УДК 544.2; 544.032

Влияние введения ионов В³⁺ или Al³⁺ в структуру Ti-, Sn- и Zr-содержащих иерархических цеолитов на концентрацию кислотных центров Льюиса и Бренстеда

М. Н. Курмач¹, П. С. Яремов¹, Н. А. Скорик^{2,3}, А. В. Швец¹

¹ Институт физической химии им. Л. В. Писаржевского НАН Украины просп. Науки, 31, Киев 03028, Украина. E-mail: alexshvets@ukr.net

² ООО «НаноМедТех» ул. Горького, 68, Киев 03150, Украина

³ Институт металлофизики им. Г. В. Курдюмова НАН Украины бульвар Академика Вернадского, 36, Киев 03680, Украина

> Установлено, что в Ti-, Sn- и Zr-содержащих иерархических цеолитах структурных типов BEA и MTW присутствуют два вида кислотных центров Льюиса, сила которых увеличивается в ряду Ti-MTW < Zr-MTW \leq Sn-MTW, а также слабые кислотные центры Бренстеда, образованные дефектными терминальными группами Sn—OH и Zr—OH. Введение ионов бора или алюминия в структуру Ti-, Sn- и Zr-силикатных цеолитов BEA и MTW приводит к появлению дополнительных кислотных центров Льюиса и Бренстеда.

Ключевые слова: иерархические цеолиты, кислотность, титаносиликаты, оловосиликаты, цирконийсиликаты, наноиглы, наночастицы.

Цеолиты широко применяются в гетерогенно-каталитических процессах нефтехимической промышленности и тонкого органического синтеза [1]. Однако в реакциях с участием крупных молекул (диаметром более 1 нм) наблюдается существенное снижение каталитической активности традиционных цеолитов [2], что обусловлено уменьшением числа центров, доступных для протекания реакции. Кроме того, в ряде высокотемпературных процессов наблюдается образование существенного количества кокса и деактивация цеолитного катализатора, к примеру в процессе превращения метанола в углеводороды [3].

Для преодоления диффузионных ограничений в цеолитных материалах предложены два концептуально разных подхода, а именно создание материалов с большим размером пор [4] или же с развитой внешней поверхностью [5]. Для обозначения последних в литературе часто используются термины «иерархические», «иерархически-пористые» цеолиты [5] (материалы с двумя или более уровнями пористости) или «микро-мезопористые» цеолитные материалы [6]. Для таких материалов за счет развитой внешней поверхности достигается более высокое содержание каталитически активных центров, доступных для крупных молекул, в сравнении с традиционными цеолитами.

Для получения иерархических материалов предложено ряд методов, а именно: формирование дефектных мезопор при частичном деалюминировании или десилицировании традиционных цеолитов [7], расслоение объемных слоистых материалов с дальнейшим их превращением в иерархические с упорядоченным или неупорядоченным размещением слоев [8], использование как дополнительных источников кремния гибридных органо-неорганических силанов [9], применение в качестве «жестких» темплатов углеродных материалов [10] или специально сконструированных органических структуронаправляющих агентов [5, 11, 12].

Наиболее перспективным представляется использование в качестве структуронаправляющих агентов так называемых ПАВ-близнецов, содержащих заместители, формирующие в молекуле разделенные гидрофильные и гидрофобные участки [5]. Такие цеолитные катализаторы показывают более высокую

Si/ ^{IV} E, PC/EDX	Si/ ^{III} E, PC/EDX	$S_{\rm BET},{\rm m}^2/{\rm f}$	$S_{\rm BH}$, м $^2/\Gamma$	$V_{\Sigma}, \mathrm{cm}^3/\Gamma$	$V_{\rm микро}, {\rm cm}^3/{\rm r}$	$V_{\rm Me30}, {\rm cm}^3/\Gamma$
40/23	_	300	185	0,41	0,08	0,33
100/145	_	260	135	0.43	0.08	0.35
80/102	—	275	93	0,41	0,09	0,32
35	7	535	170	0,53	0,15	0,37
80	17	600	160	0.51	0.18	0,33
80	23	600	160	0,69	0,51	0,18
80	23	815	600	0,75	0,08	0,83
80	23	600	220	0,86	0,17	0,69
80/17	23/24	635	220	1,03	0,17	1,20
	Si/ ^{IV} E, PC/EDX 40/23 100/145 80/102 35 80 80 80 80 80 80 80	Si/ ^{IV} E, PC/EDX Si/ ^{III} E, PC/EDX 40/23 — 100/145 — 80/102 — 35 7 80 17 80 23 80 23 80 23 80 23 80 23 80 23 80/17 23/24	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c }\hline Si/^{II}E, & Si/^{III}E, & S_{BET}, M^2/\Gamma & S_{BH}, M^2/\Gamma \\ \hline & 40/23 & & 300 & 185 \\ 100/145 & & 260 & 135 \\ 80/102 & & 275 & 93 \\ 35 & 7 & 535 & 170 \\ 80 & 17 & 600 & 160 \\ 80 & 23 & 600 & 160 \\ 80 & 23 & 815 & 600 \\ 80 & 23 & 600 & 220 \\ 80/17 & 23/24 & 635 & 220 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Структурно-сорбционные свойства иерархических цеолитов структурных типов МТW и ВЕА

Примечание. РС — соотношение Si/^{IV}E в реакционной смеси; EDX — соотношение в конечном образце, определенное методом энергодисперсионного анализа.

степень превращения в процессах с участием «крупных» молекул и существенно меньшее образование кокса в высокотемпературных процессах [5, 13].

Для оценки спектра кислотности цеолитных материалов существует ряд косвенных методов, базирующихся на адсорбции спектральных зондов с основными или амфотерными свойствами. В качестве таких зондов используют амины, аммиак, СО, ацетонитрил [14] и др. Подобные молекулы удовлетворяют ряду критериев, среди которых умеренная основность и наличие полос поглощения комплексов адсорбата с кислотными центрами цеолита, которые не перекрываются с собственными полосами поглощения исследуемого материала в ИК-спектрах [14].

Для исследования природы и концентрации кислотных центров цеолитов как спектральный зонд часто используется пиридин (Ру). 2,6-Ди-трет-бутилпиридин (2,6-DTBPy) благодаря большему кинетическому диаметру используют в качестве молекулы-зонда для определения концентрации кислотных центров Бренстеда на внешней поверхности цеолита [15]. Кроме того, 2,6-DTBPy обладает более сильными основными свойствами в сравнении с пиридином, что позволяет детектировать более слабые кислотные центры Бренстеда, которые не обнаруживаются при адсорбции пиридина. В то же время часть кислотных центров Льюиса на внешней поверхности цеолитов недоступна для данной молекулы-зонда по стерическим причинам, что существенно затрудняет количественное определение их концентрации [16].

Целью настоящей работы являлось установление спектров кислотности Ti-, Sn- и Zr-содержащих цеолитов структурных типов МTW и BEA, а также выяснение влияния добавок элементов третьей группы (B, Al) на изменение концентрации и доступности кислотных центров.

Общая методика синтеза структуронаправляющих агентов приведена в работах [11, 12]. Цеолиты получали по методике, описанной в работе [12]. Темплат растворяли в водном растворе щелочи, последовательно добавляли источники гетероэлементов (для алюминия и титана — соответствующие изопропоксиды, в случае бора — борную кислоту, олова — SnCl₄·5H₂O, циркония — ZrOCl₂·8H₂O), источник кремния (тетраэтоксиортосилан (ТЭОС)) и этиловый спирт.

Фазовый состав полученных материалов определяли с помощью рентгеновского дифрактометра «D8 ADVANCE» («Bruker») с CuK_{α} -излучением в диапазоне углов $2\theta = 3^{\circ}$ —45° с шагом $2\theta = 0,03^{\circ}$. Адсорбционные свойства материалов исследовали методом низкотемпературной адсорбции азота при 77 К, используя анализатор пористых материалов «Soptomatic-1990». Параметры пористой структуры образцов ($V_{\text{микро}}$ и $S_{\text{мезо}}$ или $S_{\text{вн}}$ (таблица)) определяли методом *t-plot* [17]. Микроструктуру образцов изучали методом растровой электронной микроскопии (РЭМ) на рабочих станциях «NVision 40» («Carl Zeiss») при ускоряющем напряжении 1—30 кВ с использованием детекторов вторичных и обратнорассеянных электронов и «Mira3» («Tescan»), осна-

Рис. 1. Дифрактограммы (а) и изотермы адсорбции азота (б) иерархических цеолитов структурного типа МТШ и ВЕА.

щенной приставкой для энергодисперсионной рентгеновской спектроскопи (EDX) Oxford X-max 80 mm², при ускоряющем напряжении 5—20 кВ. Съемку осуществляли без предварительного напыления проводящих материалов на поверхность образцов. Кислотные свойства исследовали методами ступенчатой десорбции пиридина и 2,6-ди-*трет*-бутилпиридина как спектральных зондов с ИК-спектроскопическим контролем («Spectrum One», «Perkin-Elmer») в диапазоне 1250—4000 см⁻¹ с точностью ± 1 см⁻¹. Содержание кислотных центров рассчитывали по формуле, описанной в работе [18].

Иерархические Ti-, SnZr-, AlSn-, BSn-силикатные цеолиты со структурой MTW, а также BTi-, BSn-, BZr-, AlTi-, AlSn- и AlZr-силикатные цеолиты со структурой BEA получены с использованием в качестве структуронаправляющих агентов органических молекул состава $C_{16}H_{33}$ —N(CH₃)₂—CH₂—p-(C₆H₄)—CH₂—N(Пиперидин)—C₃H₆—N(пиперидин)—CH₂—p-(C₆H₄)— CH₂—N(CH₃)₂—C₁₆H₃₃ (далее (C16-N4(Pip)-C16)), C₁₆H₃₃—N(CH₃)₂—C₆H₁₂—N(CH₃)₂—CH₂—p-(C₆H₄) —CH₂—N(CH₃)₂—C₆H₁₂—N(CH₃)₂—CH₂—p-(C₆H₄) —CH₂—N(CH₃)₂—C₆H₁₂—N(CH₃)₂—CH₂—p-(C₆H₄) —CH₂—N(CH₃)₂—C₆H₁₂—N(CH₃)₂—CH₂—p-(C₆H₄) —CH₂—N(CH₃)₂—N(CH₃)₂—C₆H₁₂—N(CH₃)₂—CH₂ —p-(C₆H₄)—CH₂—N(CH₃)₂—C₆H₁₂—C₁₆H₃₃ (C16-N6-16).

На рис. 1, *а* приведены типичные дифрактограммы исследованных иерархических цеолитов структурных типов МТW и BEA [19], содержащие характерные рефлексы, подтверждающие чистоту полученной цеолитной фазы. Анализ изотерм адсорбции (рис. 1, δ) полученных образцов свидетельствует

о присутствии в них как микропор диаметром 0,8—0,9 нм (определенных методами *t-plot* и α -S), так и мезопор диаметром 10—15 нм (метод Saito — Foley). Наличие в структуре одновременно микропор и мезопор косвенно свидетельствует об иерархичности полученных образцов. Исследованные иерархические цеолиты характеризуются развитой внешней поверхностью или поверхностью мезопор ($S_{\rm ME}$ до 600 м²/г, определение методом *t-plot* [17]) и общей поверхностью ($S_{\rm BET}$) до 800 м²/г (таблица).

На рис. 2 приведены микрофотографии цеолитов структурных типов ВЕА и МТW. Кристаллы цеолитов структурного типа МTW представляют собой наноиглы длиной 500—1000 нм и толщиной порядка 20 нм, агломерированные в «жгуты» до 100 нм в диаметре (рис. 2, a), или наночастицы диаметром ~30—40 нм, которые агломерированы в виде губок (рис. 2, δ). Цеолиты структурного типа ВЕА представляют собой агломерированные в виде губок наночастицы размером ~20—30 нм (рис. 2, c).

ИК-спектры образцов после адсорбции и последующей десорбции пиридина при 150 °С приведены на рис. 3, *а*. Видно, что для цеолитов структурного типа MTW (за исключением BSn-MTW) в области 1400—1650 см⁻¹ присутствует несколько типов полос поглощения, отвечающих взаимодействию пиридина с кислотными центрами разных типов.

В области 1400—1650 см⁻¹ для цеолитов Ti-MTW, Sn-MTW и Zr-MTW наблюдается ряд полос поглощения пиридина, адсорбированного на поверхности цеолитов. В частности, для всех Ti-, Sn-, Zr-силикатных цеолитов структурного типа MTW наблюдалось наличие полосы поглощения при

Рис. 2. Микрофотографии титан- (*a*), олово- (б), цирконийсодержащих (в) иерархических цеолитов структурного типа MTW и AlSn-BEA (г).

1470 см⁻¹. Данная полоса поглощения валентных колебаний С-N молекулы пиридина возникает при взаимодействии последнего с координационно-ненасыщенными неизолированными четырехвалентными элементами [20]. Кроме полосы поглощения при 1470 см⁻¹, также наблюдаются слабые полосы поглощения в диапазоне 1447—1455 см⁻¹, которые относят к валентным колебаниям С-N-связи Ру, координированного с изолированными кислотными центрами Льюиса [21]. Для цеолитов, содержащих в кристаллической решетке четырехвалентные элементы, наблюдаются некоторые различия в положении полос поглощения, например для Sn-MTW — при 1451 см⁻¹, для Zr-MTW — 1447 см⁻¹, а для Ti-MTW — 1455 см-1, что согласуется с литературными данными. Общая концентрация кислотных центров Льюиса для таких образцов достигает 70 мкмоль/г (рис. 3, б).

Дополнительное введение в структуру цеолита бора(III) или алюминия(III) при соотношении Si/Al = 80 или Si/B = 80 не изменяет тип цеолитной структуры, однако существенно влияет на спектр кислотности цеолитов МТW. Полосы поглощения пиридина, взаимодействующего с силанольными группами (1440—1446 см⁻¹) [16], наблюдаются в образце AlSn-MTW (рис. 3, e), что может свиде-

тельствовать о наличии в таком материале существенного количества так называемых гидроксильных гнезд — дефектных гидроксильных групп, образующихся в месте вакансии Т-атома. ИК-спектры AlE-MTW (где Е — Ті, Sn или Zr) не содержат полос поглощения в диапазоне 1440—1446 см⁻¹, что, видимо, связано с меньшим количеством дефектов в кристаллической решетке полученного цеолита, а также наличием незначительного количества силанольных групп. При этом в случае AlSn-MTW наблюдается появление полосы поглощения при 1546 см⁻¹, отвечающей так называемому протонированному пиридиниевому комплексу, образованному при взаимодействии пиридина с протоном (т. е. кислотным центром Бренстеда). При этом общая концентрация кислотных центров для цеолитов структурного типа MTW достигает 50 мкмоль/г (рис. 3, б).

Увеличение содержания трехвалентного элемента (Si/Al или Si/B < 80) в реакционной смеси для синтеза цеолитов приводит к изменению направления кристаллизации в сторону образования цеолита BEA. Спектры цеолитов BEA с адсорбированным пиридином характеризуются наличием полос поглощения, которые отвечают присутствию кислотных центров Льюиса (1455 см⁻¹, 1461 см⁻¹), Бренстеда

Рис. 3. ИК-спектры иерархически-пористых цеолитов после адсорбции и последующей десорбции пиридина (*a*) и 2,6-DTBPy (*в*), (*г*) и концентрация кислотных центров Бренстеда и Льюиса после десорбции молекул-зондов при 150 °С (*б*) (заштрихованная часть — концентрация, определенная по адсорбции 2,6-DTBPy).

(1548 см⁻¹), а также наличию в исследованных образцах существенного количества силанольных групп (1445 см⁻¹) (рис. 3, c).

В AlSn-BEA (рис. 3, *a*) следует отметить три полосы поглощения в области 1440—1472 см⁻¹: при 1445 см⁻¹ (силанольные группы), 1454 см⁻¹ (льюисовские кислотные центры Al) и 1470 см⁻¹. Разли-

чимая полоса поглощения для кислотных центров Льюиса Sn (1451 см $^{-1}$) не обнаруживается, что может свидетельствовать о незначительном содержании элемента в материале или ее перекрывании с полосой поглощения при 1454 см⁻¹, характерной для кислотных центров Льюиса, обусловленных наличием неполностью координированных ионов алюминия в цеолитной структуре. Аналогичная ситуация наблюдается и в случае с неиерархическими алюмотитаносиликатными цеолитами структурного типа ВЕА [22]. При этом при относительно высоких концентрациях Al и Sn, Zr или Ti в структуре наблюдалось появление полос поглощения при 1447, 1451 и 1456 см⁻¹, соответствующих образованию кислотных центров Льюиса, обусловленных наличием в решетке цеолитов четырехвалентных металлов. В случае борсодержащих цеолитов только при достаточно высокой концентрации Ti, Sn или Zr в реакционной смеси наблюдали полосы поглощения при 1447, 1451 и 1456 см⁻¹. В данном случае это, возможно, связано с незначительной долей как Ti⁴⁺, так и Sn⁴⁺ или Zr⁴⁺ в кристаллической решетке цеолита. Вероятно, дополнительное введение в реакционную смесь источников бора или алюминия приводит к увеличению концентрации кислотных центров, обусловленных наличием Sn⁴⁺ или Zr⁴⁺ в структуре. При этом положение полосы поглощения, отнесенной к пиридиниевому иону, не зависит от природы присутствующих элементов, введенных в кристаллическую решетку. Общая концентрация кислотных центров варьируется в диапазоне от 30-60 мкмоль/г для борэлементсиликатных образцов до 300-400 мкмоль/г для алюмоэлементсиликатных образцов (рис. 3, б).

ИК-спектры цеолитов после адсорбции и десорбции 2,6-ди-*трет*-бутилпиридина при 150 °С приведены на рис. 3, в, г. Для образцов Ті-, Sn-, Zr-MTW (рис. 3, в), которые содержат преимущественно кислотные центры Льюиса, наблюдали появление полос поглощения при 1469 см⁻¹ (Ti-, Sn-, Zr-MTW), 1458 см⁻¹ (Ti-, Zr-MTW) и 1454 см⁻¹ (Sn-MTW). Стоит отметить, что в случае Ti-MTW лишь для образца с морфологией наноигл наблюдали наличие полос поглощения в указанном диапазоне. В то же время для других иерархических титансодержащих цеолитов с морфологией наночастиц и нанослоев (как и для Ti-MFI) полос поглощения в области 1445—1470 см⁻¹ не наблюдали, что, вероятно, связано с недоступностью кислотных центов Льюиса из-за экранирующего эффекта объемных трет-бутильных групп в 2,6-DTBPy. В отличие от Ті-МТW для Sn- и Zr-содержащих цеолитов при адсорбции 2,6-DTBPy в указанной области наблюдали группу полос, которая исчезала из спектра после

вакуумирования образца при температуре 150 °C. Вместе с тем в отличие от Ti-MTW с морфологией наноигл, в котором присутствуют исключительно кислотные центры Льюиса, в спектрах Sn-MTW и Zr-MTW характерно наличие также полос поглощения при 1615 и 1531 см⁻¹, отвечающих образованию протонированного комплекса 2,6-DTBPy, обусловленному взаимодействием адсорбата с кислотными центрами Бренстеда. Следует отметить, что рК_а для Ру и 2,6-DTBРу существенно различаются и составляют 5,6 и 6,9 соответственно [23, 24]. Очевидно, что в отличие от Ру более сильное основание 2,6-DTBPy взаимодействует с терминальными группами Sn—OH и Zr—OH как со слабыми кислотными центрами Бренстеда. Возможность образования слабых кислотных центров Бренстеда в цеолитах Zr-BEA отмечена в работе [23].

Для цеолитов AlSn-MTW, BSn-MTW (рис. 3, δ) интенсивность полос поглощения при 1615 и 1531 см⁻¹ уменьшается при переходе от AlSn-MTW к BSn-MTW, что, очевидно, связано с уменьшением содержания трехвалентного элемента в кристаллической решетке полученного цеолита и, соответственно, концентрации кислотных центров Бренстеда. Для цеолитов AlSn-MTW и BSn-MTW характерно также наличие полосы поглощения при 1467 см⁻¹, которую относят к координированным молекулам 2,6-DTBPy на кислотных центрах Льюиса [15].

Для иерархических цеолитов типа MTW доступность кислотных центров, определяемая соотношением концентраций кислотных центров С_{2.6-DTBPv}/С_{Pv}, варьируется в диапазоне 30—70 %. Все исследуемые цеолиты структурного типа ВЕА характеризуются присутствием в ИК-спектрах полос поглощения при 1614 и 1531 см⁻¹, которые свидетельствуют о наличии кислотных центров Бренстеда, а также уширенных полос поглощения при 1468—1469 см⁻¹, образующих гало, которое объясняют наличием кислотных центров Льюиса различной силы. При этом концентрация кислотных центров Бренстеда, определенная по адсорбции 2,6-DTBPy, убывает в ряду AlZr-BEA > AlSn-BEA >> BZr-BEA > BSn-BEA > BTi-BEA.

Таким образом, методом ИК фурье-спектроскопии с использованием пиридина и 2,6-ди-*трет*-бутилпиридина как спектральных зондов исследованы кислотные свойства Ті-, Sn- и Zr-содержащих иерархических цеолитов структурных типов ВЕА и МТW. Sn- и Zr-силикатные цеолиты структурного типа МТW характеризуются наличием кислотных центров Льюиса двух видов и слабых кислотных центров Бренстеда, образованных дефектными терминальными группами Sn—OH и Zr—OH. Сила кислотных центров Льюиса увеличивается в ряду Ti-MTW < Zr-MTW ≤ Sn-MTW. Введение в реакционную смесь небольших количеств бора или алюминия приводит к появлению дополнительных кислотных центров Льюиса и Бренстеда, а также увеличивает концентрацию кислотных центров, обусловленных наличием Sn⁴⁺ или Zr⁴⁺ в структуре.

Литература

- Parlett C. M., Wilson K., Lee A. F. // Chem. Soc. Rev. 2013. — 42. — P. 3876—3893.
- Perez-Ramirez J., Christensen C., Egeblad K. et al. // Chemical Society reviews. — 2008. — 37. — P. 2530—2542.
- Guisnet M., Magnoux P. // Appl. Catal. 1989. 54. P. 1—27.
- 4 Shamzhy M. V., Shvets O. V., Opanasenko M. V. et al. // J. Mater. Chem. — 2012. — P. 15793—15803.
- Choi M., Na K., Kim J. et al. // Nature. 2009. 461. P. 246—249.
- Yang X. Y., Tian G., Chen L. H. et al. // Chem. Eur. J. 2011. — 17. — P. 14987—14995.
- Holm M. S., Taarning E., Egeblad K., Christensen C. H. // Catal. Today. — 2011. — 168. — P. 3—16.
- Camblor M. A., Corma A., Díaz-Cabañas M.-J., Baerlocher C. // J. Phys. Chem. B. — 1998. — 102. — P. 44—51.
- Choi M., Cho H. S., Srivastava R. et al. // Nature Mater. 2006. — 5. — P. 718—723.
- Chen H., Wydra J., Zhang X. et al. // J. Amer. Chem. Soc. — 2011. — 133. — P. 12390—2393.

- 11. *Cho K., Na K., Kim J. et al.* // Chem. Mater. 2012. **24**. P. 2733—2738.
- Курмач М. Н., Яремов П. С., Цырина В. В. и др. // Теорет. и эксперим. химия. — 2015. — 51, № 4. — С. 211—218. — [Theor. Exp. Chem. — 2015. — 51, № 4. — Р. 216—223 (Engl. Transl.)].
- 13. *Kim J., Choi M., Ryoo R. //* J. Catal. 2010. **269**. P. 219—228.
- Derouane E., Vedrine J. C., Pinto R. R. et al. // Catal. Rev. — 2013. — 55. — P. 454—515.
- Góra-Marek K., Tarach K., Choi M. // J. Phys. Chem. C. 2014. — 118. — P. 12266—12274.
- Lin S., Shi L., Yu T. // J. Phys. Chem. C. 2015. 119. P. 1008—1015.
- 17. *Gregg S. G., Sing K. S. W.* Adsorption, surface area and porosity. New York : Acad. press, 1982.
- 18. Emeis C. A. // J. Catal. 1993. 141. P. 347—354.
- Kim W., Kim J.-C., Kim J. et al. // ACS Catal. 2013. 3. — P. 192—195.
- Li G., Fu W. H., Wang Y. M. // Catal. Commun. 2015. —
 62. P. 10—13.
- 21. *Tang B., Dai W., Wu G. et al.* // ACS Catal. 2014. 4. P. 2801—2810.
- Niederer J. P. M., Hölderich W. F. // Appl. Catal. A. 2002. — 229. — P. 51—64.
- Sushkevich V. L., Vimont A., Travert A. Ivanova I. I. // J. Phys. Chem. C. — 2015. — 119. — P. 17633—17639.
- Corma A., Fornés V., Forni L. et al. // J. Catal. 1998. 179. — P. 451—458.

Поступила в редакцию 15 апреля 2016 г. В окончательном варианте 18 мая 2016 г.

Вплив введення іонів В³⁺ або Al³⁺ у структуру Ti-, Sn- і Zr-вмісних ісрархічних цеолітів на концентрацію кислотних центрів Льюїса і Бренстеда

М. М. Курмач¹, П. С. Яремов¹, Н. О. Скорик^{2,3} О. В. Швець¹

¹ Інститут фізичної хімії ім. Л. В. Писаржевського НАН України просп. Науки, 31, Київ 03028, Україна. E-mail: alexshvets@ukr.net

² ТОВ «НаноМедТех» Україна вул. Антоновича, 68, Київ 03150, Україна

³ Інститут металофізики ім. Г. В. Курдюмова НАН України бульвар Академіка Вернадського, 36, Київ 03680, Україна

Встановлено, що у Ті-, Sn- і Zr-вмісних ієрархічних цеолітах структурних типів ВЕА та МТW присутні два види кислотних центрів Льюїса, сила яких збільшується у ряду Ті-МТW < Zr-МТW ≤ Sn-МТW, а також слабкі кислотні центри Бренстеда, утворені дефектними термінальними групами Sn—OH i Zr—OH. Введення іонів бору або алюмінію в структуру Ті-, Sn- і Zr-силікатних цеолітів ВЕА і МТW приводить до появи додаткових кислотних центрів Льюїса та Бренстеда.

Ключові слова: ієрархічні цеоліти, кислотність, титаносилікати, оловосилікати, цирконійсилікати, наноголки, наночастинки.

Effect of B³⁺ or Al³⁺ Ion Introduction in the Structure of Hierarchical Ti-, Sn-, Zr-Containing Zeolites on the Concentration of Lewis and Brønsted Acid Centres

M. M. Kurmach¹, P. S. Yaremov¹, M. O. Skoryk^{2,3}, O. V. Shvets¹

¹ L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine Prosp. Nauky, 31, Kyiv 03028, Ukraine. E-mail: alexshvets@ukr.net

² «NanoMedTech» Ukraine Vul. Antonovycha, 68, Kyiv 03150, Ukraine

³ G. V. Kurdyumov Institute for Metal Physics Bulvar Academika Vernadskoho, 36, Kyiv 03680, Ukraine

The presence of two types of Lewis acid centres, which strength was increased in range $Ti-MTW < Zr-MTW \le Sn-MTW$, and of weak Brønsted acid centres formed by terminal Sn—OH and Zr—OH group in hierarchical Ti-, Sn-, Zr-containing zeolites of MTW and BEA topology was established. Introduction of Al or B ions into zeolite framework leads to appearence of additional amount of Lewis and Brønsted acid centres.

Key words: hierarchical zeolites, acidity, titanosilicates, stanosilicates, zirconosilicates, nanoneedles, nanoparticles.