_____ ЛАБОРАТОРНАЯ _____ ТЕХНИКА

УДК 621.793.162 : 539.216.2

ИЗГОТОВЛЕНИЕ ПЛЕНОЧНЫХ ФЕРРОГРАНАТОВЫХ РЕЗОНАТОРОВ ХИМИЧЕСКИМ ТРАВЛЕНИЕМ

© 2013 г. С. А. Юрьев, С. И. Ющук

Национальный университет "Львовская политехника" Украина, 79013, Львов, ул. Ст. Бандеры, 12 E-mail: syuryev@mail.ru Поступила в редакцию 06.11.2012 г.

Описана процедура изготовления сверхвысокочастотных резонаторов на основе эпитаксиальных пленок феррогранатов $Y_3Fe_5O_{12}$ и (Y,Sm,Lu,Ca)₃(Fe,Ge)₅O₁₂ толщиной ≤ 5 мкм, выращенных на подложках из галлий-гадолиниевого граната. Для получения феррогранатовых элементов круглой формы — резонаторов $\emptyset 0.5-3$ мм посредством химического травления в ортофосфорной кислоте при температуре $60-175^{\circ}$ С использованы защитные покрытия из SiO₂, силиконового клея и фоторезиста. Установлено, что резонаторы, изготовленные с использованием защитного покрытия из фоторезиста ФП-383, обладают наиболее узкой линией ферромагнитного резонанса.

DOI: 10.7868/S0032816213050236

ВВЕДЕНИЕ

Эпитаксиальные феррогранатовые пленки являются перспективным материалом, альтернативным монокристаллам феррогранатов, для использования в сверхвысокочастотной (с.в.ч.) электронике. Пленки выращивают методом жидкофазной эпитаксии из растворов-расплавов ферритообразующих окислов на подложках, изготовленных из монокристаллов галлий-гадолиниевого граната (ГГГ). Не останавливаясь на особенностях технологии феррогранатових эпитаксиальных структур (ф.э.с.) [1], отметим, что после получения ф.э.с. возникает необходимость их дальнейшей химической и механической обработки для устранения остатков флюса, изготовления образцов для магнитных измерений и исследования ферромагнитного резонанса (ф.м.р.) [2, 3], изучения состояния поверхности и выявления структурных дефектов [4, 5], изготовления с.в.ч.-резонаторов и элементов микроволновых схем [6]. При изготовлении резонатора для исследования спектров спиновых волн или измерения параметров ф.м.р. (ширины линии, намагниченности насыщения) с помощью ультразвуковой или механической резки возникает дефектность по его периметру, которая вызывает появление многих мод в с.в.ч.-спектре с ненулевыми волновыми векторами в узком диапазоне частот. Эти паразитные моды поглощают энергию с.в.ч.-поля. В то же время при использовании химического травления для устранения дефектов на краях резонатора удается наблюдать на нем однородный ферромагнитный резонанс [2].

В данной работе мы исследовали процессы химического травления эпитаксиальных пленок железо-иттриевого граната Y₃Fe₅O₁₂ (ЖИГ) и ЖИГ- замещенного граната $(Y,Sm,Lu,Ca)_3(Fe,Ge)_5O_{12}$, нанесения локальных защитных покрытий на поверхность ф.э.с. и формирования на ней феррогранатових элементов $\emptyset 0.5-3$ мм.

ВЫРАЩИВАНИЕ ФЕРРОГРАНАТОВЫХ ПЛЕНОК И ИЗМЕРЕНИЕ ИХ ПАРАМЕТРОВ

Пленки выращивали путем изотермического погружения монокристаллических подложек из ГГГ ориентации (111) в перенасыщенный растворрасплав ферритовой шихты с использованием флюса PbO-B₂O₃. Подложки вырезали из монокристалла ГГГ, выращенного методом Чохральского, с последующей их шлифовкой и полировкой до 14-го класса чистоты. Толщина подложек составляла 0.5 мм. Для эпитаксиального выращивания использовали автоматизированную установку, в которой технологическими операциями управлял компьютер. Температура в зонах печи поддерживалась с точностью $\pm 0.1^{\circ}$ С. Толщина выращенных пленок не превышала 5 мкм.

Для измерения толщины феррогранатовых пленок использовали оптический интерференционный метод. Интерференционная картина образуется во время измерения спектров пропускания при падении светового луча на образец в направлении, близком к нормали. В работе спектры пропускания ф.э.с. получали с помощью спектрофотометров Specord M-40 и Specord 75IR. Причем, для пленок толщиной ≤4 мкм измерения выполнялись в видимой и близкой инфракрасной областях на спектрофотометре Specord M-40, а для пленок толщиной >4 мкм – в средней инфракрасной

Рис. 1. Зависимость толщины пленок $Y_3Fe_5O_{12}$ от длительности травления при разной температуре [°C]: 1 - 80, 2 - 100, 3 - 115, 4 - 125, 5 - 135, 6 - 145, 7 - 155, 8 - 165.

области на спектрофотометре Specord 75IR. Погрешность измерений толщины не превышала 2%.

Исследование структуры и состава эпитаксиальных пленок выполняли с помощью электронного микроскопа с рентгеновским микроанализатором Comebax.

Ширина линии ф.м.р. ΔH определяет магнитные потери феррогранатовой пленки: чем уже ширина, тем ниже потери. Измерение параметра ΔH выполняли методом закороченного волновода [7] на частоте 9.2 ГГц на образцах-резонаторах круглой формы Ø1 мм. Изготовление образцов для исследования ф.м.р. подробно описано в нашей работе [2].

ЭКСПЕРИМЕНТ И ЕГО РЕЗУЛЬТАТЫ

Травление феррогранатовых пленок проводили в 85%-ном растворе ортофосфорной кислоты в интервале температур 60–175°С. В процессе травления при температурах ≥125°С через 3–5 мин выполняли измерения толщины феррогранатового слоя, а при более низких температурах травления – через каждые 15–20 мин.

На рис. 1 и 2 соответственно для ЖИГ и ЖИГзамещенных пленок представлены зависимости их толщины от времени травления при различных температурах.

В температурном интервале 125–165°С скорости травления для ЖИГ-пленок составили 0.052– 0.296 мкм/мин, а для ЖИГ-замещенных – 0.063– 0.470 мкм/мин. При температуре ниже 125°С скорости травления малы и выполнять травление при этих температурах нецелесообразно.

Рис. 2. Зависимость толщины пленок (Y,Sm,Lu,Ca)₃(Fe,Ge)₅O₁₂ от длительности травления при разной температуре [°C]: 1 - 105, 2 - 115, 3 - 125, 4 - 135, 5 - 145, 6 - 155, 7 - 165.

Далее мы исследовали различные защитные покрытия, которые могли бы служить маской во время травления феррогранатовых пленок в горячей ортофосфорной кислоте. К защитному покрытию выдвигались следующие требования: а) наличие малой скорости травления по сравнению с феррогранатовой пленкой; б) хорошая адгезия к поверхности пленки; в) достаточная вязкость, дающая возможность формировать маскирующее покрытие; г) малая пористость защитного слоя; д) простота и доступность удаления с поверхности ф.э.с.

В процессе изготовления пленочных ферритовых элементов для с.в.ч.-электроники используется стандартный метод [8], заключающийся в нанесении на ферритовую пленку диэлектрического слоя SiO₂ толщиной 0.5 мм и формировании в нем с помощью фотолитографии рисунка определенной конфигурации, образовании окон в диэлектрическом слое и вытравливании незащищенных участков феррита горячей ортофосфорной кислотой. Этот метод является достаточно трудоемким и требует дорогостоящего оборудования. Кроме того, становится возможным проникновение кремния в поверхностные слои ферритовой пленки, что приводит к увеличению ширины линии ф.м.р. и возрастанию потерь при распространении поверхностных магнитостатических волн. Поэтому мы исследовали возможность исключения операции нанесения диэлектрического слоя SiO₂ на поверхность ф.э.с. и использования в качестве масок при травлении феррогранатовых пленок силиконового клея ПМС-200 [2] и фоторезиста ФП-383.

ИСПОЛЬЗОВАНИЕ В КАЧЕСТВЕ ЗАЩИТНОГО ПОКРЫТИЯ СИЛИКОНОВОГО КЛЕЯ

Для обеспечения высокой адгезии и устранения загрязнения перед нанесением клея поверхность ф.э.с. промывали в 50%-ном растворе уксусной кислоты, 20%-ном растворе азотной кислоты, дистиллированной воде, ацетоне и сушили в струе сжатого воздуха. Силиконовый клей наносили с помощью медицинского шприца с внутренним диаметром иглы 0.5 мм. Нанесенный клей сушили при $t = 20^{\circ}$ С (60 мин). Потом ф.э.с. помещали в сушильный шкаф, температуру в котором поднимали до 180°С, выдерживая при ней 30 мин. Изготовленная таким образом клеевая маска имеет хорошие адгезионные и механические свойства и обладает кислотоустойчивостью. После термостатирования ф.э.с. погружали в предварительно нагретую до 145°С ортофосфорную кислоту. Не покрытая защитным слоем пленка $Y_3Fe_5O_{12}$ толщиной 3.5-4.5 мкм полностью стравливалась за 25–35 мин, а пленка (Y,Sm,Lu,Ca)₃(Fe,Ge)₅O₁₂ – за 20-30 мин.

ФОТОРЕЗИСТ В КАЧЕСТВЕ ЗАЩИТНОГО ПОКРЫТИЯ

Для повышения разрешающей способности толщину слоя фоторезиста выбирали по возможности наименьшей, но достаточной для обеспечения малой дефектности и нужной стойкости к травлению. На очищенную поверхность ф.э.с. фоторезист наносили центрифугированием при частоте вращения 2500 оборотов/мин в течение 0.5 мин. Полученная толщина слоя фоторезиста составляла 0.8–0.85 мм. Нанесенный слой сушили при $t = 20^{\circ}$ С (10 мин) и в сушильном шкафу при $t = 100^{\circ}$ С (25 мин). Экспонирование и проявление выполняли в соответствии с общепринятой технологией.

Сушку проявленного слоя проводили при t == 20°С (15 мин), затем ф.э.с. помещали в сушильный шкаф при $t = 120^{\circ}$ С на 20-30 мин с дальнейшим повышением температуры до $t = 150^{\circ}$ С и термостатировали 3-5 мин. При таких температурных режимах полностью удаляется проявитель, повышаются химическая стойкость и адгезия слоя фоторезиста к феррогранатовой пленке, а также происходит разрушение диазосоединений, входящих в состав фоторезиста, и сшивание его полимерной составляющей. Стравливание незащищенных фоторезистом участков феррогранатовой пленки проводили в ортофосфорной кислоте при $t = 155^{\circ}$ С. При повышении температуры >155°С или при ее понижении <145°С, т.е. при увеличении длительности травления, происходит растравливание рельефа, увеличение рельефа окон и отслоение фоторезиста. Следовательно, темпера-

Рис. 3. Спектры ф.м.р. феррогранатовых элементов \emptyset 1 мм, полученных для пленки ЖИГ толщиной 3.5 мм различными методами: **a** – ультразвуковая резка; **б** – химическое травление через клеевую маску; **в** – химическое травление через маску из SiO₂; **г** – химическое травление через маску из фоторезиста.

тура травления является важным технологическим фактором при изготовлении феррогранатовых элементов и во многом определяет их качество. После окончания процесса травления ф.э.с. промывали в деионизированной воде. Потом с помощью проволочной алмазной пилы подложку ф.э.с. разрезали на прямоугольные кусочки, на которых находились феррогранатовые элементы.

В результате проведенных исследований стало возможным изготавливать элементы круглой формы $\emptyset 0.5-3$ мм с ферритовым покрытием толщиной до 5 мкм. Клиновидность рельефа периметра феррогранатового элемента незначительна. Для сравнения разных методов изготовления феррогранатовых элементов, которые характеризуются различными режимами травления, в таблице приведены результаты измерений ширины линии ф.м.р. для этих образцов.

На рис. 3 приведены спектры ф.м.р. образцов феррогранатовых элементов, изготовленных различными методами. Видно, что спектр образца, полученного химическим травлением с маской из фоторезиста $\Phi\Pi$ -383, обладает наиболее узкой линией ф.м.р.

выводы

1. В температурном интервале $125-165^{\circ}$ С скорости травления в ортофосфорной кислоте для пленок Y_3 Fe₅O₁₂ составляют 0.052–0.296 мкм/мин, а для пленок (Y,Sm,Lu,Ca)₃(Fe,Ge)₅O₁₂ – 0.063–0.470 мкм/мин.

ЮРЬЕВ, ЮЩУК

Способ изготовления	Технологические параметры		Ширина линии ф.м.р. [Э] при толщине феррогранатовой пленки:		
	Температура травленния, °С	Скорость травленния, мкм/мин	2.5 мм	3.5 мм	5.0 мм
Резание ультразвуком [9]	_	_	1.67	1.23	1.05
Химическое травление с клеевой маской	125	0.052	0.63	0.60	0.62
	145	0.124	0.55	0.50	0.45
	155	0.219	0.55	0.55	0.50
	175	0.375	0.75	0.71	0.69
Химическое травление с маской из SiO ₂	140	0.120	0.50	0.48	0.51
	160	0.260	0.63	0.55	0.80
Химическое травление с маской из фоторезиста	125	0.052	0.45	0.50	0.61
	145	0.124	0.40	0.45	0.45
	155	0.219	0.37	0.40	0.34
	175	0.375	0.43	0.50	0.50

Ширины линии ф.м.р. феррогранатовых элементов с пленкой Y₃Fe₅O₁₂ круглой формы Ø1 мм

2. Оптимальными температурами травления феррогранатовых эпитаксиальных пленок толщиной до 5 мкм являются 145–155°С, поскольку изготовленные при этих условиях резонаторы обладают наименьшими значениями ширины линии ф.м.р.

3. Применение в качестве защитных покрытий масок при химическом травлении силиконового клея ПМС-200 и фоторезиста $\Phi\Pi$ -383 является более простой и дешевой альтернативой стандартному покрытию из SiO₂ без понижения качества феррогранатовых элементов.

СПИСОК ЛИТЕРАТУРЫ

1. Ющук С.И. // Технология и конструирование в электронной аппаратуре. 1998. № 1. С. 35.

- 2. Ющук С.И., Костюк П.С. // ПТЭ. 1996. № 6. С. 91.
- 3. Ющук С.И., Юрьев С.А., Костюк П.С., Николайчук В.И. // ПТЭ. 2011. № 5. С. 118.
- Костюк П.С., Кузьмик А.Г., Матковский А.О. и др. // Физическая электроника. Львов: Изд-во Львов. ун-та, 1987. Вып. 35. С. 100.
- 5. *Ющук С.И., Костюк П.С., Лобойко В.И.* // Неорганические материалы. 2002. Т. 38. № 2. С. 233.
- 6. *Ющук С.И., Юрьев С.А., Костюк П.С., Бондар В.И.* // Технология и конструирование в электронной аппаратуре. 2005. № 3. С. 22.
- 7. *Яковлев Ю.М., Генделев С.М.* Монокристаллы ферритов в радиоэлектронике. М.: Сов. радио, 1975.
- Вапнэ Г.М. // Обзоры по электронной технике. Сер. 1. Электроника СВЧ. 1984. Вып. 8(1060). С. 1.
- Ющук С.И., Костюк П.С., Юрьев С.А., Лотоцкий О.Д. // Физическая электроника. Львов: Издво Львов. ун-та, 1987. Вып. 34. С. 97.