ставлена с обобщенной структурной моделью месторождений-гигантов. Констатируется, что формальные признаки наличия структурных элементов супербассейна в этой модели имеются.

Установленные предпосылки существования авлакогена в основании НПС в совокупности со структурными элементами модели дают основание говорить, как минимум, о невостребованном высоком УВ потенциале подфундаментных отложений, свойственном погребенным рифтовым системам. Как максимум, при реальности условий дальней миграции УВ из внутренней части прогиба под кристаллическую пластину в подфундаментные отложения Непско-Пеледуйского свода, в них может быть открыт нефтегазоносный бассейн, в котором реализуется суммарный генерационный потенциал рифейских отложений палеорифтовой системы и Предпатомской краевой системы в рассматриваемом секторе.

Для заверки глубинного строения НПС, вскрытия предполагаемых подфундаментных отложений и оценки их промысловых характеристик рекомендуется пробурить параметрическую скважину глубиной 2500–3000 м на Талаканском месторождении вблизи скв. № 826.

ЛИТЕРАТУРА

1. *Алексеев Ф.Н., Берзин А.Г., Ситников В.С.* Природные совокупности и ассоциации залежей углеводородов / Новые идеи в геологии и геохимии нефти и газа: Матер. VI междунар. конф. — М.: Геос, 2002. — Т. 1. — С. 21–25.

2. Александров Б.А., Лабазанов М.М., Хасанов М.А. и др. Основные доводы в пользу теории абиогенного происхождения углеводородов // Геология, геофизика и разработка нефтяных и газовых месторождений. — 2014. — № 4. — С. 64–67.

3. *Берзин А.Г., Иванов И.С., Архипова Т.А.* О глубинном строении западного сегмента Предпатомского прогиба и прилегающей части Непско-Пеледуйского свода // Наука и образование (Якутск СО РАН). — 2013. — № 2. — С. 58–64.

4. Берзин А.Г., Берзин С.А., Иванов И.С. Геолого-геофизические модели Непско-Пеледуйского свода и прилегающей части Нюйско-Джербинской впадины // Геология, геофизика и разработка нефтяных и газовых месторождений. — 2014. — № 4. — С. 55–63.

5. Детков В.А., Вальган В.И., Горюнов Н.А., Евграфов А.А. Особенности строения земной коры и верхней мантии юга Сибирской платформы в сечении опорных маршрутов Батолит и Алтай-Северная Земля // Модели земной коры и верхней мантии по результатам глубинного сейсмопрофилирования: Матер. науч.-прак. семинара. — СПб: ВСЕГЕИ, 2007. 6. Иванников В.И., Кузнецов Ю.И. Нефть: история, происхождение, закономерности размещения // НТВ «Каротажник». — Тверь: АИС, 2011. — Вып. 9 (198). — С. 114–146.

7. *Корчагин В.И.* Закономерности взаимного расположения крупнейших скоплений нефти и газа в супербассейнах // Геология, геофизика и разработка нефтяных месторождений. — 1997. — № 5. — С. 38–49. 8. *Кукуруза В.Д.* Новые представления о механизме формирования гигантских месторождений // Новые идеи в науках о Земле: Доклады междунар. конф.- М.: РГГРУ, 2003. — Т. 1 — 209 с.

9. *Ларкин В.Н., Вальчак В.И*. Прогнозирование новых зон нефтегазонакопления на юго-западе Восточной Сибири. — Геология нефти и газа. — 2007. — № 1. — С. 24–31.

10. *Соколов Б.А.* Новые идеи в геологии нефти и газа (избранные труды). — М.: МГУ, 2001. — С. 233–310.

11. *Ступакова А.В.* Развитие бассейнов Баренцевоморского шельфа и их нефтегазо-носность: Автореф. Дисс... д-ра. г-мин. наук. — М.: МГУ, 2001. — 309 с.

12. *Fairhead J.D., Stuart G.W.* The seismicity of the East African rijt system comparison with orther continental r'ifts // Continental and oceanic rifts. — Washington and Boulder, 1982.

© Коллектив авторов, 2015

Берзин Анатолий Георгиевич // a_berzin@mail.ru Илларионова Мария Георгиевна // millariono@mail.ru Иванов Илья Семенович // kss90@mail.ru Марсанова Мария Романовна // marigotov@mail.ru Берзин Сергей Анатольевич // sberzin@hotmail.com Ним Ю.А., Романова Л.П., Илларионова М.Г. (Северо-Восточный федеральный университет)

ЧИСЛЕННО-ЭКСПЕРИМЕНТАЛЬНОЕ ФОРМИРОВАНИЕ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ НЕУСТАНОВИВШЕГОСЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ КРУТОПАДАЮЩЕГО ТОНКОГО ПРОВОДЯЩЕГО ПЛАСТА

Рассматриваются математические модели неустановившегося электромагнитного поля горизонтального электропроводного пласта, возбуждаемого горизонтальным магнитным диполем, на базе которых методом изображений и численным экспериментом сконструированы новые математические модели, описывающие неустановившееся электромагнитное поле крутопадающего тонкого электропроводного пласта, возбуждаемого вертикальным магнитным диполем — аналитическое описание технологии электропрофилирования методом переходных процессов, обеспеченных в основном физическим моделированием. Результаты математического моделирования соответствуют теоретическим основам метода, данным физических экспериментов и теории «родственных» технологий — модификаций дипольного электромагнитного профилирования. Ключевые слова: неустановившееся электромагнитное поле, математическая модель, численный эксперимент, крутопадающий пласт, метод изображений.

Nim Yu.A., Romanova L.P., Illarionova M.G. (North-Eastern federal university)

NUMERICAL AND EXPERIMENTAL FORMATION OF MATHEMATICAL MODELS OF UNSTEADY ELECTROMAGNETIC FIELD OF STEEPLY DIPPING THIN CONDUCTIVE LAYER

Review the mathematical models of transient electromagnetic field of the horizontal electrically conductive layer excited by a horizontal magnetic dipole, on the basis of which the method of images and numerical experiments construct new mathematical model describing the unsteady electromagnetic field of steeply dipping thin conductive layer excited by a vertical magnetic dipole — analytical description of technology of electric profiling by the metdod of transient processes provided mainly by physical modeling. The results of mathematical modeling correspond to theoretical basis of method, data of physical experiments and theory of «related» technologies — modification of the dipole electromagnetic profiling. **Key words:** unsteady electromagnetic field, mathematical model, numerical simulation, steep seams, method of images.

Поиск и картирование тонких (маломощных) крутопадающих рудных тел, тектонических нарушений и тому подобных характерных геологических структур является одной из основных задач рудной электроразведки. Однако вследствие известных сложностей аналитического решения электродинамических задач такой структурной схемы применительно к инженерной практике, теоретическое обеспечение одного из наиболее эффективных современных методов рудной электроразведки — метода переходных процессов (МПП) основано главным образом на результатах физического моделирования [2–4, 7, 10]. В связи с этим представляет интерес приближенный способ формирования мате-

Рис 1. Схема взаимного расположения вертикальной полуплоскости S и возбуждающих магнитных диполей

матических моделей неустановившегося электромагнитного поля крутопадающего тонкого проводящего геологического пласта (вертикального контакта), аппроксимированного известной математической моделью — полуплоскостью S [2-4]. Конструирование рассматриваемой модели начнем с аналитического определения неустановившегося электромагнитного поля горизонтальной плоскости S, возбуждаемого горизонтальным магнитным диполем [9]. Эта геометрическая схема аналогична тому, что вертикальная плоскость S (вертикальный контакт или разлом в земной коре) относительно горизонтальной границы земля — воздух делит однородную среду ниже и выше земной поверхности на две области с электропроводностью $\gamma = 0$. Плоскость S характеризуется конечной продольной проводимостью в виде $S = \lim \gamma l \, \text{при } \gamma \to \infty, \, l \to 0 \, (l - 1)$ мощность пласта) [5, 9–11]. Электропроводный пласт возбуждается магнитным диполем с моментом M = $M_{\cdot}e^{i\omega t}$, расположенным на расстоянии h от плоскости Sв начале цилиндрической системы координат (r, ϕ, z), совмещенной с декартовой (x, y, z) и ориентированной параллельно плоскости S по оси x (здесь ω — круговая частота, *t* — время, *i* — мнимая единица). Ось *z* направим перпендикулярно плоскости *S*так, что h = z (рис. 1).

В соответствии с магнитным характером источника поля, вводим вектор-потенциал А соотношением

$$E = rotA,\tag{1}$$

где — Е — напряженность электрического поля.

Согласно симметрии системы электродинамический вектор-потенциал имеет две компоненты: горизонтальную A_x и вертикальную A_z , которые определяются решением уравнения Гельмгольца [5, 9]:

$$\Delta^2 A_{z,x} = k^2 A_{z,x},$$

где $k^2 = i\omega\mu\gamma$ — квадрат волнового числа; μ — магнитная проницаемость.

Вне плоскости *S* электромагнитное поле удовлетворяет уравнению Лапласа:

$$\Delta^2 A_{z,x} = 0, \tag{2}$$

На плоскости Ѕвыполняются граничные условия [10]:

$$A_{1z} = A_{2z}; \frac{\partial A_{1x}}{\partial z} = \frac{\partial A_{2x}}{\partial z} = 0; \frac{\partial A_{1x}}{\partial x} - \frac{\partial A_{2x}}{\partial x} + \frac{\partial A_{1z}}{\partial z} - \frac{\partial A_{2z}}{\partial z} = i\omega\mu SA_{(1,2)z}.$$
 (3)

11 • ноябрь • 2015

Краевые условия с учетом функции источника имеют следующий вид:

при г $\rightarrow 0$ вблизи диполя $A_x \rightarrow \frac{i\omega\mu M_x}{4\pi} \frac{1}{r} = \overline{M} \frac{1}{r}$; при г $\rightarrow \infty A_x \rightarrow 0$.

Используя метод разделения переменных, выпишем известные решения уравнения Лапласа для каждой из сред, разделенных плоскостью *S*.

Так, для модели I (рис. 1) имеем

1.
$$A_{1x} = \overline{M} \int_{0}^{\infty} (e^{-m|z|} + B_0 e^{mz}) J_0(mr) dm,$$

2.
$$A_{2x} = \overline{M} \int_{0}^{\infty} B_1 e^{-mz} J_0(mr) dm,$$
 (4)

3.
$$A_{1z} = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} C_{0} e^{mz} J_{0}(mr) dm,$$

4.
$$A_{2z} = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} C_{1} e^{-mz} J_{0}(mr) dm,$$

где $J_0(mr)$ — функция Бесселя нулевого порядка аргумента (*mr*); *m* — переменная разделения; B_0, B_1, C_0 и C_1 — коэффициенты, определяемые из граничных условий.

Для выполнения граничных условий находим соответствующие им производные функций *A_x* и *A_z*:

1.
$$\frac{\partial A_{1x}}{\partial z} = \overline{M} \int_{0}^{\infty} (-me^{-m|z|} + mB_0 e^{mz}) J_0(mr) dm.$$

2.
$$\frac{\partial A_{2x}}{\partial z} = \overline{M} \int_{0}^{\infty} (-mB_1 e^{-mz}) J_0(mr) dm,$$

3.
$$\frac{\partial A_{1x}}{\partial x} = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} (e^{-m|z|} + B_0 e^{mz}) J_0(mr) dm.$$

4.
$$\frac{\partial A_{2x}}{\partial x} = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} B_{1} e^{-mz} J_{0}(mr) dm.$$

5.
$$\frac{\partial A_{1z}}{\partial z} = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} mC_{0} e^{mz} J_{0}(mr) dm.$$

6.
$$\frac{\partial A_{2z}}{\partial z} = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} (-mC_{1}e^{-mz}) J_{0}(mr) dm.$$

Известно, что при дифференцировании по *z* функций, зависящих от модульных значений |z|, принимается знак «+» при *z* >0 и знак «-» при *z* <0. Знаки при функции источника определяются конечностью поля: при *z* >0 имеем exp(-mz), а при *z* <0 — exp(m*z*).

На границе z = h ввиду ортогональности функций Бесселя подынтегральные выражения производных вектор-потенциалов равны [6]:

1.
$$-me^{-mh} + mB_0e^{mh} = -mB_1e^{-mh} \equiv 0$$
, отсюда $B_0 = e^{-2mh}$, $B_1 = 0$.
2. $C_0e^{mh} = C_1e^{-mh}$, отсюда $C_0 = C_1e^{-2mh}$, $C_1 = C_0e^{2mh}$.
3. $e^{-mh} + B_0e^{mh} + mC_0e^{mh} - B_1e^{-mh} + mC_1e^{-mh} = i\omega\mu SC_0e^{mh}$.

Решая эту систему уравнений, находим

$$C_0 = \frac{2}{i\omega\mu S - 2m} e^{-2mh}; C_1 = \frac{2}{i\omega\mu S - 2m}.$$
 (5)

Подставляя эти коэффициенты в выражения (4.3) и (4.4), находим вектор-потенциалы в соответствующих средах. Так, в первой среде имеем

$$A_{1z}^{x} = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} \frac{2}{i\omega\mu S - 2m} e^{-2m\hbar} e^{mz} J_{0}(mr) dm.$$

Применяя спектральный метод решения электродинамической задачи, после ряда алгебраических преобразований находим искомую функцию во временной области, используя для этого обратное интегральное преобразование Фурье-Лапласа.

$$A_{1z}(t) = \frac{M_x}{2\pi S} \frac{\partial}{\partial x} \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{pt}}{p} \frac{p}{p+a} dp \int_{0}^{\infty} e^{-\alpha m} J_0(mr) dm$$

где $p = i\omega; a = -2m/\mu S; \alpha = 2h - z.$

Вычисляя интегралы, получим

$$A_{1z}^{x}(t) = \frac{M_{x}}{2\pi S} \frac{\partial}{\partial x} \int_{0}^{\infty} e^{-at} e^{-am} J_{0}(mr) dm = \frac{M_{x}}{2\pi S} \frac{\partial}{\partial x} \int_{0}^{\infty} e^{-m(-\frac{M}{\mu S} + 2h - z)} J_{0}(mr) dm =$$
$$= \frac{M_{x}}{2\pi S} \frac{\partial}{\partial x} \frac{1}{\left[((-2t/\mu S) + 2h - z)^{2} + r^{2} \right]^{1/2}} =$$
$$= -\frac{M_{x}}{2\pi S} \frac{r \cos \varphi}{\left[((-2t/\mu S) - 2h + r)^{2} + r^{2} \right]^{3/2}}.$$
(6)

Радиальная компонента скорости изменения магнитной индукции в этой области определяется выражением

$$\overset{\bullet}{B}_{1r}^{x}(t) = -\frac{\partial^{2} A_{1z}^{x}}{\partial r \partial z} = -\frac{3M_{x}}{2\pi S} \cos \varphi a_{1} \frac{a_{1}^{2} - 4r^{2}}{\left(a_{1}^{2} + r^{2}\right)^{7/2}},$$
(7)

где $a_1 = (2t / \mu S) - 2h + z.$

Вектор-потенциал во второй среде имеет вид

$$A_{2z}^{x}(\omega) = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} \frac{2}{i\omega\mu S - 2m} e^{-mz} J_{0}(mr) dm =$$
$$= \frac{\mu M_{x}}{4\pi} \frac{\partial}{\partial x} \int_{0}^{\infty} \frac{(2/\mu S)i\omega}{i\omega - (2m/\mu S)} e^{-mz} J_{0}(mr) dm$$
(8)

или во временной области

$$\mathcal{A}_{2z}^{x}(t) = \frac{M_{x}}{2\pi S} \frac{\partial}{\partial x} \int_{0}^{\infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{pt}}{p} \frac{p}{p-a} dp e^{-mz} J_{0}(mr) dm =$$

$$= \frac{M_{x}}{2\pi S} \frac{\partial}{\partial x} \int_{0}^{\infty} e^{-at} e^{-mz} J_{0}(mr) dm =$$

$$= \frac{M_{x}}{2\pi S} \frac{\partial}{\partial x} \int_{0}^{\infty} e^{-m} \left((-2t/\mu S) + z \right) J_{0}(mr) dm =$$

$$= \frac{M_{x}}{2\pi S} \frac{\partial}{\partial x} \frac{1}{\left[(-2t/\mu S) + z \right]^{2} + r^{2} \right]^{1/2}} = \cdot$$

$$= -\frac{M_{x}}{2\pi S} \frac{r \cos \varphi}{\left[(2t/\mu S) - z \right]^{2} + r^{2} \right]^{3/2}}.$$
(9)

Заметим, что если заменить в функции $A_{1z}^{x}(t)$ расстояние *h* от плоскости *S* до источника координатой *z*, то вектор-потенциалы поля в первой и во второй средах будут идентичны. Соответственно им будут равны и поля магнитной индукции, так как они однозначно определяются через функции вектор-потенциалов.

Радиальная компонента скорости изменения магнитной индукции во второй среде приобретает вид, аналогичный первой среде с учетом замены h = z.

$$\dot{B}_{2r}^{x}(t) = -\frac{3M_{x}}{2\pi S} \cos \varphi a_{11} \frac{a_{11}^{2} - 4r^{2}}{(a_{11}^{2} + r^{2})^{7/2}},$$
(10)

где $a_{11} = 2t / \mu S - z$.

Скорость изменения вторичного поля с обеих сторон плоскости *S* одинакова, что явилось в свое время основанием для решения этой задачи методом зеркальных отражений [10, 11].

Теперь найдем поле плоскости *S* при ее возбуждении в другой области полупространства, т.е. в области {II} (модель II) (рис. 1). В этом случае возбуждающий диполь M_x расположен на расстоянии h = -z от плоскости *S*. С учетом изменившейся системы координат решения уравнения Лапласа и их производные представляются в виде

1.
$$A_{1x}^{x} = \overline{M} \int_{0}^{\infty} B_{0} e^{mz} J_{0}(mr) dm.$$

2.
$$A_{2x}^{x} = \overline{M} \int_{0}^{\infty} (e^{m|z|} + B_{1} e^{-mz}) J_{0}(mr) dm$$

3.
$$A_{1z}^{x} = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} C_{0} e^{mz} J_{0}(mr) dm.$$

4.
$$A_{2z}^{s} = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} (e^{m|z|} + B_{1}e^{-mz}) J_{0}(mr) dm.$$

5.
$$\frac{\partial A_{1x}}{\partial x} = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} B_0 e^{mz} J_0(mr) dm.$$

6.
$$\frac{\partial A_{2x}}{\partial x} = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} (e^{m|z|} + B_{1}e^{-mz}) J_{0}(mr) dm.$$

7.
$$\frac{\partial A_{1x}}{\partial z} = \overline{M} \int_{0}^{\infty} mB_{0} e^{mz} J_{0}(mr) dm.$$

8.
$$\frac{\partial A_{2x}}{\partial z} = \overline{M} \int_{0}^{\infty} (me^{m|z|} - mB_{1}e^{-mz}) J_{0}(mr) dm.$$

9.
$$\frac{\partial A_{1x}}{\partial z} = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} mC_{0} e^{mz} J_{0}(mr) dm.$$

10.
$$\frac{\partial A_{2z}}{\partial z} = \overline{M} \frac{\partial}{\partial x} \int_{0}^{\infty} (-mC_1 e^{-mz}) J_0(mr) dm.$$

Согласно граничным условиям (3), находим

$$B_0 = 0, B_1 = e^{-2mh}, C_0 = -2/(i\omega\mu S - 2m),$$

$$C_1 = -2/(i\omega\mu S - 2m)e^{-2mh}$$

т.е. определяющие поля коэффициенты поменяли знаки, а функция источника соответственно переместилась во вторую среду. Повторяя процедуру вычисления интегралов, запишем:

$$A_{1z}^{x}(t) = \frac{M_{x}}{2\pi S} \frac{r\cos\varphi}{\left[\left((2t/\mu S) - z\right)^{2} + r^{2}\right]^{3/2}};$$

$$\dot{B}_{1r}^{x}(t) = -\frac{\partial^{2}}{\partial r\partial z} A_{1z}^{x} = -\frac{3M_{x}}{2\pi S} \cos\varphi a \frac{a^{2} - 4r^{2}}{(a^{2} + r^{2})^{7/2}}, \quad (11)$$

где $a = 2t / \mu S - z$.

$$A_{2z}^{x}(t) = \frac{M_{x}}{2\pi S} \frac{r\cos\varphi}{\left[\left(2t/\mu S\right) + 2h + z\right)^{2} + r^{2}\right]^{3/2}} \cdot \\ \dot{B}_{2r}^{x}(t) = -\frac{\partial}{\partial r\partial z} \frac{M_{x}}{2\pi S} \frac{r\cos\varphi}{\left[\left(2t/\mu S\right) + 2h + z\right)^{2} + r^{2}\right]^{3/2}} = \\ = -\frac{\partial}{\partial r\partial z} \left[\frac{\partial}{\partial r\partial z} \frac{M_{x}}{2\pi S} r\cos\varphi \frac{1}{\left[a^{2} + r^{2}\right]^{3/2}}\right] = \\ = \frac{3M}{2\pi S} \cos\varphi a \frac{a^{2} - 4r^{2}}{\left(a^{2} + r^{2}\right)^{7/2}},$$

где $a = 2t / \mu S + 2h + z$.

Здесь, так же как и в модели I, заменяя расстояние h (точку возбуждения) координатой z, получим равенство вектор-потенциалов с обеих сторон плоскости S и соответственно полей \dot{B}_r с учетом дифференцирования по переменной z. Теперь к полученным моделям I и II, следуя работе [6], применяем метод зеркальных отражений, мысленно перенося в нижнее полупространство зеркальное отражение структуры проводящей полуплоскости S относительно земной поверхности. После такого преобразования получаем новую модель: вертикальную полуплоскость S. электромагнитное поле которой удвоено. Математические модели неустановившегося поля вертикальной полуплоскости S сконструируем численным моделированием новых моделей, соответствующих теоретическому обеспечению технологических схем электропрофилирования методом переходных процессов. Поскольку в однопетлевом варианте МПП координата точки наблюдения ($\pm z$) расположена на расстоянии h от плоскости S, то математическая модель рассматриваемых полей с обеих сторон полуплоскости Ѕодинакова и симметрична относительно вертикального контакта и полностью соответствует результатам физического моделирования МПП, а также дипольного электромагнитного профилирования [2-5, 7, 10]. В этой модели начало координат положим в точку пересечения вертикальной полуплоскости и поверхности земля — воздух.

Возможность применения метода изображений в таком варианте следует из классических примеров применения метода при возбуждении поля постоянным током, но, как показано в работах [1, 2], этот метод действителен и для квазистационарного электромагнитного поля, т.е. для всего практического диапазона наблюдения поля методом переходных процессов. В новой модели сохраняются граничные условия (3), на границах полуплоскостей *S* (верхней и нижней), на линии их разделения поля A_z^x и радиальные компоненты $B_r^x(t)$ равны нулю, согласно аналитическим выражениям полей A_z^x и B_r^x [9]. К примеру, представляя выражение вектор-потенциала A_z^x (6) в виде

$$A_{1z}^{x}(t) = \frac{M_{x}}{2\pi S} \frac{\partial}{\partial x} \int_{0}^{\infty} e^{-\alpha m} J_{0}(mr) dm = -\frac{M_{x}}{2\pi S} \int_{0}^{\infty} m \cos \varphi J_{1}(mr) dm,$$

а радиальную компоненту магнитной индукции как

$$\overset{\bullet}{B}_{1r}^{x}(t) = -\frac{\partial^{2} A_{1z}^{x}}{\partial r \partial z} \left[-\frac{M_{x}}{2\pi S} \int_{0}^{\infty} e^{-\alpha m} m \cos \varphi J_{1}(mr) dm \right] =$$

$$= \frac{M_{x}}{2\pi S} m^{3} \cos \varphi e^{-\alpha m} J_{2}(mr) dm,$$

проявляем непосредственную зависимость рассматриваемых полей от функций Бесселя первого $J_1(mr)$ и второго $J_2(mr)$ порядков, которые при r = 0, равны нулю [12]. Таким образом соблюдаются идентичные граничные условия на всех границах зеркально отраженных полуплоскостях *S* и, следовательно, правомерность применения метода изображений [6].

В соответствии с теоретическим положением МПП и дипольного электромагнитного профилирования вертикальные компоненты магнитного поля с обеих сторон полуплоскости *S* симметричны и идентичны, поэтому рассчитав поле $\dot{B}_{1r}^{x}(t)$ и $\dot{B}_{2r}^{x}(t)$ (для новой модели это уже вертикальные компоненты относительно поверхности земля — воздух), получим численные значения этих компонент поля вдоль профиля пересечения полуплоскости *S* (табл. 1), согласно которым на рис. 2 построены графики аномального поля вертикальной полуплоскости *S* (рис. 2 и 4). Форма графиков полностью соответствует данным физических экспериментов многих исследователей, в том числе и Ю.А. Нима (рис. 3).

Для выяснения характера изменения неустановившегося поля вертикальной компоненты вертикального магнитного диполя над наклонной полуплоскостью *S* численным экспериментом рассмотрим известную

Рис. 2. Графики аномального поля над вертикальной полуплоскостью в однопетлевом варианте МПП, построенные по расчетным данным приведенным в таблице 1

Таблица 1

Расчетные значения поля компонент $\mathring{B}_{1r}^{x}(t) \frac{T}{c}$; $\mathring{B}_{2r}^{x}(t) \frac{T}{c}$ вдоль профиля наблюдения вертикальной полуплоскости S в однопетлевом варианте (моделей I, II)

	t = 100 мкс			t = 200 мск	
x	а	$\overset{\bullet}{B}_{1r}^{x}$	X	а	\dot{B}_{1r}^{x}
9	9,159236	1,36 E-07	9	9,32	1,27 E-07
8	8,159236	2,16 E-07	8	8,32	2 E-07
7	7,159236	3,64 E-07	7	7,32	3,33 E-07
6	6,159236	6,64 E-07	6	6,32	5,99 E-07
5	5,159236	1,35 E-06	5	5,32	1,19 E-06
4	4,159236	3,19 E-06	4	4,32	2,75 E-06
3	3,159236	9,59 E-06	3	3,32	7,88 E-06
2	2,159236	4,4 E-05	2	2,32	3,31 E-05
1	1,159236	0,000529	1	1,32	0,000316
0	0	0	0	0	0
		\dot{B}_{2r}^{x}			\dot{B}_{2r}^{x}
0	0	0	0	0	0
-1	1,159236	0,000529	-1	1,32	0,000316
-2	2,159236	4,44 E-05	-2	2,32	3,31 E-05
-3	3,159236	9,59 E-06	-3	3,32	7,88 E-06
-4	4,159236	3,19 E-06	-4	4,32	2,75 E-06
-5	5,159236	1,35 E-06	-5	5,32	1,19 E-06
-6	6,159236	6,64 E-07	-6	6,32	5,99 E-07
-7	7,159236	3,64 E-07	-7	7,32	3,33 E-07
-8	8,159236	2,16 E-07	-8	8,32	2 E-07
-9	9,159236	1,36 E-07	-9	9,32	1,27 E-07
	t = 4	100 мкс		t = 5	500 мск
x	t = 4	400 мкс \mathring{B}_{1r}^{x}	x	t = 5	500 мск В ^x В ¹ r
x 9	<i>t</i> = 2 <i>a</i> 9,636943	400 мкс \dot{B}_{1r}^{x} 1,11 Е-07	x 9	t = 5 a 9,796178	500 мск В 1r 3 1,04 E-07
x 9 8	t = 2 a 9,636943 8,636943	400 мкс \dot{B}_{1r}^{x} 1,11 E-07 1,72 E-07	x 9 8	t = 5 a 9,796178 8,796178	БОО мск B B 1,04 E-07 3 1,6 E-07 3
x 9 8 7	t = 2 a 9,636943 8,636943 7,636943	400 мкс \dot{B}_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07	x 9 8 7	t = 5 a 9,796178 8,796178 7,796178	БОО мск B_{1r}^{x} 3 1,04 E-07 3 1,6 E-07 3 2,59 E-07
x 9 8 7 6	<i>t</i> = 2 <i>a</i> 9,636943 8,636943 7,636943 6,636943	400 мкс \dot{B}_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 4,92 E-07	x 9 8 7 6	t = t a 9,796178 8,796178 7,796178 6,796178	БОО мск B B B 1,04 E-07 B 1,6 E-07 B 2,59 E-07 B 4,48 E-07
x 9 8 7 6 5	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943	400 мкс В ^x 1,11 E-07 1,72 E-07 2,81 E-07 4,92 E-07 9,46 E-07	x 9 8 7 6 5	t = 5 a 9,796178 8,796178 7,796178 6,796178 5,796178	БОО мск \mathring{B}_{1r}^x 3 1,04 E-07 3 1,6 E-07 3 2,59 E-07 3 4,48 E-07 3 8,46 E-07
x 9 8 7 6 5 4	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943	400 мкс \dot{B}_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 4,92 E-07 9,46 E-07 2,07 E-06	x 9 8 7 6 5 4	t = 5 a 9,796178 8,796178 6,796178 6,796178 5,796178 4,796178	B_{1r}^{x}
x 9 8 7 6 5 4 3	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943 3,636943	400 мкс \dot{B}_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 4,92 E-07 9,46 E-07 2,07 E-06 5,46 E-06	x 9 8 7 6 5 4 3	t = 5 a 9,796178 8,796178 6,796178 6,796178 5,796178 4,796178 3,796178	B_{1r} <
x 9 8 7 6 5 4 3 2	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943 3,636943 2,636943	400 мкс В ^x 1,11 E-07 1,72 E-07 2,81 E-07 4,92 E-07 9,46 E-07 2,07 E-06 5,46 E-06 1,98 E-05	x 9 8 7 6 5 4 3 2	t = 5 a 9,796178 8,796178 6,796178 6,796178 5,796178 4,796178 3,796178 2,796178	BOO MCK B^{x}
x 9 8 7 6 5 4 3 2 1	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943 3,636943 2,636943 1,636943	400 мкс \dot{B}_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 4,92 E-07 9,46 E-07 2,07 E-06 5,46 E-06 1,98 E-05 0,000133	x 9 8 7 6 5 4 3 2 1	t = 5 a 9,796178 8,796178 6,796178 6,796178 5,796178 4,796178 3,796178 2,796178 1,796178	B_{1r}^{x} B_{2r}^{x}
x 9 8 7 6 5 4 3 2 1 0	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943 3,636943 2,636943 1,636943 0	400 мкс \dot{B}_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 4,92 E-07 9,46 E-07 2,07 E-06 5,46 E-06 1,98 E-05 0,000133 0	x 9 8 7 6 5 4 3 2 1 0	t = 5 a 9,796178 8,796178 6,796178 6,796178 5,796178 3,796178 2,796178 1,796178 0	B_{1r} <
x 9 8 7 6 5 4 3 2 1 0	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943 3,636943 2,636943 1,636943 0	aoo мкс B_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 2,81 E-07 9,46 E-07 2,07 E-06 5,46 E-06 1,98 E-05 0,000133 0 B_{2r}^{x}	x 9 8 7 6 5 4 3 2 1 0	t = 5 a 9,796178 8,796178 6,796178 5,796178 4,796178 3,796178 2,796178 1,796178 0	B_{1r}^{x}
x 9 8 7 6 5 4 3 2 1 0 0	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943 3,636943 2,636943 1,636943 0 0 0	b00 мкс B_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 4,92 E-07 9,46 E-07 2,07 E-06 5,46 E-06 1,98 E-05 0,000133 0 B_{2r}^{x} 0	x 9 8 7 6 5 4 3 2 1 0 0	t = 5 a 9,796178 8,796178 6,796178 5,796178 3,796178 2,796178 1,796178 1,796178 0 0	B_{1r}^x B_{1r}^x B_{1r}^x B_{1r}^x B_{1r}^x B_{1r}^x B_{1r}^x B_{1r}^x B_{1r}^x B_{2r}^x B_{1r}^x B_{2r}^x 0
x 9 8 7 6 5 4 3 2 1 0 0 -1	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943 3,636943 2,636943 1,636943 0 1,636943 0 1,636943	aoo мкс B_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 2,81 E-07 9,46 E-07 2,07 E-06 5,46 E-06 1,98 E-05 0,000133 0 B_{2r}^{x} 0 0,000133	x 9 8 7 6 5 4 3 2 1 0 0 -1	t = 5 a 9,796178 8,796178 6,796178 6,796178 5,796178 3,796178 2,796178 1,796178 0 0	B_{1r}^{x} B_{2r}^{x}
x 9 8 7 6 5 4 3 2 1 0 0 -1 -2	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943 3,636943 2,636943 1,636943 0 1,636943 2,636943 2,636943 1,636943 2,636943	400 мкс B_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 2,81 E-07 9,46 E-07 2,07 E-06 5,46 E-06 1,98 E-05 0,000133 0 B_{2r}^{x} 0 0,000133 1,98 E-05	x 9 8 7 6 5 4 3 2 1 0 0 -1 -2	t = 5 a 9,796178 8,796178 6,796178 5,796178 4,796178 2,796178 1,796178 0 0 1,796178 2,796178 2,796178	B_{1r}^{x} $B_{1,6}^{x} E_{-05}$ B_{2r}^{x} O_{18}^{x} B_{2r}^{x} O_{18}^{x} $B_{1,56}^{x} E_{-05}$ $B_{1,56}^{x} E_{-05}$
x 9 8 7 6 5 4 3 2 1 0 0 -1 -2 -3	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943 3,636943 2,636943 1,636943 0 1,636943 2,636943 3,636943 3,636943 3,636943	400 мкс B_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 2,81 E-07 9,46 E-07 2,07 E-06 5,46 E-06 1,98 E-05 0,000133 0 B_{2r}^{x} 0 0,000133 1,98 E-05 5,46 E-06	x 9 8 7 6 5 4 3 2 1 0 0 -1 -2 -3	$t = \frac{1}{2}$ a 9,796178 8,796178 6,796178 6,796178 5,796178 3,796178 2,796178 1,796178 0 0 1,796178 2,796178 3,79618 3,798 3,798 3,798 3,798 3,798 3,798 3,798 3,798 3,798 3,798 3,79	k k B 1,04 E-07 3 1,6 E-07 3 2,59 E-07 3 4,48 E-07 3 4,48 E-07 3 4,48 E-07 3 1,81 E-06 3 1,81 E-06 3 1,56 E-05 3 9,18 E-05 0 B_{2r}^{x} 0 3 3 1,56 E-05 3 1,56 E-05 3 1,56 E-05 3 4,6 E-06
x 9 8 7 6 5 4 3 2 1 0 0 -1 -2 -3 -4	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943 3,636943 1,636943 0 1,636943 2,636943 1,636943 2,636943 3,636943 3,636943 4,636943 4,636943	AOO мкс B_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 4,92 E-07 9,46 E-07 2,07 E-06 5,46 E-06 1,98 E-05 0,000133 0 B_{2r}^{x} 0 0,000133 1,98 E-05 5,46 E-06 2,07 E-06	x 9 8 7 6 5 4 3 2 1 0 0 -1 -2 -3 -4	t = 5 a 9,796178 8,796178 6,796178 6,796178 5,796178 3,796178 2,796178 0 0 1,796178 2,796178 2,796178 3,796178 3,796178 4,796178	B_{1r}^{x} B_{2r}^{x} 0 B_{2r}^{x} 0 B_{2r}^{x}
$ \begin{array}{c} x \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ -1 \\ -2 \\ -3 \\ -4 \\ -5 \\ \end{array} $	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943 3,636943 2,636943 1,636943 0 1,636943 2,636943 3,636943 4,636943 3,636943 4,636943 3,636943 3,636943 4,636943 3,636943 4,636943 5,636943	400 мкс B_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 2,81 E-07 9,46 E-07 2,07 E-06 5,46 E-06 1,98 E-05 0,000133 0 B_{2r}^{x} 0 0,000133 1,98 E-05 5,46 E-06 2,07 E-06 9,46 E-07	x 9 8 7 6 5 4 3 2 1 0 0 -1 -2 -3 -4 -5	$t = \frac{1}{2}$ a 9,796178 8,796178 6,796178 6,796178 5,796178 4,796178 2,796178 1,796178 1,796178 0 0 1,796178 2,796178 3,796178 3,796178 4,796178 5,796178 5,796178	B_{1r}^{x} $B_{1,81}^{x}$ $B_{1,81}^{x}$ $B_{1,81}^{x}$ B_{2r}^{x}
$ \begin{array}{c} x \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ 0 \\ -1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ \end{array} $	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 3,636943 2,636943 1,636943 0 1,636943 2,636943 3,636943 3,636943 3,636943 3,636943 3,636943 3,636943 3,636943 3,636943 3,636943 5,636943 5,636943 5,636943	400 мкс B_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 2,81 E-07 9,46 E-07 2,07 E-06 5,46 E-06 1,98 E-05 0,000133 0 B_{2r}^{x} 0 0,000133 1,98 E-05 5,46 E-06 2,07 E-06 9,46 E-07 4,92 E-07	x 9 8 7 6 5 4 3 2 1 0 0 -1 -2 -3 -4 -5 -6	t = t a 9,796178 8,796178 8,796178 6,796178 6,796178 5,796178 2,796178 2,796178 0 0 1,796178 2,796178 3,796178 3,796178 3,796178 4,796178 6,796178 6,796178	B_{1r}^{x} B_{2r}^{x} B_{2r}^{x} 0 B_{2r}^{x} $B_{2r}^{$
$ \begin{array}{c} x \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ -1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ \end{array} $	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943 3,636943 1,636943 0 1,636943 2,636943 1,636943 2,636943 3,636943 2,636943 3,636943 3,636943 3,636943 3,636943 3,636943 5,636943 6,636943 6,636943 7,636943	400 мкс B_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 4,92 E-07 9,46 E-07 2,07 E-06 5,46 E-06 1,98 E-05 0,000133 0 B_{2r}^{x} 0 0 0,000133 1,98 E-05 5,46 E-06 2,07 E-06 9,46 E-07 4,92 E-07 2,81 E-07	$ \begin{array}{c} x \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ -1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ \end{array} $	$t = \frac{1}{2}$ a 9,796178 8,796178 6,796178 6,796178 5,796178 4,796178 2,796178 2,796178 2,796178 0 0 1,796178 2,796178 3,796178 3,796178 5,796178 6,796178 7,796178	B_{1r}^{x} B_{1r}^{x} B_{1r}^{x} A_{10}^{x} <
$\begin{array}{c} x \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ \hline \\ 2 \\ 1 \\ 0 \\ \hline \\ -1 \\ -2 \\ -3 \\ -4 \\ \hline \\ -5 \\ -6 \\ -7 \\ \hline \\ -8 \\ \end{array}$	t = 2 a 9,636943 8,636943 7,636943 6,636943 5,636943 4,636943 3,636943 2,636943 1,636943 0 1,636943 2,636943 3,636943 3,636943 3,636943 3,636943 3,636943 4,636943 3,636943 4,636943 5,636943 6,636943 7,636943 7,636943 8,636943	400 мкс B_{1r}^{x} 1,11 E-07 1,72 E-07 2,81 E-07 4,92 E-07 9,46 E-07 2,07 E-06 5,46 E-06 1,98 E-05 0,000133 0 B_{2r}^{x} 0 0,000133 1,98 E-05 5,46 E-06 2,07 E-06 9,46 E-07 4,92 E-07 2,81 E-07 1,72 E-07	$\begin{array}{c} x \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ \hline \\ 2 \\ 1 \\ 0 \\ \hline \\ -1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ -8 \\ \end{array}$	$t = \frac{1}{2}$ a 9,796178 8,796178 6,796178 6,796178 5,796178 2,796178 2,796178 1,796178 2,796178 2,796178 2,796178 3,796178 3,796178 4,796178 5,796178 6,796178 8,796178 8,796178	B_{1r}^{x} B_{2r}^{x} $B_$

Таблица 2

Расчетные значения вертикальной компоненты поля $\dot{B}_z^z(t)$. (Т/с) вдоль профиля наблюдения полуплоскости S с углами наклона 60° и 90° (t = 0,0001c)

x	α = 60°			α = 90°	
	m	$\dot{B}_{z}^{z}(t)$	x	m	$\dot{B}_{z}^{z}(t)$
-6	6,008041	0,001287	6	11,95966	0,00114
-5	5,008041	0,003071	5	10,63982	0,00204
-4	4,008041	0,008691	-4	9,639822	0,00332
-3	3,008041	0,031319	-3	8,639822	0,00569
-2	2,008041	0,158063	-2	7,639822	0,01042
-1	0,008041	0,540006	-1	9,639822	0,00332
0	5,008041	0,003071	0	6,639822	0,0207
0	4,008041	0,008691	0	5,639822	0,04569
1	2,008041	0,158063	1	2,639822	1,52115
2	2,008041	0,158063	2	4,439822	0,14343
3	3,008041	0,031319	3	5,039822	0,07847
4	4,008041	0,008691	4	5,639822	0,04569
5	5,008041	0,003071	5	6,639822	0,0207
6	6,008041	0,001287	6	7,639822	0,01042

приближенную модель наклонной плоскости S с учетом границы земля — воздух, учитывая метод зеркальных изображений [5]:

$$\dot{B}_{z}^{z}(t) = \frac{3M_{z}}{\pi S r^{4} cos^{4} \alpha} \frac{3 - \overline{a^{2}(1 + cos^{2} \alpha) + sin^{2} \alpha}}{(1 + \overline{a^{2}})^{7/2}}$$
(11)

где
$$\bar{a} = \frac{1}{\cos\alpha} \left(-\sin\alpha + 2\bar{H}\cos\alpha + \frac{2t}{\mu Sr} \right)$$

Рис. 3. Интенсивность поля над вертикальным контактом по Ниму Ю.А. (по данным физического моделирования): $\frac{\Delta V}{r} \frac{M \kappa B}{\Lambda}$ приведены к единому М_г. М_и — соответственно, момент генераторного, приемного контура; 1,5; 3; 4 — время измерения переходного процесса в мсек; $\Delta V - \Im$.Д.С. вертикального магнитного поля; $J - сила тока в петле в А; <math>\ell/r -$ отношение толщины пласта к радиусу петли; х — точка наблюдения поля по профилю.

Рис. 4. Расчетные графики аномального поля над наклонной полуплоскостью при углах наклона 90° и 60°

 α — угол наклона полуплоскости *S* к поверхности земля — воздух; $\overline{H} = H/r$, H — кратчайшие расстояния от точки наблюдения до пласта; M_z — момент вертикального магнитного диполя.

В табл. 2 приведены числовые значения вертикальной компоненты скорости магнитной индукции вертикального магнитного диполя $[\dot{B}_z^z(t)T/c]$, рассчитанные по формуле (11). На графиках изменения этого поля по профилю, пересекающему полуплоскость S, наклоненную к земной поверхности под углами 60° и 90° (рис. 4), видна асимметрия графика при наклоне пласта на угол 60°, причем по падению пласта интенсивность поля существенно больше, чем со стороны восстания. Для сравнения формы аномалии на этом же рисунке показан график вертикальной компоненты магнитной индукции при наблюдении поля с одной стороны вертикальной полуплоскости S, который подобен соответствующей стороне графика на рис. 2, но сконструированной суперпозицией полей взаимно перпендикулярных магнитных диполей [5]. Форма и интенсивность рассматриваемых аномальных полей не противоречат классическим положениям теории электромагнитного профилирования.

Таким образом, сопоставление расчетных данных по сформированным математическим моделям неустановившегося электромагнитного поля вертикальной полуплоскости S (вертикального геологического контакта) с данными теоретической базы МПП, основанной в основном на результатах физического моделирования, а также с теоретическими расчетами технологических схем индуктивного электромагнитного профилирования подобных моделей, показывают их практическую идентичность с учетом поправок на индивидуальную особенность сравниваемых моделей.

Результаты исследований могут быть использованы для прогнозирования неустановившегося электромагнитного поля крутопадающих электропроводных рудных тел, тектонических нарушений, контактов различных горных пород и тому подобных геологических структур.

ЛИТЕРАТУРА

1. *Бинс К., Лафренсен П*. Анализ и расчет электрических полей. — М.: Энергия, 1970.

2. Великин А.Б., Франтов Г.С. Электромагнитные поля, применяемые в индукционных методах электроразведки: Обзор зарубежной литературы. — Л.: Гостоптехиздат, 1962.

3. *Дмитриев В.И., Барышникова И.А., Захаров Е.В.* Аномальные электромагнитные поля пластовых тел. — Л.: Недра, 1977.

4. Захаров В.Х. Электроразведка методом дипольного индуктивного профилирования. — Л.: Недра, 1975.

5. Исаев Г.А., Ним Ю.А., Рабинович Б.И. Тонкий низкоомный пологозалегающий пласт в поле вертикального магнитного диполя // Тр. СНИИГиМС. — 1973. — Вып. 172. — С. 51–57.

6. Кауфман А.А., Андерсен Б.И. Принципы методов наземной и скважинной электроразведки. — Тверь: Триада, 2013.

7. *Метод* переходных процессов при поисках месторождений сульфидных руд / Под ред. А.Ф. Фокина. — Л.: Недра, 1971.

8. *Ним Ю.А.* Основы приближенной теории электрозондирования методом переходных процессов // Геология и геофизика. — 1989. — № 3. — С. 134–141.

9. *Ним Ю.А.* Неустановившееся электромагнитное поле горизонтального магнитного диполя на поверхности системы плоскостей *S* / Электроразведка методами ЗСБ и МПП при поисках нефтегазовых и глубоко залегающих рудных месторождений в Сибири. — Новосибирск: СНИИГиМС, 1989. — С. 135–139.

 Руководство по применению метода переходных процессов в рудной геофизике / Под ред. Ф.М. Каменецкого. — Л.: Недра, 1979.
 Смайт В.Р. Электростатика и электродинамика. — М.: Иностранная литература, 1954.

12. Янке Е., Эмде Ф., Леш Ф. Специальные функции. — М.: Наука, 1968.

© Ним Ю.А., Романова Л.П., Илларионова М.Г., 2015

Ним Юрий Александрович // Gmpirmpi@mail.ru Романова Любовь Петровна // Lu.romanova95@mail.ru Илларионова Мария Георгиевна // Millariono@mail.ru

УДК 550.837:551.345.537

Ним Ю.А., Андреева С.А. (Северо-Восточный федеральный университет)

ЭЛЕМЕНТЫ ТЕОРИИ ИМПУЛЬСНОГО ГЕОРАДИО-ЛОКАЦИОННОГО ЗОНДИРОВАНИЯ

Рассматривается прямая задача георадиолокационного зондирования (РЛЗ) диэлектрического пласта при его возбуждении горизонтальным магнитным диполем в импульсном режиме. Приводятся расчеты, показывающие, что с достаточной для практики точностью электромагнитное поле выражено в элементарных функциях, по которым непосредственно определяются параметры диэлектрического пласта. Ключевые слова: георадиолокация, электромагнитное поле, диэлектрический пласт, зондирование.

Nim Yu.A., Andreeva S.A. (North-Eastern federal university) THE ELEMENTS OF THE THEORY OF IMPULSE GROUND-PENETRATING RADAR

The main task of ground-penetrating radar (GPR) of dielectric layer at its activation by horizontal magnetic dipole in impulse mode is discussed. The electromagnetic field is expressed in elementary functions by which parameters of dielectric layer are determined with sufficient accuracy for practical purposes. **Key words:** ground-penetrating radar, electromagnetic field, dielectric layer, sounding.

С расширением сферы применения георадиолокации, в частности, при поисках и разведке россыпных месторождений криолитозоны, инженерно-геокриоло-