

Миляев Сергей Анатольевич

кандидат геолого-минералогических наук ведущий научный сотрудник sermil52@yandex.ru

Чекваидзе Виктор Борисович

доктор геолого-минералогических наук chekvaidze@rambler.ru

ФГУП Центральный научно-исследовательский геологоразведочный институт цветных и благородных металлов, г. Москва

МЕТОДЫ ВЕДЕНИЯ ПОИСКОВЫХ ЛИТОХИМИЧЕСКИХ СЪЁМОК В РАЙОНАХ МОРЕННО-ЛЕДНИКОВЫХ ОТЛОЖЕНИЙ

Приведены отечественные и зарубежные методы и примеры проведения поисковых литохимических съёмок в условиях развития моренно-ледниковых отложений в Карело-Кольском регионе и Финляндии

Ключевые слова: литохимические поиски, моренные отложения.

Самостоятельную проблему составляет методика литохимических поисков рудных месторождений в районах со сплошным покровом моренно-ледниковых отложений ограниченной мощности, к числу которых принадлежат значительные территории Кольского полуострова, Карелии, Финляндии и Канадского щита. Опыт показывает, что в этих условиях возможно обнаружение литохимических ореолов рассеяния рудных месторождений.

Формирование вторичных литохимических ореолов в моренно-ледниковом покрове, по мнению Е.М.Квятковского [4], можно разделить на три стадии: доледниковую, ледниковую и постледниковую. В доледниковую стадию образовались остаточные ореолы рассеяния в коре выветривания. В ледниковую стадию остаточные ореолы рассеяния в донной морене претерпевают смещения и разубоживание, а в абляционной – формируются веерообразные обломочно-валунные потоки рассеяния, путём регистрации которых ранее были открыты многие месторождения Финляндии. В постледниковую стадию, в ходе современного химического выветривания ледниковых отложений и развитых в них вторичных ореолов и потоков рассеяния возникают сорбционно-солевые наложенные литохимические ореолы рассеяния и вторичные аккумуляции на геохимических барьерах.

Поисковые литохимические съёмки ориентируются на выявление валунно-ледниковых потоков рассеяния или сорбционно-солевых переотложенных, смещённых и оторванных ореолов рассеяния. Наиболее рационально проводить поисковые литохимические съёмки м-бов 1:200 000–1:50 000 по сети маршрутов с отбором проб по контурам болот и озёр из-под торфяного слоя. На этом горизонте аккумулируются рудные элементы, переносимые твёрдым и жидким стоками с возвышенностей, и формируются вторичные наложенные ореолы рассеяния на геохимических барьерах.

Отбор проб по правильной прямоугольной сети профилей весьма затруднён из-за широкого распространения болот и озёр, а интерпретация результатов осложняется частой сменой ландшафтов вдоль профиля, тогда как по криволинейному маршруту у подножия склонов ландшафтная обстановка достаточно стабильна. Шаг опробования в зависимости от масштаба съёмки 50–200 м, среднее расстояние между маршрутами 0,5–2 км.

Глубина отбора проб 0,4–0,7 м (непосредственно вблизи уровня грунтовых вод). На анализ выделяется тонкая глинистая фракция (0,07 мм). Литохимическая съёмка сопровождается шлиховым опробованием моренно-ледниковых отложений по более редкой сети.

При мощности абляционной морены >15 м для обнаружения слабых наложенных ореолов необходимо использовать более чувствительные методы: подвижных металлоорганических форм (МПФ), термомагнитных фракций (ТМФ), на основе избирательных сорбентов, например GORE-SORBER (США) и др.

Дальнейшие проверка и детализация аномалий требуют постановки глубинной литохимической съёмки с отбором проб из донной морены или древней коры выветривания, а также из коренных пород для изучения первичных ореолов [4].

В последнее время при поисках рудных месторождений, перекрытых рыхлыми отложениями повышенной мощности, широко применяется метод анализа сверхтонкой фракции – МАСФ [1]. Сущность его заключается в выделении из проб рыхлых отложений сверхтонкой (<10 мкм) фракции с последующим её анализом количественными методами ICP OES, ICP MS и др. Эффективность МАСФ подтверждается результатами многочисленных исследований, выполненных ВСЕГЕИ, на Дальнем Востоке, в Сибири, Карело-Кольском и других регионах России. Так, на участке платинометалльного месторождения Вуручуайвенч на Кольском полуострове при мощности моренноледниковых отложений 0,6-5,6 м рудные зоны с поверхности надёжно фиксируются вторичными ореолами рассеяния Pt, Pd, Ni, Co, Cu, As, Ag и др. Размеры, контрастность и набор типоморфных элементов вторичных ореолов, выявленных методом МАСФ, превосходят эти же характеристики и параметры, полученные по результатам рядовой литохимической съёмки [1].

Особого внимания заслуживает технология геохимических работ, описанная в статье А.Хартикайнена и П.Нурми [5], посвящённой поискам золота в сланцевом поясе Хатту на востоке Финляндии. Авторами представлен тиллевый метод, основанный на геохимическом опробовании донной морены. Литохимические поиски в Финляндии проводились последовательно в трёх масштабах: региональном – 1 проба/16 км² (1–3 про-

бы/4 км² в пределах пояса Хатту), локальном – 16 проб/1 км² и поисковом – 100-400 проб/1 км². Опробование осуществлялось зимой на снегоходах с помощью лёгкого ударного бурового станка. Глубина пробоотбора в зависимости от масштаба съёмок составляет 1,7 м (региональные съёмки), 4,9 м (локальные), 5,2-5,6 м (поисковые). В последнем случае опробовались верхние горизонты выветрелых коренных пород. Анализируются фракции <0,06 мм (региональный и локальный масштабы) и <0,5 мм (поисковый). Последовательные сгущение сети опробования и углубление в толщу моренных отложений по мере перехода от региональной стадии к локальной и далее к поисковой позволяют выявлять объекты от крупных рудоносных площадей (рудные узлы и поля) до минерализованных зон.

Методика литохимических поисков месторождений золота по вторичным ореолам рассеяния в отложениях донной морены апробирована в Карелии в Лехтинском и Северо-Онежском рудных районах. По данным тиллевой съёмки выделены перспективные на золото узлы и поля, локализованы участки для поисков месторождений золото-сульфидно-кварцевого типа в зеленокаменных толщах (П.И.Шариков, Л.А.Богданов, Ю.С.Полеховский и др., 2002 г.).

При всей своей эффективности в тиллевом методе не учитывается ряд особенностей формирования и развития вторичных ореолов рассеяния в районах моренно-ледниковых отложений. Рудные элементы, высвобождающиеся в процессе гипергенных изменений сульфидных минералов, концентрируются преимущественно в глинистых фракциях, образуя сорбционно-солевые наложенные ореолы рассеяния. Использование при поисковых работах результатов анализа только тонкой фракции затрудняет интерпретацию литохимических аномалий, так как сорбционно-солевые ореолы золота и элементов-спутников иногда смещены или оторваны от коренного источника [3]. Шлиховые минералы, в их числе самородное золото, наоборот, способны обогащать грубозернистые фракции в непосредственной близости от месторождения. В этом случае при геологическом осмотре и оценке остаточных ореолов рассеяния, связанных с оруденением, содержащим тяжёлые устойчивые минералы, первостепенное значение приобретает шлиховое опробование.

Дополнительные возможности при поисках золоторудных месторождений на закрытых территориях криолитозоны открываются с применением шлихоминералогического метода [2]. В комплекс поисковых работ этим методом входят проходка шурфов, бульдозерные расчистки с литохимическим и шлиховым опробованием различных горизонтов рыхлых отложений и коренных пород. Для изучения золотоносности рыхлого чехла (до 10-20 м) и оконтуривания выхода на палеоповерхность золотоносных зон используется пневмоударное бурение с погоризонтным минералого-геохимическим опробованием рыхлых отложений. Цель данных работ определение «представительного уровня для опоискования» на ближайшем к дневной поверхности горизонте надёжного развития ореолов золота. Шлиховое опробование является одним из ведущих составляющих метода при поисках золотоносных зон, а полевой минералогический экспресс-анализ позволяет выделять шлиховые ореолы золота в рыхлых отложениях в течение короткого периода времени и оперативно определять места для вскрытия и изучения минерализованных зон. Применение экспрессного шлихоминералогического метода поисков способствовало открытию новых промышленных месторождений рудного золота на закрытых территориях в условиях распространения многолетнемёрзлых пород [2].

В районах моренно-ледниковых отложений необходимо увеличение глубинности геохимических поисков, а также повышение надёжности оценки выявляемых геохимических аномалий. Решение последней задачи потребует развития существующих и создания новых, более точных методов, с учётом генетических особенностей и геолого-структурных условий залегания основных промышленных типов месторождений.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Временные* методические указания по проведению геохимических поисков на закрытых и полузакрытых территориях / Сост. С.В.Соколов. СПб.: ФГУП ВСЕГЕИ, 2005.
- 2. *Иванов А.И., Агеев Ю.А.* Геохимические методы поисков золоторудных месторождений на закрытых территориях в условиях многолетней мерзлоты // Разведка и охрана недр. 2008. № 4–5. С. 103–108.
- 3. *Квятковский Е.М., Майоров Н.Ф., Стуккей Г.А.* Геохимические методы поисков рудных месторождений в районах развития моренных отложений // Геохимические методы поисков глубокозалегающих рудных месторождений. Новосибирск, 1980. С. 46–51.
- 4. *Справочник* по геохимическим поискам полезных ископаемых / А.П.Соловов, А.Я.Архипов, В.А.Бугров и др. М.: Недра, 1990.
- 5. Hartikainen A., Nurmi P.A. Till geochemistry in gold exploration in the late Archean Hattu schist belt, llomantsi, eastern, Finland // Geological Survey of Finland. Special Paper 17. 1993. P. 323–352.

METHODS OF PROSPECTING LITHOCHEMICAL SURVEYS IN THE AREAS OF MORAINE AND GLACIAL DEPOSITS

S.A.Milyaev, V.B.Chekvaidze

Domestic and foreign methods and examples of prospecting lithochemical surveys in the development of moraineglacial deposits in the Kola-Karelian region and Finland are set out.

Keywords: lithochemical prospecting, moraine.

