УДК 544.47:544.344

Получение водорода в процессах риформинга метанола на модифицированных медно-цинковых катализаторах (обзор)

А. Ю. Капран, С. Н. Орлик

Институт физической химии им. Л. В. Писаржевского НАН Украины просп. Науки, 31, Киев 03028, Украина. E-mail: ayukapran@ukr.net

Обобщены результаты исследования процессов риформинга метанола с получением водорода на структурированных катализаторах Cu-ZnO- M_xO_y/Al_2O_3 /кордиерит (M — Ce, La, Ni, Mg). Обосновано влияние модифицирующих добавок оксидов церия, лантана и никеля в реакции разложения CH₃OH, оксида магния и соотношения CH₃OH/ H_2O в процессах паровой и окси-паровой конверсии метанола. Проанализирована роль составляющих Cu-ZnO-композиций, вероятных интермедиатов и маршрутов получения водорода. Сформулированы рекомендации по усовершенствованию катализаторов риформинга метанола.

Ключевые слова: метанол, разложение, парциальное окисление, паровой и окси-паровой риформинг, водород, катализаторы Cu-ZnO-M_xO_y/Al₂O₃/кордиерит (M — Ce, La, Ni, Mg).

Введение

Интерес к водороду как высокоэффективному и экологически чистому источнику энергии обусловливает необходимость поиска удобных и безопасных способов его хранения. Разработка материалов, обратимо поглощающих и выделяющих Н2 без изменения своих физических характеристик, далека до завершения, поэтому на практике водородное топливо получают риформингом соединений, содержащих химически связанный водород, in situ [1]. К наиболее перспективным носителям водорода относится метанол, характеризующийся высокой энергетической плотностью (Н : С = 4 : 1), относительной простотой получения (из природного газа, угля, биомасс), низкой стоимостью. Удельная энергоемкость метанола, рассчитанная на объем топлива (16,74 кДж/см³), в 465 раз превышает соответствующий параметр для метана (0,036 кДж/см³) [2].

Риформинг метанола осуществляют путем разложения (РМ):

$$CH_3OH \rightarrow CO + 2H_2,$$
 (1)

$$\Delta H^0 = +91$$
кДж/моль,

паровой конверсии (ПКМ):

CH₃OH + H₂O → CO₂ + 3H₂, (2)
$$\Delta H^0 = +49$$
 кДж/моль,

парциального окисления (ПОМ):

$$CH_3OH + 0.5O_2 \rightarrow CO_2 + 2H_2, \tag{3}$$

$$\Delta H^0 = -192$$
кДж/моль,

комбинации реакций (2) и (3) (КРМ) и в условиях, близких к автотермическому (термонейтральному) режиму:

$$4CH_3OH + 3H_2O + 0,5O_2 \rightarrow 4CO_2 + 11H_2,$$
 (4)
 $\Delta H^{573 \text{ K}} = 0$

При практическом использовании первый из указанных процессов является альтернативным способом применения метанола в качестве топлива двигателей внутреннего сгорания — использование синтез-газа как такового или его добавки к горючей смеси на основе бензина. Реакция (1) вследствие эндотермичности может быть применена при утилизации тепла в промышленности, а также как источник водорода для высокотемпературных твердооксидных топливных элементов [3—5]. Применительно к низкотемпературным топливным ячейкам на основе полимер-электролитных протонообменных мембран (на борту электромобилей, подводных лодок и т. п.) осуществляют окислительный риформинг — реакции (2) — (4) [1, 6]. Процесс разложения метанола в этом случае не эффективен вследствие образования монооксида углерода, который дезактивирует платиновые электроды топливных элементов.

Катализаторы риформинга условно разделяют на две группы: медьсодержащие (Cu/ZnO, Cu/Cr₂O₃ и др.) и на основе элементов 8—10 групп (Ni, Co, Pt, Pd и др.) [1, 3, 4, 7, 8]. Композиции Cu-ZnO, близкие по составу к промышленным катализаторам синтеза метанола, в процессах окислительного риформинга CH₃OH обеспечивают образование водорода и CO₂ [6—13], в то время как металлы 8—10 групп, в частности Pd, Pt, Ni, — преимущественно синтез-газа (CO + H₂) [12—14].

Основные проблемы применения медно-цинковых катализаторов — дезактивация при температурах, превышающих 300 °C, вследствие спекания частиц меди [7, 8, 15] и зауглероживание поверхности, прежде всего в процессе разложения метанола [5]. Осложняющими факторами протекания процессов окислительной конверсии метанола являются также побочные реакции с образованием СО, глубокое окисление CH₃OH [6—9]. В условиях автотермического режима (при компенсации тепловых эффектов реакций ПОМ и ПКМ как составных комбинированного процесса риформинга) существенное отличие скоростей кислородной и паровой конверсии метанола наряду с побочной реакцией глубокого окисления может существенно снижать селективность целевого процесса по водороду [6]. Уменьшения разности скоростей указанных процессов, а также подавления побочных реакций можно достичь введением модифицирующих добавок, промоторов в состав катализаторов, среди которых оксиды редкоземельных, щелочноземельных элементов и оксид никеля относятся к наиболее эффективным [4, 5, 7-9, 16-18], а также оптимизацией условий реализации целевых процессов и усовершенствованием конструкции реактора [6].

В течение последних десятилетий все больше возрастает интерес к применению керамических носителей катализаторов, в частности сотовой структуры, что обусловлено их высокими эксплуатационными характеристиками — низким газодинамическим сопротивлением, механической прочностью, термостабильностью и др. [19—21]. Особенности геометрии таких систем, нивелирующие различия между катализатором и реактором, создают благоприятные условия для массопереноса, что важно для эффективного протекания гетерогенно-каталитических процессов, в том числе риформинга метанола [22—24].

В настоящей работе обобщены результаты исследований процессов разложения и окислительного риформинга метанола (парциального окисления, паровой и паро-кислородной конверсии) в присутствии медно-цинковых оксидных композиций, модифицированных добавками CeO₂, La₂O₃, NiO, MgO, сформированных на структурированном носителе Al_2O_3 /кордиерит. Основное внимание уделено влиянию указанных добавок в составе катализаторов на показатели процессов риформинга, прежде всего селективность и выход по водороду, подавление побочных реакций, обусловливающих зауглероживание поверхности катализаторов, минимизацию образования монооксида углерода в реакциях окислительной конверсии метанола. Также обсуждена роль компонентов каталитических композиций, возможные интермедиаты и маршруты целевых процессов риформинга.

Влияние модифицирующих добавок на каталитическую активность композиций CuO-ZnO/Al₂O₃/кордиерит в процессах риформинга метанола

Представленные в работе результаты получены с использованием катализаторов на монолитных носителях сотовой структуры из синтетического кордиерита $2MgO\cdot2Al_2O_3\cdot5SiO_2$, характеристики которых приведены в работе [25]. Формирование каталитических композиций медно-цинковых компонентов и модифицирующих добавок на поверхности указанных носителей с подложкой в виде оксида алюминия детально описано ранее [26—28].

Процессы риформинга исследовали в проточных условиях при атмосферном давлении с хроматографическим контролем. Соответствующие реакционные смеси (включающие CH₃OH, O₂, H₂O, Ar) подавали в реактор с катализатором в виде элемента сотовой структуры.

Образцы каталитических композиций охарактеризованы методами рентгенофазового анализа (РФА), термопрограммированного восстановления водородом (ТПВВ), сканирующей электронной микроскопии (СЭМ). Содержание (соотношение) компонентов в образцах, приготовленных для их охарактеризации, соответствовало образцам, исследованным в катализе целевых реакций риформинга.

В табл. 1 представлены структурно-размерные характеристики каталитических композиций CuO-ZnO- M_xO_y/Al_2O_3 (М — Ce, La, Ni, Mg), определенные на основании рентгенофазового анализа [26, 27].

Оксиды алюминия и лантана рентгеноаморфны вследствие мелкодисперсности. Оксид меди в составе CuO-ZnO, CuO-CeO₂, CuO-NiO, CuO-ZnO-NiO, CuO-La₂O₃-NiO, CuO-ZnO-MgO присутствует в виде кристаллитов моноклинной модификации со средним размером 24—32 нм. Диоксид церия (композиция CuO-CeO₂), равно как и оксид никеля в составе CuO-NiO, CuO-ZnO-NiO и CuO-La₂O₃-NiO,

Таблица 1

Структурно-размерные характеристики образцов оксидных катализаторов, нанесенных на Al₂O₃, по данным РФА

Образец	Проиндексированные фазы	<i>L</i> (ОКР), нм
ZnO	ZnAl ₂ O ₄ , кубическая	14
CuO-ZnO	СиО, моноклинная	24
	ZnAl ₂ O ₄ , кубическая	22
CuO-CeO ₂	СиО, моноклинная	32
	СеО ₂ , кубическая	6
CuO-NiO	CuO, моноклинная	32
	NiO, кубическая	29
CuO-ZnO-NiO	CuO, моноклинная	29
	NiO, кубическая	22
	ZnAl ₂ O ₄ , кубическая	—
CuO-La ₂ O ₃ -NiO	CuO, моноклинная	28
	NiO, кубическая	8
CuO-ZnO-MgO	CuO, моноклинная	32
	MgO, кубическая	38
	ZnAl ₂ O ₄ , кубическая	26

идентифицированы как кристаллиты кубической модификации; OKP(CeO₂) составляет 6 нм, а для частиц NiO — 29, 22 и 8 нм соответственно. Цинксодержащей фазой композиций ZnO/Al₂O₃, CuO-ZnO/Al₂O₃, CuO-ZnO-NiO/Al₂O₃, CuO-ZnO-MgO/Al₂O₃ идентифицирован ганит (алюминат ZnAl₂O₄ куб.). Средний размер частиц ZnAl₂O₄ составляет 14 нм (ZnO/Al₂O₃), 22 нм (CuO-ZnO/Al₂O₃) и 26 нм (CuO-ZnO-MgO/ Al₂O₃); для CuO-ZnO-NiO/Al₂O₃ значение OKP не определено из-за наложения рефлекса NiO на самый интенсивный рефлекс алюмината цинка — $2\theta \approx 37^{\circ}$ [27]. Оксид магния в составе CuO-ZnO-MgO присутствует в виде кристаллитов кубической модификации со средним размером частиц 38 нм.

Разложение метанола в присутствии катализаторов CuO-ZnO-M_xO_y/Al₂O₃/кордиерит (M — Ce, La, Ni)

Процесс разложения метанола на медно-цинковых катализаторах, как отмечено выше, осложняется зауглероживанием поверхности, обусловленным протеканием реакций

$$CH_4 = C + 2H_2, \tag{5}$$

$$2CO = CO_2 + C, \tag{6}$$

$$CO + H_2 = H_2O + C,$$
 (7)

$$CO_2 + 2H_2 = 2H_2O + C.$$
 (8)

При этом высокие температуры (>700 °C) с термодинамической точки зрения более благоприятны для разложения метана (5), который является продуктом побочной реакции метанирования

$$CO + 3H_2 = CH_4 + H_2O,$$
 (9)

и реакции Будуара (6) [29, 30].

Предотвращение отложения углерода достигается введением в состав медно-цинковых композиций добавок оксидов редкоземельных элементов (ОРЗЭ), прежде всего диоксида церия [5, 16]. Высокая концентрация подвижных кислородных вакансий на поверхности CeO_2 обеспечивает протекание реакций между продуктами разложения метанола (в том числе, побочных реакций) и кислородом решетки, продуцирующих синтез-газ и препятствующих образованию частиц углерода [5, 31, 32]:

$$C_nH_m + O^x = nCO + m/2(H_2) + v_O + 2e,$$

 $CO + O^x = CO_2 + v_O + 2e,$

где O^x — кислород решетки; v_O — кислородная вакансия с эффективным зарядом 2+.

Влияние модифицирующих добавок, в первую очередь диоксида церия, в составе медно-цинковых катализаторов на структурированных носителях в процессе РМ представлено в табл. 2.

В присутствии образца CuO-ZnO при температурах ниже 300 °C выход водорода не превышает 33 %.

Таблица 2

Показатели выхода водорода в процессе разложения метанола на оксидных катализаторах на структурированном носителе Al_2O_3 /кордиерит (4 % об. CH₃OH; $V_{CH_3OH-Ar} = 2500 \text{ y}^{-1}$)

Состав катализатора, % мас.	<i>T</i> , °C	Выход водорода, %
11 % CuO-5 % ZnO	275	33
8 % CuO-7 % CeO ₂	465	96
10 % CuO-6 % ZnO-4 % CeO $_2$	460	94
9 % CuO-6 % La ₂ O ₃	540	93
6 % ZnO-8 % NiO	610	82
9 % CuO-7 % ZnO-7 % NiO	270—320	92—96
11 % CuO-7 % NiO	275—320	90—92

Выше 315 °C наблюдалось монотонное снижение количества образующегося синтез-газа во времени в изотермических условиях, обусловленное дезактивацией катализатора вследствие зауглероживания. Аргументом в пользу отложения углерода на поверхности является выделение CO_2 при прогреве образца в окислительной атмосфере (1% об. O_2 — Ar, 350—600 °C) после катализа (PM).

Введение диоксида церия в состав каталитических композиций стабилизирует их работу, предотвращая зауглероживание, что в результате способствует повышению селективности и выхода по водороду до 85—96 % (табл. 2).

Помимо отложения углерода причиной дезактивации бинарных медно-цинковых композиций может быть спекание частиц активной фазы, что следует из электронных микрофотографий (рис. 1, a—e): на поверхности свежеприготовленного образца Cu-ZnO, сформированного на Al_2O_3 /кордиерит, и модифицированного добавкой CeO₂ после катализа видны частицы четко очерченной формы, тогда как поверхность бинарного образца после реакции РМ — сплошной конгломерат частиц без четких границ.

Модифицирование CuO-ZnO-катализаторов оксидом лантана также обеспечивает высокие показатели выхода водорода в процессе разложения метанола (хотя при более высоких (на 80 °C) температурах, чем для модифицированного CeO₂ катализатора) (табл. 2). Ингибирующее действие La₂O₃ в отношении зауглероживания можно объяснить возможным образованием оксикарбонатов (La₂O₃ + CO₂ \rightarrow La₂O₂CO₃), которые, в свою очередь, реагируют с углеродными отложениями: La₂O₂CO₃ + C \rightarrow La₂O₃ + 2CO. Кроме того, будучи осно́вным оксидом, La_2O_3 уменьшает кислотность носителя Al_2O_3 /кордиерит, подавляя пиролитическое образование углерода посредством крекинга метана (продукта побочной реакции (9)) на кислотных центрах [33].

Наряду с ОРЗЭ оксид никеля также является эффективной добавкой медно-цинковых катализаторов разложения метанола, способствующей диспергированию частиц меди и предотвращению их спекания [4, 17]. В то же время процесс разложения СН₃ОН на индивидуальных Ni-катализаторах протекает с низким выходом синтез-газа вследствие существенного влияния побочной реакции метанирования [4, 34]. С учетом высокой активности оксида меди (прежде всего, Cu⁺ [35]) в процессах риформинга метанола особый интерес представляет ингибирование восстановления оксида меди в составе композиций Cu-Zn-Ni-O под влиянием NiO [17].

В присутствии индивидуального NiO и бинарного ZnO-NiO образцов заметного превращения метанола при температурах до 330 °C не наблюдалось, а показатели селективности и выхода по водороду, превышающие 80 %, достигаются лишь при ~600 °C (табл. 2). В области температур 350—450 °C образец NiO/Al₂O₃/кордиерит катализирует превращения CH₃OH с преимущественным образованием метана по вторичной реакции (9) [27].

В присутствии катализаторов CuO-NiO и CuO-ZnO-NiO, нанесенных на Al₂O₃/кордиерит, разложение метанола характеризуется показателями селективности и выхода по водороду 90-96 % при температурах 270-320 °С, существенно более низких (на 200—250 °C; табл. 2, рис. 2) по сравнению с образцами, содержащими ОРЗЭ; селективность образования СО₂ не превышает 4 %. При повышении температуры до 450-500 °С наблюдается постепенное снижение показателей селективности по водороду и CO и увеличение $S_{\rm CO_2}$, а среди продуктов появляется метан вследствие протекания побочной реакции метанирования, при этом увеличение S_{CH}. происходит симбатно снижению селективности образования синтез-газа. С повышением температуры до 500-600 °C наблюдается обратная тенденция — возрастание селективности по сингазу и снижение показателей S_{CH_4} , S_{CO_2} , вероятно вследствие протекания парового и углекислотного риформинга метана:

$$CH_4 + H_2O \rightarrow CO + 3H_2, \tag{10}$$

$$CH_4 + CO_2 \rightarrow 2CO + 2H_2. \tag{11}$$

Наличие паров воды среди продуктов разложения метанола может быть результатом побочной реакции метанирования (9).

а 60µm		б 60µт			В 		
205V P1/02 10/m	2 12 80 SEL	A 	1 0 ogn	2 .	2012 X1.00	1 10µm 12	5 5 5 5 5 5 5
	Элемент]	1		2	-	
		% мас.	% ат.	% мас.	% ат.	-	
	O Al Ni Cu Mg	18,46 6,40 60,23 14,91 0,00	43,51 8,95 38,69 8,85 0,00	7,20 2,35 12,90 75,19 0,51	22,19 4,29 10,84 58,39 1,04		
	S1	0,00	0,00	1,85	3,25		

Рис. 1. Микрофотографии СЭМ поверхности образцов катализаторов на структурированном носителе Al₂O₃/кордиерит: a — Cu-ZnO до катализа; δ —e —Cu-ZnO (δ), CuO-ZnO-CeO₂ (e), CuO-NiO (e, ∂), CuO-ZnO-NiO (e) после обработки реакционной смесью 4 % об. CH₃OH — Ar при 550 (δ , e) и 350 °C (e—e). a—e, e — в режиме SEI; ∂ — в режиме BEC.

Менее существенное снижение величин $S_{H_{2}}$ в интервале температур 300—500 °С для трехкомпонентной композиции (с 93 до 78 %, рис. 2) по сравнению с бинарной (с 90 до 53 % [27]) может быть обусловлено особенностями морфологии поверхности катализаторов, которые иллюстрируют микрофотографии СЭМ (рис. 1, г-е). Как видно, на поверхности бинарного образца CuO-NiO присутствуют кластеры характерной ракушкообразной формы (1), образованные частицами NiO, тогда как относительно мелкие включения (2) — Си-содержащие частицы. Основанием для такого отнесения являются данные микрозондового анализа обозначенных участков поверхности 1, 2 и снимок СЭМ в режиме ВЕС (в дополнение к SEI), на котором указанные конгломераты заметно темнее (рис. 1, г) по сравнению с яркими частицами меди (с большей атомной массой, рис. 1, ∂). В то же время поверхность образца CuO-ZnO-NiO более однородна, что может обусловливать улучшенное каталитическое поведение трехкомпонентной композиции по сравнению с бинарной.

Таким образом, в процессе разложения метанола высокие показатели выхода водорода (90—96 %) при температурах 270—320 °С достигаются в присутствии оксида никеля в составе оксидных медно-цинковых композиций, что свидетельствует о промотирующей роли NiO в составе структурированных катализаторов CuO-ZnO-NiO/Al₂O₃/кордиерит.

Для выяснения причин промотирующей роли оксида никеля (кроме предотвращения агломерации частиц активной фазы) проанализированы профили температурно-программированного восстановления образцов CuO-ZnO-NiO. Отметим, что в реакции разложения метанола имело место восстановление CuO в составе катализаторов целевым продуктом. Сопоставление температурных интервалов и максимумов поглощения водорода исследуемыми образцами (табл. 3) свидетельствует, что оксид никеля в составе CuO-ZnO-NiO снижает восстанавливаемость

Рис. 2. Температурные зависимости конверсии CH₃OH (*1*), селективности образования H₂ (*2*), CO (*3*), CO₂ (*4*), CH₄ (*5*) в процессе разложения метанола на катализаторе 9 % CuO-7 % ZnO-7 % NiO/Al₂O₃/кордиерит. $V_{CH_3OH-Ar} = 2500 \text{ y}^{-1}$.

Таблица 3

Температурные интервалы и максимумы поглощения водорода в ходе термопрограммированного восстановления оксидных композиций на структурированном носителе Al₂O₃/кордиерит

Образец	ΔT , °C	$T_{\rm max}, ^{\circ}{ m C}$
CuO-ZnO	220—365	305
CuO-NiO	245-650	355; 480
CuO-ZnO-NiO	290—650	375

оксида меди (ключевого компонента катализатора) при температурах достижения максимальных показателей выхода целевого продукта ($Y_{\rm H_2} = 90 - 96 \%$ при 270-320 °C). Снижение восстанавливаемости модифицированных NiO образцов по сравнению с CuO-ZnO может быть обусловлено возможным образованием рентгеноаморфных смешанных CuNi-оксидных фаз [36]. Можно также предположить, что взаимодействие H₂ с поверхностью образца катализатора включает диссоциативную адсорбцию молекул водорода на оксиде никеля с последующим спилловером на медьсодержащую фазу, что приводит к смещению профилей ТПВВ в область более высоких температур. Наличие четкого максимума восстановления оксида никеля на кривой ТПВВ образца CuO-NiO с температурой 480 °С можно объяснить агломерацией частиц NiO в изолированные кластеры; 355 °С — температура максимума восстановления оксида меди. Кривая поглощения водорода с одним максимумом ($T_m = 375$ °C) для трехкомпонентного катализатора CuO-ZnO-NiO обусловлена более равномерным диспергированием компонентов с образованием квазигомогенных частиц. Примечательно, что восстановление образца CuO-ZnO-NiO начинается при более высоких (на 45 °C) температурах по сравнению с CuO-NiO, т. е. наряду с влиянием фактора диспергирования более высокая каталитическая активность трехкомпонентной композиции может быть связана также с ее меньшей восстанавливаемостью в сопоставлении с бинарной.

Парциальное окисление метанола на катализаторах Cu-ZnO/Al₂O₃/кордиерит

Медно-цинковые композиции на структурированных носителях проявляют высокую активность в отношении парциального окисления метанола. Из представленных в табл. 4 данных следует, что показатели селективности и выхода по водороду, близкие к 90 %, достигаются в условиях стехиометрического соотношения реагентов в присутствии цинкоксидного и бинарного Cu-ZnO-катализаторов. Избыток кислорода в реакционной смеси приводит к глубокому окислению метанола с образованием преимущественно H_2O и CO_2 , значения S_{H_2} и Y_{H_2} не превышают 3—4 % ($C_{CH_3OH}/C_{O_2} = 4/10$). Для катализатора Cu/Al₂O₃/кордиерит показатели селективности и выхода по водороду существенно уступают таковым как для бинарного Cu-ZnO, так и образца на основе ZnO. Кроме того, парциальное окисление субстрата в присутствии Cu/Al₂O₃/кордиерит сопровождается заметным образованием метана как побочного продукта ($S_{CH_4} \approx 9$ %).

Полученные результаты указывают на достаточно высокую активность цинкоксидного катализатора ZnO/Al_2O_3 (согласно данным РФА алюмината цинка $ZnAl_2O_4$ кубической модификации со средним размером частиц 14 нм) в отношении кислородной конверсии метанола.

Неаддитивное снижение селективности по монооксиду углерода как побочному продукту в присутствии бинарного Cu-ZnO-катализатора по сравнению с образцами индивидуальных компонентов Cu и ZnO (табл. 4) может быть обусловлено синергией взаимодействия частиц меди с кристаллической решеткой алюмината цинка с формированием высокоактивных микроструктур [37] — менее селективных в отношении нежелательного продуцирования CO.

В процессе парциального окисления метанола в присутствии композиции CuO-ZnO после интенсивного образования водорода в изотермических условиях при температурах около 400 °C наблюдалось постепенное снижение количества $\rm H_2$ (симбатно со снижением конверсии CH₃OH с 87 до 65 %), вызванное расходом целевого продукта на

Таблица 4	4
-----------	---

Показатели парциального окисления метанола на катализаторах Cu-ZnO-(CeO₂)/Al₂O₃/кордиерит (4 % об. CH₃OH — 2 % об. O₂; $V_{CH_3OH-O_3-Ar} = 2500 \text{ u}^{-1}$)

	Koupencus CH OH %/T °C	H ₂		СО	
Состав катализатора, % мас.	Конверсия Сп3ОП, 7077, С	Селективность, %	Выход, %	Селективность, %	
10 % Cu	88/525	34	30	39	
8 % Cu-5 % ZnO	→100/505	88	88	5	
6 % ZnO	→100/495	89	89	13	
9 % Cu-6 % ZnO-4 % CeO $_2$	→100/485	74	74	77	

восстановление CuO до металлической меди, активной при более высоких температурах, при которых катализатор демонстрировал типичное для образца Cu-ZnO/Al₂O₃/кордиерит поведение. Примечательно, что дополнительная термообработка образца в восстановительной атмосфере 4 % об. H_2 — Ar не приводила к изменению его массы по сравнению с таковой для образца непосредственно после катализа. Это обстоятельство является аргументом в пользу трактовки каталитического поведения CuO-ZnO при температурах до 400 °C.

Введение диоксида церия в состав медно-цинковой композиции приводит к существенному повышению селективности по монооксиду углерода, т. е. образованию преимущественно синтез-газа, по-видимому вследствие высокой активности CeO₂ в реакции разложения метанола, как показано выше. Следует отметить, что в работах [38, 39] также сообщается об отсутствии положительного влияния добавки диоксида церия в составе Cu-ZnO-катализаторов в отношении процессов окислительного риформинга метанола.

Паровой и комбинированный риформинг метанола в присутствии катализаторов CuO-ZnO-MgO/Al₂O₃/кордиерит

Исследование процессов паровой и паро-кислородной конверсии метанола проводили на оксидных медно-цинковых образцах, модифицированных добавкой оксида магния для предотвращения спекания частиц активной фазы и зауглероживания [18, 40—42]. Полученные результаты приведены на рис. 3 и в табл. 5 в сопоставлении с бинарной медно-цинковой композицией.

В реакции парового риформинга метанола при стехиометрическом соотношении реагентов (CH₃OH/H₂O = 1/1) изменение выхода целевого продукта с температурой $Y_{H_2}(T)$ имеет экстремальный характер с минимумом около 300 °C, который можно связать со спеканием частиц меди, а

также с расходом целевого продукта на восстановление оксида меди, как в случае разложения и кислородной конверсии метанола. Дальнейшее увеличение показателей $Y_{\rm H_2}$ с повышением температуры обусловлено каталитической активностью восстановленной (металлической) меди. В избытке водяного пара экстремум зависимости $Y_{\rm H_2}(T)$ нивелируется до полного исчезновения, по-видимому вследствие снижения восстанавливаемости оксида меди. В условиях многократного избытка $\rm H_2O$ (CH₃OH/H₂O = 1/10) при температурах до 275 °C наблюдается постепенный рост показателей выхода водорода, дальнейшее повышение температуры практически не влияет на величины $Y_{\rm H_2}$.

В присутствии предварительно восстановленного (*in situ*) образца CuO-ZnO-MgO/Al₂O₃/кордиерит показатели выхода водорода в области температур до 300 °C существенно снижаются по сравнению с исходным катализатором. В то же время на реокисленном (прокаленном) образце зависимость $Y_{\rm H_2}(T)$ аналогична описанной выше (с экстремумом), что является аргументом в пользу предложенного выше объяснения.

В процессе комбинированного риформинга метанола влияние соотношения CH_3OH/H_2O на температурные зависимости выхода водорода аналогично описанному выше для паровой конверсии субстрата: по мере повышения соотношения в реакционной смеси с 1/5/0,25 до 1/2/0,15 и 1/0,75/0,08 зависимости $Y_{H_2}(T)$ приобретают экстремальный характер (рис. 3).

Паровая конверсия субстрата в присутствии композиции CuO-ZnO-MgO протекает практически без образования CO как побочного продукта в широком температурном интервале 230—550 °C (табл. 5). В процессе окси-парового риформинга метанола при пятикратном избытке водяного пара (CH₃OH/H₂O/O₂ = 1/5/0,25) селективность по монооксиду углерода не превышает 2 %. Вместе с тем по мере повышения соотношений CH₃OH/H₂O/O₂ = 1/2/0,15), включая близкие к

таолица з	Та	юлииа	5
-----------	----	-------	---

Показатели процессов парового и комбинированного риформинга метанола в присутствии катализаторов CuO-ZnO-MgO/Al₂O₃/кордиерит (V_{CH,OH-H,O}-(O₂)-Ar = 1250 ч⁻¹)

Состав катализатора, % мас.	Состав реакционной смеси СН ₃ ОН/Н ₂ О/О ₂ , % об.	Конверсия метанола, %/ <i>T</i> , °C	Выход водорода, моль H ₂ /моль CH ₃ OH	Селективность по СО, %
7 % CuO-9 % ZnO-0 5 % MgO	20/20/0	91/580	27	→ 0
/ /0 CuO / /0 ZhO 0,5 /0 MgO	14,5/29/2,2	83/585	2,2	14
	26/19,5/2,2	85/575	2,3	11
8 % CuO-6 % ZnO	20/20/0	81/540	2,4	42
	14,5/29/2,2	72/545	1,9	49
	20/19,5/2,2	67/600	1,1	56

Рис. 3. Температурные зависимости выхода водорода в процессе комбинированного риформинга метанола на катализаторе 7 % CuO-9 % ZnO-0,5 % MgO/Al₂O₃/кордиерит при CH₃OH/H₂O/O₂ 1/5/0,25 (*1*), 1/2/0,15 (*2*), 1/0,75/0,08 (*3*). $V_{CH_2OH-H_3O-(O_2)-Ar} = 1250 \text{ y}^{-1}$.

автотермическому режиму $(CH_3OH/H_2O/O_2 = 1/0,75/0,08)$, селективность образования СО превышает 10 %, что может быть обусловлено как разложением метанола (1), так и протеканием обратной реакции водяного сдвига:

$$\mathrm{CO}_2 + \mathrm{H}_2 \rightarrow \mathrm{CO} + \mathrm{H}_2\mathrm{O}.$$
 (12)

Роль оксида магния как модифицирующей добавки (помимо отмеченных выше факторов предотвращения спекания и зауглероживания) заключается в снижении восстанавливаемости оксида меди в составе катализаторов, возможно вследствие образования рентгеноаморфного твердого раствора MgCu₂O₃ [43]. Об этом свидетельствуют результаты TПВВ: температурный диапазон и максимум поглощения водорода поверхностью образца CuO-ZnO-MgO/Al₂O₃/кордиерит (350—550 °C, $T_m = 425$ °C) [28] существенно превышают соответ-

ствующие характеристики для образца CuO-ZnO/Al₂O₃/кордиерит (220—365 °C, $T_m = 305$ °C) (табл. 3). Кроме того, можно предположить, что нуклеофильный кислород оксида магния (осно́вной добавки с высокой хемосорбционной емкостью по метанолу [44]) обеспечивает гетеролитический разрыв связи О–Н в молекуле CH₃OH, способствуя образованию метоксисоединений как интермедиатов реакций риформинга субстрата.

Менее резкое снижение показателей выхода водорода в присутствии модифицированного оксидом магния катализатора в процессе паровой конверсии метанола при соотношении реагентов CH₃OH/H₂O = 1/2 (с 2,5 до 1,6 моль Н₂/моль СН₃ОН в интервале температур 270-415 °C) в сопоставлении с таковым CuO-ZnO лля бинарного образца (2,2-0,7 моль Н₂/моль СН₃ОН в интервале температур 270—320 °C) [28], по-видимому, обусловлено указанными выше отличиями в восстанавливаемости оксида меди. Этот фактор может быть также причиной проявления минимума для зависимости $Y_{\rm H_2}(T)$ при более высоких температурах в присутствии катализатора CuO-ZnO-MgO по сравнению с бинарной композицией CuO-ZnO как в процессе парового, так и комбинированного риформинга субстрата.

Селективность образования побочного продукта СО в присутствии модифицированного MgO образца существенно ниже, чем в случае бинарной композиции CuO-ZnO (S_{CO} приближается к 50 % в результате протекания преимущественно реакции разложения метанола (1)) (табл. 5). При соотношении реагентов CH₃OH/H₂O/O₂ = 1/0,75/0,08 достигнутый показатель выхода водорода Y_{H_2} более чем в 2 раза выше для модифицированного образца, что указывает на большую вероятность протекания обратной реакции водяного сдвига (12) на катализаторе CuO-ZnO. Наличие среди продуктов реакции метана ($S_{CH_4} \approx 2$ —11 %, 350—600 °C) может быть обусловлено протеканием побочной реакции метанирования (9) на бинарном образце.

Роль компонентов медно-цинковых композиций, вероятные интермедиаты и маршруты процессов каталитического риформинга метанола

Несмотря на то что первые работы, посвященные выяснению роли компонентов медно-цинковых катализаторов в реакциях риформинга метанола, опубликованы более тридцати лет назад, представления о природе активных центров таких каталитических композиций по-прежнему в центре внимания исследователей. Продуцирование водорода чаще всего связывают с медью, тогда как влияние оксида цинка — прежде всего с повышением дисперсности и восстанавливаемости Си-содержащего компонента, а также с эффектами спилловера H₂ [7—13, 45—47]. Вместе с тем с учетом представленных выше результатов по парциальному окислению СН₃ОН на катализаторе ZnO/Al₂O₃/кордиерит представляется уместным еще раз отметить высокую активность оксида цинка как катализатора получения Н₂.

В работе [48] обосновано заключение о том, что повышение активности и селективности медьсодержащих композиций в процессах риформинга метанола симбатно с их восстанавливаемостью не означает, что этот фактор играет ключевую роль в катализе на Cu-ZnO/Al₂O₃-системах. Основной причиной улучшения каталитических свойств рассматривается повышение дисперсности меди.

Наряду с металлической медью (Cu⁰) активными центрами процессов риформинга рассматриваются также окисленные формы меди. В работе [49] приводятся аргументы в пользу участия катионов Cu⁺, при этом их роль обосновывается тем, что именно однозарядные ионы меди, растворенные в решетке ZnO, являются активными центрами синтеза метанола, и это представление переносится на процессы риформинга. В работе [35] обосновано заключение о том, что стабилизацию меди(I) в реакции паровой конверсии СН₃ОН обеспечивают оксиды цинка и циркония в составе каталитических композиций ZnO/Cu, ZrO₂/Cu. Для стабилизации катионов Cu⁺ катализаторов синтеза метанола в реакционную смесь вводят СО₂ [49]. Логично предположить, что аналогичную функцию диоксид углерода как один из продуктов может выполнять и в процессах окислительного риформинга CH₃OH.

Наряду с металлической и окисленной медью (Cu⁰ и Cu⁺) активными центрами продуцирования водорода рассматриваются также пары Cu⁰ — Cu⁺ [50], тогда как на Cu²⁺ протекает преимущественно глубокое окисление метанола. Вместе с тем в работе [51] приводят аргументы в пользу катионов Cu^{2+} в роли активных центров разложения и паровой конверсии CH_3OH . Обсуждается также возможность участия так называемой субоксидной формы $Cu_{x\geq 10}O$ в превращениях субстрата [46].

Вывод относительно ключевой роли центров Cu⁺ в процессах окислительного риформинга метанола обосновывается следующими аргументами: монооксид углерода практически не образует устойчивых карбонилов с Cu⁰, в то время как с оксидом меди(I) связывается прочно, что осложняет десорбцию CO в газовую фазу, способствуя дальнейшему окислению на катионах Cu²⁺, т. е. совместное действие Cu⁺ и Cu²⁺ наряду с продуцированием водорода обеспечивает ингибирование образования монооксида углерода [52, 53].

Каталитические композиции структуры шпинелей формируют для стабилизации активных центров меди. В работах [54, 55] обосновано заключение о том, что окружение трехвалентных металлов или их оксидов предотвращает спекание частиц Си в структуре шпинели и обеспечивает высокую активность в процессе парового риформинга метанола, а также возможность быстрой регенерации катализатора на воздухе. Мы полагаем, что важным фактором является также устойчивость меди к восстановлению в решетке шпинели, обусловленная поляризацией ковалентных связей Cu-O ионами M³⁺, что способствует повышению эффективных зарядов ионов меди, вследствие чего энергия решетки возрастает и, соответственно, повышается температура восстановления [56].

При обсуждении схем возможных механизмов процессов риформинга метанола на Си-содержащих катализаторах в роли интермедиатов рассматривают преимущественно метоксисоединения, формальдегид, диоксиметилен, формиат и метилформиат.

Превращение адсорбированного метанола в процессе разложения, согласно ряду работ, протекает через дегидрогенизацию с образованием на поверхности метокси-интермедиатов и формальдегида [57]:

$$\begin{split} \mathrm{CH}_{3}\mathrm{OH}_{\mathrm{adc}}&\leftrightarrow\mathrm{CH}_{3}\mathrm{O}_{\mathrm{adc}}+\mathrm{H}_{\mathrm{adc}},\\ \mathrm{CH}_{3}\mathrm{O}_{\mathrm{adc}}+\mathrm{H}_{\mathrm{adc}}&\rightarrow\mathrm{CH}_{2}\mathrm{O}_{\mathrm{adc}}+\mathrm{H}_{2},\\ \mathrm{CH}_{2}\mathrm{O}_{\mathrm{adc}}&\leftrightarrow\mathrm{CO}_{\mathrm{adc}}+2\mathrm{H}_{\mathrm{adc}}&\leftrightarrow\mathrm{CO}+\mathrm{H}_{2}. \end{split}$$

При этом стадия дегидрирования метоксида с образованием формальдегида является лимитирующей [58—61]. Следует отметить, что адсорбированные CH₂O-соединения могут быстро окисляться

до диоксиметилена [62] и полимеризоваться в полиоксиметилен [63].

Диссоциативная хемосорбция метанола осуществляется за счет взаимодействия гидроксогруппы молекулы CH₃OH и атома кислорода поверхности, при этом эффективному разрыву связи O–H способствуют центры Cu^{δ+}–O^{δ–}[8].

В работах [64-68] продуцирование синтез-газа в реакции разложения CH₃OH на медьсодержащих катализаторах рассматривают через образование метилформиата. Эти промежуточные соединения, согласно [69], формируются путем димеризации молекул формальдегида по механизму Тищенко, включающему перенос атома водорода на атом углерода карбонильной группы молекулы СН₂О. В то же время в работе [70] на основании исследований с применением метода меченых атомов ¹³С обосновано заключение о возможности образования метилформиата по реакции между формальдегидом и метоксидом через формирование интермедиатов, подобных гемиацеталю. Этот маршрут формирования НСООСН₃-интермедиатов обсуждается также в работе [71]. Показано, что образованные по реакции между метоксидом и формальдегидом на металлической меди метилформиатные соединения способны реагировать с поверхностными гидроксогруппами с образованием муравьиной кислоты, в результате дегидрогенизации которой продуцируется СО2. Вместе с тем, учитывая относительно низкую энергию адсорбции НСООСН₃, более вероятна десорбция метилформиата.

Среди других промежуточных соединений в процессах риформинга CH₃OH рассматриваются формиаты — ключевые интермедиаты в синтезе метанола [72], которые формируются в результате реакции Канниццаро (диспропорционирование формальдегида) [63], а также дегидрогенизации или окисления диоксиметилена [62, 73, 74].

Наличие либо отсутствие кислорода на поверхности меди может обусловливать формирование моно- или бидентатных формиатов. При этом монодентатные формиатные комплексы, координированные с ОН-группами поверхности посредством водородной связи, могут легко превращаться в бидентатные вследствие низкой термической стабильности [73].

Разложение формиатных соединений на поверхности Си продуцирует исключительно водород и углекислый газ (2CO₂H → 2CO₂ + H₂) [8]. Образование CO₂ из формиата подтверждено теоретически с использованием теории функционала плотности [75].

Применительно к парциальному окислению метанола на Cu-ZnO-катализаторе формиатный маршрут обосновывается в работе [76], авторы которой предлагают механизм Лэнгмюра — Хиншельвуда. Согласно этому механизму начальной стадией превращений CH₃OH является разрыв связи O–H с образованием поверхностных метоксисоединений, вслед за которым имеет место дегидрогенизация метоксида в формальдегид с последующим формированием поверхностных формильных соединений, что приводит к образованию CO и H₂. С участием кислорода поверхности формильные интермедиаты превращаются в формиаты:

$$\begin{split} \mathrm{CH}_{3}\mathrm{OH} &\rightarrow \mathrm{CH}_{3}\mathrm{O}_{\mathrm{adc}} + \mathrm{H}_{\mathrm{adc}}, \\ \mathrm{CH}_{3}\mathrm{OH} + \mathrm{O}_{\mathrm{adc}} &\rightarrow \mathrm{CH}_{3}\mathrm{O}_{\mathrm{adc}} + \mathrm{OH}_{\mathrm{adc}}, \\ \mathrm{CH}_{3}\mathrm{O}_{\mathrm{adc}} &\rightarrow \mathrm{CH}_{2}\mathrm{O}_{\mathrm{adc}} + \mathrm{H}_{\mathrm{adc}}, \\ \mathrm{CH}_{2}\mathrm{O}_{\mathrm{adc}} &\rightarrow \mathrm{CHO}_{\mathrm{adc}} + \mathrm{H}_{\mathrm{adc}} &\rightarrow \mathrm{CO}_{\mathrm{adc}} + 2\mathrm{H}_{\mathrm{adc}} \\ \mathrm{CHO}_{\mathrm{adc}} + \mathrm{O}_{\mathrm{adc}} &\rightarrow \mathrm{CO}_{2}\mathrm{H}_{\mathrm{adc}}. \end{split}$$

Активация метанола с образованием метоксисоединений рассматривается также и на ZnO-компоненте бинарного медно-цинкового катализатора.

Процессы окислительного риформинга могут быть осложнены рядом побочных реакций, в том числе разложением и глубоким окислением метанола (ГОМ), реакцией водяного сдвига (PBC), окислением СО и H_2 , которые могут протекать как последовательно, так и параллельно. В частности, в работе [77] предложена схема кислородной конверсии метанола на катализаторе Cu/ZnO/Al₂O₃, включающая реакции PM, ГОМ, а также паровой риформинг с участием H_2O как продукта глубокого окисления CH₃OH. В работе [78] глубокое окисление метанола также включено в схему парциального окисления субстрата на катализаторах Cu/ZnO.

В литературе предложено несколько маршрутов парового риформинга метанола. В ранних работах образование водорода рассматривали через разложение СН₃ОН с последующей реакцией водяного сдвига [79]. Этот маршрут, однако, не является достаточно обоснованным согласно современным представлениям [7, 8], учитывая тот факт, что концентрации СО в продуктах на Си-содержащих катализаторах значительно ниже равновесных. Наибольшее распространение в литературе получили метилформиатная [80] и формальдегидная [65] схемы. Согласно первой паровая конверсия метанола протекает через дегидрогенизацию субстрата с образованием метилформиата, последующий гидролиз и разложение муравьиной кислоты:

 $2CH_3OH \rightarrow HCOOCH_3 + 2H_2$,

 $HCOOCH_3 + H_2O \rightarrow CH_3OH + HCOOH,$

 $HCOOH \rightarrow H_2 + CO_2$,

при этом лимитирующей является стадия дегидрирования.

Вторая схема включает в роли интермедиатов формальдегид и муравьиную кислоту:

$$CH_3OH \rightarrow HCHO + H_2,$$

HCHO + H₂O → HCOOH + H₂,
HCOOH → $CO_2 + H_2.$

Правомочность метилформиатной и формальдегидной схем обоснована результатами ряда работ, в том числе [81, 82], в которых возможность дегидрогенизации метанола до метилформиата и формальдегида с последующей нуклеофильной атакой H₂O с образованием муравьиной кислоты подтверждена экспериментально.

Следует отметить, что в отличие от метокси- и формиатных соединений, идентифицированных как общие интермедиаты парового риформинга метанола на различных медьсодержащих катализаторах (Cu/SiO₂, Cu/ZnO/Al₂O₃, Cu/ZnO/ZrO₂) [68, 83, 84], метилформиат обнаружен только в условиях большого избытка CH₃OH.

В работе [50] предложена схема комбинированного риформинга метанола в присутствии Cu/ZnO/Al₂O₃, которая включает стадии, продуцирующие адсорбированные на поверхности формиат, воду и гидроксильные группы. Формиат окисляется до CO₂ и OH-групп, последние и H₂O диссоциируют на атомы водорода и кислорода:

$$\begin{split} \mathrm{CH}_{3}\mathrm{OH} + \mathrm{O}_{\mathrm{aac}} &\rightarrow \mathrm{CH}_{3}\mathrm{O}_{\mathrm{aac}} + \mathrm{OH}_{\mathrm{aac}}, \\ \mathrm{CH}_{3}\mathrm{O}_{\mathrm{aac}} + \mathrm{OH}_{\mathrm{aac}} &\rightarrow \mathrm{CH}_{2}\mathrm{O}_{\mathrm{aac}} + \mathrm{H}_{2}\mathrm{O}_{\mathrm{aac}}, \\ \mathrm{CH}_{2}\mathrm{O}_{\mathrm{aac}} + \mathrm{O}_{\mathrm{aac}} &\rightarrow \mathrm{CH}_{2}\mathrm{O}_{2}_{\mathrm{aac}}, \\ \mathrm{CH}_{2}\mathrm{O}_{2}_{\mathrm{aac}} + \mathrm{O}_{\mathrm{aac}} &\rightarrow \mathrm{CH}_{2}\mathrm{O}_{2}_{\mathrm{aac}}, \\ \mathrm{CH}_{2}\mathrm{O}_{2}_{\mathrm{aac}} + \mathrm{O}_{\mathrm{aac}} &\rightarrow \mathrm{HCOO}_{\mathrm{aac}} + \mathrm{OH}_{\mathrm{aac}}, \\ \mathrm{HCOO}_{\mathrm{aac}} + \mathrm{O}_{\mathrm{aac}} &\rightarrow \mathrm{CO}_{2} + \mathrm{OH}_{\mathrm{aac}}, \\ \mathrm{H}_{2}\mathrm{O} &\rightarrow \mathrm{H}_{2}\mathrm{O}_{\mathrm{aac}} &\rightarrow \mathrm{H}_{\mathrm{aac}} + \mathrm{OH}_{\mathrm{aac}} &\rightarrow \mathrm{O}_{\mathrm{aac}} + 2\mathrm{H}_{\mathrm{aac}}. \end{split}$$

Рекомбинация адсорбированных Н-атомов продуцирует молекулярный водород.

В работах [46, 85] рассматривается комбинированный риформинг метанола, включающий глубокое окисление субстрата с последующей паровой конверсией. При этом в результате ГОМ (при низких степенях превращения метанола) металлическая медь предварительно восстановленного катализатора Cu/ZnO/Al₂O₃ полностью окисляется до Cu²⁺ благодаря присутствию O₂ в реакционной смеси, в то время как в процессе ПКМ (в условиях полного превращения молекулярного кислорода при высоких значениях конверсии CH₃OH) окисленная медь вновь восстанавливается (Cu²⁺ \rightarrow Cu⁰).

Полученные нами результаты дают основание рассматривать участие окисленной и восстановленной меди как активных центров превращений метанола в процессе паро-кислородной конверсии в соответствии со схемой [50], предполагающей формиат в роли интермедиата. Модифицирование бинарной композиции CuO-ZnO основной добавкой оксида магния с высокой хемосорбционной емкостью по метанолу [44] облегчает образование метоксисоединений в результате взаимодействия молекулы СН₃ОН с атомом диссоциативно адсорбированного на поверхности кислорода с гетеролитическим разрывом связи О-Н в молекуле субстрата. Представляется также вероятным попеременное восстановление и окисление меди водородом и кислородом/водяным паром реакционной смеси, т. е. участие пар Cu^{n+} — Cu^0 в роли активных центров продуцирования водорода, а также СО2. Роль оксида меди проявляется при температурах до 300 °C, в то время как центров металлической меди (Cu⁰) — при повышеннных температурах в условиях восстановления реакционной средой.

Рассмотренные схемы отражают наиболее распространенные в литературе представления о маршрутах процессов риформинга метанола на медьсодержащих катализаторах. Дискуссии о возможных механизмах реакций парциального окисления, парового и комбинированного риформинга метанола продолжаются.

Заключение

Подводя итог и обобщая результаты исследований по влиянию модифицируюших добавок оксидов редкоземельных элементов (CeO₂, La₂O₃), никеля и магния на активность, селективность CuO-ZnO-композиций на структурированном носителе Al₂O₃/кордиерит в процессах разложения, парового и окси-парового риформинга метанола, отметим наиболее важные.

Роль ОРЗЭ состоит в предотвращении зауглероживания поверхности катализаторов, спекания частиц активных фаз, что обеспечивает выход водорода 85—96 % в реакции разложения субстрата при температурах выше 450 °C, в то время как оксид никеля выполняет функцию промотора, существенно снижая (на 200—250 °C) температуру достижения высоких показателей выхода водорода ($Y_{\rm H_2}$ = 90—96 %).

Модифицирование оксидом магния катализатора CuO-ZnO/Al₂O₃/кордиерит и многократный избыток паров воды в реакционной смеси (CH₃OH/H₂O = 1/5÷1/10) обеспечивают возрастание показателей Y_{H_2} наряду со снижением селективности по монооксиду углерода как побочному продукту в широком температурном интервале 230—550 °C в процессах парового и окси-парового риформинга метанола, а также нивелируют резкое уменьшение выхода водорода в области температур 320—400 °C (обнаруженный минимум зависимости $Y_{H_2}(T)$).

Промотирующее влияние оксидов никеля и магния обусловлено снижением восстанавливаемости CuO в составе каталитических композиций CuO-ZnO-NiO(MgO)/Al₂O₃/кордиерит в соответствии с результатами ТПВВ. Кроме того, роль NiO важна в предотвращении агломерации (спекания) частиц активной фазы в процессе разложения метанола, а MgO — в подавлении зауглероживания и повышенной хемосорбционной емкости по метанолу в процессах парового и комбинированного риформинга субстрата.

Цинк-оксидный компонент катализатора Cu-ZnO/Al₂O₃/кордиерит как фаза алюмината ZnAl₂O₄ в процессе парциального окисления метанола обеспечивает показатели селективности и выхода по водороду около 90 % с достижением неаддитивного снижения селективности образования CO (по сравнению с индивидуальными компонентами меди и оксида цинка).

Перспективным путем усовершенствования катализаторов риформинга метанола, улучшения их ресурсных характеристик нам представляется формирование на поверхности структурированных носителей медьсодержащих фаз шпинельной структуры (алюминатов, ферритов) с повышенной термостабильностью, устойчивостью к спеканию и восстановлению меди, способностью к регенерации. Учитывая высокую каталитическую активность таких композиций в отношении окисления монооксида углерода и реакции водяного сдвига, можно также ожидать ингибирования побочных реакций образования СО в процессах окислительного риформинга метанола.

Литература

- Krummrich S., Llabrés J. // Int. J. Hydrogen Energy. 2015. — 40. — P. 5482—5486.
- Stefanidis G. D., Vlachos D. G. // Chem. Eng. Sci. 2009. — 64. — P. 4856—4865.
- 3. *Cheng W.-H.* // Appl. Catal. A. 1995. **130**. P. 13—30.
- Shiozaki R., Hayakawa T., Liu Y. et al. // Catal. Lett. 1999. — 58. — P. 131—140.

- Laosiripojana N., Assabumrungrat S. // Chem. Eng. Sci. 2006. — 61. — P. 2540—2549.
- Geissler K., Newson E., Vogel F. et al. // Phys. Chem. Chem. Phys. — 2001. — 3. — P. 289—293.
- Sá S., Silva H., Brandao L. et al. // Appl. Catal. B. 2010.
 99. P. 43—57.
- Yong S. T., Ooi C. W., Chai S. P., Wu X. S. // Int. J. Hydrogen Energy. — 2013. — 38. — P. 9541—9552.
- 9. *Schuyten S., Wolf E. E. //* Catal. Lett. 2006. **106**. P. 7—14.
- Mrad M., Gennequin C., Aboukais A., Abi-Aad E. // Catal. Today. — 2011. — 176. — P. 88—92.
- 11. Rameshan C., Stadlmayr W., Penner S. et al. // Angew. Chem. Int. Ed. — 2012. — 51. — P. 3002—3006.
- Palo D. R., Dagle R. A., Holladay J. D. // Chem. Rev. 2007. — 10. — P. 3992—4021.
- Li L., Zhang B., Kunkes E. et al. // ChemCatChem. 2012.
 4. P. 1764—1775.
- Mitani H., Xu Y., Hirano T. et al. // Catal. Today. 2017. — 281. — P. 669—676.
- 15. Spencer M. S. // Nature. 1986. **323**. P. 685—687.
- Yang C., Ren J., Sun Y. // Catal. Commun. 2001. 2. P. 353—356.
- 17. Xi J., Wang Z., Lu G. // Appl. Catal. A. 2002. 225. P. 77—86.
- Basile A., Parmaliana A., Tosti S. et al. // Catal. Today. 2008. — 137. — P. 17—22.
- Gulati S. T. // Structured catalysts and reactors / Eds. A. Cybulski, J. A. Moulijn. — Boca Raton; London; New York : CRC press, 2006.
- 20. Berndt M., Landri P. // Catal. Today. 2002. 75. P. 17—22.
- Heck R. M., Gulati S., Farrauto R. J. // Chem. Eng. J. 2001. — 82. — P. 149—156.
- 22. *Lindström B., Pettersson L. J. //* J. Power Sources. 2002. — **106.** — P. 264—273.
- Lindström B., Agrell J., Pettersson L. J. // Chem. Eng. J. 2003. — 93. — P. 91—101.
- 24. Liu N., Yuan Z., Wang S. et al. // Int. J. Hydrogen Energy. 2008. — 33. — P. 1643—1651.
- Mokhnachuk O. V., Soloviev S. O., Kapran A. Yu. // Catal. Today. — 2007. — 119. — P. 145—151.
- Kapran A. Yu., Soloviev S. O., Orlyk S. N. // React. Kinet. Mech. and Catal. — 2010. — 101. — P. 343—353.
- Kapran A. Yu., Orlyk S. N., Soloviev S. O. // React. Kinet. Mech. and Catal. — 2015. — 114. — P. 135—145.
- Капран А. Ю., Орлик С. Н. // Теорет. и эксперим. химия. — 2015. — 51, № 4. — С. 206—210. — [Theor. Exp. Chem. — 2015. — 51, N 4. — Р. 210—215 (Engl. Transl.)].
- Aguiar P., Lapena-Rey N., Chadwick D., Kershenbaum L. // Chem. Eng. Sci. — 2001. — 56. — P. 651—658.
- 30. Amor J. N. // Appl. Catal. A. 1999. **176**. P. 159—176.
- 31. *Wang F., Wei M., Evans D. G., Duan X.* // J. Mater. Chem. A. 2016. **4**. P. 5773—5783.
- Montini T., Melchionna M., Monai M., Fornasiero P. // Chem. Rev. — 2016. — 116. — P. 5987—6041.

- Yang R., Xing C., Lv C. et al. // Appl. Catal. A. 2010. 385. — P. 92—100.
- 34. Wind T. L., Falsig H., Sehested J. et al. // J. Catal. 2016. — 342. — P. 105—116.
- Wu G.-S., Mao D.-S., Lu G.-Z. // Catal. Lett. 2009. 130. — P. 177—184.
- Ranga R. G., Meher S. K., Mishra B. G., Charan P. H. K. // Catal. Today. — 2012. — 198. — P. 140—147.
- Kniep B. L., Girgsdies F., Ressler T. // J. Catal. 2005. —
 236. P. 34—44.
- Velu S., Suzuki K. // Top. Catal. 2003. 22. P. 235—244.
- Huang G., Liaw B.-J., Jhan C.-J., Chen Y.-Z. // Appl. Catal. A. — 2009. — 358. — P. 7—12.
- Bartholomew C. H., Farrauto R. J. // Fundamentals of industrial catalytic processes. — Hoboken, NJ : Wiley Intersci., 2006.
- Valdés-Solís T., Marbán G., Fuertes A. B. // Catal. Today. — 2006. — 116. — P. 354—360.
- 42. Li C.-L., Lin Y.-C. // Catal. Lett. 2010. 140. P. 69—76.
- Ropp R. C. Encyclopedia of the alkaline earth compounds. — Amsterdam : Elsevier, 2013.
- Badlani M., Wachs I. E. // Catal. Lett. 2001. 75. P. 137—149.
- Alejo L., Lago R., Peňa M. A., Fierro J. L. G. // Appl. Catal. A. — 1997. — 162. — P. 281—297.
- 46. Agrell J., Birgersson H., Boutonnet M. et al. // J. Catal. 2003. — 219. — P. 389—403.
- Fierro G., Jacono M. L., Inversi M. et al. // Appl. Catal. A. — 1996. — 137. — P. 327—348.
- Zhang X.-R., Wang L.-C., Yao C.-Z. et al. // Catal. Lett. 2005. — 102. — P.183—190.
- 49. Chinchen G. C., Denny P. J., Jennings J. R. et al. // Appl. Catal. — 1988. — 36. — P. 1—65.
- Turco M., Bagnasco G., Cammarano C. et al. // Appl. Catal. B. — 2007. — 77. — P. 46—57.
- 51. *Choi Y., Stenger H. G. //* Appl. Catal. B. 2002. **38**. P. 259—269.
- Turco M., Bagnasco G., Costantino U. et al. // J. Catal. 2004. — 228. — P. 43—55.
- Turco M., Bagnasco G., Costantino U. et al. // J. Catal. 2004. — 228. — P. 56—65.
- 54. *Kameoka S., Tanabe T., Tsai A. P. //* Catal. Lett. 2005. — **100**. — P. 89—93.
- 55. *Papavasiliou J., Avgouropoulos G., Ioannides T. //* J. Catal. — 2007. — **251**. — P. 7—20.
- Velu S., Suzuki K., Hashimoto S. et al. // J. Mater. Chem. 2001. — 11. — P. 2049—2060.
- 57. Sun K., Lu W., Wang M., Xu X. // Appl. Catal. A. 2004. — **268**. — P. 107—113.
- Lee J. K., Ko J. B., Kim D. H. // Appl. Catal. A. 2004. —
 278. P. 25—35.
- 59. Kim D. K., Iglesia E. // J. Phys. Chem. C. 2008. 112. — P. 17235—17243.
- Sakong S., Gross A. // J. Phys. Chem. A. 2007. 111. — P. 8814—8822.
- 61. *Gu X. K., Li W. X. //* J. Phys. Chem. C. 2010. **114**. P. 21539—21547.

- Oguchi H., Kanai H., Utani K. et al. // Appl. Catal. A. 2005. — 293. — P. 64—70.
- Manzoli M., Chiorino A., Boccuzzi F. // Appl. Catal. B. 2005. — 57. — P. 201—209.
- Tsoncheva T., Areva S., Dimitrov M. et al. // J. Mol. Catal. A. — 2006. — 246. — P. 118—127.
- Takezawa N., Iwasa N. // Catal. Today. 1997. 36. P. 45—56.
- Mavrikakis M., Barteau M. A. // J. Mol. Catal. A. 1998.
 131. P. 135—147.
- Wu G. S., Wang L. C., Liu Y. M. et al. // Appl. Surface Sci. — 2006. — 253. — P. 974—982.
- Peppley B. A., Amphlett J. C., Kearns L. M., Mann R. F. // Appl. Catal. A. — 1999. — 179. — P. 31—49.
- Hussein G. A. M., Sheppard N., Zaki M. I., Fahim R. B. // J. Chem. Soc. Faraday Trans. — 1991. — 87. — P. 2655—2659.
- Chung M. J., Moon D. J., Park K. Y., Ihm S. K. // J. Catal. 1992. — 136. — P. 609—612.
- Lin S., Xie D., Guo H. // J. Mol. Catal. A. 2012. 356. — P. 165—170.
- 72. *Millar G. J., Rochester A. H., Waugh K. C. //* Catal. Lett. 1992. **14**. P. 289—295.
- Fisher I. A., Bell A. T. // J. Catal. 1999. 184. P. 357—376.
- 74. Yong S. T., Hidajat K., Kawi S. // Catal. Today. 2008. 131. P. 188—196.
- 75. *Bo J.-Y., Zhang S., Lim K. H. //* Catal. Lett. 2009. **129**. — P. 444—448.
- Espinosa L. A., Lago R. M., Peňa M. A., Fierro J. L. G. // Top. Catal. — 2003. — 22. — P. 245—251.
- Murcia-Mascarós S., Navarro R. M., Gómez-Sainero L. et al. // J. Mol. Catal. A. — 2001. — 198. — P. 338—347.
- Agrell J., Boutonnet M., Fierro J. L. G. // Appl. Catal. A. 2003. – 253. – P. 213–223.
- Amphlett J. C., Evans M. J., Mann R. F., Weir R. D. // Can. J. Chem. Eng. — 1985. — 63. — P. 605—611.
- Takahashi K., Takezawa N., Kobayashi H. // Appl. Catal. — 1982. — 2. — P. 363—366.
- Breen J. P., Ross J. R. H. // Catal. Today. 1999. 51. P. 521—533.
- Shishido T., Yamamoto Y., Morioka H., Takehira K. // J. Mol. Catal. A. — 2007. — 268. — P. 185—194.
- Frank B., Jentoft F. C., Soerijanto H. et al. // J. Catal. 2007. — 246. — P. 177—192.
- 84. *Matter P. H., Ozkan U. S. //* J. Catal. 2005. **234**. P. 463—475.
- Agrell J., Birgersson H., Boutonnet M. // J. Power Sources. — 2002. — 106. — P. 249—257.

Поступила в редакцию 1 февраля 2017 г. В окончательном варианте 6 февраля 2017 г.

Продукування водню в процесах риформінгу метанолу на модифікованих мідно-цинкових каталізаторах (огляд)

А. Ю. Капран, С. М. Орлик

Інститут фізичної хімії ім. Л. В. Писаржевського НАН України просп. Науки, 31, Київ 03028, Україна. E-mail: ayukapran@ukr.net

Узагальнено результати досліджень процесів риформінгу метанолу з одержанням водню на структурованих каталізаторах Cu-ZnO- $M_x O_y /Al_2 O_3 / \kappa opdicpum (M — Ce, La, Ni, Mg). Обтрунтовано вплив модифікуючих добавок оксидів церію, лантану і нікелю в реакції розкладу CH₃OH, оксиду магнію і співвідношення реагентів CH₃OH/H₂O в процесах парової і окси-парової конверсії метанолу. Проаналізовано роль складових Cu-ZnO-композицій, ймовірні інтермедіати і маршрути одержання водню. Сформульовано рекомендації по удосконаленню каталізаторів риформінгу метанолу.$

Ключові слова: метанол, розклад, парціальне окиснення, паровий і окси-паровий риформінг, водень, каталізатори Cu-ZnO-M_xO_y/Al₂O₃/кордієрит (M — Ce, La, Ni, Mg).

Production of Hydrogen in the Processes of Methanol Reforming on Modified Copper–Zinc Catalysts (Review)

A. Yu. Kapran, S. M. Orlyk

L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine Prosp. Nauky, 31, Kyiv 03028, Ukraine. E-mail: ayukapran@ukr.net

The results of studying the processes of methanol reforming to produce hydrogen on structured catalysts $Cu-ZnO-M_xO_y/Al_2O_3$ /cordierite (M-Ce, La, Ni, Mg) are generalized. The effects of modifying additives of cerium, lanthanum, and nickel oxides in CH_3OH decomposition, magnesia and the reagent ratio CH_3OH/H_2O in the steam and oxy-steam conversion of methanol are substantiated. The role of the Cu-ZnO-composition components as well as probable intermediates and routes of hydrogen production are analyzed. Recommendations on improvement of methanol reforming catalysts are formulated.

Key words: methanol, decomposition, partial oxidation, steam and oxy-steam reforming, hydrogen, Cu-ZnO- $M_xO_v/Al_2O_3/cordierite$ (M – Ce, La, Ni, Mg) catalysts.