ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ ЗОЛОТОРУДНОГО МЕСТОРОЖДЕНИЯ ВЕРХНИЙ ХАКЧАН, МАГАДАНСКАЯ ОБЛАСТЬ

М.В.Наталенко, М.А.Имамендинова, В.А.Данильченко, М.В.Данилин, А.Н.Гудин (ФГУП

«ЦНИГРИ»), Н.В.Цымбалюк (ООО «Станнолит»)

Определено положение Верхне-Хакчанского золоторудного месторождения в региональных структурах, приведены данные о его геологическом строении, морфологии рудных зон, минеральном составе руд и метасоматитов. Определены параметры физико-химического режима минералообразования. Рассмотрены перспективы дальнейшего освоения объекта.

Ключевые слова: Магаданская область, золоторудное месторождение, рудная зона, прожил-кововкрапленная минерализация.

Hamaленко Мария Bладимировна, international@tsnigri.ru, Имамендинова Мария Александровна, imamendi- nova@gmail.com, Данильченко Виктор Александрович, Данилин Максим Владимирович, Гудин Александр Николаевич, Цымбалюк Николай Владимирович

THE GEOLOGICAL STRUCTURE OF GOLD DEPOSIT VERKHNIY KHAKCHAN, MAGADAN REGION

M.V.Natalenko, M.A.Imamendinova, V.A.Danilchenko, M.V.Danilin, A.N.Gudin, N.V.Tsymbal'uk

The position of Verkhniy-Khakchan gold deposit in the regional structures, data about its geological structure, mor-phology of ore zones, mineral composition of ores and metasomatites are defined. The parameters of the physico-chemical regime of mineral formation are determined. The prospects of the further development of the object are also discussed.

Key words: Magadan region, gold deposit, ore zone, vein-impregnation mineralization.

Верхне-Хакчанское месторождение обнаружено и частично разведано с поверхности в 1948 г. Б.А.Федоровым. В дальнейшем работы на нем про- должались с перерывами в течение ряда лет (К.А.Осокина, 1950 г., А.В.Ляджин, 1955 г., Н.А.Ло- паткин, 1967–1968 гг.). Перспектива выявления про- мышленно значимого месторождения авторами гео- логических отчетов связывалась с оценкой рудной зоны Основная. Данная рудная зона отнесена ими к разряду средних по запасам месторождений, не удо- влетворяющих требования промышленности по дей- ствовавшим в то время районным кондициям. По результатам более поздних работ (ОАО «Сусуман- золото» 1996–1998 гг.) с оценкой главных рудных тел месторождения установлено, что при снижении оценочных параметров для руд до 2,0 г/т рудная зона Основная пригодна для отработки. В ходе поисково- оценочных работ ООО «Станнолит» в 2007–2009 гг. центральная часть рудной зоны Основная была раз- бурена по нескольким профилям. В результате под- тверждены перспективы выявления крупнотоннаж- ного месторождения — апробированные прогноз- ные ресурсы категории Р1 составили 36,0 т Аи со средними содержаниями 1,77 г/т. Новые данные, по- лученные авторами в 2005–2012 гг., позволяют до- полнить и существенно уточнить геологическое строение и особенности вещественного состава руд- ных тел месторождения.

Региональная позиция. Верхне-Хакчанское месторождение расположено на северо-западе Магаданской области вблизи границы с Республи- кой Саха (Якутия). Хакчанский рудный узел при- урочен к северо-западному замыканию Аян-Юрях- ского антиклинория и локализован в зоне динами- ческого влияния одной из ветвей регионального рудоконтролирующего Чай-Юрьинского разлома. Площадь рудного узла размером 15×20 км² совпа- дает с крупной антиклинальной складкой первого порядка. В его пределах на расстоянии 10 км друг от друга найдены два рудных поля — Средне- и Верхне-Хакчанское, а также многочисленные рудо- проявления и точки золоторудной минерализации. По данным вторичных потоков рассеяния террито- рия рудного узла оконтуривается комплексными геохимическими аномалиями Au, Ag, As, Pb, Zn.

Геологическое строение рудного поля. Верхне- Хакчанское рудное поле площадью 5×6 км² совпа- дает с антиклинальной складкой второго порядка, погружающейся на запад и восток. Границы его проведены по северо-западным, субмеридиональ- ным и субширотным разломам с учетом распреде- ления прямых признаков рудной минерализации. По потокам рассеяния в пределах рудного поля выявлены аномалии Au, а по литогеохимическим данным — Au и As. По результатам комплексной аэрогеофизической АГС-съемки месторождение отчетливо фиксируется как участок повышенной концентрации К.

В пределах рудного поля известны три россыпи (по ручьям Верхний Хакчан, Бургагы и Адыгалах).

Рис. 1. Схема геологического строения месторождения Верхний Хакчан, с использованием данных ООО «Стан- нолит», Я.Н.Николаевой, Н.Н.Кузнецова (1979 г.), В.Р.Артюхова (1999 г.):

1— четвертичные отложения; 2-6 — верхнепермские отложения: 2 — кулинская свита, нижняя пачка, песчано-гли- нистые и глинистые сланцы, алевролиты, песчаники, линзы конгломератов; нерючинская свита: 3 — верхняя пачка, массивные алевролиты с прослоями алевролитов и мелкозернистых песчаников, в основании — мелкозернистые пес- чаники, песчанистые алевролиты, 4 — средняя пачка, массивные алевролиты с прослоями песчанистых алевролитов и алевропесчаников, 5 — нижняя пачка, песчанистые алевролиты, массивные алевролиты, мелко- и среднезернистые песчаники, прослои гравелитов, алевропесчаников, диамиктитов; 6 — атканская свита, диамиктиты с прослоями алевролитов; 7 — пласты песчаников; 8 — позднеюрский (нера-бохапчинский) интрузивный комплекс, дайки диаба- зовых порфиритов; 9 — разрывные нарушения (a — главные, a — второстепенные, a — под четвертичными отложе- ниями); a — минерализованные зоны дробления (рудные зоны); a — зоны тонкого кварцевого прожилкования; a — элементы залегания (a — пластов осадочных пород, a — рудных зон); a — отработанные промышленные рос- сыпи золота; a — буровые скважины и их номера; a — линии разрезов

Для россыпей характерна пониженная крупность золота (<1 мм), что указывает, по данным С.Ф.Стружкова [3], на преимущественное развитие золоторудной минерализации наталкинского золото- кварцевого типа коренных источников. В шлихах присутствуют минералы полиметаллической ассо- циации. Среди зерен самородного золота преобла- дают золотины рудного облика различной морфоло- гии — кристаллы, дендриты, пластинки и др.

На площади рудного поля развиты комплекс верхнепермских терригенных пород и четвертич- ные отложения. Верхнепермские породы представ- лены (снизу вверх по разрезу) отложениями аткан- ской, нерючинской и кулинской свит. Атканская

свита сложена диамиктитами с редкими маломощ- ными прослоями массивных алевролитов. В разре- зе нерючинской свиты отмечаются алевролиты, мелкозернистые песчаники с прослоями и линзами гравелитов и мелкогалечных диамиктитов. Кулин- ская свита сложена песчано-глинистыми сланцами, алевролитами, песчаниками и линзами конгломера- тов. Характер взаимоотношений отложений аткан- ской свиты и подстилающих пород не установлен. Породы нерючинской и атканской свит залегают в целом согласно, в западной части рудного поля гра- ница между ними тектоническая.

Для локализации оруденения наиболее благо- приятна нижняя подсвита нерючинской свиты

Рис. 2. Геологический разрез через западную часть месторождения Верхний Хакчан:

I — дайки позднеюрских диоритовых порфиритов; 2 — крупные разрывные нару- шения (зоны милонитизации и крупнообломочного дробления); 3 — второстепен- ные разрывные нарушения, тектонические трещины; 4 — алевролиты с туфогенной примесью; 5 — алевролиты; 6 — песчанистые алевролиты; 7 — алевропесчаники; 8

— песчаники; 9 — гравелиты; 10 — диамиктиты; 11 — буровые скважины; 12 — рудное тело (рудная зона Основная); остальные усл. обозн. см. рис. 1

крыльев складки >1 км, углы падения крыльев 30–40°. Верхне-Хакчанская ан- тиклиналь осложнена приразломными складками бо- лее высоких порядков (раз- мах крыльев первые метры, углы падения до 75°), кото- рые вмещают отдельные зоны прожилково-вкрап- ленной минерализации.

Среди разрывных на- рушений развиты две си- стемы — рудовмещающий Верхне-Хакчанский сбро- сосдвиг северо-западного простирания (оперяющая ветвь Чай-Юрьинского ре- гионального разлома) и крупные субмеридиональ- ные сбросы.

Геолого-структурные особенности месторож- дения и морфология руд- ных тел. Верхне-Хакчан- ское месторождение лока- лизовано в пределах от- резка одноименного сбро- со-сдвига протяженностью 2,5 км. Между северо- восточным и юго-запад- ным швами сбросо-сдвига широко развиты субши- ротные разломы, являю-

приятна нижняя подсвита нерючинской свиты

изменчивого литологического состава. Так, в запад- ной части месторождения увеличиваются песчани- стая и туфогенная составляющие нижней подсви- ты, с чем предположительно связан раздув мощно- сти Основной рудной зоны (>30 м).

Интрузивные образования рудного поля пред- ставлены дайками верхнеюрских диабазовых пор- фиритов, диоритов, диоритовых порфиритов, квар- цевых диоритовых порфиритов, спессартитов (не- ра-бохапчинский комплекс) и верхнемеловых сие- нит-порфиров (билириканский). Протяженность даек от сотен метров до первых километров, мощ- ность достигает 30 м, простирание в основном суб- широтное, реже северозападное, падение крутое и вертикальное. Повышенные содержания золота в дайках не отмечались. Связь золотого оруденения с магматическими образованиями не установлена.

В структурном плане месторождение тяготеет к ядерной части асимметричной Верхне-Хакчанской антиклинальной складки второго порядка. Размах

щиеся динамопарой сдвига северо-западного про- стирания. В них сосредоточен основной объем золоторудной минерализации. Рудовмещающие крутопадающие субширотные сбросо-сдвиги выполаживаются на глубоких горизонтах. Часть ру- довмещающих нарушений субширотной системы можно

отнести к листрическим разломам, весьма сходным по морфологии с разрывами, ограни- чивающими рудное тело Наталкинского место- рождения.

На площади месторождения выявлены линей- ные вторичные геохимические ореолы Au >0,3 мг/т протяженностью до 2 км, шириной до 1 км, а также практически совпадающие с ними линейные вто- ричные ореолы As >0,1 мг/т. К центральной части месторождения размер ореолов увеличивается.

По геофизическим данным выделяются три по- тенциально золотоносные аномальные зоны — Основная, Южная и Северная (рис. 1). Наиболее пер- спективны Основная и Южная зоны. Они прослежи- ваются по простиранию на 4500–5000 м и располага-

Рис. 3. Фрагмент строения рудоносного штокверка (рудная зона Основная):

a — алевропесчаник, пронизанный разноориентированными серицит-КПШ-карбо- нат-кварцевыми прожилками, составляющими 100 шт. на 1 пм; керн скв. 242, ин- тервал 380,4 м (содержания Au 4,14 г/т на 36 м); δ — то же, с вкраплениями сфа- лерита, галенита, арсенопирита, пирита (до 1-2%) и видимого золота (в кружках); обр. C235/254 (содержания Au 5,55 г/т на 7.7 м)

колеблются от 33 до 75°. Крутые углы падения сме- стителя, установленные на поверхности $(65-75^\circ)$, вниз по падению выполаживают- ся и на глубине 200 м соста- вляют $35-40^\circ$. В пределах рудной зоны наблюдаются многочисленные пропелле- рообразные изгибы смести- теля.

Прожилки и жилы раз- личной ориентировки в зоне дробления как секущие сло- истость пород, так и соглас- ные послойные (рис. 3). По- слойные прожилки и жилы (20–30 см) часто имеют по- лосчатую текстуру, обус- ловленную наличием пла- стинчатых реликтов вме- щающих пород ориентиро- ванных вдоль контактов. Основные рудовмещающие зоны субширотного прости- рания оперяются зонами прожилкового окварцевания терригенных пород мощно- стью до 20 м.

В проекции рудной зо- ны на вертикальную пло- скость выделяются две об- ласти высокой продуктивности (20–90 мг/т), склоняю-

ются в участках повышенных электрических сопро- тивлений шириной от 400–500 м в восточной, 700–800 м в центральной и ~ 1000 м в западной частях.

Наиболее детально изучена рудная зона Ос- новная. Она прослежена поверхностными горными выработками на протяжении 5 км и вскрыта сква- жинами колонкового бурения до глубины 400 м. В составе рудной зоны выделяется рудное тело (сред- нее содержание Au 2,2 г/т) мощностью 10–30 м в западной части и 1–10 м — в восточной.

Золоторудная минерализация приурочена к от- дельным взбросо-сдвиговым тектоническим нару- шениям (рис. 2) в зоне Верхне-Хакчанского сбросо- сдвига. В блоках интенсивно трещиноватых текто- нически нарушенных терригенных пород многочис- ленны прожилки и жилы золото-буланжерит-ар- сенопирит-пирит-серицит-анкерит-альбит-кварце- вого состава. В висячем боку зоны прослеживается мощная (от 3 до 10-15 м) полоса вязкой глины чер- ного цвета с обломками кварца размером от 1 мм до 2-3 см. Углы падения тектонических нарушений

щиеся на запад (рис. 4). Первый рудный столб имеет размер 500×200 м, второй — >1000×200 м. Последний выходит на дневную поверхность лишь в центральной части месторождения, его основная часть скрыта. Столбы развиты в нижненерючинской подсвите, отличающейся повышенной песчанисто- стью и наличием туфогенной примеси. В восточной части месторождения рудные столбы не выявлены.

Южная потенциально золоторудная зона пред- ставлена линейным штокверком субширотного простирания. Эрозионный срез рудного тела по геофи- зическим данным минимальный. Об этом свидетельствуют высокоомные аномалии электрического сопротивления, плотность и интенсивность которых возрастают с глубиной. Рудоносный штокверк имеет сложную морфологию. В субвертикальной осевой его части развита прожилково-вкрапленная кварц- сульфидная минерализация. От осевой части шток- верка ответвляются субпластовые жильно-прожил- ковые и прожилково-вкрапленные залежи. С севера штокверковая система ограничена рудной зоной Ос-

Проанализированы десять типоморфных для золото- рудных проявлений Центрально-Колымского регио- на химических элементов — Au, Ag, As, W, Pb, Zn, Cu, Sb, Bi, Hg. В рудных зонах, помимо Au, повыше- ны содержания As (100–1000), Ag (10–25), W (3–25),

Bi (2,5–15), Sb (8–10), Hg (1,5–4), Pb (1,5–2,5), Cu и

Zn (1,5). В скобках приведены концентрации эле- ментов по отношению к их кларкам. В отличие от подобных объектов Центральной Колымы на Верхне-Хакчанском месторождении зафиксированы высокие содержания Sb и Bi, а в некоторых скважи- нах также и Ag (>100 г/т).

Рис. 4. Продольный геологический разрез рудной зоны Основная и распределение рудных столбов:

точки — буровые скважины; остальные усл. обозн. см. рис. 1

Распределение химических элементов в руд- ных зонах достаточно устойчивое, однако по про- стиранию отмечается тенденция к обогащению висмутом восточного фланга, а ртутью — западно- го. Показатель геохимической зональности Hg/Bi монотонно возрастает от восточного фланга в сто- рону западного, принимая значения соответственно от $n \cdot 10^{-3}$ до $n \cdot 10$, т.е. увеличиваясь в 1000 раз. Такое направленное изменение геохимического показате- ля свидетельствует о западном склонении рудных зон с продолжением золоторудной минерализации на глубину и перспективах увеличения прогнозных ресурсов на западном фланге месторождения.

Метаморфические и метасоматические изме- нения вмещающих пород. В региональном плане породы метаморфизованы в зеленосланцевой фа- ции [2]. С приближением к рудным зонам по вме- щающим породам развивается мусковит — конеч- ный продукт регрессивных преобразований, непос- редственно переходящих в околорудные метасома- тические ореолы. Ореол метасоматических измене- ний охватывает всю площадь рудного поля и выхо- дит за контуры развития золоторудной минерализа- ции (рис. 5). Наиболее интенсивно породы преобра- зованы в центральной части рудного поля, где они образуют ореол 1,0×1,5 км. Аналогичный по интен- сивности изменений ореол, не оконтуренный в юго- восточном направлении, установлен в северозапад- ной части рудного поля. По составу выделены три зоны метасоматических изменений: от внешней кальцитовой к внутренним альбит-кварцевой и се- рицит-кварцевой, с которыми пространственно совпадают рудные тела (рис. 6).

По сравнению с зональными метасоматически-

Рис. 5. Схема метасоматической зональности месторождения Верхний Хакчан:

I — слабо измененные породы; 2 — кварц- альбитовые метасоматиты; 3 — серицитовые метасоматиты; 4 — контур интенсивной анкеритизации; 5 — контур штокверка метасоматического кварца; 6 — минерализованные зоны дроб- ления (рудные зоны)

ми ореолами Наталкинского месторождения на Верхне-Хакчанском менее распространены серицитизированные породы и более широко — альбит- кварцевые (с карбонатом или без него). Альбит- кварцевые метасоматиты подразделяются на сред- не-крупнозернистые и тонко-мелкозернистые раз- ности. На поверхности преобладают тонко-мелко- зернистые альбит-кварцевые метасоматиты, зани- мающие отчетливо надрудную позицию [1].

Тонко-мелкозернистые метасоматиты отнесены нами к начальным продуктам метасоматического преобразования вмещающих пород и перекристал- лизации ряда слагающих их минералов. Для началь- ных «незрелых» форм этих образований характерно развитие тонкозернистых пятнистых выделений кварца, отдельных агрегатов мелких зерен кварца и альбита, которые затем разрастаются и сливаются в более крупные выделения. Одновременно происхо- дит «отгонка» углеродистого вещества на перифе- рию таких новообразований с переотложением его в виде ветвящихся прожилков. В целом породы освет- ляются.

Средне-крупнозернистые альбит-кварцевые метасоматиты сопровождают жильно-прожилко- вые выделения кварца, развиваясь в их зальбандах, а также в околожильном пространстве во вмещаю- щих породах. Ореол средне-крупнозернистых аль- бит-кварцевых метасоматитов образует «раздув» в центральной и северо-западной частях рудного по- ля. Тонко- и мелкозернистые разности формируют их обрамление. Такого рода образования развиты на Наталкинском месторождении над слепыми руд- ными телами и служат их индикаторами. Ана- логичные взаимоотношения намечаются и на Верх- не-Хакчанском рудном поле.

Редко наблюдаются участки метасоматически измененных пород существенно серицитового или существенно карбонатного состава. Метасоматиты данного типа сопровождают золотоносные жилы и системы прожилков и сами часто содержат суль- фидную вкрапленность (пирит, арсенопирит, халь- копирит и др.).

Серицитизированные породы картируются на поверхности в виде мелких (обычно до 100–200 м по простиранию) маломощных (до 10–20 м) тел линзовидной формы. Количество серицита состав- ляет до 20–25% и редко более от объема породы. Серицит образует пятнистые, линзовидные и флюидальноподобные скопления, ориентирован- ные вдоль сланцеватости пород. С глубиной интен- сивность серицитизации пород нарастает.

Карбонатизация терригенных пород проявлена эпизодически. В породах с содержанием карбоната >10% он представлен железосодержащей разно- стью, вследствие чего в поверхностных условиях интенсивно разрушается и замещается гидроксида- ми железа.

По данным документации керна скважин в пре- делах изученных буровых профилей в центральной части рудного поля наиболее широко распростра- нены альбит-кварцевые изменения и сульфидиза- ция (пирит, арсенопирит) вмещающих пород. Аль- бит-кварцевые изменения развиты в участках ин- тенсивного сульфидно-кварцевого прожилкования, а также совпадают с известными рудоносными зо- нами. Характерна их взаимосвязь с вкрапленно- стью игольчатого арсенопирита. Мощность ореола альбитизации составляет от 40 до 200 м.

Ореолы серицит-кварцевых новообразований мощностью 10–20 м развиты более локально в приповерхностной области рудовмещающих наруше- ний. Небольшая мощность серицит-кварцевых ореолов хорошо коррелирует с мощностью извест- ных рудоносных зон. В то же время, на глубине по

Рис. 6. Схема метасоматической зональности по разрезу І-І':

1 — окварцевание; 2 — альбитизация; 3 — ореол прожилков КПШ-серицит-аль- бит-карбонат-кварцевого состава; 4 — арсенопиритизация; 5 — кальцитизация; 6 — рудное тело (рудная зона Основная)

рудную, II рудную, III послерудную.

Минерализация доруд- ной стадии — анкерит- кварцевые жилы и прожил- ки — приурочена к крутопадающим зонам северо- западного простирания, со- гласного с региональным направлением складчато- сти. По нашим данным, эта минерализация не является золотоносной, образование ее, вероятно, связано с пропессами складчатого дина- мометаморфизма.

Минерализация рудной стадии развита в секущей складчатость субширотной относительно пологой зоне дробления. В составе руд- ной стадии устанавливают- ся три подстадии — пред- рудная, ранняя и поздняя рудные. К предрудной под- стадии отнесена альбит- кварцевая минеральная ас- социация жильно-прожилковых образований и мета- соматических изменений вмещающих пород. Мине- ральные ассоциации второй и третьей подстадий близки по времени образования.

данным бурения наблюдаются слепые ореолы та-

ких новообразований, предположительно указы- вающие на возможность обнаружения слепых руд- ных тел. С глубиной мощность серицит-кварцевой зоны увеличивается до 40–60 м.

Кальцитизация фрагментарно отмечена на флангах профиля скв. 1–3 совместно с окварцева- нием. В целом на месторождении развитие кальци- та указывает на фланги рудной зоны.

Минеральный состав рудных тел и последова- тельность минералообразования. На месторожде- нии нами установлено 18 минералов. Основным ми- нералом рудных зон является кварц, который слага- ет 90— 100% жильного выполнения, также присутст- вуют альбит, анкерит, калиевые полевые шпаты, се- рицит, реже кальцит. Рудные минералы (<1% в про- жилках) — пирит, арсенопирит, галенит, халькопи- рит, сфалерит, буланжерит, блеклые руды и самород- ное золото.

В образовании Верхне-Хакчанского месторож- дения можно выделить три стадии (рис. 7) — I до-Участки их интенсивного развития соответствуют потенциальным рудным телам. Ранняя рудная под- стадия количественно доминирует. В ее составе устанавливается кварц-серицит-калишпат-карбо- нат-пиритарсенопиритовая минеральная ассоциа- ция с тонкодисперсным золотом. Поздняя рудная подстадия золотокварц-полисульфидная с более крупным микроскопическим и иногда с видимым золотом — главная продуктивная. Характер минера- лизации обеих ассоциаций прожилково-вкраплен- ный.

Послерудная минерализация представлена рас- средоточенными по всей рудной зоне маломощны- ми и микроскопическими кварц-карбонатными и карбонатными прожилками.

Самородное золото наиболее часто встречается в кварц-арсенопиритовых прожилках, а также в ви- де включений в пирите, сфалерите, арсенопирите и в сростках с ними. Преобладает мелкое и тонкое зо- лото (0,1-0,001 мм). С глубиной отмечается увели- чение размеров золотин. По данным рентгеноспект-

66 РУДЫ и МЕТАЛЛЫ

Рис. 7. Схема последовательности формирования минеральных парагенезисов на участке Верхний Хакчан

рального микроанализа пробность золота изменя- ется от 804 до 910‰ (среднее 854‰). Химический состав самородного золота варьирует незначитель- но. Кроме Ag, в нем изредка присутствует незначи- тельная примесь Cu (обычно не более 0,1%), а также устойчивая примесь Hg (0,1-1%, в среднем 0,5%). Распределение золота в зоне неравномерное, среднее содержание Au ~ 2 г/т.

В проекции рудной зоны Основная на верти- кальную плоскость (рис. 8) выделяются три уровня жильно-прожилковых образований: верхний кварц- анкеритовый, средний кварц-альбит-калишпатовый и нижний кварц-мусковит-калишпатовый. Кварц- мусковит-калишпатовая зона вскрывается только на западном фланге на горизонте 840–880 м. В восточ- ном предположительно наиболее эродированном блоке кварц-анкеритовая зона отсутствует. Рудная минеральная зональность в пределах месторожде- ния нами не выявлена.

Параметры физико-химического режима мине- ралообразования определены по комплексу термобарогеохимических и изотопных данных. Все установ- ленные включения вторичны по отношению к квар- цу. По составу они разделяются на газово-жидкие, существенно газовые и газовые. В последних вплоть до температуры -195°С не наблюдается образования новых фаз. Вероятно, в вакуолях находится газ низ- кой плотности. По нашим данным, аналогичные включения характерны для безрудного и слабо золо- тоносного кварца, развитого на месторождении На- талка в удалении от рудных зон.

Газово-жидкие включения содержат водно-со- левой раствор с низким содержанием хлор-иона, температура протаивания эвтектики варьирует от

-10 до -15 С. Основными солевыми компонентами раствора, вероятно, являются гидрокарбонаты. Концентрация солей, оцененная по температуре плавле- ния льда (от -3,5 до -4,5 С) или температуре плавле- ния гидрата CO_2 (от +7 до +7,5 С), составляет 5,5— 7% в NaCl-эквиваленте. Идентичные криометриче- ские характеристики всех изученных включений свидетельствуют о единой генетической природе минералообразующего раствора. Основные параме- тры, по которым различаются различные группы включений, — температуры их гомогенизации и вариации содержаний углекислотной фазы. При- сутствие визуально диагностируемой фазы CO_2 ус- тановлено только в образцах с повышенным содер- жанием Au. Углекислота практически не содержит примесей, на что указывает температура тройной точки -56,7...-57°С.

Температуры гомогенизации включений изме- няются в диапазоне от 365 до 150 C с рядом прояв- ленных максимумов (рис. 9) на гистограмме.

Рис. 9. Температуры гомогенизации включений в кварце из 75 образцов, месторождение Верхний Хакчан

(содержание Au 2,15 г/т), в апофи- зах зоны Основная по категории P_2 в 25 т (содержание Au 2,15 г/т). Технологическая проба уча- стка Верхний Хакчан относится к кварцевым малосульфидным мы- шьяково- углеродистым золотосо- держащим рудам. Наличие в ней значимой доли крупного свобод- ного золота обусловливает необ- ходимость включения в схему пе- реработки руды гравитационного метода обогащения. На основании результатов исследований по оценке обогатимости руды раз-

Температура растворов продуктивной стадии предварительно оценивается в 240-265 °C. Во вклю- чениях с температурой гомогенизации <200 °C угле- кислота не фиксируется. Для определения темпера- туры их образования следует вводить поправку, обу- словленную давлением (до 40 С при P 500 бар и кон- центрации

5–15% NaCl экв.). Поэтому не исключе- но, что низкотемпературный пик на гистограмме связан не со снижением температуры процесса, а с полной дегазацией флюида.

В целом изученные включения по основным па- раметрам (солевой состав и концентрация раство- ров, доминирование CO_2 в составе газов, температу- ра образования) не отличаются от включений рудообразующих растворов в кварце Наталкинского месторождения. Предварительная оценка давления, основанная на соотношении объемов фаз CO_2 и H_2O в вакуолях, составляет 300–500 бар при 250–300°С. Эта оценка позволяет предполагать менее глубинные условия минералообразования (\sim 500 м) на месторождении Верхний Хакчан по сравнению с месторождением Наталка.

В результате проведенных исследований нами установлено, что распределение золоторудной минерализации контролируется литологическим и тек- тоническим факторами. Максимальные мощности рудных тел отмечаются в породах нерючинской сви- ты с наиболее интенсивными хрупкими деформациями. Собственно рудная минерализация приуро- чена к зонам тектонических нарушений взбрососдвигового типа, представляющих собой блоки ин- тенсивно трещиноватых терригенных пород, пронизанных сетью кварцевых жил, участкам брекчирова- ния и разноориентированных кварцевых прожилков. По результатам работ в рамках Государственно-

го контракта № $8\phi/07$ от 23.07.2007 г. прогнозные ре- сурсы золота месторождения Верхний Хакчан оцениваются: в зоне Основная по категории P_1 в 135 т

личными методами для ее переработки рекомендует- ся комбинированная технологическая схема, включающая гравитационное обогащение, флотацию хвостов гравитации с последующей переработкой объединенного золотосульфидного гравиофлотокон- центрата. По рекомендуемой схеме зачетное извлечение металлов в товарный продукт — золото-сереб- ряный сплав (сплав Доре) — составляет 90,65% Аи. Таким образом, по совокупности данных место- рождение Верхний Хакчан — крупный объект с вы- сокими перспективами прироста ресурсов на глубо- ких горизонтах (западный фланг рудной зоны Ос- новная), а также возможностью выявления рудных тел в пределах рудной зоны Южная, пригодных для отработки открытым способом в современных усло-

виях.

При написании статьи авторами использова- ны результаты многолетних исследований С.Ф.Стружкова. Авторы благодарят М.М.Кон- стантинова, И.З.Исакович и В.Б.Чекваидзе за по- лезные консультации, В.Б.Абашина — за органи- зацию посещения месторождения, В.Б.Голене- ва — за помощь при обработке материалов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Исакович И.З. Ореолы нерудной прожилковой ми- нерализации на полиметаллических и золоторудных месторождениях и их прогнозно-поисковое значе- ние. М.: Бородино–Е, 2009.
- 2. *Крутоус М.П.* Низкотемпературный метаморфизм ру- довмещающих толщ и методика его изучения в золо- тоносных районах Северо-Востока СССР при геоло- гическом картировании масштаба 1:50 000 // Мета- морфические комплексы Северо-Востока СССР, их рудоносность и геологическое картирование. Ма- гадан, 1992. С. 124–143.
- 3. *Многофакторная* модель золоторудного месторожде- ния Наталка / С.Ф.Стружков, М.В.Наталенко, В.Б.Чек- ваидзе и др. // Руды и металлы. 2006. № 3. С. 34–44.