УДК 541.128.3:542.943

Паровой риформинг C₂—C₄-алканов на катализаторах Ni-(CeO₂, La₂O₃)-Al₂O₃/кордиерит

Е. В. Губарени, Я. П. Курилец, С. А. Соловьев

Институт физической химии им. Л. В. Писаржевского НАН Украины просп. Науки, 31, Киев 03028, Украина. E-mail: soloviev@inphyschem-nas.kiev.ua

Показано, что процесс парового риформинга C_2-C_4 -алканов на никель-алюминиевых катализаторах сопровождается образованием метана в интервале температур 300—600 °C, что приводит к снижению выхода водорода. Добавление кислорода в реакционную газовую смесь позволяет увеличить конверсию алканов и снизить содержание метана, а также уменьшить зауглероживание катализатора. Модифицирование катализатора Ni-Al₂O₃ оксидом лантана повышает его устойчивость в кислородсодержащей среде, а оксидом церия — приводит к увеличению селективности процесса по CO за счет уменьшения вклада реакции водяного сдвига.

Ключевые слова: этан, пропан, бутан, конверсия, окисление, селективность, оксиды редкоземельных металлов.

Процессы окислительного (парового, окси-парового, углекислотного) риформинга C_1 — C_4 -алканов могут быть использованы для комплексной переработки природного газа с получением водорода или синтез-газа (СГ) с регулируемым соотношением СО/ H_2 — сырья для синтеза диметилового эфира, спиртов, компонентов моторного топлива [1].

Основным препятствием для осуществления паровой конверсии C_2 — C_4 -алканов является нестабильная работа известных катализаторов в данном процессе вследствие зауглероживания их поверхности [2]. В то же время пропан и *н*-бутан являются основными компонентами нефтяного газа и рассматриваются в качестве альтернативы природному газу для получения водорода и технологических газов, используемых в процессах органического синтеза, а также как топливо для твердооксидных топливных элементов (ТОТЭ). Поэтому поиск эффективных и стабильно работающих катализаторов для окислительного риформинга C_2 — C_4 -алканов является важной задачей.

Для осуществления процесса паровой конверсии углеводородов с получением водорода и синтез-газа наиболее широко применяют нанесенные никельсодержащие катализаторы. Как носители используют оксиды металлов Al₂O₃, MgO, ZrO₂ или бинарные оксидные композиции Al-Ca-O, Al-Mg-O, Al-Zr-O и др. [3, 4]. Значительная часть работ посвящена поиску путей снижения зауглероживания катализаторов, поскольку образование кокса в процессе парового риформинга гомологов метана протекает особенно легко [2, 3, 5, 6].

Зауглероживание поверхности происходит из-за дисбаланса скоростей образования и конверсии углерода, чему способствует кислотность носителя и катализатора, понизить которую можно путем введения модифицирующих добавок оксидов щелочных (Li, Na, K), щелочноземельных (Ca, Mg) и редкоземельных элементов (РЗЭ: La, Ce, Y, Sm) [2, 5, 7, 8]. Избежать накопления углеродистых отложений на поверхности катализаторов можно также путем увеличения скорости взаимодействия углеводородных фрагментов с активированными формами кислорода — поверхностным кислородом и кислородом кристаллической решетки, характеризующимся высокой подвижностью. Повышению концентрации поверхностного кислорода и его подвижности способствует модифицирование каталитической композиции оксидами РЗЭ (CeO₂, La₂O₃) [9, 10].

Значительную роль в повышении устойчивости катализаторов к зауглероживанию играют физико-химические характеристики носителя катализатора и природа окислителя, в качестве которого используют H₂O, O₂, CO₂. В настоящее время паро-кислородная (паро-воздушная) конверсия углеводородов считается наиболее перспективным процессом, обладающим экономическими преимуществами [11]. Цель настоящей работы — установление характера влияния оксидов РЗЭ (CeO₂, La₂O₃) на процесс паровой и паро-кислородной конверсии C₂—C₄-алканов в синтез-газ в присутствии нанесенных на кордиерит никель-алюминиевых катализаторов.

Экспериментальная часть

Исследования проводили на образцах катализаторов, нанесенных на синтетический кордиерит в виде блоков сотовой структуры с размером ячеек 1×1 мм и толщиной стенки 0,2 мм составов (% мас.) 5 % NiO + 4 % Al₂O₃/кордиерит (далее Ni-Al₂O₃), 5 % NiO + 4 % Al₂O₃ + 1 % La₂O₃/кордиерит (Ni-Al₂O₃-La₂O₃), 5 % NiO + 4 % Al₂O₃ + 1 % CeO₂/кордиерит (Ni-Al₂O₃-CeO₂), приготовленных по методике [12]. В качестве прекурсоров ОРЗЭ служили соли La(NO₃)₃ и Ce(NH₄)₂(NO₃)₆.

Для определения активности катализаторов использовали фрагменты блоков в виде цилиндров диаметром 6 мм, высотой 7 мм и массой 0,5 г. Активность катализаторов характеризовали конверсией алкана, которую определяли в кварцевом проточном реакторе в температурном интервале 300—750 °С при объемной скорости 12000 ч⁻¹. Предварительно образец катализатора восстанавливали в реакторе смесью 4 % об. Н₂ в Ar при 700 °C на протяжении 2 ч, после чего охлаждали до комнатной температуры в токе восстановительной смеси. Использовали газовые смеси соответствующих алканов состава (% об.) $(2,0 \pm 0,2)$ % C₂H₆, $(1,4 \pm 0,1)$ % C₃H₈, $(1,0 \pm 0,5)$ % C₄H₁₀, 5—12 % H₂O, Ar остальное. Содержание водяного пара обеспечивало двукратный избыток от стехиометрии процесса. Анализ реактантов проводили хроматографически (Цвет-800, детектор по теплопроводности и пламенно-ионизационный детектор).

Результаты и обсуждение

На рисунке приведены типичные температурные зависимости паровой конверсии этана и содержания продуктов реакции при осуществлении процесса на катализаторе Ni-Al₂O₃/кордиерит. Результаты исследований активности никель-алюминиевых катализаторов, в том числе и модифицированных ОРЗЭ, в процессе паровой конверсии С2-С4-алканов обобщены в табл. 1. В присутствии катализатора Ni-Al₂O₃/кордиерит процесс парового риформинга этана начинается при 340-350 °C, максимальная (100 %) конверсия С₂Н₆ достигается при 500—570 °С. В диапазоне температур 350—550 °С в продуктах реакции присутствует метан. Суммарное содержание углеродсодержащих продуктов (СО, СО₂, СН₄) при 620 °С (соответствует 100 % конверсии этана) несколько ниже стехиометрического, что может

Температурные зависимости конверсии этана $X(C_2H_6)$, содержания продуктов реакции (CH₄, CO, H₂, CO₂) в процессе паровой конверсии этана в присутствии катализатора Ni-Al₂O₃. Состав реакционной смеси (% об.): C₂H₆ 2,04; H₂O 7,7; остальное Ar. Объемная скорость 12000 ч⁻¹.

свидетельствовать об образовании других продуктов, в частности углерода.

Анализ полученных результатов показывает, что паровая конверсия C_2 — C_4 -алканов протекает с образованием в определенном интервале температур метана, что приводит к снижению селективности процесса по водороду. Температурная зависимость содержания метана в продуктах конверсии имеет куполообразный характер, его максимальное значение зависит от природы алкана и составляет для этана 1,5—2,6 % об., для пропана — 1,5—2 % об., для бутана — 1 % об. В общем случае содержание СН₄ может достигать до 30 % от количества углеродсодержащих продуктов и постепенно снижается до нулевого значения при температурах выше 600 °C. Образование метана может быть результатом протекания реакций метанирования СО:

$$CO + 3H_2 \leftrightarrows CH_4 + H_2O, \tag{1}$$

$$\Delta H^0 = -206,2$$
кДж/моль,

и гидрогенолиза алкана [13]:

$$C_n H_{2n+2} + (n-1)H_2 \leftrightarrows nCH_4,$$
 (2)
 $\Delta H^0_{_{ЭТАH}} = -233,8$ кДж/моль.

При повышении температуры выше 450—500 °C содержание CH₄ уменьшается за счет смещения равновесия экзотермических реакций гидрогенолиза (2) и метанирования (1) (в сторону исходных веществ), а также паровой конверсии метана.

Углекислый газ образуется в экзотермической реакции водяного сдвига (PBC):

$$CO + H_2O \leftrightarrows H_2 + CO_2,$$
 (3)

Катализатор	Реакционная смесь, % об.		Температура достижения конверсии С _n H _{2n+2} , °C			Содержание продуктов при 600 °С и селективность S, %				
	$C_n H_{2n+2}$	H ₂ O	50 %	80 %	100 %	H ₂	$S(\mathrm{H}_2)$	СО	CO ₂	CH_4
Паровая конверсия этана										
Ni-Al ₂ O ₃	2	7,8	375	425	620	9,1	88	2,6	1	0,3
Ni-Al ₂ O ₃ -La ₂ O ₃			430	440	450	10,4	99	2,7	1,2	0,1
Ni-Al ₂ O ₃ -CeO ₂			310	350	440	8,6	76	3,3	0,7	0,2
Паровая конверсия пропана										
Ni-Al ₂ O ₃	1,4	8,7	370	440	460	8,9	84	2,4	1,4	0,1
Ni-Al ₂ O ₃ -La ₂ O ₃			330	370	430	10,1	93	3,2	0,9	0,1
Ni-Al ₂ O ₃ -CeO ₂			370	420	550	7,5	75	3,5	0,4	0,3
Паровая конверсия бутана										
Ni-Al ₂ O ₃ -La ₂ O ₃	1	8	350	370	385	6,3*	76*	3*	0,3*	0,3*
Ni-Al ₂ O ₃ -CeO ₂			380	420	500	6,5*	70*	2,7*	0,9*	0,3*

Tiokusuresin ukrindiloerin inikesid usiowinineddix kurusinsuropod d npoqeeee nupodon kondepenn C ₂ C ₄ usikunos

* Содержание продуктов реакции при 560 °С.

Таблица 1

$\Delta H^0 = +132$ кДж/моль,

при повышении температуры концентрация CO₂ и выход водорода по этой реакции снижаются.

Содержание СО в синтез-газе до температуры 450 °С незначительно, поскольку образовавшийся монооксид углерода расходуется в процессах метанирования (1) и водяного сдвига (3). С ростом температуры содержание СО увеличивается и достигает максимума выше 650 °С.

Модифицирование Ni-Al₂O₃-катализатора ОРЗЭ (La₂O₃, CeO₂) влияет как на характер температурных зависимостей конверсии С2-С4-алканов, так и на распределение продуктов реакции. Положительная роль добавок La2O3 и CeO2 может быть связана с влиянием оксидов лантана и церия на способность к восстановлению оксида никеля в составе никель-алюминиевых катализаторов [14]. В присутствии катализатора, модифицированного CeO₂, наблюдается явление гистерезиса активности, которое проявляется в несовпадении зависимостей конверсии C_2 — C_4 -алканов x = f(t) и содержания продуктов от температуры при повышении и понижении температуры процесса. Например, при температуре ниже 440 °С конверсия С₃Н₈ не превышает 5—10 % при повышении температуры, тогда как при понижении составляет 90-95 %. Причиной гистерезиса может быть переход поверхности никеля из частично окисленного (NiO) до полностью восстановленного (Ni) состояния [12] вследствие покрытия активной поверхности продуктами диссоциации окислителя (воды) в первом состоянии либо восстановителя (алкана) во втором [15].

Температура начала конверсии C_4H_{10} в присутствии La-модифицированного катализатора составляет 320—350 °С (по сравнению с 300 и 350 °С для пропана и этана), т. е. по этому параметру бутан не является более реакционноспособным в паровом риформинге, нежели этан или пропан. В то же время наблюдается снижение температуры достижения высоких степеней превращения бутана (95—100 %) до 370—400 °С, что приводит к образованию (в указанном диапазоне температур) определенных количеств метана.

За счет протекания реакций метанирования CO (1) и водяного сдвига (3) в присутствии La-модифицированного катализатора до температур ~390 °C при конверсии C_4H_{10} выше 80 % практически отсутствует CO, что важно в тех случаях, когда CO является нежелательным продуктом, в частности при получении топлива для низкотемпературных топливных ячеек. В присутствии Ce-содержащего катализатора выше 650 °C содержание CO₂ в продуктах реакции невысоко, что свидетельствует о замедлении течения реакции водяного сдвига (3) [12].

Известно, что одним из условий стабильного протекания процесса паровой конверсии низших алканов является избыточное содержание паров воды в реак-

E.	Β.	Губарени,	Я.	П.	Курилец,	C. A.	Соловьев
----	----	-----------	----	----	----------	-------	----------

Таблица 2

	Температура,	Соотношение	Конверсия	Содержание продуктов, % об.				
Катализатор	°C	$\mathrm{H_2O/C}_n\mathrm{H}_{2n+2}$	$C_n H_{2n+2}, \%$	H ₂	СО	CO ₂	CH ₄	
		Коне	версия этана, 2,0 %	об. С ₂ Н ₆				
Ni-Al ₂ O ₃	450	2,5	89,8	5,5	0,4	1,5	1,4	
		4	90,5	5,6	0,4	1,6	1,3	
		5	91,0	5,8	0,5	1,7	1,5	
		6	90,5	5,4	0,4	1,6	1,4	
Ni-Al ₂ O ₃ -La ₂ O ₃	450	2	89,0	5,3	0,4	0,9	1,4	
		3	87,0	5,8	0,3	1,5	1,3	
		4	88,0	5,9	0,2	1,2	1,2	
		6	85,0	6,1	0,2	1,3	1,2	
Ni-Al ₂ O ₃ -CeO ₂	455	2	91,2	7,1	2,5	1,2	0,1	
		3	92,2	6,8	1,1	1,1	0,1	
		4	92,6	6,6	1,0	1,1	0,2	
		6	92,4	6,5	1,0	1,1	0,3	
Конверсия пропана, 1,5 % об. С ₃ Н ₈								
Ni-Al ₂ O ₃	390	3	58,0	3,5	0,1	1,1	0,5	
		4	59,0	3,8	0,1	1,0	0,6	
		6	61,0	3,9	0,1	1,2	0,6	
Ni-Al ₂ O ₃ -La ₂ O ₃	390	3	96,0	3,6	0,3	1,1	2,1	
		4	94,0	4,0	0,2	1,2	2,0	
		6	93,5	4,1	0,1	1,3	1,8	
		9	89,0	4,2	0,3	1,3	2,5	
Ni-Al ₂ O ₃ -CeO ₂	390	3	55,0	3,7	0,2	0,8	0,7	
		4	60,0	4,0	0,3	0,9	0,7	
		6	81,0	4,2	0,4	1,2	0,8	

Влияние содержания водяного пара в процессе паровой конверсии C₂—C₄-алканов в присутствии никель-алюминиевых катализаторов

ционной газовой смеси по сравнению со стехиометрическим [6]. Следует также ожидать, что путем варьирования содержания паров воды можно регулировать протекание реакций метанирования СО и водяного сдвига, что, в свою очередь, позволит изменять селективность по водороду и получать синтез-газ с различным соотношением H₂/CO в процессе паровой конверсии C_2 — C_4 -алканов. Результаты исследований влияния содержания водяного пара на процесс парового риформинга алканов на никельалюминиевых катализаторах приведены в табл. 2.

Анализ влияния соотношения H_2O/C_nH_m на величину конверсии алканов и содержание продуктов реакции показывает, что при росте соотношения H_2O/C_nH_m от 2,5 до 5 наблюдается тенденция к повышению конверсии алкана и содержания H_2 ,

тогда как при последующем повышении соотношения H_2O/C_nH_m до 5—9 показатели процесса снижаются. Варьирование соотношения H_2O/C_nH_m практически не влияет на содержание метана в продуктах реакции при температурах 400—450 °C. Это может свидетельствовать в пользу того, что основное количество метана образуется по реакции гидрогенолиза алкана.

Влияние водяного пара можно объяснить следующим образом: повышение содержания H₂O сдвигает равновесие процессов риформинга и PBC в сторону образования продуктов реакции, однако при определенном, достаточно высоком содержании воды катализатор начинает терять активность из-за частичного окисления никеля [16]. Одновременное снижение содержания H₂, CO₂ и рост концентрации

16	Температура, °С	Содержание О ₂ , % об.	Конверсия С _{<i>n</i>} Н _{2<i>n</i>+2} , %	Содержание продуктов реакции, % об.				
Катализатор				H ₂	СО	CO ₂	CH ₄	
		Конвери	я этана, РС, % с	б: C ₂ H ₆ 2,0; H ₂	20 7,8			
Ni-Al ₂ O ₃ -La ₂ O ₃	380	0	88	3,4	0,2	0,9	2,0	
		1,25	85	3,5	0,1	1,4	1,4	
		1,7	88	3,6	0,1	1,6	1,3	
		Конверсия	пропана, РС, %	б об: С ₃ Н ₈ 1,4;	H ₂ O 8,7			
Ni-Al ₂ O ₃	420	0	45	3,7	0,2	1,0	0,4	
		0,75	44	3,4	0,1	1,4	0,2	
		1,25	50	4,1	0,2	1,3	0,6	
		1,5	5	0,1	0	0,1	0	
Ni-Al ₂ O ₃ -La ₂ O ₃	390	0	36	3,4	0	0,9	0,6	
		0,95	48	2,7	0	1,1	0,4	
		1,2	52	1,8	0	1,1	0,3	
		1,5	64	1,9	0	1,1	0,4	
Ni-Al ₂ O ₃ -CeO ₂	420	0	63	3,9	0,2	0,9	0,7	
		0,65	65	3,8	0,15	1,4	0,5	
		0,95	82	4,4	0,3	1,6	0,6	

Таблица 3

Влияние кислорода на процесс паровой конверсии С2-С4-алканов в присутствии никель-алюминиевых катализаторов

СО в продуктах риформинга свидетельствуют о том, что при соотношении реагентов $H_2O/C_nH_m > 5$ также замедляется PBC, что возможно при частичном окислении металлического никеля.

Ранее показана положительная роль добавки кислорода в процессе паровой конверсии CH_4 на никель-алюминиевых катализаторах, модифицированных оксидом лантана [12, 17]. Добавление небольшого количества O_2 (до 1,5 % об.) приводит к повышению конверсии этана и пропана на никель-алюминиевом катализаторе, кроме того, уменьшается содержание побочного продукта — метана (табл. 3). Увеличение концентрации кислорода более 1,5 % об. приводит к потере активности катализатора Ni-Al₂O₃, что может быть связано с окислением активного компонента.

В присутствии La-модифицированного катализатора при содержании кислорода ~1,5 % количество образующегося CH_4 уменьшается вдвое, в то же время вдвое возрастает содержание CO_2 при практически постоянной концентрации водорода. Повышение конверсии алкана происходит вследствие локального повышения температуры в зоне катализа за счет протекания экзотермических реакций его парциального и глубокого окисления. Модифицирование оксидами редкоземельных элементов La₂O₃ и СеО₂ повышает устойчивость катализатора к действию кислорода. Позитивное действие ОРЗЭ может быть связано со стабилизацией никеля в восстановленном (металлическом) состоянии [12].

Как отмечалось выше, проблемой процессов окислительной конверсии C_2 — C_4 -алканов является зауглероживание поверхности катализаторов, что приводит к их нестабильной работе. Образование кокса в процессе парового риформинга гомологов метана протекает тем легче, чем выше соотношение С/H в молекуле алкана [2, 5], и является результатом протекания реакций крекинга:

$$C_n H_{2n+2} \leftrightarrows (n+1) H_2 + nC(графит),$$
 (4)
 $\Delta H^0_{\text{этан}} = +84,67$ кДж/моль,

и реакции Будуара:

$$2CO \leftrightarrows CO_2 + C,$$
 (5)

$$\Delta H^0 = -159,5$$
кДж/моль.

Реакции (5) благоприятствуют относительно невысокие температуры процесса риформинга. Для оценки степени зауглероживания изученных ниТаблица 4

Результаты термопрограммированного окисления кислородом никель-алюминиевых катализаторов после процессов паровой (ПК) и паро-кислородной (ПКК) конверсии C₂—C₄-алканов: этана (Э), пропана (П) и бутана (Б)

Катализатор	Процесс	Суммарное выделение СО ₂ , мг/г _{кат}	<i>Т_{макс}</i> выделения CO ₂ , °C
Ni-Al ₂ O ₃	ПК Э	60,2	600
	ПК П	100,0	650
	ПКК П	20,5	400—550
Ni-Al ₂ O ₃ -CeO ₂	ПК Э	19,4	400—700
	ПК П	3,3	400—600
	ПК Б	4,4	400—600
	ПКК П	4,2	400—550
Ni-Al ₂ O ₃ -La ₂ O ₃	ПК Э	15,6	600
	ПК П	2,8	600
	ПК Б	3,3	500—600
	ПКК Э	2,5	400—600
	ПКК П	4,1	400—600

кель-алюминиевых катализаторов при паровом и паро-кислородном риформинге C₂—C₄-алканов исследован процесс выгорания углерода методом термопрограммируемого окисления кислородом (ТПОК) *in situ* в реакторе после риформинга. Результаты приведены в табл. 4.

Выделение значительного количества СО2 в процессе ТПОК немодифицированного никель-алюминиевого катализатора свидетельствует о существенном накоплении углерода на его поверхности. Положение максимума пика десорбции СО2 при температуре 600 °С указывает на образование аморфного или частично полимеризированного углерода С_в (по терминологии [18]) на поверхности катализаторов Ni-Al₂O₃ и Ni-Al₂O₃-La₂O₃, в то время как на поверхности Ni-Al2O3-CeO2 идентифицируется «атомарный» углерод С $_{\alpha}$. Это может быть связано с тем, что в присутствии СеО2 окисление углерода происходит достаточно быстро, без формирования «полимерной» формы, присутствие которой связывают с дезактивацией Ni-содержащих катализаторов [19]. Модифицирование катализаторов Ni-Al₂O₃ оксидами лантана и церия значительно повышает их устойчивость к зауглероживанию в процессах парового риформинга алканов. Так, количество выделенного CO2 из образцов La- и Ce-модифицированного катализаторов (3—20 мг/г_{кат}) в несколько раз ниже по сравнению с Ni-Al₂O₃ (60—100 мг/г_{кат}). Повышению устойчивости к отложению углерода при введении в состав катализатора ОРЗЭ способствует увеличение подвижности активных форм кислорода на поверхности катализатора [12, 20].

Добавление кислорода в процессе паровой конверсии алканов также снижает накопление углерода, о чем свидетельствует уменьшение количества углекислого газа, выделяемого в процессе ТПОК исходного и модифицированных ОРЗЭ никель-алюминиевых катализаторов. Кроме того, наблюдается размывание максимума пика выделения CO₂, что свидетельствует об образовании различных форм поверхностного углерода без формирования значительных количеств «полимерного» С_в-углерода.

Таким образом, показано, что процесс парового риформинга C_2 — C_4 -алканов на нанесенных никель-алюминиевых катализаторах сопровождается образованием метана в интервале температур 300—600 °C, что приводит к снижению выхода водорода. Образование метана может происходить в результате процесса как метанирования моноксида углерода, так и гидрогенолиза алкана.

Увеличение содержания водяного пара позволяет повысить выход водорода и уменьшить образование метана. Однако при значительном избытке водяного пара ($H_2O/C_nH_m > 5$) наблюдается снижение показателей процесса, что может быть связано с окислением поверхности катализатора водяным паром.

Добавление небольшого количества кислорода в реакционную газовую смесь позволяет увеличить конверсию алканов и снизить содержание метана в продуктах реакции, а также повысить устойчивость катализаторов к зауглероживанию. Модифицирование катализатора Ni-Al₂O₃ оксидом лантана повышает его устойчивость в кислородсодержащей среде, а оксидом церия — позволяет повысить селективность процесса по СО за счет уменьшения вклада реакции водяного сдвига.

Модифицирующие добавки La₂O₃, CeO₂ способствуют повышению устойчивости никель-алюминиевых катализаторов к зауглероживанию при осуществлении процесса паровой конверсии C₂—C₄-алканов.

Литература

- Guo J., Hou Z., Zheng X. // Chin. J. Catal. 2010. 31. — P. 1115—1121.
- Raberg L. B., Jensen M. B., Olsbye U. et al. // J. Catal. 2007. — 249. — P. 250—260.
- 3. *Jeong H., Kang M. //* Appl. Catal. B. 2010. **95**. P. 446—455.
- 4. Sato K., Sago F., Nagaoka K., Takita Y. // Int. J. Hydrogen Energy. — 2010. — **35**. — P. 5393—5399.

- Olafsen A., Daniel C., Schuurman Y. et al. // Catal. Today. — 2006. — 115. — P. 179—185.
- Takenaka S., Orita Y., Umebayashi H. et al. // Appl. Catal. A. — 2008. — 351. — P. 189—194.
- 7. Laosiripojana N., Sangtongkitcharoen W., Assabumrungrat S. // Fuel. — 2006. — **85**. — P. 323—332.
- Laosiripojana N., Assabumrungrat S. // Chem. Eng. Sci. 2006. — 61. — P. 2540—2549.
- 9. *Li Y., Wang X., Xie C., Song C. //* Appl. Catal. A. 2009. — **35**7. — P. 213—222.
- Natesakhawat S., Oktar O., Ozkan U. S. // J. Mol. Catal. A. — 2005. — 241. — P. 133—146.
- 11. *Ferrandon M., Kropf A. J., Krause T. //* Appl. Catal. A. 2010. **379**. P. 121—128.
- Губарени Е. В., Курилец Я. П., Соловьев С. А. // Теорет. и эксперим. химия. — 2014. — 50, № 5. — С. 305—310. — [Theor. Exp. Chem. — 2014. — 50, № 5. — Р. 311—317 (Engl. Transl.)].

- Ichimura K., Inoue Y., Yasumori I. // Catal. Rev. 1993.
 34. P. 235—271.
- Natesakhawat S., Watson R., Wang X., Ozkan U. // J. Catal. — 2005. — 234. — P. 496—508.
- Tsipouriari V. A., Zhang Z., Verykios X. E. // J. Catal. 1998. — 179. — P. 283—291.
- Matsumura Y., Nakamori T. // Appl. Catal. A. 2004. —
 258. P. 107—114.
- Li Y., Wang Y., Zhang X., Mi Z. // Int. J. Hydrogen Energy. — 2008. — 33. — P. 2507—2514.
- Bartholomew C. H. // Catal. Rev. 1982. 24. P. 67—112.
- Sehested J., Sehested J., Hansen P. L. et al. // Nature. 2004. — 427. — P. 5—8.
- 20. Lovell E., Jiang Y., Scott J. et al. // Appl. Catal. A. 2014. — 473. — P. 51—58.

Поступила в редакцию 21 июля 2016 г. В окончательном варианте 25 июля 2016 г.

Паровий риформінг С₂—С₄-алканів на каталізаторах Ni-(CeO₂, La₂O₃)-Al₂O₃/кордієрит

Є. В. Губарені, Я. П. Курилець, С. А. Соловйов

Інститут фізичної хімії ім. Л. В. Писаржевського НАН України просп. Науки, 31, Київ 03028, Україна. E-mail: soloviev@inphyschem-nas.kiev.ua

Показано, що процес парового риформінгу C_2-C_4 -алканів на нікель-алюмінієвих каталізаторах супроводжується утворенням метану в інтервалі температур 300—600 °С, що призводить до зниження виходу водню. Додавання кисню в реакційну газову суміш дозволяє збільшити конверсію алканів і знизити вміст метану, а також зменшити завуглецювання каталізатора. Модифікування каталізатора Ni-Al₂O₃ оксидом лантану підвицує його стійкість у кисневмісному середовищі, а оксидом церію — приводить до збільшення селективності процесу по CO за рахунок зменшення вкладу реакції водяного зсуву.

Ключові слова: етан, пропан, бутан, конверсія, окиснення, селективність, оксиди рідкісноземельних металів.

Steam Reforming of C₂-C₄ Alkanes over Ni-(CeO₂, La₂O₃)-Al₂O₃/Cordierite Catalysts

Ie. V. Gubareni, Ya. P. Kurilets, S. O. Soloviev

L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine Prosp. Nauky, 31, Kyiv 03028, Ukraine. E-mail: soloviev@inphyschem-nas.kiev.ua

It is shown that the process of steam reforming of C_2 - C_4 alkanes over nickel-aluminum catalysts accompanied by the formation of methane in temperature range 300-600 °C, which leads to a lower yield of hydrogen. The addition of oxygen in the reaction gas mixture allow to increase the conversion of alkanes, to reduce the methane content, as well as to decrease the carbonization of the catalyst. Modification of Ni- Al_2O_3 catalyst with lanthanum oxide increases its stability in an oxygen environment, and modification of cerium oxide results in an increase in the selectivity to CO by reducing the contribution of water gas shift reaction.

Key words: ethane, propane, butane, conversion, oxidation, selectivity, rare earth metal oxides