УДК 577.152:577.113:579.252

## СОЗДАНИЕ СИСТЕМЫ ЭКСПРЕССИИ ГЕТЕРОЛОГИЧНЫХ ГЕНОВ НА ОСНОВЕ РЕКОМБИНАНТНОГО ШТАММА ГРИБА Aspergillus awamori

© 2011 г. А. М. Рожкова\*, А. С. Середа\*\*, Н. В. Цурикова\*\*, А. К. Нуртаева\*\*\*, М. В. Семёнова\*, Л. В. Римарева\*\*, Е. А. Рубцова\*, И. Н. Зоров\*\*\*\*, О. А. Синицына\*\*\*\*, А. П. Синицын\*\*\*\*

\*Институт биохимии им. А.Н. Баха РАН, Москва, 119071

e-mail: amrojkova@mail.ru, inbi@inbi.ras.ru

\*\*Всероссийский научно-исследовательский институт

пищевой биотехнологии Россельхозакадемии, Москва, 111033

e-mail: vnipbt@com2com.ru

\*\*\*Казахский институт менеджмента и экономики, Казахстан, Алматы 050010

e-mail: anurtaeva@kimep.kz

\*\*\*\* Московский государственный университет им. М.В. Ломоносова, Химический факультет, Москва, 119992 e-mail: info@rector.msu.ru

Поступила в редакцию 12.04.2010 г.

Создана экспрессионная система гетерологичных генов в отечественном штамме Aspergillus awamori Co-6804 — продуценте глюкоамилазы. Используя промоторную и терминаторную области гена глюкоамилазы, был получен вектор pGa, в который успешно клонировались гены фитазы *A. niger*, эндоглюканазы *Trichoderma reesei* и ксиланазы *Penicillium canescens*. Разделение ферментных препаратов с использованием системы высокоэффективной жидкостной хроматографии (FPLC) показало, что содержание рекомбинантных ферментов в общем пуле секретируемого белка составляло от 0.6 до 14%.

До недавнего времени основными методами повышения продуктивности штаммов являлись химический и радиационный мутагенез и селекция. Эти методы эффективны, но не лишены недостатков: получаемые таким образом штаммы нестабильны и имеют высокий процент реверсий, кроме того, данные методы исключительно трудоемки и требуют больших затрат времени. С развитием ДНК-технологий широкое распространение получили методы плазмидной трансформации микроорганизмов. Использование методов генной инженерии имеет ряд преимуществ, основным из которых является интегративная встройка целевого гена в хромосому, что обеспечивает стабильность получаемых штаммов, не требующих постоянной поддерживающей селекции [1]. Суть процесса получения штамма-продуцента с измененными свойствами состоит во включении экзогенной ДНК в хромосому путем трансформации штамма-реципиента плазмидой, несущей ген целевого белка под контролем гомологичных регуляторных элементов – промотора и терминатора гена хорошо эспрессирующегося белка штамма-реципиента (т.н. гена "мажорного" белка). В мировой практике используются экспрессионные системы на основе грибных штаммов родов Aspergillus, Trichoderma, Penicillium, Fusarium и других, и различных промоторов (амилазных, целлобиогидролазных, эндоглюканазных, ксиланазных

и других) [2–4], в том числе широкое распространение получило использование промоторного участка гена глюкоамилазы гриба *А. niger*. Таким путем, например, был получен штамм-продуцент химозина [5].

Штамм гриба *А. awamori* является отечественным промышленным продуцентом глюкоамилазы [6]. Можно предположить, что клонирование регуляторных полинуклеотидных последовательностей (промотора и терминатора) гена глюкоамилазы (в данном случае мажорного белка) и создание на их основе экспрессионной системы в грибе *А. awamori* приведет к увеличению уровня экспрессии гетерологичных белков. Отметим, что низшие грибы рода *Aspergillus* являются хорошо изученными объектами в биотехнологической практике, что облегчает разработку трансформационной системы, обеспечивающей доставку экзогенной ДНК в клетку-реципиент [7].

Глюкоамилаза ( $\alpha$ -(1-4),(1-6)-D-глюкан глюкогидролаза, КФ 3.2.1.3) является внеклеточным ферментом, эффективно гидролизующим крахмалсодержащее сырье до глюкозы, обладающим способностью расщеплять  $\alpha$ -(1-4) и  $\alpha$ -(1-6)-глюкозидные связи в крахмале (в амилопектине и мальтоолигосахаридах), что делает этот фермент ключевым в процессах осахаривания крахмалсодержащего сырья в спиртовой и крахмало-паточной промышленности [8].

Различные виды зерна кроме крахмала содержат некрахмальные полисахариды (НПС) – ксиланы, β-глюканы, целлюлозу, причем содержание НПС варьирует (табл. 1). Наличие НПС приводит к набуханию зерна и увеличению вязкости водномучных суспензий, что уменьшает эффективность действия амилолитических ферментов, поэтому целесообразно осуществлять одновременное применение амилаз и ферментов, способных гидролизовать НПС, т.е. обладающих целлюлазной, β-глюканазной или ксиланазной активностью [9]. Ксиланазные и целлюлазные ферментные препараты более пригодны в случае пшеницы, ржи и кукурузы, тогда как для ячменя целесообразно применять ферментные препараты с высокой β-глюканазной и целлюлазной активностью.

Еще одним важным сопутствующим амилазам ферментом является фитаза (КФ 3.1.3.8 и 3.1.3.26), которая гидролизуя фитин зерна (смесь кальциевых и магниевых солей фитиновой кислоты) приводит к образованию неорганического фосфата и мио-инозита. Фитин является запасным соединением фосфора во всех злаках, содержание фитина в зерне колеблется от 0.4 до 3.2%, а фосфор фитина составляет 60-88% от общего содержания фосфора зерна [10]. Фитаты плохо ассимилируются в процессе получения этанола из крахмалсодержащего сырья, поэтому превращение фосфора в доступную для дрожжей форму и освобождение микроэлементов и металлов приводит к интенсификации процессов брожения, а также уменьшает нагрузку на очистные сооружения. Кроме того продукт гидролиза фитина – инозит способствует росту дрожжевых клеток [11].

На практике при переработке крахмалсодержащего сырья обычно применяют несколько ферментных препаратов, одни из которых обладают амилолитической активностью, другие активностью по отношению к НПС или фитину, что приводит к определенным неудобствам, а также увеличивает затраты. Поэтому важной задачей представляется повышение уровня продукции ферментов, гидролизующих НПС и фитин у штамма-продуцента глюкоамилазы A. awamori, что может привести к увеличению эффективности его применения в биотехнологических процессах. В качестве целевых ферментов в работе были выбраны ксиланаза (КФ 3.2.1.8) P. canescens, свойства которой подробно описаны в работе [12], эндоглюканаза (КФ 3.2.1.4) Т. reesei, обладающая помимо целлюлазной еще и β-глюканазной активностью [13], и фитаза A. niger [14].

Цель работы — увеличение активности ферментов, гидролизующих НПС, а также фитин, у штамма *A. awamori* (высокоактивного продуцента глюкоамилазы) путем создания системы экспрессии гетерологичных генов с использованием технологии рекомбинантных ДНК.

Таблица 1. Относительное содержание полисахаридов в зерне, %

| Зерновая<br>культура | Крахмал | Арабино-<br>ксилан | β-Глюкан  | Целлюлоза |
|----------------------|---------|--------------------|-----------|-----------|
| Пшеница              | 55-65   | 6.0-6.6            | 0.7-0.8   | 2.5 - 3.0 |
| Рожь                 | 52-60   | 8.7-10             | 2.2 - 2.8 | 3.0       |
| Ячмень               | 53-57   | 4-5                | 5.7-7.0   | 4.3       |
| Кукуруза             | 60-65   | 4-5                | 0         | 2.6       |

#### МЕТОДИКА

Штаммы микроорганизмов. А. awamori Co-6804 — продуцент глюкоамилазы, стабильный штамм, селекционированный среди популяции УФ-мутантов. А. awamori 6804-19 (niaD<sup>-</sup>) — мутант с дефектом в гене niaD, кодирующим фермент нитратредуктазу, реципиентный штамм для плазмидной трансформации.

Среды для культивирования штаммов гриба A. awamori. Минимальные среды: среда PM (%):  $KH_2PO_4 - 1.5$ , KCl - 0.5,  $MgSO_4 \cdot 7H_2O - 0.5$ ,  $H_3BO_3 - 0.0025$ ,  $CuSO_4 \cdot 5H_2O - 0.02$ ,  $FeSO_4 \cdot 7H_2O - 0.04$ ,  $MnSO_4 \cdot 2H_2O - 0.04$ ,  $Na_2MoO_4 \cdot 2H_2O - 0.04$ ,  $ZnSO_4 \cdot 7H_2O - 0.04$ , глюкоза - 1.0; среда Чапека-Докса (%):  $NH_4Cl - 0.3$ , KCl - 0.2,  $KH_2PO_4 - 0.1$ ,  $MgSO_4 \cdot 7H_2O - 0.05$ ,  $CuSO_4 \cdot 5H_2O - 0.002$ , глюкоза - 2.0.

Селекционная среда: РМ с добавками (мМ):  $NaClO_3 - 10$ ,  $NH_4Cl - 10$ ;  $NaNO_3 - 10$ , аспарагин – 10; гипоксантин – 10.

Для поддержания штамма *A. awamori* и хранения посевного материала использовали следующие агаризованные среды: PM + 10 мM NaNO<sub>3</sub> + + 2.0% агар; а также среда Чапека (%): картофельный крахмал – 3.0, NaNO<sub>3</sub> – 0.91, KCl – 0.05; MgSO<sub>4</sub> · 7H<sub>2</sub>O – 0.05; KH<sub>2</sub>PO<sub>4</sub> – 0.1; агар-агар – 2.0.

Культивирование трансформантов проводили в колбах на ферментационной среде для глубинного культивирования штаммов *A. awamori:* 24% пшеничной муки, обработанной α-амилазой, из расчета 2 ед. α-амилазной активности на 1 г крахмала. Трансформанты культивировали в течение 7 и 9 сут при 35°С и 250 об/мин.

Получение штамма-реципиента *A. awamori* 6804-19 (*niaD*<sup>-</sup>). Суспензию спор штамма *A. awamori* Co-6804 обрабатывали нитрозогуанидином с концентрацией 2, 1, 0.5 и 0.1 мг/мл в течение 15–30 мин. Выживаемость клеток при этом составляла от 0.13 до 7%. Для выделения хлорат-устойчивых мутантов обработанную суспензию рассевали на чашки Петри с минимальной средой с хлоратом натрия. Выросшие клоны для выявления подлинности предполагаемых мутантов *niaD*<sup>-</sup> пересевали на чашки Петри с минимальными средами с нитратом натрия, нитритом натрия, гипоксантином и аспарагином, т.е.

ПРИКЛАДНАЯ БИОХИМИЯ И МИКРОБИОЛОГИЯ том 47 № 3 2011

клоны проверяли на способность расти с использованием данных веществ в качестве единственных источников азота. Среди селектантов определяли клоны, которые соответствовали по свойствам мутантам *niaD*<sup>-</sup>, отличавшимся от исходного штамма только по признаку роста на среде с NaNO<sub>3</sub>, при этом способность этих мутантов расти на средах с другими источниками азота оставалась такой же, как у исходного штамма *A. awamori* Со-6804. Кроме того, отбирали полученные штаммыреципиенты с такой же способностью к биосинтезу глюкоамилазы как у исходного штамма.

Получение плазмидных конструкций. Нуклеотидная последовательность, соответствующая полноразмерному гену глюкоамилазы, включающая промоторный и терминаторный участки была амплифицирована методом полимеразной цепной реакции (ПЦР), где в качестве матрицы использовали геномную ДНК *А. awamori*, выделенную с помощью набора фирмы "Qiagen" (США) по стандартным протоколам [15]. Для амплификации последовательности использовались праймеры:

## GA\_Aawa\_pr-LIC5:TACTTCCAATCC-ATGGAGAATCAGCAGGAGCCATTTCCGT

## GA\_Aawa\_tr-LIC3: TATCCACCTTTACTGCG-GCCGCGAGCCGATCAGACCAGTAGGT.

ПЦР проводили на приборе MyCycler "BioRad" (США) по следующему протоколу: 95°С - 5 мин -1 цикл; 95°С – 1 мин 30 с, 50°С – 1 мин, 68°С – 4 мин – 25 циклов; 68°С – 10 мин, 4°С – 30 мин. Полученный ПЦР-продукт был клонирован в вектор pUC-LIC (рис. 1а) с использованием метода независимого лигирования [16]. ПЦР-продукт (~4500 п.о.) был выделен из агарозного геля и очищен, используя набор реагентов фирмы "Qiagen" (США). Далее продукт ПЦР был обработан Т4-ДНК полимеразой "Fermentas" (США) в присутствии одного из нуклеотидов, подходящего для прерывания 3'-5' экзонуклеазной активности полимеразы. Обработанная вставка была лигирована в вектор pUC-LIC путем смешивания 50 нг вектора и 150 нг вставки. Смесь инкубировали 30 мин при 22°С, после чего трансформировали в клетки Escherichia coli MachI ("Invitrogen", США) по стандартному протоколу трансформации [15]. Таким путем была получена плазмида рGA-GA (рис. 1б).

Методом ПЦР был получен линеаризованный вектор pGA (рис. 1в), имеющий в своей структуре гомологичные промоторную и терминаторную части глюкоамилазы *А. awamori*. Для этого были генерированы праймеры, содержащие на 5'-концах новые LIC-сайты:

### pGAvect-LowLIC: AGGATGGGGATGAGGGCA-ATTGGTTATATGATCATG.

## pGAvect-UpLIC: ATTGGTGAGGTGTAATCAT-CTGGGGATGAAGCTC.

В качестве матрицы для ПЦР была использована плазмида pGA-GA. Полученный амплификат был секвенирован по методу Сэнгера, нуклеотидная последовательность не содержала мутаций, инсерций или делеций. ПЦР-продукт был обработан Т4-полимеразой по схеме, описанной выше. Таким путем был получен линеаризованный вектор pGA, обладающий регуляторными элементами, позволяющими после клонирования в него целевой ДНК реплицироваться как в клетках *E. coli*, так и интегрироваться в хромосому *A. awamori* за счет гомологичных промоторных и терминаторных участков.

Для получения плазмид, несущих гетерологичные гены: ксиланазы *P. canescens* pGA-Xyl (рис. 1г), эндоглюканазы *T. reesei* pGA-EG (рис. 1д) и фитазы *A. niger* pGA-PhyA (рис. 1е) были амплифицированы нуклеотидные последовательности соответствующих генов. Для амплификации были использованы следующие праймеры:

GA-Xyl-UpperLIC:ATTACACCTCA-CCAATGGTTCAACTCAAGACTGCT. GA-Xyl-LowerLIC:CCCTCATCCCCAT-CCTGCTAAAGCGCATTGGCGATAG. GA-EG-UpperLIC:ATTACACCTCACCAT-GCGCCCTCAGCTACACTGCCGTTAAC. GA-EG-LowerLIC:CCCTCATCCCCA-TCCTGCTAGAGGCATTGCGAGTAGTCT. GA-Phy-UpperLIC:ATTACACCTCACC-AATGGGCGTCTCTGCTGTTCTAC. GA-Phy-LowerLIC:CCCTCATCCCCA-TCCTGCTAAGCAAAACACTCCGCCCA.

В качестве матрицы в ПЦР-методе использовали геномные ДНК P. canescens, T. reesei и A. niger coответственно, выделенные по стандартным протоколам [15]. Условия проведения реакций: 95°С – 5 мин – 1 цикл; 95°С – 1 мин 30 с, 55°С – 1 мин, 68°С – 2–3 мин (в зависимости от размера амплифицируемого продукта) – 20 циклов; 68°С – 10 мин, 4°С – 30 мин. Полученный ПЦР-продукт был выделен, очищен и клонирован в вектор pGA методом независимого лигирования. Нуклеотидные последовательности генов ксиланазы, эндоглюканазы и фитазы были секвенированы в обоих направлениях по методу Сэнгера. Гетерологичные гены не содержали мутаций, делеций или инсерций и соответствовали последовательностям, представленным в GenBank (AN: AY756109 - для гена ксиланазы *P. canescens*, X60652 – для гена эндоглюканазы Trichoderma sp., Z16414 – для гена фитазы A. niger).

**Тест на стабильность продукции целевых ферментов.** Трансформацию штамма-реципиента *A. awamori* 6804-19 (*niaD*<sup>-</sup>) и получение протопластов проводили в соответствии с методикой, разработанной Тилбурном с соавт. для штамма *A. nidulans* [17]. Отобран-



**Рис. 1.** Схема получения плазмидных конструкций для обеспечения гетерологичной экспрессии в рекомбинантном штамме *A. awamori* Co-6804.

ПРИКЛАДНАЯ БИОХИМИЯ И МИКРОБИОЛОГИЯ том 47 № 3 2011

ные штаммы-реципиенты и трансформанты проверяли на стабильность исследуемого признака в генерациях. Пересевы штамма проводили непосредственно после выращивания штамма, т.е. через 7 и 30 сут хранения при 4°С. После каждого пересева проверяли активность штамма при глубинном культивировании.

Определение активности ферментов. Метод определения глюкоамилазной активности основан на измерении скорости образования глюкозы глюкозооксидазно-пероксидазным методом из растворимого картофельного крахмала. За единицу глюкоамилазной активности принимали такое количество фермента, которое приводило к образованию 1 мкмоля глюкозы из 1%-ного раствора картофельного крахмала за 1 мин при 30°С и pH 4.7 [6]. Метод определения ксиланазной активности основан на измерении скорости образования восстанавливающих сахаров (ВС) методом Шомоди-Нельсона при гидролизе ксилана из древесины березы. За единицу ксиланазной активности принимали такое количество фермента, которое приводит к образованию 1 мкмоль ВС (в ксилозном эквиваленте) из 1%-ного раствора ксилана за 1 мин при 50°С и рН 5.0 [18]. Метод определения β-глюканазной активности основан на измерении скорости образования ВС методом Шомоди-Нельсона при гидролизе β-глюкана из зерен ячменя. За единицу β-глюканазной активности принимали такое количество фермента, которое приводит к образованию 1 мкмоль ВС (в глюкозном эквиваленте) из 1%-ного раствора β-глюкана за 1 мин реакции при 50°С и рН 5.0 [18]. Метод определения эндоглюканазной активности основан на измерении скорости образования ВС методом Шомоди-Нельсона при гидролизе Na-соли карбоксиметилцеллюлозы (КМЦ) средней вязкости. За единицу эндоглюканазной (КМЦазной) активности принимали такое количество фермента, которое приводит к образованию 1 мкмоль ВС (в глюкозном эквиваленте) из 1%-ного раствора КМЦ за 1 мин при 50°С и рН 5.0 [18]. Метод определения фитазной активности основан на измерении скорости образования свободных фосфатионов (P<sub>i</sub>) при гидролизе фитата Na из зерен риса с использованием аммоний-молибденового реагента (13 мМ FeSO<sub>4</sub> · 7H<sub>2</sub>O, 8.1 мМ (NH<sub>4</sub>)<sub>6</sub>Mo<sub>2</sub>O<sub>24</sub> · 4H<sub>2</sub>O и 0.533 М  $\cdot$  H<sub>2</sub>SO<sub>4</sub>). За единицу фитазной активности принимали такое количество фермента, которое приводит к образованию 1 мкмоль P<sub>i</sub> из 1.4 мМ раствора фитата Na за 1 мин при 37°С и pH 5.0 [10].

Анализ состава ферментных препаратов. Для разделения ферментных препаратов использовали хроматографическую систему FPLC, колонки и носители фирмы "Pharmacia" (Швеция). Для подготовки образцов, а также для их обессоливания и замены буфера использовали систему низкого давления Есопо-System фирмы "BioRad" (США).

Ферментный препарат обессоливали на колонке с акрилексом П2 фирмы "Reanal" (Венгрия) в 20 мМ буфере пиперазин-НСІ, рН 5.5. Далее проводили анионообменную хроматографию на колонке с носителем Mono Q HR 5/5 ("Sigma-Aldrich" США). Образец наносили в стартовом буфере при рН 5.5; связавшиеся белки элюировали при градиенте концентрации NaCl (0-0.4 М). В полученных фракциях определяли активность анализируемых белков. Зная общую целевую активность соответствующей фракции (глюкоамилазную, ксиланазную, эндо-глюканазную, фитазную) и общее содержание в ней белка, а также учитывая удельную активность соответствующего целевого фермента (гомогенных глюкоамилаз, ксиланазы, эндоглюканазы, фитазы) рассчитывали содержание соответствующего целевого фермента в общем пуле секретируемого белка [19]. Удельная активность гомогенной "легкой" (80 кДа) и "тяжелой" (140 кДа) форм глюкоамилазы А. awamori (80 кДа) составила 28 и 42 ед./мг белка, соответственно [6], ксиланазы A. awamori (35 кДа) – 165 ед./мг [20], ксиланазы *P. canescens* (31 кДа) – 30 ед./мг [12], эндоглюканазы T. reesei (57 кДа) – 24 ед./мг по КМЦазе [13], фитазы A. niger – 150 ед./мг [21].

## РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Трансформационная система рекомбинантного гриба A. awamori Co-6804. С помощью обработки нитрозогуанидином и последующей селекции был получен штамм-реципиент A. awamori Co-6804 niaD<sup>-</sup>. характеризующийся наличием мутации в гене нитратредуктазы (*niaD*) и нарушенным метаболическим путем ассимиляции азота, что позволило осуществить селекцию трансформантов. Этот вид селекции традиционно используется для ряда грибных штаммов родов Aspergillus и Penicillium [22] и состоит в возможности отбора трансформантов на средах с нитратом натрия, в то время как нетрансформированный штамм-реципиент на таких средах не растет. Следует отметить, что среди нескольких десятков клонов потенциального штамма-реципиента A. awamori Co-6804 niaD- отбирали только те, которые имели активность глюкоамилазы на уровне исходного штамма и сохраняли стабильность мутации (что выявляли путем последовательных пересевов на селективных средах и проведением контрольных трансформаций плазмидой pSTA10, содержащей ген niaD для определения числа прототрофных клонов).

Экспрессионная система рекомбинантного гриба A. awamori Co-6804. В литературе описан промотор гена глюкоамилазы glaA A. niger [23]. Основываясь на сравнении генов глюкоамилаз близкородственных штаммов A. niger и A. awamori, нами были амплифицированы нуклеотидные последовательности, соответствующие регуляторным участкам гена гомологичной глюкоамилазы штамма A. awamori

### СОЗДАНИЕ СИСТЕМЫ ЭКСПРЕССИИ ГЕТЕРОЛОГИЧНЫХ ГЕНОВ

| Штамм                                | Белок, | Активность, ед./мл |           |        |             |        |  |  |
|--------------------------------------|--------|--------------------|-----------|--------|-------------|--------|--|--|
|                                      | мг/мл  | глюкоамилаза       | ксиланаза | КМЦаза | β-глюканаза | фитаза |  |  |
| <i>А. awamori</i> Co-6804 (контроль) | 25     | 460                | 35        | 17     | 10          | 1      |  |  |
| pGA-Xyl15                            | 22     | 390                | 105       | 0      | 0           | 0      |  |  |
| pGA-Xyl21                            | 20     | 394                | 104       | 0      | 0           | 0      |  |  |
| pGA-EG46                             | 22     | 283                | 0         | 120    | 82          | 0      |  |  |
| pGA-EG47                             | 23     | 280                | 0         | 103    | 65          | 0      |  |  |
| pGA-Phy7                             | 22     | 407                | 0         | 0      | 0           | 347    |  |  |
| pGA-Phy39                            | 21     | 396                | 0         | 0      | 0           | 241    |  |  |

Таблица 2. Активность глюкоамилазы и целевых ферментов в КЖ трансформантов

Таблица 3. Активность сухих ферментных препаратов. Общая активность приведена в ед./г препарата, удельная — в ед./мг белка

| Штамм                                | Белок,<br>мг/г | Активность   |        |           |        |        |        |             |        |        |        |
|--------------------------------------|----------------|--------------|--------|-----------|--------|--------|--------|-------------|--------|--------|--------|
|                                      |                | глюкоамилаза |        | ксиланаза |        | КМЦаза |        | β-глюканаза |        | фитаза |        |
|                                      |                | ед./г        | ед./мг | ед./г     | ед./мг | ед./г  | ед./мг | ед./г       | ед./мг | ед./г  | ед./мг |
| <i>А. awamori</i> Co-6804 (контроль) | 679            | 14500        | 21.4   | 296       | 0.44   | 130    | 0.19   | 82          | 0.12   | 34     | 0.05   |
| pGA-Xyl21                            | 590            | 15800        | 26.8   | 462       | 0.78   | 0      | 0      | 0           | 0      | 0      | 0      |
| pGA-EG46                             | 374            | 6900         | 18.4   | 0         | 0      | 2136   | 5.71   | 124         | 3.32   | 0      | 0      |
| pGA-Phy7                             | 732            | 14500        | 19.8   | 0         | 0      | 0      | 0      | 0           | 0      | 8010   | 10.90  |

Со-6804 — промоторная область гена глюкоамилазы размером 1649 п.о., а также терминаторный участок gla гена размером 715 п.о. Следует отметить, что сам ген глюкоамилазы хорошо изучен и подробно охарактеризован. На примере однокопийного по гену глюкоамилазы штамма *A. awamori* NRRL 3112 было показано, что две формы глюкоамилазы — "легкая" форма GA I и "тяжелая" GA II — транскрибируются с одного гена глюкоамилазы и являются продуктом сплайсинга мPHK, причем обе формы глюкоамилазы образуются за счет сплайсинга на 3'-конце гена, т.е. у обеих форм белков одинаковые N- и разные С-концы. Соответственно, промоторная область у обеих форм одна, что облегчает задачу клонирования [24].

Методом инверсного ПЦР были клонированы нуклеотидные последовательности, соответствующие регуляторным областям гена глюкоамилазы *A. awamori* Co-6804 и на основе этих участков сформирован вектор pGA (рис. 1), являющийся шаттл-вектором, обеспечивающим как встраивание целевого гена в хромосому *A. awamori* Co-6804 за счет гомологичной рекомбинации, так и репликацию экспрессионных плазмид в клетках *E. coli*, что облегчает наработку целевой ДНК для последующих трансформационных экспериментов. Были получены экспрессионные плазмиды на основе вектора pGA, обеспечивающие экспрессию гетерологичных ксиланазы pGA-Xyl *P. canescens* (6376 п.о., рис. 1г), эндоглюканазы *T. reesei* pGA-EG (6488 п.о., рис. 1д) и фитазы *A. niger* pGA-Phy (6417 п.о., рис. 1е) и оптимизированы условия котрансформации штамма-реципиента *A. awamori* Co-6804 niaD<sup>-</sup> целевыми плазмидами и трансформирующей плазмидой pSTA10. Это позволило получать достаточное для скрининга число трансформантов (20–50 трансформантов на 1 мкг целевой ДНК), что соответствовало литературным данным по частоте трансформаций грибов рода *Aspergillus* [25].

Скрининг трансформантов. После проведения трансформации штамма *A. awamori* Co-6804 niaD<sup>-</sup> плазмидами pGA-Xyl, pGA-EG и pGA-Phy нами были отобраны в среднем по 200 трансформантов каждого вида, выросших на селекционной среде с нитратом натрия. Полученные трансформанты были культивированы в колбах при использовании стандартной жидкой ферментационной среды для *A. awamori*. Для анализа целевых и глюкоамилазной активностей пробы культуральной жидкости (**КЖ**) исследуемых клонов и контрольного штамма *A. awamori* Co-6804 были отобраны на 7 сут



Рис. 2. Анионообменная хроматография на Мопо Q препаратов контрольного штамма Co-6804 (а) и клонов pGA-Xyl21 (б), pGA-EG46 (в) и pGA-Phy7 (г). Сплошная линия – белковый профиль, штриховая – градиент концентрации NaCl. Общие активности во фракциях (с учетом объема фракций): активность глюкоамилазы во фракции 1.2 – 54 ед., 1.3 – 119 ед., 2.1 – 41 ед., 2.2 – 116 ед., 3.1 – 25 ед., 3.2 – 77 ед., 4.2 – 56 ед., 4.3 – 99 ед.; активность ксиланазы во фракции 1.п – 1.5 ед. (собственная ксиланаза), 2.п – 2.5 ед.; активность эндоглюканазы во фракции 3.п – 20 ед.; активность фитазы во фракции 4.п – 22 ед.

культивирования. Активности в КЖ контрольного штамма и в КЖ лучших клонов, экспрессирующих ксиланазу, эндоглюканазу и фитазу, а также содержание секретируемого белка в КЖ, представлены в табл. 2. Уровень экспрессии секретируемой ксиланазы повысился примерно в 3 раза, эндоглюканазы (КМЦазы) и β-глюканазы в 6-8 раз (как отмечалось выше, эндоглюканаза T. reesei обладает как целлюлазной, так и β-глюканазной активностью), а фитазы – более чем в 300 раз по сравнению с контрольным нетрансформированным штаммом А. awamori Co-6804. Глюкоамилазная активность в КЖ трансформантов по сравнению с контрольным штаммом уменьшалась, в целом, незначительно, только в случае штаммов, экспрессирующих эндоглюканазу было отмечено уменьшение активности глюкоамилазы в 1.6 раза.

Отобранные клоны были проверены на стабильность при пересеве и определении ферментов в КЖ после завершения процесса ферментации в колбах. Полученные трансформанты не теряли активности после 4 последовательных пересевов (данные не приведены), что говорит о стабильности трансформантов и стабильности интегративной встройки ДНК в хромосому гриба.

Активность сухих ферментных препаратов, полученных с помощью рекомбинантных штаммов *A. awamori*. Для анализа активности и состава секретируемого ферментного комплекса рекомбинантных штаммов из КЖ наиболее активных трансформантов pGA-Xyl21, pGA-EG46 и pGA-Phy7 были получены сухие ферментные препараты. Для этого проводили культивирование соответствующих штаммов в колбах на ферментационной среде для *A. awamori* с последующим осаждения белка из КЖ ацетоном.

В табл. 3 для сухих ферментных препаратов представлены значения активности глюкоамилазы, а также активностей, обеспечиваемых соответствующими секретируемыми гетерологичными целевыми ферментами: ксиланазной, КМЦазной, β-глюканазной и фитазной.

Для препарата pGA-Xyl21, полученного с помощью штамма с рекомбинантной ксиланазой *P. саnescens*, наблюдали увеличение удельной ксиланазной активности в 1.8 раза относительно контрольного препарата из *A. awamori* Co-6804. Отметим, что в ферментном препарате с рекомбинантной ксиланазой наблюдали и некоторое увеличение удельной активности глюкоамилазы (26.8 ед./г) по сравнению с контрольным препаратом (24.1 ед./г).

Препарат pGa-EG46, полученный с помощью штамма с рекомбинантной эндоглюканазой *T. re-esei*, характеризуется существенным (примерно 30-кратным) увеличением удельной КМЦазной и β-глюканазной активности по сравнению с контрольным препаратом. При этом удельная актив-

| Штамм                                   | Фермент, % от общего пула белков |                                 |           |               |        |  |  |  |  |
|-----------------------------------------|----------------------------------|---------------------------------|-----------|---------------|--------|--|--|--|--|
|                                         | "легкая" форма<br>глюкоамилазы   | "тяжелая" форма<br>глюкоамилазы | ксиланаза | эндоглюканаза | фитаза |  |  |  |  |
| <i>А. awamori</i> Co-6804<br>(контроль) | 32                               | 39                              | 0.15*     | 0             | 0      |  |  |  |  |
| pGA-Xyl21                               | 28                               | 46                              | 0.60      | 0             | 0      |  |  |  |  |
| pGA-EG46                                | 15                               | 31                              | 0         | 14            | 0      |  |  |  |  |
| pGA-Phy7                                | 33                               | 39                              | 0         | 0             | 2.4    |  |  |  |  |

Таблица 4. Содержание индивидуальных ферментов в ферментных препаратах

\* Собственная ксиланаза A. awamori.

ность глюкоамилазы в препарате с рекомбинантной эндоглюканазой по сравнению с контрольным препаратом уменьшалась незначительно (с 21.4 до 18.4 ед./мг).

Препарат pGA-Phy7, полученный с помощью штамма с рекомбинантной фитазой из *A. niger* имел высокую удельную фитазную активность, примерно в 220 раз превосходящую удельную активность контрольного препарата. Удельная активность глюкоамилазы в препарате с рекомбинантной фитазой по сравнению с контрольным препаратом несколько уменьшалась (с 21.4 до 19.8 ед./мг).

Состав сухих ферментных препаратов. Было проведено аналитическое фракционирование полученных сухих препаратов на анионообменной колонке Mono Q при pH 5.5 с помощью FPLC-системы (рис. 2, для всех препаратов на колонку наносили одинаковое количесто белка – 6 мг). На хроматограммах во всех случаях наблюдали два основных белковых пика: первый соответствовал "легкой" форме глюкоамилазы (80 кДа, фракция 1.2, рис. 2а), второй – ее "тяжелой" форме (140 кДа, фракция 1.3, рис. 2а). В контрольном препарате, полученном с помощью штамма А. awamori Co-6804, преобладающей являлась "тяжелая" форма глюкоамилазы - ее содержание составило 39% от общего пула белка, "легкой" формы – 32%. Отметим, что контрольный препарат характеризовался наличием "собственной" ксиланазы (35 кДа, фракция 1.п, рис. 2а), ее содержание составило 0.15% от общего пула белка.

При фракционировании препарата pGA-Xyl21 "собственная" ксиланаза (35 кДа) *А. awamori* и рекомбинантная ксиланаза (31 кДа) *Р. canescens* находились во фракции, не связавшейся с носителем (фракция 2, рис. 26). Содержание обоих ферментов во фракции невелико и дальнейшее хроматографическое разделение этих ферментов было затруднительным. Содержание общей ксиланазной фракции в препарате pGA-Xyl21 составляло 0.75% от общего пула белка. Если предположить, что содержание собственной ксиланазы *А. awamori* в ходе трансформации не изменилось и равно содержанию в контрольном препарате (0.15%), то содержание рекомбинантной ксиланазы в препарате pGA-Xyl21 составляло 0.6%. Содержание "легкой" формы глюкоамилазы в этом препарате несколько уменьшалось по сравнению с контрольным препартом (28 и 32% от общего пула белка соответственно). Содержание "тяжелой" формы по сравнению с контрольным препаратом увеличилось (с 39 до 46%). В целом, общее содержание глюкоамилазы увеличивалось до 74% по сравнению с 71% в контрольном препарате.

При фракционировании препарата pGA-EG46 рекомбинантная эндоглюканаза *T. reesei* была обнаружена во фракции, не связавшейся с носителем (фракция 3, рис. 2в). Следует отметить, что ни в одной фракции контрольного препарата *A. awamori* Со-6804 не было обнаружено заметной эндоглюканазной (КМЦазной) активности. Содержание рекомбинантной эндоглюканазы составило 14% от общего пула белка. Содержание "легкой" формы глюкоамилазы уменьшалось по сравнению с контрольным препаратом (с 32 до 15%), уменьшалось и содержание "тяжелой" формы (с 39 до 30%). В целом, общее содержание глюкоамилазы уменьшилось до 46% (71% в контрольном препарате).

При фракционировании препарата pGA-Phy7 фитазная активность была обнаружена во фракции, элюирующейся в начале градиента NaCl (фракция 4.1, рис. 2г). Ни в одной фракции контрольного препарата *A. awamori* Co-6804 не было обнаружено заметной фитазной активности. Содержание рекомбинантной фитазы *A. niger* составляло 2.4% от общего пула белка. Содержание "легкой" и "тяжелой" форм глюкоамилазы не изменялось.

Таким образом, нами была получена система экспрессии гетерологичных генов в штамме *A. awamori* Co-6804. Содержание рекомбинантных ферментов в общем пуле секретируемого белка варьировало от 0.6 до 14%, причем содержание глюкоамилазы для штаммов с рекомбинантной ксиланазой и фитазой не изменялось и несколько

Nº 3

2011

уменьшалось в случае штамма с эндоглюканазой. Относительно невысокий уровень экспрессии (в случае ксиланазы) можно объяснить следующим образом. В литературе [26] на примере промотора *alcA*, широко используемого в системе экспрессии A. nidulans, и гена человеческого α5-интерферона-2 (INF-α2), находящегося под его контролем, показано, что для конструкции alcA-INF-α2 существует т.н. эффект лимитирования активатора, в данном случае AlcR, для обслуживания избыточного количество копий под контролем промотора alcA. Такой же эффект наблюдался и для промотора glaA A. niger [27], причем привнесение в промоторную область дополнительных сайтов связывания с активатором принесло ожидаемый эффект повышения уровня экспрессии гетерологичных генов [28]. Таким образом, следующие шаги в наших исследованиях целесообразно направить на выяснение причин лимитирования высокой экспрессии белков в рекомбинантном штамме A. awamori и на поиск возможностей решения этих проблем.

Данная работа была выполнена при частичной финансовой поддержке ФЦП "Научные и научнопедагогические кадры инновационной России", ФЦП "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России", а также программы ПНР-5.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Wiebe M.G. // Mycologist. 2003. V. 17. № 3. P. 140– 144.
- 2. Патент США. 1990. № 4966850.
- 3. Патент США. 1994. № 5298405.
- 4. Патент США. 1997. № 5610048.
- Dunn-Coleman N.S., Bloebaum P., Berka R.M., Bodie E., Robinson N., Armstrong G., Ward M., Przetak M., Carter G.L., La Cost R. // Biotechnology. 1991. V. 9. P. 976–981.
- 6. Патент РФ. 2002. № 2245364.
- Lubertozzi D., Keasling J.D. // Biotechnol. Adv. 2009. V. 27. P. 53–75.
- Sauer J., Sigurskjold B.W., Christensen U., Frandsen T.P., Mirgorodskaya E., Harrison M., Roepstorff P., Svensson // Biochim. Biophys. Acta. 2000. V. 1543. № 2. P. 275–293.
- 9. *Bentley I.S., Williams E.C.* Industrial Enzymology / Ed. Godfrey T., Stuart W. London: MacMillan Press, 1996. P. 339–358.
- Синицына О.А., Федорова Е.А., Гусаков А.В., Упоров И.В., Соколова Л.М., Бубнова Т.М., Окунев О.Н., Чулкин А.М., Винецкий Ю.П., Синицын А.П. // Биохимия. 2006. Т. 71. № 9. С. 1260–1268.

- Lim M.H., Lee O.H., Chin J.E., Ko H.M., Kim I.C., Lee H.B., Im S.Y., Bai S. // Biotechnol. Lett. 2008. V. 30. № 12. P. 2125–2130.
- Синицына О.А., Гусаков А.В., Окунев О.Н., Серебряный В.А., Вавилова Е.А., Винецкий Ю.П., Синицын А.П. // Биохимия. 2003. Т. 68. № 12. С. 1631–1638.
- Марков А.В., Гусаков А.В., Дзедзюля Е.И., Устинов Б.Б., Антонов А.А., Окунев О.Н., Беккаревич А.О., Синицын А.П. // Прикл. биохимия и микробиология. 2006. Т. 42. № 6. С. 654–664.
- Han Y., Wilson D.B., Lei X.G. // Appl. Environ. Microbiol. 1999. V. 65. P. 1915–1918.
- Sambrook J., Russell D. Molecular Cloning, A Laboratory Manual. New York: Cold Spring Harbor Lab. Press, 2001. P. 1–44.
- Aslanidis C., de Jong P.J. // Nucleic Acid Res. 1990.
  V. 18. № 20. P. 6069–6074.
- Tilburn J., Scazzocchio C., Taylor G.G., Zabicky-Zissman J.H., Lockington R.A., Davies R.W. // Gene. 1983. V. 26. P. 205–221.
- Синицын А.П., Гусаков А.В., Черноглазов В.А. Биоконверсия лигноцеллюлозных материалов. М.: Изд-во МГУ, 1995. С. 144.
- Семёнова М.В., Зоров И.Н., Синицын А.П., Окунев О.Н., Барышникова Л.М., Цурикова Н.В. Микробные биокатализаторы для перерабатывающих отраслях АПК / Ред. Поляков В.А., Римарева Л.В. М.: Пищепромиздат, 2006. С. 77–81.
- Hessing J.G., van Rotterdam C., Verbakel J.M., Roza M., Maat J., van Gorcom R.F., van den Hondel C.A. // Curr. Genet. 1994. V. 26. № 3. P. 228–232.
- 21. Casey A., Walsh G. // Biores. Technol. 2003. V. 86. P. 183–188.
- 22. *Turner G.* Applied Molecular Genetics of Fungi. Cambridge: Univ. Press, 1991. P. 29–44.
- 23. Gwynne D.I., Buxton F.P., Williams S.A., Sills A.M., Johnstone J.A., Buch J.K., Guo L.M., Drak D., Westphal M., Davies R.W. // Biochem. Soc. Trans. 1989. V. 17. P. 338–341.
- 24. Nunberg J.H., Meade J.H., Cole G., Lawyer F.C., Peter McC., Schweickart V., Tal R., Wittman V.P., Flatgaard J.E., Innis M.A. // Mol. Cell. Biol. 1984. V. 4. № 11. P. 2306–2315.
- 25. Unkles Sh.E., Campbell E.I., de Ruiter-Jacobs Y.M.J.T., Broekhuijsen M., Macro J.A., Carrez D., Contreras R., van den Hondel C.A.M.J.J., Kinghorn J.R. // Mol. Gen. Genet. 1989. V. 218. № 1. P. 99–104.
- 26. *Gwynne D.I., Buxton F.P.* // Biotechnology. 1987. V. 5. P. 713–719.
- 27. Verdoes J.C., Punt P.J., Stouthamer A.H., Hondel C.A.M.J.J. // Gene. 1994. V. 145. № 2. P. 179–187.
- Liu L., Liu J., Qiu R.X., Zhu X.G., Dong Z.Y., Tang G.M. // Lett. Appl. Microbiol. 2003. V. 36. № 6. P. 358–361.

ПРИКЛАДНАЯ БИОХИМИЯ И МИКРОБИОЛОГИЯ том 47 № 3 2011

# Creation of a Heterologous Gene Expression System on the Basis of *Aspergillus awamori* Recombinant Strain

A. M. Rozhkova<sup>*a*</sup>, A. S. Sereda<sup>*b*</sup>, N. V. Tsurikova<sup>*b*</sup>, A. K. Nurtaeva<sup>*c*</sup>, M. V. Semenova<sup>*a*</sup>, L. V. Rimareva<sup>*b*</sup>, E. A. Rubtsova<sup>*a*</sup>, I. N. Zorov<sup>*d*</sup>, O. A. Sinitsyna<sup>*d*</sup>, and A. P. Sinitsyn<sup>*d*</sup>

<sup>a</sup> Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071 Russia e-mail: amrojkova@mail.ru, inbi@inbi.ras.ru

<sup>b</sup> Institute of Food Biotechnology, Russian Academy of Agricultural Sciences, Moscow, 111003 Russia e-mail: vnipbt@com2com.ru

 <sup>c</sup> Kazakhstan Institute of Management and Economics, Almaty, 050010 Kazakhstan e-mail: anurtaeva@kimep.kz
 <sup>d</sup> Department of Chemistry, Moscow State University, Moscow, 119992 Russia e-mail: info@rector.msu.ru

Received April 12, 2010

**Abstract**—A heterologous gene expression system was created in a domestic *Aspergillus awamori* Co-6804 strain, which is a producer of the glucoamylase gene. Vector pGa was prepared using promoter and terminator areas of the glucoamylase gene, and *A. niger* phytase, *Trichoderma reesei* endoglucanase, and *Penicillium canescens* xylanase genes were then cloned into pGa vector. Separation of enzyme samples using FPLC showed the amount of the recombinant proteins to be within the 0.6-14% range of total protein.