= ТЕХНИКА ЯДЕРНОГО ЭКСПЕРИМЕНТА

УДК 621.384.633.5+621.384.83

УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ПОЛНЫХ СЕЧЕНИЙ ЯДЕРНЫХ РЕАКЦИЙ

© 2012 г. Ю. Г. Соболев, М. П. Иванов, Ю. Э. Пенионжкевич

Объединенный институт ядерных исследований Россия, 141980, Дубна Московской обл., ул. Жолио-Кюри, 6 E-mail: sobolev@nrmail.jinr.ru Поступила в редакцию 20.12.2011 г.

Описаны экспериментальная методика и установка для проведения измерений энергетической зависимости полных сечений ядерных реакций с пучками стабильных и радиоактивных ядер при кинетических энергиях вблизи кулоновского барьера. Использован модифицированный метод трансмиссии, дополненный регистрацией γ-квантов в 4π-геометрии и идентификацией частиц полупроводниковым детектором по форме импульса.

ВВЕДЕНИЕ

Известно, что экспериментальные исследования реакций с экзотическими ядрами обусловили развитие экспериментальных методик. В первую очередь это связано с тем, что наиболее интересные для исследования пучки радиоактивных ядер имеют низкую интенсивность, неудовлетворительные параметры, такие как эмиттанс, элементная чистота пучка и др., чтобы соответствовать требованиям традиционных методик, разработанных для пучков стабильных ядер. В полной мере это относится и к проблеме измерения полных сечений реакций, где особенно критичны такие параметры пучка, как его чистота и интенсивность.

Описываемая ниже экспериментальная установка, согласно классификации, предложенной в [1], связана с группой методик, адаптированных к условиям работы с пучками радиоактивных ядер, получаемых методом "фрагмент-сепаратора" [2]. В ней используется модифицированный для экспериментов в области низких энергий с различными мишенями известный метод трансмиссии [3], который в измененном виде успешно применяется в современных исследованиях [4, 5].

МЕТОД ТРАНСМИССИИ

Метод трансмиссии (или метод пропускания, согласно обзору [6]) основан на измерении величины относительного убывания частиц пучка изза вступления их в реакцию с ядрами мишени. Другими словами, последовательное применение метода подразумевает корректное измерение количества частиц пучка до (I_0) и после (I) прохождения мишени толщиной N (удельное число ядер) с последующим определением сечения реакции σ_R по формуле

$$I = I_0 \exp(-N\sigma_R). \tag{1}$$

Для упрощения экспоненциального выражения (1) допустим, что $N\sigma_R \ll 1$. Поскольку в данной работе рассматривается случай измерения сечения на тонких мишенях, то это допущение справедливо, и выражение (1) приводится к линейному виду (2):

$$N\sigma_R = (I_0 - I)/I_0.$$
 (2)

Преимущество простоты идеи метода умаляется сложностью реализации корректного измерения величины І из-за трудности разделения событий реакции и фоновых процессов, например: событий неупругого рассеяния на угол θ , с одной стороны, и упругого рассеяния на угол θ , а также событий пролета частицы под углом в из-за неудовлетворительных параметров пучка, с другой. В экспериментах по измерению σ_R на Si-мишени с пучками различных ионов высоких энергий указанные трудности относительно успешно решались методом многослойного телескопа [3–5]. Возможно распространение данного метода с Siмишеней на германиевые и алмазные монокристаллические детекторы-мишени. Недостаток методики проявляется при снижении энергии пучка к области кулоновского барьера. Ограничения трансмиссионной методики многослойного телескопа, связанные с выделением каналов реакции, можно компенсировать с помощью методики у-спектрометра полной геометрии.

МЕТОД ГАММА-СПЕКТРОМЕТРА ПОЛНОЙ ГЕОМЕТРИИ

Идея использовать в качестве метки события "prompt" γ-излучение, сопровождающее подав-

Рис. 1. а – схематическое изображение сборки CsI(Tl)-детекторов спектрометра. AK – активный коллиматор, M – мишень; **б** – двумерный (*E*, *T*)-спектр идентификации заряженных частиц *E*-детектором [10].

ляющее большинство событий ядерной реакции, не нова [7]. Трансмиссионная методика многослойного телескопа, дополненная у-спектрометром, описана, например, в работе [8]. Телескоп из четырех кремниевых *dE*-*E*-детекторов, окруженный четырнадцатью NaI(Tl)-сцинтилляционными у-детекторами, обеспечивал измерения полных сечений реакции по методу [9]. Были измерены усредненные по энергии полные сечения реакций для ряда нейтронно-избыточных изотопов частиц вторичного пучка. Поскольку все детекторы телескопа — как тонкие dE-детекторы, так и Е-детектор полной остановки частиц пучка — находились внутри у-спектрометра, то он с одинаковой эффективностью регистрировал у-излучение от них. В итоге в работе были получены только "средневзвешенные по энергии полные сечения реакции".

Очевидно, для измерения $\sigma_R(E)$ с достаточной точностью необходимо размещение всех (за исключением тонкой мишени) элементов телескопа как потенциальных источников фона вне чувствительной области спектрометра. В этих условиях задачи, решаемые с помощью детекторов телескопа, сводятся к подготовке события к измерению, а именно: идентификации частиц пучка, определению (при необходимости снижению) их энергии, транспортировке в заданную область мишени (метод "активного коллиматора" [1]). События, подготовленные таким образом, принимаются установкой для накопления в ансамбль I_0 , который анализируется посредством *E*-детектора и разбивается на два подмножества.

Первое подмножество событий (когда *E*-детектор не зарегистрировал частицу) малочисленно. Каждый элемент этого подмножества представляет собой событие взаимодействия частицы пучка с мишенью, такое как упругое или неупругое рассеяние частицы вне телесного угла ΩE -детектора (рис. 1а), либо ядерную реакцию, не сопровождаемую эмиссией заряженной частицы в телесный угол Ω. В данном подмножестве решающий анализ проводится с помощью у-спектрометра. Подчеркнем, что здесь Е-детектор не является источником фона. Второе, более многочисленное подмножество из ансамбля І₀ анализируется средствами модифицированной трансмиссионной телескопной методики, и анализ средствами у-спектрометра несет вспомогательный характер. Проблема идентификации низкоэнергетических заряженных частиц, прошедших через мишень, решена путем реализации методики идентификации заряженных частиц по форме импульса [10, 11] одним Е-детектором, что иллюстрирует двумерный спектр на рис. 1б. По оси Хотложена полная энергия частицы в Е-детекторе, а по оси Уразница времен пересечения порогового уровня передними фронтами быстрой и медленной токовых компонент импульса Е-детектора. Идентификация частиц одним Si-детектором основана на том экспериментальном факте, что благодаря различной удельной ионизации регистрируемых частиц, а также значительной разнице скоростей дрейфа носителей заряда в материале детектора каждый изотоп в определенном энергетическом диапазоне имеет яркую индивидуальную форму области распределения в ($T \times E$)-представлении. Эта область не пересекается с областями других частиц и зависит только от свойств детектора и соответствующей электроники. Идентификация

Рис. 2. Энергетический спектр детектора спектрометра от γ -источников ⁶⁰Со и ¹³⁷Сs, находящихся в позиции мишени, (а) и расчетная функция энергетической зависимости $P(E_{\gamma})$ (б).

заряженных частиц по форме импульса в установке реализована с помощью таких блоков КАМАК, как дискриминатор формы импульса $\mathcal{Д}\mathcal{P}\mathcal{H}$ [11] и преобразователь время—амплитуда *ВАП*. Предварительное измерение областей распределений частиц *p*, *d*, *t*, ³He, ⁴He было выполнено с продуктами реакций, полученными на ускорителе университета г. Ювяскюля, Финляндия [10]. Там же была измерена зависимость функций распределения этих частиц от угла θ их влета в *E*-детектор с целью определения допустимых границ для телесного угла Ω , образуемого *E*-детектором. В качестве *E*-детектора в работе применялся *p*-*i*-*n*-детектор (площадью *S* = 20 × 20 мм², толщиной *H* = = 1400 мкм).

Таким образом, вышеописанная логика эксперимента и инструментарий позволяют объединить трансмиссионный метод многослойного телескопа и γ-спектрометра полной геометрии так, чтобы компенсировать недостатки друг друга.

Гамма-спектрометр собран из шести сцинтилляционных CsI(Tl)-детекторов (см. рис. 1а). Каждый детектор состоит из сцинтиллятора в виде прямой призмы высотой H = 14 см, в основании которой лежит правильный шестиугольник с радиусом описанной окружности R = 10 см, и фотоумножителя ФЭУ-110, оптически соединенного с торцом призмы CsI(Tl). Поверхность каждого сцинтиллятора отполирована и покрыта светоотражающей пленкой Туvek® [DuPont^{тм}, Wilmington, DE] толщиной H = 150 мкм в два слоя. Сцинтиллятор помещен в герметичный корпус из светозащитного пластика толщиной 1 мм.

Сборка из шести CsI(Tl)-детекторов образует в центре по оси симметрии туннель шестигранной формы. В нем расположена тонкостенная цилин-

дрическая вакуумная реакционная камера из нержавеющей стали с размерами: внешний диаметр $D_{out} = 8.4$ см, толщина стен H = 1 мм, длина L == 40 см. В реакционной камере размещены (см. рис. 1а) система ($dE_1 - dE_n$)-детекторов для идентификации пучка и снижения его энергии, система детекторов активного коллиматора AK[1], мишень М, два свинцовых блока цилиндрической формы (высота H = 5 см, внутренний диаметр $D_{in} =$ = 2 см, внешний диаметр D_{out} = 8 см) γ -защиты спектрометра (на рисунке представлен только передний Рb-цилиндр защиты) и Е-детектор. Для повышения эффективности регистрации спектрометра предусмотрена установка вокруг мишени двух кольцевых цилиндрических сцинтилляционных CsI(Tl)-детекторов с размерами: H = 5 см, $D_{in} = 2$ см, $D_{out} = 8$ см (на рисунке не показаны).

Энергетический спектр модуля спектрометра от источников ⁶⁰Со и ¹³⁷Сs, расположенных в позиции мишени *M*, представлен на рис. 2a. Из рисунка видно, что при энергетическом разрешении для линии $E_{\gamma} = 662$ кэВ (ширина на полувысоте 13%) достигнут резкий энергетический порог регистрации $E_{\text{пор}} = 200$ кэВ, что при высокой эффективности регистрации в пике полного поглощения $P(E_{\gamma}) = 82\%$ для $E_{\gamma} = 200$ кэВ (рис. 2б) обеспечивает достаточную точность измерения величины $E_{\text{пор}}$. Последнее определяет точность соответствия измеренных характеристик спектрометра их расчетным величинам.

Результаты компьютерного анализа, проведенного методом Монте-Карло (программа GEANT-3.21 [12]), показали, что выбранные размеры сцинтилляционных детекторов и вышеописанная конфигурация спектрометра позволяют прово-

Рис. 3. Зависимости эффективности регистрации ρ спектрометром каскада γ -квантов множественностью $M_{\gamma} = 2$ от энергии E_2 для различных постоянных значений $E_{\text{пор}}$ и при значениях E_1 : **a** – 100 кэВ, **б** – 200 кэВ, **в** – 511 кэВ, **г** – 1.17 МэВ. *1–3* – измеренные эффективности регистрации γ -каскадов для $M_{\gamma} = 1, 2, 3$ и $E_{\gamma} = 1173$ кэВ.

дить регистрацию γ-излучения в широком энергетическом диапазоне с высокой эффективностью. Во всех последующих вычислениях параметры расчета треков вторичных частиц имели величины CUTGAM и CUTELE, равные 10 кэВ, остальные параметры соответствовали общепринятым рекомендациям по моделированию γ-излучения.

Приведенная на рис. 26 энергетическая зависимость расчетной величины $P(E_{\gamma})$ определяет отношение суммы событий регистрации моноэнергетического γ -излучения в пике полного поглощения к полному числу событий в спектре. Для расчета данной зависимости для каждой энергетической точки разыгрывалось 10^6 событий изотропной эмиссии γ -квантов с энергией E_{γ} из мишени. После расчета траекторий и полной остановки всех вторичных частиц величины энергий, выделенных в каждом детекторе спектрометра, суммировались, и проводился анализ суммарного энергетического спектра.

Очевидно, высокое значение величины $P(E_{\gamma})$ еще не гарантирует выполнения основного требования к установкам, применяемым в экспери-

ментах такого рода, а именно требования постоянства эффективности регистрации спектрометром у-излучения независимо от его энергии и множественности, т.е. $\rho(E, M_{\gamma}) \approx \text{const.}$ Для проверки этого условия в GEANT-расчетах были эмитированы каскады множественностью $M_{\gamma} = 2$. Исследованы зависимости $\rho(E_1, E_2)$ от величин Е_{пор} и энергий Е ү-квантов каскада. На рис. 3 представлены четыре группы зависимостей $\rho(E_1,$ E_2) как функций энергии E_2 при постоянных величинах *E*₁ = 100, 200, 511, 1173 кэВ и различных значениях величины $E_{\text{пор}} = 0, 50, 100, 150, 200$ и 500 кэВ. Для каждой точки по энергии моделировалось 10⁶ событий изотропного излучения каскада с множественностью $M_{\gamma} = 2$ из позиции мишени. На рис. За и 36 можно видеть две группы распределения кривых эффективностей регистрации ρ : первая группа $\rho(E_1, E_2) \approx 0.6$ соответствует случаям, когда энергия E_1 одного из γ -квантов ниже величины Е_{пор}. Вторая группа позиционируется в области $\rho(E_1, E_2) > 0.9$ для $E_1 = 100, 200$ кэВ. Для более высоких энергий кривые эффективностей регистрации $\rho(E_1, E_2)$ выходят на плато ~0.85

и ~0.8 для энергий $E_1 = 500$ и 1173 кэВ соответственно. Точками 1, 2, 3 на рис. 3г показаны реконструированные значения $\rho(E_1, E_2)$, полученные при регистрации γ -каскадов с множественностью M_{γ} , равной 1, 2, 3, и энергией γ -квантов E = 1173 кэВ. Данные величины были получены посредством конструирования искусственных событий из реальных, зарегистрированных спектрометром с помощью источника ⁶⁰Со и NaI(Tl)-детектора размером \emptyset 150 × 100 мм. Детектор NaI(Tl) устанавливался вместо *E*-детектора и служил для запуска системы набора.

Последующий "off-line" анализ данных предварялся созданием искусственных событий, объединяющих по два или три (для множественности М, равной 2 или 3) соседних события, предварительно отобранных по условию выделения в них энергии в NaI(Tl)-детекторе, соответствующей пику полного поглощения ү-кванта с энергией 1332 кэВ. С этой целью из первичных данных создавался новый файл физических событий, удовлетворяющих условию регистрации в NaI(Tl)детекторе у-квантов с энергией 1332 кэВ только в пике полного поглощения. Иными словами, этот файл содержал события изотропной (в допущении аппроксимации угловых корреляций у-квантов ⁶⁰Со изотропным распределением) эмиссии укванта с энергией 1173 кэВ из позиции мишени спектрометра. Так как NaI(Tl)-детектор в измерениях был триггерным, то отношение событий, в которых сработал (импульс от ү-кванта превысил величину порога дискриминатора) хотя бы один CsI(Tl)-детектор спектрометра, к полному числу событий будет определять эффективность спектрометра к регистрации у-кванта с энергией 1173 кэВ при данном пороге, т.е. величину $\rho(E_{\gamma} = 1173 \text{ кэB},$ $M_{\gamma} = 1$). Создавая из данного файла событий новый файл, в котором последующие два события объединены в одно, получим оценку величины $\rho(E_{\gamma} = 1173 \text{ кэB}, M_{\gamma} = 2)$ и так далее.

Несмотря на ряд допущений, принятых в данной операции (аппроксимация угловых корреляций γ -квантов ⁶⁰Со изотропным распределением, пренебрежение суммированием энергий в случае, если $E < E_{\text{пор}}$, и др.), представленные точками 1, 2, 3 на рис. Зг величины эффективностей демонстрируют справедливость выражения $\rho(E_{\gamma}, M_{\gamma} = M_{\text{max}}) \longrightarrow 1$ при $M_{\text{max}} > 5$, полученного в результате GEANT анализа. Принимая во внимание это выражение, необходимо требовать выполнения условия

$$\rho(E_{\gamma}, M_{\gamma} = 1) \longrightarrow 1, \qquad (3)$$

поскольку спектрометр должен с одинаковой эффективностью ρ регистрировать каналы реакции в широком диапазоне по множественности M_{γ} в интервале от 1 до M_{max} , т.е. с наименьшей неопределенностью $\Delta \rho$, определяющейся выражением:

$$\Delta \rho = \rho(E_{\gamma}, M_{\gamma} = M_{\max}) - \rho(E_{\gamma}, M_{\gamma} = 1). \tag{4}$$

Проведенные по программе GEANT расчеты позволили определить оптимальную геометрию спектрометра и соответствующий ей диапазон энергетических переходов E_{γ} между нижайшими состояниями исследуемых ядер, в котором γ -спектрометр обеспечит минимум величины $\Delta \rho$.

Исходя из вышеописанного, можно сформулировать следующие основные требования к *γ*-спектрометру:

а) постоянство, $\rho(E_{\gamma}, M_{\gamma}) \approx \text{const}$, эффективности регистрации γ -излучения независимо от его энергии E_{γ} и множественности M_{γ} , что приводит к выражению $\rho(E_{\gamma}, M_{\gamma}) \approx 1$.

б) высокая эффективность регистрации нейтронов, $\rho(E_n, M_n) \approx 1$; регистрация каналов холодного развала, которые не сопровождаются γ -эмиссией.

в) низкая эффективность регистрации фоновых событий.

СИСТЕМА НАБОРА

Блок-схема установки, предназначенной для проведения экспериментов с пучками ⁶Не и ⁸Не малой интенсивности ($I_0 \sim 10^3 \, \text{c}^{-1}$), представлена на рис. 4. Аналоговые импульсы с детекторов dE_1 , dE₂, AK, E после предусилителей ПУ разветвлялись на два тракта – энергетический и временной. Каждый тракт имел стандартный набор электронных блоков, таких как спектроскопический усилитель *СУ*, пиковый преобразователь "амплиту-да-цифра" *АЦП*, быстрый усилитель *БУ*, дискриминатор переднего фронта ПД, линии задержки ЛЗ, преобразователь "время-цифра" ВЦП. Поскольку частота циклов работы системы набора ~10³ с⁻¹ характеризуется небольшим мертвым временем, старт записи событий реализовался от dE_1 -детектора и группы детекторов, предназначенных для идентификации частиц пучка и снижения их энергии. Логический сигнал временной привязки от блока ПД подавался на блок счетчика событий СЧЕТ и на вход блока мастер-триггер МТ. При получении этого сигнала блок МТ вырабатывал импульсы Старт для постоянно закрытых блоков ВЦП и сигнал Ворот, открывающий на время $\tau = 4 \cdot 10^{-6}$ с постоянно закрытые блоки АЦП. Затем, по истечении времени процессов оцифровки в АЦП и ВЦП, блок МТ вырабатывал сигнал запроса *LAM* для контроллера *KK* крейта КАМАК. Компьютер ПК, связанный с КК интерфейсом, записывал события на диск, что позволяло накапливать события с последующим отбором, согласно приведенной выше логике. Первый эксперимент по изучению энергетической зависимости полного сечения $\sigma_R(E)$ реакции ⁶He + ¹⁹⁷Au в энергетической области вблизи кулоновского барьера был проведен на ускорителе МЦ400 Ла-

Рис. 4. Блок-схема экспериментальной установки. AK – активный коллиматор; ΠY – предварительный усилитель; CY – спектроскопический усилитель; δY – быстрый усилитель; $\Pi Д$ – дискриминатор переднего фронта; $\Pi 3$ – линия задержки; $B \amalg \Pi$ – времяцифровой преобразователь; $A \amalg \Pi$ – аналого-цифровой преобразователь; $\Phi \Im Y$ – фотоэлектронный умножитель; MT – мастер-триггер; KK – контроллер крейта КАМАК; $\square \Phi U$ – дискриминатор формы импульса; $BA\Pi$ – преобразователь время–амплитуда; $C\Psi ET$ – счетчик событий; ΠK – персональный компьютер.

боратории ядерных реакций ОИЯИ, Дубна. Вторичный пучок ядер ⁶Не с энергией 18 *А*МэВ (где *A* – массовое число частицы) был получен на канале ахроматического сепаратора установки ACCULINA [13]. Таким образом, с помощью вышеописанной установки было проведено прямое и модельно независимое измерение [14] функции возбуждения $\sigma_R(E)$ реакции ⁶Не + ¹⁹⁷Au в энергетическом диапазоне пучка ⁶Не $E_{\text{паб}} = 24-72$ МэВ.

ЗАКЛЮЧЕНИЕ

В работе представлена разработанная в ЛЯР ОИЯИ методика прямого и модельно-независимого измерения полных сечений реакций, реализующая модифицированный метод трансмиссии, дополненный методиками γ -спектрометра полной геометрии и идентификацией частиц Si-детектором по форме импульса. Проведены первые эксперименты с применением данной методики по измерению функции возбуждения $\sigma_R(E)$ полного сечения реакции ⁶He + ¹⁹⁷Au в энергетическом диапазоне пучка ⁶He $E_{ла6} = 24-72$ МэВ.

Авторы благодарны коллективу сектора № 6 ЛЯР ОИЯИ (установка ACCULINA) и коллективу ускорителя МЦ400 за существенную помощь при

проведении эксперимента. Авторы благодарны также инженеру ЛЯР ОИЯИ В.В. Щетинкиной за оказанную помощь в конструировании установки.

Работа выполнена в Лаборатории ядерных реакций им. Г.Н. Флерова ОИЯИ при поддержке гранта РФФИ 09-02-00196а и гранта Полномочного представителя правительства Республики Чехия в ОИЯИ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Соболев Ю.Г., Иванов М.П., Кондратьев Н.А., Пенионжкевич Ю.Э. // ПТЭ. 2011. № 4. С. 5.
- 2. Пенионжкевич Ю.Э. // ЭЧАЯ. 1994. Т. 25. С. 930.
- Tanihata I., Hamagaki H., Hashimoto O. et al.// Phys. Rev. Lett. 1985. V. 55. P. 2676.
- Warner R.E., Patty R.A., Voyles P.M. et al. // Phys. Rev. C. 1996. V. 54. P. 1700.
- 5. Соболев Ю.Г., Будзановский А., Бялковский Э. и др. // Изв. РАН. Сер. физ. 2005. Т. 69. №. 11. С. 275.
- Немец О.Ф., Слюсаренко Л.И., Токаревский В.В. // ЭЧАЯ. 1975. Т. 6. № 4. С. 827.
- Saint Laurent M.G., Anne R., Bazin D. et al. // Z. Phys. A. 1089. V. 332. №. 4. P. 457.
- Khouaja A., Villari A.C.C., Benjelloun M. et al. // Nucl. Phys. A. 2006. V. 780. P. 1.

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА № 6 2012

- Villari A.C.C., Mittig W., Plagnol E. et al. // Phys. Lett. B. 1991. V. 268. P. 345.
- Sobolev Yu.G., Tyurin G.P., Demyanova A.S. et al. // Proc. of International Symposium on Exotic Nuclei. EXON-2009. (Sochi, Russia, 28 –2 October 2009) N.Y.: American Institute of Physics, 2010. V. 1224. P. 552.
- Tyurin G.P. // Proc. of International Symposium on Exotic Nuclei. EXON-2009. (Sochi, Russia, 28 – 2 October 2009) N.Y.: American Institute of Physics, 2010. V. 1224. P. 564.
- 12. Brun R., Bruyant F., Maire M. et al. // GEANT3. CERN Data Handling Division DDD/EE/84-1. Geneva, 1987.
- 13. Rodin A.M., Sidorchuk S.I., Stepantsov S.V. et al. // Nucl. Instrum. and Methods B. 1997. V. 126. P. 236.
- 14. Соболев Ю.Г., Пенионжкевич Ю.Э., Борча К. и др. // Сб. тезисов докладов 61 Межд. конф. "Ядро-2011" по проблемам ядерной спектроскопии и структуре атомного ядра. Саров, РФЯЦ-ВНИИЭФ, 2011. С. 86.