_ ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ __ ТЕХНИКА

УДК 621.383

ИЗМЕРЕНИЕ КВАНТОВОГО ВЫХОДА ВНУТРЕННЕГО ФОТОЭФФЕКТА В ПОЛУПРОВОДНИКАХ

© 2013 г. Ю. Д. Арбузов, В. М. Евдокимов, О. В. Шеповалова

ВНИИ электрификации сельского хозяйства Россия, 109456, Москва, 1-й Вешняковский проезд, 2 Поступила в редакцию 27.07.2011 г. После доработки 25.12.2012 г.

Описан метод измерения квантового выхода внутреннего фотоэффекта в различных полупроводниках. Метод основывается на том, что зависимость коэффициента разделения носителей заряда на p-n-переходе от длины волны падающего излучения в предложенной структуре является постоянной в широкой области коротких длин волн. По результатам измерения спектральной чувствительности при двух значениях длин волн, одно из которых выбирается в той области, в которой квантовый выход заведомо равен единице, вычисляется внутренний квантовый выход для второго значения длины волны.

DOI: 10.7868/S0032816213040010

Современные способы измерения электрофизических параметров носителей заряда в полупроводниковых структурах в большинстве своем основываются на положении, что квантовый выход внутреннего фотоэффекта к(λ) равен нулю при длинах волн λ излучения, равных или больше красной границы фотоэффекта λ_g , и единице в области собственного поглощения полупроводника $\lambda < \lambda_g [1-4]$.

Однако в действительности квантовый выход внутреннего фотоэффекта, начиная со значения $\kappa(\lambda_g) = 0$, резко растет до единицы при уменьшении длины волны излучения в области $\lambda_g/2 \le \lambda \le \lambda_g$, а в далекой коротковолновой области $\lambda < \lambda_0 = \lambda_g/2$, где энергия фотона достаточна для образования двух и более электронно-дырочных пар, может значительно (даже в несколько раз) превышать единицу. Следует отметить существенное различие экспериментальных данных по квантовому выходу внутреннего фотоэффекта в германии: согласно [5], например, квантовый выход в германии резко превышает единицу при энергиях фотона >2.2 эВ, а согласно [6], резкий рост начинается при энергиях фотона >3.0 эВ.

Для светодиодных приборов применяется метод определения квантового выхода, основанный на совместном измерении фототока (тока короткого замыкания), выхода фотолюминесценции и внешнего квантового выхода электролюминесценции в полупроводниковых структурах с *p*-*n*переходом [7]. Конструкция экспериментальной системы достаточно громоздка и сложна, а необходимость совместного измерения параметров сразу трех различных фотоэлектрических и электрофизических явлений в полупроводниках приводит к возрастанию ошибки эксперимента.

Наиболее распространенный метод основан на измерении фототока в плоском фотоприемнике, представляющем собой полупроводниковый планарный фотопреобразователь с тонким легированным слоем на всей освещаемой поверхности, плоским *p*-*n*-переходом на малой глубине от поверхности и невыпрямляющим контактом на тыльной стороне [8]. Спектральный фототок (фототок при освещении монохроматическим излучением) измеряется для длин волн в глубине основной полосы поглощения полупроводника, соответствующих условию полного поглощения излучения в легированном слое. Расчеты проводятся при условии, что коэффициент разделения носителей заряда не зависит от длины волны излучения, а встроенное электрическое поле существует только в области p-n-перехода, т.е. легированный слой является однородным.

В этом случае для определения квантового выхода необходимо знание коэффициента разделения носителей заряда, что требует использования теоретической модели переноса носителей заряда в полупроводниковом слое. Модель однородного легированного слоя не соответствует реальным структурам фотопреобразователей, получаемым методами диффузии и содержащим неоднородное распределение легирующих примесей, приводящее к возникновению встроенных электрических полей.

При измерении исходят из условия, что коэффициент разделения носителей заряда не зависит от длины волны излучения, что несправедливо для реальных фотопреобразователей с неоднородными легированными слоями на освещаемой

Рис. 1. Расчетный вариант конструкции структуры (**a**) и ее элемента (**б**). 1 - 6аза p-типа; 2 - металлические контакты на рабочей поверхности; <math>3 - легированные области; 4 - сплошной металлический контакт; <math>5 - элемент структуры; 6 - p - n-переходы; 7 - рабочая поверхность; <math>l - полуширина элемента структуры; w - ширина контакта на рабочей поверхности; <math>N - количество контактов на рабочей поверхности; <math>d - толщина пластины (базы).

поверхности. Не учитывается возможность возникновения на поверхности легированного слоя так называемого "мертвого слоя", в котором не происходит фотогенерации и переноса носителей заряда.

Отсутствие в настоящее время достаточных данных по значениям квантового выхода внутреннего фотоэффекта может привести к большим ошибкам в обычных способах определения диффузионных и рекомбинационных параметров в тонких поверхностных слоях фотодиодных структур и фотопреобразователей и в оценке рекомбинационных параметров освещаемой поверхности.

Целью данной работы являлась разработка метода измерения внутреннего квантового выхода в полупроводниках, основанного на максимально упрощенном и, как следствие, максимально точном измерении спектральной чувствительности фотоприемника.

Для решения этой задачи разработана конструкция фотоприемников — фотоэлектрических структур. Структуры изготавливаются на едином кристалле по типу интегральных схем, включая создание на части освещаемой поверхности полупроводниковой пластины *p*–*n*-переходов с металлическими контактами к легированным областям одинакового размера и равными расстояниями между ними.

В отличие от обычно используемого планарного фотоприемника [8], разработанная структура имеет множественный кусочный легированный слой, представляющий собой чередование легированных областей, размещенных в глубине базового слоя (и/или над базовым слоем), и промежутков между ними.

Расчетные варианты конструкции структуры и ее элемента с диффузионными *p*-*n*-переходами и

сплошным омическим металлическим контактом на тыльной стороне представлены на рис. 1.

Структура представляет собой кремниевую пластину толщиной $d \sim 300$ мкм p- или n-типа проводимости. Со стороны освещаемой поверхности расположены легированные области противоположного типа проводимости с равным расстоянием 2l межу ними и одинаковой ширины w: 0 < w < l. На легированных областях размещают металлические контакты. Ширина элемента структуры 50-400 мкм.

Минимальное значение *w* определяется технологией получения легированных областей: >1 мкм при обычной фотолитографии, 0.3—1 мкм — при ультрафиолетовой литографии, <0.3 мкм — при рентгенолитографии с использованием синхротронного излучения [9]. При *w* > *l* (более 50% рабочей поверхности занято металлическими контактами) необходимый для измерений сигнал существенно слабеет.

С противоположной стороны пластины размещен сплошной металлический контакт толщиной, как правило, 3–5 мкм (определяется технологическим оборудованием). Для обеспечения между ним и пластиной качественного омического контакта формируется легированный p^+ - или соответственно n^+ -слой минимально возможной для данного технологического оборудования толщины и с максимально возможным уровнем легирования (на рис. 1 не показан).

Форма и внешние размеры структуры определяются выбранной технологией изготовления и ограничениями измерительной установки, используемой в соответствии со стандартами Международной электротехнической комиссии (МЭК) [10, 11]. Для получения требуемого результата из-

Рис. 2. Схема поведения носителей заряда в базе структуры.

мерений достаточно, чтобы структура состояла из одного элемента, *N* = 2.

На рис. 1 структура показана без токосъемников. Для расчетной структуры контакты к областям и токосъемник на одном из концов структуры по форме образуют гребенку.

Рис. 2 поясняет принцип работы структуры.

В коротковолновой области длина, на которой поглощаются фотоны, $1/\alpha(\lambda)$, где $\alpha(\lambda)$ – коэффициент поглощения, зависящий от длины волны λ , оказывается много меньше диффузионной длины неосновных носителей заряда в базе *L*: $1/\alpha(\lambda) \ll L$. В результате объемная рекомбинация не влияет на собирание к *p*–*n*-переходу носителей заряда, рожденных коротковолновыми фотонами, а вли-

Рис. 3. Спектральные зависимости коэффициента разделения носителей заряда структуры (1–4) и обычного планарного фотоприемника (5–7): $1 - S = 10^4$; $2 - S = 10^3$; $3 - S = 10^2$; 4 - S = 0 см/с; 5 - для легированного слоя; <math>6 - для базового слоя; 7 - суммар-ный коэффициент разделения.

яние поверхностной рекомбинации оказывается одинаковым для носителей заряда, рожденных фотонами со всеми длинами волн. Это обеспечивает постоянство коэффициента разделения носителей заряда в коротковолновой области.

Уравнение для избыточной концентрации неосновных носителей заряда в базовой области *р*типа (электронов) $\Delta n(x, y)$ при монохроматическом освещении имеет вид [12]

$$\frac{\partial^2 \Delta n}{\partial x^2} + \frac{\partial^2 \Delta n}{\partial y^2} - \frac{\Delta n}{L^2} + \frac{\alpha \Phi}{D} \exp(-\alpha x) = 0,$$

где D – коэффициент диффузии носителей, Φ – плотность потока квантов на поверхность x = 0.

Граничные условия при x = 0, включая p-n-переход, имеют следующий вид:

- в области $0 \le y \le (l - w/2)$

$$\left. D \frac{\partial \Delta n}{\partial x} \right|_{x=0} = S \Delta n \Big|_{x=0},$$

где *S* – скорость поверхностной рекомбинации на освещаемой поверхности;

- в области $l \ge y \ge (l - w/2)$

$$\Delta n \Big|_{x=0} = 0.$$

Аналогично представляется граничное условие на поверхности x = d.

Граничные условия при *y* = 0 и *y* = *l* будут иметь вид:

$$\frac{\partial \Delta n}{\partial y}\Big|_{y=0} = 0; \quad \frac{\partial \Delta n}{\partial y}\Big|_{y=1} = 0.$$

Исследование данной системы соответствует задаче математической физики для неодномерных структур с разрывом граничных условий на поверхности элемента при x = 0. Решение представленной задачи относится к так называемым проблемам Гилберта [13]. Согласно принятым в литературе представлениям о работе реальных структур на основе однородных полупроводников с p-n-переходами, поверхностный изгиб зон, связанный с поверхностными состояниями, учитывается посредством введения и использования понятия эффективной скорости поверхностной рекомбинации, зависящей от рекомбинационных свойств реальной поверхности и поверхностного потенциала.

Для уравнений математической физики с разрывными граничными условиями была разработана программа их решения методом конечных разностей [14]. Программа позволяет находить пространственные распределения концентрации и потоков носителей заряда и определять чувствительность рассматриваемых фотоэлектрических структур.

Спектральная чувствительность представленной структуры $J(\lambda)$ определяется выражением

$$J(\lambda) = (1 - R(\lambda))\kappa(\lambda)Q(\lambda)\frac{q\lambda}{hc},$$

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 4 2013

Рис. 4. Спектральные зависимости коэффициента разделения носителей заряда при разной геометрии структуры: **a** – w = 10 мкм, 2l = 100 мкм; **б** – w = 10 мкм, 2l = 200 мкм; **в** – w = 100 мкм, 2l = 200 мкм; r - w = 100 мкм, 2l = 400 мкм. $l - S = 10^4$; $2 - S = 10^3$; $3 - S = 10^2$; 4 - S = 0 см/с.

Рис. 5. Конструкции двухсторонней двумерной структуры: слева — барьеры и контакты симметрично расположены на двух противоположных сторонах структуры; справа — барьеры и контакты расположены со смещением на двух противоположных сторонах структуры; *1* — база; *2* — металлические контакты на рабочей поверхности; *3* — легированные области; *4* — элемент структуры; *5* — *p*—*n*-переходы; *6* — рабочая поверхность; *7* — пассивирующая пленка.

где $R(\lambda)$ — коэффициент отражения излучения; $Q(\lambda)$ — коэффициент разделения носителей заряда *p*-*n*-переходом [12]; *q* — заряд электрона; *h* постоянная Планка; *c* — скорость света в вакууме.

На рис. 3 приведены рассчитанные для кремниевых структур спектральные зависимости коэффициента разделения носителей заряда $Q(\lambda)$. Результаты представлены для следующих значений скорости поверхностной рекомбинации *S*, см/с: 10^4 , 10^3 , 10^2 , 0 -при w = 4 мкм, d = 300 мкм, l = 50 мкм, $D_n = 25$ см²/с, времени жизни носителей заряда $\tau_n = 10^{-5}$ с и диффузионной длине неосновных носителей заряда в базовой области *р*-типа (электронов) L = 158 мкм. В расчетах для $\alpha(\lambda)$ использованы данные работы [3].

Важнейшей особенностью структуры является то, что график коэффициента разделения фактически имеет П-образную форму в широкой спектральной области практически при любых значениях *S*. Для сравнения на рис. 3 приведены зависимости, характеризующие обычно используемый планарный фотоприемник, содержащий поверхностный легированный слой толщиной 1 мкм со скоростью поверхностной рекомбинации в нем 10^6 см/с, $D_p = 1.56$ см²/с, $\tau_p = 5 \cdot 10^{-8}$ с и базу.

Согласно рис. 3, традиционный фотоприемник (кривые 5–7), в отличие от описываемой структуры (кривые 1–4), обладает, как и указывалось выше, резко выраженной зависимостью фоточувствительности от длины волны. Различие характеристик обусловлено заменой в структуре сплошного на всей поверхности пластины легированного слоя на отдельные области в пластине под контактами и конструктивными особенностями областей. Данное свойство разработанной структуры является физической основой для создания высокоэффективного метода измерения квантового выхода.

Основное положение метода состоит в следующем. Для длин волн $\lambda < \lambda_s$, где $\lambda_s -$ характеристическая длина волны структуры ($\lambda_s > \lambda_0$, где $\lambda_0 -$ длина волны, при которой квантовый выход априорно равен единице ($\kappa(\lambda_0) = 1$)), коэффициент разделения носителей заряда $Q(\lambda)$ является практически неизменным. Это позволяет установить следующую связь между спектральной чувствительностью $J(\lambda)$ в данной области длин волн и спектральной чувствительностью $J(\lambda_0)$ для длины волны λ_0 :

$$\frac{J(\lambda)}{\kappa(\lambda)\lambda(1-R(\lambda))} = \frac{J(\lambda_0)}{\lambda_0(1-R(\lambda_0))}.$$

Эта зависимость дает возможность экспериментально определить квантовый выход посредством измерения спектральной чувствительности и коэффициента отражения излучения в структуре. Согласно данным, представленным на рис. 3, $\lambda_s \approx 0.8-0.9$ мкм, что соответствует типичным для широкозонных полупроводников типам кремния или арсенида галлия. Полученные данные зависят от конструктивных диффузионных и рекомбинационных параметров структуры.

При изменении размеров или расстояния между контактами коэффициент разделения носителей заряда изменяется с сохранением П-образной формы зависимости. На рис. 4 приведены расчетные зависимости коэффициента разделения от длины волны для разных конструктивных размеров структуры, представленной на рис. 1.

Для повышения чувствительности структуры за счет снижения поверхностной рекомбинации полупроводника и для контроля разброса результатов измерений квантового выхода внутреннего фотоэффекта дополнительно осуществляется механическая или химическая пассивация освещаемой поверхности полупроводниковой пластины, свободной от *pn*-переходов и контактов к ним.

Структура может быть двумерного и трехмерного исполнения, излучение может направляться на несколько поверхностей, что расширяет возможности исследований при использовании различных материалов. В случае двумерного исполнения структуры излучение поступает на одну или две противоположные (параллельные) поверхности; для расчета, описания конструкции и функционирования структуры достаточно двух координат. При трехмерном исполнении излучение может поступать на несколько различно расположенных в пространстве поверхностей структуры, структура описывается в трех координатах. На рис. 5 приведены варианты конструкций двухсторонней двумерной структуры.

Таким образом, метод включает в себя:

1) изготовление структуры требуемой конструкции;

2) определение спектральной чувствительности фотоэлектрической структуры с *p*–*n*-переходами на освещаемой поверхности полупроводниковой пластины;

3) определение квантового выхода излучения с длиной волны λ в спектральной области $\lambda < \lambda_s$ с неизменным значением коэффициента разделения носителей заряда в структуре по формуле

$$\kappa(\lambda) = \frac{J(\lambda)}{J(\lambda_0)} \frac{\lambda_0}{\lambda} \frac{1 - R(\lambda_0)}{1 - R(\lambda)}.$$

Результат измерения квантового выхода в области длин волн $\lambda < \lambda_s$ является, согласно расчетам, с высокой точностью пригодным для систем с различными значениями фотоэлектрических и рекомбинационных параметров объема и поверхности полупроводника в широких пределах конструктивных параметров систем.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Пикус Г.Е.* Основы теории полупроводниковых приборов. М.: Наука, 1965.
- 2. Васильев А.М., Ландсман А.П. Полупроводниковые фотопреобразователи. М.: Советское радио, 1971.
- Преобразование солнечной энергии. Вопросы физики твердого тела / Под ред. Б. Серафина. М.: Энергоиздат, 1982.
- 4. *Зи С.* Физика полупроводниковых приборов: в 2-х книгах. Кн. 2. М.: Мир, 1984.
- 5. *Панков Ж*. Оптические процессы в полупроводниках. М.: Мир, 1973.
- Рывкин С.М. Фотоэлектрические явления в полупроводниках. М.: Физматгиз, 1963.
- 7. *Россин В.В., Сидоров В.Г.* А.с. № 1005605 СССР. МПК Н01 L21/66 // БИ. 1982. № 38.
- 8. Вавилов В.С., Брицын К.И. // ЖЭТФ. 1958. Т. 34. Вып. 2. С. 521.
- 9. *Тернов И.М., Михайлин В.В., Халилов В.Р.* Синхротронное излучение и его применение. М.: Изд-во МГУ, 1980.
- 10. IEC 60904-1:2006. Photovoltaic devices. Part 1: Measurement of photovoltaic current-voltage characteristics.
- 11. IEC 60904-3:1989. Photovoltaic devices. Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data.
- 12. Арбузов Ю.Д., Евдокимов В.М. Основы фотоэлектричества. М.: ГНУ ВИЭСХ, 2007.
- Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1972.
- 14. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.