УДК 544.478.1

Влияние лантана в составе оксидных композиций Zn-La(-Zr)-Si на их активность в процессе превращения этанола в 1,3-бутадиен

О. В. Ларина, П. И. Кириенко, С. А. Соловьев

Институт физической химии им. Л. В. Писаржевского НАН Украины просп. Науки, 31, Киев 03028, Украина. Е -mail: olga.larina@ukr.net

Показано, что введение лантана в состав оксидных композиций Zn(-Zr)-Si существенно увеличивает их активность в процессе превращения этанола в 1,3-бутадиен. Данный эффект объясняется формированием дополнительных основных центров на поверхности катализатора.

Ключевые слова: этанол, 1,3-бутадиен, оксид лантана.

Биоэтанол рассматривается как перспективное возобновляемое сырье для промышленного получения моторных топлив и ценных химических продуктов [1]. Одним из них является 1,3-бутадиен (БД), который широко используется в производстве полимерных материалов различного назначения. Впервые процесс превращения этанола в БД на одном катализаторе был реализован С. В. Лебедевым [2] и являлся основным промышленным способом производства бутадиена [3]. Разработка более экономически выгодной технологии получения БД из нефтехимического сырья привела к практически полному прекращению научных исследований в данной области. В недавних работах показано, что синтез БД из этанола может быть конкурентоспособным и экономически приемлемым с учетом растущих требований экологического законодательства, что послужило толчком к возобновлению интереса к данной технологии [4, 5].

Основным направлением исследований в этой области является увеличение селективности и производительности катализаторов превращения этанола в 1,3-бутадиен [3, 6—8]. Композиции на основе MgO-SiO₂ и ZrO₂-SiO₂, допированные *d*-металлами, рассматриваются как наиболее перспективные для разработки промышленных контактов данного процесса [8—13]. Однако анализ научных публикаций показывает, что высокоселективные катализаторы (селективность выше 60 %) характеризуются небольшой производительностью по БД, величина которой не превышает 0,2 $\Gamma_{\rm Ed}$ · $\Gamma_{\rm kar}^{-1}$ ·ч⁻¹ [6, 7, 11, 13]. В присутствии катализаторов, обеспечивающих более высокие показатели производительности, селективность

по БД ниже 60 % [7, 8, 10, 14, 15]. Таким образом, поиск катализатора синтеза БД, сочетающего высокие показатели производительности и селективности, является актуальной научной задачей.

Катализатор конверсии этанола в БД должен сочетать окислительно-восстановительные и кислотно-основные свойства, поскольку включает последовательные стадии дегидрирования (1), альдольной конденсации (2), восстановления по Меервейну — Понндорфу — Верлею (МПВ) (3) и дегидратации (4) [3]:

Оксид лантана является активной составляющей ряда катализаторов реакций дегидрирования [16], альдольной конденсации [17] и восстановления по МПВ [18], поэтому может рассматриваться в качестве перспективного компонента каталитических композиций процесса получения БД по методу Лебедева. Цель настоящей работы заключается в исследовании влияния оксида лантана в составе оксидных композиций Zn-La(-Zr)-Si на их каталитические свойства в процессе превращения этанола в 1,3-бутадиен.

Экспериментальная часть

Для приготовления катализаторов использовали промышленный силикагель марки КСКГ, обработан-

ный разбавленной азотной кислотой, промытый бидистиллятом, прокаленный при 500 °C ($S = 283 \text{ м}^2/\text{г}$). Лантансодержащие образцы (7-12 % мас. в пересчете на La₂O₃) получали путем пропитки носителя по влагоемкости водными растворами нитрата лантана (La(NO₃)₃·6H₂O, «х. ч.») расчетной концентрации. Введение цинка в состав катализаторов (2-4 % мас. в пересчете на ZnO) осуществляли пропиткой по влагоемкости лантансодержащих образцов водными растворами ацетата цинка (Zn(O₂CCH₃)₂, «х. ч.»). Цирконийсодержащие образцы (0,5—1 % мас. в пересчете на ZrO₂) получали методом влажного смешивания (фракции <0,1 мм) трехкомпонентной оксидной композиции Zn-La-Si c оксинитратом циркония ($ZrO(NO_3)_2 \cdot 2H_2O$, «ч. д. а.»). Полученные образцы высушивали при 120 °С (2 ч) и прокаливали при 500 °С (3 ч). Приготовлены композиции следующего состава:

Состав катализатора	Обозначение
7 % La ₂ O ₃ -SiO ₂	La-Si
2 % ZnO-7 % La ₂ O ₃ -SiO ₂	Zn-La-Si-1
4 % ZnO-7 % La ₂ O ₃ -SiO ₂	Zn-La-Si-2
4 % ZnO-12 % La ₂ O ₃ -SiO ₂	Zn-La-Si-3
2 % ZnO-7 % La ₂ O ₃ -0,5 % ZrO ₂ -SiO ₂	Zn-La-Zr-Si-1
2 % ZnO-7 % La ₂ O ₃ -1 % ZrO ₂ -SiO ₂	Zn-La-Zr-Si-2
1 % ZrO ₂ -7 % La ₂ O ₃ -SiO ₂	La-Zr-Si

Наличие кислотных и основных центров на поверхности катализаторов определяли методом ИК-спектроскопии с использованием молекул-зондов: пиррола, который может взаимодействовать как с кислотными центрами Льюиса, так и основными центрами поверхности, и пиридина, который характеризуется ярко выраженными основными свойствами. Перед адсорбцией молекул-зондов образцы (таблетки плотностью 15 мг/см²) подвергали предварительной термической обработке в течение 1 ч при 400 °C в вакууме (10⁻³ мм рт. ст.). Пиридин сорбировали на протяжении 15 мин при 150 °C, пиррол — при 50 °C, после чего остаточный и физически адсорбированный пиридин или пиррол удаляли вакуумированием (0,5 ч). ИК-спектры регистрировали при комнатной температуре после десорбции пиридина при 150 и 250 °C, пиррола — при 80 °C («Spectrum One» «Perkin Elmer»).

Каталитические эксперименты проводили в проточном кварцевом реакторе при температурах 325—400 °С (навеска образца 0,5 г). Этиловый спирт в реактор подавали путем пропускания аргона через термостатированный (41 °С) барботер с 96 %-ным спиртом для получения определенной концентрации паров этанола (18%) и достижения массовой скорости подачи реагента WHSV = 1—2 г_{этанол} $\cdot \tau_{\kappa a \tau}^{-1} \cdot \tau^{-1}$. Анализ исходных веществ и продуктов реакции осуществляли хроматографическим методом.

Каталитическую активность оценивали по степени превращения этанола (X, %):

$$X = \frac{n_{\text{EtOH}}^0 - n_{\text{EtOH}}}{n_{\text{EtOH}}^0} \cdot 100$$

где n_{EtOH}^0 — количество молей этанола, поданного в реактор; n_{EtOH} — количество молей этанола в потоке на выходе из реактора.

$$n = CF$$
,

где *С* — мольная концентрация компонента в потоке, моль/л; *F* — скорость потока, л/ч.

Селективность по идентифицированным углеродсодержащим продуктам (S, % C_1) и выход БД (Y_{EQ} , %) рассчитывали по формулам:

$$S_{i} = \frac{n_{i}}{2(n_{\text{EtOH}}^{0} - n_{\text{EtOH}})} \cdot 100,$$
$$Y_{\text{EH}} = XS_{\text{EH}}/100,$$

где n_i — количество молей углеродсодержащего продукта *i* (в пересчете на C_1) в потоке после реактора; коэффициент 2 учитывает присутствие двух атомов углерода в молекуле этанола.

Производительность катализатора ($P_{\rm БД}$, $\Gamma_{\rm БД}$, $\Gamma_{\rm Kat}$, \mathbf{u}^{-1}) рассчитывали по формуле:

$$P_{\rm EI} = Y_{\rm EI} \cdot {\rm WHSV} \cdot 0,587/100,$$

где *Y*_{БД} — выход бутадиена, %; 0,587 — коэффициент, учитывающий 100 %-ный массовый выход БД.

Результаты и обсуждение

В табл. 1 приведены данные о каталитических свойствах оксидных композиций в процессе превращения этанола. Основными продуктами реакции являются БД, АА, этилен, а также диэтиловый эфир (ДЭЭ) и кротоновый альдегид.

В присутствии катализатора La-Si конверсия этанола протекает с образованием БД (выход 5,4 %), что свидетельствует о наличии на поверхности образца необходимых активных центров для получения целевого продукта. Однако селективность этого катализатора по продуктам дегидратации этанола этилену и ДЭЭ — высока и достигает 52,1 %.

Таблица 1

Показатели процесса превращения этанола в 1,3-бутадиен в присутствии лантансодержащих оксидных композиций ($T = 375 \text{ °C}, W = 1 \text{ } \Gamma_{\text{этанол}} \cdot \Gamma_{\text{кат}}^{-1} \cdot \text{ч}^{-1}$)

Катализатор	Конверсия этанола, %	Селективность по продуктам, %					D	Производи-	
		БД	AA	Этилен	ДЭЭ	Кротоновый альдегид	Другие	выход ьд, %	тельность, $\Gamma_{\rm БД} \cdot \Gamma_{\rm Kat}^{-1} \cdot {\bf q}^{-1}$
La-Si	23,3	23,1	18,8	28,0	24,1	0,3	5,7	5,4	0,03
Zn-La-Si-1	30,1	44,1	28,5	6,6	0,2	3,3	17,3	13,3	0,08
Zn-La-Si-2	35,5	43,7	30,0	7,9	0,4	2,8	15,2	15,5	0,09
Zn-La-Si-3	39,7	42,7	27,1	7,8	0,3	3,4	18,7	17,0	0,10
Zn-La-Zr-Si-1	50,1	53,0	21,3	9,4	0,6	1,5	14,2	26,5	0,16
Zn-La-Zr-Si-2	80,0	65,7	4,3	12,5	1,0	0,2	16,3	52,5	0,31
La-Zr-Si	29,0	58,3	12,7	16,5	2,0	0,2	10,3	16,9	0,10

Таблица 2

Показатели процесса превращения этанола в 1,3-бутадиен в присутствии композиции Zn-La-Zr-Si-2 при варьировании условий проведения процесса и сравнение с аналогичными показателями катализаторов, описанных в литературе

Катализатор	Температура, °С	$\underset{\Gamma_{\mathfrak{I}\mathfrak{I}\mathfrak{A}\mathfrak{H}\mathfrak{O}\mathfrak{I}}{}^{\Gamma} \cdot \boldsymbol{\Gamma}_{\mathtt{K}\mathtt{a}\mathtt{T}}^{-1} \cdot \boldsymbol{\mathrm{y}}^{-1}}{}^{WHSV,}$	Селективность по БД, %	Выход БД, %	Производи- тельность, $\Gamma_{\rm БД}$. $\Gamma_{\rm Kat}^{-1}$. \mathbf{q}^{-1}	Литература
Zn-La-Zr-Si-2	325	1	70,2	25,2	0,15	Наши данные
Zn-La-Zr-Si-2	375	1	65,7	52,5	0,31	Наши данные
Zn-La-Zr-Si-2	400	2	60,2	60,2	0,71	Наши данные
1 % Ag/10 % ZrO ₂ -SiO ₂	325	1,23	66,1	19,2	0,14	[11]
1 % Ag/10 % ZrO ₂ -SiO ₂	325	3,5	60,4	6,8	0,14	[11]
Na-ZnZrO _x	350	6,2	26,0	14,1	0,49	[15]
ZnO-Al ₂ O ₃	400	4,4	55,0	24,5	0,62	[25]
Ag/MgO-SiO ₂	400	1,2	41,0	20,1	0,15	[10]
Ag/MgO-SiO ₂	400	0,73	53,0	48,6	0,2	[19]
40 % ZnO-60 % Al ₂ O ₃	425	1,5	59,0	56,0	0,5	[3]

Введение оксида цинка в состав каталитической композиции La-Si приводит к заметному увеличению конверсии этанола и селективности по AA и БД. При повышении содержания оксида цинка в составе катализатора от 2 до 4 % увеличивается выход БД. Уменьшение суммарной селективности по этилену и ДЭЭ (от 52,1 до 6,8 %) на катализаторе Zn-La-Si-1 по сравнению с образцом La-Si может быть обусловлено тем, что ZnO в составе катализатора способствует

увеличению скорости процесса дегидрирования этанола (стадия 1). Подобный эффект наблюдали для композиции ZnO/MgO-SiO₂ [9].

Увеличение содержания оксида лантана в катализаторе Zn-La-Si (образцы Zn-La-Si-2 и Zn-La-Si-3) приводит к некоторому увеличению выхода БД (на 1,5 %) при незначительном уменьшении селективности (на 1 %). Увеличение концентрации кротонового альдегида в продуктах реакции в при-

ИК-спектры адсорбированных на образцах пиррола после термовакуумирования при 80 °С (*a*) и пиридина после термовакуумирования при температурах 150 °С (*1*, 2, 3) и 250 °С (*1'*, 2', 3') (*б*). Образцы: *1* — La-Si; 2 — Zn-La-Si; 3 — Zn-La-Zr-Si.

сутствии катализаторов Zn-La-Si может быть обусловлено недостаточным количеством центров его восстановления по МПВ (стадия 3).

Введение оксида циркония в состав катализатора Zn-La-Si ведет к значительному увеличению селективности и выхода по БД. Также наблюдается уменьшение селективности по кротоновому альдегиду. Однако в присутствии катализатора, не содержащего ZnO (La-Zr-Si), не удается достичь высоких показателей выхода БД, как для образцов Zn-La-Zr-Si. Это может быть обусловлено уменьшением концентрации активных центров дегидрирования на поверхности катализатора, в формировании которых участвует ZnO, что ранее наблюдалось для катализатора ZrO₂-MgO-SiO₂ [12].

Наибольшие значения селективности (65,7 %) и выхода БД (52,5 %) достигаются в присутствии четырехкомпонентной композиции Zn-La-Zr-Si-2, которая по селективности и выходу по БД существенно превосходит двух- и трехкомпонентные La-содержащие композиции (табл. 1). Обращает на себя внимание значительное уменьшение селективности по АА при увеличении содержания оксида циркония в составе катализатора от 0,5 до 1,0 % с одновременным увеличением выхода БД, что может быть обусловлено ускорением цирконийсодержащими центрами процесса альдольной конденсации (стадия 2).

В табл. 2 приведены результаты исследований влияния условий проведения процесса (температуры и скорости подачи реагента) на показатели процесса

конверсии этанола в БД (селективность, производительность, выход по целевому продукту) в присутствии разработанного нами катализатора Zn-La-Zr-Si-2 и их сравнение с показателями известных катализаторов, которые охарактеризованы в литературе как высокоселективные в процессе синтеза БД [3, 6, 7, 10, 11, 14, 19]. Из данных, приведенных в таблице, можно сделать вывод, что при варьировании величины WHSV и температуры процесса в присутствии катализатора Zn-La-Zr-Si-2 удается достичь высоких показателей селективности, выхода и производительности по БД. Например, на данном катализаторе достигаются величины селективности 70,2 % (при 325 °C), выхода БД 60,2 % (при 400 °C) и производительности по БД 0,71 г \cdot г $_{\text{кат}}^{-1}$ ·ч $^{-1}$, что существенно превышает показатели катализаторов, описанных в литературе. Высокие значения конверсии этанола и селективности по БД сохраняются в течение 10 ч непрерывной работы катализатора Zn-La-Zr-Si-2.

Поскольку активность и селективность катализаторов конверсии этанола в БД главным образом определяется оптимальным сочетанием кислотно-основных свойств поверхности, для выяснения роли лантана в составе изучаемых оксидных композиций нами были проведены исследования методом ИК-спектроскопии с использованием молекул-зондов, позволяющих определить природу как кислотных, так и основных центров на поверхности катализатора.

На рисунке, а представлены результаты исследования адсорбции пиррола. Присутствие в ИК-спектрах адсорбированного на образцах La-Si и Zn-La-Si пиррола полосы поглощения при 2970 см⁻¹ может указывать на наличие основных центров средней силы [20]. Поскольку интенсивность и положение данной полосы для обоих образцов одинаковы, то можно предположить, что наличие основных центров в катализаторе обусловлено присутствием только соединений лантана. Наличие в ИК-спектре адсорбированного на образце La-Si пиррола полос поглощения при 3570 и 3480 см⁻¹ в комбинации с полосой 1492 см⁻¹ может свидетельствовать о присутствии на поверхности контакта кислотных центров Льюиса (ЛКЦ) [21]. При введении цинка в состав катализатора интенсивность этих полос увеличивается, что указывает на присутствие в образце Zn-La-Si ЛКЦ, образованных с участием катионов лантана и цинка.

Для образца La-Si (рисунок, δ , кривая 1) в ИК-спектре адсорбированного пиридина после термовакуумирования при 150 °C наблюдаются полосы поглощения 1602 и 1446 см⁻¹, которые могут быть отнесены к колебаниям молекул координационно-связанного пиридина с ЛКЦ, образованными с участием катионов лантана [22]. Эти полосы полностью исчезают уже при 250 °C (кривая 1'), указывая на то, что лантан формирует в катализаторе только слабые ЛКЦ.

В ИК-спектрах адсорбированного пиридина на образце Zn-La-Si (рисунок, б, кривые 2 и 2') наблюдаются полосы поглощения при 1612 и 1453 см⁻¹, вероятно, отвечающие молекулам пиридина, связанным с цинксодержащими ЛКЦ [9, 23]. В ИК-спектре пиридина, адсорбированного на цирконийсодержащем катализаторе (рисунок, б, кривая 3), наблюдается увеличение интенсивности полос 1610 и 1448 см⁻¹, что может быть обусловлено образованием дополнительных цирконийсодержащих ЛКЦ [12, 24]. Изменение интенсивности полос поглощения, отвечающих ЛКЦ, после термодесорбции при 150 и 250 °С может свидетельствовать о том, что в катализаторе присутствуют кислотные центры различной силы. Следовательно, в соответствии с результатами ИК-спектроскопии адсорбированного пиррола и пиридина в исследуемых катализаторах присутствуют как кислотные, так и основные центры. Наличие последних обусловлено главным образом присутствием оксида лантана в составе катализатора.

Оксидный катализатор Zn-La-Zr-Si превосходит по показателям селективности и выхода по БД трех- и двухкомпонентные лантансодержащие композиции. Высокие показатели эффективности данного катализатора могут быть обусловлены синергизмом различных типов центров: цинксодержащих для интенсификации реакции дегидрирования этанола до ацетальдегида; лантан- (основных) и цирконийсодержащих (кислотных) для ускорения реакций альдольной конденсации и восстановления по МПВ. Оксидная композиция Zn-La-Zr-Si может быть использована в качестве основы для разработки высокопроизводительных промышленных катализаторов процесса превращения этанола в 1,3-бутадиен.

Литература

- 1. Angelici C., Weckhuysen B. M., Bruijnincx P. C. A. // ChemSusChem. — 2013. — 6. — P. 1595—1614.
- Лебедев С. В. // Журн. общ. химии. 1933. 3. С. 698—717.
- Makshina E. V., Dusselier M., Janssens W. et al. // Chem. Soc. Rev. — 2014. — 43. — P. 7917—7953.
- Posada J. A., Patel A. D., Roes A. et al. // Biores. Technol. — 2013. — 135. — P. 490—499.
- Patel A. D., Meesters K., den Uil H. et al. // Energy and Environ. Sci. — 2012. — 5. — P. 8430—8444.
- Pat. WO 2012/015340 A1, C 07 C 1/20. One-step method for butadiene production / V. V. Ordomskiy, V. L. Sushkevich, I. I. Ivanova. — Publ. 02.02.12.
- Lewandowski M., Babu G. S., Vezzoli M. et al. // Catal. Commun. — 2014. — 49. — P. 25—28.
- Angelici C., Velthoen M. E. Z., Weckhuysen B. M., Bruijnincx P. C. A. // ChemSusChem. — 2014. — 7. — P. 2505—2515.
- Larina O. V., Kyriienko P. I., Soloviev S. O. // Catal. Lett. — 2015. — 145. — P. 1162—1168.
- Janssens W., Makshina E. V., Vanelderen P. et al. // ChemSusChem. — 2015. — 8. — P. 994—1008.
- Sushkevich V. L., Ivanova I. I., Taarning E. // Green Chem. — 2015. — 17. — P. 2552—2559.
- Ларина О. В., Кириенко П. И., Соловьев С. А. // Теорет. и эксперим. химия. — 2015. — 51, № 4. — С. 244—249. — [Theor. Exp. Chem. — 2015. — 51, N 4. — Р. 252—258 (Engl. Transl.)].
- Sushkevich V. L., Ivanova I. I., Ordomsky V. V., Taarning E. // ChemSusChem. — 2014. — 7. — P. 2527—2536.
- 14. *Jones M. D., Keir C. G., Iulio C. Di et al.* // Catal. Sci. and Technol. 2011. 1. P. 267—272.
- Baylon R. A. L., Sun J., Wang Y. // Catal. Today.—2016.—
 259.— P. 446—452.
- Liu J. Y., Su W. N., Rick J. et al. // ChemSusChem. 2014.
 7. P. 570–576.
- 17. Frey A. M., Karmee S. K., de Jong K. P. et al. // ChemCatChem. — 2013. — **5**. — P. 594—600.
- Boukha Z., Fitian L., López-Haro M. et al. // J. Catal. 2010. — 272. — P. 121—130.
- Makshina E. V., Janssens W., Sels B. F., Jacobs P. A. // Catal. Today. — 2012. — 198. — P. 338—344.
- 20. Lavalley J. C. // Ibid. 1996. 27. P. 377—401.

- Huang M. M., Kaliaguine S. // J. Chem. Soc. Faraday Trans. — 1992. — 88. — P. 751—758.
- Mekhemer G. A. H. // Phys. Chem. Chem. Phys. 2002.
 4. P. 5400—5405.
- 23. Connell G., Dumesic J. A. // J. Catal. 1987. **105**. P. 285—298.
- 24. Ordomsky V. V., Sushkevich V. L., Ivanova I. I. // J. Mol. Catal. A. 2010. **333**. P. 85—93.
- 25. *Ezinkwo G. O., Tretjakov V. F., Talyshinky R. M. et al.* // Catal. Commun. 2014. **43**. P. 207—212.

Поступила в редакцию 15 февраля 2016 г.

Вплив лантану в складі оксидних композицій Zn-La(-Zr)-Si на їх активність в процесі перетворення етанолу в 1,3-бутадієн

О. В. Ларіна, П. І. Кирієнко, С. О. Соловйов

Інститут фізичної хімії ім. Л. В. Писаржевського НАН України просп. Науки, 31, Київ 03028, Україна. E-mail: olga.larina@ukr.net

Показано, що введення лантану до складу оксидних композицій Zn(-Zr)-Si істотно збільшує їх активність в процесі перетворення етанолу в 1,3-бутадієн. Даний ефект пояснюється формуванням додаткових основних центрів на поверхні каталізатора.

Ключові слова: етанол, 1,3-бутадієн, оксид лантану.

Effect of Lanthanum in the Zn-La(-Zr)-Si Oxide Compositions on Their Activity in the Ethanol Conversion to 1,3-Butadiene

O. V. Larina, P. I. Kyriienko, S. O. Soloviev

L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine Prosp. Nauky, 31, Kyiv 03028, Ukraine. E-mail: olga.larina@ukr.net

It is shown that introduction of lanthanum to the Zn(-Zr)-Si oxide compositions substantially increases their activity in the ethanol conversion to 1,3-butadiene. This effect is explained by forming of additional basic sites on the catalyst surface.

Key words: ethanol, 1,3-butadiene, lanthanum oxide.