УДК 553.491 (470.22)

© И.Л.Олейник, Л.В.Кулешевич, 2016

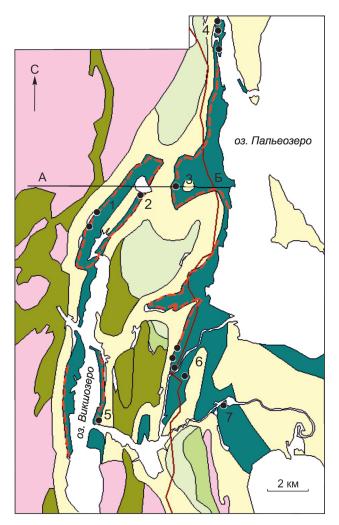
ПЕТРОХИМИЧЕСКИЕ ОСОБЕННОСТИ И БЛАГОРОДНОМЕТАЛЬНАЯ МИНЕРАЛИЗАЦИЯ КОЙКАРСКОГО СИЛЛА, КАРЕЛИЯ

И.Л.Олейник

000 «Индустрия», г. Петрозаводск

Л.В.Кулешевич,

ФГБУН Институт геологии Карельского научного центра РАН,


г. Петрозаводск

К верхней части стратифицированного титаномагнетитового горизонта в габбродолеритах Койкарского силла в Центральной Карелии приурочена благороднометальная минерализация. Рассматриваются петрохимические особенности пород и состав Ті-Fе-окисных руд. Благороднометальная минерализация локализуется вблизи границы перехода меланократовых габбродолеритов к субщелочным диоритам и тяготеет к верхней части наиболее богатых титаномагнетитовых руд. Элементы платиновой группы, входящие в арсениды, сульфиды, теллуриды, станниды, и золото ассоциируют с малосульфидной медной минерализацией (1-4%) и образуют протяжённую стратифицированную залежь со средним содержанием суммы благородных металлов 1-3 г/т. Открыто месторождение комплексных благороднометальных руд Викша.

Ключевые слова: Койкарский силл, габбродолериты, титаномагнетитовые руды, элементы платиновой группы, платиноиды, золото, Карелия.

В создании минерально-сырьевой базы элементов платиновой группы (ЭПГ) Карелии большое значение имеет оценка новых и переоценка ранее известных, в частности, железоокисных малосульфидных типов руд, приуроченных к силлам габбродолеритов палеопротерозойского возраста [3, 7]. Палеопротерозойский рифтогенез на Фенноскандинавском щите сопровождался возникновением глубинных разломов, поднятием мантийного диапира и многоактным проявлением базитового магматизма [8]. Данные события произошли в следующей последовательности: внедрение расслоенных интрузий (2,5-2,3 млрд лет), формирование интракратонных бассейнов, выполненных осадками и базальтами ятулийского возраста (2,3-2,0 млрд лет), завершение мантийной активизации коры (2,0-(1,95 млрд лет). В Центральной Карелии на по-

следнем этапе накапливались карбонатсодержащие, аргиллитовые и черносланцевые толщи, развивался базальтоидный интрузивный магматизм людиковийского надгоризонта. В это время (1,983 млрд лет) в западном и восточном бортах Онежской структуры внедряются Пудожгорский и Койкарско-Святнаволокский (далее Койкарский) силлы габбродолеритов [4]. Габбродолеритовый магматизм (траппового типа) приурочен к континентальным рифтогенным структурам центральной части Карелии. С силлами связано титаномагнетитовое и малосульфидное платинометалльное оруденение [2, 3, 5-7]. Койкарское титаномагнетитовое месторождение обнаружено в прошлом веке и оценено геологами СЗГУ под руководством С.И.Зака (1955 г.). Оно приурочено к пластовой интрузии габбродолеритов, которая прослеживается от пос. Кой-

кары до пос. Святнаволок и северного берега оз. Пальеозеро (рис. 1). Протяжённость Кой-карского силла ~20 км, мощность 120–150 м. Рудный титаномагнетитовый горизонт проявлен практически по всей его длине [3].

Содержание титаномагнетита и ильменита в габбродолеритах изменяется от 5–6% в подрудном горизонте до 20–25% в нижней части рудного горизонта и 40–45% в центральной части рудной залежи. В Викшеозерской зоне выделены три рудных тела, Пальеозерской – четыре (длина 0,6–8 км, мощность 2–10 м), прослеженные бурением на глубину 400 м, со средним содержанием Fe_{Ban} в рудах ~23, TiO_2 4,0–12,62 (в среднем 6), V_2O_5 0,32% [3]. Запасы титаномагнетитовых руд составляют 314,1 млн т, однако по основным компонентам во второй половине XX в. они были отнесены к забалансовым. Извлечение ильменита из титаномагнетита в

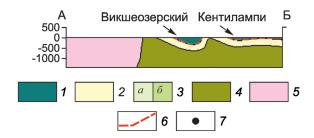


Рис. 1. Схема геологического строения Койкарского силла, построена с использованием материалов С.И.Зака (1955 г.), 000 «Семченское Золото» (2015 г.):

1 — габбродолериты; 2 — отложения ятулийского надгоризонта (кварцевые конгломераты, гравелиты, базальты, карбонатные толщи); 3 — конгломераты (a) и андезибазальты (b) сумийско-сариолийского надгоризонта; b — лопийский надгоризонт; b — нерасчленённые граниты; b — титаномагнетитовый и совмещённый с ним благороднометальный горизонт; b — места отбора образцов (участки: b — Каллиево, b — койкары, b — пос. Гирвас, «вулкан», карьер Койкарский, b — Порр-порог); месторождение ЭПГ Викша: участки Викшеозерский, Кентилампи

титановый концентрат возможно в том случае, если размер его зёрен превышает 0,3 мм.

Впоследствии в титаномагнетитовых рудах были отмечены платиноиды. В 1985–1987 гг. в результате поисково-ревизионных работ на Пудожгорском месторождении титаномагнетитовых руд сотрудниками ЦНИГРИ выявлены повышенные концентрации золота и платиноидов (и их минеральные формы), ассоциирующие с убоговкрапленной медной минерализацией, дана рекомендация ПГО «Севзапгеология» для проведения работ по оценке месторождения на благородные металлы. Также был выделен новый тип Pt-Cu-содержащих шлирово-вкрапленных титаномагнетитовых руд (материалы представлены на XXXI сессии Международного геологического конгресса и в информационноаналитическом обзоре под редакцией А.И.Кривцова, 2001). Работами 1999-2002 гг. ИГ КарНЦ РАН (Н.Н.Трофимов, А.И.Голубев) в титаномагнетитовых рудах Пудожгорского месторождения и Койкарско-Святнаволокской интрузии найдены благородные металлы (Pt, Pd, Au), для Пудожгорского месторождения оценены их ресурсы (Н.Н.Трофимов, 2002 г.). В ходе поисковоразведочных работ (2012—2015 гг.) на Койкарской площади, осуществлённых компанией «Семченское Золото», установлено, что благороднометальная минерализация тяготеет к верхней части титаномагнетитового горизонта, содержащего до 1—4% сульфидов, кроме того, разведаны и утверждены запасы месторождения Викша.

В задачи настоящей работы входило изучение строения и петрохимических особенностей пород силла, типоморфных геохимических характеристик всех выделяемых дифференциатов пород и руд, выяснение содержаний и характера распределения главных рудогенных элементов, микрокомпонентов и закономерностей локализации ЭПГ, определение минеральных ассоциаций благородных металлов. Благородные металлы определялись пробирным методом со спектральным окончанием в Аналитическом центре ЦНИГРИ (г. Москва, г. Тула), а также в ООО «Стюарт Геокемикл энд Эссей» с последующим исследованием методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой (г. Санкт-Петербург); платиноиды, малые и редкоземельные элементы – атомно-абсорбционным и ICP-MS анализами в ИГ КарНЦ РАН (г. Петрозаводск), ЗАО «РАЦ МИА» (г. Санкт-Петербург) и по скважине – ICP-OES методом в ООО «Геоэкохим» (г. Санкт-Петербург).

Петрографические и петрохимические особенности пород. Койкарский силл представляет собой пластовую интрузию в западном борту более крупной Онежской структуры. Он внедрился между ятулийскими базальтами и вышезалегающими карбонатсодержащими толщами или кварцитопесчаниками, имеет субмеридиональное простирание и складчатое синклинорное строение с пологим залеганием и падением западных крыльев складок на восток под углом 20–30° (см. рис. 1, разрез АБ). Койкарский участок представлен синклинальными структурами более мелкого порядка среди архейских толщ.

Среди вмещающих карбонатов, кварцитопесчаников и базитовых толщ силл хорошо выделяется по повышенной магнитности пород. Дифференцирован на габбровую и диоритовую фазы (габбродолериты и субщелочные диориты – кварцевые диориты). Кроме того, выделяются и более дробные зоны верхнего и нижнего эндоконтактов, подрудная и рудная титаномагнетитовая, надрудная, гранофировая, такситовая зоны, а также зоны с сульфидной минерализацией и ЭПГ. Внедряясь в карбонатные толщи, габбродолериты вызывают в них метасоматические изменения — хлоритовые, актинолитовые, иногда с пиритом; субщелочные диориты сопровождаются биотитизацией, альбитизацией, иногда с турмалином, вкрапленнопрожилковыми пиритом и халькопиритом. В ятулийских кварцевых конгломератах Койкарской структуры под влиянием растворов, отделяющихся от внедряющегося силла, наблюдаются гематитизация и обогащение REE.

Габбродолериты – массивные, мелко-, среднезернистые чёрные мелано- и мезократовые породы. В лейкократовых и такситовых зонах они содержат эвтектические (гранофировые) срастания плагиоклаза и кварца. В зоне закалки породы более массивные, тонкозернистые, по химическому составу близки к среднему составу мезократовых габбро (табл. 1, 2). Минеральный состав габбродолеритов, %: моноклинный пироксен и амфибол по нему (50-55), плагиоклаз (40-35), биотит (до 1-2), вторичные минералы (до 3-10). Содержание титаномагнетита в породах 5–25%, в богатых рудных горизонтах возрастает до 25-45%, количество сульфидов обычно не превышает 1-4% (Си 0,06-0,5%). В гранофировых срастаниях встречаются альбит, кварц (1-2%) и большее количество апатита (до 1–2%). Акцессорные минералы представлены бадделеитом, цирконом, монацитом, вторичные - актинолитом, эпидотом, хлоритом, альбитом. Циркон выделяется после бадделеита и обрастает его.

Первичный моноклинный пироксен в меланократовых габбродолеритах представлен диопсид-геденбергитовым рядом. Он сохраняется в наиболее массивных разностях и реликтах изменённых (амфиболизированных) пород и рудных зон. Пироксен частично или полностью замещён роговой обманкой и незначительно вторичным актинолитом и хлоритом. Амфибол развит наиболее широко, в рудных титаномагнетитовых горизонтах он обычно присутствует в виде тёмно-зелёной подщелоченной кальциевой роговой обманки с примесью Na, K и повышенными концентрациями Cl (1,6-3%). Хлор в небольшом количестве содержится также в биотите (Cl до 2,16%), апатите (F \sim 4, Cl \sim 0,3%) и более поздних актинолитах (Cl до 0,3-0,7%). В рудных габбродолеритах биотит ассоциирует с

Компоненты	1	2	3	4	5	6	7	8	9	10
SiO ₂	37,50	27,42	29,62	47,2	46,20	47,16	52,48	56,24	59,04	48,1
TiO ₂	5,05	7,8	7,36	2,10	2,64	2,68	1,96	2,06	1,84	2,07
Al_2O_3	14,06	10,22	8,99	11,72	11,83	13,22	11,78	11,70	11,92	12,3
Fe ₂ O ₃	10,31	17,70	17,40	7,85	6,70	4,77	13,27	8,10	8,78	3,96
FeO	17,67	23,56	23,85	5,17	10,05	12,21	6,32	6,75	4,52	13,3
MnO	0,229	0,303	0,281	0,150	0,369	0,311	0,133	0,210	0,095	0,21
MgO	3,13	3,40	3,30	12,14	6,92	4,48	1,77	2,18	1,72	5,70
CaO	6,57	4,82	4,74	4,70	7,31	6,08	3,76	4,63	4,41	7,70
Na₂O	2,58	1,39	1,51	2,79	3,12	3,77	6,06	5,20	6,00	2,56
K ₂ O	0,65	0,65	0,68	0,35	1,99	2,04	0,37	0,54	0,15	0,97
H ₂ O	0,06	0,01	0,11	0,33	0,08	0,21	0,14	0,29	0,05	0,19
ППП	1,91	2,08	1,99	4,84	2,37	2,37	0,90	1,26	0,65	2,49
P_2O_5	0,16	0,22	0,08	0,25	0,34	0,26	0,63	0,63	0,63	0,27
Σ	99,88	99,57	99,91	99,59	99,92	99,56	99,57	99,79	99,81	99,87
alk, %	3,23	2,04	2,19	3,14	5,11	5,81	6,43	5,74	6,15	3,53
Na ₂ O/K ₂ O	4,0	2,1	2,2	8,0	1,6	1,8	16,4	9,6	40,0	2,6
aľ	0,45	0,23	0,20	0,47	0,50	0,62	0,55	0,69	0,79	0,54
∑FeO+Fe ₂ O ₃	27,98	41,26	41,25	13,02	16,75	16,98	19,59	14,85	13,3	17,26
<i>K</i> _φ , %	89,9	92,4	92,6	51,7	70,8	79,1	91,7	87,2	88,5	75
F., %	36,8	42,9	42,2	60,3	40,0	28,1	67,7	54,5	66,0	22,9
K ₂ O/TiO ₂	0,13	0,08	0,09	0,17	0,75	0,76	0,19	0,26	0,08	0,47
Образцы	Кен1	Кен2	Кен3	Ги1	Ги5	Ги7	Ги9	Ги8	Ги6	Кср

1. Химический состав пород Койкарского силла, мас. %

Примечание. 1–3 – меланократовое рудное габбро (титаномагнетитовое); 4–6 – мезократовый габбродолерит; 7–9 – субщелочные диориты – кварцевые диориты; 10 – зона закалки, подрудный горизонт. K_{ϕ} =(FeO+Fe₂O₃)·100/(FeO+Fe₂O₃+MgO); F_{ϕ} =Fe₂O₃·100/(Fe₂O₃+FeO); g'=Al₂O₃/(FeO+Fe₂O₃+MgO).

ильменитом-2, его количество несколько больше, чем в безрудных породах. Основной плагиоклаз габбродолеритов обычно раскислен до андезина (Са 9,04–5,39, Na 2,77–4,72%), при этом он также замещается эпидотом и альбитом (Na 7,45–8,22, Ca 1,85–0,66%). Наличие CI, F и ОН-содержащих минералов в рудном горизонте меланократовых габбро указывает на высокую флюидонасыщенность магматического расплава на стадии рудоотложения и повышенное содержание CI в гидротермальных растворах, обусловивших амфиболизацию пород.

Рудный титаномагнетитовый горизонт общей мощностью ~20 м выделяется как стратифицированный. Он прослеживается практически по всей длине силла, наиболее богатая рудная часть располагается выше его подошвы на 33—36 м. Благороднометальная зона, как было установлено благодаря бурению и опробованию керна, находится несколько выше — на 38—42-м метре от подошвы силла.

Титаномагнетит образует октаэдрические и полые скелетные кристаллы (рис. 2, a, z). Содержит от 3,3 до 16,7% Ті и является основным концентратором V. При остывании интрузивного тела избыточный титан из титаномагнетита

сначала выделяется в форме пластинок — ламеллей ильменита-1, ориентированных по трещинкам отдельности, затем при последующих гидротермально-метаморфических преобразованиях образуются сегрегации ильменита-2 в виде неправильных зёрен и овальных стяжений (см. рис. 2, б, в). Ильменит накапливает Мп. Ильменит-2 появляется на стадии изменения породы, сопровождавшейся образованием подщелоченной роговой обманки. Образование более поздних актинолита и хлорита в локальных участках (чаще в диоритах) приводит к появлению титанита.

Субщелочные диориты – породы среднезернистые, массивные, имеют красновато-чёрный цвет, долеритовую структуру, по минеральному составу относятся к роговообманковым или биотитсодержащим. Слагают верхний горизонт силла, установлены в восточной части площади, иногда образуют самостоятельные тела, секущие вмещающие толщи. Породы содержат идиоморфные лейсты плагиоклаза (представленного альбитом), роговую обманку, биотит, кварц. В них увеличивается количество таких акцессорных минералов, как циркон, монацит, ксенотим, иногда появляется торит. В гранофировых зонах

2. Соде	ржание	микроко	мпоненто	ов в саррі	оодолери	тах и вм	іещающих	их пород	дах, ppm	

Компоненты	1	2	3	4	5	6	7	8	9	10
Li	25,83	21,95	20,97	44,14	45,82	38,97	34,72	3,08	10,74	40,09
Sc	22,66	22,22	18,72	28,75	27,75	31,95	40,5	24,66	25,74	3,52
V	2129	3221	2922	2703	794,9	393,4	576,4	9,93	16,06	109,0
Cr	12,81	12,71	7,2	Н	Н	Н	31,15	15,95	Н	19,41
Co	82,71	110,3	99,2	84,85	58,41	38,63	49,30	19,59	20,13	6,80
Ni	139,5	199,7	176,2	178,9	53,53	36,93	49,76	12,39	6,30	69,32
Cu	634,8	621,9	636,1	328,5	1027,8	247,5	95,10	78,10	105,23	-
Zn	259,2	384,2	319,6	157,95	141,03	194,38	247,53	50,17	117,38	20,82
Rb	18,1	24,64	26,15	43,10	41,26	99,62	100,40	3,08	14,0	0,6
Sr	135,3	67,75	69,22	93,26	159,74	98,13	130,63	72,31	48,97	5,82
Υ	31,44	21,55	21,78	31,27	43,32	43,04	58,67	122,59	105,24	3,90
Zr	111,9	61,37	66,66	110,57	185,74	195,10	180,61	681,89	587,14	35,88
Nb	7,612	9,196	9,058	11,45	12,34	10,63	12,83	31,86	26,53	0,89
Mo	0,9	0,933	0,822	0,79	0,8	0,25	0,74	1,18	0,52	-
Ag	0,242	0,195	0,176	-	0,13	0,22	0,29	0,81	0,64	-
Sn	2,503	2,264	2,402	-	-	-	-	-	-	-
Sb	0,172	0,152	0,094	-	-	-	-	-	-	-
Te	1,873	1,436	1,485	-	-	-	-	-	-	-
Cs	0,965	1,953	2,272	3,36	2,43	9,41	13,23	0,09	0,92	0,07
Ва	138,7	168,3	163,2	360,69	350,51	327,44	204,64	66,0	126,52	24,80
La	10,05	6,734	6,992	11,24	15,62	15,18	21,2	40,26	36,29	1,47
Ce	24,05	16,58	17,29	26,39	37,67	33,42	50,98	99,90	78,78	2,74
Pr	3,275	2,344	2,35	3,60	5,23	5,03	6,80	13,78	11,46	0,39
Nd	15,2	11,1	11,15	17,09	24,67	22,69	31,40	64,59	51,03	1,81
Sm	4,527	3,245	3,277	4,68	6,60	6,63	8,24	18,21	16,07	0,40
Eu	1,414	1,01	0,998	1,48	2,07	2,34	2,44	4,75	4,16	0,07
Gd	5,693	4,088	4,231	4,72	6,63	8,26	10,37	22,57	19,94	0,57
Tb	0,908	0,659	0,679	0,93	1,30	1,39	1,70	3,63	3,33	0,09
Dy	5,412	4,012	4,136	5,85	8,19	8,90	11,11	23,27	21,01	0,73
Но	1,205	0,876	0,924	1,18	1,70	1,82	2,26	4,70	4,34	0,14
Er	3,507	2,542	2,598	3,44	4,91	5,34	6,70	13,71	12,70	0,40
Tm	0,65	0,511	0,512	0,46	0,68	0,75	0,91	1,92	1,79	0,06
Yb	3,508	2,668	2,733	3,06	4,73	4,80	5,22	12,50	11,52	0,43
Lu	0,456	0,302	0,303	0,39	0,62	0,68	0,78	1,78	1,63	0,06
Hf	3,048	1,511	1,718	2,77	4,67	7,25	6,15	19,25	19,74	1,20
Та	0,598	0,67	0,65	1,06	1,12	1,14	1,12	2,70	2,69	0,25
Pb	5,016	8,395	7,107	18,98	14,98	3,69	3,34	4,46	10,51	0,87
Bi	0,227	0,215	0,189	-	0,04	0,08	0,07	-	0,03	-
Th	1,998	1,193	1,3	1,60	2,54	2,82	3,18	9,16	0,50	5,19
U	0,298	0,178	0,188	0,34	0,43	7,55	0,76	1,79	1,47	0,38
∑REE	79,86	56,67	58,17	84,50	120,61	117,22	160,77	325,56	274,05	9,36
Образцы	Кен1	Кен2	Кен3	Кой17/1	Кой17	ПП1	Ги5	Ги6	ПП2	Ги2

Примечание. 1–4 — меланократовые рудные габбродолериты (титаномагнетитовые); 5–7 — мезократовые габбродолериты (6, 7 — биотитизированные); 8, 9 — субщелочные диориты; 10 — метабазальт хлоритизированный; н — нет данных; прочерк — ниже предела обнаружения.

встречаются тонкие «червеобразные» прорастания кварца и альбита, редко калиевый полевой шпат. По темноцветным минералам развиваются вторичный актинолит, хлорит, ильменит замещается титанитом.

Лейкократовые породы (субщелочные диориты – кварцевые диориты) красноватого цвета в связи с окраской альбита, содержащего примеси окисленного железа, меланократовые разности – красновато-чёрного за счёт повышенно-

го количества биотита. Породы обычно имеют высокую Na-щёлочность, низкую железистость, но высокую степень окисления железа (см. табл. 1). Магнетит, ильменит, титанит и гематит в них встречаются в количестве не более 1–4%.

Геохимические особенности пород. Среднее содержание SiO_2 в безрудных габбродолеритах составляет 46–47%, ∑alk=2–3,2%, сумма Fe 13–19% (рис. 3, см. табл. 1, 2). Содержание TiO_2 в габбродолеритах достигает 2–2,7%, V 0,04–0,1%,

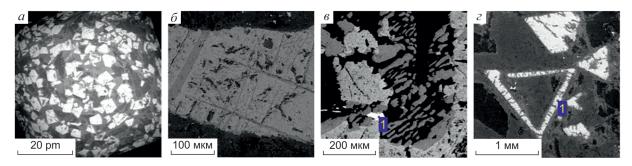


Рис. 2. Титаномагнетитовые руды:

a — богатая вкрапленная руда (обр. Кен3); δ — ламелли ильменита-1 в титаномагнетите; ϵ — халькопирит (1), ильменит-2 (тёмно-серый), магнетит (обр. Кен3); ϵ — скелетные кристаллы титаномагнетита (1) (обр. 457-1)

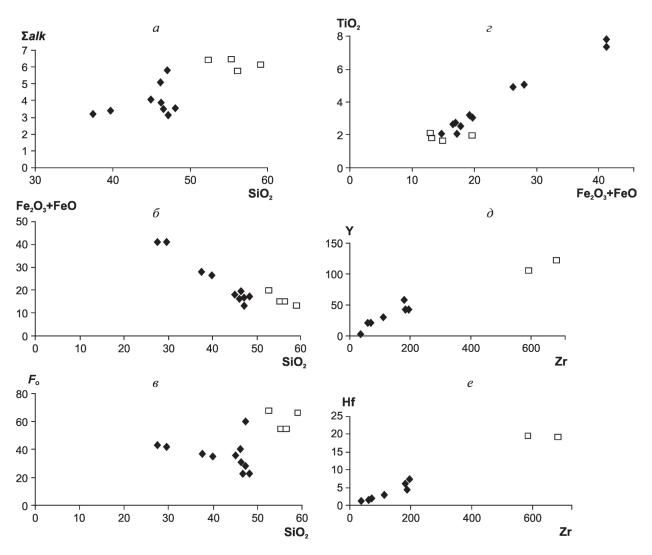


Рис. З. Соотношение основных компонентов и некоторых редких элементов в дифференциатах Кой-карского силла:

 $a - SiO_2 - (Na_2O + K_2O), \%; \\ \delta - SiO_2 - (Fe_2O_3 + FeO), \%; \\ s - SiO_2 - F_o, \%; \\ z - (Fe_2O_3 + FeO) - TiO_2, \%; \\ \partial - Zr - Y, ppm; \\ e - Zr - Hf, ppm - F_o, \%; \\ d - F_o, \%;$

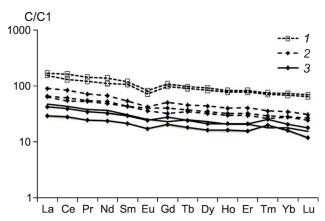


Рис. 4. Нормированное по хондриту (С1) распределение РЗЭ в габбродолеритах Койкарского силла:

1 — субщелочные диориты, 2 — мезократовые габбродолериты, 3 — габбродолериты рудные; С — концентрация элементов, ppm; C/C1 — нормированные значения (С1 — концентрация элементов в хондрите 1)

∑REE 117–160 ppm, Zr 110–195 ppm, Y 31–58 ppm. В породах с повышенным содержанием биотита возрастает количество Li, Rb, Sr. В рудных габбродолеритах содержание SiO₂ снижается до 27% (см. табл. 1), значительно увеличивается сумма железа Σ (FeO+Fe₂O₃) – до 40%. Содержание TiO_2 повышается до 7,8, V — до 0,2—0,32%; концентрации некогерентных элементов и REE составляют: Zr 60-110, Y 20-30, ∑REE 56-80 ppm (см. табл. 2). В мезократовых и рудных габбродолеритах отмечаются несколько повышенные содержания Си и сопутствующих ей элементов (Co, Ni, Zn, Sn, Pb, Bi), связанных с рассеянной вкрапленностью сульфидов и рудных минералов. Низкое содержание Cr (7-40 ppm) в рудных габбродолеритах связано с отсутствием среди дифференциатов силла более магнезиальных пород. Однако в подошве силла концентрация Cr (по K-602) увеличивается до 100-212 ppm, что в целом обусловлено большей основностью пород.

В субщелочных диоритах содержание SiO_2 увеличивается до 53–57%, Σalk =5,74–6,43%, количество TiO_2 снижается и не превышает 2%, V ~0,001 ppm, Σ REE возрастает до 275–326, Zr достигает 590–680, Hf 20, Y 105–123 ppm. Относительно габбродолеритов повышаются содержания редкоземельных элементов Yb, Dy и незначительно Nb, Ta (см. табл. 1, 2).

Состав пород Койкарского силла (SiO₂, сумма щелочей, ∑Fe, Ti, K_{ϕ} , F_{\circ} , Y, Zr, Hf, REE, см. рис. 3) наиболее контрастно отражает его дифференциацию. Все дифференциаты силла относятся к низкоглинозёмистым породам натриевой серии (см. табл. 1). В мезократовых породах коэффициент железистости равен 52–79, в рудных увеличивается до 90-92,6%, степень окисленности железа (F_0) 28–43%. Суммарная концентрация оксидов железа возрастает от 23 до 41,3% в рудных габбродолеритах. В лейкократовых субщелочных диоритах степень окисленности железа увеличивается до 54,5-67,7%, а суммарная концентрация оксидов железа снижается до 13-20%. По содержанию Zr, Hf, Y и ∑REE субщелочные диориты превышают мезократовые и рудные габбродолериты в 2-5 раз, что связано с присутствием в них большего количества бадделеита, циркона, REE-фаз (см. табл. 2). Вмещающие их метабазальты – породы интенсивно хлоритизированные, в отличие от пород силла они содержат более низкие концентрации Ti, V, ∑REE.

Геохимические спектры REE-элементов габбродолеритов и субщелочных диоритов, нормированные по C1 (хондриту 1), слабо дифференцированы, пологие и подобны между собой (рис. 4), что свидетельствует об общности образования пород. В субщелочных диоритах намечается небольшой Eu минимум за счёт отделения плагиоклаза.

Рудный титаномагнетитовый горизонт (по одной из разведочных скважин С-802) подсечён в интервале 210—233 м (23 м). Максимальные содержания Fe_t (до 48,5%), Ti (до 8,3%), V (до 0,16%) установлены в интервале 225—228 м. Результаты опробования керна позволили выявить следующие закономерности распределения рудогенных элементов (рис. 5). Концентрация Тi в рудном горизонте 3,6—8,3%, V 702—1602 ррт. Наиболее высокие для горизонта содержания Ni (130—158 ррт) и Со (61—68 ррт) связаны с редкой пирротиновой вкрапленностью (иногда с пламеневидным пентландитом в нём). Они приурочены к нижней части богатого титаномагнетитового горизонта (см. рис. 5).

Максимальные концентрации Си (от 600 до 1167—1692 ppm) тяготеют к верхней части рудного титаномагнетитового горизонта (к интервалу 210—220 м) с максимальными значениями на глубине 216—219 м, где и устанавливаются

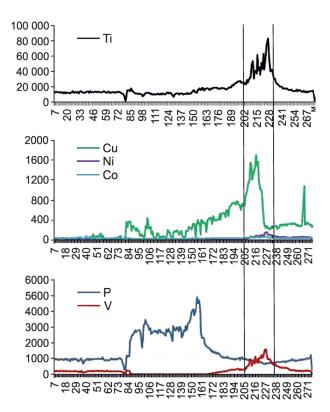


Рис. 5. Содержание Ti, P, V, Cu, Ni, Co в габбродолеритах месторождения Викша (скв. C-802), ppm

максимальные суммарные значения платиноидов. Содержание S в этом малосульфидном титаномагнетитовом горизонте не превышает 0,1—0,5% (среднее 0,24%). Максимальное содержание S (0,88%) по скв. 802 определено в верхней лейкократовой части силла, где коррелируется с Со и связано с более поздней наложенной вкрапленностью пирита.

Концентрации Р в габбродолеритах низкие и не превышают 0,38–0,5% (С-802, интервал 150–159 м, см. рис. 5). Фосфор тяготеет к гранофировым частям силла, где встречается вкрапленность апатита в количестве не более 0,5–1%. Апатитовая минерализация несколько удалена от рудного титаномагнетитового горизонта.

Благороднометальная минерализация на Викшеозерском участке в западной части Кой-карского силла отмечена в рудных габбродолеритах в виде вкрапленности микронного размера от 1–3 до 10–15 мкм в ассоциации с сульфидами. Сульфиды (1–4%) представлены халькопиритом, борнитом, реже встречаются галенит, сфалерит (Fe 1–3%), иногда клаусталит, очень редко науманнит. Сульфиды меди размером

до 0,1–1 мм. Среди более поздних сульфидов, обычно выделяющихся в тонких прожилках или вкрапленности, иногда наблюдаются пирит и халькопирит-2.

Рt-Pd минералы образуют удлинённые, округлые или неправильные кристаллы, зёрна и их срастания (рис. 6). Выделяются в силикатах — пироксене и амфиболе, в срастании друг с другом и с халькопиритом и в целом тяготеют к зоне с рассеянной медной сульфидной минерализацией. Тонкодисперсное золото встречается редко, обычно оно образует тонкие срастания с платиноидами.

Содержания благородных металлов в габбродолеритах (эндоконтактовых, мезократовых и рудных зонах) колеблются, в рудной зоне составляют, г/т: 0,022—0,8 Pt, 0,026—2,4 Pd, <0,003 Rh, 0,9—3 ∑ЭПГ, до 0,008—2,3 Au (данные авторов и [1]). Максимальные значения благородных металлов тяготеют к верхним зонам богатых рудных горизонтов габбродолеритов. С платиноидами коррелируются As, Sb, Te, Sn, образующие с ними соответствующие минералы, несмотря на невысокие концентрации этих элементов (см. табл. 2). Содержание в рудных габбродолеритах, ppm: 2,4—4,8 As, 2,26—2,5 Sb, 1,5—1,9 Te, ~0,2 Bi, 2,3—2,5 Sn.

В северной и северо-восточной частях месторождения Викша (на участке Кентилампи) в рудной зоне непосредственно установлены такие платиноиды, как палладоарсенид, паларстанид, брэггит, винцентит, сперрилит, арсенопалладинит, мончеит и тонкие срастания платиноидов с золотом (табл. 3). Реже (в канаве K-602) встречается изомертиит (11,3-11,06 As, 72,85-73,35 Pd, 15,84-15,59% Sb). В центральной и южной частях месторождения (участок Каллиево) платиноиды также выделяются в срастании друг с другом и иногда с золотом. Они представлены сперрилитом, изомертиитом, Те-изомертиитом, палладоарсенидом, Snили Sb-Te арсенопалладинитом, высокопалладиевым арсенопалладинитом, стиллуотеритом, станнопалладинитом, тетрагональными Pd-Pt станнидами (масленицковит?), паларстанидом, мончеитом, котульскитом (табл. 4). Наиболее распространены хорошо огранённые кристаллы сперрилита, арсенидов палладия и их сростки (см. рис. 6, e-3). Редко отмечаются холлингвортит, Rh улавливается также в сперрилите. В наиболее богатых титаномагнетитовых горизонтах

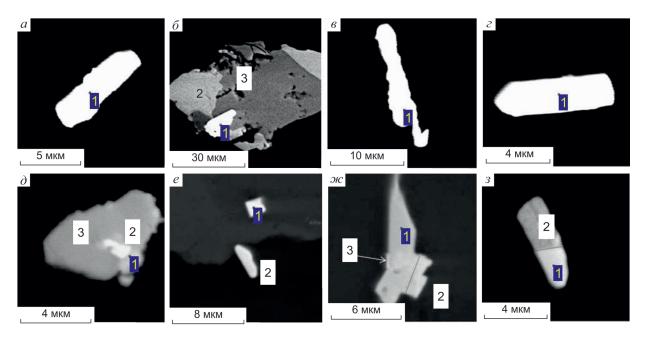


Рис. 6. Морфология минералов благородных металлов в Fe-Ti-O рудах в габбродолеритах месторождения Викша:

участок Северный Викшеозерский (Кентилампи): a — палладоарсенид (обр. Кен1-1), δ — брэггит (1), халькопирит (2), борнит (3) (обр. Кен2-14), s — сперрилит (обр. Кен2-5), s — паларстанид (обр. Кен3), δ — срастание золота (1), сперрилита (2) в арсенопалладините (3) (обр. Кен 3а-7); участок Южный Викшеозерский (Каллиево): e — сперрилит (1), палладоарсенид (2) (обр. 451-14), m — срастание изомертиита (1), сперрилита (2), тонкодисперсного Au (3) (обр. 451-6-3), s — срастание сперрилита (1), палладоарсенида (2)

3. Рd-Рt минералы северной части месторождения Викша (участок Кентилампи), %

Эле- менты	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Pd	71,87	60,58	69,16	68,16	30,60	30,43	43,08	75,0	76,82	78,34			84,36	
Pt		11,63		7,58	43,30	42,54	22,79				57,14	54,20		42,44
Rh												2,02		
As	23,49	20,34	11,61	7,68				12,60	9,34	9,27	42,86	40,71	15,64	
S					21,03	21,61	23,54					0,86		
Te								8,10	10,65	7,12				57,56
Sn		3,44	19,24	13,34					3,20	3,72				
Sb								2,92						
Bi				0,51										
Au	3,29			2,73										
Ni					5,08	5,42	9,95							
Fe							0,63	1,38		1,56		2,21		
Σ	98,65	100	100	100	100	100	100	100	100	100	100	100	100	100
Образцы	Кен1	Кен3	Кен1	Кен3	Кен1	Кен1	Кен2	Кен1	Кен2	Кен3	Кен1	Кен1	Кен2	Кен3а
Участки	1-1	16-1	2	14-1	9	22	14	11	7-1	10-1	14-1	5-1	1	1

Примечание. 1, 2 — палладоарсенид (Pd,Au) $_2$ As, (Pd,Pt) $_2$ As; 3, 4 — паларстанид Pd $_8$ (Sn,As) $_3$; 5—7 — брэггит (Pt,Pd,Ni)S; 8—10 — палладиевый винцентит Pd $_3$ (As,Te,Sn) $_1$; 11, 12 — сперрилит PtAs $_2$; 13 — арсенопалладинит (высокопалладистая фаза Pd $_4$ As); 14 — мончеит PtTe $_2$. Анализы выполнены на электронном сканирующем микроскопе VEGA II LSH с микроанализатором INCA Energy-350 в ИГ КарНЦ РАН (здесь и далее). Пустые клетки — не обнаружен.

Эле- менты	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Pd	74,87	76,45	4,39	75,05	75,65	47,66		76,47	77,08	71,80	82,83	66,83	44,05	68,48	
Pt			50,9				45,37						28,52	8,33	10,46
Rh			3,77												39,72
Au										7,76			4,62		
As	9,17	8,79	40,94	24,95	24,35			17,95	19,15	20,44	17,17	8,18		6,68	34,20
Sb	15,96	8,80							3,77						
Sn								5,58				24,98	28,52	15,21	
Te		5,97				52,34	54,63								2,01
S															13,61
Σ	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Образцы	451	453	451	452	456	457	456	453	451	451	452	452	457	457	457
Vuactvu	6-1	22-1	6-2	1-1	10-1	0_1	5-2	17_1	22_1	1/1_2	Q_2	11_1	20-3	20-4	22-1

4. Pt-Pd минералы южной части месторождения Викша (участок Каллиево), %

Примечание. 1 — изомертиит Pd_5AsSb ; 2 — Те-изомертиит $Pd_5(As,Sb,Te)$; 3 — сперрилит (Pt,Pd,Rh) As_2 ; 4, 5 — палладоарсенид Pd_2As ; 6 — котульскит PdTe; 7 — мончеит $PtTe_2$; 8 — арсенопалладинит, Sn-содержащий $Pd_5(As,Sn)_2$; 9, 10 — стиллуотерит Pd_8As_3 , в том числе, 10 — Au-содержащий; 11 — арсенопалладинит ($\Phi asa Pd_7As_2$); 12 — станнопалладинит $Pd_3(Sn,As)_2$; 13 — тетрагональная $\Phi asa (Pd,Pt,Au)_3Sn$; 14 — паларстанид (Pd,Pt) $B(Sn,As)_3$; 15 — холлингвортит (Bh,Pt)AsS.

Элементы	1	2	3	4	5	6	7	8	9
Au	84,89	68,62	69,83	76,96	84,53	83,63	85,30	85,82	80,67
Ag	15,11	31,38	30,17	23,04	15,47	16,37	14,70	14,18	19,33
Σ	100	100	100	100	100	100	100	100	100
Образцы	451a	451	451	Кал457	457	K457-1	457-1	457-1	Кен3а
VIII	6.2	7 1	0 1	0 1	20 E	E 1	C 1	6.2	7 1

5. Состав золота месторождения Викша, %

Примечание. 1-8 – участок Каллиево; 9 – Кентилампи.

руд развиты станниды Pd, Pt в срастании с золотом. Теллуриды (мончеит, котульскит) встречаются реже, чем арсениды.

Тонкодисперсное золото (0,5–3 мкм) содержит 14–31% Аg (в среднем 20%, табл. 5), обычно оно выделяется в микропрорастании с платиноидами — арсенидами и стибиоарсенидами (сперрилитом, арсенопалладинитом, изомертиитом, см. рис. 5, ∂ , \mathcal{M}) или станнидами. Кроме того, золото входит в состав палладоарсенида, паларстанида (участок Кентилампи), стиллуотерита и фазы станнидов (Pd,Pt,Au) $_3$ Sn (участок Каллиево), изоморфно замещая платиноиды (см. табл. 3, 4).

Итак, по результатам бурения установлено, что Койкарский силл представляет собой протяжённое пластовое интрузивное тело, участвующее в складчатости в западном крыле более крупной Онежской структуры — депрессии, заложившейся в палеопротерозое на рифтогенном этапе развития территории. Расслоенность силла проявлена в существовании двух основ-

ных типов пород — габбродолеритов и субщелочных диоритов. Граница расслоенности между ними маркируется рудным титаномагнетитовым стратифицированным горизонтом. Мощность рудного горизонта достигает 6–20 м. Отложение титаномагнетитовых руд происходило на позднемагматической стадии.

Габбродолериты — известково-щелочные чёрные породы толеитовой серии. Представлены диопсидом и основным плагиоклазом, на стадии метаморфогенно-гидротермального изменения в них происходит интенсивное замещение пироксена Cl-содержащей кальциевой роговой обманкой (Cl 1,3–3%). Очевидно, повышенное содержание хлора в более поздних амфиболах связано с высокой солёностью Онежского бассейна, оказавшего существенное влияние на флюидно-гидротермальную систему при формировании силла.

Крайние члены дифференциации габбродолеритов с высоким суммарным содержанием Fe и Ti сопровождаются формированием рудных тел с титаномагнетитом и ильменитом. Избыток Ті из магнетита при остывании интрузии выделяется сначала в виде ламеллей ильменита, а затем на стадии метаморфогенно-гидротермальных изменений в форме овальных стяжений и зёрен, при этом V концентрируется в магнетите. Субщелочные диориты — красноватые породы повышенной натриевой щёлочности с высокой степенью окисления железа ($F_{\rm o}$), низким суммарным его содержанием, но близким коэффициентом фракционирования ($K_{\rm o}$). В них присутствуют альбит, амфибол, биотит, кварц.

Габбродолериты и вмещающие их базальты содержат низкие концентрации некогерентных элементов (∑REE 117-160, Zr 110-185, Y 30-43, Hf 3-7 ppm), что характерно для толеит-базальтового магматизма рифтогенных структур. В крайних рудных членах дифференциатов концентрации этих элементов ещё более снижаются (SREE 56-80, Zr 60-110, Y 20-30, Hf 1,5-3 ppm). Дальнейшая эволюция магматизма (до лейкократовых роговообманковых и биотитовых субщелочных диоритов) сопровождается значительным увеличением концентраций элементов (∑REE 275–326, Zr 680, Hf 20, Y 105–123 ppm), что свидетельствует о существенном вкладе коровой составляющей, обогатившей магматический источник (смешении с материалом фундамента). В биотитсодержащих породах повышается содержание калия и редких щелочей. В рудных габбродолеритах суммарное содержание оксидов железа достигает 40% (среднее при подсчётах ресурсов равно 23%), TiO_2 4–12,6 (среднее 6), V_2O_5 0,32, в Викшеозерской зоне TiO₂ 7,8, V 0,2–0,32%.

Новые данные, полученные при опробовании титаномагнетитового рудного горизонта, позволили выделить благороднометальный горизонт и установить, что платинометальная рудная минерализация в Койкарском силле приурочена к верхней его части. Элементы платиновой группы также находятся на границе расслоенности, фиксируемой отчётливой сменой пород, резким возрастанием щёлочности, степени окисленности железа и увеличении (хотя и незначительном) концентраций Си и всех малых рудогенных элементов.

В результате экспериментальных работ [9] доказано, что концентрация платиноидов может значительно увеличиваться в водно-хлоридном

флюиде, существующем в равновесии с базальтовым расплавом при снижении температуры. Таким образом, наличие CI-OH-флюидов, даже при незначительном содержании серы, ведёт к сохранению платиноидов в расплаве вплоть до температуры гидротермального рудоотложения (с осаждением как платиновых, так и палладиевых фаз даже после отложения основных сульфидов). В формировании платинометальной минерализации Койкарского силла также большое значение имели CI-OH-содержащие флюиды, обладающие значительными экстрагирующими свойствами. Это подтверждается присутствием Cl-содержащего апатита в гранофирах и минералов гидротермальной стадии - CI-содержащих амфиболов и биотита. Резкая смена окислительно-восстановительного режима при формировании малоглубинных силлов, смена габбродолеритов с титаномагнетитом диоритами и кварцевыми диоритами тоже оказались благоприятными для отложения сульфидов меди, соединений платины и палладия.

Очевидно, титаномагнетитовые руды образовывались из обогащённых железом толеитовых расплавов на позднемагматической стадии в субвулканических условиях ($T_{\text{обр}}$ руд была близка к распаду фаз магнетит-ильменит, \sim 600°С). Остывание, по-видимому, происходило в достаточно короткий промежуток времени, на что указывают многочисленные скелетные кристаллы – свидетели быстрой кристаллизации. Дефицит серы не способствовал отложению сульфидов железа. Дальнейшее нарушение состава расплава в магматической камере, а также обогащение флюидно-гидротермальной системы солевыми компонентами сопровождалось изменением состава пород (до субщелочных) и интенсивными автометасоматическими их изменениями с образованием Cl-содержащих амфиболов и биотита. На данной стадии появляется ильменит-2. Это благоприятствовало сохранению платиноидов вплоть до гидротермальной стадии и отложению их совместно с сульфидами меди (халькопиритом, борнитом).

Установлена локализация малосульфидной платинометальной минерализации в титаномагнетитовом горизонте, максимально в верхней его части, несколько выше наиболее богатых Fe-Ti руд. Элементы платиновой группы тяготеют к зоне с повышенным содержанием Сu, обусловленным присутствием халькопирита

и борнита (до 1-4% сульфидов), а медь является простейшим геохимическим индикатором. Микрокомпонентный состав благороднометальных рудных зон характеризуется следующим содержанием сопутствующих элементов, ppm: Cu 620-1700, Zn 260-380, Pb 5-8, Te 1,5-2, Sn 2-2,5, Ві 0,2-0,3 (см. табл. 2, рис. 5). Более поздняя наложенная пиритовая вкрапленная минерализация, иногда встречающаяся на разных уровнях и в разных дифференциатах силла, обычно не содержит платиноидов. Благороднометальная залежь прослежена на расстояние до 10 км, согласно со стратифицированным характером развития титаномагнетитового рудного горизонта. Несмотря на невысокие суммарные концентрации благородных металлов в рудах (∑ЭПГ в среднем 1–3 г/т на мощность \sim 4–7 м), их ресурсы представляются значительными. Это позволило выделить и утвердить благороднометальное месторождение Викша.

Благороднометальная минерализация представлена преимущественно арсенидами, стибиоарсенидами, сульфидами Pt и Pd, станнидами, в меньшей мере теллуридами. Среди них на месторождении Викша обнаружены сперрилит, изомертиит, палладоарсенид, арсенопалладинит, Sn-Sb-Te-содержащие арсенопалладиниты, высокопалладиевый арсенопалладинит, стиллуотерит, станнопалладинит, янцхонгит, винцентит, брэггит, паларстанид, тетрагональный Pd-Pt станид (масленицковит?), мончеит, котульскит, холлингвортит. Большинство этих минералов в Койкарском силле найдены впервые. Повышенные содержания Аи обеспечиваются присутствием примеси золота в платиноидах и самородным тонкодисперсным серебросодержащим золотом (15-31% Ag).

Таким образом, установлено, что месторождение Викша — объект комплексных благороднометальных руд (Au, Pt, Pd, Cu). Основная схема переработки руд — флотационная с получением медно-благороднометального концентрата. Запасы Fe, Ti и V ввиду отсутствия эффективной технологической схемы их получения оценены для сведения. По состоянию на 01.05.2014 г. запасы месторождения по категории C_1+C_2 составляют 48 т условного Pd, или 4,3 т Au, 7,9 т Pt, 18,5 т Pd и 35 тыс. т Cu. В качестве попутного компонента подсчитаны запасы серебра категории C_2 — 12,7 т. Прогнозные ресурсы трёх участков Койкарского

силла Викша, Кенти и Шарги оценены в 88,3 т условного Pd.

СПИСОК ЛИТЕРАТУРЫ

- 1. Иващенко В.И., Голубев А.И. Золото и платина Карелии: формационно-генетические типы оруденения и перспективы. Петрозаводск: КарНЦ РАН, 2011.
- 2. *Металлогения* Карелии / Отв. ред. С.И.Рыбаков, А.И.Голубев. Петрозаводск: КарНЦ РАН, 1999.
- 3. *Минерально-сырьевая* база Республики Карелия / Отв. ред. В.П.Михайлов, В.Н.Аминов. Петрозаводск: Карелия, 2005.
- 4. Новые геохронологические данные по Койкарско-Святнаволокскому и Пудожгорскому габбро-долеритовым интрузивам / Н.Б.Филиппов, Н.Н.Трофимов, А.И.Голубев и др. // Геология и полезные ископаемые Карелии. Петрозаводск, 2007. Вып. 10 С. 49–68.
- 5. Олейник И.Л., Кулешевич Л.В. Благороднометальная минерализация Койкарского силла (Карелия) // Мат-лы XII Всеросс. петрогр. совещания «Петрография магматических и метаморфических горных пород». Петрозаводск, 2015. С. 472–474.
- 6. *Трофимов Н.Н., Голубев А.И.* Пудожгорское благороднометалльное титаномагнетитовое месторождение. Петрозаводск: КарНЦ РАН, 2008.
- 7. Трофимов Н.Н., Голубев А.И., Филиппов Н.Б. Платиноидно- и золотосодержащие ванадий-титаномагнетитовые месторождения в дифференцированных габбро-долеритовых интрузиях Карелии // Платина России. 1999. Т. III. С. 200–211.
- 8. *Турченко С.И.* Металлогения тектонических структур палеопротерозоя. С-Пб.: Наука, 2007.
- 9. Экспериментальное изучение распределения платиноидов и золота между водно-хлоридным флюидом и базальтовым расплавом при *T*=1100−1350°C, *P*=5 кбар / H.C.Горбачев, А.Налдретт, Г.Бругманн и др. // ДАН. 1994. Т. 335. № 3. С. 356—358.

Олейник Иван Леонидович, главный геолог oleynicIL@polimetall.ru

Кулешевич Людмила Владимировна, кандидат геолого-минералогических наук kuleshev@krc.karelia.ru

PETROCHEMICAL FEATURES AND PRECIOUS-METAL MINERALIZATION OF KOIKARY SILL, KARELIA

I.L.Oleinik, L.V.Kuleshevich

Noble-metal mineralization is confined to the upper portion of the stratabound titanomagnetite horizon in the gabbro-dolerites of the Koikary sill, Central Karelia. The petrochemical characteristics of the rocks and the composition of Ti-Fe-oxide ores are discussed. The noble-metal mineralization is emplaced near the boundary of transition from melanocratic gabbro-dolerites to subalkaline diorites and is confined to the upper portion of the highest-grade titanomagnetite ores. PGE (that form part of arsenides, sulphides, tellurides and stannides) and gold are associated with low-sulphide copper mineralization (1–4%) and form an extensive stratabound body with the average total noble metal concentration of 1–3 g/t. Viksha complex noble metal ore deposit has been discovered.

Key words: Koikary sill, gabbro-dolerites, titanomagnetite ores, PGE, platinoids, gold, Karelia.

26—28 октября 2016 года состоится VIII Всероссийский съезд геологов «Богатства недр — на процветание России»

Предстоящий съезд проводится под эгидой Министерства природных ресурсов и экологии Российской Федерации, Федерального агентства по недропользованию и призван рассмотреть ряд наиболее важных актуальных проблем геологической отрасли – фундамента российской экономики.

В мероприятии примут участие представители Администрации Президента Российской Федерации, Правительства Российской Федерации, Федерального Собрания Российской Федерации, органов госвласти, администраций субъектов РФ, а также руководители научных и производственных геологических предприятий.

С программой Съезда можно ознакомиться на официальном сайте www.rosnedra.gov.ru в разделе VIII Всероссийский съезд геологов.