ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 2013, № 6, с. 30–35

ЭЛЕКТРОНИКА И РАДИОТЕХНИКА

УДК 621.3:537.3

ГЕНЕРАТОР КОММУТАЦИОННЫХ АПЕРИОДИЧЕСКИХ ИМПУЛЬСОВ СВЕРХВЫСОКОГО НАПРЯЖЕНИЯ ДЛЯ ИСПЫТАНИЙ ЭЛЕКТРИЧЕСКОЙ ПРОЧНОСТИ ИЗОЛЯЦИИ ТЕХНИЧЕСКИХ ОБЪЕКТОВ

© 2013 г. М. И. Баранов, Г. М. Колиушко, В. И. Кравченко

Научно-исследовательский и проектно-конструкторский институт "Молния" Национального технического университета "Харьковский политехнический институт" Украина, 61013, Харьков, ул. Шевченко, 47 Поступила в редакцию 13.11.2012 г.

После доработки 07.12.2012 г.

Описан мощный стационарный генератор наружной установки, формирующий на активно-индуктивной нагрузке стандартные коммутационные апериодические импульсы высокого и сверхвысокого напряжения временной формы 250 мкс/2500 мкс с нормированными по межгосударственному ГОСТ 1516.2-97 допусками. Приведены описания схемных и конструктивных решений, позволяющих обеспечить получение в полевых условиях на длинном разрядном воздушном промежутке двухэлектродной системы "игла–плоскость" апериодических импульсов напряжения положительной полярности с временем достижения $T_{\rm II} \approx 205$ мкс их амплитуды U_m до 2 MB и длительностью на уровне 0.5 U_m , составляющей $\tau_{\rm II} \approx 1900$ мкс.

DOI: 10.7868/S0032816213050121

введение

В настоящее время при определении электрической прочности изоляции различных электроэнергетических объектов с емкостной характеристикой (выключателей, разъединителей, высоковольтных вводов, изоляторов и воздушной изоляции линий электропередачи, трансформаторов тока, силовых конденсаторов и др.) в соответствии с требованиями п. 6.3.3 межгосударственного ГОСТ 1516.2-97 используются генераторы стандартных коммутационных апериодических импульсов высокого и сверхвысокого напряжения временной формы $T_{\Pi}/\tau_{\mu} = (250 \pm 50 \text{ мкс})/(2500 \pm 750 \text{ мкс}),$ где T_{Π}, τ_{μ} соответственно время подъема импульса напряжения до амплитуды U_m и длительность генерируемого импульса напряжения на уровне $0.5U_m$ [1, 2]. Как правило, в таких генераторах полярность их выходных испытательных импульсов напряжения выбирается положительной, для которой твердая, жидкая и газовая изоляция указанных объектов промышленной электроэнергетики имеет наиболее низкие разрядные электрические градиенты и соответственно пониженную электрическую прочность [2, 3].

Создание подобного испытательного электрооборудования на высокое (сверхвысокое) импульсное напряжение, базирующегося согласно [1] на основе генераторов импульсных напряжений, сопряжено с большими техническими трудностями, материальными и финансовыми затратами. Основной трудностью при разработке, выборе элементной базы и изготовлении таких генераторов является ослабленная электрическая прочность их собственных изоляционных конструкций, испытывающих воздействие высокого (сверхвысокого) импульсного напряжения микро- и миллисекундного временных диапазонов. Кроме того, при проведении натурных испытаний различных объектов электроэнергетики на электрическую прочность их изоляции часто требуются генераторы коммутационных импульсов напряжения, работающие на открытом воздухе.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГЕНЕРАТОРА СТАНДАРТНЫХ КОММУТАЦИОННЫХ АПЕРИОДИЧЕСКИХ ИМПУЛЬСОВ ВЫСОКОГО И СВЕРХВЫСОКОГО НАПРЯЖЕНИЯ

В 2012 году нами был введен в опытную эксплуатацию генератор коммутационных импульсов напряжения (г.к.и.н.), позволяющий проводить в полевых условиях натурные испытания различных объектов электроэнергетики на воздействие стандартных апериодических импульсов напряжения положительной (отрицательной) полярности временной формы $T_{\rm n}/\tau_{\rm u} \approx 205$ мкс/1900 мкс при их амплитуде U_m до 2 MB. Для его разработки и изготовления был использован ранее созданный в нашем институте мощный генератор им-

Рис. 1. Принципиальная схема замещения двухполярного генератора импульсных напряжений ГИН-4, подсоединенного в схеме формирования стандартных коммутационных апериодических импульсов напряжения к дополнительному разрядному $R_{p1} \approx 32.7$ кОм, формирующему $R_{\phi} \approx 4.28$ кОм и токоограничивающему $R_{\tau} \approx 4.59$ кОм резисторам, нагрузочной емкости $C_{H} \approx 13.3$ нФ и объекту испытаний – двухэлектродной системе "игла–плоскость" с длинным воздушным разрядным промежутком.

пульсных напряжений ГИН-4 этажерочного типа на номинальное напряжение 4 МВ и номинальную запасаемую электрическую энергию 1 МДж [4, 5], размещенный на открытом воздухе на исследовательско-экспериментальном полигоне НИПКИ "Молния" НТУ "ХПИ".

Применение генератора ГИН-4 в схеме г.к.и.н. потребовало существенной доработки его зарядно-разрядного контура (з.р.к.). Низкоомные зарядные резисторы $R_3 \approx 500$ Ом (в количестве 32 шт.) электрических цепей всех каскадов генератора ГИН-4 (рис. 1) при этом были заменены на высо-коомные, каждый из которых имел активное сопротивление $R_3 \approx 30$ кОм (рис. 2) [6]. Данный г.к.и.н., общий вид которого приведен на рис. 3, содержит в своем составе как заимствованные (генератор ГИН-4 с доработанным з.р.к.), так и специально созданные для него следующие высо-ковольтные устройства: мощный генератор ГИН-4 с модернизированными новыми зарядными цепями обеих полярностей на номинальное постоянное

зарядное напряжение U_3 до ±125 кВ и собственным разрядным сопротивлением $R_{\rm pr} \approx 440$ кОм; нагрузочную емкость $C_{\rm H} \approx 13.3$ нФ на номинальное импульсное напряжение 3 МВ; формирующий резистор $R_{\rm \phi} \approx 4.28$ кОм на номинальное импульсное напряжение 2.5 МВ; дополнительный разрядный резистор $R_{\rm p1} \approx 32.7$ кОм на номинальное импульсное напряжение 2.5 МВ; токоограничивающий резистор $R_{\rm r} \approx 4.59$ кОм на номинальное импульсное напряжение 2.5 МВ; омический делитель импульсного напряжения ОДН-2 на номинальное напряжение 2.5 MB.

На рис. 4 представлена электрическая схема замещения разрядной цепи г.к.и.н., содержащая активное сопротивление $R_{\text{дел}} \approx 107.3$ кОм омического делителя импульсного напряжения ОДН-2 разработки НИПКИ "Молния" НТУ "ХПИ", подключенного к объекту испытаний – двухэлектродной системе "игла–плоскость" с длинным воздушным разрядным промежутком. Генератор

Рис. 2. Общий вид основных элементов модернизированного з.р.к. генератора ГИН-4, содержащего в зарядных цепях положительной и отрицательной полярностей своих высоковольтных каскадов 32 высокоомных резистора $R_3 \approx 30$ кОм.

ГИН-4 согласно схеме на рис. 1 содержит 16 высоковольтных каскадов на 250 кВ, каждый из которых имеет восемь импульсных конденсаторов C = 1 мкФ в металлическом корпусе типа КБМГ-125/1 (номинальное напряжение 125 кВ, номинальная емкость 1 мкФ) разработки нашего института и один неуправляемый двухэлектродный воздушный шаровой разрядник F с диаметром электродов 125 мм [4, 5].

Параллельный заряд данных конденсаторов осуществляется от мощного высоковольтного зарядного устройства г.к.и.н. через цепочки зарядных $R_{3} \approx 30$ кОм (в количестве 32 шт.) и разрядных $R_{\rm p} \approx 110 \text{ кОм} (16 \text{ шт.})$ резисторов на номинальное напряжение 500 кВ. Каждый из зарядных резисторов R_3 выполнен на основе последовательно соединенных и залитых эпоксидным компаундом 100 объемных графитокерамических резисторов ТВО-5-300 Ом, а каждый разрядный резистор *R*_p – из последовательно соединенных и закрепленных на гетинаксовой пластине 50 объемных графитокерамических резисторов ТВО-10-2.2 кОм. Первая секция высоковольтных конденсаторов нижнего этажа данного генератора содержит управляемый трехэлектродный воздушный разрядник — тригатрон F_1 [7] с диаметром основных шаровых электродов 125 мм, который управляется путем подачи на его управляющий электрод высоковольтного микросекундного импульса напряже-

Рис. 3. Общий вид генератора для формирования на активно-индуктивной нагрузке стандартного коммутационного апериодического импульса напряжения временной формы 250 мкс/2500 мкс с нормированными допусками амплитудой U_m до 2 MB (слева видна изоляционная опора с нагрузочной емкостью $C_{\rm H} \approx 13.3$ нФ, к верхнему потенциальному электроду которой подсоединены формирующий $R_{\rm d} \approx 4.28$ кОм и токоограничивающий $R_{\rm T} \approx 4.59$ кОм резисторы, а справа – прямоугольная конструкция генератора ГИН-4).

ния амплитудой до ±10 кВ от генератора пусковых импульсов (гп.и.) разработки НИПКИ "Молния" НТУ "ХПИ" [8]. Генератор ГИН-4 в разрядной цепи г.к.и.н. характеризуется следующими собственными электрическими параметрами: "емкостью в разряде" $C_r \approx 0.125$ мкФ, индуктивностью $L_r \approx 80$ мкГн и активным сопротивлением $R_r \approx$ ≈ 4.5 Ом, определяемым последовательно включенными при срабатывании генератора ГИН-4 его девятью демпфирующими резисторами $R_{\pi} \approx 0.5$ Ом.

Изоляционная несущая конструкция генератора ГИН-4 выполнена на основе 576 фарфоровых опорных изоляторов КО-400С, балок и рас-

Рис. 4. Принципиальная схема замещения разрядной цепи г.к.и.н., формирующего на объекте испытаний – длинном разрядном воздушном промежутке двухэлектродной системы "игла–плоскость" стандартный коммутационный апериодический импульс высокого и сверхвысокого напряжения обеих полярностей временной формы $T_{\rm п}/\tau_{\rm u} \approx 205$ мкс/1900 мкс амплитудой U_m до 2 MB.

Рис. 5. Общий вид созданной и установленной на существующей изоляционной опоре нагрузочной емкости $C_{\rm H} \approx 13.3 \ {\rm H}\Phi$ на номинальное импульсное напряжение 3 MB, использованной в разрядной цепи г.к.и.н.

косов из древесного слоистого пластика ДСПБ-Э, а его изоляционная защитная (ограждающая) конструкция – с использованием стеклопластиковых труб ТСПО и рулонного стеклопластика РЭМ толщиной 0.8 мм [4, 5]. В г.к.и.н. за счет изменения зарядного напряжения конденсаторов C генератора ГИН-4 и регулировки воздушных промежутков двухэлектродных шаровых разрядников Fвсех высоковольтных каскадов использованного нами генератора ГИН-4 (рис. 1 и 2) обеспечивается требуемая величина выходного испытательного импульсного напряжения и компенсация изменений состояния окружающей г.к.и.н. воздушной атмосферы.

Нагрузочная емкость $C_{\rm H} \approx 13.3 \, {\rm H}\Phi$ на номинальное импульсное напряжение 3 MB в разрядной цепи г.к.и.н. выполнена на основе 30 последовательно включенных высоковольтных импульсных конденсаторов ИК-100-0.4 (номинальное напряжение 100 кВ, номинальная емкость 0.4 мкФ) [9], которые были размещены на существующей изоляционной опоре высотой 11 м (по 3 на ее каждой из десяти секций), собранной из 52 фарфоровых

Рис. 6. Общий вид созданного омического делителя импульсного напряжения ОДН-2 на номинальное напряжение 2.5 MB, подсоединенного в разрядной цепи г.к.и.н. к двухэлектродной системе "игла—плоскость" с длиной воздушного промежутка 3 м (верхний круглый заостренный стальной электрод Ø25 мм этой системы размещен по центру ее нижнего плоского электрода из оцинкованной стали с габаритными размерами 5 × 5 м).

опорных изоляторов OHC-110/1000 (рис. 5). Формирующий резистор $R_{\phi} \approx 4.28$ кОм длиной 8.5 м на номинальное импульсное напряжение 2.5 MB выполнен из 40 последовательно включенных резистивных цепочек, каждая из которых собрана из двух объемных графитокерамических резисторов TBO-60 номиналом 51 и 56 Ом.

Дополнительный разрядный резистор $R_{p1} \approx$ ≈ 32.7 кОм длиной 10 м на номинальное импульсное напряжение 2.5 МВ выполнен из 50 последовательно соединенных резистивных цепочек, каждая из которых состоит из двух объемных графитокерамических резисторов ТВО-60 номиналом 100 и 560 Ом. Токоограничивающий резистор $R_{\rm T} \approx$ ≈ 4.59 кОм длиной 9 м на номинальное импульсное напряжение 2.5 МВ, обеспечивающий протекание в разрядной цепи г.к.и.н. при электрическом пробое воздушного промежутка объекта испытаний апериодического импульса тока амплитудой до 440 А, по аналогии с формирующим резистором R_{ϕ} выполнен из 90 последовательно включенных объемных графитокерамических резисторов ТВО-60-51 Ом.

Высоковольтное плечо специально изготовленного для г.к.и.н. омического делителя импульсного напряжения ОДН-2 на номинальное импульсное напряжение 2.5 MB (рис. 6) выполнено на основе девяти последовательно соединенных резистивных секций общей длиной 12.6 м, каждая из которых была изготовлена на основе двух параллельных *R*-цепочек с применением 20 объемных графитокерамических резисторов ТВО-10-2.4 кОм. Измеренное общее активное сопро-

Рис. 7. Осциллограмма полного коммутационного апериодического импульса напряжения положительной полярности на двухэлектродной системе "игла-плоскость" с длиной воздушного промежутка 3 м ($U_3 \approx \pm 32 \text{ кB}$, $U_m \approx 622 \text{ кB}$, $T_{\Pi} \approx 205 \text{ мкс}$, $\tau_{\mu} \approx 1900 \text{ мкс}$). Масштаб по вертикали 268 кВ/клетка, по горизонтали – 250 мкс/клетка.

тивление высоковольтного плеча данного делителя составило 107.3 кОм [10]. Низковольтное плечо омического делителя импульсного напряжения ОДН-2 было выполнено из двух маломощных графитокерамических резисторов ТВО-2-2 Ом с общим активным сопротивлением 4 Ом. При расчетном коэффициенте деления $K_{дел} \approx 26825$ с учетом согласованного подключения омического делителя импульсного напряжения ОДН-2 к объекту испытаний и цифровому осциллографу его масштабный коэффициент в проводимых экспериментах был равным $2K_{дел} \approx 53650$.

На рис. 7 приведена осциллограмма полного стандартного коммутационного апериодического импульса напряжения $T_{\rm n}/\tau_{\rm u} \approx 205$ мкс/1900 мкс положительной полярности при его амплитуде $U_m \approx 622 \text{ кB}$, полученная в разрядной цепи г.к.и.н. на двухэлектродной системе "игла-плоскость" с длиной воздушного промежутка 3 м (рис. 6). При измерении формируемых г.к.и.н. на используемом объекте испытаний импульсов напряжения нами были применены омический делитель импульсного напряжения ОДН-2 с экранированной кабельной линией передачи полезного электрического сигнала длиной до 60 м и запоминающий цифровой осциллограф Tektronix TDS 1012, размещенный вдали от г.к.и.н. в заглубленном экранированном измерительном бункере.

На рис. 8 представлена осциллограмма нарастающей части полного стандартного коммутационного апериодического импульса напряжения положительной полярности амплитудой $U_m \approx 966$ кВ ($T_{\rm fr} \approx 205$ мкс) на двухэлектродной системе "игла—плоскость" согласно рис. 6 с длиной воздушного промежутка 3 м. Из данных рис. 8 следует, что на фронте генерируемого с помощью гк.и.н. коммутационного апериодического импульса сверхвысоко-

Рис. 8. Осциллограмма нарастающей части полного коммутационного апериодического импульса напряжения положительной полярности на двухэлектродной системе "игла–плоскость" с длиной воздушного промежутка 3 м ($U_3 \approx \pm 51 \text{ kB}$, $U_m \approx 966 \text{ kB}$, $T_{\Pi} \approx 205 \text{ мкc}$). Масштаб по вертикали 268 кВ/клетка, по горизонтали – 50 мкс/клетка.

го напряжения временной формы 205 мкс/1900 мкс наблюдается пикообразный всплеск длительностью до 7 мкс, обусловленный особенностями работы генератора ГИН-4 из-за наличия в нем металлического экрана-крыши площадью до 60 м² и быстрого заряда его паразитной емкости от разряда конденсаторов C = 1 мкФ каскадов при срабатывании разрядников F_1 и F данного генератора.

На рис. 9 показана осциллограмма срезанного стандартного коммутационного апериодического импульса сверхвысокого напряжения положительной полярности при пробое на его нарастающей части воздушного промежутка длиной 3 м в используемой согласно рис. 7 двухэлектродной системе "игла—плоскость". Атмосферный воздух при этом характеризовался следующими зафиксированными параметрами: температурой 19°С, давлением 741 Торр, относительной влажностью 76%. Видно, что в этом случае импульсное напряжение среза составляет $U_c \approx 1030$ кВ, а время среза $T_c \approx 110$ мкс.

Благодаря наличию в разрядной цепи г.к.и.н. высокоомного токоограничивающего резистора $R_{\rm r} \approx 4.59$ кОм после среза на промежутке объекта испытаний указанного импульса напряжения на его кривой отсутствуют какие-либо колебания. В разрядной цепи г.к.и.н. с используемым нами объектом испытаний (воздушным промежутком длиной 3 м в двухэлектродной системе "игла—плоскость") вероятное место удара канала искрового разряда в заземленную стальную плоскость определялось по месту прожога диаметром до

Рис. 9. Осциллограмма срезанного коммутационного апериодического импульса напряжения положительной полярности при электрическом пробое воздушного промежутка длиной 3 м в двухэлектродной системе "игла—плоскость" ($U_3 \approx \pm 60 \text{ kB}$, $U_c \approx 1030 \text{ kB}$, $T_c \approx 110 \text{ мкc}$). Масштаб по вертикали 268 кВ/клетка, по горизонтали – 50 мкс/клетка.

2 мм белой чертежной бумаги, уложенной в один слой и закрепленной на горизонтальной плоскости нижнего электрода площадью 25 м² двухэлектродной системы. Выполненные эксперименты в количестве не менее 300 при $U_m \approx 1$ MB указывают на стохастический характер распределения мест удара разрядного канала в плоскость. Иных фиксаций разрядного канала при проведенных с помощью г.к.и.н. испытаниях воздушной изоляции в системе "игла—плоскость" нами не выполнялось.

ЗАКЛЮЧЕНИЕ

На основе применения существующего генератора ГИН-4 с доработанным нами з.р.к. создан мощный стационарный генератор стандартных коммутационных апериодических импульсов напряжения положительной и отрицательной полярностей, способный формировать на активно-индуктивной нагрузке испытательные импульсы напряжения временной формы $T_{\rm n}/\tau_{\rm u} \approx 205$ мкс/1900 мкс с амплитудой U_m до 2 MB. Данный генератор наружной установки может быть использован для проведения на открытом воздухе натурных испытаний электрической прочности твердой, жидкой и газовой изоляции различных мало- и крупногабаритных объектов промышленной электроэнергетики к воздействию коммутационных перенапряжений мегавольтного диапазона.

СПИСОК ЛИТЕРАТУРЫ

- Межгосударственный стандарт ГОСТ 1516.2-97. Электрооборудование и электроустановки переменного тока на напряжение 3 кВ и выше. Общие методы испытаний электрической прочности изоляции. Минск: Изд-во стандартов, 1997.
- 2. Бейер М., Бёк В., Мёллер К. и др. Техника высоких напряжений: теоретические и практические основы ее применения / Пер. с нем. под ред. В.П. Ларионова. М.: Энергоатомиздат, 1989.
- ГОСТ 17512-82. Электрооборудование и электроустановки на напряжение 3 кВ и выше. Методы измерения при испытаниях высоким напряжением. М.: Изд-во стандартов, 1982.
- 4. Пекарь И.Р., Фертик С.М. // Сб. докл. межвуз. конф.: "Электрофизическая аппаратура и электрическая изоляция". М.: Энергия, 1970. С. 22.
- 5. Баранов М.И., Бочаров В.А., Игнатенко Н.Н. и др. // Електротехніка і електромеханіка (Харьков). 2003. № 2. С. 75.
- 6. Баранов М.И., Зиньковский В.М., Зябко Ю.П. и др. // Вісник НТУ "ХПІ". Вып. "Техніка та електрофізика високих напруг". Харьков: НТУ "ХПИ", 2012. № 52 (958). С. 15.
- Техника больших импульсных токов и магнитных полей / Под ред. В.С. Комелькова. М.: Атомиздат, 1970.
- 8. Бочаров В.А., Пекарь И.Р. // ПТЭ. 1982. № 3. С. 115.
- Берзан В.П., Геликман Б.Ю., Гураевский М.Н. и др. Электрические конденсаторы и конденсаторные установки: Справочник. М.: Энергоатомиздат, 1987.
- Баранов М.И., Колиушко Г.М. // Вісник НТУ "ХПІ". Вып. "Техніка та електрофізика високих напруг". Харков: НТУ "ХПИ", 2011. № 49. С. 11.