УДК 544.523.2, 544.525.2

Сенсибилизация наночастицами CeO₂ Eu³⁺-центрированной люминесценции в композите CeO₂/Eu³⁺-MOK

Е. А. Михалева, И. В. Василенко, В. В. Павлищук

Институт физической химии им. Л. В. Писаржевского НАН Украины просп. Науки, 31, Киев 03028, Украина. E-mail: shchuk@inphyschem-nas.kiev.ua

Обнаружено, что квантовый выход Eu^{3+} -центрированной эмиссии в композите наночастиц CeO_2c координационным полимером CeO_2/Eu^{3+} -MOK (Eu^{3+} -MOK = $Eu(BTB)(H_2O)\cdot 5(H_2O)(C_6H_{12}O)_{0,5}$, где $H_3BTB - 1,3,5$ -бензол-трис(4'-бензойная кислота), $C_6H_{12}O - циклогексанол)$ более чем в 4 раза выше, чем в индивидуальном координационном полимере. Предположено, что наночастицы CeO_2 в таком композите выполняют роль медиатора переноса энергии.

Ключевые слова: сенсибилизация эмиссии, координационные полимеры, лантаноиды, люминесценция, наночастицы, нанокомпозит.

Координационные соединения ионов лантаноидов (Ln^{3+}) рассматриваются как один из перспективных классов веществ для создания люминесцентных материалов, имеющих широкую область применения в технике и медицине [1, 2]. Это обусловлено уникальными спектральными свойствами соединений лантаноидов — узкими линиями эмиссии и их неизменным положением в спектре, что позволяет достигать высокой чистоты и точной воспроизводимости цвета излучаемого света [1, 3, 4]. Однако при всей привлекательности спектральных свойств соединений лантаноидов возможности их практического применения ограничены вследствие низкой интенсивности эмиссии, обусловленной малоэффективным поглощением возбуждающего излучения из-за запрещенности f-f-переходов [4, 5]. «Обойти» этот запрет можно путем использования лигандов-антенн, наночастиц (НЧ) или ионов других элементов, способных эффективно поглощать энергию и затем передавать ее на излучательные уровни Ln^{3+} [1, 2, 4, 5]. Повышение квантовых выходов эмиссии Ln³⁺ возможно также в присутствии других ионов 4f-элементов за счет оптимизации пути передачи энергии [3].

В электронном спектре CeO_2 присутствует интенсивная полоса поглощения в области 50000—23000 см⁻¹, соответствующая переходу с переносом заряда с O2*p*- на Ce4*f*-орбиталь. Энергия этого перехода, определяющаяся краем полосы поглощения, обычно находится в диапазоне 23000—26000 см⁻¹, что, согласно [2], позволяет пред-

положить возможность сенсибилизации этим соединением эмиссии других ионов лантаноидов, в частности Eu³⁺. Поскольку известно, что для эффективного переноса энергии между фрагментами в системе необходимо обеспечить их близкое расположение [2], в настоящей работе было предложено использовать НЧ СеО₂, обладающие высокой площадью поверхности, что позволяет ожидать эффективный контакт между компонентами композита на их основе, а следовательно, и возможное их взаимодействие, влияющие на спектральные свойства системы. В качестве второй составляющей композита нами выбран координационный полимер (КП) Eu(BTB)(H₂O)× ×2(C₆H₁₂O) (Eu³⁺-МОК, H₃BTB — 1,3,5-бензол-трис(4'-бензойная кислота), C₆H₁₂O — циклогексанол), известный как MIL-103(Eu), который проявляет Eu³⁺-центрированную эмиссию [6, 7]. Таким образом, цель настоящей работы — изучение влияния НЧ CeO₂ на люминесцентные свойства Eu^{3+} -МОК в композите CeO₂/Eu³⁺-МОК.

Экспериментальная часть

Коммерчески доступные реагенты («Acros» и «Макрохим») использовали без дополнительной очистки. Н₃ВТВ получали по методике [8]. КП Eu³⁺-МОК синтезировали аналогично Tb(BTB)(H₂O)× ×2(C₆H₁₂O) (Tb³⁺-MOK) [7]. Элементный анализ проводили с помощью анализатора «Carlo Erba 1106». Содержание Се³⁺ и Се⁴⁺ определяли фотометрически, как описано ранее [9, 10]. Соотношение содержания Eu/Ce для нанокомпозита измеряли с помощью рентгенофлуоресцентного анализатора «ElvaX Light» с родиевой рентгеновской трубкой ($\lambda =$ 0,0613 нм). Дифрактограммы порошков измеряли на дифрактометре Дрон-3 с Си-анодом, $\lambda = 0,154$ нм, шаг 20 = 0,03°, время экспозиции 3 с/шаг. Идентификацию кристаллических фаз проводили с использованием базы данных PDF-2 Version 2.0602 (2006) и дифрактограммы порошка Tb³⁺-MOK [7], рассчитанной по данным рентгеноструктурного анализа с помощью программы Mercury 3.8. Размеры кристаллитов НЧ СеО2 определяли по уравнению Шеррера [11]. Электронно-микроскопические исследования проводили на просвечивающем электронном микроскопе ПЭМ-125К («SELMI», Украина) при ускоряющем напряжении 100 кВ. Электронные спектры диффузного отражения измеряли на спектрометре «Specord M-40» и преобразовывали с помощью функции Кубелки — Мунка [12]. Ширину запрещенной зоны НЧ СеО2 определяли экстраполяцией линейного участка спектра в координатах $(\alpha h v)^{1/2} - h v$ к оси абсцисс [13]. ИК-спектры измеряли на спектрометре «Spectrum One» («Perkin Elmer») в диапазоне 4000—400 см⁻¹ в таблетках с KBr. Спектры возбуждения и люминесценции измеряли для порошкообразных образцов при комнатной температуре на люминесцентном спектрометре LS55 («Perkin Elmer»). Квантовые выходы люминесценции определяли с использованием стандарта (Y₂O₃ : Eu) с энергией возбуждающего света 39370 см⁻¹ и пересчитывали для энергии возбуждающего излучения 32050 см⁻¹ [14]. Количество отраженного возбуждающего излучения определяли с использованием стандарта отражения MgO (R = 0.91) [15].

Синтез НЧ СеО₂. К 10 мл 35 % раствора перекиси водорода в воде при перемешивании на магнитной мешалке небольшими порциями присыпали 3 г оксалата церия Ce₂(C₂O₄)₃·7H₂O. Полученную смесь нагревали при 80 °C в течение 2 ч и выдерживали при 90 °C 24 ч до полного испарения растворителя; полученный порошок прокаливали при 400 °C 1 ч. Найдено, %: H 0,3; Ce(III) 3,1; Ce(IV) 74,6; вычислено для CeO_{1,98}·0,48H₂O, %: H 0,53; Ce(III) 3,09; Ce(IV) 74,6. Положения рефлексов на дифрактограмме HЧ отвечают фазе CeO₂ (PDF 00-034-0394 [16]) кубической сингонии с параметром решетки 5,411 Å (см. рис. 1, δ). ИК-спектр, см⁻¹: 3600—3000 (v(O–H)), 1630 (δ (H₂O)), 700—400 (ρ _r(H₂O), ρ _w(H₂O)).

Синтез композита CeO₂/Eu³⁺-MOK. Композит CeO₂/Eu³⁺-MOK синтезировали путем формирования КП Eu³⁺-MOK по методике для Tb³⁺-MOK [7], однако в реакционную смесь дополнительно вводили предварительно полученные HЧ CeO₂. Найдено, %: H 4,0; C 45,3; Eu/Ce 3,7 (мас.); вычислено для Eu(BTB)(H₂O)× ×5(H₂O)(C₆H₁₂O)_{0,5}·0,3CeO₂: H 4,14; C 45,2; Eu/Ce 3,6. ИК-спектр, см⁻¹: 3600—3100 (v(O–H)), 2950—2830 (v(C–H)), 1610 (v(C=O)), 1584 (v(C=O)), 1536 (v(C=C), 1413 (v(C–O)).

Результаты и обсуждение

Фазовый состав полученных НЧ и композита определен с помощью рентгенофазового анализа (рис. 1, *a*). Размер кристаллитов НЧ CeO₂, рассчитанный по уравнению Шеррера, составляет около 7 нм. Стоит отметить, что в случае полученных нами НЧ по сравнению с массивным образцом (PDF 00-034-0394 [16]) наблюдается небольшой сдвиг рефлексов на дифрактограмме в сторону малых углов, который указывает на увеличение параметра ячейки в НЧ. Такое увеличение согласуется с данными литературы [17] и может быть обусловлено наличием ионов Ce³⁺, что характерно для частиц CeO₂ малого размера [17, 18] и подтверждается данными количественного анализа для НЧ CeO₂.

На дифрактограмме композита наблюдаются как рефлексы, соответствующие НЧ CeO_2 , так и рефлексы, отвечающие фазе КП Eu^{3+} -МОК, совпадающие с экспериментальной дифрактограммой индивидуального КП, рассчитанной для Tb^{3+} -МОК по данным рентгеноструктурного анализа [7]. Увеличение интенсивности рефлексов КП в составе композита свидетельствует об увеличении размеров кристаллов и/или степени кристалличности комплекса, что может быть обусловлено формированием Eu^{3+} -МОК в присутствии НЧ, которые играют роль центров кристаллизации.

Методом трансмиссионной электронной микроскопии (рис. 1, 6—г) установлено, что размер исходных НЧ CeO₂ составляет 20—30 нм, что существенно превышает размер кристаллитов, определенный по уравнению Шеррера. Такие различия могут быть объяснены как наличием большого количества кристаллитов в составе одной частицы, так и присутствием существенного количества аморфной фазы. Размеры частиц Eu³⁺-MOK составляют 50—200 нм, а в образце композита наблюдаются более крупные частицы — 0,2—1 мкм. Увеличение размера частиц КП в композите со-

Рис. 1. *а* — Дифрактограммы порошков CeO₂ [16], НЧ CeO₂, КП Tb³⁺-МОК [7], композита CeO₂/Eu³⁺-МОК, КП Eu³⁺-МОК; $\delta - c$ — изображения ТЭМ НЧ CeO₂ (δ), КП Eu³⁺-МОК (e) и CeO₂/Eu³⁺-МОК (c).

гласуется с изменением интенсивности рефлексов на дифрактограммах порошков. В отличие от частиц немодифицированного КП, контраст частиц композита неоднородный, что объясняется наличием в их составе НЧ CeO₂. Размеры более темных участков частиц CeO₂/Eu³⁺-MOK составляют 5—15 нм, что может соответствовать как отдельным НЧ, так и зонам их перекрывания. Отдельные НЧ на микрофотографиях композита не наблюдаются, что свидетельствует о том, что все НЧ входят в состав CeO₂/Eu³⁺-MOK. Учитывая условия получения композита (формирование Eu³⁺-MOK в присутствии предварительно полученных НЧ CeO₂), можно предположить, что НЧ в нем включены в структуру КП.

В спектрах диффузного отражения полученных НЧ CeO₂ (рис. 2, *a*) присутствует полоса переноса заряда в области 50000—25000 см⁻¹. Ширина запрещенной зоны НЧ CeO₂ для разрешенных непрямых переходов составляет 2,75 эВ, что соответствует 22200 см⁻¹. Это значение существенно меньше, чем величина запрещенной зоны кристаллического CeO₂ — 3,30 эВ (26600 см⁻¹) [19], однако попадает в диапазон значений, определенный для НЧ диаметром 2—4 нм — 2,5—2,9 эВ (20200—23400 см⁻¹) [13, 18].

Спектры диффузного отражения Eu^{3+} -МОК и композита, преобразованные с помощью функции Кубелки — Мунка, приведены на рис. 2, *а*. Форма и положение полосы поглощения в этих спектрах совпадают, а разница интенсивностей незначительна и может быть обусловлена отличиями в морфологии образцов композита и КП. Отсутствие в спектре композита полосы, соответствующей поглощению CeO₂ в области 30000—25000 см⁻¹, может быть связано с тем, что эта полоса перекрывается с краем более интенсивной полосы поглощения BTB³⁻.

Несмотря на то что люминесцентные характеристики Eu^{3+} -МОК были неоднократно описаны ранее [6, 20, 21], приведенные в этих работах сведения противоречивы. Так, относительная интенсивность полос, обусловленных поглощением BTB³⁻, и *f*—*f*-переходов Eu^{3+} в спектрах возбуждения существенно различается [6, 20, 21], а в работе [21], кроме того, по нашему мнению, в спектрах также проявляется артефакт, возникающий при попадании возбуждающего излучения на детектор. Поэтому для сравнения люмине-

Рис. 2. *а* — Спектры диффузного отражения, преобразованные с помощью функции Кубелки — Мунка, НЧ CeO₂ (*1*), Eu³⁺-MOK (*2*) и композита CeO₂/Eu³⁺-MOK (*3*); *б* — энергетическая диаграмма CeO₂/Eu³⁺-MOK и Eu³⁺-MOK (энергетические уровни BTB³⁻ определены по данным [23]). Сплошными стрелками обозначены межсистемные переходы между уровнями с разницей энергии 1850—3500 см⁻¹, пунктирными — до 1850 и более 3500 см⁻¹, волнистыми — внутрисистемные безызлучательные переходы, штриховыми — переходы, соответствующие люминесценции иона Eu³⁺; *е* — спектры возбуждения (*1*, *2*) ($E_{\rm em} = 16290$ см⁻¹) и люминесценции (*3*, *4*) ($E_{\rm ex} = 32050$ см⁻¹) композита CeO₂/Eu³⁺-MOK (*1*, *3*) и КП Eu³⁺-MOK (*2*, *4*); отнесение полос проведено по аналогии с работами [22, 24].

сцентных характеристик CeO₂/Eu³⁺-MOK и Eu³⁺-MOK нами измерены их спектры возбуждения и люминесценции в идентичных условиях.

Спектры люминесценции твердых образцов композита и КП Eu³⁺-MOK отличаются только интенсивностью, что указывает на то, что в обоих случаях излучательные центры идентичны. В спектрах эмиссии и КП, и композита проявляются узкие полосы эмиссии, обусловленные металл-центрированными переходами с уровня ${}^{5}D_{0}$ иона Eu³⁺ (рис. 2, e). Более интенсивная полоса перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ по сравнению с полосой перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ указывает на отсутствие центра инверсии в координационном окружении иона Eu³⁺ [22], что согласуется с данными рентгеноструктурного анализа Tb³⁺-MOK [7]. Следует отметить, что полосы, которые можно было бы отнести к излучению BTB³⁻, а в случае композита также к люминесценции НЧ CeO₂, в спектрах эмиссии КП и композита отсутствуют, что, скорее всего, обусловлено эффективными безызлучательной диссипацией энергии с возбужденных состояний BTB³⁻ и НЧ и/или переносом энергии с этих уровней на ион Eu³⁺.

Как и в случае спектров люминесценции, спектры возбуждения CeO_2/Eu^{3+} -МОК и Eu^{3+} -МОК, измеренные при энергии максимума эмиссии ($E_{\rm em} = 16290 \ {\rm cm}^{-1}$), похожи (рис. 2, в). Так, в области 43000—21000 см⁻¹ в спектре композита присутствует широкая полоса, которая совпадает по форме и положению со спектром КП и, вероятно, соответствует поглощению возбуждающего излучения ВТВ³⁻ [20]. В области 27000—24000 см⁻¹ проявляется плечо, которое может быть обусловлено металл-центрированными переходами $Eu^{3+}({}^7F_0 \rightarrow {}^5D_4, {}^5G_{4.5.6}, {}^5L_6,$

⁵ D_3). Кроме того, в спектрах возбуждения присутствует слабая полоса при 18680 см⁻¹, соответствующая переходу ${}^7F_0 \rightarrow {}^5D_1$ иона Eu³⁺. Необходимо отметить, что соотношение интенсивностей полос в спектрах возбуждения, отвечающих поглощению ВТВ³⁻ и переходу ${}^7F_0 \rightarrow {}^5D_1$, выше в случае композита. Это, по всей видимости, указывает на более эффективный перенос энергии с ВТВ³⁻ на Eu³⁺ в композите, чем в КП.

Квантовые выходы эмиссии CeO₂/Eu³⁺-МОК и Eu³⁺-МОК, определенные с энергией возбуждающего излучения 32050 см⁻¹, соответствующей максимуму в спектре возбуждения, составили 0,5(1) и 0,12(2) % соответственно. Необходимо отметить, что, хотя погрешность определения значений этих величин велика, их соотношение определяется более точно. Таким образом, квантовые выходы люминесценции CeO_2/Eu^{3+} -МОК в 4,2(1) раза выше, чем Eu^{3+} -МОК, что может быть следствием более эффективной передачи энергии от ВТВ³⁻ на ион Еи³⁺ в композите. Квантовый выход эмиссии как композита, так и КП существенно ниже, чем квантовый выход бензоата Eu³⁺, который составляет 20 % [25], однако квантовые выходы люминесценции CeO₂/Eu³⁺-MOK и Eu^{3+} -МОК выше, чем для комплекса Eu^{3+} с анионом 9-антраценкарбоновой кислоты, который не проявляет металл-центрированную эмиссию [26].

Как известно [27, 28], наиболее эффективная передача энергии осуществляется при разнице энергий уровней, попадающей в определенный диапазон (1850—3500 см⁻¹), минимальное значение которого обусловлено необходимостью предотвращения обратного переноса энергии [27, 28], а максимальное — необходимостью рассеяния избытка энергии, что обычно осуществляется путем колебательной релаксации [28]. На энергетической диаграмме (рис. 2, б) переходы, которые удовлетворяют указанным энергетическим требованиям (и являются более вероятными), показаны сплошными стрелками, а которые не удовлетворяют (т. е. менее вероятные) — точками. И для КП, и для композита после поглощения возбуждающего излучения BTB³⁻ переходит в возбужденное состояние S₁, в то время как люминесценция осуществляется с уровня ${}^{5}D_{0}$ иона Eu^{3+} . Если рассмотреть пути перехода энергии с S_1 на $^{5}D_{0}$, то в случае КП на первом этапе необходимо осуществление одного из маловероятных переходов на уровни T_1 или 5D_2 . В случае же композита вместо этих переходов перенос энергии на уровень T₁ можно осуществить с помощью двух более вероятных переходов, используя состояние переноса заряда (СПЗ) (*E*_c) НЧ СеО₂ как «транзитный» уровень; перенос же энергии на уровень ${}^{5}D_{2}$ так же, как и в случае Eu³⁺-МОК, предполагает осуществление маловероятного перехода. Дальнейшие процессы передачи энергии для композита и КП совпадают.

Таким образом, показано, что в композите $CeO_2/[Eu(BTB)(H_2O) \cdot 5(H_2O)(C_6H_{12}O)_{0,5}]$ передача энергии с уровня S_1 BTB³⁻ на излучательный уровень Eu³⁺ более эффективна, чем в исходном координационном полимере Eu(BTB)(H₂O) · 2(C₆H₁₂O), что может быть обусловлено наличием в композите HЧ CeO₂, которые выполняют роль медиатора переноса энергии. Это приводит к повышению квантового выхода Eu³⁺-центрированной эмиссии в композите более чем в 4 раза по сравнению с исходным координационным полимером, что показывает возможность использования HЧ диоксида церия, как сенсибилизатора люминесценции ионов Eu³⁺.

Литература

- Cui Y., Yue Y., Qian G., Chen B. // Chem. Rev. 2012. 112, N 2. — P. 1126—1162.
- Bunzli J.-C. G. // Coord. Chem. Rev. 2015. 293/294. — P. 19—47.
- Binnemans K. // Chem. Rev. 2009. 109, N 9.— P. 4283—4374.
- Bunzli J.-C. G., Piguet C. // Chem. Soc. Rev. 2005. 34, N 12. — P. 1048—1077.
- Heinea J., Muller-Buschbaum K. // Chem. Soc. Rev. 2013. — 42, N 24. — P. 9232—9242.
- Devic T., Wagner V., Guillou N. et al. // Micropor. and Mesopor. Mater. — 2011. — 140, N 1—3. — P. 25—33.
- Devic T., Serre C., Audebrand N. et al. // J. Amer. Chem. Soc. — 2005. — 127, N 37. — P. 12788—12789.
- Kothe G., Zimmermann H. // Tetrahedron. 1973. 29, N 15. — P. 2305—2313.
- Стоянов А. О., Антонович В. П., Щербаков А. Б. и др. // Вестн. одес. нац. ун-та. — 2012. — 17, № 4. — С. 15—20.
- 10. Йорданов Н., Даиев Хр. // Журн. аналит. химии. 1960. 15, № 4. С. 443—445.
- Hammond C. The basics of crystallography and diffraction. — Oxford : Oxford univ. press, 2009.
- Золотарев В. М. Методы исследования материалов фотоники: элементы теории и техники. — СПб. : СПбГУ ИТМО, 2008.
- Masui T., Fujiwara K., Machida K. et al. // Chem. Mater. — 1997. — 9, N 10. — P. 2197—2204.
- Justel T., Krupa J.-C., Wiechert D. U. // J. Luminescence. — 2001. — 93, N 3. — P. 179—189.
- Fu L., Ferreira R. A. S., Silva N. J. O., Carlos L. D. // Chem. Mater. — 2004. — 16, N 8. — P. 1507—1516.
- Natl. Bur. Stand. (U.S.) Monogr. 1984. 25, sec. 20. — P. 38.
- 17. Deshpande S., Patil S., Kuchibhatla S. V. N. T., Seal S. // Appl. Phys. Lett. — 2005. — **87**, N 13. — 133113.

- Tsunekawa S., Fukuda T., Kasuya A. // J. Appl. Phys. 2000. — 87, N 3. — P. 1318—1321.
- Guo S., Arwin H., Jacobsen S. N. et al. // J. Appl. Phys. 1995. — 77, N 10. — P. 5369—5376.
- Choi J. R., Tachikawa T., Fujitsuka M., Majima T. // Langmuir. — 2010. — 26, N 13. — P. 10437—10443.
- Liu Q., Yang J.-M., Guo F. et al. // Dalton Trans. 2016.
 45, N 13. P. 5841—5847.
- Vicentini G., Zinner L. B., Zukerman-Schpector J., Zinner K. // Coord. Chem. Rev. — 2000. — 196, N 1. — P. 353—382.
- 23. Zhang H., Shan X., Ma Z. et al. // J. Mater. Chem. C. 2014. 2, N 8. P. 1367—1371.

- Cavalli E., Belletti A., Mahiou R., Boutinaud P. // J. Luminescence. — 2010. — 130, N 4. — P. 733—736.
- Bredol M., Kynast U., Ronda C. // Adv. Mater. 1991. —
 N 7/8. P. 361—367.
- Hilder M., Junk P. C., Kynast U. H., Lezhnina M. M. // J. Photochem. and Photobiol. A. — 2009. — 202, N 1. — P. 10—20.
- Sato S., Wada M. // Bull. Chem. Soc. Jap. 1970. 43, N 7. — P. 1955—1962.
- 28. Latva M., Takalo H., Mukkala V. M. et al. // J. Luminescence. 1997. 75, N 2. P. 149—169.

Поступила в редакцию 4 октября 2016 г.

Сенсибілізація наночастинками CeO₂ Eu³⁺-центрованої люмінесценції в композиті CeO₂/Eu³⁺-MOK

О. А. Міхальова, І. В. Василенко, В. В. Павліщук

Інститут фізичної хімії ім. Л. В. Писаржевського НАН України просп. Науки, 31, Київ 03028, Україна. E-mail: shchuk@inphyschem-nas.kiev.ua

Виявлено, що квантовий вихід Eu^{3+} -центрованої емісії в композиті наночастинок CeO_2 з координаційним полімером CeO_2/Eu^{3+} -MOK (Eu^{3+} -MOK = $Eu(BTB)(H_2O)\cdot 5(H_2O)(C_6H_{12}O)_{0,5}$, де $H_3BTB - 1,3,5$ -бензол-трис(4'-бензойна кислота), $C_6H_{12}O - циклогексанол)$ більш ніж у 4 рази вище, ніж в індивідуальному координаційному полімері. Припущено, що наночастинки CeO_2 в такому композиті виконують роль медіатора переносу енергії.

Ключові слова: сенсибілізація емісії, координаційні полімери, лантаноїди, люмінесценція, наночастинки, нанокомпозит.

CeO₂ Nanoparticle Sensitization of Eu³⁺-Centered Luminescence in the Composite CeO₂/Eu³⁺-MOF

E. A. Mikhalyova, I. V. Vasylenko, V. V. Pavlishchuk

L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine Prosp. Nauky, 31, Kyiv 03028, Ukraine. E-mail: shchuk@inphyschem-nas.kiev.ua

It was found that quantum yield of Eu^{3+} -centered emission in composite of CeO_2 nanoparticles with coordinantion polymer CeO_2/Eu^{3+} -MOF (Eu^{3+} -MOF = $Eu(BTB)(H_2O)\cdot 5(H_2O)(C_6H_{12}O)_{0.5}$, where H_3BTB is 4,4',4''-benzene-1,3,5-triyl-tris(benzoic acid) and $C_6H_{12}O$ is cyclohexanol) was more than 4 times higher than in individual coordination polymer. It was assumed that CeO_2 nanoparticles in the composite worked as a mediator of energy transfer.

Key words: emission sensitization, coordination polymers, lanthanides, luminescence, nanoparticles, nanocomposite.