УДК 544.478.1

Влияние добавки диоксида циркония на каталитические свойства композиций ZnO/MgO-SiO₂ в процессе получения 1,3-бутадиена из этанола

О. В. Ларина, П. И. Кириенко, С. А. Соловьев

Институт физической химии им. Л. В. Писаржевского НАН Украины просп. Науки, 31, Киев 03028, Украина. E-mail: pavlo_kyriienko@ukr.net

Показано, что введение диоксида циркония в состав оксидных композиций ZnO/MgO-SiO₂ приводит к увеличению их активности в процессе превращения этанола в 1,3-бутадиен за счет ускорения промежуточной стадии альдольной конденсации ацетальдегида. Роль ZrO₂ обусловлена образованием дополнительных активных центров — кислотных центров Льюиса, в том числе в зоне контакта оксидных фаз катализатора.

Ключевые слова: этанол, 1,3-бутадиен, ZrO₂, MgO-SiO₂.

1,3-Бутадиен (далее БД) является одним из наиболее востребованных полупродуктов производства коммерчески важных синтетических каучуков и полимеров [1]. В настоящее время промышленный синтез БД осуществляют двумя способами: извлечение из С₄-фракции нефти, полученной путем ее парового крекинга при производстве этилена и его высших гомологов, или каталитическим дегидрированием н-бутана и н-бутена нефтяного происхождения [2]. В связи с ограниченностью запасов нефти и наметившимся переходом к использованию сланцевого газа для производства этилена [3] возникла задача разработки альтернативных технологий получения БД, в том числе с использованием возобновляемых источников сырья, в частности из этанола по методу Лебедева [4, 5].

Процесс получения БД из этанола можно представить следующей схемой, которая включает стадии дегидрирования (уравнение (1)), альдольной конденсации (уравнение (2)), дегидратации (уравнения (3), (5)) и восстановления по Меервейну — Понндорфу — Верлею (уравнение (4)) [6, 7]:

 $\mathrm{CH}_{3} - \mathrm{CH}_{2} - \mathrm{OH} \rightarrow \mathrm{CH}_{3} - \mathrm{CH} = \mathrm{O} + \mathrm{H}_{2}, \qquad (1)$

$$2CH_3$$
—CH=O \rightarrow CH₃—CH(OH) —CH₂—CH=O, (2)

$$CH_{3} - CH(OH) - CH_{2} - CH = O \rightarrow$$
$$\rightarrow CH_{3} - CH = CH - CH = O + H_{2}O, \qquad (3)$$

$$\mathrm{CH}_{3}\text{--}\mathrm{CH}\text{=}\mathrm{CH}\text{--}\mathrm{CH}\text{=}\mathrm{O}+\mathrm{CH}_{3}\text{--}\mathrm{CH}_{2}\text{--}\mathrm{OH} \rightarrow$$

$$\rightarrow CH_{3} - CH = CH - CH_{2} - OH + CH_{3} - CH = O, (4)$$

$$CH_{3} - CH = CH - CH_{2} - OH \rightarrow$$

$$\rightarrow CH_{2} = CH - CH = CH_{2} + H_{2}O. (5)$$

В роли катализаторов превращения этанола в БД используют металл-оксидные композиции, сочетающие окислительно-восстановительные и кислотно-основные свойства, что важно для реализации процесса [1, 8]. Перспективными катализаторами данного процесса могут быть композиции на основе оксидов магния и кремния, промотированные соединениями Zn, Cu, Ag и др. [8—10].

Реакция дегидрирования этанола до ацетальдегида (АА) (уравнение (1)) является скоростьопределяющей в процессе получения БД в присутствии оксидных композиций MgO-SiO₂ [11]. Нами показано [12], что оксид цинка в составе каталитической композиции ZnO/MgO-SiO₂ ускоряет реакцию (1), в результате чего скоростьопределяющей становится реакция альдольной конденсации АА (уравнение (2)). Как известно, активными центрами металл-оксидных катализаторов, в том числе на основе MgO-SiO₂, в процессе получения БД из этанола (стадии (2)) являются кислотные центры Льюиса (ЛКЦ) [13, 14]. В то же время наличие на поверхности катализаторов сильных ЛКЦ и бренстедовских кислотных центров нежелательно, поскольку они ускоряют побочные процессы дегидратации этанола до диэтилового эфира и этилена.

Известно, что диоксид циркония ускоряет реакцию альдольной конденсации АА (уравнение (2)) [15]. Согласно [14] именно ЛКЦ, локализованные в зоне контакта оксидов циркония и кремния, являются активными в реакции альдольной конденсации АА. Поэтому целью настоящей работы является изучение влияния ZrO₂ как модифицирующей добавки в составе каталитических композиций ZnO/ ZrO₂-MgO-SiO₂ на показатели процесса конверсии этанола до 1,3-бутадиена.

Экспериментальная часть

Для приготовления композиции MgO-SiO₂ использовали оксид магния («ч.», S = 118 м²/г) и силикагель (промышленный образец КСКГ, обработанный разбавленной азотной кислотой, промытый бидистиллированной водой, прокаленный при 500 °C, $S = 283 \text{ м}^2/\Gamma$). Компоненты (фракции <0,1 мм) смешивали в соотношении MgO: SiO₂ = 1:1 с добавлением дистиллированной воды. Цирконийсодержащие (6 % мас. в пересчете на ZrO₂) образцы получали путем смешивания композиции MgO-SiO₂ (или индивидуальных оксида магния и силикагеля) и оксинитрата циркония (ZrO(NO₃)₂·2H₂O, «ч.д.а.») с добавлением дистиллированной воды. Цинксодержащие (4 % мас. в пересчете на ZnO) образцы получали путем пропитки оксидных композиций по влагоемкости водными растворами ацетата цинка (Zn(O₂CCH₃)₂, «х.ч.») расчетной концентрации. Полученные образцы высушивали при 120 °С (2 ч) и прокаливали при 500 °С (3 ч). Приготовлены образцы катализаторов следующего состава: MgO-SiO₂ (S =176 m^2/r), ZrO₂-SiO₂, ZrO₂-MgO, ZrO₂-MgO-SiO₂ (S = ZnO/ZrO2-SiO2, 158 M^2/Γ), ZnO/ZrO₂-MgO, ZnO/ZrO_2 -MgO-SiO₂ ($S = 174 \text{ m}^2/\Gamma$).

Образцы катализаторов исследовали методом рентгенофазового анализа на приборе «D8 ADVANCE» («BRUKER AXS GmbH») в монохроматизированном (никелевый фильтр) CuK_{α} -излучении ($\lambda = 0,154$ нм).

Кислотные свойства поверхности катализаторов изучали методом ИК-спектроскопии с использованием пиридина в качестве молекулярного зонда. Перед адсорбцией пиридина образцы (таблетки плотностью 15 мг/см²) вакуумировали при 400 °C в течение 1 ч. Пиридин сорбировали на протяжении 15 мин при 150 °C, после чего вакуумированием (0,5 ч) удаляли остаточный и физически адсорбированный пиридин. ИК-спектры регистрировали при комнатной температуре после десорбции пиридина при 150, 250 и 350 °C (ИК фурье-спектрометр «Spectrum One», «Perkin Elmer»).

Исследование конверсии этанола проводили в проточном кварцевом реакторе диаметром 6 мм при

температуре 375 °С (гранулы катализатора размером 0,25-0,5 мм, навеска образца 0,5 г). Перед каталитическими исследованиями образцы подвергали прогреву до 425 °C в потоке аргона в течение 1 ч. Этиловый спирт в реактор подавали путем пропускания аргона через термостатированный (41 °C) барботер с 96 %-ным спиртом для получения определенной концентрации паров этанола (18 % об.) и достижения массовой скорости подачи реагента $W = 1 \Gamma_{\text{EtOH}} \cdot \mathbf{r}_{\kappa a \mathbf{r}}^{-1} \cdot \mathbf{q}^{-1}$. Анализ исходных веществ и продуктов реакции осуществляли методом газовой хроматографии («Кристаллюкс 4000М», «Мета-Хром», ДИП/ДПТ). CO, CO₂ разделяли с использованием детектора по теплопроводности и набивной (активированный уголь марки СКТ, пропитанный 10 % NiSO₄, длина 3 м, диаметр 3 мм) колонки. Этанол, бутадиен, ацетальдегид, этилен, диэтиловый эфир (ДЭЭ) и другие органические соединения анализировали с использованием пламенно-ионизационного детектора и капиллярной (HP-FFAP, длина 50 м, диаметр 0,32 мм) колонки. Суммарную каталитическую активность характеризовали конверсией этанола (Х, %):

$$X = \frac{n_{\text{EtOH}}^0 - n_{\text{EtOH}}}{n_{\text{EtOH}}} \cdot 100,$$

где n_{EtOH}^0 — количество молей этанола, поданных в реактор; n_{EtOH} — количество молей этанола в потоке после реактора:

$$n = CF$$
,

где C — мольная концентрация компонента в потоке, моль/л; F — скорость потока, л/ч. Селективность по углеродсодержащим продуктам (S, %) и выход бутадиена ($Y_{\text{БЛ}}$, %) рассчитывали по формулам

$$S_i = \frac{n_i}{\sum n_i - n_{\text{EtOH}}} \cdot 100,$$
$$Y_{\text{БД}} = XS_{\text{БД}}/100,$$

где n_i — количество молей углеродсодержащего продукта *i* в потоке после реактора.

Материальный баланс по углероду рассчитывали как отношение общего количества молей углеродсодержащих продуктов реакции к общему количеству молей этанола в исходной реакционной смеси (не менее 95 % в пересчете на C_1).

Результаты и обсуждение

На дифрактограммах образцов каталитических композиций оксидов Zr, Zn, Mg и Si идентифицирована фаза кристаллического оксида магния (20 =

Рис. 1. ИК-спектры адсорбированного пиридина на образцах ZrO_2 -SiO₂ (*a*), ZrO_2 -MgO (*б*), ZrO_2 -MgO-SiO₂ (*в*), ZnO/ZrO_2 -SiO₂ (*c*), ZnO/ZrO_2 -MgO-SiO₂ (*d*) после вакуумирования при различных температурах (фоновый спектр образца до адсорбции пиридина после прогрева при 400 °C с вакуумированием обозначен штриховой линией).

 $36,92^{\circ}$; $42,90^{\circ}$). Остальные компоненты находятся в аморфном (SiO₂) или высокодисперсном состояниях (ZrO₂, ZnO).

Природу кислотных центров на поверхности приготовленных катализаторов изучали методом ИК-спектроскопии адсорбированного пиридина. Для образца ZrO₂-SiO₂ (рис. 1, *a*) в ИК-спектрах адсорбированного пиридина наблюдаются полосы погло-

щения 1446, 1578 и 1597 см⁻¹, которые отвечают катионам пиридина, адсорбированного на гидроксильных группах. Полосы 1448 и 1610 см⁻¹ отвечают ЛКЦ [16]. Эти полосы поглощения отсутствуют в силикагеле [12], что свидетельствует об образовании ЛКЦ при взаимодействии ZrO_2 и SiO₂ (поверхностные структуры \equiv Zr—O—Si \equiv) [14]. В ИК-спектрах пиридина, адсорбированного на поверхности

Катализатор	Конверсия этанола, %	Селективность, %				
		БД	ДЭЭ + этилен	AA	Другие	выход БД, %
MgO-SiO ₂ [12]	15,8	33,0	57,2	8,8	1,0	5,2
ZrO ₂ -SiO ₂	19,9	37,0	45,8	13,9	3,3	7,4
ZrO ₂ -MgO	5,8	15,5	13,6	68,8	2,1	0,9
ZrO ₂ -MgO-SiO ₂	33,2	34,7	53,7	7,9	3,7	11,5

Влияние добавки диоксида циркония на каталитические свойства композиций на основе оксидов магния и кремния в процессе превращения этанола в 1,3-бутадиен (*T* = 375 °C, *W* = 1 г_{ЕtOH}·г⁻¹_{кат}·ч⁻¹)

 ZrO_2 -MgO (рис. 1, δ), не обнаружено полос поглощения при 150 °C, соответствующих ЛКЦ. Это может быть обусловлено нейтрализацией или блокированием сильных кислотных центров, характерных для ZrO₂, при его контакте с основным MgO.

В ИК-спектрах пиридина, адсорбированного на поверхности образца ZrO₂-MgO-SiO₂ (рис. 1, в), наблюдается повышение интенсивности полосы поглощения 1610 см⁻¹ при 150 и 250 °С по отношению к полосе поглощения 1597 см⁻¹ по сравнению с таковыми для образца ZrO2-SiO2. Возможно, это обусловлено суперпозицией полос поглощения пиридина, адсорбированного на ЛКЦ, образованных в зонах контакта как оксида магния с силикагелем (поверхностные структуры —Мg—О—Si=) [12], так и циркония. Данные полосы поглощения отвечают кислотным центрам средней силы, поскольку полностью исчезают лишь при 350 °С. Для бинарной композиции ZrO_2 -SiO₂ (рис. 1, *a*), как и для MgO-SiO₂, полосы поглощения при 350 °С присутствуют. Возможно, как и в случае композиции ZrO2-MgO (рис. 1, б), на поверхности образца ZrO2-MgO-SiO2 происходит нейтрализация сильных кислотных центров.

Для образцов ZnO/ZrO₂-SiO₂ и ZnO/ZrO₂-MgO-SiO₂ (рис. 1, *г*, *д*) в ИК-спектрах адсорбированного пиридина наблюдается появление полос поглощения 1453 и 1612 см⁻¹, что свидетельствует об образовании ЛКЦ с участием ионов цинка [17]. Наличие ряда достаточно интенсивных полос поглощения, присутствующих в ИК-спектре при 350 °C, отвечающих более сильным ЛКЦ, обусловлено присутствием ионов цинка в составе композиции ZnO/ZrO₂-MgO-SiO₂, поскольку аналогичные полосы в ИК-спектрах пиридина для образца ZrO₂-MgO-SiO₂ не обнаружены (рис. 1, *в*).

Таким образом, в образце ZnO/ZrO₂-MgO-SiO₂ присутствуют кислотные центры Льюиса различной природы: поверхностные структуры —Mg—O—Si≡, ≡Zr—O—Si≡ (средней силы), а также более сильные ЛКЦ, образованные в зоне контакта фаз ZnO и SiO₂. В таблице приведены данные о каталитических свойствах оксидных композиций, содержащих диоксид циркония (ZrO_2 -SiO_2, ZrO_2 -MgO, ZrO_2 -MgO-SiO_2), в процессе превращения этанола. Образование БД с большей селективностью и выходом в присутствии каталитической композиции ZrO_2 -SiO₂ по сравнению с MgO-SiO₂ свидетельствует о большей активности ZrO_2 -SiO₂ в реакции альдольной конденсации AA (уравнение (2)), что согласуется с результатами работы [14].

Для композиции ZrO₂-MgO, которая включает кислотный (ZrO₂) и основный (MgO) оксиды, наблюдается наиболее низкая конверсия этанола и селективность образования БД среди изученных катализаторов. Кротоновый альдегид, образующийся по реакции дегидратации (уравнение (3)), в продуктах отсутствует. Основным продуктом конверсии этанола является ацетальдегид (селективность образования 68,8 %) (таблица). Такое распределение продуктов может свидетельствовать о недостаточном количестве в катализаторе ZrO₂-MgO активных центров стадии (2), в частности доступных ЛКЦ, что подтверждается результатами ИК-спектроскопии (рис. 1, δ). Подобные результаты наблюдали в присутствии каталитической композиции ZnO/MgO [12].

Реакция альдольной конденсации ацетальдегида (уравнение (2)) протекает на кислотных и основных центрах поверхности катализатора. В присутствии основного MgO процесс конверсии этанола протекает с преимущественным образованием бутанола-1, т. е. вместо реакции дегидратации (уравнение (5)) проходит дальнейшее восстановление кротонового спирта по двойной связи [18]. В присутствии амфотерного ZrO₂ превращение этанола также протекает с образованием бутанола-1, бутадиен в продуктах реакции отсутствует [19].

Таким образом, для обеспечения эффективного протекания реакции альдольной конденсации АА (уравнение (2)) необходимо наличие ЛКЦ, которые образуются в зоне контакта фаз оксидов магния или циркония с силикагелем. Этим можно объяснить более низкую активность композиции ZrO₂-MgO по сравнению с ZrO₂-MgO-SiO₂ (таблица).

В процессе превращения этанола на трехкомпонентном катализаторе ZrO_2 -MgO-SiO₂ несколько увеличиваются количество и разнообразие побочных продуктов (C₅₊-углеводороды, оксигенаты), которые могут образовываться при последующей конверсии АА, что характерно для цирконий-силикатных композиций [20]. Более того, в отношении конверсии этанола наблюдается синергетический эффект — неаддитивное увеличение конверсии этанола в трехкомпонентной системе (ZrO₂-MgO-SiO₂) по сравнению с двухкомпонентными (ZrO₂-MgO и ZrO₂-SiO₂). Такой результат может свидетельствовать об увеличении количества активных центров превращения этанола в БД за счет образования кислотных центров в зоне контакта оксидов циркония и магния с силикагелем.

На рис. 2 приведены гистограммы, характеризующие влияние диоксида циркония в составе цинксодержащих композиций (ZnO/MgO, ZnO/SiO₂ и ZnO/MgO-SiO₂) на показатели процесса конверсии этанола в бутадиен. Увеличение конверсии этанола (рис. 2, *a*) достигается на всех образцах, наибольший эффект наблюдается для композиции состава ZnO/ZrO₂-SiO₂.

Введение диоксида циркония в каталитическую композицию ZnO/MgO приводит к увеличению селективности и выхода бутадиена, вероятно, за счет ускорения реакции альдольной конденсации ацетальдегида (уравнение (2)), поскольку существенно уменьшается количество AA в продуктах реакции (рис. 2, δ , ϵ).

Влияние диоксида циркония на свойства катализатора ZnO/ZrO₂-MgO-SiO₂ заключается в некотором увеличении конверсии этанола и выхода бутадиена (при небольшом уменьшении селективности по продукту) (рис. 2). Вероятно, целевому на поверхности указанной каталитической композиции происходит нейтрализация кислотных центров в зоне контакта оксидных фаз магния и циркония, что подтверждается результатами ИК-спектроскопии (см. рис. 1), вследствие чего образуются малоактивные в целевом процессе поверхностные структуры —Мg—О—Zr≡. Некоторое увеличение селективности по побочным продуктам (диэтиловый эфир, этилен и др.) в присутствии катализатора ZnO/ZrO₂-MgO-SiO₂ обусловлено, вероятно, наличием кислотных центров, образованных с участием ионов циркония, что является достаточно характерным для цирконий-силикатных катализаторов [20].

Значительное увеличение конверсии этанола, селективности и выхода по БД наблюдается в присутствии катализатора ZnO/ZrO₂-SiO₂. Высокая активность указанной композиции может быть обу-

Рис. 2. Показатели процесса превращения этанола в 1,3-бутадиен в присутствии цинксодержащих оксидных композиций: *a* — конверсия этанола; *б* — селективность; *в* — выход 1,3-бутадиена (T=375 °C; W=1 г_{ЕtOH}· $\mathbf{r}_{\mathbf{kar}}^{-1}$ ·ч⁻¹).

словлена образованием большего количества активных центров реакции альдольной конденсации (уравнение (2)) — ЛКЦ (поверхностных структур \equiv Zr—O—Si \equiv) по сравнению с ZnO/ZrO₂-MgO-SiO₂. Селективность образования бутадиена в присутствии катализатора ZnO/ZrO₂-SiO₂ сопоставима с ZnO/MgO-SiO₂ [12] и ZnO/ZrO₂-MgO-SiO₂ (рис. 2), но выход БД значительно больше, поэтому композиция ZnO/ZrO₂-SiO₂ может быть основой для создания эффективных катализаторов конверсии этанола в бутадиен.

Таким образом, введение диоксида циркония в состав оксидных композиций ZnO/MgO-SiO₂ приводит к увеличению их активности в процессе превращения этанола в бутадиен за счет ускорения реакции альдольной конденсации ацетальдегида. Положительная роль диоксида циркония обусловлена образованием активных центров — кислотных центров Льюиса в зоне контакта оксидных фаз циркония и кремния.

Авторы выражают благодарность С. Н. Орлик за полезное обсуждение результатов работы.

Литература

- Makshina E. V., Dusselier M., Janssens W. et al. // Chem. Soc. Rev. — 2014. — 43. — P. 7917—7953.
- 2. *White W. C. //* Chem. Biol. Interact. 2007. **166**. P. 10—14.
- Bruijnincx P. C. A., Weckhuysen B. M. // Angew. Chem. 2013. — 52. — P. 11980—11987.
- 4. Angelici C., Weckhuysen B. M., Bruijnincx P. C. A. // ChemSusChem. — 2013. — 6. — P. 1595—1614.
- 5. Jones M. D. // Chem. Cent. J. 2014. 8. P. 1—5.
- Janssens W., Makshina E. V., Vanelderen P. et al. // ChemSusChem. — 2015. — 8. — P. 994—1008.
- Sushkevich V. L., Ivanova I. I., Ordomsky V. V., Taarning E. // Ibid. — 2014. — 7. — P. 2527—2536.

- Makshina E. V., Janssens W., Sels B. F., Jacobs P. A. // Catal. Today. — 2012. — 198. — P. 338—344.
- Zhang M., Gao M., Chen J., Yu Y. // RSC Adv. 2015. 5. — P. 25959—25966.
- Angelici C., Velthoen M. E. Z., Weckhuysen B. M., Bruijnincx P. C. A. // ChemSusChem. — 2014. — 7. — P. 2505—2515.
- Kvisle S., Aguero A., Sneeden R. P. A. // Appl. Catal. 1988. — 43. — P. 117—131.
- Larina O. V., Kyriienko P. I., Soloviev S. O. // Catal. Lett. — 2015. — 145. — P. 1162—1168.
- Angelici C., Velthoen M. E. Z., Weckhuysen B. M., Bruijnincx P. C. A. // Catal. Sci. Technol. — 2015. — P. 2869—2879.
- Ordomsky V. V., Sushkevich V. L., Ivanova I. I. // J. Mol. Catal. A. — 2010. — 333. — P. 85—93.
- Lewandowski M., Babu G. S., Vezzoli M. et al. // Catal. Commun. — 2014. — 49. — P. 25—28.
- Damyanova S., Grange P., Delmon B. // J. Catal. 1997. — 168. — P. 421—430.
- Connell G., Dumesic J. A. // Ibid. 1987. 105. P. 285—298.
- Chieregato A., Velasquez Ochoa J., Bandinelli C. et al. // ChemSusChem. — 2015. — 8. — P. 377—388.
- Kozlowski J. T., Davis R. J. // J. Energy Chem. 2013. —
 22. P. 58—64.
- Sushkevich V. L., Ivanova I. I., Taarning E. // Green Chem. — 2015. — P. 2552—2559.

Поступила в редакцию 14 июля 2015 г.

Вплив додавання діоксиду цирконію на каталітичні властивості композицій ZnO/MgO-SiO₂ в процесі одержання 1,3-бутадієну з етанолу

О. В. Ларіна, П. І. Кирієнко, С. О. Соловйов

Інститут фізичної хімії ім. Л. В. Писаржевського НАН України просп. Науки, 31, Київ 03028, Україна. E-mail: pavlo kyriienko@ukr.net

Показано, що введення діоксиду цирконію до складу оксидних композицій ZnO/MgO-SiO₂ призводить до збільшення їх активності в процесі перетворення етанолу в 1,3-бутадієн за рахунок прискорення проміжної стадії альдольної конденсації ацетальдегіду. Роль ZrO₂ обумовлено утворенням додаткових активних центрів — кислотних центрів Льюїса, в тому числі в зоні контакту оксидних фаз каталізатора.

Ключові слова: етанол, 1,3-бутадієн, ZrO₂, MgO-SiO₂.

Effect of Addition of Zirconium Dioxide on the Catalytic Properties of ZnO/MgO-SiO₂ Compositions in Production of 1,3-Butadiene from Ethanol

O. V. Larina, P. I. Kyriienko, S. O. Soloviev

L. V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine Prosp. Nauky, 31, Kyiv 03028, Ukraine. E-mail: pavlo_kyriienko@ukr.net

It was shown that addition of zirconium dioxide in ZnO/MgO-SiO₂ oxide compositions leads to increase in their activity in the conversion of ethanol to 1,3-butadiene by accelerating intermediate step of aldol condensation of acetaldehyde. Role of ZrO_2 consists in the formation of additional active centers – Lewis acid sites, including those in the contact zones of oxide phases of catalyst.

Key words: ethanol, 1,3-butadiene, ZrO₂, MgO-SiO₂.