УДК 541.64, 544.65, 546.11

Электрокатализ N-содержащими сопряженными полимерами электрохимического выделения водорода из воды в кислых средах

Я. И. Курысь, Д. О. Мазур, В. Г. Кошечко, В. Д. Походенко

Институт физической химии им. Л. В. Писаржевского НАН Украины просп. Науки, 31, Киев 03028, Украина. E-mail: kurys@inphyschem-nas.kiev.ua

Выяснена возможность ряда N-содержащих органических сопряженных полимеров проявлять электрокаталитическую активность в процессе выделения водорода в кислом электролите. Установлено, что модифицирование стеклографитового электрода поли-5-аминоиндолом, поли-8-аминохинолином или поли-о-фенилендиамином, в отличие от полианилина, полипиррола, поли-м-фенилендиамина, поли-о-аминофенола, полииндола и поли-2-аминопиридина, приводит к повышению эффективности электролитического выделения водорода — уменьшению величины тафелевского наклона, снижению потенциала начала процесса и перенапряжения при заданной плотности тока.

Ключевые слова: электрокатализаторы, выделение водорода, N-содержащие сопряженные полимеры.

Электрохимическое выделение водорода из воды является одним из наиболее перспективных методов, позволяющих получать H₂ высокой чистоты с использованием дешевого сырья, запасы которого практически не ограничены [1, 2]. В то же время реакция выделения водорода (РВВ) на традиционных электродах (например, угольных) проходит с высоким перенапряжением, что приводит к значительным энергозатратам. Уменьшить перенапряжение и, как следствие, энергозатраты позволяет использование в указанном процессе электрокатализаторов. Материалы на основе платины и металлов платиновой группы являются наиболее активными электрокатализаторами для РВВ, однако высокая стоимость и ограниченные мировые запасы платины сдерживают их широкое применение и обусловливают поиск и разработку альтернативных электрокатализаторов, которые не содержат драгоценных металлов [1, 2].

Как известно [3—5], органические сопряженные полимеры (ОСП) — полианилин (ПАн), полипиррол (ППи), политиофен, их замещенные аналоги и др. могут выступать электрокатализаторами различных процессов, в то же время данные об использовании ОСП в РВВ в литературе крайне ограничены и противоречивы. В работах [6—8] установлено, что ППи и ПАн не только не катализируют, но и ингибируют процесс электролитического выделения водорода из водных электролитов, тогда как для поли(2-амино-5-меркапто-1,3,4-тиадиазола) недавно была показана

значительная активность в РВВ [9], которую связывают с высоким содержанием атомов азота и серы в полимере и попарным близким расположением в макромолекуле активных азотсодержащих центров -N=, способствующих рекомбинации образующегося атомарного водорода. Можно полагать, что и другие ОСП с высоким содержанием азота (в частности, аминозамещенные структурные аналоги ПАн и ППи) могут проявлять электрокаталитическую активность в РВВ, что важно для их потенциального применения в качестве компонент гибридных наноэлектрокатализаторов указанного процесса. За счет наноструктурирования и электронного взаимодействия между компонентами, в таких нанокомпозиционных электрокатализаторах возможно не только объединение полезных функциональных характеристик, присущих его составляющим, но и возникновение новых свойств, которые недостижимы для отдельных индивидуальных компонентов. Примером эффективности такого подхода является недавно опубликованная работа [10], где электрохимически сформированный нанокомпозиционный электрокатализатор РВВ на основе ППи и MoS_r по своим функциональным характеристикам значительно превышает индивидуальные компоненты и приближается к платине.

Учитывая изложенное выше, целью настоящей работы являлось выяснение возможности ряда N-содержащих ОСП — поли-*о*-фенилендиамина

Таблица 1

Параметры модифицирования	GC-электрода N-содержащими (ЭСП
---------------------------	------------------------------	-----

ОСП	Электролит	E_{\min} ÷ E_{\max} , мВ	Скорость сканирования потенциала, мВ/с	Количество циклов
ПАн	0,1 М анилин/0,5 М ${\rm H_2SO_4}$	-200÷850 (Ag/AgCl)	50	20
ППи	0,1 М пиррол/0,5 М H_2SO_4	-200÷850 (Ag/AgCl)	50	20
ПоФДА	10 мМ <i>о</i> -фенилендиамин/0,2 М ФБР (рН 6,8)	-400÷1000 (Ag/AgCl)	50	30
ПмФДА	10 мМ <i>м</i> -фенилендиамин/0,2 М ФБР (рН 6,8)	-400÷1000 (Ag/AgCl)	50	30
ΠΑΦ	10 мМ o -аминофенол/0,1 М ${\rm LiClO_4}$ + 0,1 М ${\rm HClO_4}$	-200÷850 (Ag/AgCl)	20	15
ПИн	10 мМ индол/0,1 М ТБАП/СН ₃ СN	$-500 \div 2500 (\text{Ag/Ag}^+)$	100	15
ПАИн	10 мМ 5-аминоиндол/0,5 М H_2SO_4	-400÷900 (Ag/AgCl)	50	15
ПАХ	10 мМ 8-аминохинолин/0,1 М ТБАП/CH $_3$ CN	$-500 \div 1500 (Ag/Ag^{+})$	50	30
ПАП	10 мМ 2-аминопиридин/0,1 М ТБАП/СН $_{3}$ СN	$-500 \div 2500 (Ag/Ag^{+})$	100	15

Примечание. ФБР — фосфатный буферный раствор; ТБАП — тетрабутиламмоний перхлорат.

(ПоФДА), поли-*м*-фенилендиамина (ПмФДА), поли-*о*-аминофенола (ПАФ), полииндола (ПИн), поли-5-аминоиндола (ПАИн), поли-8-аминохинолина (ПАХ), поли-2-аминопиридина (ПАП), а также для сравнения ПАн и ППи — проявлять электрокаталитическую активность в РВВ в водных кислых электролитах и установление кинетических параметров РВВ на стеклографитовых (GC) электродах, модифицированных пленками таких ОСП.

Экспериментальная часть

В работе использовали коммерчески доступные анилин и пиррол (которые перед применением перегоняли под вакуумом), *о*- и *м*-фенилендиамины, *о*-аминофенол, индол, 5-аминоиндол, 8-аминохинолин, 2-аминопиридин, $(C_4H_9)_4$ NClO₄, LiClO₄ и ацетонитрил — все без дополнительной очистки, а также 0,2 М фосфатный буферный раствор (ФБР) с рH 6,8 и водные растворы HClO₄ и H₂SO₄.

Перед нанесением полимерных покрытий GC-электроды полировали суспензиями алмазных частиц (1,0 мкм) и наночастиц Al₂O₃ (0,05 мкм) с последующей ультразвуковой очисткой последовательно в смеси вода — этанол (1:1 об.) и дистиллированной воде. Модифицирование GC-электрода соответствующим полимерным покрытием проводили с использованием потенциодинамического подхода по аналогии с известными методиками — ПАн [8], ППи [8], ПоФДА [11], ПмФДА [11], ПАФ [12], ПИн [13], ПАИн [14], ПАХ [15], ПАП [16]. Условия электрохимической полимеризации и использованные электролиты приведены в табл. 1.

Электрохимические исследования полученных пленок ОСП проводили при комнатной температуре методом вольтамперометрии с линейной разверткой потенциала (скорость сканирования потенциала 5 мВ/с) в 0,5 М водном растворе H₂SO₄ с использованием неразделенной ячейки (рабочий электрод — дисковый стеклоуглеродный с геометрической площадью поверхности 0,03 см²; вспомогательный — платиновая проволока; электрод сравнения Ag/AgCl (3,0 M KCl), E = 0,202 В отн. стандартного водородного электрода) и компьютеризированного электрохимического комплекса на базе потенциостата ПИ-50-1.1. При электрохимическом формировании ПИн, ПАХ и ПАП из ацетонитрильных электролитов использовали электрод сравнения Ag/Ag^+ (0,01 M $AgNO_3$ + 0,1 M $H-Bu_4NClO_4/CH_3CN; E = 0,36 B$ отн. стандартного водородного электрода). Для деаэрирования электролитов использовали аргон высокой чистоты.

Результаты и обсуждение

Циклические вольтамперограммы (ЦВА), соответствующие процессу электрохимической полимеризации некоторых из использованных мономеров на поверхности GC-электрода, приведены на рис. 1. В случае электрохимической полимеризации анилина (рис. 1, *a*), а также пиррола с увеличением числа циклов сканирования потенциала в ЦВА имеет место постепенное снижение анодных токов, обусловлен-

Рис. 1. ЦВА процессов электрохимического формирования пленок ПАн (а), ПоФДА (б) и ПАИн (в) на GC-электроде.

ных окислением мономеров в соответствующие катион-радикалы с одновременным ростом анодных и катодных пиков (в случае ППи существенно уширенных), связанных с редокс-переходами в ПАн и ППи, что является типичным при формировании полимеров, обладающих высокой электропроводностью [17].

В отличие от этого при электрохимическом получении ПоФДА (рис. 1, δ), ПАИн (рис. 1, ϵ), а также ПмФДА, ПАФ, ПИн, ПАХ и ПАП на первом цикле сканирования потенциала на анодной ветви ЦВА наблюдаются один или два широких пика, характерных для процесса окисления соответствующего мономера, с резким уменьшением тока окисления на следующих циклах вследствие формирования полимерной пленки с низкой электропроводностью, блокирующей доступ молекул мономера к поверхности электрода.

С целью выяснения возможности N-содержащих ОСП проявлять электрокаталитическую активность в PBB нами методом вольтамперометрии с линейной разверткой потенциала проведены исследования немодифицированного GC-электрода и модифицированного соответствующими полимерами в 0,5 M водном растворе H_2SO_4 . Как следует из данных, приведенных на рис. 2, *a*, модифицирование GC-электрода большинством исследованных нами ОСП приводит к ингибированию выделения водорода из

кислого электролита, причем в случае ПАн и ППи смещение в катодную область потенциала выделения водорода и уменьшение тока по сравнению с немодифицированным электродом является наиболее значительным. Данный факт согласуется с приведенными в литературе данными о неактивности ПАн и ППи в РВВ [10] и возможности их использования в качестве ингибиторов коррозии металлов [9]. В отличие от этого, как обнаружено нами, модифицирование GC-электрода пленками ПАИн, ПАХ или ПоФДА приводит к увеличению его активности в РВВ по сравнению с немодифицированным электродом (рис. 2, б). В частности, ПАИн, который оказался лучшим электрокатализатором среди использованных ОСП, характеризуется снижением потенциала начала PBB более чем на 200 мВ по сравнению с GC и намного большими токами (рис. 2, б, кривая 4).

Для более детального исследования электрохимической активности различных N-содержащих ОСП в PBB и выяснения возможного механизма данного процесса на модифицированных электродах нами, на основе данных вольтамперометрии с линейной разверткой потенциала, построены поляризационные кривые в тафелевских координатах (рис. 3), на которых были выбраны прямолинейные участки и рассчитаны основные кинетические параметры PBB (тафелевский наклон, токи обмена, коэффициент

Рис. 2. Поляризационные кривые выделения водорода $(0,5 \text{ M H}_2\text{SO}_4; v = 5 \text{ мB/c})$ на различных электродах: *a* — GC (1), ПАП/GC (2), ПИн/GC (3), ПмФДА/GC (4), ПАФ/GC (5), ППи/GC (6) и ПАн/GC (7); 6 — GC (1), ПоФДА/GC (2), ПАХ/GC (3), ПАИн/GC (4) и Pt (5).

переноса, перенапряжение при единичной плотности тока) (табл. 2) в соответствии с уравнением Тафеля:

$$\eta = a + b \lg j = -\frac{2,3RT}{\alpha nF} \lg j_0 + \frac{2,3RT}{\alpha nF} \lg j,$$

где η — приложенное перенапряжение, мВ; j — плотность тока, мА/см²; j_0 — плотность тока обмена, мА/см²; b — тафелевский наклон, мВ/порядок; α — коэффициент переноса; n — число электронов, участвующих в стадии разряда; R — газовая постоянная (8,314 кДж·кмоль⁻¹·K⁻¹); F — постоянная Фарадея (96485 Кл·моль⁻¹).

Рассчитанная плотность тока обмена (j_0) для электродов, модифицированных указанными выше ОСП, находится в диапазоне $10^{-4} \div 10^{-7}$ мА/см² (табл. 2) и в зависимости от природы модифицирующего полимера она как превышает, так и является меньшей по сравнению с таковой для немодифицированного электрода (2,40·10⁻⁴ мА/см²). Для сравнения эффективности ОСП в РВВ нами рассчитано значение перенапряжения при заданной

Рис. 3. Поляризационные кривые в Тафелевских координатах для РВВ на различных электродах: a - GC(1), ПИн/GC (2), ПАФ/GC (3), ПАП/GC (4), ППи/GC (5), ПмФДА/GC (6) и ПАн/GC (7); δ - GC (1), ПоФДА/GC (2), ПАХ/GC (3) и ПАИн/GC (4). Электролит 0,5 M H₂SO₄; v = 5 мВ/с.

плотности тока (η_j), которое характеризует разницу в скорости процесса, обусловленную природой электродного материала. Согласно полученным данным (табл. 2) модифицирование GC-электродов ПАП, ПмФДА или ПАФ приводит к росту η_j (j = 1 мА/см²) на 165—284 мВ и более чем на 350 мВ в случае ПИн, ППи или ПАн. Этот факт согласуется с установленным превышением значений *b* для GC-электродов, модифицированных ПАП, ПИн, ПмФДА, ПАФ, ППи или ПАн, по сравнению с немодифицированным электродом (табл. 2), что свидетельствует об ингибировании PBB данными ОСП.

Учитывая, что процесс электрохимического выделения водорода проходит при потенциалах, при которых ОСП находятся в восстановленном состоянии и характеризуются низкой электропроводностью, можно предположить, что полимерное покрытие на GC-электроде выступает в роли барьера, препятствующего процессу переноса заряда в PBB [7], преодоление которого требует значительного перенапряжения. Разница же в кинетических параметрах для PBB на электродах, модифицированных указанными полимерами, может быть обусловлена различием в толщине пленок (заведомо большей в

Таблица	2
---------	---

Кинетические параметры для PBB в 0,5 М H₂SO₄ на немодифицированном GC-электроде и GC-электроде, модифицированном N-содержащими ОСП

ОСП	<i>b</i> , мВ/порядок	α	<i>j</i> ₀ , мА/см ²	η _{<i>j</i>} , мВ				
				$j = 5 \text{ MA/cm}^2$	j = 1 мA/см ²			
GC	174	0,34	2,40E-4	779	639			
ПАИн	84	0,69	1,28E-5	488	414			
ПАХ	82	0,72	4,56E-7	617	526			
ПоФДА	147	0,40	8,43E-5	709	608			
ПмФДА	128	0,46	1,63E-7	970	867			
ПАП	191	0,31	7,00E-5	_	804			
ΠΑΦ	219	0,27	6,98E-5	_	925			
ПИн	262	0,23	4,53E-4		>1000			
ППи	278	0,21	1,09E-4		>1000			
ПАн	279	0,21	5,80E-5	_	>1000			
Примечание. GC — немодифицированный электрод.								

случае ПАн и ППи в силу специфики их формирования, связанной с высокой электропроводностью таких полимеров), их морфологией, наличием тех или иных функциональных групп и т. п.

Однако согласно [4] протекание электрохимических процессов возможно и при потенциалах «непроводимости» пленки, если принять во внимание предположение о локализации стадий процесса, которые определяют его скорость, на границе электрод/электролит (для пленок с пористой структурой) и/или электрод/полимер (медиаторный механизм), а также незначительное снижение потенциала в пленках толщиной ≤500 нм и достаточно медленную релаксацию с электропроводящего в непроводящее состояние. Эти допущения могут объяснить тот факт, что в отличие от рассмотренных выше ОСП использование в качестве модификаторов GC-электродов полимеров с низкой электропроводностью (ПАХ, ПоФДА и особенно ПАИн) приводит не только к уменьшению η, но и к снижению величины тафелевского наклона b, а также к увеличению коэффициента переноса α (табл. 2), что свидетельствует о проявлении такими полимерами электрокаталитической активности в РВВ и может открывать значительные перспективы в использовании таких ОСП в качестве компонент нанокомпозитных электрокатализаторов указанного процесса.

Следует отметить, что тафелевские прямые, представленные на рис. 3, являются нормированными на площадь геометрической (видимой) поверхности

электрода, а не на площадь его истинной электрохимически активной поверхности. Поэтому представленные результаты (рис. 3, табл. 2) могут свидетельствовать лишь об общей электрокаталитической активности ПАИн, ПАХ и ПоФДА в РВВ [18], не позволяя разделить вклад в наблюдаемый эффект площади поверхности и собственных электрокаталитических свойств полимерного материала, обусловленных его электронной структурой [18]. Детальное объяснение причин проявления ПАХ, ПоФДА и ПАИн каталитической активности в РВВ и природы активных центров в таких полимерах требует проведения дальнейших исследований. В то же время можно предположить, что наряду с незначительной толщиной полимерных покрытий и их морфологией причина проявления активности в РВВ указанными полимерами может быть связана с их молекулярным строением, а именно наличием дополнительной, незадействованной в полимеризации аминогруппы в их мономерных звеньях, как это имеет место в парах ПАн — ПоФДА и ПИн — ПАИн. В отличие от ПоФДА в случае ПмФДА тафелевский наклон хотя и уменьшается по сравнению с ПАн, но начало выделения водорода остается в области достаточно отрицательных потенциалов. Причиной этого может быть то, что при формировании ПоФДА число свободных аминогрупп как дефектов в структуре полимера, подобной феназину, является большим, чем в случае ПмФДА. Отмеченные особенности молекулярного строения ПАХ, ПоФДА и ПАИн, возможно, обеспечивают более эффективную электрохимическую десорбцию адсорбированного на поверхности модифицированного электрода атомарного водорода по сравнению с немодифицированным GC-электродом.

На основании рассчитанных нами тафелевских наклонов, традиционных представлений о протекании РВВ в кислых электролитах [18-20], а также принимая во внимание предложенную в работе [9] схему механизма PBB на электродах, модифицированных поли(2-амино-5-меркапто-1,3,4-тиадиазолом), можно сделать предположение о вероятном механизме PBB на электродах, модифицированных N-содержащими ОСП. Атомы азота в макромолекулах N-содержащих ОСП (далее схематично представлены как (~N)) за счет неподеленной пары электронов способны протонироваться в кислом электролите — (~N)H⁺. Первичный разряд протона на поверхности таких модифицированных электродов (реакция Фольмера) может приводить к образованию атома водорода, который адсорбируется на электроде: (~N)H⁺ + $e^- \rightarrow$ (~N)H_{адс}. Дальнейшее удаление Налс может проходить путем либо электрохимической десорбции: (~N) H_{adc} + (~N) H^+ + e^- → H₂ + 2(~N) (реакция Гейровского), либо рекомбинации: (~N) H_{adc} + (~N) H_{adc} \rightarrow H_2 + 2(~N) (реакция Тафеля). Как правило, одна из указанных выше стадий является лимитирующей. Если реакция Фольмера является скоростьопределяющей стадией, то величина b обычно составляет 120 мВ/порядок, а коэффициент переноса а — около 0,5 [19, 20]. В случае если скорость процесса определяет стадия десорбции (механизм Фольмера — Гейровского), то b имеет значение ~40 мВ/порядок ($\alpha ~ 1,5$) [19, 20], а в условиях прохождения PBB по механизму Фольме-– Тафеля величины b и α составляют pa -~30 мВ/порядок и ~2 соответственно, а лимитирующей будет стадия рекомбинации [19, 20]. Как свидетельствуют результаты проведенных нами исследований, представленные в табл. 2, для немодифицированного GC-электрода и GC/OCП-электродов значения b находятся в пределах 82—279 мВ/порядок, а α — 0,21—0,72, что дает основание предположить, что в исследованных нами случаях РВВ протекает по механизму Фольмера — Гейровского, где лимитирующей является стадия Фольмера.

Таким образом, в результате проведенных нами исследований обнаружено, что органические сопряженные полимеры ПАИн, ПАХ и ПоФДА способны выступать электрокатализаторами в процессе выделения водорода из воды в кислых электролитах в отличие от ряда N-содержащих ОСП (ПАн, ППи, ПмФДА, ПИн, ПАФ, ПАП), которые ингибируют PBB. Установлено, что модифицирование GC-электрода ПАИн, ПАХ или ПоФДА приводит к существенному повышению эффективности электролитического выделения водорода — уменьшению величины тафелевского наклона, снижению потенциала начала процесса и перенапряжения при заданной плотности тока.

Работа выполнена при частичной финансовой поддержке целевой комплексной программы фундаментальных исследований НАН Украины «Фундаментальные проблемы создания новых наноматериалов и нанотехнологий» (проект № 30).

Литература

- Zou X., Zhang Y. // Chem. Soc. Rev. 2015. 44, N 15. — P. 5148—5180.
- Zeng M., Li Y. // J. Mater. Chem. A. 2015. 3, N 29. P. 14942—14962.
- Malinauskas A. // Synth. Met. 1999. 107, N 2. P. 75—83.
- Подловченко Б. И., Андреев В. Н. // Успехи химии. 2002. — 71, № 10. — С. 950—965.
- Pokhodenko V. D., Kurys Ya. I., Posudievsky O. Yu. // Synth. Met. — 2000. — 113, N 1/2. — P. 199—201.
- Armelin E., Pla R., Liesa F. et al. // Corrosion Sci. 2008. — 50, N 3. — P. 721—728.
- 7. *Tian Y., Liu M., Zhou X. et al.* // J. Electrochem. Soc. 2014. **161**, N 3. P. E23—E27.
- Aydın R., Köleli F. // Prog. Org. Coat. 2006. 56, N 1. — P. 76—80.
- Liu L., Zha D.W., Wang Y. et al. // Int. J. Hydrogen Energy. — 2014. — 39, N 27. — P. 14712—14719.
- Wang T., Zhuo J., Du K. et al. // Adv. Mater. 2014. —
 26, N 22. P. 3761—3766.
- Dai Y.-Q., Zhou D.-M., Shiu K.-K. // Electrochim. acta. 2006. — 52, N 1. — P. 297—303.
- 12. Carbone M. E., Ciriello R., Granafei S. et al. // Electrochim. acta. — 2014. — 144. — P. 174—185.
- Baibarac M., Baltog I., Scocioreanu M. et al. / Synth. Met. — 2009. — 159, N 23/24. — P. 2550—2555.
- Yue R., Jiang F., Du Y. et al. // Electrochim. acta. 2012.
 77. P. 29—38.
- Abd El-Rahman H. A., Schultze J. W. // J. Electroanal. Chem. — 1996. — 416, N 1/2. — P. 67—74.
- Park D.-S., Shim Y.-B., Park S.-M. // Electroanalysis. 1996. — 8, N 1. — P. 44—48.
- 17. *Heinze J., Frontana-Uribe B. A., Ludwigs S. //* Chem. Rev. — 2010. — **110**, N 8. — P. 4724—4771.
- Damian A., Omanovic S. // J. Power Sources. 2006. 158, N 1. — P. 464—476.
- Okido M., Depo J. K., Capuano G. A. // J. Electrochem. Soc. — 1993. — 140, N 1. — P. 127—133.
- Shinagawa T., Garcia-Esparza A. T., Takanabe K. // Sci. Rep. — 2015. — 5. — 13801.

Поступила в редакцию 28 апреля 2016 г. В окончательном варианте 16 мая 2016 г.

Електрокаталіз N-вмісними супряженими полімерами електрохімічного виділення водню з води в кислих середовищах

Я. І. Курись, Д. О. Мазур, В. Г. Кошечко, В. Д. Походенко

Інститут фізичної хімії ім. Л. В. Писаржевського НАН України просп. Науки, 31, Київ 03028, Україна. E-mail: kurys@inphyschem-nas.kiev.ua

З'ясовано можливість ряду N-вмісних органічних супряжених полімерів проявляти електрокаталітичну активність у процесі виділення водню в кислому електроліті. Встановлено, що модифікування склографітового електрода полі-5-аміноіндолом, полі-8-амінохіноліном або полі-о-фенілендіаміном, на відміну від поліаніліну, поліпіролу, полі-м-фенілендіаміну, полі-о-амінофенолу, полііндолу і полі-2-амінопіридину, призводить до збільшення ефективності електролітичного виділення водню — зменшення величини тафелевського нахилу, зниження потенціалу початку процесу і перенапруги при заданій густині струму.

Ключові слова: електрокаталізатори, виділення водню, N-вмісні супряжені полімери.

Electrocatalysis of Electrochemical Hydrogen Evolution from Water in Acid Medium by N-Containing Conjugated Polymers

Ya. I. Kurys, D. O. Mazur, V. G. Koshechko, V. D. Pokhodenko

L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine Prosp. Nauky, 31, Kyiv 03028, Ukraine. E-mail: kurys@inphyschem-nas.kiev.ua

The possibility of a number of N-containing organic conjugated polymers to exhibit electrocatalytic activity in the hydrogen evolution in acid electrolyte was studied. It is found that the modification of glassy carbon electrode with poly-5-aminoindole, poly-8-aminoquinoline or poly-o-phenylenediamine, unlike polyaniline, polypyrrole, poly-m-phenylenediamine, poly-o-aminophenol, polyindole, and poly-2-aminopyridine, leads to increased efficiency of electrolytic hydrogen evolution – a decrease of the Tafel slope, reducing of the potential of beginning of the process and of the overpotential at a given current density.

Key words: electrocatalysts, hydrogen evolution, N-containing conjugated polymers.