ТИПОМОРФИЗМ ЭНДОГЕННЫХ КАРБОНАТОВ КАК ПОКАЗАТЕЛЬ ФОРМАЦИОННОЙ ПРИНАДЛЕЖНОСТИ ОРУДЕНЕНИЯ

В рудах полиформационного золоторудного месторождения Задержнинское преобладают карбонаты анкерит-доломитового ряда – типоморфные минералы Аи-кварцевой формации. Но в целом по развитию минеральных видов, соотношению и уровню концентрации минералообразующих элементов изученные эндогенные карбонаты близки к таковым олово-серебро-полиметаллических месторождений Западного Верхоянья. Fe-Mg двойные соли характеризуются широкой вариацией изоморфизма с сосуществованием фаз различного состава и исключительно высокой железистостью.

Ключевые слова: анкерит, сидеродоломит, изоморфизм, золоторудное месторождение Задержнинское, Южное и Западное Верхоянье.

Карбонаты, наряду с кварцем, – наиболее распространённые минералы рудных месторождений. В 1970-х годах были масштабно изучены карбонаты эндогенного оруденения Якутии различных формационных типов от кимберлитов и базальтоидов до гидротермальных месторождений олова, серебра, золота и других элементов [14]. Полученные данные позволили по развитию тех или иных минеральных видов карбонатного вещества, соотношению и уровню концентрации минералообразующих элементов (Ca, Mg, Fe, Mn) выявить типоморфные особенности карбонатов, характерные определённым формационным типам оруденения.

В продолжение этих исследований в данной работе авторы охарактеризовали карбонаты полиформационного золоторудного месторождения Задержнинское (Южно-Верхоянская металлогеническая зона Восточно-Якутского постаккреционного пояса), придерживаясь предложенной систематики и методики с использованием современных аналитических приборов. Анализ жильных карбонатов проводился термическим (термоанализатор STA449C Jupiter фирмы «NETZSCH» (Германия), скорость нагрева 10°С/мин. в инертной среде – аргон, аналитик Н.Н.Емельянова), рентгенофазовым (дифрактометр D2 PHASER фирмы Bruker (Германия), СиКа излучение, напряжение трубки 30 кВ, сила тока 10 mA, в интервале (20) 4-65°, база данных PDF 2, аналитики Н.Н.Емельянова, Т.И.Васильева), рентгеноспектральным (микроанализатор Camebax-Micro, ускоряющее напряжение 20 кВ, сила тока 0,8·10⁻⁷ A, t=10 сек., аналитик Н.В.Христофорова; сканирующий электронный микроскоп фирмы JEOL JSM-6480LV, энергетический дисперсионный спектрометр Energy 350, ускоряющее напряжение 20 кВ, ток зонда 1,08 нА, t=10 сек., аналитики С.К.Попова, С.А.Карпова) методами.

Кондратьева Лариса Афанасьевна

кандидат геолого-минералогических наук научный сотрудник Ikon12@yandex.ru

Емельянова Нюргустана Николаевна

ведущий инженер

ФГБУН Институт геологии алмаза и благородных металлов СО РАН, г. Якутск

Месторождение находится в Аллах-Юньском горнорудном районе Южного Верхоянья. Рудная и россыпная золотоносность известна здесь с 30-х годов прошлого века. В разное время на площади рудного поля проводились геологоразведочные работы (Ю.П.Воронин, 1967 г., В.С.Краснопольский, 1988 г., М.К.Силичев, 1993 г. и др.). В 2002–2006 гг. ООО «Артель старателей «Дражник» разрабатывала месторождение с попутной разведкой нижних горизонтов, но в связи с нерентабельностью эксплуатации (малые и невыдержанные параметры рудных тел) оно было законсервировано.

Месторождение расположено на западном крыле Южно-Верхоянского синклинория. Здесь протягивается одноимённый метаморфический пояс с широко проявленным гранитоидным магматизмом ранне-позднемелового возраста среди отложений верхоянского терригенного комплекса, преобразованных в условиях серицитхлоритовой субфации метаморфизма фации зелёных сланцев (рис. 1). Оруденение тяготеет к осевой части антиклинали север-северо-восточного простирания, ассоциирующей с надвиговыми структурами. Рудовмещающие терригенные турбидиты ранней перми представлены переслаивающимися песчанистыми алевролитами и песчаниками бонсолчанской свиты. Породы смяты в мелкие складки, осложняющие свод основной структуры, интенсивно кливажированы. В пределах месторождения широко развиты маломощные дайки диоритов, микродиоритов, диоритовых порфиритов, спессартитов и керсантитов, группирующихся в серии сближенных, иногда кулисообразно расположенных тел, приуроченных к субширотной системе разломов. На месторождении и его флангах локализованы три мелких штокообразных тела субщелочных гранитоидов и разрозненные ореолы биотит-кордиеритовых роговиков, рассматриваемые в качестве апикальных выступов погребённого интрузивного массива.

Формирование полиформационного золотого оруденения обусловлено длительно развивавшейся рудно-магматической системой и совмещением в рудных телах трёх генетически различных, полихронных типов оруденения [8, 10]. Мезотермальные Аи-кварцевые руды сформировались в две стадии. Раннее стратоидное Аu-As оруденение сопоставимо с добатолитовыми гидротермально-метаморфогенными жилами юрско-буларского типа. Время образования Au-Pb-Zn руд синхронно с внедрением ранне-меловых гранитоидов Южного Верхоянья. Наложенное эпитермальное оруденение представлено золоторедкометальной Au-Bi (Te) минерализацией, проявившейся на завершающей стадии формирования гранитоидов Южного Верхоянья, и золото-серебряной Au-Ag (Sb), сходной с таковой Нежданинского месторождения, связанной с позднемеловым гранитоидным магматизмом.

Ранние слабозолотоносные стратоидные жилы сложены интенсивно кливажированным крупнокристаллическим кварцем с редкой вкрапленностью метакристаллов арсенопирита и пирита. Промышленная золотоносность месторождения Задержнинское связана с рудными телами секущего морфоструктурного типа, представленными крутопадающими кварцевыми жилами и минерализованными зонами дробления с телескопированным оруденением. Количество рудных минералов ~5%. Это арсенопирит, пирит, галенит, сфалерит, самородное золото, электрум, реже встречаются халькопирит и пирротин. Золото-редкометальная ассоциация характеризуется наличием самородного висмута, висмутина, хедлейита, сульфотеллуридов Ві, минералов группы густавита и вторичных минералов - оксидов и теллуритов Ві с низкопробным (740-760‰) золотом. Индикаторными минералами Au-Ag (Sb) ассоциации являются Hg-содержащие электрум и кюстелит, Ag-Sb и Ag-Pb-Sb сульфосоли, штютцит, Te-Pb-содержащий канфильдит, фрейбергит, сульфиды Аи и Ад.

Карбонаты, широко распространённые на месторождении, присутствуют в виде прожилков, гнёзд и отдельных зёрен в кварце. Исследовано >50 образцов руд различного текстурно-структурного облика, представляющих пять типов гидротермальных образований:

1) дорудные жилы;

мезотермальное Au-кварцевое оруденение:

2) стратоидное с Au-As минерализацией,

Аи-полисульфидное секущего типа;

Аи-кварцевое с наложенным эпитермальным Аиредкометальным и Аи-серебряным оруденением:

4) прожилково-жильное, часто сопровождаемое дайками спессартитов,

5) прожилково-вкрапленное в минерализованных зонах дробления.

Рис. 1. ГЕОЛОГО-СТРУКТУРНАЯ СХЕМА ЗАДЕРЖНИНСКОГО РУДНОГО ПОЛЯ:

четвертичные отложения: 1 – современное звено, 2 – верхнее звено; отложения ырчахской свиты: 3 – нижняя подсвита, вторая пачка, 4 – нижняя подсвита, первая пачка; отложения бонсолчанской свиты: 5 – верхняя подсвита, вторая пачка, 6 – верхняя подсвита, первая пачка; 7 – нижняя подсвита, вторая пачка; 8 – штоки диоритов; 9 – дайки диоритов, диоритовых порфиритов и микродиоритов; 10 – дайки спессартитов; 11 – дайки керсантитов; 12 – маркирующие горизонты песчаников; 13 – разрывные нарушения (*a* – главные, *б* – второстепенные); 14 – кварцевые жилы; 15 – минерализованные зоны дробления; 16 – россыпи

Номера проб/анализов	Типы гидротермальных образований		Минералы	CaCO₃	FeCO ₃	MgCO₃	MnCO₃	SrCO₃
110-ЛК-06/4-2*			Кальцит I	95,30	1,92	1,48	0,80	0,51
108-ЛК-06/6			Кальцит I	94,91	0.06	4,60	0,33	0,10
C-54a-1/4-2*			Сидерит	0,30	90,73	8,39	0,58	_
C-54a-1/4-4*	Лор	VЛНЫР ЖИЛЫ	Ма-силерит	1.99	79.65	17.85	0.51	-
104-ЛК-06/5-10*	H°P.	A lose manual	Силерит	1 33	90.53	7 57	0.57	_
104-IIK-06/5-5*			Ма-силерит	0.29	64 97	34.03	0.65	0.07
104-IIK-06/3-7*			Ге-лопомит	52 13	21 29	26 32	0.26	-
36-90/3			Fe-доломит	49 34	27,22	26,32	0.95	019
36-80		Стратоилина	Ма-анкерит	50 57	22,75	20,00	0,95	0.56
2-AH-06/2-1*		жилы	Ма-анкерит	50.61	25 92	20,70	0.34	0.37
116-2-EK-06/2	Ие	numbi	Ее-лопомит	49 10	15 32	33.96	0.62	1 01
K-211-1/4-1	ен		Кальцит І	97.08	0.18	2.26	0.49	-
K-320/20-10*	ен		Кальцит І	93.25	3 65	3 10	-	-
K-211-1/5-4	Ц		Fe-лоломит	49.05	13 31	36.73	0.35	0.56
K-320/19-6*	6		Ма-анкерит	50.01	26.81	22.18	1.00	-
K-320/14-3*	oe		Fe-лопомит	51 22	20,01	22,10	0.06	-
23-AH-06/1-4*	eB		Ма-анкерит	52.27	25,10	20,21	0,80	0.43
23-4H-06/6-2	рц		Ее-лопомит	49.07	19.64	30.09	0,00	0.21
K-308/5	(Ba		Ма-анкерит	52.89	23.66	21 52	1.60	0.34
K-409/3-1*	<u>+</u>		Ма-анкерит	49 17	33 10	17.09	-	0,54
K-409/3-1	Ā	Секущие жильные	Ес-поломит	19.01	16.67	32.65	1 37	0,04
K-507-17-2/5-7*	loe	зоны	Пе-доломин Ма-анкерит	51 32	27.55	10 78	1,37	0,20
K-507-17-2/5-7*	白		Ес-поломит	17.16	17 51	33 17	1,55	0.68
11-507-17-2/5-2	лал		Ма-зикорит	47,40	22 71	17.76	0.04	0,00
$\mu_{-15-1/2-2}$	Vda		Бо-поломит	47,07	16/19	32.60	0,04	0,62
C9_22/2_2*	OTE		Ге-доломит	51.08	23.06	25.86	0,92	0,55
	e30		Ге-доломит	51.00	11 00	25,00		- 0.20
C7_20/5_11*	Z		Ге-доломит	50.04	11,00 29/13	1012	- 0.57	0,30
C7-30/3-11*			Го-поломит	50.04	20,45 15 /1	22 72	1 25	0,95
(20, 102, 0/2, 2			Ге-доломит	40.42	20.47	22,75 2071	1,25	0,30
K_220/7_1*			Ре-доломит	49,42	20,47 63 21	20,74	18 55	0,09
K-320/7-1			Мп-сидерит	6 6 1	62.00	2,75	25 70	-
12 9C/9 2			Копцият II	0,01	03,90	0.02	23,79	-
13-7C/6-2			Кальцин ІІ	94,00	0,10	0,25	0,03	4,91
6-9C/1			Бо-поломит	/0.13	18 52	30.02	0,04	2,50
0-7/C/T			Ге-доломит	49,13	10,52	20.54	0,75	0,00
11_9C/2			Ге-доломит	40,90 50 50	19,00	28 55	1.05	0,00
13_9C/2	Bi		Ге-доломит	50,50	19,40	20,55	1,05	0,30
17 90/2 2	Au-	секущие жильные	Ге-доломит	50,55	16.70	20,55	0,99	0,04
17-7C/3-2 22-9C/3-4	M /	зопы	Ге-доломит	19 96	21.02	27.62	1,05	0,91
22-70/3-4	рц МЫ		Ге-доломит	40,00	10 00	27,02	0,81	0,75
24-71C/3-2	Ва ЛЫ		Ге-доломит	50,01	21 /0	20, 4 0 27.24	1,03	0,00
Штр. 40/10-0-1/3-2	u-к ма нен		Ге-доломит	52.20	21,40	27,24	0,70	0,45
Штр. 5-07-2/1-1	ep :		Ге-доломит	10 56	18.66	20,20	0,00	0,30
Штр. 5-37-2/1-1	тиг Тиг		Ге-доломит	51/1	15.60	31.50	1 1 5	0,02
Vu 9-K-3-5/1-2*			Ге-доломит	51.00	12.76	25 11	0.57	0,31
$1.0^{-1.3-3/1-2}$	har bim -Ag		Кальцит II	96.30	0.06	1 22	0.25	2.06
Tn 1-19-2/2-1*	отери кеннь и Au-		Кальцит II	97 <u>4</u> 0	1.04	0.30	-	1.00
B1_1/1_/*			Ер-поломит	51 12	20.55	28 22		
B1-3/1-5*	ез ПО)		Ге-доломит	52.20	13.46	34 34		_
B16-1-3/2-2*	На		Ге-доломит	49.95	19.56	29.40	0.47	0.62
C61-10/4-2*	Ū	Минерализован-	Ге доломит	50.01	22.11	2672	0.47	0,62
42-9C/2-1*		ные зоны	Ге-доломит	50,01	19.64	20,72	0,47	0,09
$\frac{1}{10}$		дробления	Ге-доломит	49 11	19.04	30,15	1.07	0.63
Штр. 1-10-2/1_1			Ге-доломит	48 10	2/1 22	26.25	0.65	0,05
штр. т-19-2/1-т Рсц. 1_2/1			Попомит	51 15	7.85	20,55	0,05	0,40
Pcu 1-2/1			Есполомит	17 75	21 56	20.21	0.74	0,27
ГСЧ. 1-2/7-3 Уил 66 1/2 1			Бо-поломит	47,75	15 10	29,34	2.05	0,02
7171.00-1/2-1			гедоломил	-0,50	15,10	57,19	2,05	

1. МИНАЛЬНЫЙ СОСТАВ КАРБОНАТОВ ЗАДЕРЖНИНСКОГО МЕСТОРОЖДЕНИЯ, МОЛ. %

Примечание. Пробы исследованы методом рентгеноспектрального анализа на сканирующем электронном микроскопе фирмы JEOL JSM-6480LV (*) и микроанализаторе Camebax-Micro.

Содержание карбонатов в разных типах руд варьирует: в ранних стратоидных жилах концентрация минимальная (до 5%), в крутопадающих – 5–15%, в минерализованных зонах дробления – до 50%. Как показал рентгеноспектральный анализ, карбонаты месторождения отличаются относительно широким видовым составом, представлены сидеродоломитом, магнезиоанкеритом, кальцитом, магнезиосидеритом, сидеритом и мангансидеритом (табл. 1). Содержания и соотношения в них изоморфных примесей приведены ниже при рассмотрении последовательности образования.

Дифференциальным термическим анализом (ДТА) подтверждается разнообразие карбонатных минералов и подчёркиваются особенности их химического состава (рис. 2). В основе метода ДТА – различия температур диссоциации солей СО₂ (табл. 2). Как видно из таблицы, температура эндоэффектов в кальцитах соответствует стандартной. В сидерите пик смещён в направлении повышения температуры по причине значительной концентрации в нём изоморфной примеси MgCO₃ (7,57 мол. %) [13]. Термические эффекты двойных солей ряда доломит – анкерит, напротив, наблюдаются при несколько заниженных температурах, что объясняется высоким содержанием Fe в минералах [16]. На кривых ДТА анкеритов, диагностируемых по характерному третьему эндотермическому эффекту, и доломитов значительная концентрация Fe также фиксируется по большей потере веса при первой реакции, чем при второй и третьей [15]. Кроме того, на кривых разложения наиболее железистых Мд-анкеритов (обр. 2-АН-06, В-16-1-3 и др.) между первым и вторым эндопиками отмечается экзотермический эффект.

Другой физический метод изучения карбонатов – рентгенофазовый анализ, выполненный методом порошка. Полученные дифрактограммы, как и следовало ожидать, отличаются от стандартных [1] из-за нестехиометричности состава. Межплоскостные расстояния d_{104} кальцита (3,02 Å) и сидерита (2,775 Å) смещены в сторону уменьшения от эталонных (соответственно, 3,036 и 2,79 Å), вследствие присутствия в них изоморфной примеси Mg [17].

И.Г.Демчук [5] выявлена прямая зависимость межплоскостного расстояния d_{104} в железистых доломитах от содержания изоморфного желе-

Рис. 2. ТЕРМОГРАММЫ КАРБОНАТОВ ЗОЛОТОРУДНОГО МЕ-СТОРОЖДЕНИЯ ЗАДЕРЖНИНСКОЕ:

А – кальцит; Б – сидерит; В – доломит; Г – анкерит; штриховая линия – кривая потери веса

за, замещающего магний в кристаллической решётке, что обусловлено увеличением параметров решётки (рис. 3). Так, *d*₁₀₄ с увеличением содержания FeO от 0,2 до 14 мас. % изменяется от 2,886 до 2,898 Å. Положение главной диагностической линии более железистых карбонатов доломит-анкеритового ряда месторождения Задержнинское отвечает значениям 2,898–2,899 Å (табл. 3), что соответствует установленной зависимости и подтверждает данные термического и рентгеноспектрального анализов анкерита в обр. К-409 и 2-АН-06. Рефлексы *d*₁₁₃ и *d*₁₁₆ также близки линиям анкерита, а не доломита.

Обобщая сведения по диагностике карбонатов, можно отметить хорошую сходимость и взаимодополняемость результатов, полученных разными физико-химическими методами.

Образование карбонатов на месторождении происходило на всём протяжении гидротермального процесса. Условно их можно подразделить

Строение рудных месторождений

Минералы	D	Температура			
	Реакция	измеренная	стандартная [15]		
Кальцит	$CaCO_3 \rightarrow CaO+CO_2$	853,1-882,8	800–950		
Сидерит	1a. FeCO ₃ → FeO+CO ₂	570,7	500-550		
	16. 2FeO → Fe₂O₃ (экзоэффект)	608,8			
Доломит	1. $CaMg(CO_3)_2 \rightarrow CaCO_3 + MgO + CO_2$	686,6-755,1	750-800		
	2. $CaCO_3 \rightarrow CaO+CO_2$	761,3-825,6	840-950		
Анкерит	1a. Ca(Mg,Fe)(CO ₃) ₂ \rightarrow CaCO ₃ +MgO+FeO+CO ₂	672,1–722,2	700–770		
	16. 2FeO+O₂ → Fe₂O₃ (экзоэффект)	696,7–739,1			
	2. $Fe_2O_3+2CaCO_3 \rightarrow Ca_2Fe_2O_5+2CO_2$	718,0–758,7	750-800		
	3. $CaCO_3 \rightarrow CaO + CO_2$	760,8–846,6	850-950		

2. ТЕМПЕРАТУРЫ ДИССОЦИАЦИИ КАРБОНАТОВ

3. ЗАВИСИМОСТЬ МЕЖПЛОСКОСТНЫХ РАССТОЯНИЙ КРИСТАЛЛИЧЕСКОЙ РЕШЁТКИ КАРБОНАТОВ ДОЛОМИТ-АНКЕРИТОВОГО РЯДА ОТ СОДЕРЖАНИЯ ЖЕЛЕЗА

Образцы	d ₁₀₄ , Å	d ₁₁₃ , Å	d _{116,009} , Å	FeO, мас. %	FeCO ₃ , мол. %	Минералы
Стандарт	2,886	2,192	1,786–1,781	0,22		Доломит
	2,886			0,2		Доломит
	2,889			4,0; 4,3		Fe-доломит
	2,892			6,1; 7,2		Fe-доломит
данные [110 5]	2,894			8,3; 10,5		Fe-доломит
	2,895			11,0		Fe-доломит
	2,898			14,0		Fe-доломит
B-1-3	2,898	2,199	1,793	<u>9,76–14,04</u> 12,78 (7)	<u>13,46–19,33</u> 17,53	Fe-доломит
13-ЯС	2,898	2,199	1,793	<u>6,9–15,3</u> 12,72 (23)	<u>9,38–21,16</u> 17,62	Fe-доломит
24-ЯС	2,898	2,199	1,793	<u>13,66–14,25</u> 13,91 (4)	<u>18,88–19,83</u> 19,38	Fe-доломит
11-ЯС	2,898	2,200	1,793	13,82	19,40	Fe-доломит
B-1-1	2,898	2,200	1,793	<u>14,4–14,62</u> 14,51 (2)	<u>19,94–20,55</u> 20,24	Fe-доломит
B-16-1-3	2,898	2,200	1,794	<u>13,34–17,15</u> 14,69 (18)	<u>18,60–24,68</u> 20,48	Fe-доломит – Мg-анкерит
K-409	2,899	2,200	1,794	<u>12,32–22,79</u> 17,21 (19)	<u>16,67–33,10</u> 24,30	Fe-доломит – Мg-анкерит
2-AH-06	2,899	2,200	1,794	18,36	25,92	Mg-анкерит
Стандарт	2,899	2,199	1,792	12,06	16,6	Анкерит

Примечание. В числителе – пределы колебаний, в знаменателе – среднее содержание, в скобках – число анализов.

на дорудные, раннерудные, позднерудные. Дорудные карбонаты представлены кальцитом и в основном распространены на флангах рудного поля вне связи с рудоносными структурами в карбонат-кварцевых лестничных жилах, реже в виде мономинеральных прожилков в песчаниках. Кальцит содержит до 4,6% магнезитового минала и до 1,9% сидеритового. Единичные проявления сидерита наблюдались на южном фланге месторождения в карбонат-хлорит-кварцевых жилах и условно отнесены к дорудным. Сидерит встречается в виде мелких зёрен в сидеродоломите или образует тонкую вкрапленность в крупнокристаллическом кварце, от чего последний приобретает густую бурую окраску. Карбонат содержит значительную концентрацию магнезитового минала от 7 до 34%, что позволяет различать собственно сидерит и Mg-сидерит (сидероплезит 17,85 и пистомезит 34,03% MgCO₃).

Раннерудные карбонаты Аи-кварцевых руд как стратоидных, так и крутопадающих тел представлены высокожелезистыми двойными солями ряда доломит – анкерит генерации I крайне неравновесного состава (табл. 4). По соотношению Fe и Mg по принятой систематике [14] минералы определены как сидеродоломит и магнезиоанкерит. Минералы отличаются широкими вариациями изоморфизма и сосуществованием фаз различного состава. В табл. 1 приведены крайние члены изоморфного ряда. Двойные соли характеризуются зональным и неяснозональным распределением фазового состава (рис. 4, *a*, *в*). Кальцит встречается очень редко, только в кварцевожильном секущем типе, и содержит до 3,65% сидеритового минала и до 3,1% магнезитового.

Позднерудные карбонаты месторождения в рудах с наложенным эпитермальным оруденением представлены сидеродоломитами генерации

Рис. 3. ГРАФИК ЗАВИСИМОСТИ МЕЖПЛОСКОСТНОГО РАС-СТОЯНИЯ *d*₁₀₄ (Å) ОТ СОДЕРЖАНИЯ ЖЕЛЕЗА В КАРБОНАТАХ ДОЛОМИТ-АНКЕРИТОВОГО РЯДА, ПО И.Г.ДЕМЧУК [5]:

1 – данные по [5]; 2 – данные авторов

Рис. 4. РАСПРЕДЕЛЕНИЕ ФАЗОВОГО СОСТАВА КАРБОНАТОВ ДОЛОМИТ-АНКЕРИТОВОГО РЯДА ЗОЛОТОРУДНОГО МЕСТО-РОЖДЕНИЯ ЗАДЕРЖНИНСКОЕ:

а, *б* – зональное; *в*, *г* – неяснозональное; Fe-do – сидеродоломит, Mg-ank – магнезиоанкерит, do – доломит, ар – апатит, q – кварц; цифрами дано содержание FeO, мас. %

	Мезотермальное Аи-к	варцевое оруденение	Мезоэпитермальное оруденение		
Составы	Стратоидные жилы (<i>n</i> =8)	Жильные зоны (<i>n</i> =112)	Жильные зоны (<i>n</i> =68)	Минерализованные зоны дробления (<i>n</i> =65)	
FeCO ₃	<u>12,86–27,22</u>	<u>11,88–33,71</u>	<u>9,30–25,03</u>	<u>7,85–24,68</u>	
	20,74	22,29	18,63	18,63	
MgCO₃	<u>20,78–36,72</u>	<u>17,09–37,80</u>	<u>24,52–37,88</u>	<u>24,22–40,72</u>	
	27,66	26,83	29,95	30,27	
MnCO₃	<u>0,34–1,60</u>	<u>0–1,64</u>	<u>0–2,59</u>	<u>0–2,85</u>	
	0,80	0,60	0,88	0,68	

4. МИНАЛЬНЫЙ СОСТАВ КАРБОНАТОВ РЯДА ДОЛОМИТ – АНКЕРИТ РАЗЛИЧНЫХ ТИПОВ ОРУДЕНЕНИЯ

Примечание. В числителе пределы колебаний, в знаменателе среднее содержание, п – число анализов.

II с различным соотношением сидеритового и магнезитового миналов (см. рис. 3, б, г). В целом также отличаются повышенной железистостью. Карбонаты находятся в ассоциации с поздними сульфидами, сульфосолями и электрумом, часто совместно с апатитом и серицитом. Существенных различий между сидеродоломитами из руд жильно-прожилкового типа и минерализованных зон дробления не выявлено (см. табл. 4). Однако в последних чаще встречаются сидеродоломиты с относительно низкой концентрацией FeO, вплоть до собственно доломита (FeO 5,81 мас. %, или 7,85 мол. %), отмеченного в руде брекчиевой текстуры в ассоциации с кюстелитом и сульфидами Au и Ag. В зонах дробления, по-видимому, встречаются и более низкожелезистые доломиты, содержащие 2,29–3,37 мас. % FeO (см. рис. 3, б), а также сидериты (FeO 56,92 мас. %) и магнезиосидериты (FeO 36,64 мас. %, MgO 13,27 мас. %), но недостаток суммарного содержания (90-94%) не позволил принять их в расчёт. Несомненно, поздним является мангансидерит (родохрозитовая составляющая достигает 25,79%), образующий тонкие просечки в сидеродоломите генерации I.

Наряду с упомянутыми карбонатами, на заключительном этапе гидротермального процесса отлагался кальцит генерации II. Сравнение состава разновременных кальцитов показывает существенное обеднение позднего кальцита Mg, Fe, Mn и резкое обогащение Sr (до 4,9 мол. % SrCO₃) относительно раннего (0–0,5 мол. % SrCO₃). Стронций в карбонатах изоморфно замещает кальций [6], а повышенная стронциеносность характерна для карбонатов из участков с интенсивной метасоматической проработкой пород, при которой происходит накопление элемента в растворе.

Проведёнными исследованиями установлена следующая последовательность образования карбонатов: дорудные жилы – кальцит I, сидерит-магнезиосидерит (?) → мезотермальное Auкварцевое оруденение – магнезиоанкерит-сидеродоломит I — телескопированные мезоэпитермальные руды - сидеродоломит-доломит II, мангансидерит, сидерит-магнезиосидерит, кальцит II. При этом резко преобладают Fe-Mg двойные соли при ограниченной роли остальных карбонатов. Выявлено относительное снижение железистости карбонатов в процессе минералообразования. Смена минеральных видов карбонатного вещества, соотношений в них минералообразующих элементов, парагенезисов рудных минералов, безусловно, отражают изменение условий рудообразования. Высокая железистость карбонатов свидетельствует о повышенной кислотности среды минералообразования [12]. По КР-спектроскопическим данным газовая составляющая флюидных включений кварцевых жил месторождения представлена почти исключительно CO₂ (93–100 мол. %); примеси CH₄ (до 2 мол. %) и N₂ (до 5,9 мол. %) появляются на поздних этапах оруденения, характеризующихся также относительным снижением температур гомогенизации [9].

Сопоставление результатов исследований со сведениями по карбонатам других золоторудных месторождений Южного Верхоянья выявило их принципиальное отличие. На месторождении Юр карбонат в жильном кварце пластовых тел диагностирован как кальцит [14]. Карбонаты Нежданинского месторождения, по данным В.А.Аму-

5. МИНАЛЬНЫЙ СОСТАВ АНКЕРИТОВ ОЛОВО-СЕРЕБРО-ПОЛИМЕТАЛЛИЧЕСКОГО ОРУДЕНЕНИЯ ЗАПАДНО-ВЕРХОЯНСКОГО РАЙОНА

Месторождения	CaCO ₃	FeCO ₃	MgCO₃	MnCO₃	Источник	
Кельтерское	53,92	28,82	16,40	0,86		
Чочимбальское	56,02	23,70	19,02	1,26	[7]	
Эчийское	56,00	22,60	20,14	1,26		
Нунандинское	51,74	25,30	22,84	0,11	[14]	
Хобоятинское	55,03	23,76	19,01	2,20	[14]	
	49,45	27,18	22,66	0,57		
Аркачан	49,27	24,57	25,34	0,82	[4]	
	50,01	36,06	13,04	0,89		

зинского [14], Г.Н.Гамянина, В.В.Алпатова [3], представлены доломитом и крайне редко низкожелезистым сидеродоломитом. Данные по концентрации в них родохрозитового минала разнятся от 0,29–2,10 [по 14] до 0,01–0,03 мас. % [по 3].

Типоморфный карбонат мезотермального Аикварцевого оруденения Верхне-Индигирского, Куларского горнорудных районов и Западного Верхоянья – сидеродоломит [14], что согласуется с полученными данными по раннерудным карбонатам. Отличие состоит в исключительно высокой железистости изученного сидеродоломита, вплоть до появления Mg-анкерита. Достоверные находки анкерита в месторождениях Якутии весьма редки. Минерал установлен в полисульфидно-карбонатных ассоциациях касситерит-сульфидных и серебро-полиметаллических руд Западного Верхоянья [7, 14] (табл. 5), известны они и на Нежданинском месторождении, но развиты в дорудных березитах и жилах [3].

Полиформационный телескопированный характер оруденения поздних этапов формирования месторождения Задержнинское, несомненно, вносит трудности не только в выяснение последовательности образования карбонатов, что, как отмечалось, сделано с некоторой долей условности, но и при отнесении их к определённым формационным типам. Особенно это касается золото-редкометального оруденения, где непосредственных взаимоотношений карбонатов с минералами висмута не выявлено. В рудах комплексной редкометально-кварцевой формации Янской синклинальной зоны также широко развиты Fe-доломиты, но при этом доминирует кальцит, редко встречается Mg-сидерит. По данным Г.Н.Гамянина [11], на месторождениях висмутового типа Эргелях и Чугулук иммерсионным методом диагностирован анкерит.

Карбонаты Аи-Ад формации Верхояно-Колымской складчатой области на 80-90% представлены кальцитом. На месторождении Задержнинское с минералами серебра ассоциируют относительно низкожелезистый сидеродоломит и собственно доломит, что характерно для Нежданинского месторождения. Наиболее позднее, завершающее процесс формирования Задержнинского месторождения, золото-серебряное оруденение существенно отличается от типичных золото-серебряных формаций вулканогенного типа, и в целом названо так по минералого-геохимическим признакам. Возможно, золото-серебряное оруденение месторождения – продукт наложения олово-серебряной минерализации на ранее сформированное Аи-кварцевое оруденение с привносом серебра и сурьмы, что обусловило образование золото-серебряных парагенезисов, развивающихся за счёт ранних золотых руд. Это подчёркивается появлением в рудах канфильдита, разнообразных сульфосолей сурьмы и серебра, снижением пробности самородного золота до электрума и кюстелита. Скорее всего, это парагенезис заключительных этапов, который проявился в связи с позднемеловым магматизмом, как и на Нежданинском месторождении, где на ранние золото-пирит-арсенопиритовые руды наложена Sn-Ag минерализация [2].

Полученный материал во многом перекликается со сведениями по Au-Bi-сидерит-сульфидному оруденению месторождения Аркачан [4] оловоносного Западно-Верхоянского района, где выявлена такая последовательность отложения карбонатов: гидротермально-метаморфогенный этап – анкерит I; золоторудный (с минералами висмута в поздних ассоциациях) – Mg-сидерит I, анкерит II; серебро-полиметаллический – Mnсидерит II (Mn 9–11 мас. %) и серебро-сурьмяный – кальцит.

В рудах полиформационного золоторудного месторождения Задержнинское преобладают карбонаты анкерит-доломитового ряда – типоморфные минералы Аu-кварцевой формации. Но

Рис. 5. ДИАГРАММЫ СОСТАВА КАРБОНАТОВ:

а – доломит-анкеритового ряда; *б* – сидерит-магнезит-родохрозитового ряда; месторождения: *1* – Нежданинское, *2* – олово-серебро-полиметаллические Западного Верхоянья, *3* – Задержнинское

в целом по развитию минеральных видов, соотношению и уровню концентрации минералообразующих элементов изученные эндогенные карбонаты близки таковым олово-серебро-полиметаллических месторождений Западного Верхоянья (рис. 5).

Исследования выполнены по плану НИР ИГАБМ СО РАН, проект № 0381-2016-0004.

СПИСОК ЛИТЕРАТУРЫ

- Васильев Е.К., Васильева Н.П. Рентгенографический определитель карбонатов. – Новосибирск: Наука, 1980.
- Высокопродуктивные этапы базитового и гранитоидного магматизма Северной Азии, оценка их ресурсного потенциала, научное обоснование критериев прогноза и поисков крупных месторождений (Cu-Ni-Pt, Co, Au и редкие металлы) / А.С.Борисенко, А.М.Спиридонов, А.Э.Изох и др. // Проблемы минерагении России. М., 2012. С. 237–252.
- Гамянин Г.Н., Бортников Н.С., Алпатов В.В. Нежданинское золоторудное месторождение – уникальное месторождение Северо-Востока России. – М.: ГЕОС, 2000.
- Гамянин Г.Н., Викентьева О.В., Прокофьев В.Ю., Бортников Н.С. Аркачан – новый золото-висмут-сидеритсульфидный тип месторождений в оловоносном Западно-Верхоянском районе (Якутия) // Геология рудных месторождений. 2015. Т. 57. № 6. С. 513–545.

- Демчук И.Г. Рентгеноструктурное исследование железистых доломитов из нижнего рифея на Южном Урале // Ежегодник-1980 (Ин-т геологии и геохимии УНЦ АН СССР). Свердловск, 1981. С. 131–132.
- 6. *Дир У.А., Хауи Р.А., Зусман Дж*. Породообразующие минералы. Т. 5. М.: Мир, 1966.
- 7. Индолев Л.Н., Невойса Г.Г. Серебро-свинцовые месторождения Якутии. Новосибирск: Наука, 1974.
- Кондратьева Л.А. Закономерности локализации, минералого-геохимические особенности и возраст золотого оруденения месторождения Задержнинское (Южное Верхоянье): Автореф. дисс... канд. геол.-минер. наук. – Новосибирск, 2013.
- Кондратьева Л.А. Рудообразующие флюиды золотого оруденения месторождения Задержнинское (Южное Верхоянье) // Мат-лы XV Всеросс. конф. по термобарогеохимии. М., 2012. С. 39–40.
- Кондратьева Л.А., Анисимова Г.С., Холмогоров А.И. Структура и минералогия Задержнинского золоторудного поля // Отеч. геология. 2005. № 5. С. 23–28.
- Позднемезозойский магматизм и золотое оруденение Верхне-Индигирского района / Отв. ред. И.С.Рожков. – М.: Наука, 1971.
- Сазонов В.Н., Поленов Ю.А., Огородников В.Н. Карбонаты метасоматитов золоторудных месторождений и их индикаторная роль // Мат-лы XI съезда РМО. С-Пб., 2010. С. 257–258.
- Цветков А.И., Вальяшихина Е.П., Пилоян Г.О. Дифференциальный термический анализ карбонатных минералов. – М.: Наука, 1964.

- 14. Эндогенные карбонаты Якутии / Отв. ред. В.В.Ковальский. – Новосибирск: Наука, 1980.
- Földvari M. Handbook of thermogravimetric system of minerals and its use in geological practice // Occasional Papers of the Geological Institute of Hungary. 2011. Vol. 213.
- Kulp J.L., Kent P., and Kerr P.F. Thermal study of the Ca-Mg-Fe-carbonate minerals // Amer. Mineralogist. 1951. Vol. 36. № 9–10. P. 643–671.
- Rosenberg P.E. Synthetic solid solutions in the systems MgCO₃-FeCO₃ and MnCO₃-FeCO₃ // Amer. Mineralogist. 1963. Vol. 48. № 11–12. P. 1396–1400.

TYPOMORPHISM OF ENDOGENOUS CARBONATES AS AN INDICATOR OF THE FORMATION TYPE OF MINERALIZATION

L.A.Kondratieva, N.N.Yemelyanova

The carbonates of the ankerite-dolomite series, typomorphic minerals of the Au-quartz formation, predominate in the ores of the Zaderzhninskoe polyformational gold deposit. But in general, the development of mineral species, the ratio and concentration level of mineral-forming elements, the endogenous carbonates studied are similar to those of the tin-silver-polymetallic deposits of the Western Verkhoyansk region. Fe-Mg double carbonates are characterized by a wide variation of isomorphism with the coexistence of phases of different composition and extremely high iron content.

Keywords: ankerite, ferrous dolomite, isomorphism, Zaderzhninskoe gold deposit, Southern and Western Verkhoyansk region.

39