УДК 543.422.8

Влияние строения карбоксилатных лигандов на параметры рентгеновских фотоэлектронных спектров трехъядерных гетерометаллических комплексов [Fe₂MO(O₂CR)₆(H₂O)₃](H₂O)₃ (M = Co, Ni; R = CH₃, CCl₃)

А. Г. Кочур¹, Т. М. Иванова², Р. В. Линко³, М. А. Кискин², С. В. Колотилов⁴, И. Л. Еременко²

¹ Ростовский государственный университет путей сообщения пл. Ростовского Стрелкового Полка Народного Ополчения, д. 2, Ростов-на-Дону 344038, Российская Федерация. E-mail: agk@rgups.ru

² Институт общей и неорганической химии им. Н. С. Курнакова РАН Ленинский просп., 31, Москва 119991, Российская Федерация. E-mail: tiva@igic.ras.ru

³ Российский университет дружбы народов ул. Миклухо-Маклая, 6, Москва 117198, Российская Федерация. E-mail: rlinko@mail.ru

⁴ Институт физической химии им. Л. В. Писаржевского НАН Украины просп. Науки, 31, Киев 03028, Украина. E-mail: svk001@mail.ru

Найдена аномально большая разница в энергии 2p-, 3s-, 3p-линий рентгеновских фотоэлектронных спектров для всех ионов металлов в комплексах $[Fe_2MO(O_2CCH_3)_6(H_2O)_3](H_2O)_3$ и $[Fe_2MO(O_2CCCl_3)_6(H_2O)_3](H_2O)_3$ (M = Co, Ni). Показано, что наблюдаемые сдвиги линий могут быть объяснены в рамках электростатической модели, учитывающей изменение энергии взаимодействия электронов металла и распределения зарядов атомов периферийных фрагментов комплексов.

Ключевые слова: рентгенофотоэлектронные спектры, гетерометаллические комплексы, ацетаты, трихлорацетаты, 3*d*-металлы.

Полиядерные карбоксилатные комплексы 3*d*-металлов рассматриваются как основа для создания перспективных магнитных материалов [1], в частности рабочих тел для магнитного охлаждения [2], широко используются как катализаторы различных реакций [3]. Для интерпретации магнитных и каталитических свойств таких систем важен анализ их электронного строения. Несмотря на важность этой задачи и кажущуюся простоту ее решения, в настоящее время в распоряжении исследователей есть не так много методов, позволяющих получать достоверную информацию о распределении электронной плотности в полиядерных молекулах. Например, выводы о степенях окисления ионов металла в полиядерных остовах часто делаются на основе структурных данных (длины связей, наличие или отсутствие искажения Яна — Теллера), а не прямых

измерений. Применение спектроскопии Мессбауэра, позволяющей, как правило, однозначно определить степень окисления иона металла, крайне ограничено наличием подходящих источников у-излучения. Исследование магнитных свойств полиядерных систем позволяет определить энергии спиновых уровней, которые зачастую не связаны напрямую с распределением электронной плотности, а значения обменных интегралов часто не коррелируют с другими характеристиками, которые могут быть определены экспериментально [4]. Таким образом, важную роль приобретает рентгенофотоэлектронная спектроскопия, позволяющая в определенной мере получить количественную оценку распределения электронной плотности в молекуле на основании прямого измерения энергий соответствующих орбиталей.

Цель настоящей работы заключалась в сравнении влияния метильного и трихлорметильного заместителя при карбоксилатной группе на периферии комплексов на энергии 3s- и 3p-орбиталей ионов металлов в трехъядерных гетерометаллических комплексах [Fe₂MO(O₂CR)₆(H₂O)₃](H₂O)₃ (M = Co, Ni; R = CH₃, CCl₃) по данным рентгенофотоэлектронной спектроскопии. Строение исследуемых комплексов можно представить следующей схемой [5]:

Ранее показано, что замещение группы СН₃ на CCl₃ в рассматриваемых комплексах приводит к существенному снижению электронной плотности на 2*p*-орбиталях ионов металлов [6]. Интерпретация 3*s*и Зр-спектров существенно сложнее, как будет показано ниже. В случае 3d-металлов 2p-подоболочка является существенно внутренней (например, рассчитанный нами в приближении Паули — Фока средний радиус 2*p*-оболочки в ионе Fe³⁺ приблизительно в 5,4 раза меньше соответствующего ионного радиуса). Таким образом, данные, полученные с помощью 2*p*-спектров атомов металлов, относятся к изменению заряда атома металла именно в этом «внутреннем пространстве» иона. С другой стороны, рассчитанные средние радиусы 3s- и Зр-подоболочек уже сопоставимы с размерами иона, поэтому данные, получаемые с использованием 3s- и 3*р*-спектров, позволяют судить об изменении электронной плотности во всем объеме иона [7-12].

Рентгеновские фотоэлектронные 3s-спектры 3d-металлов обладают очень простой мультиплетной структурой. В одноэлектронном приближении они содержат высокоспиновую (ВС) и низкоспиновую (НС) компоненты, получающиеся в результате параллельного и антипараллельного сложения спинов 3s-вакансии и низшего терма незаполненной 3d-оболочки (под параллельностью спинов подразумевается равенство знаков спинового числа). Энергетическое расстояние между ВС- и НС-компонентами спектра ΔE_{3s} и их относительные интенсивности выражаются через число неспаренных

электронов 3*d*-подоболочки и могут быть использованы для определения степени окисления и спинового состояния 3*d*-металла [13]. Однако, несмотря на простую структуру, вид 3*s*-спектров переходных металлов существенно зависит от влияния многоэлектронных эффектов, что зачастую почти полностью искажает одноэлектронную картину, удобную для интерпретации спектра [14—16].

Спектры Зр-уровней переходных Зд-металлов имеют гораздо более сложную мультиплетную структуру, возникающую из-за электростатического взаимодействия 3*p*-вакансии и неспаренных 3*d*-электронов, а также за счет значительного спин-орбитального взаимодействия в Зр-подоболочке. Дополнительной трудностью, возникающей при интерпретации 3*p*-спектров 3*d*-переходных металлов, является значительное различие (в десятки раз) естественной ширины их компонентов [17]. В первом приближении Зр-спектр переходного металла можно разделить на низкоэнергетическую высокоспиновую и высокоэнергетическую низкоспиновую группы компонент. Низкоспиновая группа компонент существенно отделена от высокоспиновой (например, в Fe3*p*-спектре это расстояние составляет около 17 эВ). Вследствие очень большой ширины компонент низкоспиновой группы она часто бывает незаметна и сливается с фоном, поэтому в эксперименте часто анализируют лишь высокоспиновую группу с более узкими компонентами. Точный покомпонентный расчет ширин состояний $3s^53d^m ({}^{2S+1}L_J)$ представляет собой сложную задачу и выполнялся крайне редко [17—19]. Несмотря на указанные теоретические трудности, форма и энергетическое положение 3p-спектров 3d-металлов могут нести надежную информацию о зарядовом состоянии атома.

Рентгеновские фотоэлектронные спектры измерены на спектрометре «Axis Ultra DLD» («Kratos Analytical», Великобритания) с использованием немонохроматизированного MgK_a-излучения при мощности рентгеновской трубки 150 Вт. Образцы исследовали в виде тонкого слоя порошка, впрессованного в молибденовый держатель. При откачке камеры прибора и регистрации спектров держатель с образцом охлаждали жидким азотом до температуры -120 °С. Спектры регистрировали при энергии пропускания 160 эВ для обзорного спектра и 40 эВ для спектров отдельных линий. Размер анализируемой области составлял около 300×700 мкм. Проведенная предварительно калибровка шкалы энергии отвечала следующим значениям пиков стандартов (очищенных ионным распылением поверхностей металлов): Au4f_{5/2} 83,96 эВ, Cu2p_{3/2} 932,62 эВ, Ag3d_{5/2} 368,21 эВ. Для устранения эффекта зарядки образцов съемка спектров проводилась с использованием

Рис. 1. Fe3*s*- и Co3*s*-спектры комплексов [Fe₂CoO(O₂CCH₃)₆(H₂O)₃](H₂O)₃ (*a*) и [Fe₂CoO(O₂CCCl₃)₆(H₂O)₃](H₂O)₃ (*b*), Fe3*s*- и Ni3*s*-спектры комплексов [Fe₂NiO(O₂CCH₃)₆(H₂O)₃](H₂O)₃ (*b*) и [Fe₂NiO(O₂CCCl₃)₆(H₂O)₃](H₂O)₃ (*c*), Fe3*p*- и Co3*p*-спектры комплексов [Fe₂CoO(O₂CCH₃)₆(H₂O)₃](H₂O)₃ (*d*) и [Fe₂CoO(O₂CCCl₃)₆(H₂O)₃](H₂O)₃ (*e*), Fe3*p*- и Ni3*p*-спектры комплексов [Fe₂NiO(O₂CCH₃)₆(H₂O)₃](H₂O)₃ (*w*) и [Fe₂NiO(O₂CCCl₃)₆(H₂O)₃](H₂O)₃ (*e*), Fe3*p*- и Ni3*p*-спектры комплексов [Fe₂NiO(O₂CCH₃)₆(H₂O)₃](H₂O)₃ (*w*) и [Fe₂NiO(O₂CCCl₃)₆(H₂O)₃](H₂O)₃ (*b*).

нейтрализатора. Полученные спектры калибровали по энергии связи линии C1*s*-электронов углерода, адсорбированного на поверхности образцов, которая отвечает связям С—С/С—Н и принята равной 285,0 эВ. Разделение спектров на компоненты проведено в программе Casa XPS. Комплексы [Fe₂MO(O₂CR)₆(H₂O)₃](H₂O)₃ (M = Co, Ni; R = CH₃, CCl₃) получены по методикам [20, 21], их чистота подтверждена методом элементного анализа (C, H, Fe).

Исследуемые комплексы содержат два иона железа и один ион кобальта или никеля, связанные

атомом µ3-О и шестью карбоксигруппами ацетата или трихлорацетата. При замене метильных групп CH₃ в составе лигандов на более электроотрицательные группы CCl_3 (переход от [Fe₂MO(O₂CCH₃)₆(H₂O)₃](H₂O)₃ к [Fe₂MO(O₂CCCl₃)₆(H₂O)₃](H₂O)₃) все спектры, а именно M2p, M3s, M3p (M = Fe, Co, Ni), испытывают существенный сдвиг в сторону больших энергий связи (рис. 1, табл. 1). Следует отметить достаточно большие величины сдвигов: средние значения сдвигов 2*p*-, 3*s*- и 3*p*-линий составляют 1, 1 и 0,7 эВ соответственно. Эти величины сопоставимы со сдвигами при изменении степени окисления атома

Энергии основных пиков рентгеновских фотоэлектронных 2 <i>p</i> -, 3 <i>s</i> - и 3 <i>p</i> -спектров в комплексах [Fe ₂ MO(O ₂ CR) ₆ (H ₂ O) ₃](H ₂ O) ₃ (эВ)									
Соединение	Fe2p _{3/2} [6]	Co2p _{3/2} [6]	Ni2p _{3/2} [6]	Fe3s	Co3s	Ni3 <i>s</i>	Fe3p	Co3p	Ni3p
$M = Co, R = CH_3$	711,2	780,8		94,6	103,0		56,6	61,0	
$M = Co, R = CCl_3$	712,4	781,7		95,5	103,9		57,3	61,5	
	(+1,2)	(+0,9)		(+0,9)	(+0,9)		(+0,7)	(+0,5)	
$M = Ni, R = CH_3$	711,6		855,8	94,3		113,2	56,3		68,4
$M = Ni, R = CCl_3$	712,4		856,7	95,4		114,2	57,2		69,0
	(+0,8)		(+0,9)	(+1,1)		(+1,0)	(+0,9)		(+0,6)

Примечание. В скобках указаны значения сдвигов линий при замене CH₃ на CCl₃.

3д-металла. Например, при переходе от соединений с Fe^{2+} к соединениям с Fe^{3+} сдвиги линий Fe2p, Fe3s и Fe3p составляют 1,5; 0,9 и 0,8 эВ соответственно [22]. Предположение о том, что замена радикала в составе карбоксилатного лиганда приведет к изменению заряда каждого из металлоцентров на величину, сопоставимую с зарядом электрона, представляется неправдоподобным. По-видимому, прямой отток электронной плотности с ионов металлов имеет место, но он не является основной причиной наблюдаемого сдвига рентгеновских фотоэлектронных линий. В пользу такого предположения свидетельствует тот факт, что величины сдвигов энергии связи 2p- и 3s-электронов приблизительно одинаковы. Действительно, в работе [11] показано, что в случае, когда изменение эффективного заряда сопровождается изменением электронной плотности на валентных орбиталях самого металла, сдвиг более локализованного внутреннего 2*p*-уровня должен быть существенно больше, чем сдвиг субвалентных 3s- и 3p-уровней (это видно и в приведенном выше примере сравнения спектров соединений Fe²⁺ и Fe³⁺ [22]). Если же изменение электронной плотности происходит на значительном удалении от иона металла, сдвиги 2p-, 3s- и 3p-уровней должны быть приблизительно одинаковыми, и такая ситуация наблюдается при замене CH₃ на CCl₃ на «периферии» комплекса (табл. 1).

В настоящей работе предлагается простая качественная электростатическая модель для объяснения наблюдаемых сдвигов. Модель учитывает изменение энергии электростатического взаимодействия электронов металла и зарядов периферийных атомов, не входящих в координационное окружение атомов металлов, которые распределены приблизительно сферически симметрично относительно центра комплекса. В нулевом приближении пере-

Рис. 2. Схема, иллюстрирующая перераспределение электронной плотности при замещении R = CH₃ на R = CCl₃. Отрицательно заряженная сфера увеличивает радиус.

распределение заряда, связанное с заменой CH₃ на CCl₃, можно представить себе как увеличение радиуса *R* отрицательно заряженной сферы, заряд *q* которой равен дополнительному суммарному заряду, перетекшему на более электроотрицательные атомы хлора (см. рис. 2). Энергия взаимодействия атомных nl-электронов с отрицательным зарядом сферы W(nl,q) (nl = 2p, 3s, 3p) положительна и в случае R >>*R*_n обратно пропорциональна *R*. Поэтому при увеличении R энергия электростатического отталкивания W(nl,q) уменьшается, а энергия связи *пl*-электрона увеличивается.

Сферическое распределение заряда создает одинаковый потенциал во всех точках внутри сферы, поэтому следует ожидать, что вклады энергии электростатического отталкивания W(nl,q) в сдвиги энергии связи будут одинаковы для всех ионов М ядра комплекса и для всех рентгеноэлектронных линий. Именно это и наблюдается для 2p- и Зя-спектров (см. табл. 1). Следует отметить, что сдвиги Зр-линий в среднем несколько меньше

Таблииа 1

Таблица 2

Рассчитанные сдвиги 2*p*-, 3*s*- и 3*p*-рентгеноэлектронных линий ионов железа ($3d^5$), кобальта ($3d^7$) и никеля ($3d^8$) при переходе от конфигурации $3d^n 5s^1$ к конфигурации $3d^n 6s^1$ в приближении изолированного иона (эВ)

Металл	2 <i>p</i>	35	3 <i>p</i>	
Fe	2,56	2,46	2,49	
Co	2,28	2,23	2,25	
Ni	2,34	2,29	2,31	

Таблица 3

Энергетические расстояния между высокоспиновой и низкоспиновой компонентами 3s-спектров ΔE_{3s} комплексов [Fe₂MO(O₂CR)₆(H₂O)₃](H₂O)₃

Coorresponde	ΔE_{3s} , эВ					
Соединение	Fe	Co	Ni			
$M = Co, R = CH_3$	4,9	4,8				
$M = Co, R = CCl_3$	5,4	4,6				
$M = Ni, R = CH_3$	7,3		3,2			
$M = Ni, R = CCl_3$	6,4		3,1			

сдвигов 2*p*- и 3*s*-линий. Кроме того, они больше варьируются при переходе от одного атома металла к другому. Такое изменение, возможно, связано с большей вовлеченностью 3*p*-орбиталей в химическую связь и, следовательно, с их большей делокализацией.

С целью проверки предложенной модели рассчитаны сдвиги 2*p*-, 3*s*- и 3*p*-линий ионов Fe^{3+} , Co^{2+} и Ni^{2+} при переходе от конфигурации $3d^n 5s^1$ к конфигурации $3d^n 6s^1$, где n = 5(Fe), 7(Co), 8(Ni) в приближении изолированного иона. Радиусы 5s- и 6s-подоболочек существенно превышают радиусы атомных 2p-, 3s- и 3p-орбиталей. Таким образом, описанная выше модель электростатического взаимодействия для сдвигов рентгеновских фотоэлектронных линий качественно воспроизводится. Энергии линий вычислены по разностям полных средних паули-фоковских энергий конфигураций. Рассчитанные сдвиги рентгеновских фотоэлектронных линий приведены в табл. 2. Как и ожидалось в рамках предложенной модели, сдвиги всех линий всех ионов примерно одинаковы.

Исходя из вышеизложенного, можно полагать, что основным механизмом, приводящим к сдвигам 2*p*-, 3*s*- и 3*p*-линий ионов Fe, Co и Ni в комплексах $[Fe_2MO(O_2CR)_6(H_2O)_3](H_2O)_3$ при замене CH₃ на CCl₃ является ослабление электростатического отталкивания электронов иона металла и электронного заряда на периферии молекулы, который перераспределяется в направлении от ядра комплекса.

Для получения дополнительной информации об электронном строении исследуемых комплексов проанализированы значения энергетических расщеплений ΔE_{3s} между высокоспиновой и низкоспиновой компонентами M3s-спектров (табл. 3). Данные по ΔE_{3s} получены в результате разложения профилей 3s-спектров на симметричные компоненты и, возможно, нуждаются в уточнении. Известно, что ΔE_{3s} могут быть выражены через число *n* неспаренных электронов 3*d*-подоболочки металла [13]:

$$\Delta E_{3s} = \frac{1}{5}G^2(3s3d)(n+1),\tag{1}$$

где $G^2(3s3d)$ — слейтеровский интеграл обменного 3s—3d-взаимодействия.

В ионах Fe^{3+} (3 d^5), Co^{2+} (3 d^7), Ni^{2+} (3 d^8) в высокоспиновой конфигурации число неспаренных 3д-электронов равно, соответственно, 5, 3 и 2. Тогда согласно уравнению (1) и учитывая, что при увеличении заряда ядра атома интеграл $G^{2}(3s3d)$ растет не слишком быстро, следует ожидать уменьшения ΔE_{3s} в ряду $\mathrm{Fe}^{3+} \rightarrow \mathrm{Co}^{2+} \rightarrow \mathrm{Ni}^{2+}$. Такая закономерность действительно наблюдается (см. табл. 3). С другой стороны, поскольку степень окисления ионов железа, кобальта и никеля во всех комплексах неизменна, величины ΔE_{3s} для данного иона металла не должны существенно меняться. Это справедливо для Со и Ni, однако не выполняется для Fe, в 3s-спектрах которого при переходе от комплекса к комплексу ΔE_{3s} меняется существенно. Возможным объяснением такого поведения ΔE_{3s} в случае быть спектров железа может влияние многоэлектронных корреляций [14, 15].

Таким образом, замена групп CH_3 на CCl_3 в комплексах [Fe₂MO(O₂CR)₆(H₂O)₃](H₂O)₃ (M = Co, Ni; R = CH₃, CCl₃) приводит к неожиданно большим энергетическим сдвигам 2*p*-, 3*s*- и 3*p*-линий фотоэлектронного спектра для всех ионов металлов в сторону больших энергий связи; величины этих сдвигов сопоставимы со сдвигами при изменении степени окисления атома 3*d*-металла. Такие сдвиги могут удовлетворительно объясняться ослаблением электростатического отталкивания электронов иона металла и электронного заряда на периферии молекулы.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований

(проект № 16-03-00047) и Российского научного фонда (№ 14-23-00176).

Литература

- 1. *Miller J. S. //* Chem. Soc. Rev. 2011. **40**. P. 3266—3296.
- Sharples J. W., Collison D. // Polyhedron. 2013. 54. — P. 91—103.
- Transition metals for organic synthesis: building blocks and fine chemicals / Eds. M. Beller, C. Bolm. — Weinheim: Wiley-VCH, 2004.
- Shcherbakov I. N., Ivanova T. M., Kiskin M. A. et al. // Inorg. chim. acta. — 2014. — 421. — P. 507—512.
- Cannon R. D., White R. P. // Progr. Inorg. Chem. 1988.
 36. P. 195—298.
- Иванова Т. М., Маслаков К. И., Линко Р. В. и др. // Журн. неорган. химии. — 2014. — 59, № 7. — С. 878—886.
- Кочур А. Г., Иванова Т. М., Щукарев А. В. и др. // Изв. АН. Сер. Физика. — 2010. — 74, № 5. — С. 662—667.
- 8. *Иванова Т. М., Кочур А. Г., Щукарев А. В. и др.* // Журн. неорган. химии. 2009. **54**, № 10. С. 1712—1717.
- Kochur A. G., Ivanova T. M., Shchukarev A. V. et al. // J. Electron Spectrosc. Relat. Phenom. — 2010. — 180. — P. 21—26.
- 10. *Кочур А. Г., Иванова Т. М., Щукарев А. В. и др.* // Журн. неорган. химии. 2011. **56**, № 3. С. 443—449.
- Kochur A. G., Ivanova T. M., Hinder S. J. et al. // J. Electron Spectrosc. Relat. Phenom. — 2011. — 184. — P. 501—507.

- Иванова Т. М., Кочур А. Г., Щукарев А. В. и др. // Журн. неорган. химии. — 2012. — 57, № 11. — С. 1576—1581.
- 13. Van Vleck J. H. // Phys. Rev. 1934. 45. P. 405—419.
- Сухоруков В. Л., Явна С. А., Демехин В. Ф. и др. // Координац. химия. — 1985. — № 11. — С. 510—515.
- Сухоруков В. Л., Петров И. Д., Лагутин Б. М. // Координац. химия. — 1985. — № 12. — С. 205—206.
- Kochur A. G., Kozakov A. T., Nikolskii A. V. et al. // J. Electron Spectrosc. Relat. Phenom. — 2012. — 185. — P. 175—183.
- Gerth Ch., Godehusen K., Richter M. et al. // Phys. Rev. A. — 2000. — 61. — P. 022713.
- Tiedtke K., Gerth Ch., Kanngieber B. et al. // Phys. Rev. A. — 1999. — 60. — P. 3008—3012.
- Kochur A. G., Petrov I. D., Schulz J., Wernet Ph. // J. Phys. B. — 2008. — 41. — P. 215002.
- 20. Weinland R., Holtmeier H. // Z. Anorg. Allg. Chem. 1928. 173. P. 49.
- Пат. 61912 Україна, В 01 D 53/44. Спосіб одержання пористих координаційних полімерів на основі триядерних карбоксилатних комплексів перехідних металів і органічних лігандів, що містять залишок піридину / С. В. Колотілов, К. С. Гавриленко, А. С. Литвиненко та ін. — Опубл. 10.08.11, Бюл. № 15.
- Kozakov A. T., Kochur A. G., Googlev K. A. et al. // J. Electron Spectrosc. Relat. Phenom. 2011. 184. P. 16—23.

Поступила в редакцию 19 июля 2016 г. В исправленном варианте 22 июля 2016 г.

Вплив будови карбоксилатних лігандів на параметри рентгенівських фотоелектронних спектрів триядерних гетерометалічних комплексів $[Fe_2MO(O_2CR)_6(H_2O)_3](H_2O)_3$ (M = Co, Ni; R = CH₃, CCl₃)

А. Г. Кочур¹, Т. М. Іванова², Р. В. Лінко³, М. А. Кіскін², С. В. Колотілов⁴, І. Л. Єрєменко²

¹ Ростовский государственный университет путей сообщения

пл. Ростовского Стрелкового Полка Народного Ополчения, д. 2, Ростов-на-Дону 344038, Российская Федерация. E-mail: agk@rgups.ru

² Институт общей и неорганической химии им. Н. С. Курнакова РАН

Ленинский просп., 31, Москва 119991, Российская Федерация. E-mail: tiva@igic.ras.ru

³ Российский университет дружбы народов

ул. Миклухо-Маклая, 6, Москва 117198, Российская Федерация. E-mail: rlinko@mail.ru

⁴ Інститут фізичної хімії ім. Л. В. Писаржевського НАН України просп. Науки, 31, Київ 03028, Україна. Е-mail: svk001@mail.ru

Знайдено аномально велику різницю в енергії 2р-, 3s-, 3р-смуг рентгенівських фотоелектронних спектрів для усіх іонів металів у комплексах $[Fe_2MO(O_2CCH_3)_6(H_2O)_3](H_2O)_3$ та $[Fe_2MO(O_2CCCl_3)_6(H_2O)_3](H_2O)_3$ (M = Co, Ni). Показано, що зсуви ліній, які спостерігаються, можуть бути пояснені в рамках електростатичної моделі, яка враховує зміну взаємодії електронів металів і розподілу зарядів атомів периферійних фрагментів комплексів.

Ключові слова: рентгенофотоелектронні спектри, гетерометалічні комплекси, ацетати, трихлорацетати, *3d*-метали.

Influence of Carboxylate Ligand Structure on Parameters of X-Ray Photoelectron Spectra of Trinuclear Heterometallic Complexes [Fe₂MO(O₂CR)₆(H₂O)₃](H₂O)₃ (M = Co, Ni; R = CH₃, CCl₃)

A. G. Kochur¹, T. M. Ivanova², R. V. Linko³, M. A. Kiskin², S. V. Kolotilov⁴, I. L. Eremenko²

¹ Rostov State Transport University

Rostovskogo Strelkovogo Polka Narodnogo Opolcheniya square, build. 2, Rostov-on-Don 344038, Russian Federation. E-mail: agk@rgups.ru

² N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences Leninsky Prosp., 31, Moscow 119991, GSP-1, Russian Federation. E-mail: tiva@igic.ras.ru

³ Russian People's Friendship University (RUDN University) Miklukho-Maklaya str., 6, Moscow 117198, Russian Federation. E-mail: rlinko@mail.ru

⁴ L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine Prosp. Nauky, 31, Kyiv 03028, Ukraine. E-mail: svk001@mail.ru

Abnormally large difference in energy positions of 2p, 3s, 3p lines of X-ray photoelectron spectra for all metal ions in complexes $[Fe_2MO(O_2CCH_3)_6(H_2O)_3](H_2O)_3$ and $[Fe_2MO(O_2CCCl_3)_6(H_2O)_3](H_2O)_3$ (M = Co, Ni) was found. It was shown that the observed line shifts could be explained in the frames of electrostatic model, which took into account change of energy for interaction of metal electrons and distribution of atomic charges in peripheral fragments of the complexes.

Key words: X-ray photoelectron spectra, heterometallic complexes, acetates, trichloroacetates, 3d metals.