УДК 553.411:550.4 (571.54/.55)

© Б.Н.Абрамов, 2016

# АНДРЮШКИНСКОЕ ЗОЛОТОРУДНОЕ МЕСТОРОЖДЕНИЕ: ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ПОРОД И РУД, ВОСТОЧНОЕ ЗАБАЙКАЛЬЕ

### Б.Н.Абрамов

ФГБУН Институт природных ресурсов, экологии и криологии СО РАН, г. Чита

Основное золотое оруденение Андрюшкинского месторождения локализовано в скарнах в прожилково-вкрапленных зонах, залегающих в архейской метаморфической толще. Магматические очаги этих интрузий были в значительной степени дифференцированы (Eu/Eu\* 0,11–0,14) и возникли на глубинах, соответствующих верхней континентальной коре (Eu/Sm 0,11–0,17). На золото продуктивна кварц-тетрадимит-висмутовая ассоциация. Среднее содержание Аи в рудах 7,9 г/т. Интрузии амуджикано-шахтаминского комплекса, эффузивы шадаронской серии и золотое оруденение образовались за счёт единого источника близкого к адакитовой магме.

Ключевые слова: амуджикано-шахтаминский комплекс, скарны, золото, адакиты.

Статья основана на фактических данных, полученных автором в ходе тематических исследований по программам Института природных ресурсов, экологии и криологии СО РАН, а также материалах территориальных геологических фондов (г. Чита). Химический состав пород определялся атомно-эмиссионной спектроскопией с индуктивно связанной плазмой (ISP-AES), рентген-флуоресцентным и атомно-абсорбционным методами, содержание петрогенных компонентов - стандартным методом силикатного анализа. Анализы выполнены в Лабораторно-исследовательском центре по изучению минерального сырья Комитета природных ресурсов по Читинской области (ОАО «ЛИЦИМС») и аналитическом центре Геологического института СО РАН (г. Улан-Удэ).

Андрюшкинское золоторудное месторождение расположено в Балейском рудном районе в 15 км южнее г. Балей. Разведанные запасы золота составляют ~8 т при среднем содержании в рудах 7,9 г/т. Структурная позиция его обу-

словлена приуроченностью к региональному Балейско-Дарасунскому разлому с серией субпараллельных разрывных нарушений по падям Умудиха и Андрюшкино. Площадь месторождения разбита разноориентированными тектоническими нарушениями на ряд блоков (рис. 1). В геологическом строении объекта участвуют позднеархейские метаморфизованные породы ( $AR_2$ ), гранитоиды ундинского комплекса ( $C_3$ ), вулканогенно-осадочные породы шадаронской серии ( $I_{2-3}$ ), гранитоиды амуджикано-шахтаминского комплекса ( $I_{2-3}$ ). Дайковые образования последнего представлены гранит-порфирами, диоритовыми порфиритами и лампрофирами.

Из архейских пород наиболее распространены амфиболиты, реже встречаются биотит-амфиболовые сланцы, кварциты, гнейсы, доломиты, диориты, граниты. Вулканогенно-осадочные породы шадаронской серии с угловым несогласием налегают на породы архейско-палеозойского фундамента. Базальный горизонт отложений шадаронской серии представлен валунно-галеч-

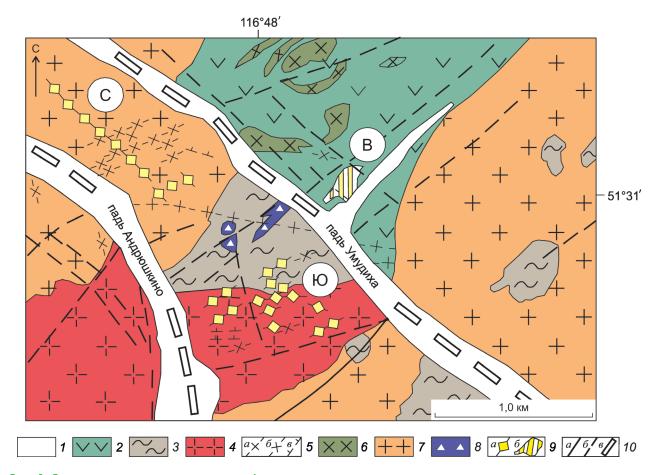



Рис. 1. Схема геологического строения Андрюшкинского золоторудного месторождения:

1 — четвертичные отложения; 2 — средне-верхнеюрские отложения шадаронской серии (андезиты, андезито-базальты, их туфы и лавы); 3 — архейские амфиболиты, мигматиты, сланцы; 4 — средне-позднеюрские гранитоиды шахтаминского комплекса; 5 — дайковый комплекс (a — гранит-порфиры, b — лампрофиры, b — диоритовые порфириты); b — юрские штоки, силлы диоритовых порфиритов; b — палеозойские гранитоиды ундинского комплекса; b — эксплозивные брекчии; b — рудная минерализация (b — рудоносные жилы, b — рудные зоны); b — тектонические нарушения (b — достоверные, b — предполагаемые, b — Балейско-Дарасунский разлом); рудные участки: b — Восточный, b — Северный, b — Южный

ным материалом пород фундамента (амфиболиты, мигматиты, диориты, граниты). Выше по разрезу горизонт лавобрекчий с линзами туфои осадочных брекчий сменяется горизонтами андезитов, андезито-базальтов.

В районе месторождения из интрузивных образований широко распространены гранитоиды ундинского комплекса. В его составе выделяют три фазы. Здесь же отмечаются породы второй фазы — роговообманково-биотитовые граниты, гранодиориты. В южной части месторождения развит шток амуджикано-шахтаминского комплекса, сложенный резкопорфировидными гранитами, лейкократовыми мелкозернистыми гранитами. Количество вкрапленников (представлены главным образом полевым шпатом) в порфировидных гранитах составляет 20–50%. Дайковые образования комплекса — диоритовые порфириты, гранит-порфиры, лампрофиры. Согласно данным уран-свинцовой датировки по циркону, абсолютный возраст гранитов амуджикано-шахтаминского комплекса 161,0±1,7 млн лет [8]. Установлено, что резкопорфировидные граниты Андрюшкинского месторождения соответствуют гранитам ильменитовой серии [1], которые кристаллизуются в условиях открытой системы вследствие разгерметизации магматической камеры [4].

| 1. Содержание редких и рудных элементов в породах и рудах |
|-----------------------------------------------------------|
| Андрюшкинского золоторудного месторождения, г/т           |

| Элемен- | Номера проб |       |      |       |       |       |        |       |       |       |       |       |       |       |
|---------|-------------|-------|------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
| ТЫ      | 443-3       | 443-4 | 444  | 444-1 | 444-4 | 444-6 | 445-1  | 490-1 | 490-2 | 490-7 | 503   | 503-1 | 503-2 | 503-3 |
| Zn      | 110         | 10    | 45   | 50    | 77    | 23    | -      | 100   | 45    | 26    | 200   | 140   | 220   | 170   |
| As      | 300         | 260   | -    | 40    | 56    | 12    | 47 000 | 20    | 1325  | 3450  | 7000  | 2500  | 6600  | 160   |
| Pb      | 500         | 530   | 22   | 13    | 150   | 24    | 10 000 | -     | 11    | -     | 30    | 20    | 60    | 50    |
| Rb      | -           | -     | 81   | 65    | 580   | 89    | 280    | -     | 84    | 72    | -     | -     | -     | -     |
| Sr      | 23          | 9     | 660  | 540   | 5     | 265   | 775    | 6     | 490   | 510   | 21    | 19    | 24    | 25    |
| Zr      | 4           | 40    | 160  | 150   | 240   | 240   | 120    | 8     | 155   | 180   | 8     | 15    | 8     | 7     |
| Nb      | -           | 1     | 6    | 5     | 11    | 13    | 16     | 2     | 9     | 8     | 8     | 6     | 17    | 5     |
| Sn      | 10          | 4     | -    | 2     | 52    | 2     | 39     | 2,4   | 2,6   | 35    | 50    | 21    | 140   | 32    |
| Sb      | 39          | 52    | -    | 4     | 120   | 2     | 81     | 4,8   | 3,6   | 15    | 13    | 12,4  | 18    | 21    |
| Cu      | 1500        | 170   | -    | -     | -     | -     | -      | 140   | -     | 97    | 1050  | 730   | 1340  | 630   |
| Bi      | -           | 1500  | -    | -     | -     | -     | -      | 1770  | -     | -     | 400   | 300   | 5000  | 7100  |
| Ва      | 5           | 62    | 680  | 610   | 225   | 460   | 1060   | -     | 550   | 170   | 22    | 2     | 4     | 3     |
| Au      | 0,20        | 49,70 | 0,70 | 0,50  | 0,14  | 0,23  | 1,50   | 29,24 | 1,30  | 0,38  | 13,93 | 12,97 | 49,69 | 81,07 |

Примечание. Эксплозивные брекчии: 443-3, 443-4, 444, 444-1, 444-6, 490-2, 490-7; сульфидно-кварцевые жилы: 445-1; скарны: 490-1, 503, 503-1, 503-2, 503-3. Анализ рудных и редких элементов выполнен РФА методом (аналитик Б.Ж.Жалсараев) в аналитическом центре Геологического института СО РАН (г. Улан-Удэ). Прочерк — нет данных. Содержание Аи определялось атомно-абсорбционным методом в аналитических лабораториях ОАО «ЛИЦИМС» (г. Чита).

С процессами формирования интрузий амуджикано-шахтаминского комплекса связано образование флюидно-эксплозивных брекчий (ФЭБ). Тела ФЭБ прослежены канавами и скважинами в центральной и северо-восточной частях месторождения. На поверхности площадь выхода наиболее крупного тела ФЭБ составляет в длину до 200 м при ширине до 60 м. Тела ФЭБ подсечены скважинами на глубинах 13-38, 210-210,5 м. Размер обломочного материала брекчий варьирует от 1-2 мм до 10 см. В составе обломков преобладают граниты, реже фиксируются амфиболиты, диориты. Цемент брекчий имеет кварц-полевошпатовый и кварц-турмалиновый составы. В северо-восточной части рудного поля тела ФЭБ подсечены скважинами под покровом вулканитов. Они состоят из обломков (3-5 см) гранитов, сцементированных тонкозернистым материалом тех же гранитов. В эксплозивных брекчиях встречаются участки с включениями и прожилками пирита, арсенопирита, реже халькопирита, характеризующиеся повышенными содержаниями Аи (до 49,7 г/т) (табл. 1). Корреляционный анализ показал тесную связь (r=0,57) золота с висмутом. Гипергенные минералы в рудоносных участках — скородит (по арсенопириту), ковеллин (по халькопириту). Следует отметить, что золотоносные эксплозивные брекчии характерны для многих мезозойских золоторудных месторождений Восточного Забайкалья [2].

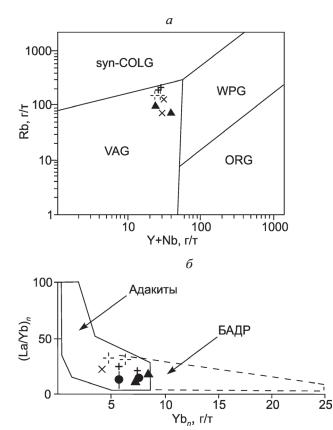
В пределах месторождения выделяются Северный, Южный и Восточный участки, отличающиеся друг от друга характером рудной минерализации, преобладающей ориентировкой рудных жил. Основные запасы золота (>90%) сосредоточены в Восточном рудном участке.

Восточный участок. Сложен вулканогенноосадочными отложениями шадаронской серии мощностью до 120 м, которые несогласно залегают на архейских метаморфических породах — перемежающихся амфиболитах, мраморизованных известняках, роговиках, кварцитах, гнейсах, гранодиоритах, гранитах. Здесь широко развиты зоны метасоматитов (скарны). Среди них в виде полос мощностью 0,1–2,0 м присутствуют гранатовые, пироксен-гранатовые и пироксеновые разности. В составе скарнов наблюдаются гранат, пироксен, аксинит, эпидот, актинолит, кальцит, биотит. В скарнах развиты зоны вкрапленной и прожилковой минерализации. Рудные минералы — арсенопирит, пирротин, халькопирит, галенит, сфалерит, пирит. В рудных зонах выделяются следующие парагенетические минеральные ассоциации (от ранних к поздним): кварц-пирит-арсенопиритовая; кварц-тетрадимит-висмутовая (продуктивная); кварцево-карбонатная (с пиритом, галенитом).

Рудные тела образуют залежи вкрапленнометасоматических руд. Наибольшие концентрации золота сосредоточены в метасоматитах в непосредственном контакте с вулканитами или на небольшом удалении от них. Максимальное содержание Аи достигает 121 г/т, среднее — 7,9 г/т. Основная рудная зона в плане имеет пластообразную форму длиной 380 м, шириной 175 м. Рудные горизонты отмечаются на удалении 30—50 м, реже до 100 м от подошвы вулканитов.

По данным фондовых материалов в золотоносных скарнах, наряду с золотом, повышены концентрации Ві (0,1%) и Аѕ (0,25%). Содержание Аg составляет 2,7 г/т. Корреляционный анализ выявил тесную связь золота (r=0,93) с висмутом и теллуром. Золотоносные руды характеризуются повышенными концентрациями Ві, Аѕ, Си (см. табл. 1).

В позднеюрское время под воздействием магматических флюидов карбонатсодержащие породы метаморфической толщи превратились в скарны в виде пластовых и линзовидных согласно залегающих тел. Отсутствие обломков метасоматитов в базальном горизонте шадаронской серии свидетельствует об их более позднем формировании относительно вышележащих отложений вулканитов.


Северный участок. Во вмещающих гранитах ундинского комплекса развиты сульфидно-кварцевые жилы мощностью от 0,5 до 8 м северо-восточного простирания. Жилы сопровождаются зонами прожилково-вкрапленной минерализации мощностью до 20 м с широко проявленными процессами серицитизации, турмалинизации и карбонатизации пород. Содержание сульфидов в рудах достигает 10%. Рудные минералы — пирит, арсенопирит, реже отмечаются халькопирит, блеклая руда, сфалерит. Содержание Аи в рудах чаще всего не более 1,0 г/т, в единичных случаях 16,0 г/т.

Южный участок. Характеризуется развитием кварцевых жил широтного простирания с золото-висмутовым оруденением в порфировидных гранитах амуджикано-шахтаминского комплекса. Мощность их не превышает 0,6 м, протяжённость 100–500 м. Количество сульфидов в кварцевых жилах составляет 1–2%. Наиболее распространённые рудные минералы — арсенопирит, висмутин, тетрадимит, реже халькопирит, пирит. Содержание Аи невысокое, в редких случаях достигает 22,0 г/т.

Анализ локализиции золотого оруденения показал, что рудные тела Северного и Южного участков, представленные кварцево-сульфидными жилами, отличаются незначительными содержаниями Au (~1%). Основные запасы золота сосредоточены в рудных телах Восточного участка, представленных зонами прожилково-вкрапленного оруденения в скарнах. Среднее содержание Au 7,9 г/т. Широкое распространение арсенопирита и пирита во всех рудных участках косвенно указывает на образование их из единого рудоносного магматического очага.

Район Андрюшкинского месторождения расположен в шовной зоне Монголо-Охотской сутуры. Установлено, что источники расплавов средне-верхнеюрских магматических образований Восточного Забайкалья, возникших в процессе коллизии, находились как в коре, так и в мантии. Это объясняется тем, что при коллизионных процессах при надвигании Сибирского континента на Монголо-Китайский в среднелозднеюрское время была погребена океаническая рифтовая зона, продолжающаяся активность которой способствовала появлению мантийных источников расплавов [5].

Геохимические особенности интрузий амуджикано-шахтаминского комплекса и эффузивов шадаронской серии месторождения говорят об их соответствии породам вулканических дуг и адакитовым образованиям (табл. 2, рис. 2). Формирование адакитов связывается с процессами плавления мантией субдуцирующей океанической литосферы [6]. Геохимические особенности адакитов — отношение (La/Yb), не более 10, содержание Yb <1,8 г/т, Y <18,0 г/т, Sr >300 г/т — обусловлены наличием граната в рестите [6]. На диаграмме (La/Yb), — Yb, точки составов интрузий амуджикано-шахтаминского комплекса и эффузивов шадаронской серии компактно локализуются вдоль линии трендов



плавления гранатсодержащей мантии с содержаниями граната 5–10% и пород верхней коры (см. рис. 2, в) [10]. Формирование адакитов часто сопровождается промышленной минерализацией элементов халькофильного ряда [6]. В Забайкальском крае порфировые граниты амуджикано-шахтаминского комплекса, с которыми связано молибденовое оруденение Шахтаминского месторождения, соответствуют К-адакитам [8].

Распределение Rb и Sr в гранитах, гранитпорфирах, эксплозивных брекчиях амуджика-

Рис. 2. Квалификационные диаграммы для интрузивных и эффузивных образований Андрюшкинского месторождения:

a – дискриминационная диаграмма Rb – Y+Nb для разделения гранитоидов различных геодинамических обстановок (VAG – граниты вулканических дуг, ORG - граниты океанических хребтов, WPG - внутриплитные граниты, syn-COLG - коллизионные граниты);  $\delta$  – дискриминационная диаграмма (La/Yb), – Yb<sub>n</sub>, по [9] (БАДР – породы базальт-андезит-дацитриолитовых ассоциаций островных дуг и активных континентальных окраин);  $\varepsilon$  – диаграмма (La/Yb) $_{\sigma}$  – Yb, для интрузивных и эффузивных образований месторождения [10]; тренды плавления различных источников: I – кварцевые эклогиты, II – гранатовые амфиболиты, III – амфиболиты, IV, V, VI – гранатсодержащая мантия с содержанием граната соответственно 10, 5, 3%; ВМ – верхняя мантия; ВК – верхняя кора: тоналиты, плагиограниты, плагиогранитогнейсы; 1 эффузивы шадаронской серии; амуджикано-шахтаминский комплекс: 2 – граниты, 3 – гранит-порфиры (дайки), 4 — диоритовые порфириты (дайки), 5 — флюидно-эксплозивные брекчии

но-шахтаминского комплекса и эффузивах шадаронской серии указывает на образование их за счёт мантийного источника. При этом часть даек диоритовых порфиритов — результат процессов мантийно-корового взаимодействия (рис. 3).

Степень дифференциации магматических очагов интрузивных образований определялась по значению европиевой аномалии  $Eu/Eu^*=Eu_N/[Sm_N\cdot Gd_N]^{1/2}$  (N — значения элементов нормированных по хондриту) [7]. Глубина формирования магматических очагов оценивалась по отношению Eu/Sm в трактовке  $C.\Phi.$ Винокурова [3]. Выявлено, что значения Eu/Sm <0,2 характерны для магматических очагов верхней континентальной коры [3].

Как показал анализ распределения и соотношений редкоземельных элементов (РЗЭ), магматические очаги интрузий амуджикано-шахтаминского комплекса были в значительной степени дифференцированы (Eu/Eu\* 0,11–0,14) и образованы на глубинах, отвечающих верхней континентальной коре (Eu/Sm 0,11–0,17). При этом породы данного комплекса кислого состава (граниты, гранит-порфиры) по сравнению с породами среднего (диоритовые порфи-

2. Содержание редких, рудных и редкоземельных элементов в породах Андрюшкинского месторождения, г/т

| Элементы             | Номера проб |         |       |       |        |       |        |        |        |        |  |  |
|----------------------|-------------|---------|-------|-------|--------|-------|--------|--------|--------|--------|--|--|
|                      | 443         | 443-2   | 445-6 | 491   | 491-1  | 489   | 489-1  | 498    | 504    | 504-1  |  |  |
| Zn                   | 37          | 600     | 68    | 77    | 53     | 40    | 33     | 23     | 66     | 68     |  |  |
| As                   | 12          | 52 000  | -     | 23    | 41     | 110   | 100    | 12     | 490    | 50     |  |  |
| Pb                   | 8           | 120 000 | -     | 26    | 14     | 65    | 61     | 24     | 44     | 47     |  |  |
| Rb                   | 98          | -       | 74    | 8     | 50     | 190   | 200    | 140    | 170    | 160    |  |  |
| Sr                   | 370         | -       | 320   | 920   | 600    | 410   | 360    | 117    | 350    | 360    |  |  |
| Zr                   | 180         | 70      | 250   | 155   | 156    | 280   | 280    | 110    | 260    | 290    |  |  |
| Nb                   | 8           | 2       | 12    | 6     | 5,4    | 18    | 18     | 15     | 18     | 20     |  |  |
| Sn                   | -           | 49      | 4     | 4     | 3      | 4,4   | 8,1    | 1,7    | 10     | 6,9    |  |  |
| Sb                   | -           | 190     | -     | 4,8   | 4,6    | 3,1   | 5,4    | 3,5    | 5,7    | 2,9    |  |  |
| Ва                   | 500         | 400     | 400   | 233   | 845    | 660   | 580    | 680    | 650    | 640    |  |  |
| La                   | 21,7        | 40,0    | -     | 21,4  | 31,3   | 41,80 | 40,30  | 23,5   | 51,2   | 39,6   |  |  |
| Ce                   | 52,4        | 82,0    | -     | 48,6  | 69,0   | 103,0 | 95,60  | 50,0   | 109,0  | 90,5   |  |  |
| Pr                   | 5,0         | 8,4     | -     | 5,6   | 8,6    | 10,00 | 8,80   | 4,3    | 9,7    | 7,95   |  |  |
| Nd                   | 18,4        | 28,3    | -     | 24,3  | 34,6   | 37,00 | 31,50  | 16,1   | 32,0   | 26,8   |  |  |
| Sm                   | 3,7         | 4,0     | -     | 5,2   | 7,0    | 6,40  | 5,40   | 2,9    | 5,1    | 4,5    |  |  |
| Eu                   | 0,59        | 0,82    | -     | 1,3   | 1,57   | 0,81  | 0,64   | 0,49   | 0,58   | 0,51   |  |  |
| Gd                   | 3,1         | 2,6     | -     | 3,5   | 4,4    | 4,30  | 3,40   | 2,2    | 3,7    | 2,6    |  |  |
| Tb                   | 0,49        | 0,40    | -     | -     | 0,65   | 0,52  | 0,47   | 0,40   | 0,43   | 0,42   |  |  |
| Dy                   | 2,6         | 1,9     | -     | 2,4   | 3,2    | 2,70  | 2,30   | 1,6    | 2,2    | 1,8    |  |  |
| Но                   | 0,55        | 0,50    | -     | -     | 0,64   | 0,53  | 0,48   | 0,35   | 0,42   | 0,35   |  |  |
| Er                   | 1,54        | 1,42    | -     | 1,15  | 1,5    | 1,50  | 1,26   | 0,93   | 1,2    | 0,99   |  |  |
| Tm                   | 0,23        | 0,25    | -     | -     | -      | 0,18  | 0,17   | 0,13   | 0,18   | 0,12   |  |  |
| Yb                   | 1,3         | 1,5     | -     | 1,0   | 1,4    | 1,30  | 1,00   | 0,70   | 1,1    | 0,84   |  |  |
| Lu                   | 0,24        | 0,25    | -     | 0,15  | 0,19   | 0,18  | 0,15   | 0,13   | 0,17   | 0,14   |  |  |
| Υ                    | 15,2        | 12,5    | -     | 12,4  | 16,1   | 16,30 | 13,30  | 10,5   | 13,4   | 10,7   |  |  |
| ∑P3Э                 | 111,84      | 172,24  | -     | 70,6  | 164,05 | 226,5 | 204,77 | 103,33 | 216,98 | 177,12 |  |  |
| (La/Yb) <sub>n</sub> | 11,57       | 18,51   | -     | 14,85 | 15,52  | 22,33 | 27,97  | 23,28  | 32,30  | 32,90  |  |  |
| Eu/Eu*               | 0,13        | 0,18    | -     | 0,22  | 0,20   | 0,34  | 0,43   | 0,14   | 0,10   | 0,12   |  |  |
| Eu/Sm                | 0,16        | 0,20    | -     | 0,25  | 0,22   | 0,13  | 0,12   | 0,17   | 0,11   | 0,11   |  |  |

Примечание. Граниты амуджикано-шахтаминского комплекса: 489, 489-1; диоритовые порфириты: 445-6, 498; эксплозивные брекчии: 443, 443-2; дайки гранит-порфиров: 504, 504-1; эффузивы шадаронской серии: 491, 491-1.  $Eu/Eu^*=Eu_N/[Sm_N\cdot Gd_N]^{1/2}$ ; «-» — нет данных. Анализы выполнены в геологическом институте CO PAH (г. Улан-Удэ). Редкоземельные элементы определены ISP-AES методом (аналитики А.А.Цыренова, Т.И.Казанцева), элементный состав — РФА методом (аналитик Б.Ж.Жалсараев).

риты) отличаются большими концентрациями РЗЭ ( $\Sigma$ РЗЭ 177,1—226,5 г/т) и более значительными содержаниями легких РЗЭ (La/Yb), 32,3—22,3. В диоритовых порфиритах соответственно  $\Sigma$ РЗЭ 103,33 г/т, (La/Yb), 23,28 (см. табл. 2; рис. 4).

Распределение РЗЭ во флюидно-эксплозивных брекчиях свидетельствует о происхождении их из магматических очагов, имеющих разные степень дифференциации (Eu/Eu\* 0,13–0,18) и глубину образования (Eu/Sm 0,16–0,20).

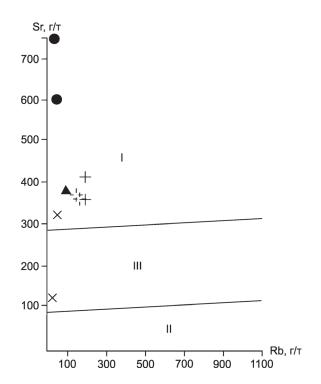



Рис. 3. Соотношения Rb и Sr в породах Андрюшкинского месторождения:

поля составов на диаграмме: I – мантийного, II – корового, III – смешанного мантийно-корового источников; остальные усл. обозн. см. рис. 2

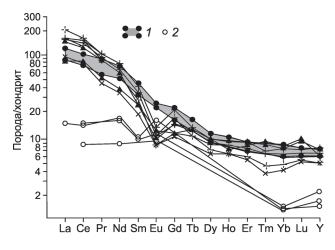



Рис. 4. Спайдер-диаграмма распределения редкоземельных элементов в породах Андрюшкинского месторождения:

1 — поля развития андезибазальтов шадаронской серии; 2 — рудоносные скарны; остальные усл. обозн. см. рис. 2

Таким образом, на основе вышеизложенного предполагается следующая последовательность процессов, приведших к формированию золотого оруденения:

- в ходе коллизионных и постколлизионных процессов по зонам глубинных нарушений мантийные флюиды взаимодействовали с коровым веществом. Магматический источник для интрузий амуджикано-шахтаминского комплекса, ФЭБ и эффузивов шадаронской серии был единый, соответствовал адакитам:
- в процессе мантийно-корового взаимодействия возникли магматические очаги, имеющие разные глубину и степень дифференциации. Происходило образование гранитоидов и пород гибридного состава диоритовых порфиритов, лампрофиров;
- по зонам глубинных нарушений изливались эффузивы шадаронской серии;
- на заключительных стадиях дифференциации магматических очагов интрузий амуджикано-шахтаминского комплекса формировались рудоносные флюиды, служившие источниками золотого оруденения. Они были насыщены газово-жидкими образованиями, находящимися под высоким давлением.
  При нарушении сплошности пород под воздействием высокого давления происходило образование ФЭБ. В этот же период формировались рудоносные кварцево-жильные зоны и зоны рудоносных скарнов.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Абрамов Б.Н. Гранитоиды мезозойских золоторудных месторождений Восточного Забайкалья: условия формирования, геохимические особенности // Руды и металлы. 2013. № 6. С. 48–54.
- 2. Абрамов Б.Н. Условия формирования и рудоносность флюидно-эксплозивных образований золоторудных месторождений Восточного Забайкалья // ДАН. 2011. Т. 440. № 1. С. 67–71.
- 3. *Винокуров С.Ф.* Европиевые аномалии в рудных месторождениях и их геохимическое значение // ДАН. 1996. Т. 346. С. 792–795.
- 4. *Генетические* аспекты формирования магнетитовых и ильменитовых гранитов (на примере Сихотэ-Алиня) / Г.А.Валуй, В.Г.Моисеенко, А.А.Стрижкова и др. // ДАН. 2005. Т. 405. № 4. С. 507–510.

- Геодинамика западной части Монголо-Охотского пояса и тектоническая позиция рудных проявлений золота в Забайкалье / Ю.А.Зорин, В.Г.Беличенко, И.Г.Рутштейн и др. // Геология и геофизика. 1998. Т. 39. № 11. С. 104–112.
- 6. *Ефремов С.В.* Раннепалеозойские адакиты Восточного Саяна, геохимические особенности и источники вещества // Геохимия. 2010. № 11. С. 1185—1201.
- 7. *Интерпретация* геохимических данных: Уч. пособие / Под ред. Е.В.Склярова. М.: Интермет Инжиниринг, 2001.
- 8. *Шахтаминская* Мо-порфировая рудно-магматическая система (Восточное Забайкалье): возраст,

- источники, генетические особенности / А.П.Берзина, А.Н.Берзина, В.О.Гимон и др. // Геология и геофизика. 2013. Т. 54. № 6. С. 764–786.
- 9. *Martin H.* Adakitic magmas: modern analogues of Archean granitoids // Lithos. 1999. Vol. 46. P. 411–429.
- 10. Petrogenesis of the largest intraplate volcanic field on the Arabian Plate (Jordan): A mixed lithosphere astenosphere source active by lithospheric extension / J.E.Shaw, J.A.Baker, M.A.Menzies et al. // J. Petrol. 2001. 44. (9). P. 1657–1679.

Абрамов Баир Намжилович, доктор геолого-минералогических наук b\_abramov@mail.ru

## ANDRYUSHKINSKOYE GOLD DEPOSIT: GEOCHEMICAL FEATURES OF ROCKS AND ORES, EASTERN TRANS-BAIKAL AREA

#### B.N.Abramov

The main gold mineralization of this deposit is hosted by skarns in veinlet-disseminated zones within Archean metamorphic strata. Magmatic chambers of these intrusions were largely differentiated (Eu/Eu\* 0,11–0,14) and formed at depth corresponding to the upper continental crust (Eu/Sm 0,11–0,17). Quartz-tetradymite-bismuth association is productive for gold. The average Au grade in ores is 7,9 g/t. Intrusions of Amudzhikan-Shakhtamin complex, effusives of Shadaron series and gold mineralization were all generated from a single source similar to adacite magma. Key words: Amudzhikan-Shakhtamin complex, skarns, gold, adacites.

Журнал «Руды и металлы» приглашает к сотрудничеству представителей геологических, горно-геологических, горнодобывающих организаций и предприятий, отраслевых научно-исследовательских, академических и образовательных институтов

По вопросам размещения рекламы или издания целевого номера, посвящённого вашим предприятию, организации, её продукции и услугам обращаться по телефону 8 (495) 315-28-47 или электронной почте rudandmet@tsnigri.ru Реклама по заказам отраслевых организаций и высших учебных заведений выполняется по льготным расценкам