_____ ЛАБОРАТОРНАЯ __ ТЕХНИКА

УДК 537.312.9

ИЗМЕРЕНИЕ ЛОКАЛЬНОГО УДЕЛЬНОГО СОПРОТИВЛЕНИЯ МЕТОДАМИ НАНОИНДЕНТИРОВАНИЯ И СИЛОВОЙ СПЕКТРОСКОПИИ

© 2013 г. А. И. Сошников, К. С. Кравчук, И. И. Маслеников*, Д. В. Овчинников*, В. Н. Решетов**

Технологический институт сверхтвердых и новых углеродных материалов Россия, 142190, Троицк Московской обл., ул. Центральная, 7А

*Московский физико-технический институт Россия, 141700, Долгопрудный Московской обл., Институтский пер., 9

**Национальный исследовательский ядерный университет "МИФИ" Россия, 115409, Москва, Каширское ш., 31

Поступила в редакцию 01.12.2011 г. После доработки 28.02.2012 г.

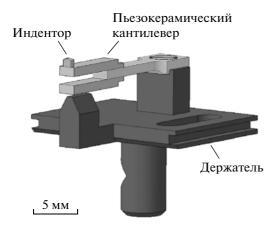
Описаны методы измерения удельного сопротивления материалов при упругом и упругопластическом взаимодействии токопроводящего индентора и исследуемого образца. Предложены аналитические модели, описывающие зависимости контактного омического сопротивления от силы прижима и контактной жесткости. Экспериментальная проверка моделей выполнена на сканирующем нанотвердомере "НаноСкан" с использованием инденторов из легированного бором монокристалла алмаза.

DOI: 10.7868/S0032816213020146

ВВЕДЕНИЕ

Развитие нанотехнологий и переход к широкому использованию наноструктурированных материалов обусловливают необходимость разработки методов измерения механических и электрических характеристик объектов размером десятки и сотни нанометров. Исследование свойств материалов на нанометровом масштабе осуществляется в основном приборами двух типов: сканирующими зондовыми микроскопами и нанотвердомерами. В последнее время активно разрабатываются устройства, объединившие в себе методы наноиндентирования и сканирующей зондовой микроскопии, - сканирующие нанотвердомеры. Примером такой измерительной системы является сканирующий нанотвердомер "НаноСкан" [1]. Прибор работает как в режиме зондового микроскопа, измеряя рельеф поверхности, карты упругости и тока растекания, так и в режиме нанотвердомера, измеряя значения твердости и модуля Юнга методом измерительного динамического индентирования [2] в соответствии с требованиями международного стандарта ISO 14577 [3].

В данной работе описаны построенные аналитические модели и приведены результаты экспериментального исследования следующих процессов:


 протекания тока через область контакта индентора с поверхностью при изменении силы прижима индентора к поверхности в условиях пластической деформации токопроводящего материала;

- протекания тока в случае упругого взаимодействия индентора с поверхностью материала при нагружении;
- изменения силы тока и резонансной частоты колебаний зонда в зависимости от силы прижима индентора к поверхности в режиме измерения "кривых подвода" (метод силовой спектроскопии).

Все три предложенные модели указанных процессов позволяют определять локальное удельное сопротивление материала в области контакта. Исследование взаимосвязи измеряемых в процессе нагружения величин позволило получить ряд аналитических выражений, связывающих механические и электрические характеристики тестируемого материала. Получены функциональные зависимости, инвариантные по отношению к глубине внедрения индентора.

ЭКСПЕРИМЕНТАЛЬНАЯ БАЗА

Экспериментальные исследования проводились с помощью сканирующего нанотвердомера "НаноСкан", оснащенного модулем для подачи напряжения между образцом и индентором и измерения тока, протекающего в области контакта. Такой электрический модуль интегрирован в серийно выпускаемые модификации приборов семейства "На-

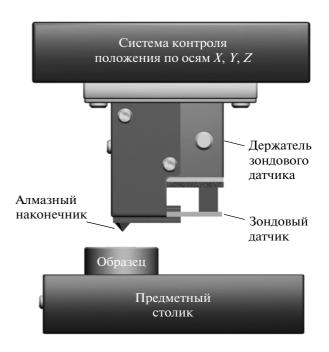


Рис. 1. Пьезокерамический кантилевер с установленным на нем индентором.

ноСкан" (производитель ФГБНУ ТИСНУМ, Троицк) и измерительную головку для наноиндентирования в зондовой нанолаборатории ИНТЕГРА (производитель ЗАО "НТ-МДТ", Зеленоград).

Ключевым узлом прибора является пьезокерамический кантилевер камертонной конструкции (рис. 1). На кантилевере методом пайки монтировался токопроводящий индентор в форме трехгранной пирамиды Берковича. Индентор изготавливался из монокристаллического полупроводникового алмаза, объемно-легированного бором, выращенного методом температурного градиента [4]. Концентрация бора до $10^{20}~{\rm cm}^{-3}$. Благодаря высокоточной механической огранке острие индентора имеет радиус закругления ~50 нм. Сканирование поверхности осуществляется в режиме резонансных колебаний зонда-кантилевера.

Для измерения электрических свойств образца между ним и индентором прикладывается постоянное напряжение в диапазоне ±10 В с шагом $5 \, \text{мB}$ и измеряется сила тока в диапазоне $\pm 10 \, \text{мкA}$ с разрешением 0.1 нА. В режиме сканирования пьезорезонансный зонд перемещается над исследуемой поверхностью с помощью системы (Х, У, Z)-позиционирования (рис. 2). Прибор позволяет одновременно получать изображения рельефа поверхности и карту тока растекания (рис. 3). При индентировании сила прижима измеряется путем регистрации упругого изгиба кантилевера, а глубина внедрения острия определяется исходя из данных о смещении образца и перемещении индентора. Для измерения смещений и изгиба используются независимые емкостные и оптические датчики. Предусмотрена возможность измевольт-амперных характеристик заданной силе прижима зонда к поверхности.

Рис. 2. Система трехкоординатного (X, Y, Z)-позиционирования, измерения силы и глубины внедрения.

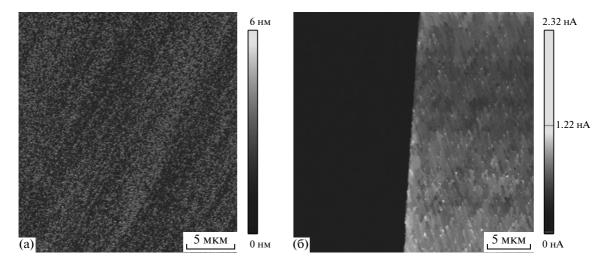
АНАЛИТИЧЕСКИЕ МОДЕЛИ

Измерение тока в условиях пластической деформации

Рассмотрим протекание тока при погружении проводящей иглы в поверхность пластичного токопроводящего материала. Сила нагружения при этом возрастает линейно, напряжение между индентором и образцом поддерживается постоянным.

Согласно определению микротвердости, площадь отпечатка S, возникающего при вдавливании индентора, задается выражением:

$$S = F/H \tag{1}$$


где F — сила прижима, H — твердость материала.

Известно, что при соприкосновении двух проводников сопротивление R области контакта складывается из двух составляющих: $R = R_c + R_f$, где R_c — сопротивление стягивания, зависящее от объемных свойств материала; R_f — контактное сопротивление, обусловленное свойствами поверхностных слоев. Если форму области контакта между иглой и поверхностью рассматривать как круг, то, согласно [6, 7], величина сопротивления стягивания области контакта будет равна

$$R_c = \frac{\rho_1 + \rho_2}{2a},\tag{2}$$

где ρ_1 — удельное сопротивление материала индентора; ρ_2 — удельное сопротивление материала образца; a — радиус контактной площадки.

Данное выражение справедливо для области контакта круглой формы, в случае использования индентора треугольной формы в формулу (2) надо

Рис. 3. Изображение поверхности легированного бором алмаза вблизи границы областей с концентрациями бора $N \sim 1 \cdot 10^{11}$ и $5 \cdot 10^{17}$ см⁻³: **a** – рельеф поверхности, **б** – карта тока растекания при напряжении смещения 5 В.

ввести поправочный коэффициент, величина которого составляет ~0.75 [6]. Пренебрегая отличием формы отпечатка от круга и принимая $S = \pi a^2$, получим:

$$R_c = \frac{\rho_1 + \rho_2}{2} \sqrt{\pi/S}.\tag{3}$$

Подставляя (1) в (3), получаем сопротивление стягивания при индентировании:

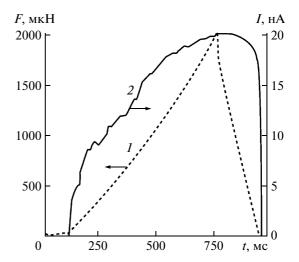
$$R_c = \frac{\rho_1 + \rho_2}{2} \sqrt{\frac{\pi H}{F}}.$$
 (4)

Переходя к величинам, измеряемым прибором "НаноСкан", получим:

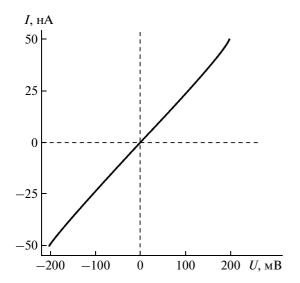
$$F\frac{U^2}{I^2} = \pi H \left(\frac{\rho_1 + \rho_2}{2}\right)^2,\tag{5}$$

где U- падение напряжения, а I- ток в области контакта.

Выражение (5) означает, что $I^2 \sim F$ для индентора любой формы. Впервые этот факт был установлен Герцем [8] при исследовании зависимости сопротивления электрических контактов от силы их сжатия. Таким образом, используя нанотвердомер с токопроводящим индентором и измеряя зависимость силы прижима от протекающего тока, можно определить электрические свойства исследуемого материала. Необходимое для определения удельного сопротивления значение твердости может быть измерено тем же индентором в рамках единой измерительной процедуры методом измерительного динамического индентирования [2].


В свою очередь, известно [2], что для индентора в форме пирамиды Берковича и материала, не образующего существенных "навалов" по периметру отпечатка, площадь контакта связана с глубиной погружения индентора соотношением $S=24.5h^2$, следовательно, выражение (5) принимает вид:

$$h\frac{U}{I} = \sqrt{\frac{\pi}{24.5}} \left(\frac{\rho_1 + \rho_2}{2}\right),\tag{6}$$

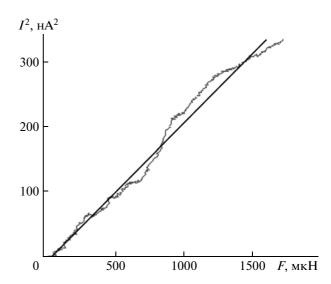

где h — глубина индентирования

В этом случае для определения удельного сопротивления по токовой кривой нагружения не требуются данные о твердости исследуемого материала. Естественно, что для корректного измерения удельного сопротивления материла необходимо, чтобы удельное сопротивление индентора было намного меньше удельного сопротивления материала. В противном случае измеряется среднее удельное сопротивление, согласно формуле (5).

Проверка данной модели проведена на ряде материалов с чистой неокисленной поверхностью. На рис. 4 представлены зависимости силы прижима и протекающего тока от времени для

Рис. 4. Типичная диаграмма нагружения для образца из золота — зависимость изменения силы прижима (I) и тока (2) от времени при индентировании.

Рис. 5. Вольт-амперная характеристика контакта индентор—золото при постоянной силе прижима 0.8 мН.


образца из золота, измеренные на сканирующем нанотвердомере "НаноСкан". На рис. 5 приведена вольт-амперная характеристика, подтверждающая омический характер электрического контакта легированного бором алмаза и золота.

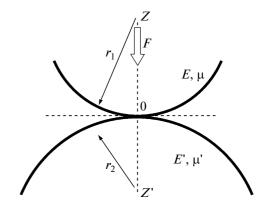
Построив зависимость квадрата тока от силы, прикладываемой к индентору, получаем линейную зависимость (рис. 6), подтверждающую верность соотношения (5).

Эксперимент на золоте позволил определить удельное сопротивление алмаза, из которого изготовлен индентор, — $\rho_1 = 0.1 \pm 0.01~\text{Ом} \cdot \text{м}$. Полученное значение существенно больше удельного сопротивления золота $\rho_2 = 23 \pm 2~\text{нОм} \cdot \text{м}$. Таким образом, использование алмазных полупроводниковых инденторов затруднительно при измерении сопротивления хорошо проводящих металлов, однако, такой эксперимент позволяет измерить характеристики самих инденторов.

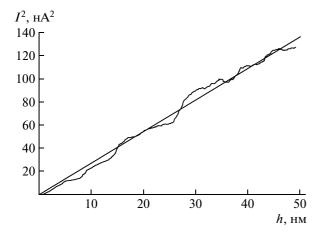
Измерение тока при упругом взаимодействии

Рассмотренный выше режим измерения удельного сопротивления путем индентирования применим для пластичных материалов. Однако есть круг задач, в которых невозможно или нежелательно достижение пластической деформации исследуемого материала. Наиболее ярким примером такой задачи является исследование легированного бором полупроводникового алмаза (см. рис. 3). В этом случае взаимодействие острия индентора и исследуемой поверхности носит упругий характер, и хорошим приближением для анализа контактных явлений может быть модель Герца [8], описывающая контакт двух упругих шаров с известным модулем Юнга *E*, коэффициентом Пуас-

Рис. 6. Зависимость квадрата значения силы тока от силы прижима.


сона μ , радиусами кривизны r_1 , r_2 . Модель связывает взаимное сближение центров сжимаемых шаров h = z - z' и величину контактной площади с приложенной к ним силой F (рис. 7).

В нашем случае применение модели Герца позволяет получить зависимость глубины упругого перемещения индентора и площади контакта от силы прижима [2]. Согласно [5], радиус пятна контакта и сила прижима связаны выражением


$$a = \sqrt[3]{F\frac{1}{K}\frac{r_1r_2}{r_1 + r_2}}.$$

Расстояние между центрами шаров h, измеряемое в процессе эксперимента, определяется выражением

$$h = \sqrt[3]{F^2 \frac{1}{K^2} \frac{r_1 r_2}{r_1 + r_2}},$$

Рис. 7. Модель Герца для контакта двух упругих шаров.

Рис. 8. Зависимость квадрата силы тока от смещения индентора для образца из легированного бором алмаза. Напряжение 5 В, максимальная сила нагружения 0.5 мН.

где K — эффективный модуль Юнга, вычисляемый по формуле $\frac{1}{K} = \frac{3}{4} \left(\frac{1 - \mu_2^2}{E_2} + \frac{1 - \mu_1^2}{E_1} \right)$.

Введение приведенного радиуса кривизны r_n =

 $=\frac{r_1r_2}{r_1+r_2}$ существенно упрощает вид выражений

для контактного радиуса и величины сближения. Использование формулы (2) позволяет получить следующие выражения для измеряемых в процессе нагружения силы и тока:

$$F = Kh^{3/2}r_n^{1/2}; (7)$$

$$I = \frac{2U}{\rho_1 + \rho_2} \sqrt[3]{Fr_n/K} = \frac{2U}{\rho_1 + \rho_2} h^{1/2} r_n^{1/2}.$$
 (8)

Поделив выражение (7) на (8), можно исключить величину r_n , неизвестную в реальном эксперименте, и получить выражение, связывающее только измеряемые величины:

$$\frac{FU}{hI} = \frac{\rho_1 + \rho_2}{2}K. \tag{9}$$

Следовательно, отношение произведения силы на контактное сопротивление к глубине внедрения не зависит от радиусов соприкасающихся поверхностей (т.е. инвариантно) и пропорционально произведению упругих и электрических характеристик материалов.

Выражение (9) в первую очередь интересно тем, что удалось исключить из рассмотрения радиус кривизны острия индентора и локальную кривизну поверхности в точке контакта, обусловленную ее шероховатостью. Эти параметры являются плохо контролируемыми при контактном измерении электрического сопротивления. Переход от одноточечных измерений при заданной силе прижима к анализу функциональной зависимости величины тока от силы прижима и рассто-

яния сближения упруго контактирующих тел позволил связать измеряемые величины с физическими характеристиками исследуемого материала. Здесь, как и в случае упругопластической деформации, необходимая для определения удельного сопротивления величина приведенного модуля Юнга может быть измерена согласно ISO 14577 в ходе единого цикла измерительного динамического индентирования.

Для большинства материалов участок упругого взаимодействия в процессе индентирования довольно короткий. Предложенный метод был применен для исследования полупроводникового алмаза, для которого характерен достаточно протяженный участок упругого взаимодействия. В этом случае, как следует из выражений (7) и (9), $I^2 \sim h$, что подтверждается приведенной на рис. 8 экспериментальной зависимостью.

Из выражения (8), зная величину приложенного напряжения, жесткость зонда и глубину смещения индентора, находим значение удельного сопротивления алмаза, равное $10\pm1~{\rm OM\cdot M}$, что в пределах погрешности соответствует значению, полученному четырехконтактным методом. В данном случае мы также пренебрегаем отличием формы контактирующих тел от сферической, что оправдано малым диапазоном прикладываемых нагрузок и малым контактным смещением, соответственно острие пирамиды Берковича полагается сферическим.

Измерение тока в режиме силовой спектроскопии (метод измерения кривых подвода зонда)

Измерение "кривых подвода" - это реализованная на приборах "НаноСкан" оригинальная методика, относящаяся к методам силовой спектроскопии и применяемая для измерения модуля упругости Юнга сверхтвердых материалов и тонких покрытий [8]. Ее суть состоит в следующем: колеблющийся на резонансной частоте пьезорезонансный кантилевер подводится к поверхности материала, при этом измеряется изменение его резонансной частоты в зависимости от перемещения или силы прижима острия индентора к поверхности. По известным значениям изгибной жесткости зонда, радиуса кривизны острия и величине взаимного сближения индентора и образца рассчитывается модуль упругости исследуемого материала.

Режим колебаний кантилевера в данном методе устанавливается таким образом, чтобы амплитуда осцилляций индентора не превышала величину упругого прогиба поверхности. В этом случае контакт острия с поверхностью носит неотрывный характер [9]. При этом для нахождения контактной жесткости можно просто продифференцировать по h выражение для силы (7).

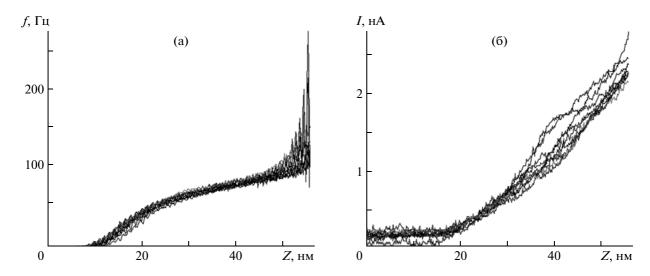


Рис. 9. Типичные зависимости сдвига резонансной частоты зонда (а) и тока (б) от смещения зонда для кремния.

Изменение частоты малых колебаний зонда на начальном участке кривой подвода, когда кончик острия можно считать сферическим, а деформацию — упругой, следуя модели Герца, задается формулой

$$\Delta f = \frac{3}{4} \frac{f_0 \sqrt{r_n}}{k_0} K \sqrt{h},\tag{10}$$

где f_0 — собственная частота колебаний зонда, r_n — приведенный радиус кривизны области контакта, k_0 — изгибная жесткость зонда.

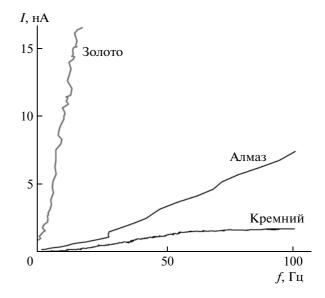
Связь между радиусом области контакта и расстоянием сближения задается простым соотношением

$$a^2 = hr_n. (11)$$

Подставив в выражение (2) для сопротивления растекания выражение (11), получаем:

$$\frac{U}{I} = \frac{\rho_1 + \rho_2}{2\sqrt{hr_n}}. (12)$$

Поделив (10) на (12), получим новый инвариант для кривых подвода:


$$\frac{U}{I}\Delta f = \frac{3f_0}{4k_0}K\frac{\rho_1 + \rho_2}{2}.$$
 (13)

Таким образом, нам удалось исключить из рассмотрения не только радиус кривизны острия зонда, но и глубину внедрения индентора в поверхность h. Величины f_0 и k_0 относятся к стабильным характеристикам зонда и измеренные однажды могут в дальнейшем считаться неизменными во время экспериментов по исследованию электрических свойств материалов. Присутствующее в правой части приведенное значение модуля Юнга исследуемого материала, так же как и ранее, может быть определено на основе анализа кривой подвода [9] или методом измерительного динамического индентирования [2].

Данная модель была проверена на широком круге материалов, в том числе в условиях отклонения характера контакта индентора с материалом от омического. На рис. 9 приведены типичные зависимости тока и смещения резонансной частоты зонда для кривых подвода на кремнии.

Используя данные, представленные на рис. 9, и построив зависимость $I \sim \Delta f$, получим кривую с линейным участком, для которого справедливо выражение (13). На рис. 10 приведены соответствующие зависимости тока от сдвига частоты для золота, кремния и алмаза.

Оцененная по экспериментальным данным величина удельного электрического сопротивления

Рис. 10. Зависимости силы тока от сдвига частоты для различных материалов. Напряжение смещения для золота 0.1~B, для кремния и алмаза -5~B.

легированного бором алмаза составила $10\pm 1~{\rm OM}\cdot{\rm M}$. В данном методе необходимо соблюдение двух условий: 1) основной вклад в сумму сопротивлений стягивания должен вносить образец и 2) контакт индентора с поверхностью материала должен быть омическим. В предложенном методе для большинства инденторов и материалов область контакта хорошо приближается сферической формой.

ВЫВОДЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Проведенное аналитическое рассмотрение трех методов измерения локального удельного сопротивления в процессе контролируемого по силе и глубине внедрения токопроводящего индентора в поверхность материала показало возможность взаимной увязки таких физических величин, как твердость, модуль Юнга и удельное сопротивление материала, в единые функциональные зависимости, не связанные с радиусом кривизны острия индентора и глубиной его погружения в исследуемый материал. Экспериментальная проверка полученных зависимостей подтвердила правильность используемых физических моделей и позволила осуществить измерение локальных электрических свойств материалов с пространственным разрешением ~100 нм.

Следует обратить внимание на тот факт, что для данных моделей есть возможность их верификации. Наличие линейных участков на исследуемых зависимостях указывает на соответствие модели условиям эксперимента и определяет область нагрузок, при которых применимы обсуждаемые методы измерения локального удельного сопротивления. Необходимым условием для реализации приведенных методик является наличие омического контакта между острием зонда и материалом в процессе наноиндентирования и при измерении кривых подвода.

В данной статье намеренно не приводится расчет возможных погрешностей измерения величины локального удельного сопротивления нано-

структурированных материалов, так как целью работы является лишь демонстрация возможностей предлагаемых методик. С учетом разброса измеряемых значений тока и типичной приборной погрешности при измерении механических величин в пределах 10% [1] погрешность измерений локального сопротивления будет не менее 10%.

Авторы выражают искреннюю благодарность К.В. Гоголинскому и А.С. Усейнову, принимавшим активное участие в обсуждении полученных результатов.

Работа проводилась при финансовой поддержке Министерства образования и науки Российской Федерации ГК № 16.552.11.7014, ГК № 16.523.12.3003; ФЦП "Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008—2011 гг." ГК № 120—179 от 01 июня 2011 г.; ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009—2013 гг., ГК № 14.740.11.0948.

СПИСОК ЛИТЕРАТУРЫ

- 1. Усеинов С., Соловьев В., Гоголинский К. и др. // Наноиндустрия. 2010. Т. 20. Вып. 2. С. 30.
- 2. Oliver W., Pharr G. // J. Mater. Res. 2004. V. 19. P. 3.
- 3. Metallic materials Instrumented indentation test for hardness and materials parameters / Международный стандарт измерений ISO 14577, 2002.
- 4. Blank V., Kuznetsov M., Nosukhin S. et al. // Diamond and related materials. 2007. V. 16. P. 800.
- Ландау Л.Д., Лившиц Е.М. Теоретическая физика. Т. VIII. Электродинамика сплошных сред. М.: Наука, 1982.
- 6. *Сафонов А., Сафонов Л.* // Технологии в электронной промышленности. 2008. Т. 4. С. 58.
- 7. *Мышкин Н.К., Кончиц В.В., Браунович М.* Электрические контакты Долгопрудный: Издательский Дом "Интеллект", 2008.
- 8. *Hertz H.R.* / Journal fur die reine und angewandte Mathematik. 1882. № 92. P. 156.
- 9. *Усеинов А.С.* // ПТЭ. 2004. № 1. С. 134. (*Useiniv A.S.* // IET. 2004. V. 47. № 1. P. 119.)