УДК 579.22

ОЧИСТКА И ХАРАКТЕРИСТИКА МЕТАНОЛДЕГИДРОГЕНАЗЫ РИЗОСФЕРНОГО ФИТОСИМБИОНТА Methylobacterium nodulans

© 2012 г. Т. А. Кузнецова**, А. П. Бесчастный*, О. Н. Понаморёва**, Ю. А. Троценко*

* Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН, Пущино, 142290 ** Тульский государственный университет, Тула, 300600 e-mail: trotsenko@ibpm.pushchino.ru Поступила в редакцию 05.05.2012 г.

Метанолдегидрогеназа (**МДГ**) факультативно-метилотрофного ризосферного фитосимбионта *Me*thylobacterium nodulans впервые очищена до электрофоретически гомогенного состояния и охарактеризована. Молекулярная масса нативного белка ~70 кДа и состоит из большой (60 кДа) и малой (6 кДа) субъединиц. Очищенный белок имел спектр идентичный с пирролохинолинхинон (**ПХХ**) – содержащими МДГ, pI – 8.7, pH-оптимум в пределах 9–10. Фермент неактивен в отсутствие аммония или метиламина, проявлял широкую субстратную специфичность по отношению к C_1-C_5 спиртам, наибольшее сродство к метанолу ($K_{\rm M}$ = 70 мкМ), но не окислял бензиловый и вторичные спирты. Кажущиеся значения $K_{\rm M}$ к первичным спиртам возрастали с длиной углеродной цепи. Фермент характеризовался высокой стабильностью даже в отсутствие субстрата. Иммобилизованный фермент был использован для амперометрической детекции метанола.

Methylobacterium nodulans – факультативный метилотроф, выделенный из корневых клубеньков трех видов бобовых рода Crotalaria: C. podocarpa, C. glaucoides и C. perrottetii, обладает способностью к азотфиксации и нодуляции в процессе симбиоза с представителями рода Crotalaria. Показано, что *M. nodulans* растет на метаноле в качестве источника углерода и энергии, имеет ген mxaF, кодирующий большую субъединицу МДГ, идентичную на 88% МДГ M. extorquens и M. organophilum [1]. Инактивация этого гена инсерционным мутагенезом приводила к неспособности M. nodulans расти на метаноле и негативно отражалась на развитии C. podocarpa при симбиозе с таким мутантом [2, 3]. Секвенирование генома *M. nodulans* (Refseq/GenBank NC 011894/CP001349) выявило присутствие нескольких гомологичных *тхаF* генов, а в экстрактах, выросших на метаноле клеток M. nodulans, были обнаружены активности ферментов первичного метаболизма метанола и, в частности, активируемая аммонием МДГ [4]. Однако фермент не был очищен и охарактеризован.

Как известно, МДГ (КФ 1.1.2.7) грамотрицательных метилобактерий — периплазматический растворимый белок. Наиболее эффективно фермент катализирует окисление метанола до формальдегида ($K_{\rm M} \sim 20$ мкМ), передавая электроны в клетках на специфический кислый цитохром с_L. Кроме метанола, МДГ окисляет первичные спирты и альдегиды, используя искусственные акцепторы электронов, такие как феназинметосульфат (**ФМС**) и феназинэтосульфат (**ФЭС**). Рентгеноструктурный анализ показал, что белок является гетеротетрамером (α₂β₂). В больших α-субъединицах, кодируемых геном mxaF, находится активный центр с нековалентно связанной простетической группой – пирролохинолинхиноном (ПХХ) и Ca²⁺. Функции малой β-субъединицы, кодируемой геном *mxaI*, не ясны [5-7]. Несмотря на то, что МДГ исследована у многих бактерий [8-14], в последние годы повысился интерес к изучению новых форм этого фермента и свойств у разных видов метилотрофов из необычных мест обитания [15-17]. Это обусловлено как ключевой ролью в метаболизме C₁-соединений, так и перспективами использования фермента в биокатализе. Окислительно-восстановительные свойства, независимость от кислорода и специфичность МДГ являются основой для создания высокочувствительных биосенсоров и эффективных биотопливных элементов [18, 19].

Цель работы — очистка и характеристика основных свойств МДГ из ризосферного фитосимбионта *M. nodulans* для последующего использования в амперометрическом биосенсоре.

МЕТОДИКА

Объект и условия культивирования. *М. nodulans* ORS2060T (CNCM I 2342T = LMG 21967T), полученный от С.Дж. Маркса (Гарвардский университет, США), выращивали, как описано ранее, с 0.5% (по объему) метанола в качестве единственного источника углерода и энергии [4]. Клетки в конце экспоненциальной фазы роста (3 сут) осаждали при 10000 g 20 мин на центрифуге Beckman J2-21 (США). Биомассу промывали 50 мМ трис-HCl буфером, pH 7.5, и хранили при -20°С.

Энзимологические исследования. Активность МДГ определяли спектрофотометрически при 600 нм ($\epsilon = 1.9 \times 10^4 \text{ M}^{-1} \text{ см}^{-1}$) при 30°C по методу [20] с незначительной модификацией реакционной смеси. Стандартная реакционная смесь содержала: 100 мМ трис-HCl, pH 9.0, 15 мМ NH₄Cl, 2 мМ КСN, 10 мМ СН₃ОН, 87 мкМ 2.6-дихлорфенолиндофенола (ДХФИФ), 1.1 мМ ФМС. Реакцию начинали внесением фермента, измеряя начальную скорость в пределах 15-30 с. За единицу активности принимали количество МДГ, которое катализирует восстановление 1 мкмоль ДХФИФ за 1 мин. Если не указано особо, кинетические константы рассчитывали методом нелинейной регрессии с аппроксимацией экспериментальных данных к уравнению Михаэлиса-Ментен, используя программу "SigmaPlot 8.0".

Электрофорез проводили в градиенте (10– 20%) ПААГ в присутствии ДДС-Na по методу Лэмли. Гели окрашивали Кумасси R250 "Serva" (Германия). Для калибровки гелей использовали набор стандартных белков S8445 "Sigma–Aldrich" (США). Молекулярную массу нативного белка определяли гель-фильтрацией на колонке Bio-Sil TSK 250 "Bio-Rad Laboratories Inc." (США), откалиброванной с помощью стандартных белков MWGF200 S8445 "Sigma–Aldrich" (США). Элюирующий буфер – 0.1 М калий фосфатный буфер (КФБ), рН 7.0. Скорость – 0.5 мл/мин. Белок определяли методом Брэдфорд, в качестве стандарта использовали БСА.

Изоэлектрофокусирование проводили в ПААГ, используя амфолины pH 3.5–10 "LKB" (Швеция) по рекомендациям фирмы. Для калибровки геля использовали набор стандартных белков 17-0471-01 "GE Healthcare" (Швеция).

Очистка МДГ. Клетки (20 г) ресуспендировали в 80 мл 0.1 М трис-HCl буфере (pH 7.5), содержащем 0.2 мг/мл лизоцима и 1мМ ЭДТА и дезинтегрировали на установке "MSE" (Англия) при 150 Вт и 20 кГц и 4°С (30 с × 16 с интервалами по 30 с). Полученный гомогенат центрифугировали при 15000 g 30 мин на "J2-21 "Beckman" (США). Все стадии очистки проводили при 4°С. Экстракт высаливали сульфатом аммония, получая фракцию от 40 до 60% от его насыщения. Осадок растворяли в 10 мМ трис-HCl буфере, pH 8.0, и обессоливали на колонке (1.6 × 12 см) с сефадексом G-25, уравновешенной тем же буфером. Для удаления балластных белков и нуклеиновых кислот препарат пропускали со скоростью 0.8 мл/мин через колонку (16 × 120 мм) с DEAE-Sepharose FF "GE Healthcare" (Швеция), уравновешенную тем же буфером. В этих условиях МДГ на колонке не

сорбировалась и препарат сразу наносили (0.5 мл/мин) на колонку $(16 \times 50 \text{ мм})$ с гидроксиапатитом HA-Ultrogel "LKB" (Швеция), используя тот же буфер. Колонку промывали тремя объемами 0.2 M NaCl в 25 мМ КФБ, pH 7.0, и элюировали МДГ градиентом 0.025-0.25 М КФБ с рН 7.0 (120 мл). Активные фракции объединяли, концентрировали на ультрафильтрационной мембране YM10 ("Amicon"). Обессоливание и замену буфера проводили, разбавляя образец в 20 раз 20 мМ 2-(N-морфолино)этансульфоновой кислотой – NaOH (МЭС-NaOH) pH 5.5, и повторяли ультрафильтрацию трижды. В заключение проводили катионно-обменную ВЭЖХ на хроматографе LC-20 Prominence "Shimadzu" (Япония). Далее образец наносили на колонку (8 × 75 мм) Protein Pak Glass SP-5PW "Waters" (США), уравновешенную 20 мМ буфером МЭС-NaOH, pH 5.5. После промывки колонки исходным буфером (15 мл) МДГ элюировали линейным градиентом 0–0.25 М NaCl (60 мл) при скорости 1 мл/мин. Активные фракции объединяли, затем концентрировали и переводили в 20 мМ КФБ, рН 7.0, ультрафильтрацией, как указано выше. Препарат хранили при -70°С.

Электрохимические измерения. Формирование рабочего электрода и электрохимические измерения проводили по описанной методике [21]. Электрод заполняли графитовой пастой, содержавшей 10% ферроцена и 30% гидроксиапатита (по массе). Фермент (0.26 ед.) наносили на поверхность электрода, подсушивали 30 мин. Буфер для измерений – 50 мМ КФБ, рН 8.0, с добавлением 15 мМ $\rm NH_4Cl$. Электрод хранили при 4°C в 50 мМ КФБ, рН 7.0, содержавшем 2.0 мМ КСN.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Одностадийная очистка МДГ M. nodulans катионообменной хроматографией не привела к получению гомогенного препарата, как было показано для фермента из Methylobacterium extorquens АМ1 [13]. Проведение хроматографии анионнообменной и на гидроксиапатите перед катионообменной также не приводило к получению гомогенного препарата, поэтому бесклеточный экстракт предварительно фракционировали сульфатом аммония благодаря чему, несмотря на потери, достигалась очистка в 6 раз. Так как фракции, полученные при насыщении сульфата аммония менее 40% и выше 60% содержали в совокупности не более 10% от суммарной активности МДГ, потери, по-видимому, были вызваны денатурацией белка. Использование разработанной схемы очистки позволило получить электрофоретически гомогенный препарат фермента (рис. 1). Результаты очистки МДГ представлены в табл. 1. После заключительной хроматографии на катионообменнике и концентрирования фермент был очищен в 18.2 раза с удельной активностью 3.8 ед./мг белка.

2012

Рис. 1. ПААГ-электрофорез МДГ на разных стадиях очистки. 1 – гомогенат, 2 - 40-60% (NH₄)₂SO₄, 3 - ДЭАЭ-сефароза, 4 - HA-Ultrogel и ультрафильтрация, 5, 6 - SP-SPW, М – маркеры.

Из этого следовало, что содержание МДГ в клетках *M. nodulans* составляло около 5% от общего растворимого белка, тогда как у других метилобактерий >10% [5]. Возможно, это связано с синтезом *M. nodulans* белков, необходимых для фитосимбиоза.

ДДС-ПААГ-электрофорез очищенного белка выявил присутствие большой и малой субъединиц с молекулярными массами около 60.5 кДа и 6.5 кДа соответственно (рис. 1). Значения, рассчитанные на основании транслированных нуклеотидных последовательностей генов *тхаF* (Mnod 8040) большой (62548 Да) и малой mxaI (Mnod_8037) субъединиц (5838 Да) за вычетом сигнальных пептидов незначительно отличались от полученных данных. Молекулярная масса нативного белка, определенная методом гель-фильтрации в 0.1 М КФБ, рН 7.0, составляла около 70 кДа, что соответствовало гетеродимеру (αβ), состоящему из большой и малой субъединиц. Причем белковый пик на хроматограмме соответствовал пику активности МДГ. Увеличение ионной силы буфера не отражалось на положении пика. Ранее аналогичным методом было показано существование мономерной формы МДГ у некоторых метилотрофов, по-видимому, из-за трудности детектирования β -субъединицы [22], хотя для большинства позднее доказана $\alpha_2\beta_2$ структура [5–7]. Изоэлектрическая точка находилась около рН 8.7, как и у большинства ранее изученных МДГ грамотрицательных бактерий [9, 11, 13].

В спектре поглощения МДГ *М. nodulans* наблюдали максимум при 350 нм и широкое плечо абсорбции до 410 нм. Такой спектр идентичен спектрам ПХХ-зависимых МДГ метилотрофных бактерий и свидетельствует о присутствии в белке восстановленной формы ПХХ. Именно в таком виде находится данная простетическая группа в чистых препаратах изученных ранее МДГ [23, 24].

 Φ ермент *M. nodulans* характеризовался высокой стабильностью при хранении в отсутствие метанола относительно других белков. Очищенный препарат в 20 мМ КФБ (рН 7.0) при 4°С терял приблизительно 20% активности в течение недели и 40% при -20°С в течение месяца. При -70°С активность не изменялась в течение двух месяцев. В отличие от большинства МДГ фермент *M. nodulans* обладал стабильностью в широком диапазоне рН даже в отсутствие стабилизаторов, таких, как цианид и метанол (рис. 2). Подобной стабильностью обладал также фермент Methylobacterium extorquens [13]. M $\Box\Gamma$ M. nodulans в 0.1 M K Φ Б, рН 6.0, при концентрации белка 0.4 мг/мл сохраняла активность в течение 20 мин при 50°C, тогда как при 60°С потеря составляла 35%.

Зависимость активности МДГ от рН определяли в стандартной инкубационной смеси с различными 0.1 М буферами с рН от 6 до 10 (рис. 3). Максимальную активность фермент проявлял в диапазоне рН 9.0–10.0. Выше рН 10 активность не удалось измерить из-за неустойчивости ФМС и ДХФИФ. Оптимум рН- в щелочной области при 9 и выше характерен для всех исследованных МДГ в системе с искусственными акцепторами электронов, такими как ФМС [5–7].

Стадия очистки	Удельная активность, ед./мг	Белок, мг/мл	Общая активность, ед.	Общий белок, мг	Выход, %	Степень очистки, раз
Экстракт	0.21	11.1	227.0	1080	100	1
40—60% насыщения сульфатом аммония	1.23	23.3	107.3	87.4	47	5.9
ДЭАЭ-сефароза	2.53	1.0	77.2	30.5	34	12.1
HA-Ultrogel	3.68	0.34	72.4	19.7	32	17.6
Ультрафильтрация	3.78	0.75	62.5	14.3	28	18
SP-5PW	3.82	1.38	52.7	13.8	23	18.2

Таблица 1. Очистка МДГ из M. nodulans

Рис. 2. Стабильность препарата МДГ (70 мкг/мл) при различных значениях pH и 30°С в течение 40 мин (I), 80 мин (2) в 0.1 М буферах: pH 2 – цитрат-NaOH; pH 4–5 – ацетат-NaOH; pH 6–7 – KH₂PO₄–NaOH; pH 8–9 – трис-HCl; pH 11 – Na₂HPO₄–NaOH.

Активность МДГ в 0.1 М трис-HCl буфере, pH 9.0, в стандартной реакционной смеси линейно возрастала с увеличением температуры от 20 до 50°С. При более высоких температурах получить достоверные значения активности не удалось из-за неферментативных реакций ФМС и ДХФИФ.

Аналогично другим ПХХ-МДГ [5–7], активность M. nodulans с искусственными акцепторами электронов *in vitro* зависела от присутствия активатора – NH₄⁺. В отсутствие NH₄Cl, с метанолом и с эндогенным субстратом реакций не наблюдалось. Половина максимальной скорости достигалась при его концентрации 1.2 ± 0.3 мМ, когда акцептором являлся ФМС. Кроме аммония, стимулирующим действием на фермент M. nodulans, обладал метиламин, но при концентрации 40 мМ в реакционной смеси активность составляла только 26% от активности с 15 мМ NH₄Cl. Гидрохлориды диметиламина, триметиламина и этиламина не являлись активаторами МДГ M. nodulans.

Одной наиболее известной особенностью чистых препаратов ПХХ-МДГ является способность восстанавливать ФМС или ФЭС без метанола за счет не идентифицированного эндогенного субстрата [20]. Фермент *М. nodulans* с эндогенным субстратом проявлял активность при насыщающей концентрации метанола, делая невозможным непосредственное определение кинетических констант. Цианид ингибирует эту реакцию, являясь конкурентным ингибитором фермента при использовании в качестве субстрата метанола [23]. Используя метод Диксона, были рассчитаны кажущаяся ве-

Рис. 3. Активность МДГ в зависимости от pH реакционной смеси. $1 - \text{KH}_2\text{PO}_4\text{-NaOH}$; 2 - трис-HCl; 3 - глицин-NaOH. Все буферы 0.1 М.

личина $K_{\rm M}$ в отсутствие КСN — 70 мкМ и константа ингибирования $K_i = 0.65$ мМ.

Зависимости обратных значений начальных скоростей МДГ *М. nodulans* от обратных концентраций метанола при фиксированных концентрациях ФМС в присутствии 2 мМ КСN (рис. 4) представляли серию параллельных прямых, характерных для Ping-Pong механизма, что согласуется с данными литературы [5–7].

Кинетические константы, рассчитанные по методу Дальзиела в соответствии с уравнением: $\frac{E}{V} = \phi_0 + \frac{\phi_A}{[A]} + \frac{\phi_B}{[B]}$, составляли: $K_{M [CH_3OH]} = 0.37$ мM;

Рис. 4. Зависимостъ начальной скорости МДГ от концентрации ФМС при фиксированных концентрациях метанола (мМ): *1* – 0.025; *2* – 0.05; *3* – 0.08; *4* – 0.5.

3 ПРИКЛАДНАЯ БИОХИМИЯ И МИКРОБИОЛОГИЯ том 48 № 6 2012

Субстрат	Кажущиеся <i>К</i> _М , мМ	Активность, %
Метанол	0.23 ± 0.01	100
Этанол	0.61 ± 0.06	93
Бутанол-1	1.9 ± 0.2	88
Амиловый спирт	1.4 ± 0.1	89
Формальдегид	7.2 ± 0.8	96
Ацетальдегид	14.9 ± 0.6	50
ΦMC^*	0.91 ± 0.02	100
ФЭС*	1.52 ± 0.11	80

Таблица 2. Субстратная специфичность МДГ M. nodulans

* Субстрат - 10 мМ метанол.

Таблица 3. Влияние различных соединений на активность МДГ

Вещество	Концентра- ция, мМ	Активность, %	
$CuSO_4 \cdot 5H_2O$	0.1	71	
$FeSO_4 \cdot 7H_2O$	0.1	53	
$CaCl_2 \cdot 2H_2O$	1	88	
$MnCl_2 \cdot 4H_2O$	0.1	0	
$MgCl_2 \cdot 6H_2O$	1	96	
$Zn(CH_3COO)_2 \cdot 2H_2O$	1	102	
NaN ₃	1	99	
NaCl	500	90	
п-Хлормеркурибензоат	0.1	74	
Этилендиаминтетраацетат	1	110	
$NH_2OH \cdot HCl$	0.1	88	
Дитиотреитол	0.1	100	
2-Оксоглутарат	1	77	
D-Трегалоза	5%	82	
D-Сорбит	5%	67	
Полиэтиленимин	0.1%	115	
Поливинилпирролидон	0.5%	61	
ДСН	0.1%	47	
Бридж 35	0.1%	73	

 $K_{M \ [\Phi MC]} = 0.96 \ MM; V_{Make} = 7.1 \ MKMOЛЬ/MГ белка. Аналогичные значения <math>K_M$ к донору и акцептору электронов в присутствии 1 мМ КСN были получены для МДГ *Нурhomicrobium* X [25].

Подобно другим МДГ [5–7], исследуемый фермент проявлял широкую субстратную специфичность относительно первичных спиртов, но не окислял вторичные и бензиловый спирт (табл. 2). Фермент обладал наибольшим сродством к метанолу. В целом, с увеличением длины углеродной цепи первичных спиртов возрастало кажущееся значение $K_{\rm M}$ фермента, тогда как максимальная скорость реакции изменялась незначительно. Субстратами являлись также формальдегид и ацетальдегид, которые при высоких концентрациях ингибировали МДГ. ФМС оказался более эффективным акцептором электронов, чем ФЭС, что было показано для МДГ *Hyphomicrobium* X [23].

Действие различных соединений на активность фермента M. nodulans in vitro (табл. 3) было аналогично изученным МДГ [8, 11, 14]. Фермент также нечувствителен к ЭДТА и относительно устойчив к сульфгидрильному реагенту, п-хлормеркурийбензоату. Катионы меди, железа и особенно марганца – сильные ингибиторы описанных МДГ [11, 13], за исключением МДГ Methylosinus sp. WI 14 [12]. На активность фермента негативно влияли детергенты, поливинилпирролидон и сорбит. Вместе с тем белок устойчив к NaCl, ДТТ, NaN₃, D-трегалозе и полиэтиленимину. Гидроксиламин – конкурентный ингибитор по отношению к метанолу для МДГ *Hyphomicrobiит* X [25], незначительно подавлял активность изучаемого фермента.

Таким образом, высокая стабильность и сродство к метанолу делает МДГ M. nodulans одним из наиболее перспективных ферментов для создания амперометрического биосенсора. Очищенный препарат МЛГ был иммобилизован на поверхность графитово-пастового электрода, содержавшего медиатор электронного транспорта ферроцен. Для улучшения адсорбции гидрофильного фермента на поверхности гидрофобного электрода в графитовую пасту добавляли гидроксиапатит. При этом отклик биосенсора увеличивался в 10 раз и улучшалась операционная стабильность. Среднее значение для полученных откликов биосенсора на 0.25 мМ метанола для электрода, модифицированного гидроксиапатитом, составило 1400 ± 100 нА. Относительное стандартное отклонение для 15 последовательных измерений – 7.6%, тогда как без гидроксиапатита относительное стандартное отклонение составило 83%. Линейный диапазон определяемых концентраций метанола 0.0135-0.5 мМ, предел обнаружения – 4.5 мкМ CH₃OH, длительность единичного измерения – 10 мин; при хранении электрода в течение 20 сут сохранялось 75% активности. Подбор оптимальных условий использования и хранения электрода, концентраций гидроксиапата, ферроцена и, возможно, более эффективных медиаторов электронного транспорта требует дополнительных исследований.

Работа выполнена при поддержке РФФИ (грант 11-04-97544-р_центр_а).

СПИСОК ЛИТЕРАТУРЫ

 Sy A., Giraud E., Jourand P., Garcia N., Willems A., de Lajudie P., Prin Y., Neyra M., Gillis M., Boivin-Masson C., Dreyfus B. // J. Bacteriol. 2001. V. 183. № 1. P. 214–220.

- Jourand P., Renier A., Rapior S., Miana de Faria S., Prin Y., Galiana A., Giraud E., Dreyfus B. // Mol. Plant-Microbe Interactions. 2005. V. 18. № 10. P. 1061–1068.
- Renier A., De Faria S.M., Jourand P., Giraud E., Dreyfus B., Rapior S., Prin Y. // J. Exp Bot. 2011. V. 62. № 10. P. 3693–3697.
- Капаруллина Е.Н., Быкова Т.В., Федоров Д.Н., Доронина Н.В., Троценко Ю.А. // Микробиология. 2001. Т. 80. № 6. С. 847–849.
- Anthony C. // Adv. Microb. Physiol. 1986. V. 27. P. 113– 210.
- 6. Anthony C., Williams P. // Biochim. Biophys. Acta. 2003. V. 1647. P. 18–23.
- 7. *Anthony C.* // Arch. Biochem. Biophys. 2004. V. 428. № 1. P. 2–9.
- 8. *Ghosh R., Quayle J.R.* // Biochem. J. 1981. V. 199. № 1. P. 245–250.
- 9. Соколов А.П., Говорухина Н.И., Троценко Ю.А. // Биохимия. 1989. Т. 54. № 5. С. 811-815.
- 10. *Duine J.A., Frank J., Westerling J.* // Biochim. Biophys. Acta. 1978. V. 524. № 2. P. 277–287.
- 11. Grosse S., Wendlandt K.D., Kleber H.P. // J. Basic Microbiol. 1997. V. 37. № 4. P. 269–279.
- 12. Grosse S., Voigt C., Wendlandt K.D., Kleber H.P. // J. Basic Microbiol. 1998. V. 38. № 3. P. 189–196.
- Liu Q., Kirchhoff J.R., Faehnle C.R., Viola R.E., Hudson R.A. // Protein Expr. Purif. 2006. V. 46. № 2. P. 316–320.

- Kim H.G., Kim S.W. // Biotechnol. Bioprocess Eng. 2006. V. 11. P. 134–139.
- 15. *Chang A.K., Lim C.Y., Kim S.W., You H.J., Hahm K.S., Yoon S.M., Park J.K., Lee J.S.* // J. Basic Microbiol. 2002. V. 42. № 2. P. 238–245.
- Kalyuzhnaya M.G., Hristova K.R., Lidstrom M.E., Chistoserdova L. // J. Bacteriol. 2008. V. 190. № 11. P. 3817– 3823.
- Schmidt S., Christen P., Kiefer P., Vorholt J.A. // Microbiology. 2010. V. 156. P. 2575–2586.
- Karube I., Yokoyama K., Kitagawa Y. Principles and Applications of Quinoproteins / Ed. V.L. Davidson. New York: Marcel Dekker, 1992. P. 429–446.
- 19. *Ikeda T., Kano K.* // Biochim. Biophys. Acta. 2003. V. 1647. № 1–2. P. 121–126.
- 20. *Day D.J., Anthony C. //* Methods Enzymol. 1990. V. 188. P. 210–216.
- Babkina E., Chigrinova E., Ponamoreva O., Alferov V., Reshetilov A. // Electroanalysis. 2006. V. 18. № 19–20. P. 2023–2029.
- Duine J.A., Jongejan J.A. // Annu. Rev. Biochem. 1989.
 V. 58. P. 403–426.
- 23. *Frank J., Duine J.A.* // Methods Enzymol. 1990. V. 188. P. 202–209.
- 24. *Richardson I.W., Anthony C. //* Biochem. J. 1992. V. 287. P. 709–715.
- 25. *Duine J.A., Frank J.* // Biochem. J. 1980. V. 187. № 1. P. 213–219.

Purification and Characteristics of Methanol Dehydrogenase of *Methylobacterium nodulans* Rhizosphere Phytosymbionts

T. A. Kuznetsova^b, A. P. Beschastnyi^a, O. N. Ponamoreva^b, and Yu. A. Trotsenko^a

^a Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, Moscow oblast, 142290 Russia

^b Tula State University, Tule, 300600 Russia

e-mail: trotsenko@ibpm.pushchino.ru

Received May 5, 2012

Abstract—Methanol dehydrogenase (MDG) of the facultative methylotrophic phytosymbiont *Methylobacterium nodulans* has been purified for the first time to an electrophoretically homogeneous state and characterized. The native protein with a molecular mass of 70 kDa consists of large (60 kDa) and small (6 kDa) subunits. The purified protein displayed a specter identical to that of pyrochinolinchinon (PCC)-containing MDGs (pI 8.7, pH optimum in the range 9–10). The enzyme was inactive in the absence of ammonium or methylamine and exhibited a wide substrate specificity with regard to C_1-C_2 alcohols with the highest affinity to methanol ($K_M = 70$ mM), but it did not oxidize benzyl and secondary alcohols. The apparent values of K_M to primary alcohols increased with the length of the carbonic chain. The enzyme was characterized by a high stability level even in the absence of a substrate. An immobilized enzyme was used for amperometric methanol detection.