ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 2013, № 5, с. 40-44

ТЕХНИКА ЯДЕРНОГО ЭКСПЕРИМЕНТА

УДК 539.1.074.3

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК СПЕКТРОМЕТРИЧЕСКОГО ДЕТЕКТОРА НА ОСНОВЕ КРИСТАЛЛА LaBr₃:Се И ФОТОУМНОЖИТЕЛЯ ФЭУ-184

© 2013 г. А. С. Симутин, М. Ю. Чернов, А. А. Гасанов*, А. Д. Орлов**, Н. В. Классен**, С. З. Шмурак**

> ВНИИ автоматики им. Н.Л. Духова Россия, 127055, Москва, ул. Сущевская, 22 *ОАО "Гиредмет"

Россия, 119017, Москва, Б. Толмачевский пер., 5, стр. 1 ** Институт физики твердого тела РАН Россия, 142432, Черноголовка Московской обл., ул. Академика Осипьяна, 2

Поступила в редакцию 16.10.2012 г.

Представлены результаты исследований сцинтилляционного детектора на основе кристалла LaBr₃:Се и фотоумножителя ФЭУ-184. Показано, что оптимизация схемы подключения ФЭУ-184, заключающаяся в регистрации сигнала с предпоследнего динода, позволяет реализовать спектрометрические возможности кристалла LaBr₃:Се.

DOI: 10.7868/S003281621305008X

введение

В последние годы значительно возросла потребность в новых, более эффективных преобразователях ионизирующего излучения в кванты света (сцинтилляторах). Это обусловлено широким применением сцинтилляторов в различных областях науки, техники и медицины. Они используются для мониторинга окружающей среды, контроля работы атомных электростанций, проведения исследований в астрофизике, физике высоких энергий, в компьютерных томографах, для геологической разведки полезных ископаемых, в системах, используемых для таможенного досмотра, обнаружения наркотиков и взрывчатых веществ [1–5].

Для решения вышеперечисленных задач требуются сцинтилляторы, имеющие высокий световыход, малое время высвечивания и высокое энергетическое разрешение. Этим требованиям в значительной степени удовлетворяет бромид лантана, легированный церием, который является самым эффективным из используемых в настоящее время сцинтилляторов. Его световыход при регистрации γ -квантов составляет ~65000 фотонов/МэВ, что примерно в 1.5 раза выше световыхода широко используемых сцинтилляторов CsI:Tl и NaI:Tl. Время высвечивания (τ) сцинтиллятора LaBr₃:Се составляет ~18 нс, что примерно на порядок меньше, чем для NaI:Tl. И почти на два порядка меньше, чем для CsI:Tl. Монокристалл LaBr₃:Се имеет высокое энергетическое разрешение. Рекордное разрешение, полученное на кристалле LaBr₃:Се на линии 662 кэВ (¹³⁷Cs), составило 2.8%. Это почти в 2 раза выше, чем наилучшее разрешение, полученное для NaI:Tl. Основные характеристики сцинтилляторов NaI:Tl и LaBr₃:Се представлены в табл. 1 [6–8].

Таким образом, по целому ряду параметров – высокому световыходу, малому времени высвечивания, энергетическому разрешению – LaBr₃:Се

Характеристики	Сцинтиллятор		
ларактернетики	NaI:Tl	LaBr ₃ :Ce	
Плотность, г/см ³	3.67	5.29	
Световыход, 10 ⁴ фотон/МэВ	4	~6.5	
Собственное энергетическое раз- решение (662 кэВ), %	5.9	2.8	
Время высвечивания, нс	~200	~18	
Максимум спектра излучения, нм	415	365, 385	
Естественная радиоактивность	Нет	Распад ¹³⁸ La	
Гигроскопичность	Есть	Есть	

Таблица 1. Основные характеристики сцинтилляторов NaI:Tl и LaBr₃:Ce

🗖 ИИ

Рис. 1. Схема экспериментальной установки. *ИИ* – источник ионизирующего излучения; *ЗЧУ* – зарядочувствительный предусилитель; *У* – усилитель: *АА* – амплитудный анализатор.

превосходит известные преобразователи ионизирующего излучения. Пожалуй, единственным недостатком бромида лантана, легированного церием, является его крайне высокая гигроскопичность.

Свечение, возникающее при возбуждении кристалла LaBr₃:Се ионизирующим излучением, регистрируется, как правило, фотоэлектронными умножителями (ф.э.у.) фирм Hamamatsu (Япония) или ЕТ Enterprises Ltd (Англия). Представляется целесообразным установить, какие ф.э.у., выпускаемые отечественной промышленностью, способны реализовать спектрометрические возможности кристалла LaBr₃:Се.

Исследования, проведенные в настоящей работе, показали, что при специальной схеме подключения фотоумножитель ФЭУ-184 позволяет получать на кристалле LaBr₃:Се такое же разрешение, как и ф.э.у. R-1306 (Hamamatsu). В работе исследованы такие спектрометрические характеристики сборки LaBr₃:Се с ФЭУ-184, как пропорциональность амплитуды сигнала энергии излучения (линейность), а также энергетическое разрешение при разных энергиях γ-квантов.

МЕТОДИКА ЭКСПЕРИМЕНТА

Выращивание монокристаллов LaBr₃:Се диаметром 25 мм и высотой 25 мм проводилось методом Стокбаргера в запаянной кварцевой ампуле. Кристалл помещался в герметичный контейнер, в одном из торцов которого находилось кварцевое окно.

Сцинтилляционные характеристики сборок LaBr₃:Се и ф.э.у. исследовались на установке, схема которой представлена на рис. 1. В работе исследовались серийно выпускаемые фотоэлектронные умножители ФЭУ-85, ФЭУ-115МУ, ФЭУ-181-1 с диаметром фотокатода 25 мм и ФЭУ-184 с диаметром фотокатода 46 мм. Максимальная чувствительность этих ф.э.у. находится в диапазоне длин волн 360—440 нм, что соответствует области излучения LaBr₃:Се, максимумы свечения которого расположены при 365 и 385 нм.

Для обеспечения оптимального светосбора контакт между контейнером со сцинтиллятором и входным окном ф.э.у. осуществлялся через тонкую прослойку оптического вазелина.

Сигнал с ф.э.у. через зарядочувствительный усилитель подавался на амплитудный анализатор. Источник у-излучения располагался на расстоянии 5 см от входного торца кристалла. Для каждого ф.э.у. подбиралось оптимальное напряжение питания. Критерием оптимальности служило наилучшее энергетическое разрешение при условии линейности сигнала, регистрируемого с ф.э.у. Выполнение линейности отклика сцинтилляционной сборки проверялось путем сравнения отношения номеров каналов расположения максимумов фотопиков спектра ⁸⁸Y с величиной отношения энергий соответствующих у-линий ⁸⁸Y: 898 и 1836 кэВ, равной 2.044. Для каждого значения напряжения питания ф.э.у. также определялось энергетическое разрешение на линии 662 кэВ у-источника ¹³⁷Сs. Таким способом были изучены характеристики сцинтилляционных сборок кристалла LaBr₃:Се с каждым фотоэлектронным умножителем, исследуемым в настоящей работе.

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Изучение сцинтилляционных характеристик исследуемого детектора LaBr₃:Се с использованием ф.э.у. R-1306 показало, что энергетическое разрешение LaBr₃:Се для энергии γ -квантов 662 кэВ равно $\Delta_{662} = 3.18\%$.

Энергетическое разрешение детекторных сборок кристалла LaBr₃:Се с ФЭУ-85, ФЭУ-115МУ и ФЭУ-181-1 на линии 662 кэВ заметно хуже. Для этих ф.э.у. Δ_{662} находится в пределах 4.5–5.0%. Например, для ФЭУ-85 $\Delta_{662} = 4.6\%$. Несколько лучшие результаты были получены для ФЭУ-184, включенного в схему со стандартным делителем напряжения: $R_1 = 4R$; $R_2 = R_5 = 1.3R$; $R_3 = 1.5R$; $R_4 = R_6 = R_7 = ... = R_{11} = R$. В этом случае энергетическое разрешение для энергии 662 кэВ составляло ~4.0–4.6%. Так как среди исследованных нами отечественных ф.э.у. наилучшее разрешение получено для сборки LaBr₃:Се с ФЭУ-184, то дальнейшие поиски возможностей улучшения энергетического разрешения проводились для ФЭУ-184.

С увеличением напряжения питания ф.э.у. энергетическое разрешение улучшается, однако при

Рис. 2. Оптимизированная схема включения Φ ЭУ-184 с равномерным делителем напряжения $R_1 = R_2 = ... = R_{11} = R$ ($R \sim 100-300$ кОм), $R_{12} = 20$ кОм, $C_1 = ... = C_6 = 1000$ п Φ .

Рис. 3. Сцинтилляционный спектр сборки LaBr₃:Се с ФЭУ-184 при возбуждении источником ¹³⁷Cs.

этом нарушается линейность из-за перегрузки зарядочувствительного усилителя. Для предотвращения перегрузки усилителя вместо традиционного способа регистрации сигнала с анода ф.э.у. использовалась регистрация сигнала с предпоследнего динода (рис. 2). При такой схеме для ФЭУ-184 наиболее оптимальным оказалось использование равномерного делителя напряжения. При регистрации сигнала с предпоследнего динода и использовании равномерного делителя напряжения энергетическое разрешение сборки LaBr₃:Се с ФЭУ-184 для энергии 662 кэВ составило $\Delta_{662} = 3.2\%$ (рис. 3). Это значение практически совпадает с энергетическим разрешением Δ_{662} , полученным с использование ф.э.у. R-1306. Следует отметить, что значение $\Delta_{662} = 3.2-3.3\%$ со-

Рис. 4. Зависимости энергетического разрешения для линии 662 кэВ (I) и линейности отклика (2) сборки LaBr₃:Се с ФЭУ-184 от величины напряжения на ФЭУ-184.

храняется при изменении напряжения на $\Phi \ni Y$ -184 в диапазоне 570—660 В. При этих напряжениях наблюдалась также и пропорциональность между энергией γ -квантов и амплитудой сигнала (рис. 4).

Следует отметить, что из девяти фотоумножителей ФЭУ-184 только четыре экземпляра показали разрешение для линии 662 кэВ в пределах 3.2–3.3% при сохранении линейности отклика в диапазоне изменения высокого напряжения 570– 660 В. При использовании остальных пяти ФЭУ-

Таблица 2. Зависимость энергетического разрешения от энергии у-квантов для LaBr₃:Се и NaI:Tl

Нуклид	Энергия,	Разрешение, %, сцинтиллятора			
	KJD	LaBr ₃ :Ce	NaI:Tl		
²⁴¹ Am	60	11.1	14.6		
¹³⁹ Ce	166	6.5	11.0		
¹³³ Ba	356	4.2	8.1		
¹¹³ Sn	392	3.9	7.7		
¹³⁷ Cs	662	3.2	6.9		
⁵⁴ Mn	835	2.6	6.8		
⁶⁰ Co	1173	2.4	6.4		
	1333	2.3	5.8		
⁸⁸ Y	1836	2.0	4.3		

Рис. 5. Зависимость положения фотопика от энергии γ -квантов при напряжении на ф.э.у. 650 В; линия — аппроксимация линейной зависимостью y = a + bx.

184 энергетическое разрешение сборки кристалла с ф.э.у. находилось в пределах 3.5–4.2%.

Энергетическое разрешение сборки LaBr₃:Се с Φ ЭУ-184 при разных энергиях γ -квантов представлено в табл. 2.

В исследованной нами области энергий 60 кэВ– 2 МэВ энергетическое разрешение LaBr₃:Се заметно лучше (в 1.3–2.6 раза), чем у NaI:Tl (см. табл. 2).

На рис. 5 и в табл. 3 приведена зависимость положения фотопика спектра, регистрируемого детекторной сборкой LaBr₃:Се с ФЭУ-184, от энергии γ -квантов. В табл. 3 приведены также данные по отклонению от линейности $\theta = = (|N_{\text{эксп}} - N_{\text{pacyl}}|/N_{\text{эксп}}) \cdot 100\%$ для LaBr₃:Се.

Согласно рис. 5 и табл. 3, бромид лантана обладает хорошей линейностью в диапазоне от 60 кэВ до 2 МэВ. Максимальное отклонение от линейности составляет ~2% (см. табл. 3), что значительно меньше, чем отклонение от линейности для многих известных типов сцинтилляторов. Например, для NaI:Tl отклонение от линейности в диапазоне энергий 0.06–2 МэВ составляет более 10% [9].

выводы

Таким образом, показано, что при регистрации сигнала ФЭУ-184 с предпоследнего динода и использовании равномерного делителя напряжения для сборки LaBr₃:Се с ФЭУ-184 получено такое же энергетическое разрешение, как и для LaBr₃:Се с ф.э.у. R-1306. При таком способе подключения ФЭУ-184 обеспечивается линейная зависимость между положением фотопика и энергией γ-квантов в исследованном нами диапазоне

	²⁴¹ Am	¹¹³ Sn	¹³⁷ Cs	⁵⁴ Mn	⁸⁸ Y		⁶⁰ Co	
<i>Е</i> , кэВ	60	392	662	835	898	1836	1173	1333
$N_{ m эксп}$	154	884.8	1502.2	1917.1	2067.6	3973.7	2638.8	2966.6
$N_{\rm pacy}$	156.4	874.1	1504.3	1946.3	2128.7	3893.06	2631.8	2930.8
θ, %	1.56	1.21	0.14	1.52	1.95	2.03	0.27	1.21

Таблица 3. Отклонение θ от линейности детекторной сборки LaBr₃:Се с ΦЭУ-184 в диапазоне энергий 60–2000 кэВ

энергий 60–2000 кэВ, максимальное отклонение от линейности составляет ~2%. Энергетическое разрешение и линейность сохраняются при изменении напряжения на ФЭУ-184 в интервале 570–660 В.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дорин А.Б., Ельцин В.Ф., Скакун Г.Е., Чудаков А.К. // Техническое и методическое обеспечение спектрометрических комплексов СКС, используемых в системах радиационного контроля АЭС. http://www.greenstar.ru
- 2. Июдин А.Ф., Богомолов В.В., Свертилов С.И. и др. // ПТЭ. 2009. № 6. С. 16.
- Shah K., Higgins W., Van Loef E.V. // Final Report, High Resolution Sensor for Nuclear Waste Characterization. Watertown, United States: Radiation Monitoring Devices Inc., 2005.
- 4. Иванов А.Ф., Пугачев А.Н., Савин В.М. и др. // Устройства детектирования на основе сцинтилля-

ционных кристаллов бромида лантана (LaBr₃:Ce) и спектрометрические системы, построенные на их базе. http://www.aspect.dubna.ru

- 5. Быстрицкий В.М., Замятин Н.И., Кадышевский В.Г. и др. // Изучение ядерно-физических методов идентификации скрытых веществ в ОИЯИ. ht-tp://nanonewsnet.ru
- 6. *Van Loef E.V.* Halide Scintillators. Netherlands: Delft University of Technology, 2003.
- Глобус М.Е., Гринев Б.В. Неорганические сцинтилляторы. Новые и традиционные материалы. Харьков: Изд-во Акта, 2000. С. 283.
- Milbrath B.D., Fast J.E., Kouzes R.T. et al. // Report Pacific Northwest National Laboratory. Comparison of LaBr₃:Ce and NaI:Tl scintillators for Radio-Isotope Identification Devices (Revision 0). PNNL-15831. Department of Energy USA, 2006.
- 9. *Guillot-Noel O., van't Spijker J.C., de Haas J.T.M. et al. //* IEEE Tras. Nucl. Sci. 1999. V. 46. P. 1274