из зоны проводимости полупроводника [1]. При наличии в воздухе анализируемого газа последний окисляется кислородом, хемосорбированным на поверхности сенсора, вследствие чего происходит уменьшение величины электрического сопротивления сенсора. При этом изменение сопротивления сенсора по сравнению с его сопротивлением в воздухе определяет величину чувствительности сенсора. Как известно [1], скорость окисления анализируемого газа на поверхности газочувствительного слоя сенсора является одним из основных факторов в формировании его чувствительности к этому газу. Вместе с тем химическая инертность CH₄ в реакциях его окисления [2—5] обусловливает относительно невысокую чувствительность сенсоров к нему. Для ее повышения в состав газочувствительного слоя сенсора вводят различные каталитически активные добавки, ускоряющие процесс окисления анализируемого газа [6-12]. В случае метана такой добавкой может быть платина один из наиболее активных катализаторов окисления СН₄ [3, 4]. Увеличение чувствительности сенсора может быть достигнуто также за счет уменьшения размера частиц полупроводникового материала, так как это приводит к увеличению вклада в его физико-химические свойства поверхностных процессов, ответственных за формирование чувствительности сенсора [13, 14].

Цель настоящей работы — изучение чувствительности к метану адсорбционно-полупроводниковых сенсоров на основе наноразмерного диоксида олова с разным содержанием платины.

Экспериментальная часть

Исходный наноразмерный диоксид олова получали в ходе золь-гель процесса при использовании в качестве прекурсоров SnC₂O₄ и перекиси водорода [15]. Для этого к 10 мл 35 % раствора H_2O_2 при постоянном перемешивании добавляли 3 г оксалата олова. Образовавшийся коллоидный раствор выдерживали в течение 2 ч с последующим упариванием избытка воды до образования геля. Далее гель сушили в течение 24 ч при 90 °С до образования ксерогеля. Для получения наноразмерного кристаллического диоксида олова, из которого изготавливали газочувствительные сенсорные материалы и газочувствительные слои сенсоров, ксерогель спекали при 400 °С в течение 2 ч 20 мин в воздухе.

Конструкция сенсора представлена в работе [16]. Сенсор состоит из керамической платы (керамика ВК 94), с одной стороны которой находятся измерительные платиновые электроды, между которыми вжигается газочувствительный слой, а с другой — платиновый нагреватель. Размер сенсора составляет 2,0×2,0×0,3.

Газочувствительный слой сенсоров изготавливали из пасты, полученной при смешивании исходного SnO₂ с раствором карбоксиметилцеллюлозы (КМЦ) в воде. Пасту наносили на платы и сушили при 90 °С для удаления избытка воды. Введение платины в состав газочувствительных слоев сенсоров проводили их пропиткой растворами гексахлорплатиновой кислоты, концентрация которой варьировалась от $2 \cdot 10^{-2}$ до $35 \cdot 10^{-2}$ М. Для получения сенсоров платы с нанесенным слоем спекали в атмосфере воздуха до 620 °С в течение 7 ч в режиме термопрограммированного ступенчатого нагрева с изотермической обработкой при температурах, которые соответствовали испарению связанной воды, разложению КМЦ и формированию кристаллического SnO₂ [17]. Сенсорные материалы для исследования их физико-химических свойств получали аналогичным способом.

Морфологию синтезированных материалов изучали методом трансмиссионной электронной микроскопии (ТЭМ) на приборе ПЭМ-125К «SELMI» при ускоряющем напряжении 100 кВ.

Фазовый состав материалов исследовали методом рентгенофазового анализа (РФА) с помощью дифрактометра «Bruker D8 Advance» (излучение CuK_{α}).

Содержание платины в сенсорных материалах определяли с помощью рентгенофлюоресцентного анализа на приборе CEP-01 «ElvaX».

Для изучения чувствительности сенсоров к метану использовали измерительную систему, состоящую из электрического стенда и газовой линии. Электрический стенд позволял обеспечивать нагревание сенсора и измерение его сигнала [18], а газовая линия обеспечивала подачу анализируемого газа или воздуха на сенсор со скоростью 400 мл/мин. Измерение сигнала сенсора проводили в условиях установления его стационарного значения в этих газах. Электрическое сопротивление сенсоров на воздухе и в анализируемой газовой смеси определяли по величине изменения напряжения на нагрузочном резисторе с известным электрическим сопротивлением [18]. Согласно закону Ома для последовательного соединения проводников сопротивление сенсора рассчитывали по следующему уравнению:

$$R_{\rm cencopa} = R_{\rm H} (U_{\rm 6.n} - U_{\rm H}) / U_{\rm H},$$

где $U_{6.\pi}$ — напряжение источника питания, В; $U_{\rm H}$ — напряжение на нагрузочном резисторе, В; $R_{\rm H}$ — электрическое сопротивление нагрузочного резистора, Ом; $R_{\rm cencopa}$ — электрическое сопротивление сенсора, Ом.

Для стабилизации величины электрического сопротивления сенсоры тренировали в течение 3 сут при их нагревании до 495 °С с периодической подачей на сенсоры метано-воздушной смеси. Мерой чувствительности сенсоров к метану принимали параметр γ , являющийся отношением электрического сопротивления сенсора в среде воздуха (R_0) к его электрическому сопротивлению в анализируемой метано-воздушной смеси с концентрацией метана 930 млн⁻¹ (R_o).

Для оценки динамических свойств сенсоров использовали два параметра — время отклика ($\tau_{0,9}$) и время релаксации (τ_{relax}). Величину времени отклика оценивали как время, необходимое для установления 90 % равновесного значения сигнала сенсора при подаче 930 млн⁻¹ метана. Время релаксации оценивали как время, необходимое для возвращения к 10 % значению сигнала сенсора в воздухе при замене метана на воздух.

Результаты и обсуждение

ТЭМ-исследование полученных материалов показало, что исходный наноразмерный диоксид олова состоит из дискретных частиц со средним размером 5—6 нм (рис. 1, *a*). В процессе формирования сенсорных материалов как немодифицированных, так и платиносодержащих наблюдается укрупнение частиц до 12—15 нм (рис. 1, *в*, *г*), что связано с длительностью термической обработки материалов и достаточно высокой конечной температурой их спекания (620 °C).

Методом РФА показано, что во всех изученных образцах диоксид олова находится в форме касситерита (рис. 2). Кристалличность исходного SnO_2 подтверждена данными по микродифракции электронов — на электронограмме (рис. 1, δ) отчетливо видна кольцевая дифракция, относящаяся к касситериту. Кроме того, для газочувствительных материалов с высоким содержанием платины обнаружена фаза металлической Pt.

Результаты исследований свойств сенсоров с газочувствительным слоем на основе синтезированного

Рис. 1. ТЭМ-изображение и гистограмма распределения частиц для исходного $\text{SnO}_2(a)$, наноразмерного сенсорного материала без платины (*s*) и наноразмерного сенсорного материала, содержащего 1,42 % мас. Pt (*z*); δ — электронограмма исходного SnO_2 .

материала с различным содержанием добавленной платины при температуре сенсоров 270-495 °C представлены в табл. 1 и 2. Полученные данные могут быть объяснены с учетом особенностей протекания каталитической реакции окисления метана на нанесенных Pt-содержащих системах и с учетом возможности образования между частицами активного компонента и диоксида олова границы раздела, представляющей собой совокупность активных центров, на которых при нагревании сенсора происходит хемосорбция кислорода из воздуха [16, 19]. Изменение содержания активного компонента в газочувствительном слое сенсора, его температуры и протекание каталитической реакции окисления метана на поверхности сенсора должно приводить к изменению стационарной степени заполнения кислорода на границе раздела, а значит, к изменению электрического сопротивления сенсора на воздухе и в анализируемом газе.

Действительно, наблюдающееся возрастание величины электрического сопротивления сенсоров на воздухе при увеличении содержания платины до 1,90 % мас. в их газочувствительном слое (табл. 1) для всех исследованных температур сенсоров может быть связано с увеличением длины границы раздела между частицами платины и диоксида олова, на

которой хемосорбируется относительно большее количество кислорода. Кроме того, количество кислорода, хемосорбированного на SnO₂, может еще увеличиваться благодаря хемосорбции кислорода на самой платине. Как известно, для платиносодержащих сенсоров [20] реализуется эффект спилловера кислорода с частиц (кластеров) платины на поверхность SnO₂, что приводит к увеличению количества кислорода, хемосорбированного на поверхности сенсора, и, следовательно, к увеличению его электрического сопротивления. Дальнейшее увеличение содержания платины до 2,2 % мас. приводит к уменьшению величины электрического сопротивления сенсоров при всех исследованных температурах, что, по-видимому, обусловлено укрупнением и агрегацией частиц платины в газочувствительном слое сенсора, приводящими к уменьшению длины границы раздела и поверхности самой платины.

Исследование зависимостей изменения электрического сопротивления сенсоров на воздухе от температуры показало, что для сенсоров с каждым из исследованных содержаний платины повышение температуры приводит к уменьшению величины их электрического сопротивления (табл. 1), что может быть обусловлено как собственными свойствами полупроводника, так и десорбцией кислорода с поверх-

Рис. 2. Данные РФА исходного диоксида олова (1), сенсорного материала без добавок (2), сенсорного материала Pt/SnO₂, содержащего 0,24 (3), 0,88 (4), 1,42 (5), 1,72 (6) и 2,22 % мас. Pt (7) (\blacksquare — SnO₂; О — металлическая платина).

ности газочувствительного слоя сенсоров. Кроме того, при сравнении изменения электрического сопротивления от температуры для сенсоров одного состава видно (табл. 1), что более значительное уменьшение величины R_0 для сенсоров с большим содержанием платины наблюдается при более низких температурах (выше 360 °C). Если предположить, что с увеличением содержания платины размер ее кластеров увеличивается (что наблюдается, например, для систем Pd/SnO₂ [21]), то и уменьшение сопротивления сенсоров, обусловленное десорбцией кислорода, должно проходить при более низких температурах, что подтверждается экспериментально и согласуется с зависимостью энергии связи Pt–O от размера кластеров Pt [4, 22].

Данные, приведенные в табл. 2, показывают, что увеличение содержания платины от 0,24 до 1,42 % мас. Рт приводит к увеличению чувствительности сенсоров для каждой из исследованных температур в области 270-435 °C, что, по-видимому, обусловлено увеличением количества хемосорбированного кислорода на границе раздела Pt — SnO₂ и количества активных центров платины, на которых может активироваться метан [3, 4]. Незначительное уменьшение чувствительности сенсоров, наблюдаемое при дальнейшем увеличении содержания платины в них, может свидетельствовать об уменьшении количества хемосорбированного кислорода вследствие уменьшения длины границы раздела Pt — SnO₂ за счет укрупнения и частичной агрегации частиц (кластеров) платины в газочувствительном слое сенсора (табл. 2). Для сенсоров с меньшим содержанием платины (0,70-0,88 % мас.) максимумы чувствительности наблюдаются при более высоких температурах (465—495 °C). Такое изменение максимума чувствительности сенсоров к метану, вероятно,

связано с диффузионным торможением реакции окисления метана продуктами реакции при высоких температурах работы сенсора. Следует отметить, что при каждой изученной температуре сенсоров максимальная величина чувствительности и максимальная величина электрического сопротивления на воздухе не соответствуют сенсору с одинаковым содержанием платины, что можно было бы ожидать, если бы величину чувствительности сенсоров одинакового состава определял только кислород, хемосорбированный на границе раздела Pt — SnO₂. Такое несоответствие максимумов ү и R₀ может быть связано с маскировкой величины электрического сопротивления сенсора на воздухе кислородом, появляющимся на диоксиде олова за счет эффекта спилловера кислорода с частиц платины.

Следует отметить, что характер изменения чувствительности сенсоров от температуры (наличие максимальных значений (табл. 2)) отличается от изменения электрического сопротивления сенсоров на воздухе (уменьшение R₀ с ростом температуры (табл. 1)), что также свидетельствует о влиянии на чувствительность сенсора не только количества кислорода, хемосорбированного на границе раздела, но и других факторов. В частности, на чувствительность сенсоров к метану могут влиять особенности протекания реакции окисления СН4 на платиновых катализаторах. Известно, что в этой реакции активной является именно металлическая платина, способная участвовать в диссоциативной хемосорбции метана [3, 4]. Как видно из табл. 1, в высокотемпературной области работы сенсоров (выше 400 °C) наблюдается значительное уменьшение их сопротивления вследствие десорбции кислорода, что может приводить к образованию вакантных мест на частицах металлической платины, где возможна диссоциативная активация химически инертного метана [3, 4]. Наличие на поверхности активированного метана и достаточного количества хемосорбированного кислорода приводит к увеличению скорости окисления метана при температуре 400 °C, а значит, и чувствительности сенсора (табл. 2). Следует отметить, что при дальнейшем повышении температуры сенсоров (выше 435 °C) для всех исследованных содержаний платины величина чувствительности к СН₄ уменьшается. Это указывает на то, что помимо наличия активированного метана при высоких температурах сенсоров необходимым для формирования высокой чувствительности сенсора к СН₄ является хемосорбированный кислород. Количество этого кислорода, судя по уменьшению сопротивления сенсоров в этой температурной области (табл. 1), уменьшается и поэтому уменьшается и чувствительность сенсоров к метану (табл. 2). Причем, поскольку для сенсоров при всех содержаниях

Таблица 1

T, °C	0,24	0,70	0,88	1,27	1,42	1,72	1,90	2,22		
495	114	209	238	242	367	408	487	434		
465	228	315	625	641	680	768	920	875		
435	450	567	1275	1310	1369	1620	1896	1742		
400	837	1136	2740	2848	2927	3392	4008	3552		
360	1265	1584	4669	5229	5807	7712	8863	7033		
320	1327	1557	4952	8258	9564	10685	15013	10042		
270	1445	1518	5013	8417	10037	11204	15715	11427		

Электрическое сопротивление на воздухе (*R*₀, кОм) для сенсоров на основе Pt/SnO₂ с различным содержанием платины (% мас.)

Таблица 2

Величина чувствительности (γ) к 930 млн⁻¹ CH₄ в воздухе для сенсоров на основе Pt/SnO₂ с различным содержанием платины (% мас.)

<i>T</i> , °C	без Pt	0,24	0,70	0,88	1,27	1,42	1,72	1,90	2,22
495	1,4	6,1	6,0	6,1	5,6	4,0	3,8	4,0	4,0
465	1,5	7,5	7,9	7,8	7,3	7,0	6,3	6,4	6,3
435	2,0	8,3	9,9	10,3	11,1	11,2	9,4	9,4	9,3
400	2,1	8,3	11,6	12,0	12,6	14,5	13,5	11,3	11,2
360	2,1	6,4	9,0	9,8	10,8	14,0	10,9	11,0	10,8
320	1,9	3,8	5,1	6,2	7,3	10,5	8,3	8,1	7,0
270	1,5	2,77	3,1	4,1	4,3	5,1	4,3	4,2	4,0

введенной платины с увеличением температуры величина чувствительности изменяется экстремально (табл. 2), а величина их сопротивления уменьшается (табл. 1), основную роль в окислении метана играет кислород, хемосорбированный на границах раздела частиц платины и диоксида олова.

Исследование газочувствительных свойств сенсоров показало, что в оптимальном температурном режиме платиносодержащие сенсоры способны измерять метан в широком диапазоне его концентраций (25—930 млн⁻¹ CH₄), обладают хорошим быстродействием (время отклика $\tau_{0,9} = 7$ с, время релаксации $\tau_{relax} = 16$ с) и имеют высокую чувствительность к метану ($\gamma = 14,5$ для 930 млн⁻¹ CH₄). Следует отметить, что созданные сенсоры более чувствительны к метану, чем сенсоры такого же типа, известные в литературе [23—25], и чем аналогичные коммерческие сенсоры, например сенсоры FIGARO TGS 2611 фирмы «Figaro» (Япония), чувствительность которых к 1000 млн⁻¹ метана составляет $R_0/R_g = 4,5$.

Таким образом, изучение чувствительности к метану адсорбционно-полупроводниковых сенсоров, созданных на основе наноразмерного диоксида олова с разным содержанием платины, показало, что введение платины в сенсорный наноматериал на основе ${\rm SnO}_2$ приводит к значительному увеличению чувствительности сенсоров. При этом сенсоры обладают хорошим быстродействием и чувствительностью к CH₄ более высокой, чем у аналогичных коммерческих и известных в литературе сенсоров такого же типа. Полученные экспериментально зависимости газочувствительных свойств сенсоров (электрического сопротивления, чувствительности) от содержания платины в них и от температуры сенсоров объяснены особенностями хемосорбции кислорода на поверхности газочувствительного слоя сенсоров и протекания реакции гетерогенно-каталитического окисления метана на границе раздела между частицами платины и диоксида олова в газочувствительном слое сенсора.

Литература

- 1. *Geckeler K. E., Rosenberg E.* Functional nanomaterials. Valencia : Amer. Sci. publ., 2006.
- Takeguchi T., Takeoh O., Aoyama S. et al. // Appl. Catal. A. — 2003. — 252. — P. 205—214.
- 3. Burch R., Hayes M. J. // J. Mol. Catal. A. 1995. 100. — P. 13—33.
- Stakheev A.Yu., Batkin A. M., Teleguina N. S. et al. // Top. Catal. — 2013. — 56. — P. 306—310.

- Persson K., Ersson A., Jansson K. et al. // J. Catal. 2005. — 231. — P. 139—150.
- Vilaseca M., Coronas J., Cirera A. et al. // Sensors and Actuators B. — 2008. — 133. — P. 435—441.
- Cabot A., Arbiol J., Morante J. R. et al. // Sensors and Actuators B. — 2000. — 70. — P. 87—100.
- Saha M., Banerjee A., Halder A. K. et al. // Sensors and Actuators B. — 2001. — 79. — P. 192—195.
- Haridas D., Gupta V. // Sensors and Actuators B. 2012. — 166/167. — P. 156—164.
- Yanagimoto T., Yu Y. T., Kaneko K. // Sensors and Actuators B. — 2012. — 166/167. — P. 31—35.
- Kima I. J., Han S. D., Singh I. et al. // Sensors and Actuators B. — 2005. — 107. — P. 825—830.
- 12. *Morandi S., Comini E., Faglia G., Ghiotti G.//* Sensors and Actuators B. 2006. **118**. P. 142—148.
- 13. Xu C., Tamaki J., Miura N., Yamazoe N. // Sensors and Actuators B. 1991. **3**. P. 147—155.
- 14. *Gurlo A.* // Nanoscale. 2011. **3**. P. 154—165.
- Alcantara R., Madrigal F., Lavela P. et al. // J. Solid State Electrochem. — 2001. — 6. — P. 55—62.
- Oleksenko L. P., Maksymovych N. P., Sokovykh E. V. et al. // Sensors and Actuators B. — 2014. — 196. — P. 298—305.

- Sokovykh E. V., Oleksenko L. P., Maksymovych N. P., Matushko I. P. // J. Therm. Anal. Calorim. — 2015. — 121. — P. 1159—1165.
- Fedorenko G. V., Oleksenko L. P., Maksymovych N. P., Matushko I. P. // Russ. J. Phys. Chem. — 2015. — 12. — P. 2259—2262.
- Kang W. P., Kim C. K. // J. Appl. Phys. 1994. 75. P. 4237—4242.
- Vlachos D. S., Papadopoulos C. A., Avaritsiotis J. N. // Sensors and Actuators B. — 1997. — 44. — P. 458—461.
- Yuasa M., Masaki T., Kida T. et al. // Sensors and Actuators B. — 2009. — 136. — P. 99—104.
- Frelink T., Visscher W., van Veen J. A. R. // J. Electroanal. Chem. — 1995. — 382. — P. 65—72.
- 23. *Quaranta F., Rella R., Siciliano P. et al.* // Sensors and Actuators B. 1999. **58**. P. 350—355.
- Bose S., Chakraborty S., Ghosh B. K. et al. // Sensors and Actuators B. — 2005. — 105. — P. 346—350.
- Papadopoulos C. A., Vlachos D. S., Avaritsiotis J. N. // Sensors and Actuators B. — 1996. — 32. — P. 61—69.

Поступила в редакцию 6 июля 2017 г. В окончательном варианте 14 июля 2017 г.

Платиновмісні адсорбційно-напівпровідникові сенсори на основі нанорозмірного діоксиду олова для детектування метану

Л. П. Олексенко, Г. В. Федоренко, Н. П. Максимович

Київський національний університет імені Тараса Шевченка вул. Льва Толстого, 12, Київ 01033, Україна. E-mail: olexludmil@ukr.net

> Встановлено, що платиновмісні адсорбційно-напівпровідникові сенсори на основі нанорозмірного діоксиду олова, одержаного золь-гель методом, мають вищу чутливість до CH_4 , ніж відомі з літератури аналоги. Чутливість сенсорів до метану залежить від вмісту платини в їх газочутливому шарі, що пояснюється впливом гетерогенно-каталітичної реакції окиснення CH_4 , яка відбувається на поверхні сенсора.

Ключові слова: нанорозмірні матеріали Pt/SnO₂, адсорбційно-напівпровідникові газові сенсори, метан.

Platinum-Containing Adsorption-Semiconductor Sensors Based on Nanosized Tin Dioxide for Methane Detection

L. P. Oleksenko, G. V. Fedorenko, N. P. Maksymovych

Taras Shevchenko National University of Kyiv Vul. Lva Tolstoho, 12, Kyiv 01033, Ukraine. E-mail: olexludmil@ukr.net

It was found that platinum-containing adsorption-semiconductor sensors based on nanosized tin dioxide obtained by sol–gel technique have higher sensitivity to CH_4 than analogs known in literature. The sensor sensitivity to methane depends on the platinum content in their gas-sensitive layer that is explained by influence of the CH_4 heterogeneous catalytic oxidation occurred on the surfaces of the sensors.

Key words: nanosized materials Pt/SnO₂, adsorption-semiconductor gas sensors, methane.