

Прокофьев Всеволод Юрьевич¹

доктор геолого-минералогических наук заведующий лабораторией геохимии vpr@igem.ru

Волков Александр Владимирович¹

доктор геолого-минералогических наук заведующий лабораторией геологии рудных месторождений tma2105@mail.ru

Николаев Юрий Николаевич²

кандидат геолого-минералогических наук доцент nikolaev@geol.msu.ru

Калько Ильдар Анатольевич²

кандидат геолого-минералогических наук научный сотрудник ildarkalko@ya.ru

Власов Евгений Алексеевич²

кандидат геолого-минералогических наук научный сотрудник user420@geol.msu.ru

Вольфсон Александр Александрович¹

кандидат геолого-минералогических наук доцент sanches27@list.ru

Сидоров Анатолий Алексеевич¹

член-корреспондент РАН главный научный сотрудник kolyma@igem.ru

¹ ФГБУН Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, г. Москва

² ФГБОУ ВО «Московский государственный университет им. М.В.Ломоносова», г. Москва

Строение рудных месторождений

УСЛОВИЯ ФОРМИРОВАНИЯ Au-Ag Эпитермальной минерализации Кайэнмываамского рудного поля, центральная чукотка

Получены первые данные о физико-химических параметрах и составе минералообразующих флюидов золото-серебряной минерализации Кайэнмываамского рудного поля Центральной Чукотки. Результаты исследования флюидных включений в продуктивном кварце рудопроявлений Кайэнмываамского рудного поля соответствуют параметрам формирования типичных эпитермальных низкосульфидизированных («low sulfidation») месторождений. Рудообразующие флюиды по основным параметрам очень близки к флюидам крупного месторождения Купол. Однако в отличие от последнего в составе флюида рудопроявления Телевеем отсутствует сульфат-ион. Полученные результаты свидетельствуют о близповерхностном (0,1–0,5 км) формировании и слабой эродированности рудного поля. Это позволяет говорить о перспективности изучения глубоких горизонтов.

Ключевые слова: Центральная Чукотка, Кайэнмываам, эпитермальные месторождения, золото, серебро, флюидные включения.

Кайэнмываамское рудное поле расположено в центре Чукотского автономного округа (рис. 1, а) в пределах Маюлервеемской вулканоструктуры Охотско-Чукотского вулканогенного пояса (ОЧВП). Расстояние до г. Анадырь – 330 км, до с. Марково – 240 км, до г. Билибино – 350 км, до г. Певек – 350 км, до рудника Купол – 130 км. В его геологическом строении участвуют стратифицированные игнимбриты кислого состава, андезибазальты, андезиты, базальты, туфы среднего-кислого состава, прорванные дайками, штоками трахиандезитов, андезитов, субщелочных диоритов и монцонитов. Пространственное положение субвулканических тел, кварцевых жил и полей метасоматитов совпадает с радиальнокольцевым рисунком трещиноватости Маюлервеемской вулканоструктуры (см. рис. 1, б). На площади рудного поля широко распространены эпитермальные кварцевые жилы с Au-Ag минерализацией. По наибольшей их концентрации выделяются три перспективных участка: Левый Кайэнмываам, Средний (Правый) Кайэнмываам и Телевеем (см. рис. 1, б).

В результате поисковых работ, проведённых Анадырской геологоразведочной экспедицией (1989–1994 гг.), в пределах названных участков были выявлены многочисленные Au-Ag эпитермальные жилы и жильные зоны, в которых установлены несколько рудных столбов. Наиболее крупный из них имеет мощность 2,2 м и прослежен канавами на расстоянии 330 м, а по развалам рудного кварца – >500 м. Вертикальный размах оруденения по геофизическим данным >150 м. Жилы характеризуются полосчатыми тексту-

УДК 551.441 (571.65) © Коллектив авторов, 2019 DOI: 10.24411/0869-5997-2019-10006

Рис. 1. ГЕОГРАФИЧЕСКОЕ ПОЛОЖЕНИЕ (a) И СХЕМАТИЧЕСКАЯ ГЕОЛОГИЧЕСКАЯ КАРТА (б) КАЙЭНМЫВААМСКОГО РУДНОГО ПОЛЯ:

1 – верхнемеловые стратифицированные вулканические породы ОЧВП (от молодых до более древних свит); 2 – диориты (*a*), субвулканические риолиты (*б*), базальты (*в*); 3 – установленные (*a*), предполагаемые (*б*) разрывные нарушения; 4 – кварц-карбонатные жилы; 5 – перспективные участки (1 – Левый Кайэнмываам, 2 – Средний Кайэнмываам, 3 – Телевеем); *6* – район работ

рами, обусловленными чередованием халцедоновидного мелко- и крупнозернистого с мозаичной текстурой и друзовидного кварца. Обычно мелкозернистые разности слагают внешние, а друзовидные – центральные части жил. Жилы, кроме кварца, содержат адуляр, хлорит, каолинит, гипс, гидрослюды и кальцит.

В последние годы в пределах рудного поля геохимической съёмкой по вторичным ореолам рассеяния оконтурена площадь рудопроявлений [7], а колонковым бурением подтверждено развитие богатого оруденения на глубину. Минералогические исследования показали, что ранняя минеральная ассоциация включает пирит, молибденит, халькопирит, галенит, сфалерит, борнит, тетраэдрит-теннантит; поздняя (золото-серебряная) – минералы Au-Ag, пирсеит-полибазит, акантит, агвиларит, хемусит, тетрадимит, кавацулит, теллуриды (алтаит, волынскит, гессит, мелонит, петцит, сильванит, теллуровисмутит), самородный теллур [1]. Пробность минералов Au-Ag составляет 550-655‰, в коре выветривания достигает 963‰. Типичные примеси: Си (0,03-0,14%) и реже Нд (до 0,18 масс. %). В рудах участка Телевеем главными концентраторами золота и серебра служат теллуриды (петцит, сильванит, гессит), тогда как самородные минералы Au-Ад имеют подчинённое значение [1].

В 2017 г. в ходе поисково-оценочных работ на рудопроявлениях Левый и Средний Кайэнмываам из эпитермальных кварц-кальцитовых жил были отобраны новые образцы для изучения включений минералообразующих флюидов (ФВ). В кварце и кальците из рудных жил участков Левый и Средний Кайэнмываам обнаружены пригодные для микротермометрических исследований ФВ размером от 1 до 20 мкм. По фазовому составу при комнатной температуре ФВ относятся к двум типам (рис. 2):

- двухфазовые, содержащие газовый пузырёк и водный раствор, которые имеют разные объёмные соотношения между газом и жидкостью;
- газовые включения, сингенетичные газово-жидким и свидетельствующие о гетерогенном состоянии (кипении) рудообразующего флюида.
 В настоящей статье обсуждаются новые данные

микротермометрического изучения индивидуальных флюидных включений в этих образцах по методике, приведённой в работе [1], в сравнении с опубликованными ранее данными по участку Телевеем [1]. Дополнительно выполнен также валовый анализ состава флюидов включений в кварце рудопроявления Телевеем из навесок 0,5 г класса -0,5+ 0,25 мм мономинеральных фракций кварца (аналитик Ю.В.Васюта, ЦНИГРИ) по методике, описанной в работе [2].

Рис. 2. ДВУХФАЗОВЫЕ ГАЗОВО-ЖИДКИЕ ФЛЮИДНЫЕ ВКЛЮЧЕНИЯ ТИПА 1 (*а, в, г*) И АССОЦИАЦИЯ ГАЗОВЫХ ТИПА 2 И ГАЗОВО-ЖИДКИХ ТИПА 1 ФЛЮИДНЫХ ВКЛЮЧЕНИЙ (*б*) В КВАРЦЕ (*а*—*в*) И КАЛЬЦИТЕ (*г*) МИНЕРАЛИЗОВАННЫХ ПРОЖИЛКОВ УЧАСТКОВ ЛЕВЫЙ И СРЕДНИЙ КАЙЭНМЫВААМ

Рис. 3. ДИАГРАММА «ТЕМПЕРАТУРА—КОНЦЕНТРАЦИЯ СОЛЕЙ» ДЛЯ РУДООБРАЗУЮЩИХ ФЛЮИДОВ КАЙЭНМЫВААМСКОГО РУДНОГО ПОЛЯ (*a*) В СРАВНЕНИИ С АНАЛОГИЧНОЙ ДИАГРАММОЙ ДЛЯ РУДООБРАЗУЮЩИХ ФЛЮИДОВ МЕСТОРОЖДЕНИЙ КУПОЛ [3], АРЫКВААМ [3], ДВОЙНОЕ [5], ЖИЛЬНОЕ [4] (*б*):

1, 2 – Левый Кайэнмываам (1 – кварц, 2 – кальцит); 3 – Средний Кайэнмываам; 4 – Телевеем; 5 – Купол; 6 – Арыкваам; 7 – Двойное; 8 – Жильное

Результаты термо- и криометрических исследований >180 индивидуальных флюидных включений (рис. 3, таблица) показали, что в составе растворов всех двухфазовых ФВ типа 1 преобладали хлориды Na, Mg и Fe. Об этом свидетельствуют хлоридные эвтектики растворов включений в температурном интервале от -23 до -30°С.

Полная гомогенизация ФВ типа 1 в кварце проявления Левый Кайэнмываам происходит при температурах 240–245°С в жидкую фазу, а концентрация солей изменяется от 0,3 до 1,0 масс. % экв. NaCl. Плотность флюида составляет 0,80–0,82 г/см³. Полная гомогенизация ФВ в кальците проявления осуществляется при температурах 215–241°С в жидкость, а концентрация солей изменяется от 0,5 до 1,3 масс. % экв. NaCl. Плотность флюида составляет 0,81–0,85 г/см³. ФВ типа 1 в кварце проявления Средний Кайэнмываам гомогенизируются при температурах от 222 до 292°С в жидкость, а концентрация солей изменяется от 0,2 до 1,2 масс. % экв. NaCl. Плотность флюида 0,71–0,84 г/см³. В газовых ФВ типа 2 при охлаждении до -140°С углекислота не обнаружена, поэтому давление для ассоциаций включений гетерогенного флюида рассчитывалось как давление насыщенного пара воды, которое изменялось от 30 до 70 бар при температурах 236–292°С.

Гомогенизация ФВ типа 1 в кварце проявления Телевеем [1] осуществляется при температурах 136– 327°С в жидкость, а концентрация солей изменяется от 0,2 до 1,6 масс. % экв. NaCl. Плотность флюида 0,63–0,94 г/см³. В газовых ФВ типа 2 при охлаждении до -140°С углекислота не выявлена, поэтому давление для ассоциаций включений гетерогенно-

Номера проб	Типы включений	п	T _{гом.} , °C	<i>Т</i> _{эвт.} , °С	<i>Т</i> _{пл. льда} , °С	С _{солей} , масс. % экв. NaCl	<i>d</i> , г/см³	<i>Р</i> , бар		
Левый Кайэнмываам										
LK17/11-1 кварц	1 П	16	245	-23	-0,6	1,0	0,81	-		
	1 П	9	244	-30	-0,2	0,3	0,80	-		
	1 П	9	240	-23	-0,6	1,0	0,82	-		
LK17/11-1 карбонат	1 П	3	241	-28	-0,3	0,5	0,81	-		
	1 П	3	231	-26	-0,8	1,3	0,83	-		
	1 П	8	229	-27	-0,5	0,8	0,83	-		
	1 П-В	6	215	-23	-0,5	0,8	0,85	-		
Средний Кайэнмываам										
	1, 2 П	8	251	-26	-0,2	0,3	0,79	40		
SK17/12-4	1, 2 П	13	236	-28	-0,4	0,7	0,82	30		
кварц	1 П	8	230	-26	-0,4	0,7	0,83	-		
	1 П-В	4	222	-27	-0,3	0,5	0,84	-		
	1 П	3	260	-30	-0,4	0,7	0,78	-		
	1 П	7	256	-28	-0,2	0,3	0,78	-		
	1 П	8	249	-29	-0,2	0,3	0,79	-		
SK17/12-2	1 П	6	245	-30	-0,3	0,5	0,80	-		
кварц	1 П	4	242	-28	-0,3	0,5	0,81	-		
	1 П	6	241	-30	-0,3	0,5	0,81	-		
	1 П-В	8	239	-23	-0,2	0,3	0,81	-		
	1 П-В	11	236	-28	-0,1	0,2	0,81	-		
	1 П	5	258	-26	-0,5	0,8	0,78	-		
SK17/8 кварц	1 П	6	248	-25	-0,4	0,7	0,80	-		
	1 П	4	246	-26	-0,3	0,5	0,80	-		
	1 П	14	273	-27	-0,7	1,2	0,76	-		
SK17/25-7	1 П	3	263	-28	-0,3	0,5	0,77	-		
кварц	1 П	6	262	-28	-0,7	1,2	0,78	-		
	1 П-В	8	249	-28	-0,3	0,5	0,80	-		
8154-4732 кварц	1, 2 П	5	264	-32	-0,3	0,5	0,77	40		
	1, П	7	251	-28	-0,3	0,5	0,79	-		
	1, П	4	240	-27	-0,3	0,5	0,81	-		
8562-5070 кварц	1, 2 П	3	292	-30	-0,2	0,3	0,71	70		
	1, П	8	283	-29	-0,2	0,3	0,73	-		
	1, П	4	276	-28	-0,2	0,3	0,74	-		
	1, 2 П	5	276	-27	-0,4	0,7	0,75	50		
8512-4491 кварц	1, 2 П	9	275	-30	-0,3	0,7	0,75	50		
	1, П	4	254	-28	-0,3	0,5	0,79	-		
8449-4521 кварц	1, 2 П	4	252	-28	-0,3	0,5	0,79	40		
	1, 2 П	3	251	-30	-0,3	0,5	0,79	40		
	1, 2 П	7	250	-28	-0,2	0,3	0,79	40		
	1, П	5	242	-27	-0.2	0,3	0.81	_		

РЕЗУЛЬТАТЫ ТЕРМО- И КРИОМЕТРИЧЕСКИХ ИССЛЕДОВАНИЙ ИНДИВИДУАЛЬНЫХ ФЛЮИДНЫХ ВКЛЮЧЕНИЙ В КВАРЦЕ И КАРБОНАТЕ РУДОПРОЯВЛЕНИЯ КАЙЭНМЫВААМ

Руды и металлы № 1/2019

Продолжение	таблииы

Телевеем [1]									
5132-7842 кварц	1, П	3	289	-34	-0,9	1,6	0,74	-	
	1, П	13	283	-34	-0,9	1,6	0,75	-	
	1, П	3	269	-36	-0,6	1,1	0,77	-	
	1, П	2	262	-30	-0,4	0,7	0,78	-	
	1, П-В	3	236	-30	-0,3	0,5	0,82	-	
	1, П-В	3	233	-34	-0,8	1,4	0,83	-	
	1, B	4	136	-31	-0,1	0,2	0,94	-	
7870-5167 кварц	1, 2 П	3	256	-28	-0,3	0,5	0,78	40	
	1, П	14	248	-27	-0,3	0,5	0,80	-	
	1, П	9	237	-27	-0,3	0,5	0,82	-	
7832-5236 кварц	1, 2 П	3	327	-27	-0,2	0,3	0,63	120	
	1, П	6	288	-28	-0,2	0,3	0,72	-	
	1, П-В	15	257	-28	-0,2	0,3	0,78	-	
7860-5156 кварц	1, 2 П	7	251	-29	-0,2	0,3	0,79	30	
	1, 2 П	б	246	-27	-0,2	0,3	0,80	30	
	1, П	3	238	-28	-0,2	0,3	0,81	-	
7842-5131 кварц	1, 2 П	4	290	-27	-0,7	1,2	0,73	70	
	1, 2 П	4	270	-33	-0,4	0,7	0,76	50	
	1, П	3	276	-28	-0,8	1,3	0,76	-	
	1, П	б	265	-30	-0,5	0,8	0,77	-	
	1, П	5	261	-28	-0,9	1,5	0,79	-	
	1, П	11	253	-29	-0,5	0,8	0,79	-	

Примечание. Типы флюидных включений: 1 – двухфазовые газово-жидкие, 2 – газовые, П – первичные, П-В – первично-вторичные. *п* – число включений, *С*_{солей} – концентрация солей, *d* – плотность флюида.

го флюида рассчитывалось как давление насыщенного пара воды, которое изменялось от 30 до 120 бар при температурах 246–327°С.

Таким образом, на изученной площади максимальные температуры гомогенизации ФВ, солёность минералообразующих флюидов и давление растут в направлении с северо-запада на юго-восток. Это совпадает с увеличением возраста вмещающих пород и может быть связано с возрастанием глубины эрозионного среза в том же направлении. Однако различия в параметрах рудообразующих флюидов участка Телевеем [1] невелики в сравнении с параметрами флюидов участков Левый и Средний Кайэнмываам и свидетельствуют о близкой глубине их формирования.

В составе флюида участка Телевеем по данным валового анализа среди анионов найден (в г/кг воды) CI (6,65), а среди катионов – Na (4,2), К (0,40) и Ca (0,08). Во флюиде определены также (в г/кг воды) углекислота (13,7), метан (0,7) и ряд микрокомпонентов (мг/кг воды): Be (0,29), Br (2595), As (5529), Li (86,8), B (24,8), Rb (0,3), Sr (0,09), Mo (1,5), Ag (1,2), Sb (8,6), Cu (0,7), Zn (38,9), Bi (0,02), U (0,02), Ge (0,22), Mn (1,8), Co (0,70), V (5,7), Cr (1,2), Y (0,06), Zr (0,24), Au (0,09), Hg (0,2), Tl (0,02), REE (0,2).

В целом рудообразующие флюиды участков Телевеем, Левый и Средний Кайэнмываам по основным параметрам наиболее похожи на рудообразующие флюиды месторождений Купол [3] и Арыкваам [3] и отличаются от флюидов месторождений Двойное [5] и Жильное [4] (см. рис. 3, *б*). При этом в отличие от месторождения Купол [3] в составе флюида рудопроявления Телевеем не был найден сульфат-ион. Установленные небольшие давления свидетельствуют о близповерхностном (0,1–0,5 км) формировании и незначительной эродированности рудопроявлений.

Итак, данные исследования флюидных включений в продуктивном кварце рудопроявлений Кайэнмываамского рудного поля соответствуют параметрам формирования типичных эпитермальных низкосульфидизированных («low sulfidation») месторождений [6]. Крупный масштаб рудообразующей системы и незначительный уровень её эрозионного среза позволяют прогнозировать открытие

СПИСОК ЛИТЕРАТУРЫ

- Власов Е.А., Прокофьев В.Ю., Николаев Ю.Н., Калько И.А. Новая находка золото-теллуридной минерализации на Чукотке: минералогия и условия формирования рудопроявления Телевеем // Руды и металлы. 2016. № 4. С. 48–50.
- 2. Кряжев С.Г., Прокофьев В.Ю., Васюта Ю.В. Использование метода ICP MS при анализе состава рудообразующих флюидов // Вестн. МГУ. Сер. 4. Геология. 2006. № 4. С. 30–36.
- Особенности рудообразования на золото-серебряном месторождении Купол, Северо-Восток России (по данным исследования флюидных включений) / А.В.Волков, В.Ю.Прокофьев, Н.Е.Савва и др. // Геология рудных месторождений. 2012. Т. 54. № 4. С. 350– 359.

новых богатых рудных тел в пределах Маюлервеемской вулканоструктуры (в том числе и не выходящих на поверхность).

Работа выполнена при финансовой поддержке РФФИ (проект № 18-05-70001).

- 4. *Первые* данные об условиях формирования эпитермальной Au-Ag минерализации месторождения Жильное (Восточная Чукотка) / А.А.Елманов, В.Ю.Прокофьев, А.В.Волков и др. // Доклады академии наук. 2018. Т. 480. № 6. С. 693–697.
- 5. *Аи-Ад* эпитермальное месторождение Двойное (п-ов Чукотка, Россия) / А.В.Волков, Н.Е.Савва, Е.Е.Колова и др. // Геология рудных месторождений. 2018. Т. 60. № 6. С. 590–609.
- Simmons F.A., White N.C., John D.A. Geological Characteristics of Epithermal Precious and Base Metal Deposits // Econ. Geol. 100th Anniversary Volume. 2005. P. 485– 522.
- The Kayenmyvaam Au-Ag prospective district, Chukchi Peninsula, Russia: characteristics of mineralization / I.Kalko, E.Vlasov, V.Prokofiev et al. // SGEM2015 Conference Proceedings. 2015. Vol. 3. P. 699–706.

Au-Ag EPITHERMAL MINERALIZATION FORMATION CONDITIONS AT KAIENMYVAAMSKOYE ORE FIELD, CENTRAL CHUKOTKA

V.Yu.Prokofiev¹, A.V.Volkov¹, Yu.N.Nikolaev², I.A.Kalko², E.A.Vlasov², A.A.Volfson¹, A.A.Sidorov¹ (¹FSBIS Institute of Ore Geology, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences, Moscow; ²M.V.Lomonosov Moscow State University)

First data were obtained on physicochemical parameters and composition of mineral-forming fluids for Au-Ag mineralization of Kaienmyvaamskoye ore field, Central Chukotka. Study results of fluid inclusions in productive quartz of the ore field's ore occurrences correspond to formation parameters of typical epithermal low-sulfidation deposits. By their main parameters, ore-forming fluids are very similar to those of the giant Kupol deposit. However, unlike the latter Televeem ore occurrence fluid composition lacks a sulfate ion. The results suggest near-surface (0,1–0,5 km) formation and poorly eroded ore field. This indicates high prospects for deep level study.

Keywords: Central Chukotka, Kaienmyvaam, epithermal deposits, gold, silver, fluid inclusions.

